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Abstract

The objective of this study was to estimate acguraic genomic prediction for disease
resistance to viral nervous necrosis and vibriosisg sparse and genome sequence SNP-
data in Atlantic cod. The disease challenge tett daviral nervous necrosis and vibriosis
used in this study were obtained from the Natiokiéntic cod breeding program which is
running in Tromsg, Norway and we used disease anigdl test data of year-class 2009 for
both traits. Disease resistance for both traits mvaasured as survival at a fixed point in time
and assessed as a binary variable. We obtainecesiét of challenge test data of 707 and
728 individuals for viral nervous necrosis and mbis respectively. The individuals came
from75 full-sib and half-sib families for both dases and the number of individuals per
family varied from 7 to 20 (average of 9.7) in Vinervous necrosis, and 6 to 10 in vibriosis.
On top of pedigree information of 1,743 individyalsree genotype data sets were used in
this study, and based on these data sets threeretiff genomic relation matrices were
calculated. These were SPARSES (genotype data SR8 markers at chromosome 8 of
1,743 individuals), SPARSE GENOME (1,577 indivicziajenotype data of 8,658 SNP
markers across the entire genome) and DENSES8 (edpugh density genotypes (759,270
SNPs) of chromosome 8 of 1,743 individuals). Theogeic relation matrices were used in
the GBLUP with polygenic models to estimate theiarmge components which were
explained by the genomic information, and the genoestimated breeding values using
ASReml software. Fivefold within-family cross vadiions were carried out by randomly
masking 20% of phenotypic records within each farml order to evaluate the accuracy of
prediction for the viral nervous necrosis diseaai. tEach observation was masked once and
141 phenotypes were masked in the first, secondtarticross validation tests, whereas 142
phenotypes were masked in the fourth and fifthradidation tests. Finally, the phenotypic
values of the masked individuals were predictedettasn the 566 or 565 phenotypic
observations of the unmasked individuals. In theeaaf a between- families cross validation
test, the phenotypic values of 20% of the famiiese masked at a time and their phenotypic
values were predicted from the other families’ pitgpic values. A total of 15 families were
masked in each cross validation and the total niagkenotypes were 140, 142, 136, 137
and 153 in the first, second, third, fourth andhfitross validations respectively. The
accuracy of prediction was calculated based on dbwelation between the predicted
phenotypic values and observed phenotypic valuke. résults of analysis showed that for

the trait disease resistance to viral nervous mgroveritability estimates of the trait using
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the traditional BLUP (B= 0.359) and GBLUP (SPARSES)%h0.355) were almost equal.
However, GBLUP (DENSES8) @& 0.335) and SPARSE GENOME %h 0.371) had the
lowest and the highest heritability estimates respely, but these differences were not
significant according to their log- likelihood esfites. In the case of vibriosis, our data were
not able to distinguish between the genetic vanagxplained by the genomic information
and the pedigree information. The SPARSE GENOMEega®.117 heritability estimate by
fixing the variance explained by pedigree informatiat the boundary 0. According to a
within-family cross validation test for viral nemrs necrosis, the accuracies were estimated
as 0.329 in the case of the traditional BLUP and.GB (DENSES8) models, but 0.336 in the
SPARSE GENOME model. In addition to this, resultsbetween-family cross validation
showed that the accuracy of prediction of the DEBISE15) was less than that of the
SPARSES8 (0.16). In our study we found a high hbilitsg of resistance to viral nervous
necrosis in Atlantic cod in all models. Howeverr beritability estimate was lower than the
extremely high estimates of other studies in Attamibd. The total number of fish, the
average number of fish per family, and the modelused in our study could be possible
reasons for our relatively lower estimate of héiltty for disease resistance to viral nervous
necrosis. In our study, the accuracy of predictbthe genomic estimated breeding values
using the sparse SNP markers (SPARSE GENOME) didhmw a big difference compared
with the traditional estimated breeding values, &md could be due to the fact that the
phenotypical and genotypical data we used for itnginvas too small to accurately capture
the whole fraction of the variance explained by 8NP chip. Moreover, the accuracy of
prediction of imputed high density genotypes (DERB®Bf chromosome 8 for disease
resistance for viral nervous necrosis was not bétn that of SPARSE 8, and this could be
because in within- family genomic selection, bigrsents are inherited together and so the
sparse SNPs could be sufficient to detect the cbsome segments. The low heritability
estimate of our study to the trait disease resigtdior vibriosis is consistent across all
studies. However, the accuracy of genomic predicttould not be assessed by cross-
validation, since we were not able to distinguible genetic variance explained by the
genomic and pedigree information. In conclusion, foth traits more phenotypic and
genotypic data are required in order to properlgl@ate the accuracy of prediction of the

genomic information.

Keywords: Accuracy of prediction /Atlantic cod/dése resistance/SNP/ viral nervous necrosis
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1. Introduction

Fish diseases are major limiting factors facing Merwegian fish farming industry today
(Nakaiet al., 2009, Wooeet al., 2011).Vaccination, drug therapy, hygiene and ieedidn of
infected population are the current strategiesturol infectious diseases (Webal., 2011).
Therefore, the role of on-going research and implaation of appropriate disease control
strategies are critically important to the fishniémg industry (Wocet al., 2011). A variety
bacterial, viral and parasitic caused disease&rave/n on farmed and wild cod (Wab al.,
2011). Vibriosis is the most important bacteriaedise in farmed Atlantic cod in Norway and
it is causing singinificant mortalities and econonhbsses (Johansest al., 2011). Viral
nervous necrosis (VNN) is a viral disease causeddnavirus (Nakaét al., 2009). The virus
infects more than 30 fish species and is causingsmmaortality in aquaculture hatcheries
worldwide (Korsnes, 2008, Yang al., 2012). Fish which are infected by the virus show
abnormal swimming, dark coloration and anorexialascal signs, and in severe outbreaks
the mortality rate can exceed 95% (Ransangan anminMa010, Yanget al., 2012). The
virus also infects Atlantic cod (Gadus morhua) asalises economic losses. Disease
outbreaks due to VNN have been reported in juveaild adult farmed Atlantic cod in
Norway (Hellberget al., 2010).

