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2 Abstract

In this thesis, a new approach, the principal component transform (PCT)1,
is presented for mathematical modelling of synergistic biochemical systems
(S-system) providing us with a simple and very accurate method for �t-
ting these and other non-linear dynamical systems. The PCT is composed
by two metamodels2 one bi-linear metamodel and its improved version, a
tensor-metamodel; both metamodels are based on the principal component
analysis (PCA), which at the same time is based on the singular value decom-
position (SVD). The tensor-metamodel is in addition based on mathematical
attributes from tensor algebra, especially, the Kronecker product.
The PCT is inspired by the results of the PhD thesis of Julia Isaeva3. She
and her co-authors presented how many non-linear models can be approx-
imated by a single bi-linear metamodel. Isaeva's publications have provided
valuable knowledge which has been applied in the implementation of the
PCT as a tool which deals with multivariate power functions.
Referring to the PCT, the loadings, which are orthogonal, span a subspace,
where, after projecting a simple time-series (given by the S-system), we are
able to �nd a function which behaves in the same way as the non-linear
dynamical system described by the S-system. The process of projecting the
time-series vector to the span of the loadings-vectors is carried out by the
linear regression method.
This thesis did explore the possibility of using the scores, which belong to
the PCT as a library, meaning that after having computed the linear regres-
sion, we ought to have been able to �nd the same parameters in this library.
After having tested this hypothesis in the scalar case we could not �nd any
logical correspondence between the parameters from the library and those
parameters found by means of the linear regression method. These fundings
are in accordance with the results presented by the PhD candidate Valeriya
Ta�ntseva4, where she con�rms that the S-system formalism has a sloppy
structure in the scalar case, meaning that they have a neutral parameter-set.
However, in higher dimensions, sloppiness seems to disappear, so that the
data library can be constructed in an e�cient way.
Regarding the bi-linear metamodel, it has been observed that the dimen-
sionality of this method increases exponentially (n3) and proportionally to
the size of the S-system being studied. This leads, for big systems, to the
formation of principal components belonging to a null subspace. This issue

1This terminology was suggested by Prof. Eberhard O. Voit; Prof. Voit is a Distin-
guished Professor in Biochemical Systems at the Georgia Technology Research Alliance.

2This concept and its applications are mostly due to by Prof. Harald Martens; Prof.
Martens is a Professor at the Norwegian University of Science and Technology NTNU

3Julia Isaeva was a PhD student at the Norwegian University of Life Sciences from
2007-2011.

4Valeriya Ta�ntseva was a PhD student at the Norwegian University of Life Sciences
from 2009-2013.
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is solved in the tensor-metamodel, where the reduction of the dimensionality
is given by the Kronecker product of the SVD.
Finally we can mention that the accuracy that each metamodel-phenome
delivers is very good, meaning that more than 99% of the originally math-
ematical model is described by the PCT.
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3 Sammendrag

I denne masteroppgaven presenterer jeg en ny tilnærming som kan brukes til
matematisk modellering av synergistiske biokjemiske systemer (S-systemer),
tilnærmingen kalles the principal component transform (PCT). PCT-modellen
gir oss en enkel og svært nøyaktig metode for modellering av S-systemer og
andre ikke-lineære systemer.
PCT modellen er satt sammen av to metamodeller: en bi-lineær metamod-
ell og en forbedret versjon, kalt tensor-metamodell. Begge metamodellene
baseres på prinsipal komponent analyse (PCA). Tensor-metamodellen er i
tillegg basert på matematiske egenskaper fra tensor algebra, spesielt Kro-
necker produktet.
PCT-modellen er inspirert av doktorarbeidet til Julia Isaeva. Isaeva og
hennes medforfattere presenterte hvordan ikke-lineære modeller kan tilnærmes
ved en enkelt bi-lineær metamodell. Isaevas publikasjoner har gitt verdifull
kunnskap som jeg har brukt for å bearbeide multivariate potensfunksjoner.
Med henvisning til PCA: Scores som er ortogonale, spenner ut et underrom
der vi kan projisere en tidsrekke ved lineær regresjons metoden, tidsrekken
er gitt av S-systemet. Dette gir en funksjon (en ODE-funksjon), som vil
oppføre seg på samme måte som det opprinnelig S-systemet.
Denne oppgaven utforsker muligheten til å bruke scores som tilhører PCT-
modellen som et bibliotek. Biblioteket kan brukes i forbindelse med para-
meterestimeringsproblemer. Min hypotese er at parametersettet funnet ved
lineær regresjon burde �nnes i scores-biblioteket. Etter å ha testet hypotesen
for det skalare tilfellet fant jeg ikke logisk samsvar mellom parameterrom-
met og biblioteket. Dette er i samsvar med resultatene som presenteres av
PhD kandidat Valeriya Tantseva. Tantseva bekreftet at S-systemer har en
sloppy struktur i det skalare tilfellet. Det betyr at S-systemer har et nøytralt
parameter-sett.
I høyere dimensjoner kan "sloppiness" likevel forsvinne slik at biblioteket kan
konstrueres på en e�ektiv måte.
Nøyaktigheten som hver metamodell leverer er meget bra, noe som betyr
at mer enn 99% av den opprinnelig matematiske modellen er beskrevet av
PCT-modellen.
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4 Introduction

March 2014 was a key date for the Norwegian Scienti�c Society, whereupon
we celebrated the 150th anniversary of the only natural law found by Norwe-
gian scientists: the Law of Mass Action. This law is a mathematical model
which describes natural phenomenons in biochemistry given by solutions in
dynamical equilibrium. Cato Maximilian Guldberg and Petter Waage pro-
posed the Law of Mass Action in 1864, see Apendix A2.
This day we know that the attributes and properties of the Law of Mass
Action can be applied not only to biochemistry, but to many other �elds of
science; such as physics (e.g. thermodynamic studies, semiconductor prop-
erties), physiology (e.g. extracellular physiological signals), pharmacology,
psychology (e.g. psychological theories in neuro-psychology) and mathemat-
ics (e.g. dynamical systems, mathematical ecology, mathematical epidemi-
ology).
The Law of Mass Action is also responsible for the relatively new mathemat-
ical theory called power-law formalism, which, together with their synergistic
(S)-system representation of non-linear di�erential equations, describes sat-
isfactorily the non-linearities of natural processes. This thesis is intended to
be an attribute to this powerful and �exible natural Law of Mass Action. I
will connect this natural law, which describes non-linear di�erential equa-
tions, to a method called metamodelling, which has been vastly used at the
Center for Integrative Genetics (CIGENE) at the Norwegian University of
Life Science, (section 5.1 describes what a metamodel is).
The main goal of the thesis is to �nd a new approach, which will be based on
metamodelling, to non-linear systems appearing in biochemistry, in particu-
lar the S-system representation which goes back to the Gulberd and Waage
model and its generalizations.
The mathematical theory which describes how the metamodel and the tensor-
metamodel can be used as methods for modelling S-system is described in
Sections: 8, 10 and 13.
Examples 2, 3, 4, and 5 present the �tting of (1x1), (2x2), (3x3) and (4x4)
S-system to a bi-linear metamodel.
Section 13 presents the tensor-metamodel and Section 14 provides examples
of (1x1), (2x2), (3x3) and (4x4) S-system being modelled by the tensor-
metamodel.
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5 Background

5.1 Model vs. metamodel

A model in mathematics is a simpli�ed description of a system, and this de-
scription is made using mathematical language and concepts. I believe that
a mathematical model has 3 main goals:

i) To help us to understand the system.
ii) To help us to explain and describe the system and the components which
are involved in the system.
iii) To help us to make predictions about the behaviour of the system, and
the e�ect each component has.

It is well known that mathematical models of complex systems are normally
very di�cult to analyze and time consuming to work with. On the other
hand, a metamodel is a much simpler tool to work with. A metamodel is
a model of the original model. A metamodel provides, just like a model,
a description of the system. The advantage of working with metamodels is
that they considerably reduce the complexity of the model and also reduce
the dimensionality of the system, without loosing any important informa-
tion. We can see in Figure 1 and Figure 2 a graphical representation of an
aposteriori and an apriori model with its corresponding metamodel.

A model is known as aposteriori when the real data comes before the mode.
The metamodel comes at the end.

Figure 1: This �gure has been extracted from [1].

The model is known as a priori when the data comes after the model.
The metamodel comes at the end.
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Figure 2: This �gure has been extracted from [1].

Despite the fact that a metamodel is a simpli�cation of the model, it
does not lose any important information regarding the complex system. In
other words, a metamodel will not fail to ful�l i), ii) and iii).
The metamodel will provide an insight, which in some cases is as deep as
the model itself, of the complex system being analyzed.
In this thesis I will use the principal component analysis (PCA) as a metamodel.
The PCA will be computed by means of the singular value decomposition.

5.2 The singular value decomposition (SVD)

According to [4], there are two matrices U and V which are orthogonal and
a diagonal matrix Σ enabling the matrix X(IxJ) to be factorized as follows:

X(IxJ) = U(IxI)Σ(IxJ)V
t

(JxJ) (1)

where V t is V transposed.
The matrix Σ contains the singular values of X on its diagonal. The left
singular vectors U are joined together with Σ in order to obtain the scores-
matrix T and the matrix V, also called right singular vectors which produce
the loadings-matrix P :

X = (UΣ)V t = (T )P t + e (2)

A more extensive de�nition of the singular value decomposition is provided
in appendix A1.

5.3 The principal component analysis (PCA)

A principal component (PC) is a special type of variable which can not be
measured directly. Instead, it can be computed as a linear combination of a
set of input variables (e.g. a data set). These kinds of variables are called
latent variables, see [2]. The author in [2] underlines that the principal
component analysis (PCA) allows us to extract relevant information from
big and sometimes confusing data setts with comparatively little e�ort. The
PCA reduces the high dimensional data sett to a lower dimension giving few
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principal components that underlie the dynamics of the complex system.
Authors in [3] acknowledge that the PCA is concerned with explaining the
structure of the variance-covariance of a set of variables. The result of the
analysis of these latent variables has shown, and also been considered by [1],
that the principal components lie in the direction of the maximal variation
of the data and they describe this variation in a descending order, thus: the
�rst PC is found along the direction of the largest variation, the second PC
in the direction of the second largest variation but orthogonal to the �rst, a
pattern which is repeated for the third PC, the fourth PC and so on.

Let A = optimal number of PCs

When the remaining variation of the data in question is small, it is considered
that A has been found and the information which is given by A + 1 PCs is
so small that it can be considered as noise (e).
In [1] we can read more about how the PCs re�ect the largest eigenvalues of
the co-variances, therefore the �rst few PCs can give an adequate description
of the whole data set, these PCs form a new orthogonal basis of the variable
space where the scores (T) and loadings (P) are projected onto it. The
scores represent the relationship between the PCs and the samples (data
rows) while the loadings represent the relationship between the PCs and the
variables (data columns).
Assume we are given some random data in the matrix X(IxJ), this data can
be expressed in terms of the loadings and scores as shown below:

X(IxJ) = T(IxK)P
t
(KxJ) + e(IxJ) (3)

Here are X,T,P and e matrices with known dimensions, and where P t is P
transposed.
(3) shows that X(IxJ) is represented linearly by T and P , for this reason the
PCA is referred to as the bi-linear model.
Next we have a graphical interpretation of (3).

Figure 3: Illustrates how the structure of the PCA will be.
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The full bi-linear model

The bi-linear model of the matrix X(IxJ), together with the optimal number
of PCs (A) can be written in vector form as shown below:

X(IxJ) = X + t1p
t
1 + ...+ tAp

t
A + eA (4)

where pt is p transposed.
The matrix X in (4) represents the main centred-valued matrix, the vectors
t1,...tA are the �rst A scores vectors, p1,...pA are the �rst A loadings vectors,
and e is the error.
Centring X before computing the PCA is a normal procedure in statistical
analysis, but since this is a mathematical thesis, we are only interested in
the mathematical behaviour of the bi-linear model. For this reason, we do
not need to center X.
Just before we introduce the PCA as a metamodel for S-system, we give a
formal introduction of S-system and the theory of the power-law formalism.

6 The power-law formalism and S-systems

6.1 Historical introduction

The power-law formalism and in particular the S-system representation within
this non-linear formalism can trace their origins back to 150 years ago. It all
started with two scientists named Peter Waage and Cato Maximilian Guld-
berg.
Peter Waage (June 29 1833 - January 13 1900), was a signi�cant Norwe-
gian chemist and professor at the Royal Frederick University. Waage, along
with his brother in law Cato Maximilian Guldberg (11 August 1836 - 14
January 1902), developed the Law of Mass Action between 1864 and 1879.
The Law of Mass Action in chemistry is a mathematical model that explains
and predicts behaviours of solutions in dynamic equilibrium. Guldberg og
Waage published three articles in total, the �rst one came in 1864, and was
a paper in Norwegian called Studier over A�niteten, (see appendix A2). It
went largely unnoticed, as did the second paper in 1867, which was written
in French. Almost �fteen years after the �rst paper Guldberg and Waage
had published, 1877 saw a Dutch chemist called Jacobus Henricus van 't
Ho� achieving similar results as those produced by Guldberd and Waage.
Ho�'s work was produced independently from that of Guldberg & Waage's
and Ho�'s had started to get recognition for these results. For this reason,
the Norwegian scientists decided to write their last paper in 1879, in order
to get credit for their work, an achievement which they they did manage to
secure.
It is thanks to the scienti�c achievements of Guldberg & Waage in Studier
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over A�niteten (1864) that we have what we now call the power-law form-
alism, which is a sophisticated theory that studies dynamic equilibrium.
A representation of this formalism is given in systems of equations called
S-systems. In [5] we can read that the S refers to synergism and satura-
tion of the investigated system. The authors in [6] stress the fact that the
power-law formalism is a theoretical framework for modelling and analysis
of complex systems represented by di�erential S-system equations. Among
the possibilities of this formalism, we would do well to mention:

* Steady-state characterization of complex systems.
* Parameter estimation from experimental measurements.
* Classi�cation of non-linear functions using recasting techniques.
* Development of e�cient numerical algorithms for numerical simulations.

6.2 The need of the power-law formalism and S-systems

In the analysis of complex technological systems or biological systems, meth-
ods based on linear mathematics very often fail to capture the essential non-
linear characteristics from these processes. Concerning living systems and
natural processes, non-linear responses such as synergism, saturation and
oscillations are the rule rather than the exception. For instance, �nding ana-
lytical solutions of non-linear di�erential equations is an art limited to a few
special cases that it is insu�cient for general non-linear system analysis. On
the other hand, the power-law formalism with S-system di�erential equations
shows potential for providing systematic methods for analysis of non-linear
systems, see [6].

