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Preface

Applied mathematics and neuroscience have fascinated me greatly for over three years. The
self-ordering in nature is highly evident in biological systems and it seems impossible not be amazed
by how our brain consists of self aware chunks of atoms (cells). The language of mathematics can
hopefully capture some of the interesting aspects in how this is to be. However, if the mathematical
models are not ‘well behaved’, one might endorse dynamics with no foundation in reality. At
the same time if the mathematical modeling procedure removes to much physical details, then
one might end up with the same problematic endorsement. By narrowing the gap between pure
theoretical and experimental sciences, and letting these two philosophical fields inspire one another,
I believe the next great insight in the physical sciences can rise. These are some of my major
motivations to learn more about rigorous mathematical analysis and finally embark on my master
thesis.

In the progress of writing this thesis I have been fortunate to have two excellent supervisors:
Prof. John Andreas Wyller and Prof. Bjørn Fredrik Nielsen. They have both been a major
inspiration and they have kept my focus in the right direction throughout my masters.



Abstract

Many neural-field models in neuroscience mimic the all or nothing behavior of a neuron firing
an action potential. The neural-field model considered in this study is a spatio-temporal scalar
neural-field (NFL) model given as a partial integro differential equation (PIDE). The model yields
temporal changes in probability of neural activity in a given spatial point. A point has a high
probability of activity when the solution of the NFL model is above a firing threshold. The
sensitivity to change in probability is measured by a steepness parameter β.

Various numerical methods have been employed on this (and similar) type(s) of neural-field
model(s) without analysis of numerical convergence, stability and consistency. The aim of this
thesis is to obtain a better understanding of the NFL model’s well-posedness theory and its bio-
physical background. Further to analyze the numerical convergence theory of the NFL model
approximated by simple explicit numerical methods.

To obtain a comprehensive overview of the NFL model, we review its biophysical derivation
and discuss two proposed formalisms with respect to numerical analysis and well-posedness theory.
Further, we review a global well-posedness proof of the Cauchy formulated NFL model in a Banach
space of continuous functions. We further perform an analysis of the numerical error obtained in
the forward Euler and Heun’s second order Runge–Kutta (RK2) method. Finally we illustrate
numerical behavior by experiments applying the forward Euler and an explicit RK4 method.

Presented analytical work indicate stiffness (a necessity for a significantly small temporal step-
ping length) in the NFL model when approximated by the forward Euler method. This is due to a
dependency between the numerical error and the steepness parameter β. The RK2 truncation er-
ror contains β2, indicating that βN is contained in the RKN truncation error. Thus, by increasing
the order of the RK method, we predict no remedy with respect to stiffness.

Performed numerical experiments on a simplified version of the NFL model demonstrate stiff-
ness in the proximity of the firing threshold for moderately sized steepness parameters β. We
further demonstrate a divergence between the exact and the approximated solution of a slightly
less simplified version of the NFL model. This happens when the approximated solution is shifted
from one basin of attraction to another, giving rise to a large numerical error. In addition, we
observe spurious solutions in the form of false oscillations and an erroneous fixed point. Thus
indicating a possibility for numerical solutions of the NFL model to be rather arbitrary when the
temporal stepping lengths are not carefully selected.

Presented results indicate serious numerical stability issues in the NFL model. We suggest
further evaluation and development of more sophisticated numerical methods for future application
of this (and similar) type(s) of neural-field model(s). Finally, we argue the simplicity of the NFL
model to be undermined by the complications observed in numerical approximations. We propose
focus to be directed towards developing more robust field-models with respect to numerical analysis
rather than developing more complicated numerical methods.



Sammendrag

Mange matematiske modeller i nevrovitenskap innehar beskrivelsen av av/p̊a prosessen i nevral
fyring av aksjonspotensialer. Nevrofeltmodellen studert i denne tesen er en rom-temporal, skalar
nevrofelt (NFL) modell gitt som en partiell integro differensialligning (PIDE). Modellen gir tem-
poral endring av sannsynlighet for nevral aktivitet i et gitt romlig punkt. Et punkt har høy
sannsynlighet for aktivitet hvis løsningen av NFL modellen er høyere enn en gitt fyringsterskel.
Sensitiviteten til endringer i sannsynlighet er gitt ved en bratthetsparameter β.

Flere numeriske metoder er anvendt p̊a denne, og lignende type nevrofeltmodeller, uten analyse
av numerisk stabilitet, konvergens eller konsistens. Målet med denne oppgaven er dermed å f̊a
en bedre forst̊aelse av modellens etablerte biofysiske utledning samt eksistens– og unikhetsteori.
Videre, å analysere numerisk konvergensteori for enkle eksplisitte numeriske metoder brukt til å
approksimere NFL modellen.

For å f̊a en god bakgrunnforst̊aelse av modellen gjennomg̊ar vi en etablert biofysisk utledning
og diskuterer to mulige formalismer anvendt p̊a NFL modellen. Videre gjennomg̊ar vi et bevis for
global velformulerthet av den Cauchy formulerte NFL modellen i et Banach rom av kontinuerlige
begrensede funksjoner. Vi utleder trunkeringsfeilen og den numeriske feilen for den eksplisitte
Euler metoden. Videre utledes trunkeringsfeilen til Heun’s andre ordens Runge–Kutta (RK2)
metode og numeriske eksperimenter blir utført med den eksplisitte Euler metoden og en eksplisitt
RK4 metode.

Det presenterte analytiske arbeidet indikerer at NFL modellen er ‘stiv’ (behøver signifikant
redusert verdi av numerisk steglengde) i nærheten av fyringsterskelen. Den indikerte stivheten
er hovedsakelig for̊arsaket av en avhengighet til bratthetsparameteren β i den numeriske feilen til
den eksplisitte Euler metoden. Videre innehar trunkeringsfeilen for RK2 metoden bratthetspa-
rameteren β2. Dette indikerer at trunkeringsfeilen til RKN metoder kan være avhengige av βN og
dermed at stivheten vil være signifikant i alle eksplisitte RK metoder.

Numeriske eksperimenter av en forenklet versjon av NFL modellen demonstrerer stivhet i
nærheten av fyringsterskelen ved moderate størrelser av bratthetsparameteren. Videre vises et
scenario hvor en approksimasjon divergerer fra den eksakte løsningen av en mindre forenklet ver-
sjon av NFL modellen. Dette skjer da approksimasjonen blir flyttet fra et tiltreknings-omr̊ade til
et annet. I tillegg observerer vi falske oscillasjoner og et falskt fiks-punkt generert av numerisk
feil. Dette viser at numeriske approksimasjoner av NFL modellen kan være tilfeldige hvis ikke den
temporale steglengden velges med omhu.

Den rom-temporale NFL modellen indikeres til å inneha alvorlige stabilitets-problemer som
viser at det behøves grundig analyse som forh̊andsregel ved bruk av numeriske metoder p̊a denne
modellen. Avslutningsvis argumenteres det for fokus p̊a utvikling av mer robuste feltmodeller i
forhold til numerisk approksimering. Dette fordi enkeltheten ved approksimasjon av NFL modellen
undergraves av den indikerte stivheten.
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1 Introduction

In vertebrates, the central nervous system is located in the spinal cord and the brain, where the
former is believed to be the main processing unit. The brain is divided in several sections which are
believed to be connected to specific working tasks. The cortex is a major section in higher mammals
and is observed to be larger in species associated with higher intelligence, being the largest in the
human brain. Nerve cells in the central nervous system are termed as neurons and are believed to be
the main information processors and transmitters. One nerve cell is of finite size and has individual
functionality which is mathematically well-described, much due to the success of Hodgkin and Huxley
(1952). Today, the greatest challenge is to decipher how the neurons are functioning in a network as to
better understand the complexity of the brain. Modeling approaches on neural networks are generally
separated by the amount of biophysical details contained in the model; see e.g. Sterratt et al. (2011)
for a comprehensive review.

One approach in describing neural networks is found in the neural field models. These are some of
the simplest network models with regard to biophysical details and aim to describe the macroscopic
dynamics of networks of neurons. The brain tissue of higher mammals have a high density of neurons
where the coupling junctions between neurons, called synapses, appears to be randomly connected.
Neuronal signals can reach centimeters into the brain tissue, a distance much larger than the size of
a single neuron. Thus indicating that macroscopic activity in groups of neurons can be described as
a continuum, or so called neural fields Coombes (2006). Experimental motivation for the continuum
approximation can be found e.g. in the rodent whisker system. Here it is observed specific mappings of
neural populations to whiskers, i.e., when a whisker is deflected, the response is directed to a specific
neural population in the primary sensory area. After a few milliseconds the direct response in a
population propagates out to a multitude of other populations with complex spatiotemporal dynamics
(Petersen, 2007). In an attempt to describe these observations mathematically, it is assumed that
the populations of neurons can be regarded as a neural ‘signal field’ propagating the signals through
nearby brain tissue (Bressloff, 2012)[p. 185]. A population in neural fields is considered as a pool of
homogeneous neurons squeezed together, where the macroscopic state variables are the mean firing
rate of each population (Coombes, 2005). In the primary sensory area of rodents these pools of neurons
reflect observed micro- and macro columns of neurons (Coombes, 2006), thus endorsing the neural field
description.

The spatio-temporal scalar neural-field (NFL) model studied in this thesis is presented as

∂

∂t
u(x, t) = −u(x, t) +

∫
Ω

ω(x, x′)Sβ(u(x′, t)− uθ) dx′, t > 0

u(x, t) = u0(x), t = 0.

(1.1)

Here x ∈ Ω, where Ω is a bounded subset of R, ω denotes a weighting function used to describe
the connectivity between populations of neurons, termed the connectivity function. When ω(x, x′) is
positive (resp. negative), the connectivity is termed excitatory (resp. inhibitory). A smooth non linear
firing-rate function is denoted as Sβ . The firing-rate function approaches the Heaviside step function
as β → ∞, where β measures the steepness of the firing-rate function. In the succeeding text β is
termed the steepness parameter. The firing-rate function gives the probability densities for a neuron
population to be in an active state (the neurons are either ‘on’ or ‘off’). This probability is usually
modeled by a sigmoidal, a piecewise continuous or a Heaviside step function, all saturating at 0 and
1. The firing rate function yield high probability for activity if the solution u(x′, t) is larger than the
parameter uθ denoting the threshold value for activity, termed as the firing threshold.

The first studies in neural field theory provided very simple models where only excitation and no
refractoriness was considered (see Section 2 for an explanation of the terms). The mathematicians
Wilson and Cowan (1972, 1973) were the first to include inhibitory neurons and refractoriness in
the model. In further studies by Amari (1975, 1977) pattern formations were studied in the NFL
model by approximating the firing-rate function with a Heaviside step function. He reported that the
NFL model have five types of pattern dynamics when applying a lateral inhibitory (local excitation
and distant inhibition) connectivity function. More recent studies have focused on generic features:
generation and stability of structures such as spatially localized stationary solutions (bumps), spatially
or spatiotemporally oscillating patterns and traveling waves, pulses and fronts; see e.g. Ermentrout
(1998); Coombes (2005) and the references therein. These mathematical features have been connected
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to phenomenas such as short-term memory, the head direction system, visual hallucinations, and EEG
rhythms; see Coombes (2005) and the references therein.

In addition to study pattern formation, Amari (1977) conjectured structural stability of the NFL
model, suggesting that the Heaviside step function (β → ∞) approximates the smooth firing-rate
function (β < ∞). In an attempt to support this argument Oleynik et al. (2013) rigorously justified
that stationary solutions of the NFL model with β < ∞ converges to stationary solutions when
β →∞. Although, Nielsen et al. (2013) demonstrated ill-posedness of the NFL model in the sense of
Hadamard when β →∞, by demonstrating a discontinuous initial condition to solution map. Examples
of stationary solutions with β <∞ vanishing in the β →∞ limit was given. Further, the NFL model
was proved stable with β <∞, i.e. continuous initial conditions and steepness parameters to solution
maps. The limit β →∞ is therefore not taken into consideration in this thesis.

There is a need for solving the NFL model using computational approaches as the firing-rate func-
tion is nonlinear and the model is non-local. Various numerical methods have been employed when
analyzing these types of neural-field models (see e.g. Coombes and Schmidt (2010)) without account-
ing for numerical convergence, stability and consistency. However, an exception is found in Faye and
Faugeras (2010), where a consistent numerical scheme was derived by the trapezoidal rule on a delay
version of the NFL model. Although, there were given no justifications on the selected temporal step-
ping lengths. As argued by Nielsen et al. (2013), the NFL model is only ‘theoretically’ stable. Hence,
conjecturing numerical approximations to produce erroneous results if arbitrary temporal stepping
lengths are employed in e.g. Euler and Runge–Kutta (RK) methods. In addition, they conjectured
that changing the order of the RK method does not yield results with a higher accuracy since the
higher order temporal derivatives of the NFL model are indicated to contain the steepness parameter.

The NFL model is a continuum of ordinary differential equations (ODEs) parametrized by the
spatial coordinates; see the end of Section 2. Therefore, to study this model, theory from ODEs
can provide well understood tools for theoretical and numerical analysis. A different approach have
emerged from e.g. studies of wave fronts (Ermentrout and McLeod, 1993) induced in the NFL model.
This approach consist of re-casting the model as a higher order nonlinear partial differential equation
(PDE) by means of Fourier transforms; see e.g. Laing and Troy (2003); Coombes (2005). However,
this approach imposes serious restrictions on the connectivity kernel making the model less general. In
addition, the PDE formalism represents a complex field of mathematical theory which can be avoided
by the ODE approach.

The aim of this thesis is therefore to review a biophysical derivation and a proof of well-posedness,
to get a comprehensive overview of the NFL model. Analyze convergence, consistency and stability
of given explicit numerical methods when employed on the NFL model. We employ standard explicit
numerical methods to evaluate numerical behavior of the NFL model. However it is not known to
the author any previous studies which have employed the methods used in this study on the NFL
model. Therefore, in the following, we detail the aims which are believed to be a contribution to the
field of neural-field models. We discuss an ODE versus a PDE approach in analyzing the NFL model,
with respect to well-posedness theory and numerical approximations. The numerical convergence and
consistency of the NFL model solved by the forward Euler method are addressed. Further, consistency
of Heun’s RK2 method is assessed and the truncation errors of the forward Euler and Heun’s RK2
method are to be compared towards numerical efficiency of these methods. Note that Faye and Faugeras
(2010) studied a temporal delay version of the NFL model and assessed consistency of the trapezoidal
method which is similar to Heun’s RK2 method. However without focus on the temporal stepping
length, which is a focus in this thesis. An analytical analysis of stability with respect to the forward
Euler method is performed. Stability of an explicit RK4 method applied on the NFL model is addressed
by numerical experiments. The types of numerical errors occurring in the forward Euler and a explicit
RK4 method i.e. round off, local and global errors will be discussed. Finally in an outlook we discuss
the prospects of the NFL model with respect to numerical approaches and the models future place in
neuroscience.
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2 The NFL model in neuroscience

2.1 The neuron

The following introductional description of the neuron is adapted from Gerstner and Kistler (2002)[ch.
1].

A neuron consists of dendrites, a soma, an axon and synapses; see Fig. 1. Dendrites collect signals
and transmit them to the soma. A nonlinear process is performed in the soma, where a signal called
an action potential is fired if the total input exceeds a firing threshold. This signal is a result of ions
traveling down the axon, which is further transmitted to other neurons through a junction known as
the synapse. A single neuron can be connected to more than 104 neurons; the transmitting neuron is
referred to as a presynaptic neuron and the receiving is termed a postsynaptic neuron.

The action potential consists of short electrical pulses, which has a shape of a narrow spike and
travels down the axon, from soma to synapse. The shape of the action potential is similar among
neurons, and it is therefore believed that the neural networks communicate through the frequency and
timing of fired action potentials. Action potentials are regularly observed as chains of distinct signals,
where a chain is known as a spike train. There is a minimal time frame between two action potentials,
known as the absolute refractory period. This period is followed by relative refractoriness, referring to
the time where it is possible, but difficult to fire a new action potential.

In the vertebrate brain the chemical synapses are the most common, where a complex chain of
bio-chemical processes are triggered when receiving an action potential. This process leads to a release
of neurotransmitter molecules from the presynaptic terminal into the synaptic cleft, which is a tiny gap
between the pre– and postsynaptic neuron. Specialized receptors in the postsynaptic cell membrane
detects the transmitter molecules and open membrane bound ion channels, transferring the ions from
the extracellular medium into the postsynaptic neuron. The chemical signal is finally translated to
an electrical response responsible for the postsynaptic potential processed in the soma. Synapses
perform a temporal filtering of the action potential where the sharp spiky form of an action potential
is translated to a wider round form observed in the postsynaptic potential.