Disease control or management using host gendista@ce is increasingly recognized as a
key component of effective disease control, compleing or sometimes replacing existing
strategies (Daetwyleet al., 2008). This is further supported by the significgenetic
variation in disease resistance reported in differfish species (Chevassus and Dorson,
1990). The traditional breeding methods have bdfactere in selecting for animals with
easy-to-measure production traits in the abseneceotécular knowledge of the genes acting
on quantitative trait loci (Goddard and Hayes, 2)0However, the efficiency of these
traditional methods decrease when traits are medsarone sex, after death or late in life, or
if measuring the trait is expensive and difficiBoddard and Hayes, 2009b, Eggen, 2012).
Disease resistance is a difficult trait to imprax@ng the traditional selection method and
often shows a dichotomous distribution of phenosyftiseased or non- diseased). Resistance
against specific diseases affecting aquacultureispeshow moderate to high heritability
when tested in artificial challenge tests (@degéirchl., 2011, Fjalestad et al., 1993) . In

artificial challenge test, fish are exposed to specific pathogen at a time in a controlled



environment and mortalities are recorded on a dal§is or in some cases more frequently.
The test is continued until at least 50% of thé fswve died or until mortality of the fish
stops rising (Fjalestad al., 1993) . Although the method improves the hellitgbestimate

to disease resistance, fish that have been chelmsed for disease resistance cannot be
used as breeding stock. As a result of this, deledor diseases resistance is based on a
performance test of siblings of the candidates. &l@w, in case of the traditional aquaculture
breeding schemes, with a sib test, only 50% oft¢ke genetic variance of the candidates is
exploited, perhaps less (Nirehal., 2012). In conclusion, the traditional breedingthods
with a sib test using artificial challenge test dot capture the majority of the genetic
variance to disease resistance and are therefdreemp efficient to genetically improve

disease resistance.

In order to exploit the full benefit of the genokypnformation from whole genomes in the
genetic evaluation of animals, Meuwissgral. (2001) proposed the genomic selection (GS)
method. It is a selection method, which simultarsgpouses high density markers that cover
the whole genome to predict the breeding valueset#ction (Meuwissest al., 2001). The
method assumes that every QTL (large or small)ctiffg the trait of interest can be
explained by several nearby markers, which togediplain all the genetic variation caused
by QTL. Implementation of genomic selection invavestimation of the effect of
chromosome segments/SNP markers in a referencegbopuand prediction of genomic
estimated breeding values for selection candidatgsin the reference population. So, in
order to implement genomic selection, a phenotygrati genotyped reference population for
large sets of markers should be available (Goddard Hayes, 2009b). The reference
population is used to develop the prediction eguator the estimation of genomic breeding
values in non-phenotyped individuals (selectiondidaies) based on their genotype alone.
Therefore, genomic selection could overcome thetstiming of the traditional selection
methods and marker assisted selection and it cadigbrbreeding values more accurately
(Meuwisseret al., 2001, Zhangt al., 2011).

Genomic selection in aquaculture industry can bedu® solve the main drawbacks of
traditional selection which are lack of pedigreeoreling and the large increase in inbreeding
(Gjedrem and Gjgen, 1995, Nielseh al., 2009). It has been studied using computer
simulations andall the simulation studies showed that genomiccsiele can be used in
aquaculture to use both within- and between-famiyiation during selection for both

continuous and dichotomous (disease resistand&y toaincrease the accuracy of selection
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(Nielsen et al., 2009, Sonesson and Meuwissen, 2009). Simulatiodies with the
assumptions of high density genotyping and a lamgeber of fish showed that genomic
selection could increase accuracy of selection gedetic gain in aquaculture species
particularly for traits measured on sibs of theestbn candidates (Nielseat al., 2009).
Another simulation study to extend the Bayes B meétlof genome wide evaluation
(Meuwisseret al., 2001) to include dichotomous traits indicated tha accuracy of genome
wide evaluation for disease resistance in aquaeudilp based programs is increased by 16%
compared with the linear model, in the case of logvitability and disease prevalence
(Villanueva et al., 2011). Despite of the simulation findings, thetual applications of
genomic selection in fish are few. Lack of densekeamaps and high- throughput SNP
arrays are the constraint (Nielsetnal., 2009, Sonesson and Meuwissen, 2009). Therefore,
the contribution of currently developed high—dengit130 K) SNP genotyping array of
Atlantic salmon has significant contribution to gkactical application of genomic selection

in aquaculture breeding programs (Houston et GlL4P

In aquaculture breeding, full implementation of genic selection is more expensive. This is
due to the large number of selection candidatedestdndividuals required to genotype, and
low economic value of each selected individual ffkmEscriche and Gonzalez-Recio, 2011).
Then, the cost of genotyping is one of the limitas for the implementation of genomic
selection in aquaculture breeding programs. WitFamily genomic selection is one option
for low marker density genomic selection strategeskeep the cost of genotyping low
(Lillehammeret al., 2013). The method is a combination of genomidiwifamily breeding
values, based on low density genotyping and conweait BLUP between family breeding
values. Another alternative using the central idk®w density SNP panels is proposed by
Goddard and Hayes (2009a), where the key anceatergenotyped with dense panels or
with whole-genome re-sequencing and the selectolidates are genotyped with standard
low-density panels. Then, the chromosome segmentlei selection candidates are traced
back to the key ancestors and their genotypesnégeréd at all markers assayed on the key
ancestors. This method is known as imputation (Euk al., 2012). It is a method of
exploiting linkage disequilibrium and/or linkage adysis by deducing a higher density
genotype from a lower density genotype and whichulte in reduced genotyping costs. In
Holstein-Friesian dairy cattle, an average accurddynputation from 2,909 SNPs to 54,001

SNPs of 0.98 was reported (VanRadrl., 2011). So, lower density genotyping together



with imputation can be used to reduce the coseabgic selection (van Marle-Kostetral .,
2013).