6.3 A formal mathematical description of S-systems

The author in [5] provides a very descriptive de�nition of the mathematical
structure of S-systems. I will quote this de�nition with some terminology
changed:

An S-system in biology represents the relative change in �ux of a sub-
stance in a speci�c process. This relative change in �ux is represented by
the function Xi, where the variables have the same name and which implies
that Ẋi denotes the derivative of Xi with respect to time. Ẋi is at the same
time composed of two positive-valued and di�erentiable functions of X. One
of these functions can be expressed as: V +(Xi) representing the in-�ux and
the second function: V −(Xi) representing the out-�ux.
This gives:

Ẋi = V +
i (Xi)− V −i (Xi) (5)

where i = 1, 2, ..., n.
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From (5) we can understand that if the system is composed of X1, X2, ..., Xn

variables, the function that describes the production is given by V +
i (X1, X2, ..., Xn)

and the function that describes the degradation is given by V −i (X1, X2, ..., Xn),
giving the following result:

Ẋi = V +
i (X1, X2, ..., Xn)− V −i (X1, X2, ..., Xn) (6)

Considering now Ẋi, where i = 1, 2.., n, this implies that there is only one
di�erential equation for each dependent variable in the system being con-
sidered. Assume now that we have m independent variables and n depend-
ent variables, this will give us n di�erential equations in the form of (6).
We let V +

i and V −i be de�ned now as follows:

V +
i (X1, ..., Xn, Xn+1, ..., Xn+m) = αiX

gi1
1 Xgi2

2 ...Xgin
n X

gi,n+1

n+1 ...X
gi,n+m

n+m

and

V −i (X1, ..., Xn, Xn+1, ..., Xn+m) = βiX
hi1
1 Xhi2

2 ...Xhin
n X

hi,n+1

n+1 ...X
hi,n+m

n+m

where αi, βi, gi,n+m, hi,n+m are parameters.
Then:

V +
i (X1, ..., Xn, Xn+1, ..., Xn+m) = αi

∏n+m
j=1 X

gi,j
j

and

V −i (X1, ..., Xn, Xn+1, ..., Xn+m) = βi
∏n+m
j=1 X

hi,j
j

This generalization allows us to re-write (6) in the following way:

Ẋi = αi

n+m∏
j=1

X
gij
j − β

n+m∏
j=1

X
hij
j (7)

with Xi(0) = Xi0 and for i = 1, 2, ..., (n+m)
The equation in (7) gives a canonical representation of non-linear ordinary
di�erential equations. The coe�cients αi, βi ∈ R are called rate constants
and the coe�cients gij , hij ∈ R are referred to as kinetic orders.

6.4 Modelling with S-systems

From experimental trials conducted and presented by the author in [5], we
know that near to steady-state solutions and relative changes in metabolites
produces proportional changes in �ux. S-system's representations of bio-
chemical systems responds in the same way. For this reason we can consider
S-systems as a suitable tool for modelling biochemical systems.
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At the same time, we know from the theory presented in [6] that S-systems,
thanks to its structural homogeneity, means that all steps required for ana-
lysis of complex biological systems are straightforward. We could mention:
system representation, steady-state solutions, stability analysis and sensitiv-
ity analysis: these methods are e�cient for evaluating the dynamic responses
of the system, providing at the same time powerful tools for understanding
the complex non-linear systems.
In the next chapter we will provide the theory that will allow us to compress
these complex non-linear systems represented by S-systems. We will show as
well that by compressing S-systems we don't lose any important information
of the non-linear system.

7 Compressing power functions with PCA

7.1 Theoretical background

The theoretical background of this section is based on the research and work
of Julia Isaeva. Julia took his Philosophiae Doctor Thesis at the Norwegian
University of Life Sciences in 2011. I will use more speci�cally the results
presented in her fourth paper �The modelome of line curvature: Many non-
linear models approximated by a single bi-linear model with verbal pro�ling�,
whilst at the same time I hope to take these results a little further.
Consider a matrix X of dimensions (I x J). Every entry in X(IxJ) will be
given by a power function, this follows from the way X is de�ned, which is:

xωi
j : X(IxJ) −→ R (8)

where i = 1, .., I and j = 1, .., J .
This means that we can decompose xωi

j by arbitrarily choosing values for J
and I. If, for instance, we let: j ∈ [1, ..., J ] which is a close domain with
J points, and i ∈ [−1, ..., I] which is also a close domain with I points, we
obtain the matrix X ∈ RIx,J :

xωi
j : X =


xω1

1 xω1
2 ... xω1

J

xω2
1 xω2

2 ... xω2
J

.. .. ... ..
xωI

1 xωI
2 ... xωI

J

 ∈ R(IxJ) (9)

We can see now how the matrix X(IxJ) represents a collection of power func-
tions, or, we could say that X(IxJ) is a multivariate power function matrix.
Through this thesis I am going to work in detail with functions of the form
xωi
j . This is because the structure of these functions is similar to the struc-

ture we �nd in the S-system representation. Since S-systems are related to
biochemical systems, we need to de�ne some constraints for the domain of
xωi
j , this is needed in order to get valid results within this branch of chemistry.
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ωi:
ωi will have a default close domain, ωi ∈ [−1, 2]. This is because [5] ensures
that kinetic order reactions happen to occur inside this interval, namely
[−1, 2].

xj :
The only constraint we have for the domain of xj is that it cannot include
the 0 value. This is because we could risk operating with singularities when
dividing by zero.
According to [1] we know that such kinds of matrices (X(IxJ)) can be com-
pressed by a metamodel, the bi-linear model. If we recall equation (4), we are
reminded of the fact that we can express X(IxJ) as a linear combination of

the mean-centred valued matrix X and the �rst three principal components
multiply with the �rst three scores-vectors:

X(IxJ) = X + t1p
t
1 + ...+ tAp

t
A + eA (10)

where pt is p transposed.
Consequently, if we were to multiply X(IxJ) with a real-valued constant α,
we would have:

αX(IxJ) = αX(IxJ) + αt1p
t
1 + ...+ αtAp

t
A + αeA (11)

Note that:
t ∈ RI and p ∈ RJ

the scores (t) will be related to the rows of X(IxJ) while the loadings (p)
will be related to the columns of X(IxJ).

7.2 Further results: The scores-library

To reiterate one more time, we are only interested in the mathematical beha-
viour and structure of the bi-linear model, and for this reason we do not need
to center the data in X(IxJ) before computing the PCA. The consequence of
leaving X(IxJ) not-centred is that we need to work with 3 PCs instead of 2.
We now have the following metamodel:

xωi
j : X(IxJ) = t1p

t
1 + t2p

t
2 + t3p

t
3 + e4 (12)

where pt is p transposed.
Another important result we are going to further explore is that the scores ti
(i = 1, 2, 3) from (12), can be brought together to form a library, which can
be used in parameter estimation problems. The scores-library is introduced
in the following section.
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The scores-library

Let L refer to a library formed by the scores t1, t2 and t3, which can be
found in (12).

L = [t1 t2 t3] (13)

Before we proceed, please recall that the dimension of ti (i = 1, 2, 3), is
directly related to the rows of X(IxJ), and where the rows of X(IxJ) are
given by ωi from the power function representation xωi

j , see (9).
Assume now that we are interested in a speci�c value called ωs, which is
inside ωi and where ωi ∈ [−1, 2]. Assume this value ωs = 3/2, which gives
the following function:

f(x) = x(3/2)

Expressed graphically, we have:

Figure 4

At the same time we construct a matrix X ∈ R(600x600) where we let
xj ∈ [0.1, 2] and ωi ∈ [−1, 2]. We can now compute the PCA to X(600x600)

in order to get the scores and loadings.

xωi
j : X(600x600) → PCA→

3∑
i=1

tip
t
i ≈ X(600x600)

where pt is p transposed.
Now, since we know that ωs ∈ ωi we can �nd the index position in ωi where
we have the value of 3/2 or its best approximation.

ωi ∈ [−1, ω2, ω3, ..., 1.5︸︷︷︸
position 501

, ..., 2] (14)
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Once we have the index position of ωs we can begin working with L. In this
case we have the following library:

L = [t1 t2 t3] ∈ R(600x3)

Now, in order to �nd a metamodel that approximates our function f(x) =
x3/2 we need to �nd the values of L which correspond to the index position
501. This step is illustrated in the next Figure.

Figure 5: Representation of the scores-library

We usematlab to pick up these values and we get the following metamodel:

f(x) ≈ L(501, 1)p1(x) + L(501, 2)p2(x) + L(501, 3)p3(x)︸ ︷︷ ︸
f̂(x)

(15)

where:

t1 = L(501, 1) = −8.835

t2 = L(501, 2) = −1.155

t3 = L(501, 3) = −1.044

If we now plot both functions together, f(x) and f̂(x) we get the following
result:
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Figure 6: Shows the non-linear function x1.5 being �tted by a metamodel
where the parameters come from the scores-library

We can see that we get very good results.
Consider now the following non-linear function:

f(x) = x(3/2) − x(1/2) (16)

The exponents ful�l the requirement of being inside ωi ∈ [−1, 2].
We use the same matrix we had before, namely X(600x600) and we can com-
pute the PCA one more time, meaning we get the same result as before:

xωi
j : X(600x600) → PCA

The di�erence this time will be given in the structure of the metamodel,
which is given as follows:

f(x) ≈
3∑
i=1

tip
t
i −

3∑
i=1

tip
t
i (17)

where pt is p transposed.
Since we are using the same xj in computing the metamodel for x3/2 and
x1/2, this implies that pti from (17) is the same in both sums and for this
reason can be factorized. We can make the same supposition for the library
L, which will be the same in both sums because we are using the same ωi for
the metamodel for x3/2 and x1/2. But the values we are querying in L come
from di�erent index-positions within L.
for ω(s1) = 3/2:

ωi ∈ [−1, ω2, ω3, ..., 1.5︸︷︷︸
position 501

, ..., 2]
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and for ω(s2) = 1/2:

ωi ∈ [−1, ω2, ω3, ..., 0.5︸︷︷︸
position 301

, ..., 2]

This gives the following metamodel:

f(x) ≈ [ω(s1)︸ ︷︷ ︸
L501,1

−ω(s2)︸ ︷︷ ︸
L301,1

]pt1 + [ω(s1)︸ ︷︷ ︸
L501,2

−ω(s2)︸ ︷︷ ︸
L301,2

]pt2 + [ω(s1)︸ ︷︷ ︸
L501,3

−ω(s2)︸ ︷︷ ︸
L301,3

]pt3 (18)

We pick up the six values from the common L which corresponds to these
index-positions and we compute the di�erence:

t1 =L(501, 1)− L(301, 1) = −50.4210

t2 =L(501, 2)− L(301, 2) = 11.4172

t3 =L(501, 3)− L(301, 3) = −0.1087

Finally, we now have a metamodel with a structure similar to (12):

f(x) ≈ t1p1(x) + t2p2(x) + t3p3(x) + e4 (19)

We plot both functions and we get:

Figure 7

The results, as we can see, are very satisfying.
These examples ensure that L can indeed be used as a library. These results
are important for further analysis, (see section 16, recasting).
In the next section of the thesis, a metamodel has been developed for ap-
proximate S-system di�erential equations, having a time-series given in the
left hand side (LHS) of the system as the only information available.

22



8 Scalar case of S-systems and the bi-linear metamodel

A scalar case of S-system representation is given as follows:

Ẋ = αXg − βXh︸ ︷︷ ︸
f(x,t)

(20)

one equation, four parameters and X common. Recall that α, β ∈ R are
called rate constants and g, h ∈ R are referred to as kinetic orders.
We will develop a metamodel which is simply an approximation of the ori-
ginal function, and we have called this metamodel f̂(x, t).
As mentioned brie�y previously, the right hand side (RHS) in (20) will be
unknown. The only available information we are going to have is the LHS,
which will be giving as a vector with function-values of f(x, t) at some time
t. In other words, f(x, t) will be given discrete. First of all, we begin by
deriving the metamodel.

8.1 Deriving the metamodel

Recall the results from section (3), then de�ned αXg and βXh as shown
bellow:

αXg ≈ αλ1p
t
1(xj) + αλ2p

t
2(xj) + αλ3p

t
3(xj) + αε4 (21)

βXh ≈ βµ1p
t
1(xj) + βµ2p

t
2(xj) + βµ3p

t
3(xj) + βε4

where pt is p transposed; λ1, λ2, λ3 and µ1,µ2, µ3 are vector-spaces, α and
β are just constants ∈ R.
Since we know that xj is common for both metamodels, pti can be factorized
giving the following result:

αXg − βXh ≈ (αλ1− βµ1)pt1 + (αλ2− βµ2)pt2 + (αλ3− βµ3)pt3 + ε4 (22)

In order to simplify notation we can write (22) as shown below:

αXg − βXh ≈ Γ1p
t
1(xj) + Γ2p

t
2(xj) + Γ3p

t
3(xj) + ε4 (23)

Equation (23) is the metamodel for the (1x1) S-system, where:
Γ1 = (αλ1 − βµ1) is a vector space.
Γ2 = (αλ2 − βµ2) is a vector space.
Γ3 = (αλ3 − βµ3) is also a vector space.

Notice that the metamodel in (23) is a general representation of the function
f̂(x, t) which approximates the (1x1) S-system for any given combination of
parameters α, β, g, h within a valid domain.
For an explicit (1x1) S-system, the metamodel becomes:

αXg − βXh ≈ Γ1p
t
1(xj) + Γ2p

t
2(xj) + Γ3p

t
3(xj) + ε4 (24)
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where Γi (i = 1, 2, 3), are real-valued constants. These constants, also called
parameters for the metamodels are unknown.
Equation (24) can be considered as a parameter estimation problem. We
now need to estimate these unknown parameters, which is explained in the
next section.

8.2 Metamodel-parameter estimation problem

The process in �nding the Γ1, Γ2 and Γ3 parameters from a time-series will
be explained through a series of six steps in a simple algorithm.