The action potential and the postsynaptic potential are obtained by the potential difference between
the outside and the inside of the neuron and are both forms of membrane potentials. If the postsynaptic
change in the membrane potential due to an presynaptic action potential is negative (resp. positive)
the presynaptic neuron is called inhibitory (resp. excitatory). A neuron can only be inhibitory or
excitatory, this is commonly referred to as Dale’s principle. The membrane acts as an insulator between
the extracellular medium and the inside of the neuron. Both mediums are electrically conductive, giving
rise to a capacitance with a membrane time constant denoted τm (Sterratt et al., 2011)[p. 33].

In a small portion of the mammalian brain, thousands of spikes are emitted each millisecond,
referred to as population activity. It is commonly believed that the majority of information generated
in a population can be obtained by its mean firing rate. The firing rate is defined by a temporal
average of spikes, counted in a specific time window. Denote the number of spikes in a time window
T as Nsp(T ). Then the firing rate v is defined as

v =
Nsp(T )

T
.

2.2 Derivation of the NFL model

We begin the derivation of a neural-field model by considering a microscopic network and work our
way up the scales to a macroscopic field model. The following derivation of the scalar neural-field
model is adapted from Gerstner and Kistler (2002)[ch. 6.5];Bressloff (2012)[sec. 2].

Let a network of neurons i = 1, ..., N be synaptically connected as depicted in Fig. 1. Neuron j fires
an action potential at times {T lj |l ∈ Z}. A temporal filtering effect (see Fig. 1) in the synapse-dendrite
process is defined as Φij(t). Further assume that the synaptic inputs can be linearly summed. Then
the total synaptic input to the soma ui(t) is given by

ui(t) =

N∑
j=1

∑
l

Φij(t− T lj) =

N∑
j=1

t∫
−∞

Φij(t− s)aj(s) ds. (2.1)
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Dendrite

Synapse

j

i

Dendrites

Axon

Soma

u(t)

Vi(t)

Spike train

a(t)

Φij(t) = ωijφ(t)

Figure 1: Illustration of synap-
tically connected neurons. The
pre– and postsynaptic neuron is
denoted i and j respectively. The
axon of the presynaptic neuron
is connected to the dendrite of
the postsynaptic neuron through
a synapse. The temporal fil-
tering effect performed in the
synapse-dendrite process is de-
noted Φij(t). The synaptic input
from j to i is denoted u(t) caus-
ing change in the membrane po-
tential denoted Vi(t) due to ac-
tion potentials. A chain of ac-
tion potentials (spike train) is de-
noted a(t).

Here the spike train aj(t) is given as

aj(t) =
∑
l

δ(t− T lj),

where δ is the Dirac delta function. As depicted in Fig. 1, the membrane potential of the soma of
neuron j is denoted Vj . Further, the firing times T lj is defined by the threshold condition given as

T lj = inf

{
t, t > T lj

∣∣∣∣Vj(t) > uθ,
d

dt
Vj(t) > 0

}
,

where uθ denote the threshold for firing an action potential.
External currents are assumed negligible. Thus Vj will depend on the electrical properties of the

synapses (such as conductance) and the electrical activity of the coupled neurons. Assume that the

change in synaptic input is lower than the change in membrane potential i.e.
duj
dt < dVi

dt ∀ t ∈ R+
0 . This

will be a fact if the network is partitioned in a multiple of homogeneous networks firing asynchronous
(Gerstner and Kistler, 2002)[ch. 6.4]. Asynchronous firing means that the spike trains from each
neuron in a homogeneous population are uncorrelated (Bressloff, 2014)[p. 234]. Then we can assume
that the population activity is equal to the mean firing rate of neuron i in this population. We may
approximate the spike train aj(t) with an instantaneous firing rate fj(uj(t)). Here fj is a firing-rate
function giving the population-averaged firing rate of a local homogeneous population of neurons. Let
two populations be given as Pn and Pm. Further, let neuron i ∈ Pn and j ∈ Pm. Then, since the
activity in Pn is the average activity of neuron i we let the indexes i, j → n,m.

Let Φnm(t) = ωnmφ(t), where ωnm determines the synaptic coupling strength of population m
to population n. φ(t) is called the response kernel, and it models the effect of spike emission and
reception. Hence for Eq. (2.1) we get

un(t) =

N∑
m=1

t∫
−∞

ωnmφ(t− s)fm(um(s)) ds. (2.2)

Here N is the number of neural populations considered.
Let a set of neurons from a cortical column be homogeneous and spread out on a one dimensional

axis as shown in Fig. 2. That is, discretize the axis in segments of length d and let all the neurons of
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population Pn be placed in the segment [nd, (n + 1)d]. Let Φnm(t) = ρdΦ(nd,md, t) where ρ is the
average spatial neuron density. The number of neurons in segment [nd, (n+ 1)d] is Nn = ρd, we may
thus rewrite Eq. (2.2) as

u(nd, t) = ρd

N∑
m=1

t∫
−∞

ω(nd,md)φ(t− s)f(u(md, s)) ds. (2.3)

Remark. We have specified that ρ denotes the average neuron density, this is not specified by Gerstner
and Kistler (2002), neither do they specify that ρ varies.

PmPn

ndNn = ρd

(n+ 1)d

(m+ 1)d

md

...

x

d

ω(nd,md)

d

Figure 2: Illustration of a neu-
ral field on a one dimensional
axis. The homogeneous neuron
population Pn is put in the seg-
ment [nd, (n+1)d] with length d.
The coupling strength between
two neuron populations Pm,n is
denoted ω(nd,md) and describes
the average coupling strength be-
tween two points on the axis
when d → 0. The average den-
sity of neurons on the axis is de-
noted ρ andNn denotes the num-
ber of neurons in population Pn.

Assume a bounded sum in the integrand of Eq. (2.3). Then we can interchange the sum and the
integral, and by taking the limit d→ 0 we get

lim
d→0

u(nd, t) = lim
d→0

t∫
−∞

ρd

N∑
m=1

ω(nd,md)φ(t− s)f(u(md, s)) ds. (2.4)

If the integrand in Eq. (2.4) is uniformly convergent we may interchange limit and integration. Then
the sum will go to an integral and a neural-field model emerges in the form of a Volterra integral
equation presented as

u(x, t) =

t∫
−∞

∫
Ω

ω(x, x′)φ(t− s)f(u(x′, s)) dx′ ds. (2.5)

Here u(x, t) denotes the average electrical activity of neuron populations at position x and time t, the
spatial extent of the network is denoted Ω and the neuron density ρ is absorbed into ω(x, x′). Note
that for homogeneous and isotropic media, the coupling strength function ω is only dependent on the
distance between neurons in position x and x′, i.e. ω(x, x′) = ω(|x− x′|). Translational invariance
(ω(x, x′) = ω(x − x′)) is obtained from homogeneity, and isotropy yield ω(z) = ω(|z|) (Ermentrout,
1998)[p. 387]. The coupling strength between position x and x′ gives the average coupling strength
between two neuron populations separated by the distance |x− x′|.

Let the response kernel be given by φ(t) = τ−1 exp(−t/τ) where τ is a decay time constant1 of the
synapses in a population of neurons. Then by the assumptions imposed in Appendix B.2 we take the
temporal derivative of Eq. (2.5) and get the scalar neural-field model given as

τ
∂

∂t
u(x, t) = −u(x, t) +

∫
Ω

ω(x, x′)f(u(x′, t)) dx′. (2.6)

The time constant τ can trivially be scaled to one without loss of generality. Then by substituting the
firing-rate function f by the sigmoidal function Sβ , we get the NFL model (1.1). This substitution
yields a statistical-mechanical approach and gives a mean field model, where the firing-rate function
gives the probabilities for activity in a spatial area, and not the firing rate itself (Ermentrout, 1998)[p.
362].

1This time constant is related to the membrane time constant τm (Ermentrout, 1998)[p. 363]
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2.3 PDE versus ODE formalism

The brain matter is static, meaning that the neurons or the populations of neurons do not change
their spatial coordinates over time. From an experimental point of view, the spatial coordinates in the
NFL model represent points of measuring the average neural activity. Imagine a spatially fixed needle,
measuring only the temporal changes in the neural activity. A fixed x in Eq. (2.6) corresponds to a
focus on a particular neural population. Thus, the biophysical background of the NFL model indicates
that the spatial coordinate x can be regarded as a continuous parameter.

A discrete analog to Eq. (2.6) can be found in the integrate and fire network (IF) model. The
IF model is obtained from Eq. (2.2) where we give the response kernel as φ(t) = τ−1 exp(−t/τ). By
further assuming a bounded sum we may interchange the sum and the integral. Then by performing
a temporal differentiation on both sides we get

τ
d

dt
un(t) = −un(t) +

N∑
m=1

ωnmf(um(t)), n = 1, ..., N. (2.7)

Here the sub-indexes m,n denote homogeneous neural populations as coupled N nonlinear first-order
ODEs. Note the similarity of Eq. (2.7) and a spatially discretized version of Eq. (2.6), i.e. where the
integral on the right hand side (r.h.s.) is discretized by e.g. the rectangular rule. In biophysical terms,
the transition from Eq. (2.7) to Eq. (2.6) represents a transition from a finite to an infinite number of
neurons (Gerstner and Kistler, 2002).

Equation (2.6) can be regarded as an extrapolation of Eq. (2.7); from a finite to an infinite
dimensional system. Equation (2.6) further represents a continuum of nonlinear first-order ODEs
parametrized by the spatial coordinates. Indicating that an extrapolation of finite dimensional theory
from ODEs can be suitable for analyzing Eq. (2.6).

With regard to well-posedness, the existence theory from ODEs are well understood with the
fundamental existence and uniqueness theorem, namely the Picard–Lindelöf theorem. In Section 3
we perform a well-posedness study of Eq. (1.1) adapted from Potthast and Beim Graben (2010). As
argued by them, the local existence theorem given here is a type of the Picard–Lindelöf theorem.

A different method of analysis (see e.g. Ermentrout and McLeod (1993); Laing and Troy (2003);
Coombes (2005)) is to re-cast the NFL model into an equivalent local form; a higher order nonlinear
PDE. This method arose in an analysis of traveling wave solutions providing a co-moving frame of
reference to the wave. This recasting is done by means of Fourier transforms and by exploiting a spatial
convolution property of the integral in Eq. (2.6). Here the Fourier transform of the connectivity function
ω is assumed to be a rational function of k2, where k is the wave number of the Fourier transform. In
detail, the Fourier transform F of ω is F(ω) = Q(k2)/P (k2), P (k2) 6= 0 where Q,P are polynomials in
k2 with deg(P ) ≥ deg(Q) + 1. These assumptions put a severe restriction on the choice of connectivity
function, making the model less general. In addition, the PDE formalism obtained via this re-casting
provides a complicated model. The well-posedness theory of higher order nonlinear PDEs can be very
complicated compared to the well-posedness theory of ODEs.

From a numerical point of view, the discretization of Eq. (2.6) is a fairly simple task when x is
considered as a continuous parameter. Then it is possible to fix x and employ numerical theory from
ODEs. This approach is more general than a numerical evaluation of the PDE approach since the
connectivity function can be chosen freely. Further, numerical theory for ODEs can provide a safer
frame for the analyst as it is more developed than the numerical theory for PDEs. By the arguments
presented in this subsection, the PDE formalism is omitted in this thesis.

Before we begin the numerical analysis we will review a proof of the well-posedness of the NFL
model.
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3 The well-posedness of the NFL model

We begin this section by listing the assumptions imposed on the initial condition, the connectivity
kernel and the firing-rate function. We further proceed by reviewing a proof of the global existence
and uniqueness of a solution to the NFL model adapted from Potthast and Beim Graben (2010).
Finally we review a stability analysis adapted from Nielsen et al. (2013).

3.1 Assumptions

The initial condition

The initial condition is defined in a Banach space of bounded continuous functions i.e.

u(x, 0) = u0(x) ∈ C(Ω)

The connectivity kernel

We impose the following assumptions on the family of synaptic connectivity kernels ω.

a) The connectivity kernels ω : Ω× Ω→ R are real valued, continuous and piecewise smooth.

b) The connectivity kernels {ωx}x∈Ω constitute a 1–parameter family of functions, parametrized by
x ∈ Ω : ωx(x′) ≡ ω(x, x′), where ωx : Ω→ R, x ∈ Ω

c) The norm of the connectivity kernels satisfy the uniform bound

||ω||1 ≤ Cω
where

||ω||1 ≡ max
x∈Ω
||ω(x, ·)||L1(Ω) = max

x∈Ω

∫
Ω

|ω(x, x′)| dx′

 .

d) The connectivity kernels obey the Lipschitz condition (see Appendix B.6)

||ω(x, ·)− ω(x̃, ·)||L1(Ω) ≤ cω |x− x̃| , cω > 0.

The firing-rate function

The firing-rate function Sβ can be expressed in terms of a scaling function S : Sβ(u) = S(βu). Here
Sβ is a member of a 1–parameter family, parametrized by the steepness parameter β.

Furthermore, S has the following properties.

a) S is a monotonically increasing function.

b) S : R→ [0, 1].

c) S ∈ BC1(R) ∩BC2(R), implying that

|S(u)− S(v)| ≤ S
′

max |u− v| . (3.1)

We further define the maximum values of the derivatives of S as

S
′

max = max
u∈R

(
d

du
S(u)

)
, S

′′

max = max
u∈R

(
d2

du2
S(u)

)
.

d) lim
u→+∞

S(u) = 1, lim
u→−∞

S(u) = 0, S(0) = 1
2 . Hence in the limit where β → ∞, the firing-rate

function becomes a Heaviside step function, i.e.

lim
β→∞

S(β(u− uθ)) = H(u) =


1, u > uθ
1
2 , u = uθ

0, u < uθ

.

e) The firing threshold is 0 < uθ < 1.

f) The steepness parameter is nonzero and nonnegative (β > 0).



8 3.2 Volterra formulation The well-posedness of the NFL model

3.2 Volterra formulation

To prove existence and uniqueness of the Cauchy formulated NFL model (1.1), we convert the model
to a Volterra fix point problem defined on an appropriate Banach space. Then we prove existence and
uniqueness of the Volterra formulation by means of Banachs fixed point theorem. We further prove
the equivalence between the Volterra formulation and the Cauchy formulation. Then any solution of
the Volterra formulation is also a solution of the Cauchy formulated NFL model.

We begin by defining some appropriate spaces.

Definition 3.1. For t ∈ [0, T ], where T > 0 and x ∈ Ω we define the Banach space (XT , ||·||T ) as

XT ≡ BC(Ω× [0, T ])

equipped with the norm

||u||T ≡ max
x∈Ω, t∈[0,T ]

|u(x, t)| .

For t ∈ [0,∞), and x ∈ Ω we define the Banach space (XT , ||·||∞) as

X ≡ BC(Ω× R+
0 )

equipped with the norm

||u||∞ ≡ sup
x∈Ω, t∈R+

0

|u(x, t)| .

Definition 3.2. The operators J, F and A are defined as

J [u](x, t) ≡
∫
Ω

ω(x, x′)S(β(u(x′, t)− uθ)) dx′, x ∈ Ω, t ≥ 0. (3.2)

F [u](x, t) ≡ −u(x, t) +

∫
Ω

ω(x, x′)S(β(u(x′, t)− uθ)) dx′, x ∈ Ω, t ≥ 0. (3.3)

A[u](x, t) ≡ u0(x) +

t∫
0

F [u](x, s) ds, x ∈ Ω, t ≥ 0. (3.4)

Local existence and uniqueness is proved by the contraction mapping theorem; see Appendix B.1
i.e. that the fixed point problem u(x, t) = A[u](x, t) has a unique solution u∗ ∈ XT given as

u∗(x, t) = A[u∗](x, t). (3.5)

To this end, we will first prove that the operator A is a contraction of (XT , ||·||T ) i.e.

A : XT 7→ XT

||A[u]−A[v]||T ≤ K |u− v| , 0 < K < 1 ∀ u, v ∈ XT .

Since the NFL model does not depend explicitly on time we can employ the local arguments on an
arbitrary time interval [t0, t0 + T ] (Potthast and Beim Graben, 2010). Thus we can iterate the local
existence and uniqueness results, giving global existence and uniqueness.

Theorem 3.1. Assume that u ∈ BC(Ω× [0, T ]). Then

v = A[u] ∈ BC(Ω× [0, T ]), T > 0,

with A defined in Eq. (3.4), i.e. A is a mapping of XT into XT .



The well-posedness of the NFL model 3.2 Volterra formulation 9

Proof. We begin by splitting the operator A in two parts such that A = A1 +A2 where

A1[u](x, t) ≡ u0(x)−
t∫

0

u(x, s) ds,

A2[u](x, t) ≡
t∫

0

∫
Ω

ω(x, x′)S(v(x′, s)) dx′ ds, v(x, t) = β(u(x, t)− uθ).