The objective of this study was to estimate acguraic genomic prediction for disease

resistance to viral nervous necrosis and vibriosisig sparse and genome sequence SNP-
data in Atlantic cod.



2. Literaturereview

2.1. The principle of genomic selection
Genomic selection is defined as a selection detisased on genomic breeding values. The

method simultaneously uses high density marketsctinvger the whole genome to predict the
breeding values of selection candidates (Meuwissah, 2001). It assumes that every QTL
(large or small) affecting the trait of interesinclae explained by several nearby markers,
which together explain all the genetic variatioused by QTL due to at least one of the
markers being in linkage disequilibrium with ea@ng or QTL affecting the trait of interest.
As a result of this, theoretically, it is possilbdecapture all genetic variance by markers if the
marker density is high enough (Zhagi@l., 2011, Meuwissest al., 2001).

2.2. Stepsin genomic selection
Getting a large group of animals with accurate piygres for the trait(s) of interest is the

first step in the genomic selection process. Taigd group of animals is called a reference
population or training animals (Meuwissen, 2007d@ard and Hayes, 2009b). The reference
population also needs to be genotyped. Using tatlgénotypic and phenotypic information

of the reference population, a prediction equatwihbe developed that predicts the breeding
value from the SNP genotypes (Goddard and Hayd399)0 Then, the genomic breeding

value of candidate animals can be calculated usiagprediction equation, based on their
genotypes from the SNP array without any accuranptypes for these animals. Finally,

the candidate animals are ranked on the estimazaedngic breeding values, and the best
candidate animals are selected to breed the nexdraion (Goddard and Hayes, 2009b,
Eggen, 2012).

2.3. Methodologies for genomic selection

Estimating the effect of each SNP on the traitis main challenge in genomic prediction,
since, the number of SNPs is much larger than timeber of phenotypes available (Goddard
and Hayes, 2009b). Several statistical methodatobeeve been developed to address this
problem by using prior information about the disiion of the SNP effects. The
methodologies can be grouped in two based on #esumptions about the SNP effects.
GBLUP, BayesA and Bayesian LASSO assume all SNis dfiects but with different prior
information. However, the second group such as 8Byand BayesC take the assumption
that many SNPs have no effect (de los Cangpak, 2013). On top of the assumption on the
SNPs effect, they also have an assumption on tseildition of SNPs effects. GBLUP



assumes the SNP effects are normally distributedu(Mssenet al., 2001). BayesA and
BayesB both assume SNP effects have a studenisgibdtion but some SNPs are assumed
to have no effect in the case of BayesB (de lositeet al., 2013, Meuwissent al., 2001).
Bayesian LASSO assumes that SNP effects have amerpal distribution. (Hayest al.,
2013, Park and Casella, 2008).

2.4. The accur acy of genomic estimated breeding value
The correlation between the GEBVs and true breedimges is called accuracy (r) of

genomic estimated breeding value (Meuwiseeal., 2001). Unlike simulation studies, true
breeding values are unknown in a real populatiometi@yleret al. (2008) derived the first

formula that predict the accuracy of genomic esimidreeding values and it was derived as

r= \[@hZ/(Nphz +Ny) 1)

whereNp is the total number of phenotypic records in thierence populationh? is the
heritability of the trait investigated, andyNs the number of independent QTLs affecting the
trait. A different form of the formula was deriveg Goddard (2009) as.
1+a+2Va
14+a-— 2\/a>
wherea = 1+24/Np, 2= (1-h%) Md (h?log (2Ne)) in which Ne is the effective population size

r= Jl — 1/(2NpVa) log( (2)

in historical population, anie is the effective number of chromosome segmentsattd
from Me = (2Nel)/log (4Nel), where L is the length of the genome. After datin of the
above formula (2) Daetwylest al. (2010) includedVle into the previous formula (1). They
deduced that § has an influence on the BayesB method but notBolU®, so based on this
conclusion they derived two formulas.
In the case of GBLUP,
r = VN, h?/(N, h? + M,) (3)

Whereas in the case of BayesB method,

r = VN, h?/(N, h? + min(M,, Nyy;)) (4)

Deviations between the observed and predicted aces can be due to the violation of the

different assumptions made while the formulas wi@gved. In general both predicted and



observed accuracies respond in similar ways togdam the relevant parameters (Zhag
al., 2011).

2.5. Statistical analysis of disease- related traits
Cross—sectional and longitudinal models are thetrmosimon models which are used to

analyse disease related traits (Noordhuizen et2801). Cross-sectional models are the
simplest statistical models used for analyzing leingle test data and in these models, disease
resistance is measured as a single record ( divpe, @ dead) at a specific point in time
(@degardet al., 2011). The cross-sectional studies therefore dak@apshot of the situation at
a specific moment but time of death is not takea account (Thrusfield, 2013) . In the case
of binary outcome variables, the residuals do rasehnormal distribution, which results in
the violation of the assumption of linear regress{dloordhuizenet al., 2001, Thrusfield,
2013). Therefore, generalized linear mixed moddigkwaccount for the binary nature of the
data are the appropriate type of model to analgeenature of such binary data, using the
probit link function (Threshold model) (Thrusfield, 2013lowever, as @degaad al (2011)
reviewed most of studies found limited differenbegween the linear models and threshold
models with respect to accuracy of predicted bregdalue. Further, they added that, if the
heritability and the family size increases, thatige difference is expected to decrease. They
also noticed that studies which used a plain bieapression of alive or dead did not capture
the full extent of the disease resistance as welhase studies which used a longitudinal
measure of time until death (for example, the fist to die are the least resistance ones). In
such a follow up study, the exact survival timemty known for those individuals that show
the event (dead) while only the minimum survivateiis known for the survivors (@degard
et al.,, 2011). Moreover, the effect of environmental éastmay not be constant over time
and this usually causes the survival time to nohdwenally distributed. Proportional hazard
models or survival score, which approximates propoal hazard models have been
suggested for analysis of life time data (Jdegérl., 2011). So, the types of model we use
could vary depending on the data we have and thatgin we want to study.

