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Abstract 

 

This thesis consists of two mains parts: an introduction giving a literature review of key topics relevant 

for design and interpretation of the experiments carried out in this thesis, and an experimental part.  

 

Recent reports from FAO have highlighted the need for increased utilization of more low cost material in 

food production industries. Aquaculture industry may play an increasingly important role in providing 

high quality food, and approximately half of the production costs are related to feed. It is, thus, becoming 

increasingly important to utilize non-food and low cost ingredients in fish feed. Nile tilapia is a major 

farmed fish species. Moreover, it has high capacity to tolerate a wide range of environmental stresses and 

the presence of antinutrients compounds in diet, making it an ideal target species for upgrading low-

quality ingredients to high quality food.  

Secondary products from rapeseed oil processing are highly abundant and represent an inexpensive 

source of protein. The major challenge for increased use is the presence of certain glucosinolate 

derivatives such as isothiocyanate and progoitrin, which previously have been reported to cause metabolic 

problems or reduce feed acceptability for fish. Secondary products of rapeseed also contain other 

antinutritional factors such as phytic acid and tannins that may represent metabolic challenges. Several of 

these factors can be reduced by relatively intense moist heating.  

The overall aim of the research in this research was to find out if simple processing such as fine milling or 

moist heating influenced the nutritional value of rapeseed cake (RSC), a secondary product from rapeseed 

oil processing. Two experiments were carried out. The first experiment aimed at defining a dietary 

inclusion level to which Nile tilapias were sensitive to changes in nutritional quality of RSC. The second 

experiment was carried out to assess the effects of fine milling or the combination of fine milling and 

autoclaving of RSC.  

The first experiment was designed on the base of a regression analysis to define the dose response of 

tilapia to inclusion of rapeseed cake (RSC) in diet. Five different isoenergetic and isonitrogenous, plant 

ingredient-based diets were produced with different level of inclusion of RSC. Crude protein from 

soybean meal (SBM) was gradually replaced by crude protein from RSC at 0, 25, 50, 75 and 100 % of 

replacement. The feeding trial was performed in two replicate tanks of Nile tilapia for each experimental 

diet. Each tank contained 20 tilapias with average weight of 19.9 g. Feeding was in excess, 3 times (40 
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min) per day. Feed was quantified on a daily basis for the first 3 weeks, and as a pooled value over the 

whole 6 week feeding period. 

The findings from Exp.1 demonstrated a decline in feed intake and growth along with increasing the level 

of RSC in diet. A threshold effect was observed in the regression curve near of 50% replacement. A 

possible explanation for these results may be the presence of bitter component in RSC which caused poor 

palatability of RSC containing diet and reduces feed intake. The feed conversion ratio (FCR) (g DM 

intake (g gain)
-1

) was almost close to 1 g g
-1

 for all levels, except for the groups feed 100% replacement of 

CP from RSC, where it was slightly elevated. No diet-related trends were observed apparent digestibility 

or retention of crude protein, mineral (Ca, P, Mg, Mn, Zn) absorption or concentration in blood plasma, 

energy content of whole body and energy and protein retention along with different inclusion of RSC in 

diet, indicating that protein from RSC and SBM had comparable availability, and that the effects of phytic 

acid from the two protein sources had comparable effects. Moreover, thyroid hormone (T4) in blood 

plasma was not markedly different for different treatments, indicating that glucosinolate derivatives may 

not have been a main factor in explaining the reductions in feed intake and growth. The lipid content of 

whole body composition decreased in treatments fed diet from 0% until 50% replacement and then 

increases up to 100% replacement of CP from RSC with CP from SBM. The same pattern was seen in 

content of DM which can be the result of lipid content of body.  

 

It is assumed that presence of higher content of tannin in RSC on the base of feed intake pattern causes 

higher visceral fat deposition in fish after 50% replacement. The ration of liver weigh to body weight was 

increased from 0% until 50% replacement level and after that tended to reduce up to 100% replacement of 

CP from RSC with CP from SBM. Since the deposition of lipid in liver decreases by increasing content of 

tannin in diet, the pattern given from ratio of liver weight to body weight may be caused by this fact. 

 

The aim of second experiment (Exp.2) was to assess whether fine milling and/or combination of fine 

milling and autoclaving the RSC applied in diet may affect the nutritional quality of feed for tilapia. 