Step 1: Solving the S-system

Assume the (1x1) S-system is a known explicit, this means that:

Ẋ = α̂X ĝ − β̂X ĥ︸ ︷︷ ︸
test function

, x(0) = xo (25)

where α̂, β̂, ĝ and ĥ are real-valued constants.
At the same time we choose to call the function from (25) test function.
The �rst step consists in solving the system in (25). Di�erent methods can
be applied, in matlab or other computational languages. I will use a built-in
function from matlab called ODE45 5.
The result after solving (25) is a vector which we will refer to from now on
as test solution. The test solution will be given as follows:

[x(tk)]
kK=xo+x
k1=xo︸ ︷︷ ︸

test solution

(26)

the �rst value of the vector is the initial condition-value xo and the last value
is xo + x.
What is more I will only use x(tk) when referring to the test solution in (26),
this is done in order to simplify notation.
The time interval for which the ODE from (25) is solved can be arbitrarily
chosen. The domain of x(tk) ∈ [xo, xo + x] will depend entirely on the
behaviour of the solution. This interval gives us information about where
x(tk) is de�ned. Furthermore, we can �nd the max and the min value for
the test solution within this interval. We are very interested in this interval,
which will help us to decide the domain for xj from the power-function
representation xωi

j used in assembling the multivariate power function matrix
X(IxJ).

5ode45 is a numerical tool used in solving di�erential equation problems. It applies the
fourth and �fth order Runge-Kutta method. (MathWorks-DocumentationCenter-ode45 )
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Step 2: Computing the PCA

Recall that xωi
j will give a matrix X of size (IxJ). The domain for the

columns ofX will vary accordingly to the domain of xj alone. This is because
the domain of ωi (rows of X) has been set to the default value = [−1, 2].
We have:

xωi
j : X(IxJ) =


x−1

1 x−1
2 ... x−1

J

xω2
1 xω2

2 ... xω2
J

.. .. ... ..
x2

1 x2
2 ... x2

J

 (27)

The domain of xj needs to ful�l two constrains:
a) xj has to be chosen in such way that x(tk) becomes a subset of xj . This
is possible if we take a close look to the domain of x(tk) and we simply chose
a wider interval for xj , perhaps if:

x(tk) ∈ [xo, xo + x] ∀ x > 0

we choose:
xj ∈ [xo − x, xo + 2x] ∀ x > 0

b) The step-size of xj has to be much smaller than the step-size of x(tk).
Assume that k = 50 ⇒ x(tk) ∈ R50x1, thus, we chose j = 10 ∗ k ⇒ xj ∈
R500x1.
If X(IxJ) ful�ls a) and b) we can compute the PCA to X(IxJ) and proceed
to the next step.

Step 3: Superposition

The constrains a) and b) given on step 2 ensure that we can write x(tk) ⊂ xj
and that xj has smaller step-size than x(tk). A graphical representation is
provided below.
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Figure 8

It is now possible to approximate values from xj to x(tk) in the following
three ways:

xj31 ≈ x(t1) (28a)

xj67 ≈ x(t2) (28b)

xj2 = x(t3) (28c)

xj72 = x(t4) (28d)

xj7 ≈ x(t5) (28e)

xj7 ≈ x(t6) (28f)

* Some values from xj (of index position 31 and 67) approximate the �rst
and second value of x(tk), (28a, 28b).
* Some values from xj (of index position 2 and 72) are equal to the third and
fourth value of x(tk), (28c, 28d).
* Only one value from xj (of index position 7) is similar to the �fth and sixth
value of x(tk), (28e, 28f).

As we can see, the process of approximate values from xj to x(tk) will give
us a very important result, which is a vector we will call [idx] vector.
This vector contains the index positions of the values of xj that approxim-
ate or are equal to the values of x(tk). These index positions are the small
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numbers which are beside the j′s in (28a-28f).

idx =



31
67
2
72
7
7

 (29)

Note that [idx] ∈ RK .

Superposition:

We are going to use the [idx] vector to �nd a composed function pi(xj)
(i = 1, 2, 3), of x(tk). The result will be the composed function pi(x(tk))
where (i = 1, 2, 3).
For this job a matlab-code has been implemented, the code records the in-
dex positions ([idx]) of the approximated values of xj to x(tk), then it goes
through every element in pi(xj) and chooses the values that are in the index
positions given in [idx]. At the end, the code rearranges the values of pi(xj)
accordingly to [idx] and the result is a composed function pi(x(tk)) ∈ RK .
To illustrate this step let us consider (28a-28f):
Assuming now that we are done with the approximation step and we have
our [idx] vector (29). We will now focus on the pi(xj) vector, for (i = 1, 2, 3),
and pick up the value form the index position 31. This is the �rst value in
[idx] and for this reason this value takes the �rst position in the composed
function pi(x(tk)). If we repeat the process again we have to pick up the
value from pi(x) from the index position 67 which is the second value in [idx]
and for this reason, this value takes the second position in pi(x(tk)). When
we have gone through all the elements in [idx] we have a p(x(tk)) ∈ RK .

Step 4: Taking the derivative of the test solution

This step is straightforward. matlab is applied to compute the derivative of
the test solution giving: ẋ(tk) = dx/dt where dx/dt ∈ RK−1. Notice that we
lose one dimension6 when computing the derivative of the test solution.
The step where we di�erentiate x(tk) is necessary because we are going to
apply linear regression in order to �nd the unknown parameters Γ1,2,3, and
linear regression requires that we work with time-series.

6Y = diff(X) calculates di�erences between adjacent elements of X along the �rst
array dimension whose size does not equal 1. If X is a vector of length m, then Y =
diff(X) returns a vector of length m− 1. (MathWorks-DocumentationCenter-di� )
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Step 5: Linear regression

This step will give us three real-valued constants: Γ1, Γ2 and Γ3, which are
the three unknown parameters from our metamodel:

f̂(x, t) = Γ1p1(xj) + Γ2p2(xj) + Γ3p3(xj) + e4

The linear system we are going to solve is given as:

M Γ = dx/dt (30)

where
M = [p1(x(tk)),p2(x(tk)),p3(x(tk))] ∈ RKx3

Γ ∈ R3x1

dx/dt ∈ R(K−1)x1

As we observe, the system in (30) is not consistent. The RHS has a lower
dimension than the LHS. I believe the best option to solve this problem is by
deleting the last row from the matrix M(KX3). The reason I suggest such an
option is because we lose the last element from x(tk) during di�erentiation.
We have now:

M = [p1(x(tk)),p2(x(tk)),p3(x(tk))] ∈ R(K−1)x3

Γ ∈ R3x1

dx/dt ∈ R(K−1)x1

which is a consistent linear system. We can now compute:

Γ = M t dx/dt (31)

The vector of M forms a basis for the column space, the vector dx/dt is
not in the column space so we need to project it onto it, as a result of this
projection we get three real-valued constants: Γ1, Γ2 and Γ3.

Step 6: The metamodel

Once we have the parameters Γ1, Γ2 and Γ3 we can write the metamodel for
the (1x1) S-system as shown below:

Ẋ = Γ1p1(xj) + Γ2p2(xj) + Γ3p3(xj)︸ ︷︷ ︸
f̂(x,t)

(32)

where f̂(x, t) ≈ f(x, t).
To be able to judge the accuracy of the metamodel in (32), we are going to
use the square error method:

max (|x(tk)− x̂(tk)|2) 100% (33)
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This method basically computes the di�erence from the exact solution x(tk)
and the approximated solution x̂(tk). The max implies that we are only
going to get the biggest result after the di�erence has been computed, then
we square our answer and multiply it by 100 in order to have the result in
percentage form.
Before we can compute the square error method we need to solve the �rst
order di�erential equation given in (32). The challenge here is that we have
our metamodel-function in discrete form and the ODE45 method from mat-
lab does not accept discrete functions. However this matter can be easily
solved by another built-in function o�ered by matlab, which is linear inter-
polation. Applying linear interpolation to (32) will give a curve where the
values f(t1), f(t2), f(t3), ..., f(tK), and t1, t2, t3, ..., tK (which are known) are
�tted by matlab. We can now solve the ODE from (32) using ODE45.
This is hugely signi�cant because the test function has been solved by means
of ODE45. We now need to apply the same numerical method to the equa-
tion in (32) if we are going to be fair in comparing their solutions.

8.3 Example 1: (1x1) S-system and its bi-linear metamodel

Consider the following (1x1) S-system:

Ẋ = 3X0.5 − 2X1.5, x(0) = xo (34)

The equation in (34) is given in explicit form, where α = 3, β = 2, g = 0.5
and h = 1.5. This means that we can �nd a metamodel that approximates
(34) if we go through the steps 1- 6. By doing this we will obtain a metamodel
for the scalar case S-system:

Ẋ ≈ Γ1p1(xj) + Γ2p2(xj) + Γ3p3(xj) (35)

Note that parameters Γ1, Γ2 and Γ3 will be di�erent for di�erent initial
conditions (xo).
Let the ODE in (34) have xo = 0.2, [tspan] ∈ [0 1]. At the same time we let
ωi ∈ [−1, 2] and xj ∈ [0.1, 5], and we then assemble X(IxJ) as follows:

xωi
j : X(600x600) → PCA

Once we compute the superposition and linear regression, we obtain the
following parameter-values:
Γ1 = 591.5121
Γ2 = 35.1352
Γ3 = 107.5798
These results give us the following:

Ẋ ≈ 591.5121p1(xj) + 35.1352p2(xj) + 107.5798p3(xj)
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where pi(xj) ∈ R(600X1) for i = 1, 2, 3.
Next, we plot both results and compare their solutions.

Figure 9

Finally, the square error method which is also computed in matlab gives:

(max|x(tk)− x̂(tk)|2) 100 ≈ 0.048%

which is a very accurate result.
In order to show how stable the metamodel is, we are going to solve (34) at
xo = 2, xo = 2.5, xo = 3 and xo = 3.5. We will compute a metamodel for
each case, which will give di�erent Γ parameters although we are using the
same X(600x600) matrix to approximate each ODE.
The results, which are very satisfactory, can be studied in the next graph.
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Figure 10

where the square error is:
- for xo = 2 ≈ 0.042%.
- for xo = 2.5 ≈ 0.043%.
- for xo = 3 ≈ 0.043%.
- for xo = 3.5 ≈ 0.042%.

Some very important aspects we need to consider now are: How trustworthy
are these results? How reliable is the procedure we have employed in solving
the discrete ODE given by the metamodel, considering that we used linear
interpolation before ODE45? and, Is ODE45 a stable numerical method?
These are very relevant questions that will be considered in the next section.

9 Numerical analysis

Remember that we are interpolating the metamodel-function before solv-
ing it with ODE45. The following section will show that, whilst another
numerical-integration methods can let us deal directly with ODEs given
in discrete form, the methods of interpolation and ODE45 are stable and
provide reliable results.
Before we consider the methods o�ered by matlab, and assuming one wants
to apply another numerical method, we will consider some important aspects
regarding numerical-integration methods that we should bear in mind when
solving ODEs.
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As mentioned before, there are many numerical-integration methods that can
allow us to deal directly with discrete-ODEs, to name but a few: the Euler
method, the midt point method, the Heun's method, the Runge-kutta method
and many others. A good numerical method has to provide two things: ef-
�ciency and accuracy and clearly not all of the methods mentioned above
deliver on these fronts. In many cases, one has to decide if time-computing
is more important than accuracy or vice versa.
Next, we will consider two methods to show that some methods are more
reliable than others, namely the Euler method and the Runge-Kutta method.

9.1 Euler method

We can �nd a very good theoretical description of the Euler method in [12]
and [13].
The Euler method is a numerical method used for solving initial value prob-
lems. The method provides an approximation of the solution to the initial
value problem.
For any

x′ = f(t, x) x(to) = xo

the forward euler method gives:

x(k+1) ≈ xk + hf(tk, xk) where h = t(k+1) + tk︸ ︷︷ ︸
∆t

(36)

The algorithm in (36) calculates approximate values x0, x1, x2, x3, x4, .., xn, ..
of the unique solution f(x(t)) at the set points t0 < t1 < t2 < t3 < ... < tn....
Notice that f(t, x) satis�es: x′(t) = f(t, x(t)).
The Euler method can be applied in order to solve the ODE given by the
metamodel. Indeed, we have all we need: we have the time interval given by
xj , which are the points where the metamodel has been evaluated -this is ∆t
in (36)-, we have the initial condition x0 = xk in and we have the function
values for the metamodel, which corresponds to f(tk, xk) in (36).
The problem with this method arises under error analysis. As we can ob-
serve, the Euler method is a step-by-step method, for this reason one can anti-
cipate that by reducing the step-size, we get more accurate results. Broadly
speaking, the smaller step-size yield the smaller the error. Such error is
known in the �eld of numerical analysis as truncation error. The truncation
error can be measured locally or globally. The local truncation error meas-
ures the error at speci�c points, found by taking the di�erence between the
exact solution and the computed solution at speci�c points, while the global
truncation error measures the di�erence between the exact solution f(t) and
the approximated solution f̂(t). It is the latter which is of particular interest
to us.
In [11], [12] and [13] we �nd that the Euler method has a global truncation
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error of �rst order h(O). This mean that the error → 0 linearly when the
step size ∆t → 0. This convergence of the error to zero is very slow, which
implies that this method is not very accurate, although one has to acknow-
ledge that it is very fast. In order to get good results one should consider a
numerical method which has an error with a high convergence rate to zero,
this means a higher power of h(O).
According to [13], the global truncation error of the midt point method and
the Hun's method is of second order h(O)2, which implies more accurate
results, but if we want accuracy one of the best methods to consider is the
fourth-order Runge-Kutta method.

9.2 Fourth-order Runge-Kutta method (RK4)

Also called, classical Runge-Kutta. It is called fourth-order because its global
truncation error is of fourth order h(O)4, which is far quicker than the other
methods previously mentioned.

The classical Runge-Kutta scheme

x(i+1) = xi +
1

6
(k1 + 2k2 + 2k3 + k4)/h (37)

where

k1 = f(ti, xi)

k2 = f(ti +
1

2
h, xi +

1

2
k1h)

k3 = f(ti +
1

2
h, xi +

1

2
k2h)

k4 = f(ti + h, xi + k3h)

Notice that the k′s are recurrently related. That is, k1 appears in the equa-
tion of k2, which appears in the equation of k3, and so forth. Because each
k is a functional evaluation, this recurrence makes the RK4 method very
e�cient. [13] provides a formal representation of the global truncation error
of the RK4 method, the most important result of this representation being
that this truncation error is of fourth-order h(O)4.
Notice that h(O)4 is achieved with four evaluations of f for each integration-
step. We can read in [11] that this situation does not extend to higher order
RK methods. For instance, an eight-order RK method (h(O)8), may require
twelve evaluations per step, which is quite a high price to pay, time-wise, and
implies more function evaluations per step to achieve slightly better results.
This simply may not be worthwhile. For this reason the fourth-order RK
method is considered the most popular among the Runge-Kutta methods.
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We can conclude by stating that if one chooses to work with numerical-
integration methods, the RK4 is one of the best options.