2.6. Nervous necrosis virus
Nodavirus or nervous necrosis virus is an emergathogen, which belongs to the viral

family Nodaviridae (Samuelsest al., 2006). The Nodavirus causes the diseases commonly

known as viral nervous necrosis (VNN) or viral gpicaglopathy and retinopathy (VER) in



marine fish farming worldwide (Korsnes, 2008, Salseieet al., 2006). Although these
viruses can affect older market size fish, it maiaffects a younger stage of fish and
damages the central nervous system in suscepisblespecies. Infected fish show abnormal

swimming behavior, abnormal posture and muscledrsrChiet al., 2005).

2.6.1. Transmission of the virus
Horizontal and vertical transmission of VNN has beeported in several research findings

(Korsnes, 2008, Hellbergt al., 2010). Vertical transmission can occur as treasp
transmission where the pathogen is present on ghgesarface, and the other way if the
pathogen only is present inside the egg (transamgriKorsnes, 2008, Fraser, 1986). The
horizontal transmission occurs through influent amaring water, and via utensils, vehicles,
and human activity (Nakat al., 2009)

2.6.2. Diagnosis of the virus
Establishment of specific and sensitive methodsnfutavirus detection are important, both

as diagnostic tools and for scientific studieshaf virus (Dalla Vallest al., 2000). Tentative
diagnosis of VNN is based on the appearance ofolasun the brain, spinal cord, and/or
retina as seen by light microscopy (Hellbet@l., 2010). However, individual fish showing
only a few vacuoles in the nervous tissues poséfiaulty in diagnosis (Nakaet al., 2009).

In general, the most commonly confirmatory diagaasethods used could be divided into
molecular, immunological and cell culture (Korsn2808, Dalla Valleet al., 2000). The
immunologically based assays could be subdividéaldirect and indirect detection of virus
particles, and included enzyme-linked immunosortesgay (ELISA), indirect fluorescent
antibody technique (IFAT) and later immunohistocistng (IHC) and neutralization tests
(Korsnes, 2008). The most widely used immunologioathods for diagnosing VNN have
been ELISA and IHC (Breuil and Romestand, 1999)-AR and realtime RT-PCR assays
are molecular methods for the detection of VNN &agle played an even more important

role in detecting and characterizing viruses (Mardp94).

2.6.3. Control of VNN
Korsnes (2008) suggested strategies for controlfiNgl in farming of fish, and the strategies

involve screening of fish for the disease and dgwalent of a vaccine. This resulted in the

reduction of the risk of introduction and spread thirus in farmed populations of fish by

8



blocking both vertical and horizontal transmissiontes (Nakagt al., 2009). Screening and
monitoring of health status of fish in order tontiéy infected (carrier) fish and keep the
brood stock in a sheltered aquaculture systemewemt horizontal transmission of VNN are
strategies which help to have VNN-free brood (Mar0d994, Hellberget al., 2010).
Avoiding immunosuppression and subsequent increabadce of infection with the virus
are key control strategies in an open system ssichagine growth site, where fish are kept in
cages at higher density and sources of virus nbghother farmed fish at the site or wild
stocks of fish in the vicinity (Fraser, 1986). @éedet al. (2010) have reported high
heritability (0.75in case of threshold mixed modahd 0.43 using linear mixed moydbr
disease resistance to VNN using challenge testtlsnfic cod. So, in addition to the above
control strategies, selective breeding of fish\&N resistance is one alternative to control

and prevent the disease in fish farming industry.

2.7.Vibrioss
Vibriosis is one of the most prevalent fish diseasgised by a gram negative bacteria

belonging to the genus Vibrio and it is commonlyrid in the aquatic environment, the
majority of which are non-pathogenic (Actet al., 2011). Vibrio anguillarum, Vibrio
salmonicida andVibrio ordalii are the species which cause the most economisatipus

disease (Gratacap, 2008).

2.7.1. Transmission of Vibriosis
The interaction of the host-pathogen-environmenggéar the occurrence of vibriosis

outbreak, and the main predisposing factor is thess level of the fish (Gratacap, 2008).
Increase in temperatures has a known effect ostthes level of fish which result in disease
outbreaks (Buller, 2004). Transport and transfemfrfreshwater to seawater and pollution
can also increase the rate of vibriosis, on top, tmmetimes vaccination of Atlantic cod can
be followed by outbreaks (Gratacap, 2008). The mafd#ansmission of the bacterium is
through water, with fish carriers or contaminatésh ffarm equipment and it can enter
through skin, fins, gills and anus (Buller, 2004)e clinical sign of the disease are
haemorrhage to intestines, spleen, muscle, bodyycand darkened coloration to skin and
fins. In addition to this, changes to the eyesize sis well as color and grey or white lesion
on intestines and spleen are also clinical sigimefdisease (Actiet al., 2011, Beacham and

Evelyn, 1992).



2.7.2. Diagnosis of vibriosis
In the case of vibriosis there is no reliable pregtive diagnosis of the disease because of its

similarity to other septicemic diseases caused ayng-negative bacteria (Bullock, 1977,
Actis et al., 2011). Diagnosis of the disease carried out ubmcteriological examination
(Actisetal., 2011).

2.7.3. Control and prevention of the disease
Good management practices such as maintenanceef guality, low stocking densities and

good husbandry should be used to control vibrilBeacham and Evelyn, 1992, Samuelsen
et al., 2006). In diseased fish, a successful treatmeanguantimicrobial is dependent on a
rapid diagnosis and immediate treatment and Sulfariee and Oxytetracycline drugs can
be used for the treatment of the disease(Aettat., 2011). More over vaccination has proven

to be an efficacious method in preventing vibrigSiamuelseet al., 2006)
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3. Materials and methods

3.1. Fish data
The disease challenge test data of viral nervoaososis and vibriosis used in this study were

obtained from the National Atlantic cod breedingggram which is running in Tromsg,
Norway. The national Atlantic cod breeding progravas started from 2002 and three
parallel year-classes were formed as progeny ofvlecaught Atlantic cod. Details of the
year- classes and mating design can be found igdBast al. (2011). In this study, we used
disease challenge test data of year-class 200ddtr traits. The 2009 year—class data
represent the second generation) f the progeny of selected fish from year-cla®8&
(Bangereaet al., 2011).