(3.6)

Continuity of A implies that

lim
h,k→0

[A[u](x+ h, t+ k)−A[u](x, t)] = 0. (3.7)

For A1 we derive the following chain of inequalities∣∣∣∣∣∣
t+k∫
0

u(x+ h, s) ds−
t∫

0

u(x, s) ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t+k∫
0

u(x+ h, s)− u(x, s) ds+

t+k∫
t

u(x, s) ds

∣∣∣∣∣∣
≤

t+k∫
0

|u(x+ h, s)− u(x, s)| ds+

t+k∫
t

|u(x, s)| ds

≤ max
0<t<T

|u(x+ h, t)− u(x, t)|T + |u(x, t+ uθk)| k, 0 < uθ < 1.

(3.8)

Here we tacitly used the mean value theorem for integrals to estimate the integral
t+k∫
t

|u(x, s)| ds; see

Theorem B.3. From the inequalities in Eq. (3.8) and the continuity assumption on the initial condition
u0, we see that

|A1[u](x+ h, t+ k)−A1[u](x, t)| ≤
|u0(x+ h)− u0(x)| − max

0<t<T
|u(x+ h, t)− u(x, t)|T + |u(x, t+ uθk)| k. (3.9)

Consequently the difference in Eq. (3.9) will be squeezed between zero and a bound approaching zero
as (h, k)→ (0, 0).

We proceed by considering the non-linear operator A2, and derive the following chain of inequalities

|A2[u](x+ h, t+ k)−A2[u](x, t)|

=

∣∣∣∣∣∣
t+k∫
0

∫
Ω

ω(x+ h, x′)S(v(x′, s)) dx′ ds−
t∫

0

∫
Ω

ω(x, x′)S(v(x′, s)) dx′ ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t+k∫
0

∫
Ω

[ω(x+ h, x′)− ω(x, x′)]S(v(x′, s)) dx′ ds+

t+k∫
t

∫
Ω

ω(x, x′)S(v(x′, s)) dx′ ds

∣∣∣∣∣∣
≤

t+k∫
0

∫
Ω

|ω(x+ h, x′)− ω(x, x′)| dx′ ds+

t+k∫
t

∫
Ω

|ω(x, x′)| dx′ ds

≤ cω |h|m(Ω)

t+k∫
0

ds+ Cωk.

(3.10)

Here we have denoted v(x, t) = β(u(x, t)− uθ), and used assumption b) on the firing rate function S
and d) on the connectivity function ω; see Section 3.1. In the limit where (h, k)→ (0, 0) the estimate



10 3.2 Volterra formulation The well-posedness of the NFL model

in Eq. (3.10) is squeezed between zero and a bound approaching zero. We further see that Eq. (3.7)
satisfies

lim
h,k→0

[(A1 +A2)[u](x+ h, t+ k)− (A1 +A2)[u](x, t)] = 0.

Further, the operator A satisfies the uniform bound on XT given as

|A[u](x, t)| ≤ |u0|+
t∫

0

|u(x, s)| ds+

t∫
0

∫
Ω

|ω(x, x′| dx′ ds

≤ ||u0||T + ||u||T T + CωT.

Here we have exploited assumption c) imposed on the connectivity kernel and assumption b) on the
firing-rate function; see Section 3.1.

The boundedness and continuity combined is a proof of the fact that A maps XT into itself
(Sobolev).

Theorem 3.2. Assume that the initial condition, the connectivity kernel and the firing-rate function
satisfy the assumptions listed in Section 3.1. Further assume that

T <
1

1 + βS′maxCω
.

Then A : XT 7→ XT defined in Eq. (3.4) is a contraction mapping of XT i.e.

||A[u]−A[v]||T ≤ K ||u− v||T , K < 1 ∀ u, v ∈ XT .

Consequently, the fixed point problem (3.5) has a unique solution on Ω× [0, T ].

Proof. We split the operator A in two parts A = A1 + A2 (see Theorem 3.1) with A1, A2 defined in
Eq. (3.6). Then one can immediately see that A1 satisfies the following inequality given as

||A1[u]−A1[v]||T ≤ T ||u− v||T , ∀ u, v ∈ XT .

To evaluate the absolute difference |A2[u]−A2[v]| we derive the following chain of inequalities of the
absolute difference of the integral operator J defined in Eq. (3.2).

|J [u](x, t)− J [v](x, t)| ≤
∫
Ω

|ω(x, x′)| |S(β(u(x′, t)− uθ))− S(β(v(x′, t)− uθ))| dx′

≤ βS
′

max

∫
Ω

|ω(x, x′)| |u(x′, t)− v(x′, t)| dx′

≤ βS
′

maxCω ||u− v||T .

(3.11)

Here we have exploited the fact that the firing-rate function is Lipschitz continuous with the Lipschitz
constant defined in Eq. (3.1). Integration from 0 to t on both sides of Eq. (3.11) yields

||A2[u]−A2[v]||T ≤ TβS
′

maxCω ||u− v||T , ∀ u, v ∈ XT .

Hence

||A[u]−A[v]||T ≤ K ||u− v||T , ∀ u, v ∈ XT ,

where

K = (1 + βS
′

maxCω)T.

Since T < 1
1+βS′maxCω

, we have K < 1 from which it follows that A : XT 7→ XT is a contraction of XT .

Remark. K < 1 ⇐⇒ T < 1
1+βS′maxCω

implies that if β have large values, then T has to be very small.
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By the contraction mapping theorem (Appendix B.1) there exists a unique solution u∗ to the
equation

u∗(x, t) = A[u∗](x, t).

A uniform bound of the solution to the NFL model is proved in the following lemma. This result
is then used in Theorem 3.3 where we prove global existence and uniqueness.

Lemma 3.1. The solution u of the NFL model (1.1), with an initial condition u0, connectivity kernel
ω and a firing-rate function S satisfying the assumptions listed in Section 3.1 is uniformly bounded by
Ctot, where

Ctot ≡ max(||u0||∞ , Cω).

Proof. Consider the rearranged NFL model with v(x, t) = β(u(x, t)− uθ)

∂u(x, t)

∂t
+ u(x, t) =

∫
Ω

ω(x, x′)S(v(x′, t)) dx′.

By the use of an integrating factor we obtain

∂

∂t
(u(x, t)et) = et

∫
Ω

ω(x, x′)S(v(x′, t)) dx′.

Integrate on both sides from 0 to t:

u(x, t)et − u0(x) =

t∫
0

es
∫
Ω

ω(x, x′)S(v(x′, t)) dx′ ds.

Then by rearranging, the potential u is given as

u(x, t) = u0(x)e−t +

t∫
0

e−(t−s)
∫
Ω

ω(x, x′)S(v(x′, t)) dx′ ds.

Finally, we derive the following chain of inequalities

|u(x, t)| ≤ |u0(x)| e−t +

t∫
0

∣∣∣e−(t−s)
∣∣∣ ∫

Ω

|ω(x, x′)| |S(v(x′, t))| dx′ ds

≤ |u0(x)| e−t +

t∫
0

∣∣∣e−(t−s)
∣∣∣ ∫

Ω

|ω(x, x′)| dx′ ds

≤ |u0(x)| e−t +

t∫
0

∣∣∣e−(t−s)
∣∣∣ ||ω||1 ds

≤ ||u0||∞ e−t +
∣∣1− e−t

∣∣Cω
≤ (||u0||∞ − Cω)e−t + Cω

≤ Ctot.

Here we tacitly used the triangle inequality, assumption b) on the firing rate function S, and assumption
c) on the connectivity kernel; see Section 3.1.

Theorem 3.3. Let the initial condition, connectivity kernel and the firing-rate function satisfy the
assumptions listed in Section 3.1. Then the fixed point problem (3.5) has a unique solution on Ω×R+

0 .
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0 I0 T1 I1 T2 I2 T3 I3 T4 ... t

u0

ũ1
ũ2

ũ3

ũ0

Ctot

Figure 3: A sketch of the global exis-
tence and uniqueness proof. The so-
lution u = ũn, u ∈ In, n = 0, 1, 2, ...
of the NFL model is represented by
the solid curved line, and is uniformly
bounded by Ctot represented by the
dashed line. The local existence and
uniqueness of the NFL model is iter-
ated over the temporal intervals In =
[Tn, Tn+1], n = 0, 1, 2, ... where T0 = 0.

Proof. The proof is carried out in an iterative way, graphically illustrated in Fig. 3.
From Theorem 3.2 we know that the solution of the Volterra formulation exists and is unique on

the space Ω × I0 where I0 = [0, T1]. By Lemma 3.1 we know that the solution ũ0 do not blow up on
the interval I0. In addition, the temporal derivative is defined and continuous in the end point T1.
Thus, we introduce

ũ1(x, T1) = lim
t→T−1

ũ0(x, t) <∞. (3.12)

and

J [ũ1](x, T1) = lim
t→T−1

J [ũ0](x, t) (3.13)

Hence, we can define a new initial condition starting at the endpoint of I0 by Eq. (3.12). We further
define a new interval I1 = [T1, T2]. Then the solution ũ1 exists and is unique on Ω× I1 by Theorem 3.2
with

T2 <
1

1 + βS′maxCω
+ T1 <

2

1 + βS′maxCω
.

From Lemma 3.1 and Eq. (3.13) we know that ũ1 ∈ BC1(Ω × I1) and we can thus continue in an
iterative way by defining a new interval I2 = [T2, T3]. Further, from Theorem 3.2 we know that the
solution of the Volterra formulation exists and is unique on the space Ω× In i.e.

ũn(x, t) = A[ũn](x, t).

Let In = [Tn−1, Tn], u = ũn, u ∈ In, n = 1, 2, ... and T0 = 0. We further see from Theorem 3.2 that
Kn−1 = (1 + βS

′

maxCω)(Tn − Tn−1) < 1, n = 1, 2, .... Thus we get

T1 <
1

1 + βS′maxCω

T2 <
1

1 + βS′maxCω
+ T1 <

2

1 + βS′maxCω
...

Tn <
1

1 + βS′maxCω
+ Tn−1 <

n

1 + βS′maxCω
, n = 1, 2, ...

The initial conditions in each point Tn, n > 0 are defined as

ũn(x, Tn) = lim
t→T−n

ũn(x, t) <∞,

and the temporal derivative is defined and continuous in the end points Tn.
The union of the intervals I1, I2, ..., I∞ is ∪∞i=0Ii = R+

0 , thus a solution to the Volterra formulation
exists and is unique globally.

The Volterra formulation can contain a larger class of solutions than that of the Cauchy formulation.
Hence we have to ensure that any solution to the Cauchy formulation given in Eq. (1.1) is a solution
to the Volterra formulation given in Eq. (3.5) and vice versa. The next theorem proves equivalence
between the Volterra formulation and the Cauchy formulation.



The well-posedness of the NFL model 3.3 Stability 13

Theorem 3.4. A solution on Ω × [0, T ] of the fixed point problem (3.5) with A defined in Eq. (3.4)
exists and is unique if and only if a solution of the Cauchy formulation (1.1) exists and is unique i.e.

u = A[u] ⇐⇒ ∂u

∂t
= F [u], u|t=0 = u0

Proof. By assumption we know that u(x, ·) ∈ C1(R+
0 ) allowing the fundamental theorem of calculus to

be employed on the Cauchy formulation, thus deriving the Volterra formulation. The initial conditions
are equivalent, which is demonstrated by u|t=0 = A[u]|t=0 = u0. Further, let the mapping ζx : [0, T ] 7→
R be be defined as

ζx(t) ≡ F [u](x, t),

which is continuous w.r.t the temporal variable t where x is considered a fixed parameter. The solution
to u(x, t) = A[u](x, t) with A defined in Eq. (3.4) is thus continuously differentiable with respect to
t ≥ 0 and the derivative is continuous in R+

0 (Potthast and Beim Graben, 2010).

We have demonstrated that the NFL model is globally well posed in the sense that there exists a
unique solution for all x ∈ Ω and t > 0. The next section will regard stability, and we finally state
global well posedness in the sense of Hadamard. His requirements is in addition to global existence
and uniqueness, a continuous mapping from initial conditions to solution.

3.3 Stability

For the sake of completeness we present one stability result of particular interest from Nielsen et al.
(2013).

Let u and ũ be two solutions of the Cauchy formulation (1.1) with corresponding initial conditions

and steepness parameters u0, ũ0, β, β̃. Then for u0 = ũ0, t ∈ [0, T ] and the norm ||·|| ≡ maxx∈Ω |·| one
get the equality

||u− ũ|| (T ) = S
′

maxCωT (Ctot + uθ)
∣∣∣β − β̃∣∣∣+ (1 + β̃S

′

maxCω)

T∫
0

||u− ũ|| (t) dt.

Since g(t) = ||u− ũ|| (t) satisfies the condition of the Grönwall inequality and a solution of Eq. (1.1)
is uniformly bounded, one get the stability estimate

||u− ũ|| (T ) ≤ S
′

maxCωT (Ctot + uθ)
∣∣∣β − β̃∣∣∣ · exp

(
(1 + β̃S

′

maxCω)T
)
. (3.14)

||u− ũ||(T )

u(t)

ũ(t)

T

u0, ũ0

t

Figure 4: The separation distance
||u− ũ|| (T ) at time T of two solutions of
the NFL model initiated with equal ini-
tial conditions u0 and ũ0. The separation
distance is due to a perturbation on the
steepness parameter β̃. If u(T ) → ũ(T ),

β → β̃, then a solution is continuous de-
pendent on the steepness parameter.

Since ||u− ũ|| (T )→ 0, β → β̃ the mapping Q : β → u(·, t) is continuous. The proof of a continuous
mapping from initial conditions to solutions is omitted in this thesis, but is proven in Nielsen et al.
(2013) with a similar argument as that of Eq. (3.14), thus ensuring global well-posedness in the sense
of Hadamard.
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In Eq. (3.14), β̃ is in the argument of the exponential function. Therefore, this estimate can not
guarantee that u and ũ remain close for even small perturbations of β. Hence, as argued by Nielsen et al.
(2013) the model (1.1) is only ‘theoretically’ stable and some serious issues can occur in simulations
due to finite precision of computers. This issue is analyzed more closely in the the next sections.
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4 Numerical analysis

This section will mainly focus on the forward Euler and Heun’s RK2 (from hereby only referred to
as RK2) method employed on the NFL model in order to get a better understanding of some of the
numerical properties of the NFL model. For the forward Euler method we derive the truncation error
and the numerical error with respective upper bounds. We further derive the RK2 method and an
upper bound of its truncation error. In order to assess efficiency of the forward Euler and RK2 method,
the upper bounds of the respective truncation errors are finally compared.

We introduce the section by a simple example of a general non linear autonomous ODE and give
definitions from numerical error-theory.

4.1 Definitions

Let a general nonlinear autonomous ODE be given as

dũ

dt
(t) = f(ũ(t)), ũ(0) = u0,

where ũ ∈ C1(R+
0 ). To approximate ũ(t) one can discretize the time variable through the points

tn = ∆tn and set up a new set of equations which can be solved on a computer. A typical example is
the explicit2 one-step method given as

un+1 = F (un; ∆t), u0 = u0, (4.1)

where un approximates ũ(tn). The error obtained when Eq. (4.1) is employed on ũ is commonly
referred to as the truncation error, defined as

Rn = ũn+1 − F (ũn; ∆t).

The truncation error is also known as the local (truncation) error, meaning error obtained by doing
one step in the numerical method. If the truncation error is O(∆tp+1) where ∆t is the discretization
stepping length, then the method is of order p.

If the truncation error satisfies the limit

lim
∆t→0

Rn

∆t
= 0,

then the numerical method is consistent, i.e. all methods of order greater than one (p ≥ 1) are
consistent (Darmofal, 2005).

If the maximal numerical error i.e. max0≤tn≤T |u− ũ| = 0, ∆t→ 0, then u converges to ũ and the
numerical method is convergent. Further, if the maximal numerical error satisfies max0≤tn≤T |u− ũ| ≤
C∆tr, then r is defined as the rate of convergence. For a order p method it is expected that r = p
(Darmofal, 2005).

Stability testing of a numerical method is traditionally performed by observing the evolution of
numerical errors when the method is applied on a given test problem. If an error introduced at some
stage of the calculation do not ‘blow up’ as one steps through the discretized region, then the method
is said to be zero-stable. The Dahlquist equivalence theorem states that consistent and zero-stable
methods are convergent, however, the converse is not necessarily true.

Test problems normally give stability regions in the complex plane, and if this region contains the
left half of the complex plane, then the method is said to be A-stable. A-stable methods are more likely
to produce stable approximations of stiff problems without significantly reduced stepping lengths. An
ODE is said to be stiff if it requires a significant reduction of the stepping length when approximated
in the whole, or in parts of its domain of definition (Iserles, 2009). Explicit methods are generally not
A-stable, and instabilities are likely to occur if the temporal stepping length is not carefully selected
when explicit methods are applied to stiff problems. There are no precise definitions of stiffness and
in some cases, identifying stiffness can rely on observing instable behavior during approximations.