9.3 ODE45

We can read in [11] and [13] that the matlab function ODE45 employs the
Runge-kutta method of fourth and �fth order. This is a positive start for
this numerical method. At the same time ODE45 uses a variable step-size
algorithm, also called an adaptive step-size controller in matlab language.
This algorithm works as follows: for a given step-size interval the program
makes six evaluations of f. These values allow evaluations of two Runge-
Kutta formulas which allow us both to estimate the actual truncation error
and proper step-size adjustment to control accuracy. If the estimated error
is too large, the step-size decreases until the error tolerance is satis�ed. On
the contrary, if the computed error is small, the step-size is increased for the
next step. This makes the algorithm fast and precise.
The fact that ODE45 makes so many evaluations for each step-size makes
it a very good candidate in solving ODEs. This method will provide very
accurate results. It does, however, come with a price: more time spent
computing.
We have thus far discovered two excellent candidates for solving ODEs, but
before we compare them we are going to study interpolation.
One could be led to believe that interpolation will introduce an error which
will propagate through the algorithm and impoverish the results by making
them less accurate. This, however, is not the case. I will now share an
example to show that interpolation is a reliable and stable buit-in function
o�ered by matlab.

9.4 Interpolation

The best way to examine if interpolation is a suitable tool is through look-
ing at an example. We are going to interpolate the trigonometric function:
f(x) = sin(x). This function f(x) can be considered as an exact function.
First, we are going to compute f(x) at some speci�c x-values. Secondly, we
will interpolate f(x) and plot both functions together. We call the interpol-
ated function (πf).
Consider:

f(x) = sin(xi) where x ∈ [0, 2π] and xi = 1000 (39)

This means that f(x) has been evaluated at 1000 points between [0, 2π].
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Figure 11

Let us interpolate f(x) at only 15 points:

Figure 12

The result, as expected, is terrible. But notice that we are using only 15
points. Consider the next Figure where we increase the steps of πf(x) to 50
points:
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Figure 13

We can see immediately that πf(x) improves. The blue circles are the
points where we are interpolating.
Let us now interpolate using 1000 points, which are the all points where f(x)
has been evaluated at: (39).

Figure 14: The blue circles have been omitted.

We can not see any signs of a red curve anymore; this is because the
interpolating function matches the exact function perfectly.
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We can now be sure that interpolation is a reliable tool.
We are now ready for the last part of this section, where we will compare
the RK4 method and ODE45 method.

9.5 ODE45 vs. fourth-order Runge-kutta

Consider the following nonlinear ODE:

ṙ = 4e0.8t − 0.5r(t) (40)

The exact solution for this equation is:

r(t) =
4

1.3
[e0.8t − e−0.5t] + 2e−0.5t (41)

We are going to compare precision and measure the time each numerical
method uses in order to �nd a solution. The results will be presented graph-
ically. We will use the absolute error to compare results and the tic toc
function form matlab will help us to �nd out the elapse time.
We begin by evaluating the RK4 method.
Let (40) have r(0) = 2 and tspan ∈ [0, 1] We �nd that:

Figure 15

From matlab we �nd that the elapse time is 0.01859 seconds and the
absolute error is (1 ∗ 10−9).
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Let us now apply ODE45.
We let (40) have r(0) = 2 and tspan ∈ [0, 1]. We �nd that:

Figure 16

Here, the tic toc function is returning 0.532513 seconds, which is far
more than the RK method. The absolute error, on the other hand, is much
more accurate for the ODE45 than for the RK4 method. This result can
be di�cult to observe, due to the fact that the absolute error from ODE45
gives the appearance that it is oscillating in some way, but what we are really
seeing are spikes due to the polynomial interpolation matlab uses to produce
the points in between the true steps taken by ODE45. Consider the next
�gure, which compares the error produced by the RK4 and ODE45 method.
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Figure 17: As we can observe, the error at the true steps taken by ODE45
grows more slowly than the error for RK4. ODE45 is e�ectively a higher
order method than RK4.

This shows that ODE45 is more precise but it requires more time to
compute the answer if we compare it with the RK4 method.

10 Vector case of S-systems and the bi-linear metamodel

The vector case of S-system is given whenever we have an S-system of two or
more equations. Before we begin working with the metamodel for a vector
case S-system, we will cite a very important result derived from mathemat-
ical theory of systems of di�erential equations.

Corollary 1: Assume Ẋi = f(x, t) represents a system of di�erential
equations (for i ≥ 2). If the parameters of f(x, t) from every di�erential
equation of the system are independent from each other, we can work with
one equation at the time without a�ecting the main result of the system.

Corollary 1 is very convenient, bearing in mind that the parameters that
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are included in the S-system are independent from each other:

Ẋi = αi

n∏
j=1

X
gij
j − βi

n∏
j=1

X
hij
j

meaning that we can work with i independent metamodels at a time, one
for each di�erential equation of the S-system.

10.1 (2x2) S-systems

Consider:
Ẋ1 = α1X

g11
1 Xg12

2 − β1X
h11
1 Xh12

2 (42)

Ẋ2 = α2X
g21
1 Xg22

2 − β2X
h21
1 Xh22

2

x(0) = xo.

The metamodel for the (2x2) S-system will di�er from the scalar case in
two fundamental ways:

i) We will have one metamodel for each di�erential equation of the S-system
of di�erential equations, (follows from Corollary 1); a (2x2) s-system will
have 2 metamodels, a (4x4) s-system will have 4 metamodels and so forth.

ii) We have the multiplicityX
gij
1 X

gij
2 andX

hij
1 X

hij
2 for each di�erential equa-

tion.

Let us see if i) and ii) will a�ect the structure of the metamodel.

10.2 Deriving a metamodel for (2x2) S-systems

We are going to derive a metamodel only for Ẋi = Ẋ1. The metamodel for
Ẋ2 will be exactly the same.
Consider:

Ẋ1 = α1X
g11
1 Xg12

2 − β1X
h11
1 Xh12

2 (43)

We have four power functions and two monomials in (43), and we know that
each of these power functions can be approximated by a metamodel, giving
us the following results:

- for Xg11
1 → xωi

1j : X1 ≈ ∆1
1p

1
1(x1) + ∆1

2p
1
2(x1) + ∆1

3p
1
3(x1)

- for Xg12
2 → xωi

2j : X2 ≈ ∆2
1p

2
1(x2) + ∆2

2p
2
2(x2) + ∆2

3p
2
3(x2)

- for Xh11
1 → xωi

3j : X1 ≈ γ1
1p

1
1(x3) + γ1

2p
1
2(x3) + γ1

3p
1
3(x3)

- for Xh12
2 → xωi

4j : X2 ≈ γ2
1p

2
1(x4) + γ2

2p
2
2(x4) + γ2

3p
2
3(x4)
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where the variable ∆r
q represents the �rst monomial, q stays for the para-

meter number: q = 1, 2, 3 and r = 1 corresponds to the variable X1 while
r = 2 corresponds to X2. For the second monomial we have γrq where q
corresponds to the parameter number: q = 1, 2, 3 and r = 1, 2 corresponds
to X1 and X2. The domain of ωi = [−1, 2] is default and the domain for
x1,x2,x3,x4 can vary.
Let α = β = 1, which means that:

Xg11
1 Xg12

2 −Xh11
1 Xh12

2 ≈

[∆1
1p

1
1(x1) + ∆1

2p
1
2(x1) + ∆1

3p
1
3(x1)][∆2

1p
2
1(x2) + ∆2

2p
2
2(x2) + ∆2

3p
2
3(x2)]−

[γ1
1p

1
1(x3) + γ1

2p
1
2(x3) + γ1

3p
1
3(x3)][γ2

1p
2
1(x4) + γ2

2p
2
2(x4) + γ2

3p
2
3(x4)]

In order to simplify notation, we let x1,x2,x3 and x4 be the same, this step
will give us a common factor that we can then factorize:

[∆1
1p

1
1(x) + ∆1

2p
1
2(x) + ∆1

3p
1
3(x)][∆2

1p
2
1(x) + ∆2

2p
2
2(x) + ∆2

3p
2
3(x)]−

[γ1
1p

1
1(x) + γ1

2p
1
2(x) + γ1

3p
1
3(x)][γ2

1p
2
1(x) + γ2

2p
2
2(x) + γ2

3p
2
3(x)]

This step of factorization is the same as that demonstrated in (21) in Section
5.1.1.
After applying factorization we get the following:

[(∆1
1−γ1

1)p1
1+(∆1

2−γ1
2)p1

2+(∆1
3−γ1

3)p1
3][(∆2

1−γ2
1)p2

1+(∆2
2−γ2

2)p2
2+(∆2

3−γ2
3)p2

3]

We have reduced the expression to two brackets being multiplied by each
other, and we can therefore observe that each bracket contains three ele-
ments. Thus, simple multiplication will give nine factors:

[(∆1
1−γ1

1)(∆2
1−γ2

1)p1
1(x)p2

1(x)]+ ...+[(∆1
3−γ1

3)(∆2
3−γ2

3)p1
3(x)p2

3(x)] (44)

We could simplify notation by letting:

[(∆1
1 − γ1

1)(∆2
1 − γ2

1)] = Γ1

[(∆1
1 − γ1

1)(∆2
2 − γ2

2)] = Γ2

[(∆1
1 − γ1

1)(∆2
3 − γ2

3)] = Γ3

.

.

.
[(∆1

3 − γ1
3)(∆2

3 − γ2
3)] = Γ9

where the parameters Γ1, Γ2, Γ3...,Γ9 are unknown vector-spaces.
By doing this, we can write (44) as follows:

Ẋ1 ≈ Γ1
1(p1

1(x)p2
1(x)) + Γ1

2(p1
1(x)p2

2(x)) + ...+ Γ1
9(p1

3(x)p2
3(x)) (45)
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and we have our metamodel, namely equation (45).

The metamodel for Ẋ2 will have the same structure as the metamodel in
(45), that is:
- Nine principal components and
- Nine unknown Γ parameters.
We present below the (2x2) metamodel:

Ẋ1 = Xg11
1 Xg12

2 −Xh11
1 Xh12

2 ≈ Γ1
1(p1

1(x)p2
1(x)) + ...+ Γ1

9(p1
3(x)p2

3(x)) (46)

Ẋ2 = Xg21
1 Xg22

2 −Xh21
1 Xh22

2 ≈ Γ2
1(p1

1(x)p2
1(x)) + ...+ Γ2

9(p1
3(x)p2

3(x))

What if α, β 6= 1? This does not a�ect the structure of the metamodel,
due to the fact that α, β are constants, see Section 5.1.1.

10.3 Metamodel-parameter estimation

If we analyse the metamodel for (2x2) S-system:

Ẋ1 ≈ Γ1
1(p1

1(x)p2
1(x)) + ...+ Γ1

9(p1
3(x)p2

3(x)) (47)

Ẋ2 ≈ Γ2
1(p1

1(x)p2
1(x)) + ...+ Γ2

9(p1
3(x)p2

3(x))

we can see that the LHS (time-series) is known, together with the load-
ing product (p1

i (x) p2
i (x)) for i = 1, 2, 3; this product is possible because

p1
i , p

2
i ∈ RJ . The only unknown variables are the Γ parameters, which can

be found in exactly the same way as in the case of the metamodel for (1x1)
S-system. In other words, the six steps shown in Section 4, yields here in
the very same way:

1.- We �rst solve the system in (42) using ODE45. The di�erence here
is that we are going to obtain two solutions (x1(tk), x2(tk)).

2.- We compute the PCA to two matrices: X1 and X2. This will give us the
principal components p1

i (x1) and p2
i (x2) for i = 1, 2, 3. Then we compute

the product of the principal components as described in (47).

3.- We compute superposition to both solutions x1(tk) and x2(tk). The result
will be two composed functions, p1

i (x1(tk)) and p2
i (x2(tk)), for i = 1, 2, 3.

And where p1
i (x1(tk)) and p

2
i (x2(tk)) ∈ RK .

4.- We di�erentiate the test solutions, dx1(tk)/dt, dx2(tk)/dt.

5.- We apply linear regression to both systems. This will give us nine para-
meters for the �rst metamodel, and another nine parameters for the second
metamodel.
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6.- Both metamodels are ready to be tested.

The steps 1-6 are explained in detail in section 4, for this reason we are
not going to derive them again.

10.4 Example 2: (2x2) S-system and its bi-linear metamodel

In the same way, we will now judge the metamodel for (2x2) S-system by
comparing the exact solutions with the solutions produced by the metamodel:

For Ẋ1: (max|x1(tk)− x̂1(tk)|2)

For Ẋ2: (max|x2(tk)− x̂2(tk)|2)

where x1(tk) and x2(tk) are the exact solutions while x̂1(tk) and x̂2(tk) are
the solutions proposed by the metamodel.
Consider now the following system:

Ẋ1 = 2X10.5X2 − 2X1X
1.2
2 (48)

Ẋ2 = 1.5X1.2
1 3X2 −X1.5

1 X2

x(0) = xo
The (2x2) metamodel for (48) will be given as:

Ẋ1 ≈ Γ1
1(p1

1(x)p2
1(x)) + ...+ Γ1

9(p1
3(x)p2

3(x)) (49)

Ẋ2 ≈ Γ2
1(p1

1(x)p2
1(x)) + ...+ Γ2

9(p1
3(x)p2

3(x))

We solve (48) and (49) at x(0) = 0.75. The values for the Γ parameters for
both metamodels are given below:

For the �rst metamodel: For the second metamodel:

Γ1
1

= 75945 Γ2
1

= 72.5172

Γ1
2

= −59910 Γ2
2

= 58655

Γ1
3

= 9430 Γ2
3

= −7927

Γ1
4

= −59910 Γ2
4

= 58655

Γ1
5

= 2162 Γ2
5

= −1356

Γ1
6

= 1183 Γ2
6

= −1772

Γ1
7

= 9430 Γ2
7

= −7927

Γ1
8

= 1183 Γ2
8

= −1772

Γ1
9

= 1311 Γ2
9

= −956.9559
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The size of X1 and X2 used for computing the loadings are X1, X2 ∈
R600x600.
The result is shown in the Figure below.

Figure 18

The absolute error between solutions are:

max(|x1(tk)− x̂1(tk)|2) = 3.14e−5 ≈ 0.003%

and
max(|x2(tk)− x̂2(tk)|2) = 5.12e−5 ≈ 0.005%

The (2x2) metamodel can be solved for di�erent initial conditions. The res-
ults will maintain the accuracy we have seen up until now.
Consider now (48) and (49) being solved at x(0) = 0.5, 0.75, and 1,X1, X2 ∈
R600x600 remains unchanged.