3.2. Data on disease challenge tests
Disease resistance for viral nervous necrosis @&nesis traits was measured as survival at a

fixed point in time. It was also assessed as arpivariable where the observed value of each

individual fish was 1 if the fish died following allenge test and 0 if it survived.

3.2.1. Viral nervous necrosis challenge test data
The challenge test was conducted using injectioa nbdavirus suspension. The challenge

test period was 35 days and the first mortality weisas a starting point. Preparation of the
viral isolate, titration of virus and methods oétbhallenge test is presented in ddeghal.
(2010). We obtained the result of this challenge tlata of 707 individuals from 75 full-sib
families and half-sib families (75 dams and 60 Sjiref Atlantic cod. The number of

individuals per family varied from 7 to 20 (averaafe9.7).

3.2.2. Vibriosis challenge test data
728 individual challenge test results of vibriosiere obtained from The National cod

breeding program. The duration of challenge test @& days like the other trait the first
mortality was set as a starting point but it wasdiected using bath challenge. More details
about the challenge test protocol and fish popatatian be found in Kettunest al. (2007).
The individuals were from 75 full-sib families ahdlf-sib families (75 dams and 57 sires) of
Atlantic cod and the number of individuals per fgnviaried from 6 to 10.

3.3. Genotype data
The lllumina Atlantic cod 12K SNP array were deyald by the CSCwww.cigene.nd and

used to genotype the Atlantic cod. Three genotyta gets were used in this study and based

on these data sets three different genomic relatiatrices were calculated. The first data set
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contained 1,577 genotyped animals and the totalpesl of these animals contained 1,743
entries. Genotype data on chromosome 8 (283 SNRemsawere used and the genotypes of
the ungenotyped ancestors were imputed by LDMIPuiMssen and Goddard, 2010). We
used this genotype data of 283 SNP markers to atithe genomic relation matrix of the
1,743 individuals at chromosome 8 (which we willl the SPARSES8). The second data set
was 1,577 individuals genotyped data across theeeggnome with lllumina Low-Density
Atlantic cod SNP chip and based on this data setaleulated genomic relation matrix of
1,577 individual using 8,658 SNP markers acrossathele genome. This genomic relation
matrix is called in this paper SPARSE GENOME. Lownsity genotypes data of
chromosome 8 of 1,743 individuals’ were imputedtapsequence density (759,270 SNPs)
genotypes the genome sequence (approx. 10X) ofséfilenced parents of the challenge
tested families (imputation by LDMIP).These imputedjh density genotypes (759,270
SNPs) were used to calculate the third genomitioelanatrix (which we call the DENSES).
The genomic relation matrices were used in the GBLuodel to estimate the variance
components which were explained by the genomicaiinédion and genomic breeding value.
Details of the model and genomic relation matrix presented in section 3.3.2. On top of the
genotypes data, pedigree information of 1,743-viddials’ were used in the traditional
BLUP and GBLUP with polygenic models.

3.4. Statistical models
Variances explained by the pedigree only, DENSESBARSE8 or SPARSE GENOME

were estimated using ASReml software (Gilmeual., 2009). These variance components
estimates were used to calculate the heritabiliibshe traits. We used two best linear
unbiased prediction (BLUP) models for the estimatend prediction of the traditional
breeding value and genomic breeding values. Tte firodel was the traditional BLUP,
while the second model was the GBLUP with a polygeffect (using the pedigree based
relationship matrix). Both models are presente@weHenderson, 1975, Meuwissenal.,
2001).

3.4.1. Traditional BLUP
The traditional estimated breeding values and ptedi values for both traits were

determined using phenotypes and pedigree informa&i@sed on the following model:

y=1lu+Za+e (5)
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Where y is the vector of observed phenotypic vabfesdividuals,u is the overall mear is
the vector of additive genetic effects of the phgped individuals and their parents, Z is the
incidence matrix of, ande is the vector of residual errors. The varianceatciance matrices
of a ande areAcss? andloe?, respectively, where A is the additive geneti@atiehship matrix,

042 is the additive genetic variance, andlis the residual variance (Henderson, 1975).

3.4.2. GBLUP with a polygenic effect
The genomic breeding values using SPARSES8 or DENSBERPARSE GENOME genomic

relation matrices were estimated using GBLUP inicigdhe polygenic effect (Meuwisseh
al., 2013, Meuwissemt al., 2001). In this paper GBLUP (SPARSES8), GBLUP (DHEHS8%
and GBLUP (SPARSE GENOME) model means a GBLUP muitél polygenic effect and
used the genomic relation matrix of SPARSE8, DENS&H& SPARSE GENOME
respectively. These models were also used to gréttiaggenomic breeding values of masked
individuals in the case of cross validation tese(Missenet al., 2013), and details of the
cross validation test are presented in sectionThé. model in matrix notation is presented

below and y, & andp have the same definition as in equation 5

y=lu+ZatWg+e (6)
Z= is the incidence matrix for the random polygesfiect
a= is a vector containing a random polygenic effecieach individual

ais assumed to follow N(0.#?) where A is the pedigree based relationship matrix
W= is the incidence matrix for the random genomicaffe
g= vector of random additive genetic effect usingdbkaomic relationship matrix (G)
coming fromN(0, Gog?)

e= vector of random residual erraig0, | o¢?)
The genomic relationship matrix (G) was calculdigdising SNP marker genotype

according to VanRaden (2008)

G =XX'Im
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X= matrix of standardised SNP genotypes X
m=number of SNPs
Xij denotes the standardised SNP genotypes of aniorabNPj

Genotypes values of the SNP are standardizedrteam of zero and a standard deviation of

1 by subtracting the mean (Rpnd dividing by the standard deviatioH as presented below