Exp.2 was performed according to the results from Exp.1, on the 50% level of replacement of CP from 

SBM with CP from RSC in diet which causes more sensitivity in fish to nutritional quality of diet. This 

experiment was designed on the base of ANOVA analysis. A 3 weeks trail feeding tilapia was conducted 

with 3 different experimental diets. The RSC used in different experimental diets were 1mm ground (the 

same as Exp.1), milled to 0.5 mm of particle size, or milled to 0.5 mm and autoclaved for 10 min in 

120
o
C. Each diet fed to tilapia in 3 replicate tanks. Each tank contained 20 fish with the average weight of 

37.3 gr. Feeding and monitoring of daily feed intake was the same as Exp.1.  
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Feed intake and gain were significantly (P<0.05) decreased by autoclaving the RSC. FCR was close to 1 g 

DM g
-1

 gain for all treatments (P>0.05). This may be due to autoclaving having a negative effect on the 

palatability of RSC due to production of glucosinolates breakdown products. A linear relationship was 

seen between feed intake and gain which may demonstrate that the main reason of growth depression is 

related to decrease of FI. The finding of increased glucose concentration in the diet with autoclaved RSC, 

probably originating from hydrolysis of glucosinolates, supports this hypothesis. A significant decrease 

(P<0.05) in content of DM and crude protein, and energy and nitrogen retention in whole body was seen 

in fish fed the diet containing autoclaved RSC.  

 

It can, thus, be assumed that fine milling increased availability of components that produced in fine milled 

and autoclaved RSC may have negative effect on tilapias metabolism. 

 

The content of whole body lipid, ash and energy did not show any significant difference (P>0.05) among 

different treatments. Also the content of minerals (except zinc) in blood plasma among different 

treatments fed different experimental diets was the same (P>0.05). However, the content of zinc in blood 

plasma of tilapia fed with diet containing fine milled and fine milled and autoclaved RSC tended 

(0.05<P<0.10) to be lower than the tilapia fed with diet containing 1mm ground RSC. The levels of T4 in 

blood plasma of all treatments were the same (P>0.05). It may prove that the certain level of inclusion of 

secondary compounds of RSC used in these diets may not have any goitrogenic effect on tilapias thyroid.  

 

To conclude, this research show that presence of RSC in tilapia diet may reduce feed acceptability. 

However, it did not show different effects on metabolic function of fish than those caused by SBM. Fine 

milling did not affect the nutritional value of RSC, while autoclaving of RSC has negative effect on feed 

intake, energy utilization, and consequently on growth. 
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1. Introduction 

Almost 200,000 people are added to world population every day and the ever increasing global food 

demand may not be satisfied through restricted available food recourses in the close future 

(Nellemann et al., 2009; Tilman et al., 2011). Shifting the land usage from agricultural purposes 

toward urban and industrial purposes, decreasing rural population and increasing urban population 

may also reduce the food production (Van Eetvelde and Antrop, 2004; Nellemann et al., 2009). 

Several other factors such as global warming by disruption of agriculture productivity especially in 

poor countries, changes in living standards and utilization of crops in biofuel industry are contributing 

to severity of this problem (Gibbs et al., 2008; Mendelsohn et al., 1994). Aquaculture is known as a 

fast growing sector in food production which can contribute to global food production by producing 

high quality source of protein (FAO, 2012). In the last decades, contribution of aquaculture to capture 

fisheries to provide food for human is increased (Figure 1). However by increasing costs of this 

industry such as price of energy and water it is necessary to keep the products price compatible with 

fishery productions (Nellemann et al., 2009; Tidwell and Allan, 2001). Approximately 50-70% of 

total fish production cost is dedicated to purchase of feed (Rana et al., 2009). 

Figure1. Contribution of aquaculture to capture fisheries (FAO, 2012) 

http://www.pnas.org/search?author1=David+Tilman&sortspec=date&submit=Submit
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Fish feed consists a major part of the production costs. Protein is an expensive nutrient which 

previously was provided mainly from fish meal in feeds for carnivorous fish. There is a high interest 

to replace fish meal partly or completely with plant protein in fish feed. It has been proved in several 

investigations that this approach is successfully possible to be achieved even in carnivorous species 

(Salze et al., 2010; Zhou and Yue, 2010). Utilization of plant protein may be less challenging for 

omnivorous fish species (Hardy, 2010). Deficiency in essential amino acids was one of the challenges 

to use plant protein which may be possible to overcome to this problem by supplementation of them 

with necessary amino acids. 