The often simple test problems only guarantee a stable method for a certain class of problems.
Numerical stability of a given problem can be highly individual and it can be a major task to investigate
and fully understand its numerical stability properties. Therefore, we will analyze the NFL model when

2In contrast to an implicit method given as G(un+1 − F (un; ∆t)) = 0, u0 = u0
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it is approximated by the simple forward Euler method. Stiffness of the NFL model is indicated if the
method requires a significant reduction of ∆t in some, or in the whole part of its domain of definition.

The truncation error gives the error of one ‘step’ in the discretized region and can give a good indi-
cation of how a numerical method will perform. Therefore, we derive and analyze only the truncation
error of the RK2 method.

4.2 Preliminary analysis

The numerical analysis of the forward Euler and the RK2 method require several bounds in order to
assess convergence3 and consistency. For the forward Euler and RK2 method we need bounds of the
second– and third-order temporal derivatives of the NFL model. The last bound considered is of the
difference |F [u]− F [v]| which is later used to derive a bound of the numerical error in the forward
Euler method.

To prove bounds on the second– and third-order temporal derivative, we introduce a bound of the
operator F .

Lemma 4.1. The operator F [u](x, t) is bounded by Cω + Ctot.

Proof. Let v(x, t) = β(u(x, t)− uθ). Then we readily obtain

|F [u](x, t)| =

∣∣∣∣∣∣−u(x, t) +

∫
Ω

ω(x, x′)S(v(x′, t)) dx′

∣∣∣∣∣∣
≤ |u(x, t)|+

∫
Ω

|ω(x, x′)| |S(v(x′, t))| dx′

≤ |u(x, t)|+
∫

Ω

|ω(x, x′)| dx′

≤ |u(x, t)|+ ||ω||1
≤ Ctot + Cω.

Lemma 4.2. The second– and third-order temporal derivative of the NFL model is bounded. The
bounds are given as ∣∣∣∣ ∂2

∂t2
[u(x, t)]

∣∣∣∣ ≤ (Ctot + Cω)(1 + βS
′

maxCω),

and ∣∣∣∣ ∂3

∂t3
[u(x, t)]

∣∣∣∣ ≤ (Cω + Ctot)

((
1 + βCωS

′

max

)2

+ β2CωS
′′

max (Cω + Ctot)

)
.

Proof. Let v(x, t) = β(u(x, t) − uθ). Then the second-order temporal derivative of the solution u of
the NFL model is presented as

∂2

∂t2
[u(x, t)] =

∂

∂t
[F [u](x, t)]

= −∂u(x, t)

∂t
+

∫
Ω

ω(x, x′)
∂

∂t
[S(v(x′, t))] dx′

= −F [u](x, t) + β

∫
Ω

ω(x, x′)
d

dv
[S(v(x′, t))]

∂

∂t
[u(x′, t)] dx′

= −F [u](x, t) + β

∫
Ω

ω(x, x′)
d

dv
[S(v(x′, t))]F [u](x′, t) dx′.

3We only prove convergence of the forward Euler method.
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Thus we get the following chain of inequalities∣∣∣∣ ∂2

∂t2
[u(x, t)]

∣∣∣∣ ≤ |F [u](x, t)|+

∣∣∣∣∣∣β
∫
Ω

ω(x, x′)
d

dv
[S(v(x′, t))]F [u](x′, t) dx′

∣∣∣∣∣∣
≤ |F [u](x, t)|+ (Ctot + Cω)β

∫
Ω

|ω(x, x′)|
∣∣∣∣ d

dv
[S(v(x′, t))]

∣∣∣∣ dx′

≤ (Ctot + Cω)(1 + βS
′

max ||ω||1)

≤ (Ctot + Cω)(1 + βS
′

maxCω).

For the third-order temporal derivative we get∣∣∣∣ ∂3

∂t3
[u(x, t)]

∣∣∣∣ =

∣∣∣∣∣∣ ∂∂t
−F [u](x, t) + β

∫
Ω

ω(x, x′)
d

dv
[S(v(x′, t))]F [u](x′, t) dx′

∣∣∣∣∣∣
=

∣∣∣∣− ∂

∂t
[F [u](x, t)]

+ β

∫
Ω

ω(x, x′)

(
F [u](x′, t)

∂

∂t

[
d

dv
[S(v(x′, t))]

]
+

d

dv
[S(v(x′, t))]

∂

∂t
[F [u](x′, t)]

)
dx′
∣∣∣∣

≤
∣∣∣∣ ∂∂t [F [u](x, t)]

∣∣∣∣+ βCω

∫
Ω

∣∣∣∣F [u](x′, t)β
∂u

∂t

d2

dv2
[S(v(x′, t))]

∣∣∣∣+

∣∣∣∣ d

dv
[S(v(x′, t))]

∂

∂t
[F [u](x′, t)]

∣∣∣∣ dx′

≤ (Ctot + Cω)(1 + βS
′

maxCω) + βCω

(
β(Ctot + Cω)2S

′′

max + S
′

max(Ctot + Cω)(1 + βS
′

maxCω)
)

= (Cω + Ctot)

((
1 + βCωS

′

max

)2

+ β2CωS
′′

max (Cω + Ctot)

)

Lemma 4.3. The norm of the difference between the operator F evaluated on two different functions
u, v ∈ X is bounded.

Proof. By the triangle inequality and the Lipschitz continuity of the firing-rate function S we get

|F [u](x, t)− F [v](x, t)| ≤ |u(x, t)− v(x, t)|+∫
Ω

|ω(x, x′)| |S(β(u(x′, t)− uθ))− S(β(v(x′, t)− uθ))| dx′

≤ ||u− v||∞ + ||ω||1 βS
′

max ||u− v||∞
≤ ||u− v||∞ (1 + βS

′

maxCω).

We also require an appropriate space to be used in the discrete case where the spatial variable
x is considered to be a continuous parameter and the temporal variable t is discretized. By the
discretization we only sample temporal values at discrete points tn, n = 0, ..., Nt where Nt is the
number of points considered. The solution of the NFL model evaluated at the discrete point tn is
denoted u(x, tn) = un(x).

Definition 4.1. We define the Banach space (XD, ||·||D∞) as

XD ≡ BD(Ω)

equipped with the norm

||un||D∞ ≡ max
x∈Ω
|un(x)| .

The space XD is graphically illustrated in Fig. 5, showing a discrete set of continuous, closed
intervals. Since the NFL model has a separated dependence on the spatial and temporal variable,
it can be treated as a continuum of ODEs; see Section 2.3. This fact is exploited in the following
numerical analysis.
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T

t

x
0

n = Nt

∆t = T
Nt

Ω

n = 0

n = 1

...

Figure 5: Illustration of the
space XD, discretized in the tem-
poral direction giving a discrete
set of continuous closed intervals.
The temporal stepping length is
denoted ∆t, T = Nt∆t expresses
the stopping time, Nt represents
the number of discretized points
and Ω denotes the spatial do-
main.

4.3 Forward Euler approximation

Let the temporal variable t be discretized by tn, n = 0, 1, 2, ..., Nt as illustrated in Fig. 5. Denote the
approximated solution of the NFL model as un(x) evaluated at time tn in the spatial point x. Note
that the spatial variable x is considered a parameter which is always fixed when changing the temporal
variable t. The forward Euler approximation of the temporal derivative is thus given as

∂u

∂t
≈ un+1(x)− un(x)

∆t
.

The NFL model can thus be approximated by the following explicit method

un+1(x) = un(x) + ∆tF [un](x). (4.2)

4.3.1 Consistency

The truncation error Rn is found as the remainder in Taylor’s theorem. Here we formulate Taylors
theorem in a special version (see Appendix B.5 for the normal version). Let u(x, t) be continuously
differentiable k times on the closed interval Î = [tn, tn + ∆t] and differentiable k+ 1 times in the open

interval I = (tn, tn + ∆t). Also, let ∂
∂tu(x, t), ..., ∂

k

∂tk
u(x, t) exist and be continuous at t = tn. Then

there exist a constant t∗ between tn and tn + ∆t such that

un+1(x) =

k∑
i=0

1

i!

di

dti
un(x)∆ti +

1

(k + 1)!

dk+1

dtk+1
u(x, t∗)∆t

k+1. (4.3)

Thus for k = 1 we get

un+1(x) = un(x) +
d

dt
un(x)∆t+

1

2

d2

dt2
u(x, t∗)∆t

2.

Let ũ be the exact solution of the NFL model. Then the truncation error Rn is the residual of the
approximation Eq. (4.2) when inserting the exact solution and it is given as

Rn(x) = ũn+1(x)− ũn(x)−∆tF [ũn](x).

By inserting the Taylor series of un+1(x) and using the fact that d
dt ũ

n(x) = F [ũn](x) we get

Rn(x) = ũn(x) +
d

dt
ũn(x)∆t+

1

2

d2

dt2
ũ(x, t∗)∆t

2 − ũn(x)−∆t
d

dt
ũn(x)

=
1

2

d2

dt2
ũ(x, t∗)∆t

2.
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From Lemma 4.2 we get an upper bound of the truncation error

||Rn||D∞
∆t

≤ 1

2
(Ctot + Cω)(1 + βS

′

maxCω)∆t. (4.4)

The truncation error is of first order in ∆t and the forward Euler method is thus consistent. However,
the dependency of β indicates that for large β the necessity for small ∆t is apparent.

4.3.2 Convergence

In this section we prove that the forward Euler method applied on the NFL model is convergent.
The analysis of convergence is performed in a way analogous to the analysis of a general nonlinear
autonomous ODE; see for example Iserles (2009).

Lemma 4.4. Let t be divided in Nt discrete points tn with the distance ∆t between each point such
that tn+1 − tn = ∆t = T/Nt. Further let tn be defined in the closed interval Y = [0, T ] such that
t0 = 0 and tNt = T . Let F be continuously differentiable with respect to t on the closed interval
Î = [tn, tn+1] ∀ n = 0, 1, 2, ..., Nt and differentiable two times with respect to t in the open interval I =
(tn, tn+1) ∀ n = 0, 1, 2, ..., Nt. Further, assume that u(tn, x) = un(x) is the solution of the NFL model,
approximated by the forward Euler approximation given in Eq. (4.2). We denote ũ(tn, x) = ũn(x) as
the exact solution of the NFL model, evaluated at tn.

Define the numerical error evaluated at each tn, n = 0, 1, 2, ..., Nt as E(tn, x) = En(x) = ũn(x) −
un(x). Then the numerical error satisfies the following upper bound

||En||D∞ ≤
∆t2cβ′

2

(
n∑
k=1

(
n

k

)
(∆tβ′)k−1

)
.

Here β′ and c are defined as

β′ ≡ 1 + βS
′

maxCω,

c ≡ Ctot + Cω.
(4.5)

Proof. Let

En+1(x) = ũn+1(x)− un+1(x). (4.6)

Then for un+1(x) we insert the forward Euler approximation (4.2) and expand ũn+1(x) by the use of
Taylor’s theorem. We denote the exact solution evaluated at t∗ as ũ(x, t∗) where t∗ ∈ I. Then the
numerical error is given as

En+1(x) = ũn(x) +
d

dt
ũn(x)∆t+

1

2

d2

dt2
ũ(x, t∗)∆t

2 − un(x)−∆tF [un](x)

= En(x) + ∆t

(
d

dt
ũn(x)− F [un](x)

)
+

1

2

d2

dt2
ũ(x, t∗)∆t

2.

By the substitutions un(x) = ũn(x)− En(x) and d
dt ũ

n(x) = F [ũn](x) we get

En+1(x) = En(x) + ∆t
(
F [ũn](x)− F [ũn − En](x)

)
+

1

2

d2

dt2
ũ(x, t∗)∆t

2. (4.7)

Note that the last part of the r.h.s. of Eq. (4.7) is the truncation error. By the triangle inequality and
the lemmas 4.2 and 4.3, the numerical error in tn+1 is presented as∣∣∣∣En+1

∣∣∣∣D
∞ ≤ ||E

n||D∞ + ∆t(1 + βS
′

maxCω) ||En||D∞ +
1

2
(Ctot + Cω)(1 + βS

′

maxCω)∆t2

= ||En||D∞ (1 + ∆t(1 + βS
′

maxCω)) +
1

2
(Ctot + Cω)(1 + βS

′

maxCω)∆t2.

Then by the definition of β′ and c in Eq. (4.5) we get

∣∣∣∣En+1
∣∣∣∣D
∞ ≤ ||E

n||D∞ (1 + ∆tβ′) +
β′c

2
∆t2. (4.8)
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By using the induction principle we prove that the expression (4.8) implies that

||En||D∞ ≤
∆tc

2

(
(1 + ∆tβ′)

n − 1
)
. (4.9)

The inequality given in Eq. (4.9) can also be expressed by the following binomial representation given
as

||En||D∞ ≤
∆tc

2

(
n∑
k=0

(
n

k

)
(∆tβ′)k − 1

)

=
∆tc

2

((
n

0

)
+

(
n

1

)
(∆tβ′)1 + ...+

(
n

n

)
(∆tβ′)n − 1

)
=

∆t2cβ′

2

(
n∑
k=1

(
n

k

)
(∆tβ′)k−1

)
.

Let us detail the induction argument leading to (4.9). We let the initial-hypothesis P (0) be given
by Eq. (4.8) with n = 0. Since the initial condition of Eq. (1.1) is calculated exactly by the forward
Euler approximation we get E0 = 0. Thus the initial hypothesis P (0) is∣∣∣∣E1

∣∣∣∣D
∞ ≤

β′c

2
∆t2,

which is true for both eqs. (4.8) and (4.9). We further let the induction-hypothesis P (n) be given by
Eq. (4.9) and perform the inductive step i.e. P (n) → P (n + 1) by inserting Eq. (4.9) into Eq. (4.8).
This gives ∣∣∣∣En+1

∣∣∣∣D
∞ ≤

∆tc

2

(
(1 + ∆tβ′)

n − 1
)

(1 + ∆tβ′) +
β′c

2
∆t2

=
∆tc

2
(1 + ∆tβ′)

n+1 − ∆tc

2
(1 + ∆tβ′) +

β′c

2
∆t2

=
∆tc

2

(
(1 + ∆tβ′)

n+1 − 1
)
.

Theorem 4.1. Let ||En||D∞ satisfy the bound derived in Lemma 4.4. Then for Nt = T/∆t we get∣∣∣∣ENt∣∣∣∣D∞ <
∆t

2
(Ctot + Cω)

(
exp(T ) exp(TβS

′

maxCω)− 1
)
, Nt <∞. (4.10)

Proof. The numerical error ||En||D∞ is smaller than a maximum value of the bound given in Lemma 4.4:

||En||D∞ ≤ max
0≤n≤Nt

∆tc

2

(
(1 + ∆tβ′)

n − 1
)

=
∆tc

2

(
(1 + ∆tβ′)

Nt − 1
)
.

Since ∆t = T
Nt

we get ∆t→ 0 when Nt →∞. Thus by the limit definition of the exponential function
ex = lim

n→∞
(1 + x

n )n we get the following chain of inequalities

∣∣∣∣ENt∣∣∣∣D∞ ≤ ∆tc

2

(
(1 +

Tβ′

Nt
)Nt − 1

)
<

∆tc

2

(
exp(Tβ′)− 1

)
, Nt <∞

=
∆t

2
(Ctot + Cω)

(
exp(T ) exp(TβS

′

maxCω)− 1
)
.

(4.11)

The convergence follows trivially in the limit ∆t→ 0.

If the solution of Eq. (1.1) and its approximation ultimately lie in a bounded set B, then the
numerical error estimate given in Eq. (4.10) is pessimistic when T →∞ and it can be replaced by

||En||D∞ ≤ diam(B).

Here diam(B) denotes the largest distance between any two points in B (Stuart, 1995).
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Corollary 4.1. If the temporal stepping length ∆t satisfies the bound

∆t <
2ε

(Ctot + Cω) (exp(T ) exp(TβS′maxCω)− 1)
, (4.12)

then the numerical error estimate given in Eq. (4.10) satisfies
∣∣∣∣ENt∣∣∣∣D∞ < ε with ε > 0.

We see that the upper bound on ∆t given in Corollary 4.1 decreases exponentially with the stopping
time T , the steepness parameter β and the uniform bound of the connectivity kernel Cω. Hence, if we
insist that ∆t satisfies Eq. (4.12) and 0 < ε� 1, then ∆t can get very small. This is further illustrated
in the following example.

Example 4.1. Let ∆t satisfy the bound given in Corollary 4.1. Then for ε = 0.01 we get

∆t <
0.01(

exp(1) exp( 300
2 )− 1

) = 2.6× 10−69,

where T = 1, β = 300, S
′

max = 1
2 and Ctot = Cω = 1.