For genotypes 0, 1 and 2

X :(0 — 20 YWH; (1-2p; )WH; (2 - 2v; )IWH

Where heterozygosity (H) =p2(1 —pj;) andp; is the allele frequency of allele 1 and O, 1, or
2 are genotypes value for SNP with genotypes “0'@®1,” or “1 1,” respectively. Thus, the
genomic relationships between two animals wereutatied and the calculated genomic
relationship matrix is implemented in the above aiqun to calculate GBLUP breeding
values and the variance explained by the markergy W sSReml (Gilmouret al., 2009). In
order to test whether SPARSES explains more vagiafiche trait, i.e. whether chromosome
8 explains more variance than other SNPs (disessstance to viral nervous necrosis) than
expected based on the SPARSE GENOME genomic nelatiatrix, we used the model
GBLUP with polygenic effect by incorporating botiPSRSE8 and SPARSE GENOME
genomic relation matrices simultaneously by comsidethe covariance between the two

genomic relation matrices. The model is presengtovip

y = 1au+ Zat+t Wg +Qv+ e (7)

Where y, u, ZaW, g ande are similar like equation 6 ar@ is a vector of genetic effect for a

chromosome 8 assumed to be normally distributeld mian 0 anéo.>.
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3.5. Cross validation test
Within- and between-family cross validations wemried out in order to evaluate the

accuracy of prediction for the viral nervous newadisease trait. The within-family cross
validation will predict the accuracy of genomic édeng values under the assumption that the
candidates have full-sibs with records. The betwkenily cross validation will give the
predicted accuracy under the assumption that pkpicotecords come from more distant

relatives.

3.5.1. Within family cross validation
Fivefold within-family cross validation tests waarried out by randomly masking 20% of

phenotypic records within each family. As a resfltthis, each observation within family
were masked once and 141 phenotypes were mask#w ifirst, second and third cross
validation tests whereas 142 phenotypes were maskiheé fourth and fifth cross validation
tests. The phenotypic values of the masked indalglwere predicted based on the 566 or
565 (in the case of 142 individuals masked) phegpiotybservations of the unmasked
individuals. The accuracy of prediction was caltedabased on the correlation between the
predicted phenotypic values and observed phenowglies. This correlation equals no more
than the square root of the heritability of thatireo we scaled the correlation result by the
square root of the heritability to obtain an unb@®stimate of the accuracy of prediction
from 5-fold cross validation (Meuwissehal., 2013).

3.5.2. Between family cross validation
Like the above procedure, fivefold between-fancitgss validation tests was carried out by

randomly masking the phenotypic values of 20% df tamilies at a time, and their
phenotypic values were predicted from the otherilfag phenotypic values (Meuwissesh
al., 2013). A total of 15 families were masked in eaotss validation and the total masked
phenotypes were 140, 142, 136, 137 and 153 inittste $econd, third, fourth and fifth cross

validation respectively.
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4, Results

4.1. The variance components
The variance components explained by the traditiBh&JP, GBLUP (SPARSES8), GBLUP

(DENSES8) and SPARSE GENOME for both traits are gmé=d in table 1 below. The
correlation between the predicted values of tha (Mdhat) of the model GBLUP (SPARSES)
and GBLUP (DENSES) for the trait disease resistainc¥iral nervous necrosis was high
(figure 1).

4.1.1 Viral nervous necrosis
For the trait disease resistance to viral nervamasis, in the traditional BLUP model the

pedigree information variance equal to 0.084 arel d@lror variance was 0.15 (Table 1).
When the data was analyzed using GBLUP(SPARSESpEBLUP(DENSES8) model the
variance explained by SPARSES8 was a bit less thandf DENSES8 (Tablel). Heritability
estimates of the trait using the traditional BLURI&GBLUP (SPARSES8) were almost equal.
However, GBLUP (DENSE8) and SPARSE GENOME had thwebkt and the highest

heritability estimates respectively (Table 1).

When the disease challenge test results were athlyging equation 7 by incorporating both
SPARSES8 and SPARSE GENOME genomic relation matri@®21, 0.047 and 0.017 of the
variation were explained by SPARSE GENOME, PEDIGR&t SPARSES respectively
and the error variance was 0.150. So, SPARSES ieepal20% of the total genetic variance.
The log-likelihood was 190 and not significantlyttee than same model without SPARSES.

4.1.2. Vibriosis
The analysis of the disease challenge test remuthé trait disease resistance to vibriosis is

also presented in table 1.Using our data we wetealle to distinguish between the genetic
variation explained by the genomic information &nel pedigree information. In the GBLUP
(SPARSES8) and GBLUP (DENSES8) models the variangaagxed were estimated by fixing
the variance explained by SPARSE8 and DENSES8 atbthendary of O respectively,
however, in case of the SPARSE GENOME model, thBIBREE information was fixed at
the boundary of 0. Traditional BLUP, GBLUP (SPARSJENd GBLUP (DENSES8) models
gave similar heritability estimate but SPARSE GENBMeritability estimate was the
highest. So, the heritability estimate was highesien the variance explained by the
PEDIGREE information was fixed at the boundary ofTble 1)
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The correlation between the predicted values (Yhat) of fRARSSE8 and DENSES8
1
2
08 R2=0,9617
0,6
Yhat of SPARSE8
0,4 | =
0,2
0 T T T T T T T T 1
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Yhat of DENSE8

Figure 1. The correlation between the predictedesbf the data (Yhat) of the model with
SPARSES8 and DENSES for the trait viral nervous osisr

4.2. Evaluation of accuracies of prediction
The correlation between the predicted phenotypigesand observed phenotypic values of

the trait disease resistance to viral nervous sexifor the different models are presented in
table 2 and 3. The correlation results were scaledlividing by the square root of the
heritability (I?).

4.2.1. Within-family cross-validation test
Within—family cross validation test results for ttrait disease resistance to viral nervous

necrosis are presented in table 2. The traditiBh&lP and GBLUP (DENSES8) models gave
the same correlation (0.329), however the GBLUPAFPBES) gave higher correlation

(0.334). The GENOME SPARSE model further improveel torrelation (0.336). When the

correlation was divided by h, GENOME SPARSE and BBES8 had the highest accuracy
(0.56) (Table 2).