44



Figure 19

The results are very satisfactory.
Deriving a metamodel for a (3x3), (4x4) and even higher order S-system

can be done in the same way as for the (2x2) S-system from Section 7. Nev-
ertheless, there are three important facts we need to emphasize:

1.- The number of metamodels are related to the size of the system. This
follows from Corollary 1.

2.- The product
j=n∏
j=1

X
gij
j ,

j=n∏
j=1

X
hij
j (50)

will increase proportional to the size of the system, giving an exponential in-
crease (3n) in the number of PCs and unknown parameters.

3.- We can simplify any desired (NxN)-metamodel (for N = 2,3,...) by com-
puting the PCs of the approximation matrices:

xωi
j1 : X1, xωi

j2 : X2 , ..., xωi
jM : XM

on the same xj-domain.
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These three facts, together with the six steps from Section 5.2 can help
us to �nd any required (NxN) metamodel. For instance, we know from the
(2x2) S-system that we will have two metamodels in order to be able to
approximate this system. This result is according to fact 1. From fact 2
we know that the (2x2) S-system has two monomials, and each monomial

has the following multiplication: X
gij
1 X

gij
2 and X

hij
1 X

hij
2 . This implies that

we will have 32 PCs and 32 − Γ− parameters for each metamodel. The
last point (fact 3 ) allows us to simplify notation due to the factorization of
common factors, see Section 7.2.
Let us consider the (3x3) S-system.

10.5 (3x3) S-systems

A (3x3) S-system is given as shown below:

Ẋ1 = α1X
g11
1 Xg12

2 Xg13
3 − β1X

h11
1 Xh12

2 Xh13
3

Ẋ2 = α2X
g21
1 Xg22

2 Xg23
3 − β2X

h21
1 Xh22

2 Xh23
3 (51)

Ẋ3 = α3X
g31
1 Xg32

2 Xg33
3 − β3X

h31
1 Xh32

2 Xh33
3

Fact 1 implies that we will have three metamodels for the system in (51).
According to fact 2, we will have the following multiplication of the variable
Xj :

n = 3⇒
j=3∏
j=1

X
gij
j ,

j=3∏
j=1

X
hij
j

This implies that we are going to have 33 PCs and 33 −Γ− parameters.
Consider the �rst monomial from the �rst equation in (51), α1 = 1:

Xg11
1︸︷︷︸

x
ωi
j1≈[∆1

1p
1
1+∆1

2p
1
2+∆1

3p
1
3]

Xg12
2︸︷︷︸

x
ωi
j2≈[∆2

1p
2
1+∆2

2p
2
2+∆2

3p
2
3]

Xg13
3︸︷︷︸

x
ωi
j3≈[∆3

1p
3
1+∆3

2p
3
2+∆3

3p
3
3]

(52)

We know that each power function can be approximated by a metamodel,
and in this case we have three metamodels for this �rst monomial. Thus,
simple multiplication will give a total of 27 PCs.
We have exactly the same situation for the second monomial from the �rst
equation in (51), β1 = 1:

Xh11
1︸ ︷︷ ︸

x
ωi
j4≈[γ1

1p
1
1+γ1

2p
1
2+γ1

3p
1
3]

Xh12
2︸ ︷︷ ︸

x
ωi
j5≈[γ2

1p
2
1+γ2

2p
2
2+γ2

3p
2
3]

Xh13
3︸ ︷︷ ︸

x
ωi
j6≈[γ3

1p
3
1+γ3

2p
3
2+γ3

3p
3
3]

(53)

Therefore here, in the very same way, simple multiplication will give 27 PCs.
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If we let (for i = 1, 2, 3):

p1
i (x1), p2

i (x2), p3
i (x3) in (52)

and

p1
i (x4), p2

i (x5), p3
i (x6) in (53)

be de�ned on the same xj-domain, we will have fact 3, which allows us to
simplify notation because we choose:

x1 = x2 = x3 = x4 = x5 = x6 = x

Thus, we have a common factor in (52) and (53).
Then (for i = 1, 2, 3):

p1
i (x), p2

i (x), p3
i (x)

can be factorized giving the following expression:

Ẋ1 ≈ Γ1
1(p1

1(x)p2
1(x)p3

1(x)) + ...+ Γ1
27(p1

3(x)p2
3(x)p3

3(x))

Ẋ2 ≈ Γ2
1(p1

1(x)p2
1(x)p3

1(x)) + ...+ Γ2
27(p1

3(x)p2
3(x)p3

3(x)) (54)

Ẋ3 ≈ Γ3
1(p1

1(x)p2
1(x)p3

1(x)) + ...+ Γ3
27(p1

3(x)p2
3(x)p3

3(x))

which is the (3x3) metamodel.
Recall that fact 3, which is letting p1

i (x), p2
i (x) and p3

i (x) be de�ned on the
same xj-domain, is done so as to simplify notation. In real life, the domain
for x1, x2, ..., x6 can and will be di�erent.
Let us consider an example for the (3x3) metamodel.

10.6 Example 3: (3x3) S-system and its bi-linear metamodel

Consider the following (3x3) S-system:

Ẋ1 = X1X2X3 − 2X1X2X3

Ẋ2 = 1.5X1X2X3 −X1.5
1 X2X3 (55)

Ẋ3 = 1.2X1.2
1 X22X3 − 0.8X14.2X0.5

2 X3

We are going to solve this system at two di�erent initial conditions.
We are going to use X1, X2, X3 ∈ R(600x600) to produce the loadings. The
procedure we employ in �nding the 27 −Γ− parameters is the same as before,
namely the six steps from Section 5.2.
Letting x(0) = 1.3 in (54) and (55) gives the following results:
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Figure 20: We can observe that the metamodel �ts the exact solution very
satisfactorily. The biggest of the three square errors is ≈ 0.004%

Consecutively x(0) = 1.6 in (54) and (55) gives:

Figure 21: The biggest of the three square errors is ≈ 0.09%
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The results for the (3x3) metamodel are very good.
The last metamodel we will consider in this thesis is the (4x4) metamodel.

10.7 (4x4) S-systems

A canonical (4x4) S-system is given as follows:

Ẋ1 = α1X
g11
1 Xg12

2 Xg13
3 Xg14

4 − β1X
h11
1 Xh12

2 Xh13
3 Xh14

4

Ẋ2 = α2X
g21
1 Xg22

2 Xg23
3 Xg24

4 − β2X
h21
1 Xh22

2 Xh23
3 Xh24

4 (56)

Ẋ3 = α3X
g31
1 Xg32

2 Xg33
3 Xg34

4 − β3X
h31
1 Xh32

2 Xh33
3 Xh34

4

Ẋ4 = α4X
g41
1 Xg42

2 Xg43
3 Xg44

4 − β4X
h41
1 Xh42

2 Xh43
3 Xh44

4

In analogy to fact 1 and fact 2, the (4x4) S-system can be approximated
by four metamodels, one for each equation and in addition we will have a
fourth order multiplicity of the Xj variable, which implies that we will have
34 PCs and 34 − Γ− parameters.
Consider the �rst monomial from the �rst equation in (56) with α = 1:

Xg11
1︸︷︷︸

x
ωi
j1≈[∆1

1p
1
1+∆1

2p
1
2+∆1

3p
1
3]

Xg12
2︸︷︷︸

x
ωi
j2≈[∆2

1p
2
1+∆2

2p
2
2+∆2

3p
2
3]

Xg13
3︸︷︷︸

x
ωi
j3≈[∆3

1p
3
1+∆3

2p
3
2+∆3

3p
3
3]

Xg14
4︸︷︷︸

x
ωi
j4≈[∆4

1p
4
1+∆4

2p
4
2+∆4

3p
4
3]

In the same way, the second monomial with β = 1 gives:

Xh11
1︸ ︷︷ ︸

x
ωi
j5≈[γ1

1p
1
1+γ1

2p
1
2+γ1

3p
1
3]

Xh12
2︸ ︷︷ ︸

x
ωi
j6≈[γ2

1p
2
1+γ2

2p
2
2+γ2

3p
2
3]

Xh13
3︸ ︷︷ ︸

x
ωi
j7≈[γ3

1p
3
1+γ3

2p
3
2+γ3

3p
3
3]

Xh14
4︸ ︷︷ ︸

x
ωi
j8≈[γ4

1p
4
1+γ4

2p
4
2+γ4

3p
4
3]

Thus, simple multiplication will give a total of 81 principal components.
Here as well we choose to simplify notation by letting the approximation
matrices be de�ned on the same xj-domain (fact 3 ).
Thereby factorization of common factors will give the (4x4) metamodel:

Ẋ1 ≈ Γ1
1(p1

1(x)p2
1(x)p3

1(x)p4
1(x)) + ...+ Γ1

81(p1
3(x)p2

3(x)p3
3(x)p4

3(x)) (57)

Ẋ2 ≈ Γ2
1(p1

1(x)p2
1(x)p3

1(x)p4
1(x)) + ...+ Γ2

81(p1
3(x)p2

3(x)p3
3(x)p4

3(x))

Ẋ3 ≈ Γ3
1(p1

1(x)p2
1(x)p3

1(x)p4
1(x)) + ...+ Γ3

81(p1
3(x)p2

3(x)p3
3(x)p4

3(x))

Ẋ4 ≈ Γ4
1(p1

1(x)p2
1(x)p3

1(x)p4
1(x)) + ...+ Γ4

81(p1
3(x)p2

3(x)p3
3(x)p4

3(x))

Let us consider an example.
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10.8 Example 4: (4x4) S-system and its bi-linear metamodel

Consider:

Ẋ1 = X1X2X3 − 2X1X21.5X4 (58)

Ẋ2 = 1.5X1X20.9X3X4 −X1.5
1 X23X3

Ẋ3 = 1.2X1X22X3 − 0.8X1X
1.5
2 5X4

Ẋ4 = 2X0.2
1 −X4

The tensor-metamodel for (4x4) S-system is given in (57). We can now solve
both systems.
Let xo = 1:

Figure 22

We observe in Figure 24 that only two of the four solutions are �tted
by the metamodel, the reason being that some of the solutions of the (4x4)
S-system become negative. These kind of results are meaningless when work-
ing with real biochemical systems.
The square error of the approximated solutions is given below:

|x1(t)− x̂1(t)|2100 ≈ 0.0008%
|x3(t)− x̂3(t)|2100 ≈ 0.007%

It is important to bear in mind that whenever we �nd an approximation
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to only some of the solutions of the S-system, belonging to the vector case,
we should investigate if the system's solutions are entirely positive or not.
On the other hand, if we only have a portion of the approximated solution,
we need to expand the xj-domain.

11 Issue with the bi-linear metamodel of big size S-

system: Producing the span for the null space

We are to give careful consideration to the product:

j=n∏
j=1

X
gij
j ,

j=n∏
j=1

X
hij
j

If we recall the theory from the principal component analysis, and remember
how a matrix X can be approximated by the �rst three PCs and scores,
we also know that the last PC (p3(x)), is the one containing the smallest
information of the variance of X. Thus, it is logical to imply that should we
multiply p3(x) n times with itself, the result will be very small values as a
result.
Consider:

xωi
j : X(7x7) → PCA ⇒ X ≈ t1p

t
1 + t2p

t
2 + t3p

t
3

where:

pt3(x) = [0.6724 0.0768 0.3654 0.3895 0.2342 0.0540 0.4461]t

then the product

pt3(x) pt3(x) pt3(x) pt3(x) = [pt3(x)]4 (59)

will produce:

[pt3(x)]4 = [0.2044 0.0000 0.0000 0.0230 0.0030 0.0000 0.0396]t

and if we go even further:

[pt3(x)]5 = [0.1374 0.0000 0.0000 0.0090 0.0007 0.0000 0.0100]t

which is a vector very close to the zero-vector.
We could generalize (59) by letting xj have di�erent domains:

pt3(x1) pt3(x2) pt3(x3) pt3(x4) (60)

The outcome will still be the same. We are producing a vector close to zero.
Therefore, a natural implication of this result is the fact that: at least one
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of the PCs from the (2x2), (3x3) or (4x4) metamodel is unnecessary.

Recall that:
the (2x2) metamodel contains 9 PC.
the (3x3) metamodel contains 27 PC.
the (4x4) metamodel contains 81 PC.

The two very important question now remaining to be addressed are:

1.- How many PCs do we actually need for each metamodel?

2.- Which one of the PCs is super�cial?

The answer is found in tensor algebra. Tensor algebra approaches the mul-
tiplicity of Xj in a more elegant way that the bi-linear model, which is, the
tensor product.

12 The tensor product

Also called the kronecker product (⊗), it is de�ned as follows
Let

X1 =

[
a1,1 a1,2

a2,1 a2,2

]
, X2 =

[
b1,1 b1,2
b2,1 b2,2

]
then:

[
a1,1 a1,2

a2,1 a2,2

]
⊗
[
b1,1 b1,2
b2,1 b2,2

]
=


a1,1

[
b1,1 b1,2
b2,1 b2,2

]
a1,2

[
b1,1 b1,2
b2,1 b2,2

]

a2,1

[
b1,1 b1,2
b2,1 b2,2

]
a2,2

[
b1,1 b1,2
b2,1 b2,2

]


or:

X1 ⊗X2 =


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2
a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2
a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2


In general if:

X1 ∈ R(mxn), X2 ∈ R(pxq), then X1 ⊗X2 ∈ R(mpxnq) (61)

Note that X1 ⊗X2 6= X2 ⊗X1

As we can observe, the tensor product in (61) multiplies all the possible
combinations X1 and X2 have. This result will still be valid if:

xωi
j1 : X1 → R ⊗ xωi

j2 : X2 → R
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13 The tensor-metamodel

It has been observed after systematic study that if we take the Kronecker
product of the power-function matrices X1, X2, ... before we compute the
PCA, we get very interesting results regarding the dimensionality of the
PCs. We are going to explore these results more carefully by considering the
tensor-metamodel for the (2x2), (3x3) and (4x4) S-system.

13.1 Tensor-metamodel for (2x2) S-systems

Assume we have two power-function matrices:

xωi
1j : X1(IxJ) → R, xωi

2j : X2(IxJ) → R

then, if we compute

X1(IxJ) ⊗X2(IxJ) = T1 → PCA (62)

and if we let X1 and X2 vary, we will get di�erent results. These results are
directly related to the dimension of the matrices X1(IxJ) and X2(IxJ).