Example 4.1 shows that for global temporal scales, the bound from Theorem 4.1 gives a temporal
stepping length ∆t which is not practically suitable in approximations as it is much smaller than
machine precision. This is because Theorem 4.1 accounts for a worst case scenario where the upper

bounds of d2

dt2 ũ(x, t) and |F [u]− F [v]| (see lemmas 4.2 and 4.3) are at their respective maximum values
for all time t, which they are probably not. However, it is possible that there exists some temporal
intervals where this is true, and we discuss and illuminate this further by analysis and numerical
experiments in Section 5.

The truncation error plays a prominent role in the numerical error of the forward Euler method.
The bound of the truncation error from the forward Euler method has a dependency on β. Further,
the third-order temporal derivative given in the proof of Lemma 4.2 has a dependency of β2 indicating
that a second-order RK method will obtain this dependency. Hence, in the next section we derive a
second-order RK method and the respective truncation error in order to get a better understanding of
the behavior of this method in comparison with the forward Euler method.

4.4 Heun’s second order Runge–Kutta method

To approximate Eq. (1.1) by Heun’s RK2 method we discretize the temporal variable tn = ∆tn and
denote u(x, tn) = un(x), n = 0, 1, 2, ..., Nt. Furthermore, we denote tn+1 = tn + ∆t and integrate
the NFL model over one time step ∆t. The integration yields

t+∆t∫
t

∂

∂t
u(x, τ) dτ =

t+∆t∫
t

F [u](x, τ) dτ, (4.13)

where F is defined in Eq. (3.3). If we assume that ∂
∂tu(x, t) is continuous on the closed interval

[t, t+ ∆t], then the l.h.s. of Eq. (4.13) can be re-expressed by employing the fundamental theorem of
calculus, this gives

t+∆t∫
t

∂

∂t
u(x, τ) dτ = un+1(x)− un(x).

The r.h.s of 4.13 is approximated by the trapezoidal rule which is given as

xN∫
x0

f(x) dx ≈ ∆x

2
(f(x0) + f(xn)) + ∆x

N−1∑
j=1

f(xj), ∆x =
xN − x0

N
.

A final result of the approximation in the temporal direction is thus given by the following implicit
method given as

un+1(x) = un(x) +
∆t

2
(F [un](x) + F [un+1](x)). (4.14)
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We further discretize the spatial variable x to xi, i = 0, 1, 2..., Nx such that un(xi) = uni , Ω = [x0, xN ].
We approximate the operator J [un](x) given in Eq. (3.2) by the trapezoidal rule over the closed interval
[x0, xN ]. We further define the discretized version of F as

F(uni ) ≡ −uni +
∆x

2

(
ω(xi, x0)S(β(un0 − uθ))+(ω(xi, xN )S(β(unNx − uθ))

)
+

∆x

Nx−1∑
j=1

ω(xi, xj)S(β(unj − uθ)).

Here F(uni ) = F [un](x), ∆x→ 0, and in the succeeding text we only consider the discretized version
F . Equation (4.14) is an implicit form known as the Crank–Nicholson method, which we can rewrite
in an explicit form by use of the Euler approximation of F(un+1

i ), i.e. we rewrite this part as

F(un+1
i ) = F(uni + ∆tF(uni )).

The end result is the the following explicit method given as

un+1
i = uni +

∆t

2
(F(uni ) + F(uni + ∆tF(uni ))). (4.15)

The method expressed by Eq. (4.15) is known as Heun’s method, and it is a predictor-corrector method.
The forward Euler method plays the role as the predictor, while the trapezoidal method plays the role
as the corrector. This method is also known as a second-order Runge–Kutta method and we rewrite
Eq. (4.15) as

un+1
i = uni +

∆t

2
(k1 + k2)

where

k1 = F(uni ),

k2 = F(uni + ∆tk1).

This method is divided in two steps, first one ‘Euler’ step calculating k1, then one ‘trapezoidal’ step
correcting the ‘Euler’ step. Thus, if ∆t of the forward Euler and the RK2 method is equal, then the
RK2 method is less efficient than the forward Euler method. However, the RK2 method is of second
order, and in general this allows for a larger ∆t than in the forward Euler method, making the RK2
method more efficient.

4.4.1 Consistency

Inserting the exact solution ũ of the NFL model into Eq. (4.15) yields the truncation error

Rn = ũn+1
i − ũni −

∆t

2
(F(ũni ) + F(ũni + ∆tF(ũni ))).

Then by Taylors theorem we get

F(ũni + ∆tF(ũni )) = F(ũni ) + ∆tF(ũni )
dF
dũ

(ũni ) +
∆t2

2
F2(ũni )

d2F
dũ2

(ũ∗∗),

where ũ∗∗ ∈ (ũni , ũ
n
i + ∆tF(ũni )). Further, we get

ũn+1
i = ũni + ∆t

d

dt
ũni +

∆t2

2

d2

dt2
ũni +

∆t3

6

d3

dt3
ũi(t∗),
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where t∗ ∈ (tn, tn+∆t). We also have F(ũni ) = d
dt ũ

n
i , ∆x→ 0, and in this limit we get the following

chain of equalities

Rn

= ∆t
d

dt
ũni +

∆t2

2

d2

dt2
ũni +

∆t3

6

d3

dt3
ũi(t∗)−

∆t

2

(
2F(ũni ) + ∆tF(ũni )

dF
dũ

(ũni ) +
∆t2

2
F2(ũni )

d2F
dũ2

(ũ∗∗)

)
=

∆t2

2

d2

dt2
ũni +

∆t3

6

d3

dt3
ũi(t∗)−

∆t

2

(
∆t

d

dt
ũni

dF
dũ

(ũni ) +
∆t2

2

(
d

dt
ũni

)2
d2F
dũ2

(ũ∗∗)

)
, ∆x→ 0

=
∆t3

6

d3

dt3
ũi(t∗)−

∆t3

4

(
dũ

dt
(xi, tn))

)2
d2

dũ2

dũ

dt
(x∗, t∗)), ∆x→ 0.

Here we denoted ũ(xi, tn) = ũni , ũ(x∗, t∗) = u∗∗ and used that

dũ

dt
(xi, tn)

dF
dũ

(ũ(xi, tn)) =
dũ

dt
(xi, tn)

d

dũ

dũ

dt
(xi, tn) =

d2

dt2
ũ(xi, tn), ∆x→ 0.

We further assume that∣∣∣∣∣
(

dũ

dt
(xi, tn))

)2
d2

dũ2

dũ

dt
(x∗, t∗))

∣∣∣∣∣ ≤ max
x∈Ω, t∈[0,T ]

∣∣∣∣ d3

dt3
ũ(x, t)

∣∣∣∣ . (4.16)

Then the truncation error satisfies the following inequality

||Rn||D∞
∆t

≤ 5

12
∆t2 (Cω + Ctot)

((
1 + βCωS

′

max

)2

+ β2Cω.S
′′

max (Cω + Ctot)

)
. (4.17)

We see from Eq. (4.17) that Heun’s method is consistent and of second order. However, the truncation
error contains a second-order exponentiation of the steepness parameter β in the truncation error.
This indicates a necessity for small ∆t when β is large.

If we demand a maximum value ε > 0 of the forward Euler and RK2 bounds given in eqs. (4.4)
and (4.17) respectively, we get

∆tE ≤
2ε

(Ctot + Cω)(1 + βS′maxCω)
, (4.18)

∆tRK2 ≤
2
√

3/5 ε√
(Cω + Ctot)

(
(1 + βCωS

′
max)

2
+ β2CωS

′′
max (Cω + Ctot)

) . (4.19)

Here the subscripts E, RK2 refers to ∆t obtained from eqs. (4.4) and (4.17) respectively. In the
following example we consider some numerical values of eqs. (4.18) and (4.19).

Example 4.2. Let ε = 0.001. Then the temporal stepping lengths obtained in eqs. (4.18) and (4.19)
satisfy

∆tE ≤ 6.62× 10−6,

∆tRK2 ≤ 3.61× 10−6,

respectively. Here S
′

max = 1
2 , S

′′

max = 2
3
√

3
, β = 300 and Cω = Ctot = 1.

By only considering the truncation error, we observe in Example 4.2 that we will not necessarily
get a more efficient approximation of the NFL model by using Heun’s RK2 v.s. a forward Euler
method. This is because the temporal stepping lengths of the two methods are suggested to be almost
equally small by the estimates on the bound of the second– and third-order temporal derivative given
in Lemma 4.2. However, these estimates accounts for a worst case scenario which is not likely to be
close to reality for all values of x, t. In addition, since we do not obtain the numerical error of the RK2
method in this thesis we can only speculate on how efficient it is in reality.

We conjecture that the truncation error has a dependency of β4 for a RK4 method and βN for a
Nth order RK method. Thus, by the results and assumptions presented in this section it is indicated
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that the numerical approximation of the NFL model by the forward Euler and any explicit RK method
can require carefully selected temporal stepping lengths. In the next section, we further discuss the
numerical analysis of the forward Euler method and indicate that the NFL model can be stiff in parts of
its domain of definition. Further, by numerical experiments, we strengthen the hypothesis of stiffness
and show that to increase the explicit RK method to fourth order yield no remedy with respect to
instability.
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5 Results and discussion

In this section we will discuss the results from Section 4 and perform numerical experiments on sim-
plified versions of the NFL model. We begin by introducing an established firing-rate function and
discuss different issues in it with regard to numerical error. By this discussion we are directed towards
more accurate analysis which again motivates numerical experiments.

5.1 The firing-rate function

We present a firing-rate function obtained from Nielsen et al. (2013) which satisfies the assumptions
from Section 3.1 and is given as

S(v) =
1

2
(1 + tanh(v)). (5.1)

The Lipschitz inequality given in Eq. (3.1) of the firing-rate function is a key part in the derivation of
the numerical error bound given in Lemma 4.4. The upper bound in the Lipschitz inequality is likely an
overestimation for most values of u, v, ∈ R. Therefore it is interesting to analyze the difference between
the l.h.s. and the r.h.s. to get a overview of when these two sides are close. Since the derivative of
Eq. (5.1) is at its maximum value S

′

max = 1
2 when the solution of the NFL model is equal to the firing

threshold (i.e. u = uθ; see Fig. 6(A)) we focus the following analysis on this point. Let v = u± ε where
ε > 0. Then the firing-rate function S satisfies the Lipschitz inequality

|S(β(u− uθ))− S(β(u± ε− uθ))| ≤ βS
′

maxε.

Substituting S with Eq. (5.1) yields

|tanh(β(u− uθ))− tanh(β(u± ε− uθ))| ≤ βε.

Then, if u = uθ, we get

|tanh(βε)| ≤ βε. (5.2)

By Fig. 6(B) we observe that in general, |tanh(βε)| = o(βε) but if βε ∈ [0, 0.5 + δ], then |tanh(βε)| =
O(βε). Here δ is chosen to get a desirable accuracy. Thus, if ε ≤ (0.5 + δ)/β, then the difference
|S(β(u− uθ))− S(β(u± ε− uθ))| − βS

′

maxε is small. This indicates that the real error can be close to
the error bound given in Lemma 4.4 when the exact solution of the NFL model is in the proximity of
the firing threshold. Notice that ε ∝ 1/β, thus for large β the difference is only small in small intervals
([u, v] or [v, u]).

We proceed by analyzing discretization stepping lengths with respect to large steepness parameters
β. We define an interval [u1, u2] such that S

′
(u) ≈ 0 ∀ u /∈ [u1, u2]; see Fig. 6(A). When β is large,

the interval [u1, u2] in Fig. 6(A) is small. Hence, in explicit numerical approaches with large β and
discretization stepping lengths, the information about change of S inside the interval [u1, u2] can be
lost. For example, let [u0, u3] contain u1, u2 with u0 < u1 < u2 < u3. Construct two intervals
I1,2 = [u0, u3] where I1 consists of four points {u0, u1, u2, u3} corresponding to a large discretization
stepping length. Further, let I2 consist of one thousand scattered points corresponding to a small
discretization stepping length. Then the information about change in S(u), u ∈ R that lies within
[u1, u2] is lost for S(u), u ∈ I1, while much more contained for S(u), u ∈ I2. Notice that for large
β the discretization stepping length must be small to include the points inside [u1, u2]. Thus for
large steepness parameters and discretization stepping lengths, numerical errors are indicated in the
proximity of the firing threshold uθ. Note that outside [u1, u2] there is not much change in S and large
discretization stepping lengths are indicated to yield less numerical error.

Another reason for inaccuracy in a numerical approach of the NFL model can be round-off error.
For large β, the sigmoid S is so steep that a small round-off error of u in the proximity of the firing
threshold can yield large errors in computing S(β(u − uθ)). However, the temporal stepping length
must be very small in order for round-off errors to be significant. Machine precision is generally around
the order of 10−15 thus, we do not expect round-off errors to be a significant issue in this study.
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Figure 6: The firing rate function and an evaluation of the Lipschitz inequality at u = uθ. In (A),
the blue line represents the firing-rate function S defined in Eq. (5.1), the dotted lines at u1 and u2

represents the neighborhood of the firing threshold uθ given by the interval [u1, u2]. In (B) an evaluation
of Eq. (5.2) is presented, where the blue and green line represents tanh(βε) and βε respectively. The
region left of the red dashed line represents a neighborhood of uθ where |tanh(βε)| = O(βε), and the
region on the right side represents the outside of this neighborhood where |tanh(βε)| = o(βε).

5.2 Numerical stability of the forward Euler method

In the succeeding text we refer to the firing rate function S given in Eq. (5.1). The discussion in
Section 5.1 indicates that numerical errors can occur when the solution of the NFL model is in the
proximity of the firing threshold. If S

′
(u) ≈ S

′

max, then u ≈ uθ. Thus, we can use S
′
(u) as an a

posteriori check of when the solution u is in the proximity of the firing threshold uθ. Hence, we define
the following sets

Vx,t(u, uθ, β,Γ) =
{
x ∈ Ω, t ∈ [0, T ]

∣∣∣ S
′
(β(u(x, t)− uθ)) > Γ

}
,

Wx,t = u(Vx,t(u, uθ, β,Γ)).
(5.3)

Definition 5.1. We define Γ such that if u(x, t) /∈Wx,t, then γS
′
(β(u(x, t)−uθ)) ≈ 0∀ γ <∞. Thus

even though S
′
(u) > 0 ∀ u < ∞, if S

′
(u) ≤ Γ, then S

′
(u) is zero for all practical purposes, i.e. zero

when evaluated by a computer.

Let ũ be the exact solution of the NFL model and let u be an approximation obtained by the
forward Euler method. Then the error En+1(x) = ũn+1(x)−un+1(x) is given in Eq. (4.7) and consists
of three parts given as

En(x), (5.4)

∆t (F [ũn]− F [ũn − En](x)) , (5.5)

∆t2

2

d2

dt2
ũ(x, t∗), t∗ ∈ (tn, tn + ∆t). (5.6)

We observe that the error given in Eq. (4.7) can have large values when the three parts in eqs. (5.4) –
(5.6) are large and of equal signs. To obtain a better overview of the error En+1(x) we evaluate
Eq. (5.5) by the mean value theorem (see Theorem B.4) and get

(F [ũn]−F [ũn − En])(x)

= En(x) +

∫
Ω

ω(x, x′)(S(β(ũn(x′)− uθ))− S(β(ũn(x′)− En(x′)− uθ))) dx′

= En(x) + β

∫
Ω

ω(x, x′)S
′
(c(x′))En(x′) dx′.

(5.7)
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Here c(x) ∈ (ũn, ũn − En)(x) or c(x) ∈ (ũn − En, ũn)(x). We insert Eq. (5.7) into Eq. (4.7) and get

En+1(x) = En(x) + ∆t

(
En(x) + β

∫
Ω

ω(x, x′)S
′
(c(x′))En(x′) dx′

)
+Rn(x). (5.8)

Here the truncation error is given as Rn(x) = ∆t2

2
d2

dt2 ũ(x, t∗), t∗ ∈ (tn, tn + ∆t). Since E0 = 0, we see
from Eq. (5.8) that the error of the first step is the truncation error, which is given as

Rn(x) =
∆t2

2

− ∂

∂t
[ũ(x, t∗)] + β

∫
Ω

ω(x, x′)S
′
(β(ũ(x′, t∗)− uθ))

∂

∂t
[ũ(x′, t∗)] dx′

 .

Thus if the following points i), ii) and iii) occur simultaneously, then a significantly small ∆t seems
necessary in order to control the error En.

i) 0� S
′
(c(x′)), S

′
(β(ũ(x′, t∗)− uθ)) ≤ S

′

max,

ii) β, ω(x, x′) have large values,

iii) ∂
∂t [ũ(x′, t∗)] 6= 0.