4.2.2. Between-family cross-validation test
The between-families correlations of the predicteldenotypic values and observed

phenotypic values for the trait disease resistaocdral nervous necrosis are presented in
table 3. The GBLUP (SPARSES) had highest corrataf@16) but the traditional BLUP had
the least correlation (0.148). The comparison dhiwwi and between- family accuracies of
prediction for the trait disease resistance tol vieExvous necrosis is presented in figure 2. In
both case the DENSES8 had less accuracy of preditien the SPARSES.
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Table 1. The summary of the variance componentsS&teml results for Viral nervous necrosis and \Gbis

Traits
Viral nervous necrosis Vibriosis
Source of Traditional GBLUP GBLUP GBLUP Traditional  GBLUP GBLUP GBLUP
variance BLUP (SPARSE8) (DENSE8) SPARSE BLUP  (SPARSE8) (DENSE8) SPARSE
GENOME GENOME
PEDIGREE 0.084 0.075 0.06 0.066 0.009 0.009 0.009 08
SPARSES N 0.008 N N N 08 N
DENSES8 N N 0.018 N N N 08 N
SPARSE N N N 0.02 N N N 0.019
GENOME
Error 0.15 0.151 0.155 0.146 0.152 0.152 0.152 0.144
LogL. 189 190 189 190 304 304 304 302
h? 0.359 0.355 0.335 0.371 0.056 0.056 0.056 0.117

N = not part of the model

denetic variance B= fixed at a boundary
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Table 2. The accuracies of prediction for the tiggease resistance to viral nervous necrosis for
the within-family cross-validation test

Models h2 Correlation Accuracy
Traditional BLUP 0.359 0.329 0.55
GBLUP (SPARSES) 0.355 0.334 0.56
GBLUP (DENSES) 0.335 0.329 0.55
GBLUP (SPARSE 0.371 0.336 0.56
GENOME)

Table 3. The accuracies of prediction for the tleggease resistance to viral nervous necrosis for
the between-family cross-validation test

Models h? Correlation Accuracy
Traditional BLUP 0.359 0.148 0.25
GBLUP (SPARSES) 0.355 0.16 0.27
GBLUP (DENSES) 0.335 0.15 0.25

19



0,329 0,334 0,329

B Within family

B Between family

<o =~c oo >

Traditional BLUP GBLUP (SPARSES) GBLUP (DENSES)
Model

Figure 2. The comparison of within- and betweemilaaccuracies of prediction for the trait

disease resistance to viral nervous necrosis
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5. Discussion

The main objective of this study was to evaluate dbcuracy of genomic prediction to disease
resistance for viral nervous necrosis and vibriosisg sparse and genome sequence SNP-data
in Atlantic cod. Several computer simulation stsdsdowed that genomic selection can be used
in aquaculture to use both within- and between-famuariation during selection for both
continuous and dichotomous (disease resistanc#$ ti@ increase the accuracy of selection
(Nielsenet al., 2009, Sonesson and Meuwissen, 2009). Howeverresuits did not show the

significant role of genomic information in bothitsa

5.1. Viral nervous necrosis
The heritability determines the strength of thatiehship between phenotypes and genotypes is

one of the most important factors that affects eaxy of selection and the success of genetic
improvement of traits (Hedrick, 2011) . In thisdyjtthe heritability of resistance to viral nervous
necrosis in Atlantic cod had a slightly higher estie in the case of the GBLUP (SPARSE
GENOME) model, which was 0.371, than the traditidBaUP model, which was 0.359 (table
1). But, for both models heritability estimatesnr@mur study to the trait were lower than the
extremely high estimate of other studies in Atlantod. Using the 2007 year-class disease
challenge test data of the National Atlantic coeedaling program, @degaret al. (2010)
estimated the heritability of survival at the eridest to viral nervous necrosis, and the estimates
were 0.75 and 0.43 using threshold mixed modellenedr mixed model respectively. Another
exceptionally high heritability (0.68) for viral ne@us necrosis has been reported by Bangera
al. (2011) using 6185 individuals of the 2007 and®@@ar-classes disease challenge test data of
the National Atlantic cod breeding program. In aguture, high heritability estimates to disease
resistance have been reported in different studied, among these Park and Casella (2008)
reported heritability for resistance to three difet diseases ranged between 0.42 and 0.57 in
rainbow trout, and Hedrick (2011) also reportedgh heritability of 0.26 on the observed scale
and 0.55 on the underlying scale for infectiousgo@atic necrosis (IPN) in Atlantic salmon. The
total number of fish, the average number of fishfpeily, and the model we used in our study
could be possible reasons for our relatively loagimate of heritability for disease resistance to

viral nervous necrosis.

21



In aquaculture, computer simulation studies showgth accuracy of selection based on the
genomic information (Nielsen et al., 2009, Sonessath Meuwissen, 2009). In addition to this,
Lilehammeret al. (2013) also showed using a simulation study ghabmbination of genomic
within-family breeding values based on low—dengjgnotype and conventional BLUP family
breeding values can be a possible low marker demsiplementation of genomic selection
without compromising the effect of genomic selectom genetic gain for species with large full-
sib families. However in our study, based on wifamily cross-validation tests, the accuracy of
prediction of the genomic estimated breeding valusiag the sparse SNP markers (SPARSE
GENOME) did not show a big difference compared wtile traditional estimated breeding
values. The accuracies of prediction were estimaed0.336 and 0.329 in the SPARSE
GENOME and traditional BLUP respectively (Table 2)similar result was also reported by
Mulder et al. (2012) in sheep for the trait concentration of gen& fatty acid compounds, and
they found that the accuracy of the genomic eseohareeding values were very close to that of
traditional estimated breeding values. Despite f@wareports that did not show higher accuracy
of genomic estimated breeding values than thetioadil estimate breeding values, the accuracy
of the genomic estimated breeding value that caadbgeved has been evaluated in different
livestock species for a range of traits (Meuwisseml., 2013), and genomic selection could
overcome the shortcoming of the traditional setectmethod, whilst predicting the breeding
values more accurately (Zhamg al., 2011, Meuwissert al., 2001). In genomic estimated
breeding values, increases in reliability varyiregviieen 20% and 29% were reported over those
of the traditional selection for milk-yield traits dairy cattle (Nielsen et al., 2009). In beeftleat
the accuracy of genomic selection for growth anctass traits were evaluated using cross-
validation, and up to 0.42 and 0.65 accuracies wepsrted for growth and carcass traits
respectively (Nathet al., 2004). In pigs, for the trait feed conversionaatMeuwissenet al.
(2001) reported that the genomic information gav@eraccurate genomic estimated breeding
values than pedigree only estimated breeding valaesur study, the loss of the contribution of
the genomic information to improve the accuracymdiction over the traditional method could
be due to the fact that phenotypical and genotypiata we used for training was too small to
accurately capture the whole fraction of the var&amxplained by the SNP chip. SPARSE
GENOME and SPARSES8 had almost similar accuracyretliption (Table 2) that means the
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SPARSE GENOME was not better than SPARSES anctthikl be due to within-family effects
are hard to predict because of small family sipp aximately 10).