For instance, if X1 ∈ R(10x10) and X2 ∈ R(10x10), we get T1 ∈ R(100x100) and
if we compute the PCA to T1 we �nd out that we only need 4 PCs in order
to get at least 97% of the variance of T1.
The interesting outcome occurs when we letX1 andX2 increase in dimension,
because this gives an increment in the PCs too. But, when T1 reaches a
dimension of (2500x2500), (this value is possible if X1, X2 ∈ R(50x50)), then
the number of PCs stabilizes to 6 PCs even though T1 continues to grow. In
other words the number of PCs are converging, as can be seen in the next
Figure:

Figure 23
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Where:

T (100x100) is the tensor product of X1, X2 ∈ R(10x10), 4 PC

T (200x200) is the tensor product of X1, X2 ∈ R(20x20), 4 PC

T (900x900) is the tensor product of X1, X2 ∈ R(30x30), 5 PC

T (1600x1600) is the tensor product of X1, X2 ∈ R(40x40), 5 PC

T (2500x2500) is the tensor product of X1, X2 ∈ R(50x50), 6 PC

T (3600x3600) is the tensor product of X1, X2 ∈ R(60x60), 6 PC

T (4900x4900) is the tensor product of X1, X2 ∈ R(70x70), 6 PC

T (6400x6400) is the tensor product of X1, X2 ∈ R(80x80), 6 PC

T (8100x8100) is the tensor product of X1, X2 ∈ R(90x90), 6 PC

T (10000x10000) is the tensor product of X1, X2 ∈ R(100x100), 6 PC

We can see how the number of PCs reaches an apex (T(2500x2500)), and sta-
bilizes at this point. These results provide us with valuable information that
we will apply to the general (2x2) metamodel.
Recall the (2x2) metamodel:

Ẋ1 ≈ Γ1
1(p1

1(x)p2
1(x)) + ...+ Γ1

9(p1
3(x)p2

3(x)) (63)

Ẋ2 ≈ Γ2
1(p1

1(x)p2
1(x)) + ...+ Γ2

9(p1
3(x)p2

3(x))

Due to tensor product, the tensor-metamodel will have less PCs and the
simple multiplication in (63) is replaced with the Kronecker-product giving
us the following system:

Ẋ1 ≈ Γ1
1(p1(x)⊗ p2(x)) + ...+ Γ1

6(p1(x)⊗ p2(x)) (64)

Ẋ2 ≈ Γ2
1(p1(x)⊗ p2(x)) + ...+ Γ2

6(p1(x)⊗ p2(x))

Note that we only needs 6 PCs and not 9 as we had �rst thought. We must
emphasize the fact that these 6 PCs guarantee at least 97% of the variance
of T1. Notice as well that we do not yet know the correct combination of the
principal components which are being tensor multiplied, and for this reason,
the PCs in (64) are not speci�ed.
The fact that we are able to reduce the dimensionality of the PCs is an
improvement which will save us time.
Next we are going to compute the tensor product for the (3x3) and (4x4)
S-system in order to �nd the true dimensionality needed for the tensor-
metamodel. We shall also show how these results a�ect the accuracy of
the metamodel by testing these tensor-metamodels and we will explain how
we can �nd the PCs that have to be removed from each tensor-metamodel-
system.
But �rst, let us consider the (3x3) tensor-metamodel.
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13.2 Tensor-metamodel for (3x3) S-systems

Based on the results from the (2x2) tensor-metamodel consider:

xωi
1j : X1(IxJ) → R, xωi

2j : X2(IxJ), x
ωi
3j : X3(IxJ) → R

then for the product:

X1 ⊗X2 ⊗X3 = T2 → PCA

where X1, X2 and X3 varies, we have the following results:

T (1000x1000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(10x10), 7 PC

T (3375x3375) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(15x15), 9 PC

T (8000x8000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(20x20), 7 PC

T (15625x15625) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(25x25), 11 PC

T (27000x27000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(30x30), 11 PC

T (42875x42875) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(35x35), 12 PC

T (64000x64000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(40x40), 12 PC

T (91125x91125) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(45x45), 13 PC

T (125000x125000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(50x50), 13 PC

T (166375x166375) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(55x55), 14 PC

T (216000x216000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(60x60), 14 PC

T (274625x274625) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(65x65), 14 PC

T (343000x343000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(70x70), 14 PC

T (1000000x1000000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(100x100), 14 PC

T (1728000x1728000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(120x120), 14 PC

T (2197000x2197000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(130x130), 14 PC

T (2744000x2744000) = X1 ⊗X2 ⊗X3 where X1, X2, X3 ∈ R(140x140), 14 PC

The optimal number of PCs needed for the (3x3) tensor-metamodel are 14
PCs. Note that these 14 PC give at least 97% of the variance of T2.
We recall the (3x3) metamodel:

Ẋ1 ≈ Γ1
1(p1

1(x)p2
1(x)p3

1(x)) + ...+ Γ1
27(p1

3(x)p2
3(x)p3

3(x))

Ẋ2 ≈ Γ2
1(p1

1(x)p2
1(x)p3

1(x)) + ...+ Γ2
27(p1

3(x)p2
3(x)p3

3(x)) (65)

Ẋ3 ≈ Γ3
1(p1

1(x)p2
1(x)p3

1(x)) + ...+ Γ3
27(p1

3(x)p2
3(x)p3

3(x))
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If we now apply the results from above we get the (3x3) tensor-metamodel:

Ẋ1 ≈ Γ1
1(p1(x)⊗ p2(x)⊗ p3(x)) + ...+ Γ1

14(p1(x)⊗ p2(x)⊗ p3(x))

Ẋ2 ≈ Γ2
1(p1(x)⊗ p2(x)⊗ p3(x)) + ...+ Γ2

14(p1(x)⊗ p2(x)⊗ p3(x)) (66)

Ẋ3 ≈ Γ3
1(p1(x)⊗ p2(x)⊗ p3(x)) + ...+ Γ3

14(p1(x)⊗ p2(x)⊗ p3(x))

Notice how advantageous the Kronecker product is, seeing as we have been
able to omit 13 PCs from the (3x3) tensor-metamodel.

13.3 Tensor-metamodel for (4x4) S-systems

This time we are considering the following tensor product:

X1 ⊗X2 ⊗X3 ⊗X4 = T3 → PCA

The convergence pattern is given next:

T (50625x50625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(15x15), 18 PC

T (160000x160000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(20x20), 21 PC

T (390625x390625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(25x25), 25 PC

T (810000x810000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(30x30), 27 PC

T (1500625x1500625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(35x35), 29 PC

T (2560000x2560000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(40x40), 30 PC

T (4100625x4100625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(45x45), 31 PC

T (6250000x6250000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(50x50), 31 PC

T (9150625x9150625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(55x55), 32 PC

T (12960000x12960000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(60x60), 32 PC

T (24010000x24010000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(70x70), 33 PC

T (31640625x31640625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(75x75), 33 PC

T (40960000x40960000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(80x80), 33 PC

T (52200625x52200625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(85x85), 33 PC

T (65610000x65610000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(90x90), 33 PC

T (100000000x100000000) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(100x100), 33 PC

T (174900625x174900625) = X1 ⊗X2 ⊗X3 ⊗X4, X1, X2, X3, X4 ∈ R(115x115), 33 PC

We only need 33 PCs for the (4x4) tensor-metamodel, this is less than a half
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of the original metamodel.
Finally, the (4x4) tensor-metamodel is given as follows:

Ẋ1 ≈ Γ1
1(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x)) + ...+ Γ1

33(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x))

Ẋ2 ≈ Γ2
1(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x)) + ...+ Γ2

33(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x))

Ẋ3 ≈ Γ3
1(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x)) + ...+ Γ3

33(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x))

Ẋ4 ≈ Γ4
1(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x)) + ...+ Γ4

33(p1(x)⊗ p2(x)⊗ p3(x)⊗ p4(x))

We have therefore rid ourselves of 48 PCs!
We can now move forward and �nd the right combination of PCs for each
tensor-metamodel.

14 The tensor singular value decomposition

We have provided in Section 2.3 the method we have employed to compute
the PCA, which is the SVD.
Equations (1) and (2) show how these two are connected:

SV D : X = UΣV t (1)

PCA : X = (UΣ)V t = (T )P t + e (2)

Recall that we have been taking the Kronecker-product to X before we com-
puted the PCA in order to �nd the optimal number of PCs.
We cite now a Theorem from tensor algebra concerning the SVD.

Theorem 1
Let X1 ∈ R(mxn) have a singular value decomposition (UX1ΣX1V

t
X1
) and

let X2 ∈ R(pxq) have a singular value decomposition (UX2ΣX2V
t
X2
). Then:

(UX1 ⊗ UX2)(ΣX1 ⊗ ΣX2)(V t
X1
⊗ V t

X2
) (67)

yields a singular value decomposition of X1 ⊗X2, after a simple reordering
of the diagonal elements of (ΣX1 ⊗ΣX2) and the corresponding right and left
singular vectors. [10].

We are going to use Theorem 1 to �nd the right combination of tensor
products each tensor-metamodel has. To do so, we need to focus only on
the Σ matrices. This is because the singular values, which are the values of
Σ, are responsible for giving information about the variance of the PCs, see
Appendix A1
We now know that the (2x2) tensor-metamodel needs 6 PCs instead of 9, so
we can now apply Theorem 1 to �nd the last 3 unnecessary PCs.
Let:

X1 = UX1ΣX1V
t
X1
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X2 = UX2ΣX2V
t
X2

where

ΣX1 =


σ1

1

σ1
2

σ1
3

 ΣX2 =


σ2

1

σ2
2

σ2
3


then:

ΣX1 ⊗ ΣX2 =



σ1
1


σ2

1

σ2
2

σ2
3



σ1
2


σ2

1

σ2
2

σ2
3



σ1
3


σ2

1

σ2
2

σ2
3





=



σ1
1σ

2
1

σ1
1σ

2
2

σ1
1σ

2
3

σ1
2σ

2
1

σ1
2σ

2
2

σ1
2σ

2
3

σ1
3σ

2
1

σ1
3σ

2
2

σ1
3σ

2
3



= T1(ΣX1⊗ΣX2)

The tensor product of ΣX1 ⊗ ΣX2 produces a total of nine PCs, as was
expected. We can now choose the �rst six elements of T1(ΣX1⊗ΣX2)

. Therefore,
we can conclude that we do indeed need these particular six PCs for the (2x2)
tensor-metamodel. The last three PCs can be discarded. We can observe as
well that T1(ΣX1⊗ΣX2)

gives the structure/combination of these 6 PCs.
Using the same procedure we can �nd the right combination of PCs for the
tensor product in the (3x3), (4x4) and higher order tensor-metamodels.

15 Testing the tensor-metamodel

15.1 Example 5: (2x2) S-system and its tensor-metamodel

The (2x2) tensor-metamodel is given as follows:

Ẋ1 ≈ Γ1
1(p1

1(x)⊗ p2
1(x)) + ...+ Γ1

6(p1
2(x)⊗ p2

3(x)) (68)

Ẋ2 ≈ Γ2
1(p1

1(x)⊗ p2
1(x)) + ...+ Γ2

6(p1
2(x)⊗ p2

3(x))
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where the right combination of PCs is given by the tensor product of (ΣX1⊗
ΣX2).
We are going to use (68) to solve the same system from Example 3.
Recall the S-system from Example 3:

Ẋ1 = 2X10.5X2 − 2X1X
1.2
2

Ẋ2 = 1.5X1.2
1 3X2 −X1.5

1 X2

x(0) = 0.75
We get the following result:

Figure 24

The absolute error between solutions is:

max(|x1(tk)− x̂1(tk)|2) = 3.74e−5 ≈ 0.003%

and
max(|x2(tk)− x̂2(tk)|2) = 4.64e−5 ≈ 0.005%

which are just as good as the results for the metamodel containing 9 PCs.
We get the same satisfactory results for di�erent initial conditions.
Let x(0) = 0.5 and 1:
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Figure 25

We can see clearly that the tensor-metamodel succeeds in producing ex-
cellent results.

15.2 Example 6: (3x3) S-system and its tensor-metamodel

Let us now consider the tensor metamodel for (3x3) S-systems. The tensor
metamodel for (3x3) S-systems is given as follows:

Ẋ1 ≈ Γ1(p1
1(x1)⊗ p2

1(x2)⊗ p3
1(x3)) + ...+ Γ14(p1

3(x1)⊗ p2
3(x2)⊗ p3

3(x3))

Ẋ2 ≈ Γ1(p1
1(x1)⊗ p2

1(x2)⊗ p3
1(x3)) + ...+ Γ14(p1

3(x1)⊗ p2
3(x2)⊗ p3

3(x3))

Ẋ3 ≈ Γ1(p1
1(x1)⊗ p2

1(x2)⊗ p3
1(x3)) + ...+ Γ14(p1

3(x1)⊗ p2
3(x2)⊗ p3

3(x3))

We can now approximate the same system we had in Section 8.2 (55), as
shown below:

Ẋ1 = X1X2X3 − 2X1X2X3

Ẋ2 = 1.5X1X2X3 −X1.5
1 X2X3

Ẋ3 = 1.2X1.2
1 X22X3 − 0.8X14.2X0.5

2 X3

x(0) = 1.6

The next Figure presents the results.
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Figure 26

The absolute error for the approximation to the solutions is given as:

max(|x1(tk)− x̂1(tk)|2) ≈ 0.3%
max(|x2(tk)− x̂2(tk)|2) ≈ 0.1%
max(|x3(tk)− x̂3(tk)|2) ≈ 0.1%

Finally let us consider the tensor-metamodel for the (4x4) S-system.

15.3 Example 7: (4x4) S-system and its tensor-metamodel

Consider:

Ẋ1 = X1X2X3 − 2X1X21.5X4 (69)

Ẋ2 = 1.5X1X20.9X3X4 −X1.5
1 X23X3

Ẋ3 = 1.2X1X22X3 − 0.8X1X
1.5
2 5X4

Ẋ4 = 2X0.2
1 −X4

Solving this system and the tensor-metamodel for this system give us the
following results:
let xo = 1:
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Figure 27

We observe the same result as those shown in Figure 24, which is the
approximation to only two of the four solutions. The square error of the
approximated solutions is given below:

|x1(t)− x̂1(t)|2100 ≈ 0.008%
|x3(t)− x̂3(t)|2100 ≈ 0.07%

These are very accurate results.