Soybean has a fair amino acid profile to be used in aqua feed. It is, however, highly useful in human 

food (van der Ingh et al., 1991). Replacing soy protein with a low price alternative without any 

negative impact on nutritional and physical quality of fish feed may reduce costs and helps to global 

food production. Understanding the best method of processing and utilization of low cost resources is 

necessary to utilize them in aqua feed (Guimarães et al., 2003). Numerous studies hare evaluated the 

possibility of utilization of cheaper protein resources such as industrial secondary products in aqua-

feeds (Francis et al., 2001; Slawski et al., 2013; Collins et al., 2013). 

Biofuel and cooking oil production industries demand huge amounts of oil seeds (FAO, 2012). The 

residues contain high amounts of protein and are valuable to be used as a protein source in fish feed. 

In addition to soybean, rapeseed in one of the main oil seeds which is used in these industries. 

Depending on oil extraction method, different secondary products are produced such as rapeseed 

meal (RSM) and rapeseed cake (RSC) which can be a cost-effective source of protein in a sufficient 

quantity to be applied as a sources of protein in fish feed (Hardy, 2010). Rapeseed secondary products 

are cheaper than soybean co-products. Between 2010 and 2011 the international price of soybean 

cake was 550 US$ per ton and for RSM this price was 279 US$ per ton (FAO, 2012).  

Utilization secondary products of rapeseed are limited by the presence of anti-nutritional factors 

(ANF). Many investigations have been done to assess the best level of inclusion and method of 

processing to utilize secondary products of rapeseed in fish feed. According to previous studies use of 

RSM in tilapia feed is limited. Seneviratne et al. (2010) have reported that utilization of more than 

30% unprocessed RSM results in growth depression in tilapia. However there are still many 

knowledge gaps about the function and composition of these ANF in different products. The optimal 

method of processing need to be clarified in details to be able to properly utilize these valuable 

materials in fish feed.  
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2. Literature review 

2.1 Rapeseed 

Rapeseed (Brassica napus L.) belongs to the Brassicaceae family (mustard or cabbage family). 

Rapeseed contains more than 40% oil. The production of oil per unit of land in rapeseed is higher 

than that from other crops. Whole rapeseed production in world in 2012 was reported around 62.6 

million tones. China is the leading producer, followed by India. Germany and France are pioneers in 

biodiesel production from rapeseed oil and the two main rapeseed producers in Europe (FAO, 2013). 

Increasing biodiesel production will lead agriculture to increase rapeseed production in close future 

(Hoogeveen et al., 2009). RSC is one of the co-products of oil extraction processing after extracting 

approximately 70% of oil from seed (Leming and Lember, 2005; Spragg and Mailer, 2007). 

Utilization of RSC in fish feed can be beneficial due to local availability from small factories 

(Leming and Lember, 2005).  

2.1.1 Nutritional properties of RSC 

The most common method which results in RSC as a co-product is cold-press extraction. In 

comparison with other extraction methods such as solvent-extraction, cold-pressing leaves higher oil 

content in the residues (Woyengo et al., 2010). Also the content of amino acids especially lysine is 

higher than from expeller-pressed, due to lower processing temperatures result in lower Maillard 

reaction. Expeller-pressed RSC and RSM are produced after an oil extraction processing which seeds 

are heated by steam before oil extraction up to 110
o
C. In this case the residual oil is lower and heating 

may negatively affects the amino acid content of co-products especially lysine (Seneviratne et al., 

2010). However expeller-pressing may reduce the content of unwanted, heat labile compounds 

existing in intact rapeseed or what are producing during crashing and processing (Schöne et al., 2001; 

Newkirk and Classen, 2002). Different methods of extraction have been shown in Figure 2.  

Some compounds which are removed from raw oil during oil extraction process such as gums, waxes 

and phospholipids are added back to RSC after processing. They can also affect the energy content of 

RSC and reduce dustiness (Booth and Gunstone, 2004). 

http://en.wikipedia.org/wiki/Brassicaceae
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Figure 2: different oil extraction methods and production of RSC (Leming and Lember, 2005) 

Rapeseed secondary products are low in lysine but contain more methionine than soybeans 

(Pastuszewska et al., 2000). Besides the composition of essential amino acids is sufficient to support a 

high biological value (Yang et al., 2014) making rapeseed an interesting alternative for soy protein in 

fish feed. However, in many countries RSC is utilized as a fertilizer or biomass (a source of carbon, 

hydrogen and oxygen) to produce energy (Özçimen and Karaosmanoğlu, 2004). 