Using within-family cross-validation tests, we cked the accuracy of prediction of imputed
high density genotypes (DENSES8) of chromosome 8disease resistance for viral nervous
necrosis, but its accuracy of prediction was alé&#s than that of SPARSE 8 (Figure 2).
Generally, high density markers give more accupaegliction than low density markers or at
least equal prediction (Solbeegal., 2008, Nielseret al., 2009). This could be in within- family
genomic selection, big segments are inherited hagetnd the sparse SNPs could be sufficient to
detect the chromosome segments. Further, we chabkedccuracy of prediction of DENSES8
using between-family cross-validation tests, sifigher density markers are required for
accurate prediction in the case of between-famitiesn for within-families (Meuwissen, 2009).
But, in our result the DENSES resulted in lowerwecy of prediction than the SPARSES8. The
lower accuracy of prediction of the DENSE8 than 8fARSES8 could be due to imputation
errors compensating for the effect of a higher tgnghe SNP chip explain 24% of the variance
from the total genetic variance (Table 1) and closome 8 (SPARSES8) explained 20% of
genetic variance from the total genetic varianesyit of equation 7). But, we did not get a
similar finding using chromosome 8 (SPARSES8) andABBE GENOME for the trait disease
resistance to vibrosis. The possible explanationis could be due to differences in the genetic
architecture and heritability of the traits.

5.2. Vibriosis
In this study using the traditional BLUP model, thexitability of disease resistance for vibriosis

(which was measured as survival at a fixed poininme) was estimated to be low (0.059). Even
though we were not able to distinguish the variareeplained by the genomic information and
pedigree information alone, the heritability estiemasing GBLUP (SPARSE GENOME) was
low but higher (0.117) than the traditional BLUP ded These low heritability estimates to
disease resistance to vibriosis are in agreemeitht the results reported from other studies.
Kettunenet al. (2007) reported low heritability estimates to dise resistance (measured as time
at death) for vibriosis, which ranged from 0.0®td7, depending upon the method used. Similar
low heritability (0.16) to disease resistance (mead as survival at the end of test) to vibriosis
were reported by Bangeehal. (2011). Another low heritability estimate (0.13xsweported for
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disease caused by the bacteria Vibrio in other §isbcies (cold water vibriosis in Atlantic
salmon) (Gjedrem and Gjgen, 1995). Moreover, vew leritability estimates of mortality and
time of death for vibriosis in Chinook salmon waparted by Beacham and Evelyn (1992). It
appears that the finding of low heritabilities thsease resistance for vibrosis is consistent acros

all studies.

The low heritability estimate of disease resistafiocesibriosis (which was measured as survival
at a fixed point in time) in our study as well abays studies may not reflect the true additive
genetic variation inherent in a population but eath deficiency in the philosophy underpinning
the models that are currently fitted (Lipschutz-Rdwet al., 2012). Genetic analyses of
resistance to infectious disease from disease ddiigh focus on individual's susceptibility to
infectious disease by ignoring the effect of it®ugy members to the disease status of the
individual tends to underestimate heritabilitiedireate (Nathet al., 2004). Nath and his
colleagues identified the impact that individuadsséa on each other as critical parameters for the
risk and severity of infectious disease, and byntknto account the variation an individual's
impact on its group mates to severity of infectidisease; they improved the low heritabilities
estimate (Natket al., 2004). Moreover, the indirect genetic effectsE)@nodel which considers
the indirect genetic effect captures the inherartegic variation an individual’s impact on its
group mates to severity of infectious disease @hpsz-Powellet al., 2012). So, the low
heritability estimate of disease resistance toi@gis can be improved using the indirect genetic
effects model and genomic information of large mitgpes and genotypes data (Ibafiez-Escriche
and Gonzalez-Recio, 2011, Lipschutz-Poweell., 2012).

A large number of phenotypes and genotypes ardregtjtor lower heritability traits than for

higher heritability traits in order to get accepéalgenomic accuracy (Ibafiez-Escriche and
Gonzalez-Recio, 2011). Due to this fact (and maglbe due to the quality of the SNP chip), the
genomic information (SPARSE GENOME) did not captcoasiderable amounts of the genetic
variance. Since, we were not able to distinguighglnetic variance explained by the genomic
and pedigree information, the accuracy of genomédiption could not be assessed by cross-

validation.
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6. Conclusions

In aquaculture industry genomic selection can l@lue increase the accuracy of selection and
to solve the lack of pedigree recording. Moreoverhas also a significant role to control
inbreeding (Nielseret al., 2009, lbafiez-Escriche and Gonzalez-Recio, 20bhesson and
Meuwissen, 2009). However, in our study, the aamuraf prediction using the genomic
information (sparse markers) for disease resistamtaot show a big difference compared to
using only pedigree information for any of the tsaand the traits showed different genetic
architecture. In conclusion for both traits moreeipbtypic and genotypic data are required in
order to properly evaluate the accuracy of prealictif the genomic information. But, disease
resistance to vibriosis needs more phenotypic amdtypic data than viral nervous necrosis and
this is due to the low heritability estimate of mdsis (Ibafiez-Escriche and Gonzalez-Recio,
2011).
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