These points indicate that the NFL model can be stiff if ũn(x′) ∈ Wx,t or if ũn(x′) is close to the
boundary of Wx,t. This is because then ũ(x′, t∗) can be in the proximity of 0 < uθ < 1 and thus, c(x′)
can also be in this proximity, depending on the size of the error En(x′). Note that if c(x′) = 0, then
S
′
(c(x′)) = S

′

max and if ũ(x′, t∗) = uθ, then S
′
(β(ũ(x′, t∗)− uθ)) = S

′

max.
If S

′
(c(x′)), S

′
(β(ũ(x′, t) − uθ)) ≤ Γ ∀ t > 0, x′ ∈ Ω, then the truncation and the numerical error

are given as

Rn(x) = −∆t2

2

∂

∂t
[ũ(x, t∗)] ,

En+1(x) = En(x)(1 + ∆t) +Rn(x), (5.9)

for all practical purposes (see Definition 5.1). However, we must emphasize that this is an idealized
proposition and in a real computation this serves as an indication of how the error will behave if
S
′
(c(x′)), S

′
(β(ũ(x′, t) − uθ)) = 0 ∀ t > 0, x′ ∈ Ω. By a similar induction argument as that presented

in the proof of Lemma 4.4 it can be shown that Eq. (5.9) implies

En = −∆t

2

∂

∂t
[ũ(x, t∗)] ((1 + ∆t)

n − 1) . (5.10)

Thus, the first-order temporal derivative must be quite large if significant errors are to occur in this
regime. The first-order temporal derivative of ũ is bounded by Ctot +Cω (see Lemma 4.1) which value
depends on the choice of initial condition and connectivity function. However, it seems unlikely that
∂
∂t [ũ(x, t∗)] is at its maximum for all t > 0, x ∈ Ω. Therefore, the NFL model seems non-stiff when

S
′
(c(x′)), S

′
(β(ũ(x′, t) − uθ)) ≤ Γ. Further note that the error given in Eq. (5.10) goes to zero if

the solution ũ reaches a fixed point, thus the asymptotic approximation seems to be good when the
solution ũ is not in the proximity of the firing threshold uθ.

The dependency of ∂
∂t [ũ(x′, tn)] in the truncation error indicates that this error is only significant

when the solution ũ is changing with time. However, if the truncation error is large when a numerical
simulation is initiated, we speculate that this error can consequently shift the approximation u from
one basin of attraction to another, making the approximation diverge from the exact solution. Then
even if the exact solution reaches a fixed point and the truncation error is zero, the numerical error
can be large.

To further evaluate possible numerical errors we assess a situation where the numerical approx-
imation can oscillate. Let ũ(x′, t∗) ∈ Wx,t, t∗ ∈ (0,∆t). Then E1(x) can be large. Assume that
ũ(x, t) reaches a fixed point in Wx,t from [∆t,∞) i.e. ∂

∂t [ũ(x′, tn)] = Rn = 0, n = 1, 2, 3, .... If

ũ1(x′)−E1(x′) /∈Wx,t, then it is possible that S
′
(c(x′)) ≈ 0 and the error E2(x′) is reduced. Further,

if ũ2(x′)−E2(x′) ∈Wx,t, then E3(x′) can be increased, this can make the error and subsequently the
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approximating solution oscillate. These predictions are further strengthened by numerical experiments
in Section 5.4.

In summary, if ũn(x) /∈ Wx,t the numerical approximation will probably converge to the closest
attracting limit set. However, it is indicated that large numerical errors can occur when ũn(x) ∈Wx,t

and the temporal stepping length is not carefully selected. Thus if the error in a previous step e.g. E1

has shifted u1(x) away from one basin of attraction to another, then the approximation is indicated
to diverge from the exact solution. If the approximation is initiated close to the boundary, or inside
Wx,t, then the numerical error can be large. However, we can not predict the values of t∗, c(x) exactly,
therefore in the succeeding text we focus on whether ũn(x) is inside or outside of Wx,t. It is further
difficult to say much about the limit sets of the NFL model, therefore we will perform a study on a
spatially independent version of this model in the next section.

5.3 Numerical experiments on a spatially independent model

The stiffness indicated in Section 5.2 occurs when we address the error in temporal numerical integra-
tion. Therefore, it is likely that a spatially independent version of the NFL model will also obtain this
stiffness. The spatially independent version of the NFL model is presented as

d

dt
u(t) = f(u(t)),

f(u(t)) = −u(t) + ωS(β(u(t)− uθ)), ω ≡ ω0 = const.

u(0) = u0.

(5.11)

The model given in Eq. (5.11) represents a neuronal population which is only subject to input from
itself. A positive or negative value of ω determines whether this input is excitatory or inhibitory
respectively. We refer the reader to Appendix A for a thorough analysis of the dynamics of Eq. (5.11).

To denote the temporal interval where solutions of Eq. (5.11) is close to the firing threshold uθ we
define the spatially independent set given as

Vt(u, uθ, β,Γ) =
{
t ∈ [0, T ]

∣∣∣ βS
′
(β(u(t)− uθ)) > Γ

}
.

Here, Γ is defined similarly as in Eq. (5.3); see Definition 5.1. Further, we define the ‘global’ and ‘local’
sets

Qt = u([0, T ]),

Wt = u(Vt(u, uθ, β,Γ)) ⊆ Qt.
(5.12)

Let ũ be the exact solution of Eq. (5.11) and let u be its approximation obtained by the forward
Euler method. Then the numerical error is given as

En+1 = En
(

1 + ∆t
(
1 + βωS

′
(c)
))

+Rn, (5.13)

where c ∈ (ũn, ũn − En) or c ∈ (ũn − En, ũn). The truncation error is defined as

Rn =
∆t2

2
f(ũ(t∗))

(
βωS

′
(β(ũ(t∗)− uθ))− 1

)
, t∗ ∈ (tn, tn + ∆t). (5.14)

We observe the appearance of βωS
′
(c) and βωS

′
(β(ũ(t∗)− uθ)) in eqs. (5.13) and (5.14) respectively,

indicating a significantly small ∆t to be necessary in order to control the error En.

5.3.1 Local error

In the succeeding text, we term the numerical error occurring when ũn ∈Wt as the local error. Further,
when we refer to the forward Euler, the RK2 or the RK4 method, we refer to these methods as they
are constructed in the software package ODEsPy (Langtangen and Wang, 2013); see Appendix C for
the source code of the experiments.

The analysis in Appendix A demonstrate that Eq. (5.11) can have up to three equilibrium points
u1 < u2 < u3 where u1 and u3 are stable and attractive whereas u2 is unstable. Further, u2 = uθ+O(δ)
where δ is small. Thus, if we initiate an approximation of Eq. (5.11) close to u2, we get ũn ∈Wt ∀ t ∈
[0, T1] and ũn /∈Wt ∀ t ∈ (T1, T2], where T1,2 is found experimentally.
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We are not able to solve Eq. (5.11) analytically. However, given the result from Corollary 4.1, we
can estimate a temporal stepping length ∆tε with a given upper bound of the error denoted ε. As a
substitute for an exact solution, we approximate Eq. (5.11) with a temporal stepping length ∆tε. Then
we measure the numerical error En = ũnε − un by comparing two approximations: u obtained with
∆t = 0.06 and ũε as an ‘exact’ approximation obtained with ∆tε –both with the forward Euler method.
We observe that ∆tε = 4.4× 10−18 obtained by Corollary 4.1 is practically unusable for Cω = 20; see
Table 5.15. It is observed experimentally (with experiments not shown) that the approximations do
not change significantly for ∆tε < 10−5 therefore, in the succeeding experiments we set ∆tε = 6×10−5.

ε Cω Ctot β T1 ∆tε

.001 20 20 50 0.06 4.4× 10−18

.001 2 2 50 0.06 2.5× 10−5

(5.15)

Table 5.15: Explicit values of the temporal stepping length obtained by Corollary 4.1 with parameter
values given in the experiments presented in Fig. 7.

The local error is measured in small time intervals ([0, 0.06]). Hence, we present the relative error per
time unit as

Enrel(β) =
En

n∆tũnε
.

The relative and numerical errors are observed to be very large (up to E1
rel = 2600%) even for mod-

erately sized values of β and |ω|; see Table 5.16 and figs. 7(A) and (C). In fact, the numerical
approximation is unacceptable for practical purposes when ũnε ∈ Wt as the approximation is very far
from the ‘exact’ solution. However, it is observed (but not shown) that when ũε /∈Wt the approxima-
tion tends to the ‘exact’ solution which is in correspondence to Eq. (5.10). Since the error decreases
with time it seems that the asymptotic approximation of Eq. (5.11) is exact for most (small) values of
∆t.

T1 ∆t ω β E1 E1
rel

0.06 0.06 −20 50 0.836 26.18

0, 06 0.06 2 50 0.024 0.59

(5.16)

Table 5.16: Error obtained from different parameter values of ω, the error and the relative error is
measured at the given time T1. The experiments are graphically illustrated in Fig. 7.

In Section 5.3.3 we further compare the results presented in Table 5.16 to theoretical data obtained in
sections 4.3.1 and 4.3.2.
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Figure 7: Approximations of Eq. (5.11) for different values of ω. In (A) and (C), the blue and
green lines represent the approximative (u) and the ‘exact’ (ũε) solutions of Eq. (5.11) respectively.
The derivatives of the firing-rate function are presented in (B) and (D), where the nonzero region
represents Wt. The stopping times are T = 0.12 and the firing thresholds are uθ = 0.6. Further, the
initial conditions u0, the steepness parameters β and the connectivity constants ω are given in the
figure titles.

5.3.2 Convergence estimate in the proximity of the firing threshold

The result from Theorem 4.1 gives an upper bound of the numerical error with an exponential depen-
dency on β. This bound accounts for a worst case scenario in the numerical approximation, and is
most likely a large overestimation on a global time scale. However, given the results from sections 5.1
and 5.2 we hypothesize that if ũ is in the proximity of uθ, then there can be stopping times T where the
upper bound given in Theorem 4.1 is close to reality. Henceforth, we perform numerical experiments
in order to test this hypothesis.

In order to measure the error, we compare two numerical solutions: one from the forward Eu-
ler method with a given ∆t denoted as uE and the other from the RK4 method with a much
smaller temporal stepping length ∆tε denoted as uR. The error is measured by taking the differ-
ence E(β;T,∆t) = |uR(T )− uE(T )| at the stopping time T for a given ∆t and for increasing values
of β. Here β ∈ [β1, β2] such that we sample solutions at β+ ∆β. We design the experiments such that
the exact solutions of Eq. (5.11) are close to the firing threshold i.e. ũT/∆t ∈Wt.

Figure 8 illustrates that the relative error grows exponentially w.r.t. β. These results indicate that
the upper bound of the error given in Theorem 4.1 can be close to reality. Note that the reduction of
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Erel(β = 50; ∆t = 0.06, T = 0.012) in Table 5.17 compared to Table 5.16 is due to the reduction in
coupling strength (ω = 1).

ω ∆tε ∆t [0, T ] E(β; ∆t, T ) Iβ max
β∈Iβ

E max
β∈Iβ

Erel

1 10−5 0.06 [0, 0.12] 0.0109 exp(0.024β)− 0.0290 [40, 50] 0.0072 0.1002

1 10−7 0.01 [0, 0.01] 0.0002 exp(0.006β)− 0.0006 [200, 300] 0.00061 0.0805

(5.17)

Table 5.17: Experimental values of the numerical error with respect to different intervals of β and
different values of ∆t and T . Here E(β; ∆t, T ) is presented as a nonlinear curve fit of the measured
local error. The maximum values of the numerical error E and the relative error Erel are presented in
the last two columns respectively. The temporal stepping lengths ∆tε are used to obtain the ‘exact’
solutions of Eq. (5.11) and is smallest in the first row corresponding to the smaller value of min Iβ .
The nonlinear curve fits are obtained by the Levenberg–Marquard algorithm through a least squares
fitting (Jones et al., 2001).

We proceed by evaluating the a priori error bound obtained in Theorem 4.1. If u0 < |ω|, then
Ctot = Cω = |ω|. Thus by substituting Ctot and Cω by |ω| in Eq. (4.10), we get a theoretical error
bound given as

∣∣∣∣ENt∣∣∣∣D∞ < ∆t

(
|ω| exp(T ) exp(

Tβ |ω|
2

)− |ω|
)
. (5.18)

We observe that the error obtained experimentally is qualitatively close to the a priori estimate given
in Theorem 4.1; see tables 5.17 and 5.19. Thus, there are scenarios where Theorem 4.1 can give upper
bounds of the error which are relatively close to reality.

ω ∆t [0, T ]
∣∣∣∣ENt∣∣∣∣D∞ (β) β

∣∣∣∣ENt∣∣∣∣D∞
1 0.06 [0, 0.12] < 0.0676 exp(0.060β)− 0.0600, 50 < 1.2988

1 0.01 [0, 0.01] < 0.0101 exp(0.005β)− 0.0100, 300 < 0.0353

(5.19)

Table 5.19: Explicit values of Eq. (5.18) as a function of β (Col. 4) and specific values for given β
(Col. 6). Given by two sets of parameter values ω, β, temporal stepping length ∆t and stopping time
T , that match those of the experiments given in Table 5.17.
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Figure 8: Experimental values of the relative error with respect to different intervals of β. In (A)
and (C) the dashed blue and solid green lines represents the relative error and a nonlinear curve
fit respectively. The derivatives of the firing-rate function are presented in (B) and (D) where the
nonzero region represents Wt. In (A)-(B) the ‘exact’ RK4 solution and the approximative forward Euler
solution are obtained with ∆tε = 1 × 10−5 and ∆t = 0.06 respectively, the steepness parameters are
in β ∈ [40, 50]. In (C)-(D) the ‘exact’ RK4 solution and the approximative forward Euler solution are
obtained with ∆tε = 1×10−7 and ∆t = 0.01 respectively, the steepness parameters are in β ∈ [200, 300].
For other simulation parameter values see the figure titles and legends.

5.3.3 Theoretical estimates versus numerical experiments

To assess the difference between the theoretical estimates given in Section 4 and the experimental
results given in this subsection we begin by presenting some constants of interest. The solution ũ of
the NFL model satisfies the uniform bound (see Lemma 3.1) given as

|ũ(x, t)| ≤ Ctot = max(||u0||T , Cω).

The first-order temporal derivative of ũ is bounded by Cω + Ctot; see Lemma 4.1. In the case of a
spatially independent model with a constant connectivity kernel and a constant initial condition we
get

||u0||T = u0, Cω = |ω| .

If u0 < |ω|, then Ctot = Cω = |ω|. However, if Cω � u0, then Ctot can contribute to a large
overestimation of ũn and its first-order temporal derivative in the immediate temporal interval after
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t = 0. The experimental results given in Table 5.16 illustrates the error after the first temporal step
which is equal to the truncation error R1. We observe in Table 5.20 that the upper bound of the
truncation error given in Eq. (4.4) increasingly overestimates the error for larger Cω.

Cω Ctot β T1 ||Rn||D∞ ||Rn||D∞ /Ẽ1
∣∣∣∣ENt∣∣∣∣D∞

20 20 50 0.06 < 36.072 < 43.162 < 1.4× 1013

2 2 50 0.06 < 0.367 < 15.223 < 2.439

(5.20)

Table 5.20: Parameter values and corresponding errors from theoretical estimates of the truncation
error compared to experimental results (column 5− 6). Finally, in the last column we present a theo-

retical estimate of the numerical error. The upper bounds of ||Rn||D∞ and
∣∣∣∣ENt∣∣∣∣D∞ are obtained from

eqs. (4.4) and (4.10) respectively, Ẽ represents the measured error obtained in Table 5.16.

For further evaluation of the estimate given in Theorem 4.1 we assess the exponential approximation
of Eq. (4.11) which is good for large values of Nt i.e.

∣∣∣∣ENt∣∣∣∣D∞ ≤ ∆tc

2

(
(1 +

Tβ′

Nt
)Nt − 1

)
=

∆tc

2

(
exp(Tβ′)− 1

)
, Nt →∞.

When Nt = 100 we get (1 + Tβ′

100 )100, which is close to eTβ
′

for small values of Tβ′, whereas for Nt = 1

we get 1 + Tβ′, and we remind the reader that β′ = 1 + βS
′

maxCω. We thus expect that the result
from Theorem 4.1 overestimates the error for small Nt and large Tβ′. Hence, explaining the large
overestimations of the error presented in the last column of Table 5.20.

5.3.4 Unstable equilibrium points

We have observed that the asymptotic approximations of Eq. (5.11) seems to be exact for most (small)
values of ∆t. To get a comprehensive overview of the approximations of Eq. (5.11) we proceed by
analyzing approximations in an unstable equilibrium point. The model (5.11) can have an unstable
equilibrium point u2 near uθ (see Appendix A.2). In this point we get a high sensitivity to changes
in the temporal stepping length when u0 = u2. If f(u0) = 0, then u(t) = u0 ∀ t. However, for small
perturbations on the initial condition, the solution will tend to one of the stable equilibrium points
u1, u3. Assume we are able to solve S(β(u0 − uθ)) = u0 exact. Then, for the forward Euler method
with the first step given as the initial condition i.e. u0 = u0, we get the following equalities:

u1 = u0 −∆tu0 + ∆tS(β(u0 − uθ)) = u0

u2 = u0

...

uN = u0.