Several studies have been done to investigate nutritional value of rapeseed secondary products. The 

majority of these studies have evaluated the feasibility of utilization of RSM in animal feed (Moset et 

al., 2012; Luo et al., 2012). However, few experiments have been assessed the nutritional values of 

cold-press RSC and practical methods to remove its ANF to be feasible to apply in fish feed. 

Secondary toxic metabolites in plants may have a defensive function to protect plant from 

environmental stresses such as pests attack or being eaten by herbivorous animals (Bennett and 

Wallsgrove, 1994).  
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2.1.2 Anti-nutritional factors  

Rapeseed secondary products that may have negative impacts on animal’s growth and health these 

effects are ascribed to ANF. The intolerance level of fish to these secondary products is varying 

among species. There is a limitation for presence of ANF in feed to prevent negative effects on fish 

performance such as growth rate, feed intake (FI) or metabolic problems such as hyperthyroidism 

(Gatlin et al., 2007). Certain ANF contained in rapeseed secondary products may also affect nutrient 

availability, as illustrated by the impact of isothiocyanate on lysine bioavailability (Nakamura et al., 

2009) (Figure 3). 

 

Figure 3: Reaction between isothiocyanate and lysine (Nakamura et al., 2009) 

Main ANF in RSC are glucosinolates, erucic acid, phytic acid, sinapinic acid, tannins, indigestible 

carbohydrates, lipoxygenase, lectins, urease, trypsin inhibitors, flavonoids and estrogenic compounds 

(Francis et al., 2001). 

Each compound plays specific role in the biology of the plants and is accumulated in specific tissues. 

For example indolics glucosinolate derivatives have antifungal effect (Bednarek et al., 2009) and 

flavonoids, sinapates and other phenolics are known as a responsible for protecting plant from 

ultraviolet-B stress (Li et al., 2010). Tannins are other phenolic polymers existing in rapeseed 

secondary products. They can decrease energy and protein digestibility by binding nutritive and form 
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indigestible complexes in feed (Enami, 2011). Table 1 shows a comparison between phenolic acids in 

rapeseed and some other oilseeds 

Table 1: Total content of phenolic acids in some oilseed products 

Oilseed product (g kg-1 dry basis) 

Soybean flour 0.23 

Cottonseed flour 0.57 

Peanut flour 0.63 

Rapeseed canola flour 6.4-12.8 

Canola meal 15.4-18.4 

Soybean meal 4.6 

Developed from Kozlowska et al., 1991 and Naczk et al., 1986 

 

Sinapine mostly exists in seeds embryo and affects the palatability by giving bitter taste to feed and 

reduces the FI (Solá-Oriol et al., 2011). 

Glucosinolates and erucic acid are responsible for majority of negative effects of RSC on fish 

metabolisms (Slawski et al., 2011a,b). Phytates are not toxic compounds but by forming indigestible 

chelates with cations may reduce minerals bioavailability (Maenz, 2001).  

2.1.3 Non-starch Polysaccharides 

Non-starch Polysaccharides (NSP) is another category of unwanted compounds in RSC. They are 

complex compounds often consisting of combination of hexoses and pentoses monomers with non 

digestible linkages such as β-(1-3) and β-(1-4). Classification of NSP was previously on the base of 

extraction and isolation methods or deference’s on solubility and pH of soluble which was used for 

extraction (Neukom, 1976). Another classification which is mainly on the base of molecular structure 

which has been done by Butler and Bailey (1973) includes cellulose, non-cellulosic polymers and 

pectic polysaccharides (Table 2).  

Rapeseed contains a wide range of NSP including cellulose, pectic polysaccharides (i.e., 

rhamnogalacturonans) and a several non-cellulosic polysaccharides such as xylans, xyloglucans, 

arabinans, arabinogalactans and galactomannans (Slominski and Campbell, 1990; BachKnudsen, 

1997). Especially pectic polysaccharides and those which are not bond to cell wall may increase the 

viscosity of their solutions (Sinha et al., 2011). Rapeseed secondary products contain higher level of 
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NSP in comparison with soybean meal (SBM) (46% in Canola meal and 19% in SBM) (Kocher, 

2002). 