16 Applications of the tensor-metamodel

We have seen through examining theories and from looking at examples that
the tensor-metamodel is successful in reaching the rather ambitious goal of
approximate globally non-linear di�erential equations. The metamodel and
its improved version, the tensor-metamodel, can be used in addition to ap-
proximate S-system di�erential equations, to �nd steady-state solutions or
equilibrium points, in stability analysis, in extrapolation solutions of empir-
ical data, recasting nonlinear di�erential equations and much more.
Regardless of the fact that this thesis consists in presenting the mathemat-
ical theory upon which the metamodel and tensor-metamodel is based, I will
discuss two of the many applications mentioned above: steady state analysis
and recasting.
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16.1 Steady state analysis for the tensor-metamodel

Although this is only an example of one of many applications the tensor-
metamodel is capable of, the results obtained have proven to be very good.

Steady state of S-system

We can read in [6] concerning how many important aspects of any given
non-linear system can be analyzed far more easily when they are close to
a steady state. These aspects are of great importance since most of the
biochemical systems in nature operate close to a steady state, in which all
in-�ux is in equilibrium with all out-�ux. We can also see in [6] the approach
the author employs in order to �nd the values of X that will give us a steady
state. Let us consider the same example the author uses in [6]:
Consider the following (2x2) S-system:

Ẋ1 = 0.4X−2
2 − 2X1 (70)

Ẋ2 = 2X1 −X0.5
2

We are interested in the values of X1, X2 for which the system is in a steady
state. This will imply that under these conditions, the system in (70) will
not change with time. Hence Ẋ1 = Ẋ2 = 0, and this yields:

0 = 0.4X−2
2 − 2X1 (71)

0 = 2X1 −X0.5
2

The equations from (71) can be simpli�ed mathematically:

0.4X−2
2 = 2X1 (72)

2X1 = X0.5
2

the next step is making the substitution of X1, X2 from the cartesian space
to the logarithmic space. This is possible if we de�ne:

y1 = ln(X1)

y2 = ln(X2)

then (72) becomes:

ln(0.4)− 2y2 = ln(2) + y1 (73)

ln(2) + y1 = 0.5y2

which simpli�es to:

y1 = −ln(5)− 2y2 (74)

y1 = −ln(2) + 0.5y2 (75)
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we solve for y2:

y2 =
ln(2)− ln(5)

2.5
= −0.36652 (76)

this gives y1 = −0.87641
Finally we compute:

X1 = exp(y1) = 0.41

X2 = exp(y2) = 0.70

So, the substitution of X1 and X2 in (71) does indeed give us zero.

Steady state analysis of the tensor-metamodel

Let us �rst �nd a tensor-metamodel for the system in (70).
We choose x(0) = 0.65
After running the matlab-code at the given initial condition we obtain the
following parameters:

Γ1 = 4.8 ∗ 105 Γ1 = 5.4 ∗ 107

Γ2 = 6.6 ∗ 104 Γ2 = 2.9 ∗ 107

Γ3 = 1.9 ∗ 105 Γ3 = 4.7 ∗ 107

Γ4 = 6.6 ∗ 104 Γ4 = 2.9 ∗ 107

Γ5 = −1.7 ∗ 104 Γ5 = −6.3 ∗ 106

Γ6 = 7.5 ∗ 103 Γ6 = 3.6 ∗ 106

The tensor-metamodel gives the following approximation to the solutions of
the system from (70):
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Figure 28: The max square error is: 0.00015% for the �rst solution and
0.021% for the second solution

Once we have solved the system, which is of course necessary in order to
�nd the steady-state solution, we can �nd the x-value in (77) that gives us
the approximation to the zero-value:

0 ≈ Γ1
1(p1

1(x)⊗ p2
1(x)) + ...+ Γ1

6(p1
2(x)⊗ p2

3(x)) (77)

0 ≈ Γ2
1(p1

1(x)⊗ p2
1(x)) + ...+ Γ2

6(p1
2(x)⊗ p2

3(x))

Once this x-value is found, we store its index-position. Seeing as we are
considering a (2x2) S-system, we are going to have two index-positions, as
shown below:

index1 = 38

index2 = 98

and we return to:
xωi
j

Here we need to �nd the xj-value which corresponds to the two index-
positions we have recently discovered.
The last part consists in �nding the real-values of these two index-positions
in xj , as follows:

X̂1 = 0.37
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X̂2 = 0.78

We can now compare the results with the analytical solutions:

X̂1 = 0.37 vs. X1 = 0.41

X̂2 = 0.78 vs. X2 = 0.70

Finally we can compute:

Ẋ1 = 0.4X̂−2
2 − 2X̂1

Ẋ2 = 2X̂1 − X̂0.5
2

which gives:
0 ≈ 0.08 = 0.4X̂−2

2 − 2X̂1

0 ≈ 0.01 = 2X̂1 − X̂0.5
2

16.2 Recasting

Recasting nonlinear di�erential equations as S-system.

The theory of recasting nonlinear di�erential equations as S-system was in-
troduced byMichael A. Savageau7 and Eberhard O. Voit in a scienti�c paper
published in 1987, see [7].
Recasting is a mathematical process in which we can reconstruct any given
nonlinear ordinary di�erential equation as S-system di�erential equations.
In [7] we can observe that the original system of di�erential equations is
equivalent to the recasted S-system, meaning that both systems, the original
and the recasted system, behave equally under steady state analysis. This
is a remarkable breakthrough for the theory of S-system.
Accordingly to Savageau and Voit :

THEOREM:
Let:

Ż = fi(Z1, Z2, ..., Zn) where Zi(0) = Zi0 for i = 1, 2, 3, ..., n (78)

be a set of di�erential equations where each fi is composed of sums and
products of elementary functions, or nested elementary functions of element-
ary functions.
Then there is a smooth change of variables that recast equations (78) into
an S-system as follows:

Ẋi = αi

m∏
j=1

X
gij
j − β

m∏
j=1

X
hij
j , Xi(0) = Xi0 for i = 1, 2, 3, ..., (m) (79)

7Michael A. Savageau is a Distinguished Professor in Biomedical Engineering at the
University of California.

66



There are n-m constrains that are generated in this recasting process, they
occur as:

φk(X1, X2, ..., Xm) = 0 (80)

the φk are elementary functions or nested elementary functions of elementary
functions, this is the �st constrain of the recasting precess. The second
constrain is between new and old variables that take the form:

XiXj = Zk

The Xi and Xj variables always occur together as a product in the logar-
ithmic derivatives [d(logXi)/dt] of the recast system. The de�nition of the
new variables, as part of the recasting process, generates the constraints,
which are automatically incorporated into equations (79). (Michael A. Sav-
ageau & Eberhard O. Voit. Recasting Nonlinear Di�erential Equations as
S-Systems: A Canonical Nonlinear Form. Mathematical Biosciences 87:83-
115 (1987) page: 89-90).

The recasting algorithm is based mainly on three transformations:

* Translation of variables to the positive orthant.
* Decomposition of composite functions.
* Reduction of sums and products of power-law functions.

Consider this example:

Ż = exp[log(Z)2] Z(0) = 2 (81)

which is not an S-system. This equation, which is considered by [7], can be
recast in two cycles of decomposition as follows. Rename Z as X1, de�ne the
single composite factor (f111) as a new variable X2, and add the di�erential
equation for X2 to the existing set:

Ẋ1 = X2 X1(0) = 2

Ẋ2 = 2X−1
1 X2

2 log(X1) X2(0) = exp[(log(2))2]

Then de�ne a new variable X3 as log(X1), the third fact of the last equation,
f213, which is the only factor that is not already a power-law function, and
add the corresponding di�erential equation to the existing set:

Ẋ1 = X2 X1(0) = 2 (82a)

Ẋ2 = 2X−1
1 X2

2X3 X2(0) = exp[(log(2))2] (82b)

Ẋ3 = X−1
1 X2 X3(0) = log(2) (82c)
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The result is the canonical S-system form.

As we can see, the recasting procedure published by Savageau & Voit is
not parametrized, meaning that any of the functions Ż = fi(Z1, Z2, ..., Zn)
Savageau & Voit considered had unknown parameters. On the other hand
the tensor-metamodel is meant to be used in parameter estimation problems.
To be able to build a bridge between metamodels and recast-models, we have
to �rst develop a new theory of parametrized recast models. In as far as the
author of this thesis has attempted to �nd something close to this theory,
nothing has as yet been discovered.

Parametrized recast-tensor-metamodel

Prof. Stig W. Omholt8 suggested to apply the idea of recasting combined
with tensor-metamodelling to the general problem of parameter estimation
for non-linear dynamical systems. I do not address this problem in my thesis
in full, but I show via examples that this is a possible and that the ides seems
to be have great potential.
In this (at the time of writing, still non-existing) theory of parametrized
recast-models we must begin to consider generic systems of non-linear dif-
ferential equations with parameters. Once this is done we can apply the
three elementary transformations from the recasting algorithm provided by
Savageau & Voit.
Consider for example:

Ż = exp[ω(log(Z))2] where ω ∈ R Z(0) = 2 (83)

which is the same example Savageau & Voit presented in their paper. There
is nonetheless a slight di�erence, in the form of an unknown parameter (ω).
Let us now apply the three elementary transformations we �nd in Savageau
& Voit 's paper.
We de�ne:

X1 = Z

X2 = exp[log(Z)2] (84)

X3 = log(Z)

this will imply:

Ẋ1 = Xω
2 X1(0) = 2 (85a)

Ẋ2 = 2X−1
1 X2

2X3 X2(0) = exp[(log(2))2] (85b)

Ẋ3 = X−1
1 X2 X3(0) = log(2) (85c)

8Prof. Stig W. Omholt is a distinguished professor at the Norwegian University of
Science and Technology (NTNU)
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We have now recast the equation (83) as a (3x3) S-system where the �rst
equation contains an unknown parameter, namely ω.
If we recall the theory from metamodeling, we now have:

Xω
2 ≈

3∑
i=1

tip
t
i (86)

this implies:

Ẋ1 = Xω
2 ≈ Γ1p1(x2) + Γ2p2(x2) + Γ3p3(x2) (87)

An important detail to notice is that the domain for (x2) in (87) depends on
the domain of (x1), this is because X2 = exp[log(X1)2], see (84).
Assume now that the parameter ω is a known real-value ωs = 1.5, we can
run the implemented matlab-algorithm for the tensor-metamodel and �nd
the three real-valued Γ parameters:

Xωs=1.5
2 ≈ Γ̂1p1(x2) + Γ̂2p2(x2) + Γ̂3p3(x2) (88)

where Γ̂i, (i = 1, 2, 3) are known values.
The challenge now will consist in �nding the correspondence or mapping
between ωs = 1.5 and the triple-set Γ̂1, Γ̂2 and Γ̂3. If we succeed in this
step, the results will imply that the tensor-metamodel can also be used in
parameter estimation problems of generic parametrized recast-models. This
means, in other words, that if we have given a system of ODEs, we can
�rst recast the system to S-system. This recasted system will contain one or
more unknown parameters, the next step will be to �nd the corresponding
tensor-metamodel that approximates the recasted system and by employing
a mapping from the triple-set Γ̂1, Γ̂2 and Γ̂3 to ωi, where ωi ⇐ xωi

j , we are
able to reconstruct the original S-system.
The reason for wanting to �nd a mapping from Γ̂i, i = 1, 2, 3 to ωi is closely
related to Section 4.3. In Section 4.3 we have presented how the score-matrix
can be used as a library L:

L = [t1, t2, t3]

Equation (17) shows that it is possible to use speci�c triple from L in order
to approximate a speci�c non-linear function (x1.5). We have shown as well
that the values of L come from the index-position ωs has in ωi, this is because
ωs ∈ ωi:

ωi ∈ [−1, ω2, ω3, ..., 1.5︸︷︷︸
ωs=position 501

, ..., 2]

A natural implication of these results will imply that the Γ̂1, Γ̂2 and Γ̂3

parameters, which are found by means of the last square method, are values
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that are equal or close to a speci�c triple-set from L. This assumption is
made because:

Xωs=1.5
2 ≈ Γ̂1p1(x2) + Γ̂2p2(x2) + Γ̂3p3(x2) (89)

and

Xωs=1.5
2 ≈ L(501, 1)p1(x2) + L(501, 2)p2(x2) + L(501, 3)p3(x2) (90)

which will imply:

L(501, 1) ≈ Γ̂1

L(501, 2) ≈ Γ̂2 (91)

L(501, 3) ≈ Γ̂3

Unfortunately this is not the case. After many computational trials we could
not �nd any logical correspondence between the triple-set from L and the
Γ̂i, i = 1, 2, 3 parameters despite both sets giving the same solution to the
system. The reason is not discussed in this thesis but this problem could
be due to over-parametrization. Nevertheless, this is an issue that is worthy
exploring further.

Example1

Let:
Ż = exp[(1.5)(log(Z))2] Z(0) = 2 (92)

this implies ωs = 1.5
We de�ned:

X1 = Z

X2 = exp[log(Z)2]

X3 = log(Z)

Furthermore:

Ẋ1 = Xωs=1.5
2 X1(0) = 2 (93a)

Ẋ2 = 2X−1
1 X2

2 log(X1) X2(0) = exp[(log(2))2] (93b)

Ẋ3 = X−1
1 X2 X3(0) = log(2) (93c)

We know from Section 4.3 that the index-position (in ωi) which corresponds
to the value of ωs = 1.5 is in the position 501.
Thus, we have the following triple-set:

L(501, 1) = −8.8 ∗ 105

L(501, 2) = −1.1 ∗ 105 (94)

L(501, 3) = −1.5 ∗ 104
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which is the same as that of Section 4.3
If we now compute the approximation to the exact function, where the exact
function is given as:

Ẋ1 = X
(ωs=1.5)
2 (95)

where X2 = exp((log(x1))2)

meaning that we get the following ODE:

Ẋ1 = (−8.8 ∗ 105)p1(x2) + (−1.1 ∗ 105)p2(x2) + (−1.5 ∗ 104) ∗ p3(x2) (96)

If we now solve the ODEs from (95) and (96) at x(0) = 1 and compare their
solutions, we can conclude that the max-square error is:

max|x(t)− x̂(t)| ≈ 0.5%

If we now used the same matrix X(600x600) employed in producing the library
L and we apply the last square method to the tensor-metamodel, we �nd the
following Γ parameters:

Γ̂1 = −2.1 ∗ 1014

Γ̂2 = 0.1 ∗ 1014 (97)

Γ̂3 = −0.6 ∗ 1011

These values are completely di�erent from the triple-set we found in L. We
then have the following tensor-metamodel:

Xωs=1.5
2 ≈ Γ̂1p1(x2) + Γ̂2p2(x2) + Γ̂3p3(x2)

The function Ẋ1 is the same as before. Solving these two ODEs at x(0) = 1
and comparing their solutions gives:

max|x(t)− x̂(t)| ≈ 0.7%

which is also a good result.