However, due to round-off errors it is possible to get ∆tS(β(u0−uθ)) < ∆tu0 in the first Euler step and
then the solution will diverge to u1. On the other hand, if ∆tS(β(u0 − uθ)) > ∆tu0 in the first Euler
step, then the solution diverge to u3. When ∆tS(β(u0 − uθ)) = ∆tu0 the solution stays at the initial
condition. In Fig. 9 we see a scenario, where two solutions initiated at the same unstable equilibrium
point diverge to two different equilibrium points due to a small change in ∆t.
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5.3.5 Global error

We observed in Section 5.3.1 that the local error of the spatially independent NFL model can be of a
significant size. We further observed that large global errors can be induced in numerical experiments
by choosing the initial condition approximatively equal to the unstable equilibrium point.

To induce large global (asymptotic) errors the local error must shift the approximative solution
u from one basin of attraction to another. In the case of a spatially independent model, we can at
most have two basins of attraction which are divided by the unstable equilibrium point u2. If we only
change the temporal stepping length ∆t, (within reasonable amounts) it is not possible by Lemma 5.1
to shift u from un > u2 to un < u2. Hence, the asymptotic approximation of Eq. (5.11) is good for all
reasonably selected ∆t.

Lemma 5.1. Equation (5.11) can have up to three equilibrium points u1 < u2 < u3, where u1, u3 are
stable and u2 is unstable; see Appendix A. The equilibrium points satisfy:

f(ui) = 0, i = 1, 2, 3.

For large β, the r.h.s of Eq. (5.11) satisfies the following inequalities:

u ∈ (u1, u2) ⇒ f(u) < 0,

u ∈ (u2, u3) ⇒ f(u) > 0.

Let the forward Euler sequence be given as

un+1 = un + ∆tf(un). (5.21)

Then if ∆tf(un) < |u1 − un| and u0 ∈ (u1, u2), we get un < u2 ∀ n. Else if ∆tf(un) < |un − u3| and
u0 ∈ (u2, u3), we get un > u2 ∀ n.

Proof. The proof will be conducted by the induction principle. Let the initial hypothesis be u0 =
u(0) ∈ (u1, u2), then we get f(u0) < 0 and consequently

u1 = u0 + ∆tf(u0) < u0 < u2.

Further, assume that un ∈ (u1, u2). Then since f(un) < 0, we get the inductive step:

un+1 = un + ∆tf(un) < un < u2.

For the interval (u2, u3) the proof can be conducted in a similar manner.

In Lemma 5.1 we have a restriction on ∆t given by ∆tf(un) < |u1 − un| (and similar for (u2, u3)).
This is because large ∆t can result in large global errors, but these ∆t are not of practical interest.
Example 5.1 illustrates one possible behavior of large ∆t.

Example 5.1. Let u0 < u0. Then f(u0) < 0. If ∆t is so large that in the next step u1 < u1, then
f(u1) > 0. Further, for sufficiently large ∆t we get u2 > u3 which further imply that f(u2) < 0.
This pattern will repeat itself and we can get an unbounded numerical approximation un oscillating
between values less than u1 and larger than u3.
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However we have only observed the behavior in Example 5.1 for ∆t > 1. In order to obtain a large
global error with a reasonable sized ∆t we will investigate a more complicated system. We proceed by
investigating a neuronal network of two homogeneous populations of neurons.

5.4 Numerical experiments on a coupled pair model

We begin this section with a discretization of the spatial extent Ω in the NFL model by the points
xi, i = 1, 2, 3, ..., N . Further, let the operator J defined in Eq. (3.2) be approximated by the rectangular
rule. Then the spatially discretized version of the NFL model can be given as

dui
dt

(t) = −ui(t) + ∆x

N∑
j=1

ωijS(β(uj(t)− uθ)), i = 1, 2, 3, ..., N,

ui(0) = u0i .

(5.22)

Here ω(xi, xj) = ωij and gives a constant connectivity between point xi and xj . Further, if N = 2,
then Eq. (5.22) can be reduced to two coupled ODEs given as

dr

dt
(t) = −r(t) + ωrrS(β(r(t)− uθ)) + ωrsS(β(s(t)− uθ)),

ds

dt
(t) = −s(t) + ωsrS(β(r(t)− uθ)) + ωssS(β(s(t)− uθ)),

r(0) = r0, s(0) = s0.

(5.23)

Here ∆x is absorbed into ωij , u1(t) = r(t), u2(t) = s(t), and r0 = u01
, s0 = u02

. Equation (5.23)
represents a system of two homogeneous populations of neurons; see Fig. 10.

r s

ωrs

ωss
ωrr

ωsr Figure 10: Connectivity between two cou-
pled homogeneous neuron populations r
and s. Here ωrs denotes the coupling
strength from s to r.

The system given in Eq. (5.23) is constructed according to Dale’s principle4 where s is an excitatory
and r is an inhibitory population. The population s is primarily self-excited and coupled as strongly
excitatory to the population r with a minor inhibitory feedback to s in addition, r is strongly self-
inhibitory. We denote r̃, s̃ as the exact and r, s as the approximated solutions of Eq. (5.23). As
we do not obtain the exact solutions r̃, s̃ these are approximated by the RK4 method using a small
∆tε which is found experimentally. These solutions are henceforth referred to as ‘exact’ solutions and
denoted as r̃ε, s̃ε. The experiments are conducted with a moderately sized steepness parameter and
with different sizes of the temporal stepping lengths ∆t, graphically illustrated in figs. 11 – 13. The
experiments demonstrate a significant numerical error when solving Eq. (5.23) by the RK4 method
when r̃ε(t) ∈Wt.

We find a set of parameter values that induce a scenario presented in figs. 11(A) and (B) where the
initial error shifts the approximation from one basin of attraction to another, such that it diverges from
the ‘exact’ solution. By reducing ∆t, we further observe in Fig. 11(D) a spurious fixed point produced
by the RK4 method. This type of behavior in RK methods has previously been observed by Iserles
(1990). It should be noted that the spurious fixed point occurs when the temporal stepping length is
small compared to commonly used values in the literature (see e.g. Faye and Faugeras (2010); Nielsen
et al. (2013)). In addition, the approximation has a smooth and coherent appearance indicating that
these types of numerical errors can be difficult to identify in approximations.

In Fig. 12 we change the initial value of s and observe that a false oscillation occurs. The oscillation
is also observed in an approximation by the forward Euler method, strengthening the prediction done
in Section 5.2 regarding oscillatory numerical errors. The selected temporal stepping length causes
the approximation to oscillate with a frequency closely related to the stepping length. It is observed

4Dale’s principle indicates that sign(ωrr) = sign(ωsr) and sign(ωss) = sign(ωrs).
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that for the forward Euler method with ∆t = 0.01 and no feedback from r to s, the frequency of
the oscillations is f = 1

2∆t . For the RK4 method the relation between the frequency and ∆t is more
complex but appears to be closely related, as seen in Fig. 13(B). It is further observed in Fig. 13 that
by reducing the feedback from r to s (ωsr = 0), the instability is isolated to r where r̃nε ∈Wt. This is
corresponding with the hypothesis in Section 5.2 that the NFL model is stiff when ũ(x′, t) ∈Wx,t.

In order to analyze the stability of the fixed points presented in figs. 11 – 13 we present the Jacobian
of Eq. (5.23) as

J(r(t), s(t)) =

βωrr2

(
− tanh2 (β (r(t)− uθ)) + 1

)
− 1 βωrs

2

(
− tanh2 (β (s(t)− uθ)) + 1

)
βωsr

2

(
− tanh2 (β (r(t)− uθ)) + 1

)
βωss

2

(
− tanh2 (β (s(t)− uθ)) + 1

)
− 1


(5.24)

The Jacobian at T = 60 with the parameters used in in figs. 11 – 13, are given as

J(r̃ε(T ), s̃ε(T )) =

[
− 686.64 0.0

−137.13 −1.0

]
,

[
− 686.64 0.0

−137.13 −1.0

]
,

[
− 686.64 0.0

0.0 −1.0

]

respectively. The fixed points of the ‘exact’ solutions r̃ε, s̃ε presented in in figs. 11 – 13 thus represents
stable hyperbolic fixed points as they yield negative real eigenvalues of the Jacobian (5.24).

To assess stiffness we present the stiffness index, defined as

L = max |Re(λi)|

(Shampine and Thompson, 2007). Here Re(λi) denotes the real part of a Jacobian eigenvalue. The
stiffness index is L = 686.64, indicating that the parameter values used in figs. 11 – 13 is part of a stiff
parameter space of Eq. (5.23).

When ∆t is selected within reasonable sizes i.e. ∆t � 1 there are no indications of unbounded
errors occurring. However, we observe large numerical errors in Eq. (5.23) causing the computational
results to be practically unusable. We further raise the question of whether similar instabilities can
occur in explicit approximations of the full NFL model, i.e. for a non-constant connectivity function
and N � 2 in Eq. (5.23). We observe that the discussion in Section 5.2 highlights many of the
presented numerical errors obtained in the experiments performed in sections 5.3 and 5.4. Thus, we
speculate that this discussion also highlights similar numerical errors in the full NFL model.

The temporal stepping length of 0.06 and the steepness parameter β = 50 used in most of the
experiments presented in this thesis are obtained values from Faye and Faugeras (2010). Here a
temporal delay version of the NFL model was studied with a temporal stepping length ∆t = h = 0.0667
and steepness parameters β ≤ 45. The models presented in this thesis are different than the temporal
delay version, thus the instabilities presented in this thesis are not necessarily obtained in Faye and
Faugeras (2010). However, the results obtained in this thesis suffices to call for a stability analysis on
any numerical approach employed on the NFL (and similar) model(s).
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Figure 11: Results from the two population model given in Eq. (5.23) approximated by the RK4
method. A time evolution is presented in (A) with a close up given in (B). Here the solid and the
dashed lines represent the approximative and the ‘exact’ solutions respectively. A phase plane is
presented in (C) where solid lines express nullclines, and intersections of nullclines represent fixed
points of Eq. (5.23). Further, dashed lines represent trajectories where the yellow and blue lines are
representing the approximative and the ‘exact’ solutions respectively. For ∆t = 0.006 a spurious
solution occurs, illustrated by the green line in (D). The initial conditions are s0 = 0.615, r0 = 0.5,
the firing threshold is uθ = 0.6, the synaptic weights are ωrr = −30, ωrs = 20, ωss = 5, ωsr = −6 and
the steepness parameter is β = 50.
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Figure 12: Results from the two population model given in Eq. (5.23) approximated by the RK4
method where the initial conditions are changed (w.r.t. Fig. 11) to s0 = 0.7, r0 = 0.5. A time
evolution is presented in (A) where the solid and the dashed lines represent the approximative and the
‘exact’ solutions respectively. A phase plane is presented in (B) where solid lines express nullclines,
and intersections of nullclines represent fixed points of Eq. (5.23). Further, dashed lines represent
trajectories where the yellow and blue lines are representing the approximative and the ‘exact’ solutions
respectively. The derivatives of the firing-rate function are presented in (C) where the nonzero region
represent ∈ Wt for values over 0. The firing threshold is uθ = 0.6, the synaptic weights are ωrr =
−30, ωrs = 20, ωss = 5, ωsr = −6 and the steepness parameter is β = 50.
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Figure 13: Results from the two population model given in Eq. (5.23) approximated by the RK4 method
where where the synaptic weights are changed (w.r.t. Fig. 12) to ωrr = −30, ωrs = 20, ωss = 5, ωsr = 0;
shutting off the inhibitory feedback from r to s. A time evolution is presented in (A) with a close up
given in (B). Here the solid and the dashed lines represent the approximative and the ‘exact’ solutions
respectively. A phase plane is presented in (C) where solid lines express nullclines, and intersections
of nullclines represent fixed points of Eq. (5.23). Further, dashed lines represent trajectories where the
yellow and blue lines represent the approximative and the ‘exact’ solutions respectively. The derivatives
of the firing-rate function are presented in (D) where the nonzero region represent ∈ Wt. The initial
conditions are s0 = 0.7, r0 = 0.5, the firing threshold is uθ = 0.6 and the steepness parameter is
β = 50.
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6 Concluding remarks and outlook

6.1 Concluding remarks

We reviewed the derivation and a well-posedness proof of the NFL model equipped with a sigmoidal
firing-rate function: the model is well posed in the sense of Hadamard, with a poor stability estimate.
The biophysical derivation indicates that the NFL model is an extrapolation of the integrate and fire
network; from a finite to an infinite dimensional system. It seems that the most suitable approach
of analysis is obtained from theory for ODEs. Theory for ODEs appears to provide a simple and
well established set of tools with respect to analysis of numerical properties and well-posedness. The
current argumentation on re-casting the NFL model as a higher order nonlinear PDE seems insufficient
with respect to theory of well-posedness and numerical analysis. However, the PDE formalism may
well prove merits that are out of the scope of this thesis.

When assessing the numerical properties of the NFL model it was observed that the forward
Euler method is consistent and convergent. An upper bound of the numerical error was observed
exponentially dependent on β, Cω and T . The upper bound of the numerical error suggested ∆t to
be impractically small on a global time scale. This indicates that the error bound is not practically
suitable to predict what size of the temporal stepping length to use in approximations. We further
observed consistency of Heun’s RK2 method. However, the truncation error was observed to contain
β2, indicating a weakened efficiency of this method when compared to the forward Euler method.

Performed analysis indicated that the NFL model is stiff when its solution is in the proximity of
the firing threshold. Further, no remedy w.r.t. stiffness were indicated when the order of the explicit
RK methods was increased. The NFL model seemed non-stiff when its solution was appropriately far
away from the firing threshold.

These indications were further strengthened by numerical experiments where the temporal stepping
lengths were selected according to relevant literature. Significant errors were observed in approxima-
tions by the forward Euler method on a spatially independent version of the NFL model. Furthermore,
numerical analysis on a coupled pair version of the NFL model was performed by the RK4 method.
The approximations revealed a worst case scenario where the approximation were shifted from one
basin of attraction to another, resulting in a divergence from the exact solution. Further, we found a
parameter set that yielded false oscillations in the approximation, and when reducing ∆t a false fixed
point occurred. Based on these results we indicate difficulties in recognizing errors occurring when
approximating the NFL model in the proximity of the firing threshold. Results further indicated that
the asymptotic approximations were correct when the solution was not in the proximity of the firing
threshold. Finally, for the selected temporal stepping lengths, round-off errors seem to be insignificant
both locally and asymptotically, except for approximations of unstable limit sets.

6.2 Outlook

There are evidence given in this thesis not to trust computational output of NFL type models where
the temporal stepping lengths are not carefully selected. We underline that the stiffness probably span
a large range of firing-rate models where the firing-rate function is similar to the one used in this thesis.

It can be a complicated endeavor to predict all situations where the solution of the NFL model is in
the proximity of the firing threshold. The easiest numerical approach is probably an adaptive numerical
scheme which can reduce the discretization stepping length when the solution is in the proximity of
the firing threshold. However, we observed a possibility for the solution of the NFL model to stay close
to the firing threshold value for all time. Thus in this regime, efficient schemes can be hard to derive.
Implicit schemes such as the backward Euler or the trapezoidal methods are known to be A-stable and
can be solved by e.g. Newtons method. However, these methods can be computationally costly since it
is necessary to solve large sets of nonlinear equations. These and other multi-step methods deserve to
get a thorough analysis with regard to solving the NFL model. However, these methods are not likely
to provide sufficiently efficient approximations. It may well be that one gets more stable numerical
methods by a PDE formalism of the NFL model, but given the numerical instability encountered in
this thesis there seems to be a need for justifications of the numerical stability for any type of model
similar to the NFL model.

The NFL model has a reduced biophysical complexity, and is well suited to give an easy computa-
tional implementation. The complications observed in this thesis regarding numerical approximations
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seems to undermine this simplicity. Thus, for future analysts we suggest focus on developing other
types of neural field models which are more robust with respect to numerical approximations.
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Appendix A Pseudo exact solution

A.1 Derivation

In this appendix we will find a regularly perturbed system, approximating Eq. (5.11) for large steepness
parameters. To this end we substitute v = S(β(u−uθ)) with the firing-rate function given in Eq. (5.1)
i.e.

v(t) =
1

2
(1 + tanh(β(u(t)− uθ))).

Here 0 < v < 1 and a solution for u is thus

u = uθ + ε
1

2
log(

v

1− v
), ε =

1

β
. (A.1)

The new parameter ε is referred to as the inverse steepness parameter and we notice that the limit
β →∞ corresponds to ε→ 0. By inserting Eq. (A.1) into Eq. (5.11) we obtain the following dynamical
system

ε
d

dt
v(t) = −2ω(v − vθ)(v − 1)v − εψ(v), vθ =

uθ
ω

v(0) = v0.

Here the initial condition is v0 = 1
2 (1 + tanh(β(u0 − uθ))) and the function ψ is defined as

ψ(v) ≡ v(1− v) log(
v

1− v
) = v(1− v) log(v)− v(1− v) log(1− v)

= (1− v)f(v)− vf(1− v), f(x) = x log(x).
(A.2)

We further introduce the time stretching transformations

τ =
t

δ
, δ =

ε

2ω
, V (τ) = v(t) (A.3)

and end up with the system

d

dτ
V = −(V − vθ)(V − 1)V − δψ(V )

V (0) = v0.
(A.4)

By substituting the time stretching transformations defined in Eq. (A.3) into (5.11) we get

d

dt
u(τ) = −δu(τ) + δω

1

2
(1 + tanh(β(u(τ)− uθ)))

u(0) = u0.
(A.5)

The dynamical system (A.4) is a regular perturbed system where δ plays the role as the perturbation
parameter. More importantly, since

lim
V→0+

ψ(V ) = 0, lim
V→1−

ψ(V ) = 0,

ψ can be extended to a continuous and bounded function on the closed interval [0, 1]. Thus δψ will
be of order ε for 0 ≤ V ≤ 1 and uniformly small for 0 < δ � 1. The evaluation of ψ is illustrated
graphically in Fig. 14 indicating that we may omit the term δψ(V ) for large β. The resulting equation
is presented as

d

dτ
V (τ) = f(V (τ))

f(V (τ)) = −(V (τ)− vθ)(V (τ)− 1)V (τ)

V (0) = v0

(A.6)

Equation (A.6) has three equilibrium points i.e. where f(V ) = 0, here the dynamics can be different
between eqs. (A.4) and (A.6) since f(V ) ≈ δψ(V ). By further evaluation presented in Appendix A.2
we observe that Eq. (A.4) has two stable equilibrium points and one unstable equilibrium point which
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are all hyperbolic. Thus for large β, Eq. (A.6) is a leading order approximation of Eq. (A.4). The
exact solution of Eq. (A.6) is given as

τ =
1

vθ (vθ − 1)

(
vθ log

(
v0 (V (τ)− 1)

V (τ) (v0 − 1)

)
+ log

(
V (τ) (v0 − vθ)
v0 (V (τ)− vθ)

))
. (A.7)

Equation (A.7) is an implicit equation we can solve by Newtons method, giving an almost exact solution
of Eq. (A.6). Due to structural stability this solution qualitatively approximates the solution of (A.5).
However, this approximation is not necessarily accurate in size because of the error done by neglecting
the term δψ(V ) in Eq. (A.4). To assess this simplification-error we compare the numerical solution
of Eq. (A.4) and Eq. (A.6) which is of order 1 × 10−1. Thus, Eq. (A.7) does not provide any better
approximation of the exact value of Eq. (5.11) than what is obtained by a numerical approximation of
Eq. (5.11) with a small temporal stepping length.
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ψ
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) Figure 14: The function ψ is represented
by the blue line with maximum values at
ca. [−0.224, 0.224].

A.2 Stability of the spatial independent NFL model

In this appendix we want to extract as much information as possible from the regular perturbed version
of Eq. (5.11), given as

Vτ = F (V, δ)

F (V, δ) = f(V )− δψ(V ), 0 < δ � 1

f(V ) = −(V − vθ)(V − 1)V.

(A.8)

The term δψ(V ) in Eq. (A.8) is defined in Eq. (A.2) and can be neglected when |δψ(V )| � |f(V )|.
This can be done for all V ∈ [0, 1] except for the interval where V = vθ + O(δ). The endpoints are
analyzed by inserting a perturbation about these equilibrium points by the perturbation given as

V = Veq ± δṼ , 0 < δ � 1, Veq ∈ {0, 1}.

By inserting the perturbation we get

δṼτ = −(Veq ± δṼ − vθ)(Veq ± δṼ − 1)(Veq ± δṼ )− δψ(Veq ± δṼ ). (A.9)

We can thus observe that Eq. (A.9) yields

for V = δṼ , for V = 1− δṼ ,
f(V ) = O(δ), f(V ) = O(δ),

ψ(V ) = ψ(δV )→ 0, δ → 0, ψ(V ) = ψ(1− δV )→ 0, δ → 0.

Thus, the points Veq = 0, 1 are stable equilibrium points. Further we observe that

F ∈ C2((0, 1)× R)

F (V, 0) = 0 ⇐⇒ V = vθ[
∂F

∂V

]
(vθ, 0) 6= 0.
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The implicit function theorem guarantees a unique solution V = g(δ) of the equation F (V, δ) = 0 in
the interval Iδ = [−δ1, δ2] where 0 ∈ Iδ. We further linearize g(δ) around δ = 0 , and get

V = vθ + δv1 + ..., δ ∈ Iδ.

By further Taylor expanding F (V, δ) around (vθ, 0) we get

F (V, δ) = F (vθ, 0) +
∂F

∂V
(vθ, 0)δv1 +

∂F

∂δ
(vθ, 0)δ + ... = 0.

Here we used the fact that F (vθ + δv1 + ..., δ) = 0, thus

∂F

∂V
(vθ, 0)v1 +

∂F

∂δ
(vθ, 0) = 0.

Hence the expression for v1 is

v1 = −
∂F
∂δ
∂F
∂V

(vθ, 0) = − ψ(vθ)

vθ(1− vθ)
= log

(
1− vθ
vθ

)
.

The linearized expression for g(δ) is

g(δ) ≈ vθ + δ log

(
1− vθ
vθ

)
, δ ∈ Iδ.

We proceed by perturbing the solution V on its equilibrium point

V = Veq + Ṽ ,
∣∣∣Ṽ ∣∣∣� |Veq|

we thus get

d

dτ
Ṽ = CṼ , C =

∂F

∂V
(Veq, δ)

approximating Eq. (A.8) around V = Veq. If C < 0, then the equilibrium point g(δ) (with δ given)
is hyperbolically stable, while hyperbolically unstable if C > 0 (Perko, 2000). C = 0 corresponds to
an equilibrium point which is not hyperbolic and the nonlinearities must be taken into account. The
values of C is

C ≈ ∂F

∂V
(vθ + δv1, δ)

=
∂f

∂V
(vθ + δv1, δ)− δ

∂ψ

∂V
(vθ + δv1, δ)

= vθ(1− vθ) +O(δ)

Hence if 0 < vθ < 1, then g(δ) is an unstable hyperbolic equilibrium point. Further from the Hartman
- Grobman theorem (see for example Perko (2000)) we know that a local hyperbolic equilibrium point

of Eq. (A.8) is locally topologically conjugate to its linearizion Ṽτ = CṼ .

A.3 Asymptotes of the spatial independent NFL model

As discussed in Appendix A.1 and Appendix A.2 the system

Vτ = −(V − vθ)(V − 1)V

V (0) =
1

2
(1 + tanh(β(u0 − uθ)))

(A.10)

is a leading order approximation of Eq. (A.4) for large steepness parameters. The scaled threshold value
parameter vθ = uθ

ω is an equilibrium point of Eq. (A.10) and plays the role as a control parameter. The
asymptotic evolution of V and the corresponding asymptotic evolution of the solution u of Eq. (5.11)
is presented in Table A.11.

vθ u0 V (τ →∞) u(t→∞)

uθ < ω u0 < uθ 0 0

uθ < ω u0 > uθ 1 ω

uθ > ω — 0 0

(A.11)
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Table A.11: Overview of the asymptotic behavior of the solution V of Eq. (A.10) and u of Eq. (5.11).
Here vθ = uθ

ω . The initial condition u0 the firing threshold uθ and the connectivity ω are given in
Eq. (5.11).

A short justification of the above results: since 0 ≤ V ≤ 1 the function −(V − vθ)(V − 1)V is
positive for V (0) > vθ = uθ

ω and thus V is a monotonically increasing function, this condition is given
as

1

2
(1 + tanh(β(u0 − uθ))) >

uθ
ω
. (A.12)

Equation (A.12) is true for u0 > uθ and gives uθ < ω. For Eq. (5.11) we get

du

dt
= −u+ ωS(β(u− uθ)) > 0

= −u+ ω, t→∞

We thus get u(t) = ω + (u0 − ω)e−t = ω, t→∞.
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Appendix B Theorems and definitions

B.1 The contraction mapping theorem

Theorem B.1. Let (XT , ||·||T ) be a non-empty complete metric space and A : (XT , ||·||T ) 7→ (XT , ||·||T )
be a contraction mapping of (XT , ||·||T ), i.e. there is a nonnegative real number K < 1 such that

||Au−Av||T ≤ K ||u− v||T ∀ u, v ∈ XT .

Then there exists a unique solution u∗ of the equation

u∗ = Au∗

The proof is omitted, instead we refer the reader to Trench (2003)[Thm. 8.3.10].

B.2 Differentiation of integral equations

Theorem B.2. Let F : R→ R be given as

F (t) =

t∫
a

f(t, s) ds, (B.1)

where f is a continuous differentiable function for all s, t ∈ R and well defined for f(t, t). Assume

uniform convergence of the integral
t∫
a

[f(t+ h, s)− f(t, s)] ds, where h > 0. Then the derivative of F

is given as

dF

dt
(t) =

t∫
a

∂f

∂t
(t, s) ds+ f(t, t)

Proof. Consider the difference given as

F (t+ h)− F (t)

h
=

1

h

 t+h∫
a

f(t+ h, s) ds−
t∫
a

f(t, s) ds


=

1

h

 t∫
a

f(t+ h, s) ds+

t+h∫
t

f(t+ h, s) ds−
t∫
a

f(t, s) ds


=

1

h

 t∫
a

[f(t+ h, s)− f(t, s)] ds+

t+h∫
t

f(t+ h, s) ds



Then by the mean value theorem for integrals (see Theorem B.3) where t∗ ∈ [t, t + h] and the limit
definition of the derivative we get

dF

dt
(t) = lim

h→0

1

h

t∫
a

[f(t+ h, s)− f(t, s)] ds+ f(t+ h, t∗)

=

t∫
a

∂f

∂t
(t, s) ds+ f(t, t)

The following theorems are adapted from Trench (2003).
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B.3 Mean value theorem for integrals

Theorem B.3. Let f be a continuous real function on the closed interval [a, b] and g is non negative
and integrable on [a, b], then there exists a real number c ∈ [a, b] such that

b∫
a

f(x)g(x) dx = f(c)

b∫
a

g(x) dx.

B.4 Mean value theorem

Theorem B.4. Let f : [a, b]→ R be a continuous function on the closed interval [a, b] and differentiable
in the open interval (a, b) where a < b. Then

d

dx
f(c) =

f(b)− f(a)

b− a
,

for some real number c ∈ (a, b)

B.5 Taylors theorem

Theorem B.5. If f and its first n derivatives f ′, f ′′, ..., f (n) are continuous on the closed interval Î
between a and b, and f (n) is differentiable on the open interval I between a and b, then there exists a
number c between a and b such that

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2!
(b− a)2 +

f ′′′(a)

3!
(b− a)3 +

f (n)(a)

n!
(b− a)n +

f (n+1)(c)

(n+ 1)!
(b− a)n+1

where we call the last part the remainder of order n or the error term

Rn =
f (n+1)(c)

(n+ 1)!
(b− a)n+1

This may be rewritten to

f(b)−
r∑

n=0

f (r)(a)

r!
(b− a)r =

f (n+1)(c)

(n+ 1)!
(b− a)n+1

Remark B.1. If lim
n→∞

Rn = 0 ∀ x ∈ I the Taylor series converges

Remark B.2. If n = 0 Taylors theorem reduces to the mean value theorem B.4

B.6 Lipschitz continuity

Definition B.1. This definition is adapted from Perko (2000). Let G be a open subset of Rn. A
function f : G → Rn is said to be Lipschitz continuous on G if it there is a positive constant λ such
that for all x2,x1 ∈ G

|f(x2)− f(x1)| ≤ λ |x2 − x1|

The function f is said to be locally Lipschitz on E for each point x0 ∈ G if there is an ε-neighbourhood
of x0, Nε ⊂ G and a constant λ0 such that for all x2,x1 ∈ Nε

|f(x2)− f(x1)| ≤ λ0 |x2 − x1|

By an ε-neighbourhood of a point x0 ∈ Rn we mean an open ball of positive radius ε, i.e

Nε(x0) = {c ∈ Rn; |x− x0| < ε}

If for all x2,x1 ∈ Rn the function f satisfies the following inequality

|f(x2)− f(x1)| ≤ Λ |x2 − x1|

the function is said to be globally Lipschitz
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Appendix C Python code

In all the below scripts we have imported the following modules:

Python code

from __future__ import division

from pylab import *

import odespy

Further, we define the python firing-rate function as presented in Eq. (5.1):

Python code

def S(u, b, h, a=np):

return (a.tanh(b * (u - h)) + 1)/2

C.1 Convergence estimates of a spatially independent model

The following script was employed in order to measure the numerical error dependency of the steepness
parameter β as presented in Section 5.3.2.

Python code

def solver(u0, b1 , b2 , db, T=.001 , dt=.00001 , h=.6, w=1.):# u0 < w!!

def f(u, t, b, h, w):

return (tanh(b * (u - h)) + 1)/2 - u

dt_e = 1e-7

nt = int(T/dt)

nt_e = int(T/dt_e)

print ’nt = ’, nt

print ’nt_e = ’, nt_e

t_mesh = linspace(0, nt*dt, nt+1)

t_mesh_exact = linspace(0, nt_e*dt_e , nt_e+1)

e = []

Ue_l = []

U_l = []

for b in arange(b1,b2 ,db):

#approx

solver1 = odespy.Euler(f, f_kwargs=dict(b=b, h=h, w=w))

solver1.set_initial_condition(u0)

U, t = solver1.solve(t_mesh)

#exact

solver2 = odespy.RK4(f, f_kwargs=dict(b=b, h=h, w=w))

solver2.set_initial_condition(u0)

Ue, t = solver2.solve(t_mesh_exact)

e.append(abs(U[-1] - Ue[-1]))

Ue_l.append(Ue)

U_l.append(U)

e = array(e)

return e, U_l , Ue_l , t_mesh , t_mesh_exact

The relative error was computed in the following way:

Python code

e = ee/(Ue_l[:,-1]*t[-1])

x1 = np.arange(b1 ,b2,db)

popt , func = curvefit(x1, array(e), guess=[.09 ,.05 ,.022])

Here ee is the absolute error and Uel is a list containing time series for each β ∈ Iβ with a given ∆β.

C.2 Nonlinear curve fit

The non linear curve fit of the numerical error as presented in Section 5.3.2 was computed by the
Levenberg Marquard algorithm employed by the SciPy package in the following script.
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Python code

from scipy.optimize import curve_fit

def curvefit(bs, e, lin_fit=False , guess=False):

if lin_fit:

def func(x, a, b, c):

return b*x + c

else:

def func(x, a, b, c):

return a*np.exp(b*x) + c

x = linspace(0,bs[-1]-bs[0],len(bs))

#x = bs

if guess:

popt , pcov = curve_fit(func , x, e, p0=guess)

else:

popt , pcov = curve_fit(func , x, e)

print popt

return popt , func

C.3 System of two populations

We begin by defining the following python function, as presented in Eq. (5.23):

Python code

def f(u, t, S, wrr , wrs , wss , wsr , h, b):

r, s = u

return [-r + (wrr * S(r,b,h) + wrs * S(s,b,h)), -s + (wsr * S(r,b,h) + wss

* S(s,b,h))]

Further, we define a solver function based on the RK4 solver from ODEspy:

Python code

def solver(r0, s0, S, wrr , wrs , wss , wsr , h, b, dt=0.01 , T=1.):

solv = odespy.RK4(f, f_kwargs=dict(S=S, wrr=wrr , wrs=wrs , wss=wss ,

wsr=wsr , h=h, b=b))

solv.set_initial_condition([r0 , s0])

nt = int(T/dt)

t_mesh = linspace(0, nt*dt, nt+1)

u, t = solv.solve(t_mesh)

r = u[:,0]

s = u[:,1]

return r, s, t

Thus, by running the following script we produce the results from Section 5.4:

Python code

fig = figure ()

ax = fig.gca()

s0=.615; r0=.5; wrr=-30; wrs=20; wss=5; wsr=-6; h=.6; b=50

Dt=[0.06, 0.0001]; T=Dt[0]*10; r_list=[]; s_list=[]; t_list=[]

for dt, ls, c in zip(Dt , [’-’, ’--’],[(’g’,’b’), (’k’,’r’)]):

r, s, t = solver(r0, s0, S, wrr , wrs , wss , wsr , h, b, dt=dt, T=T)

r_list.append(r); s_list.append(s); t_list.append(t)
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