Example 2

Assuming that we have a more complex ODE than the one from example 1:

Ż = αZg − βexp[(h)(log(Z))2] Z(0) = 2 (98)

Here er α, β ∈ R and g, h ∈ [−1, 2]
Let:

X1 = Z

X2 = exp[log(Z)2]

X3 = log(Z)
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The recasting to a canonical form will give:

Ẋ1 = αXg
1 − βX

h
2 X1(0) = 2

Ẋ2 = 2X−1
1 X2

2 log(X1) X2(0) = exp[(log(2))2] (99a)

Ẋ3 = X−1
1 X2 X3(0) = log(2)

The �rst equation is an S-system with unknown parameters, and we can
solve this equation by means of the tensor-metamodel. We must, however,
be more careful with these equations, due to the fact that x1 and x2 will
have di�erent domains.
Consider:

X1 = α[Γ1
1p

1
1(x1) + Γ1

2p
1
2(x1) + Γ1

3p
1
3(x1)] (100)

X2 = β[Γ2
1p

2
1(x2) + Γ2

2p
2
2(x2) + Γ2

3p
2
3(x2)]

So the metamodel is given as:

Xg
1 −X

h
2 ≈

α[Γ1
1p

1
1(x1) + Γ1

2p
1
2(x1) + Γ1

3p
1
3(x1)]− β[Γ2

1p
2
1(x2) + Γ2

2p
2
2(x2) + Γ2

3p
2
3(x2)]

Assume now that α = β = 1 and g = 0.5, h = 1.5. This gives:

Ẋ1 = X0.5
1 −X1.5

2

where
X2 = exp(log(X1)2)

If we �nd the Γ parameters for the metamodel, we get the following values:

Γ1
1 = 311.6285 Γ2

1 = 1180

Γ1
2 = −134.3277 Γ2

2 = −606.2249 (101)

Γ1
3 = 169.2220 Γ2

3 = 223.5313

If we solve both ODEs at x(0) = 1.5 we reach the conclusion that the
metamodel approximates the exact solution with an accuracy of:

(1−max|x(t)− x̂(t)|) 100 ≈ 98.9%

On the other hand, if we want to use the values from the library L, we are
going to need two independent libraries. The �rst one corresponding to X0.5

1

and the second one corresponding X1.5
2 .

This gives the following expression:

αXg
1 − βX

h
2 ≈ α

3∑
i=1

t1i p
1t
i − β

3∑
i=1

t2i p
2t
i (102)
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where

t11 = −33.7908 t21 = −65.2256

t12 = −5.7801 t22 = 3.4524 (103)

t13 = 0.5367 t23 = 0.2610

Finally we solve both ODEs at x(0) = 1 and we are therefore able to conclude
that the metamodel approximates the exact solution with an accuracy of:

(1−max|x(t)− x̂(t)|) 100 ≈ 99.3%

17 Conclusions

From a technical point of view, the greatest challenge in writing this thesis
was to connect metamodelling to non-linear systems appearing in biochem-
istry to in some way pay homage to the Law of Mass Actions discovered 150
years ago by the Norwegian scientists: C. M. Gulberg and P. Waage. This
challenge has been met and addressed in this thesis.
In this thesis, I have presented a new approach for mathematical modelling
of biochemical reaction networks represented by S-systems applying a mod-
ern method used by scientists at NMBU, namely metamodelling.
More speci�cally, I have, by �nding latent variables in these non-linear dy-
namical systems, compressed S-systems by means of a bi-linear metamodel
and its improved version, a tensor-metamodel. Both methods have then been
brought together to form the principal component transform (PCT).
I have shown that each power-function representation in:

Ẋi = αi

n∏
j=1

X
gij
j − βi

n∏
j=1

X
hij
j

can be approximated by three PCs, giving for a common x-domain an ap-
proximation to the S-system.

Ẋi ≈ Γ1p
t
1 + Γ2p

t
2 + Γ3p

t
3

pt is p transposed, the three PCs are the latent variables and Γ1, Γ2

and Γ3 are unknown parameters which can be found by the linear regression
method.
I have presented in sections 8 and 10 a number of numerical experiments
where (1x1), (2x2), (3x3) and (4x4) S-system have being modelled by the
bi-linear metamodel, and where the results are extremely accurate.
In section 11 it was established that the bi-linear metamodel produces, for
big S-systems, PCs which span a null space. This issue is solved in the tensor-
metamodel, where, by applying the Kroneker product to the singular values
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of the matrix X, and computing the PCA to it, we are able to signi�cantly
reduce the dimensionality of the tensor-metamodel-system, (see section 13).
Section 15 presents numerical examples where (1x1), (2x2), (3x3) and (4x4)
S-systems are modelled by the tensor-metamodel, also giving very accurate
results.
Finally, in section 16 we name some of the applications for the PCT, at
the same time providing some examples where we �nd the steady-state of
a (2x2) tensor-metamodel-system (section 16.1) and we show how recasting
of parametrized non-linear di�erential equations can be related to the PCT.
We have attempt to use the scores belonging to the PCT as a library in
order to use the PCT in parameter estimation problems. However, we have
unfortunately not succeed in doing this. This could be, according to [19],
because the system has a sloppy structure, meaning that the system has a
neutral parameter-set. However, in higher dimensions sloppiness seems to
disappear, so that the library can be constructed in an e�cient way.
This issues are to be investigated more thoroughly in further studies.
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18 Appendix A1: The singular value decomposi-

tion

The singular value decomposition (SVD) is intimately related to the theory
of diagonalization of symmetric matrices with one fundamental di�erence;
the matrix M is not a square matrix (n x n) but a rectangular matrix (m
x n); where m < n. Nevertheless, the singular value decomposition is based
on a property from ordinary diagonalization that can be imitated by any
rectangular matrix (D. Lay [4] s.487-497). Assume M is symmetric, then
the absolute values of the eigenvalues of M measures the amount that M
stretches or shrinks.
If Mx = λx and ||x|| = 1, then:

||Mx|| = ||λx|| = |λ|||x|| = |λ|

Consequently, if λ1 is the greatest eigenvalue forM, then its correspond-
ing eigenvector v1 is the responsible of maximizing ||Mx||.
Let now M be a (m x n) matrix; where m < n. Then MtM is a symmetric
matrix (n x n) that can be orthogonally diagonalized (D. Lay [4] s.487-497).
Let λ1, ..., λn be the eigenvalues ofM

tM with its corresponding eigenvectors
v1, ...,vn. The singular values -σi- are the square roots of the eigenvalues
of the matrix product MtM, that is, σi =

√
λi for i = 1, .., n (D. Lay [4]

s.487-497).
The singular values -σi- are the length of Mv1, ...,Mvn and they are per
de�nition all ways > 0, because:

||Mvi||2 = (Mvi)
tMvi = vtiM

tMvi = vti(λivi) = λi

There are two matrices: U and V, which are orthogonal and a diagonal
matrix Σ meaning that Mmxn can be factorized as follows: M = UΣVt.
Assume we have a matrix Mmxn with rank r. The "diagonal" matrix Σ is
given as:

Σmxn =

[
D 0
0 0

]
where D is:

D =

σ1 0 0
0 ... 0
0 0 σn


This means that for the matrix Σ: the m − r rows and the n − r columns
will all be zeros and D (which is now diagonal) will be given by the �rst r
singular values of M [4] �implying that Σnxn�.
The orthogonal matrix Umxm is given as:

U =
[
u1,u2,u3, ...,um

]
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Where:

ui =
1

||Mvi||
Mvi =

1

σi
Mvi, (i = 1, ..m)

The columns of U are called left singular vectors, and from them we
obtain an orthonormal basis {u1, ...,um} ∈ Rm.
Finally the matrix V(nxn) is given as shown previously by the orthonormal
vectors vi where i = 1, ..., n which are the eigenvectors of MtM.
This means that:

M(mxn) =
[
u1, ...,um

]
(mxm)

σ1 0 0
0 σn 0
0 0 0


(mxn)

[
v1, ...,vn

]t
(nxn)

(D. Lay [4] s.487-497)

19 Appendix A2: The Law of Mass Action

Peter Waage (June 29 1833 - January 13 1900), was a signi�cant Norwe-
gian chemist and professor at the Royal Frederick University. Along with
his brother in law, Cato Maximilian Guldberg (11 August 1836 - 14 January
1902), they co-discovered and developed the Law of Mass Action between
1864 and 1879. Guldberg og Waage published three articles, in 1864, 1867
and 1879. Their �rst paper in Norwegian "Studier over A�niteten" went
largely unnoticed, as did their second paper in French (1867). Almost �fteen
years after the �rst paper, in 1877 van 't Ho� came to similar conclusions but
as his work had been conducted independently from Guldberg and Waagw's
work, the Norwegian scientists decided to write and publish their last paper
(1879) in order to get credit for their work. (Store Norske Leksikon; trans-
lated by Sergio Haram Sarmiento).
I will not even attempt to explain the law of Mass Action in my own words,
because I am afraid of ruining the magni�cent work produced by these two
brilliant scientist. On the contrary, I believe that the best way to present
Guldberg & Waage's work is by simply presenting their work as it appeared
in it's original form:

"Støttebde os dels til tidligere af andre Kemikere udførte Forsøg og dels til
vore egne og ledet af den ovenfor udviklede Gang i de kemiske Processer, frem-
sætte vi følgende to Love, nemlig Loven om Massernes Virkning og Loven om
Volumets Virkning, hvoraf da udledes Ligevægtsbetingelsen for de i Systemet
virkende Kræfter.

1.

Massernes Virkning
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Substitutionskraften er under forøvrigt samme Forholde direkte proportional
med Produktet af Maserne, efterat hver er ophøjet i en bestemt Exponent.
Betegnes Mængderne af de to Sto�er, der idirekte paa hinanden med M og
N, saa er Substitutionskraften for disse

α(MaN b)

Koe�cienterne α, a og b ere Konstanter der under forøvigt samme Forholde
alene afheænge af Sto�ernes Natur.

2.

Volumets Virkning

Naar de samme Masser af de indvirkende Sto�er be�nde sig under forskjellige
Volumina, da ere disse Massers Virkning omvendt proportional med Volu-
met. Betegner som ovenfor M og N Mængdem af de to Sto�er og er det
samlede Volum af Systemet i to forskjellige Tilfælde V og V' saa er Substi-
tutionskraften i det ene Tilfælde udtrykt ved

α(
M

V
)a(

N

V
)b

og i det andet ved

α(
M

V ′
)a(

N

V ′
)b

(Guldberg & Waage [14] s. 5-6)

Relying in part on earlier experiments carried out by other chemists and
in part on our own experiments and guided by the development in chem-
ical processes named above, we present two laws, namely the law of mass

action and the law of volume action, from which the equilibrium con-

dition is derived for the forces acting in the system.
1 Action of Mass

The substitution force is directly proportional to the product of the masses
when each is raised to a particular exponent. Designating each of the quant-
ities of the two substances by M and N, then the substitution force for these
are given by:

α(MaN b)

The coe�cients α, a and b are constants depending only on the nature of
the substances.

2 The Action of Volume

The action of the masses is inversely proportional to the volume if the same
masses of the substances occur in di�erent volumes. If we were to design as
shown in the example above, M and N as the amount of the two substances
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and V and V' as the total volume of the system in two di�erent cases, then
is the substitution force in the �rst and second case would be expressed as:

α(
M

V ′
)a(

N

V ′
)b

(Guldberg & Waage [14] s. 5-6. Translated by Sergio Haram Sarmiento.)

20 Appendix A3: Matlab-codes

In order compress the size of this section, I have not included all the matlab
codes I have implemented.

20.1 Note about matlab codes for the bi-linear metamodel
and tensor-metamodel

The matlab codes for the bi-linear metamodel and tensor metamodel for
(1x1), (2x2), (3x3) and (4x4) S-system are not included because of each
code's large size. I can nevertheless con�rm that I have all these codes and I
can vouch for the fact that the matlab codes applied in this thesis have been
implemented by the author of this thesis.

20.2 Code for a multivatiave-power-function Matrix

%%% function [X, Xc] computes a multivariate-power-function matrix X %%%
%%% Description: %%%
%%% The Matrix X is composed of porwer-functions where %%%
%%% each entry is a power function given as a combination of %%%
%%% the rows and colummns %%%
%%% Xc is the centered matrix X, if this value is not needed %%%
%%% Xc can be replaced with ~ %%%

%%% By: Sergio Haram Sarmiento %%%

function [X, Xc] = matrix(rows,columns)
r = (0:1/rows:2); % r = rows, (R gives the alpha-domain)
c = (-1:2/columns:2); % c = columns (c gives the x_j-doamin)
r(1)=[]; % discard the zero value
c(1)=[]; % ommit the zero value
x = [ones(length(r), 1) * c];
for i = 1:length(r)

X(i,:) = x(i,:).^r(i);
end
Xc = X-ones(size(X,1),1)*mean(X);
end

20.3 Computing the PCA
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%%% Computes the principal component analysis (PCA) %%%
%%% by means of the singular value decomposition (SVD) %%%

%%% By: Sergio Haram Sarmiento %%%

function [SCR, LDS, VAR] = pca(X)
[U, S, V] = svd(X, 'econ');
var = diag(S);
VAR = var.^2; % Returns the variance each PC carries
SCR = U*S; % Returns the scores of X
LDS = V; % Returns the loadings of X
end

20.4 Tensor-singular value decomposition for �nding the right
combination of PCs for the tensor-metamodel

%%% The code computes the 4x4-tensor product of the singular values %%%
%%% of the matrix X. X is a multivariate-power-function matrix %%%
%%% cum returns the cumulative value for the variance each PC carries %%%
%%% In many cases it will not be needed to print more than the first %%%
%%% 50 values from cum. This can be done by computing %%%
%%% >> cum(50,:); on the command-window %%%

%%% By: Sergio Haram Sarmiento %%%

[X,~] = matrix(size_of_rows , size_of_columns);
[~,s,~] = svd(X);
var = diag(s);
t2 = kron(var,var);
t3 = kron(t2,var);
t4 = kron(t3,var);
VAR1 = sort(t4);
VAR2 = flipud(VAR1);
VAR = VAR2.^2;
andel = VAR/sum(VAR);
cum = 100*cumsum(andel);
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