Table 2: Classification of NSP (Sinha et al., 2011) 

 

Category Subcategory  Monomeric 

residue 

linkage source 

Cellulose Cellulose Glucose  β-(1-4)  Most cereals 

and legumes 

Non-cellulotic 

polymers 

Arabinoxylan Arabinose 

and xylose 

 

β-(1-4) - linked 

xylose units 

Wheat, rye. 

Barley, oat, 

rice 

Mixed- linked β-

glucan  

Glucose β-(1-3) and β-(1-

4) 

Barley, oat 

Mannans Mannose β-(1-4) Coffee seed 

Galactomannans Galactose 

and 

mannans 

β-(1-4)- linked 

mannan chain 

with α-(1-6)- 

linked galactosyl 

side groups 

Locust bean 

gum and 

guar gum 

Glucomannans Glucose and 

mannans 

β-(1-4)- linked 

mannan chain 

interspersed 

glucose n the 

mian chain 

Sugar-beet 

pulp 

Pectic 

polysaccharides  

Arabinan Arabinose α-(1-5) Cereal co-

products 

Galactan Galactose β-(1-4) Sugar-beet 

pulp 

Arabinogalactan 

(type I)  

Arabinose 

and 

galactose  

β-(1-4) galactan 

backbone 

substituted with 

5- linked and 

terminal 

arabinose 

Grain 

legumes 

Arabinogalactan 

(type II) 

Arabinose 

and 

galactose 

β-(1-3,6)- linked 

galactose 

polymers 

associated with 

3- or 5- linked 

arabinose 

Rapeseed 

cotyledon  

 

High content of fiber including NSP such as lignin with associated polyphenols and glycoproteins is 

known as one of the reasons for metabolic problem in poultry which receives rapeseed secondary 

products in their diets (Khajali and Slominski, 2012). 



18 

 

Digestion and absorption of lipid and protein in gastrointestinal tract (GIT) of fish may be affected by 

NSP (Refstie et al., 1999; Sinha et al., 2011). Also inclusion of NSP in fish diet may affect the 

passage rate in GIT and availability of nutrients (Storebakken et al., 1999; Storebakken and Austreng, 

1987). 

An experiment with tilapia demonstrated that the negative effect of increasing viscosity on growth 

performance is not only because of decreasing nutrient digestion but it may be also due to differences 

in mineral absorption and excretion of sodium (Leenhouwers et al., 2007). A comparison between 

tilapia and other fish such as catfish or salmonids demonstrated that tilapia is more resistant to viscose 

dietary ingredients. It may be due to its feeding habits since tilapia is more herbivorous than those 

other species (Amirkolaie et al., 2005).  

2.1.3.1 Erucic acid 

Erucic acid is a mono-unsaturated fatty acid (C22:1, n-9) present in rapeseed. Extracted oil with high 

percentage of erucic acid is used for non-food purposes such as carburant and lubricants. High 

percentage of erucic acid in feed and food is associated with health problems. This fatty acid is 

responsible for fat deposits in heart muscle. In salmon, erucic acid from the feed may be accumulated 

in the body lipid (Nath et al., 2009).  

2.1.3.2 Phytic acid 

In most of the seeds and cereals phosphorus is mainly (60–90%) stored in the form of phytate which 

contains 3 to 4 % of rapeseeds weight (Uppström and Svensson, 1980). Phytates may reduce amino 

acid bioavailability by formation of indigestible compounds with proteins. Also by affecting 

aminopeptidases through chelation of cationic minerals such as Zn
2+

, Mg
2+

, Ca
2+

 and Fe
2+

 

(Storebakken et al., 1998) that are both important cofactors and contribute to mineralization of hard 

tissues. The function of several digestive enzymes such as α-amylase, trypsin, tyrosinase and pepsin 

may be affected by presence of phytic acid in dietary ingredients (El-Batal and Abdel-Karem, 2001). 

Factors such as the phosphorous content of soil may affect the content of phytate in rapeseed (Khattab 

et al., 2010).  
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2.1.3.3 Glucosinolates 

2.1.3.3.1 Molecular structure  

Glucosinolates are organic sulfur containing compounds. The general structure of these molecules 

consists of a β-glucose, a sulfonated oxime group and a side chain which is bond to the central carbon 

and normally is an amino acid. In order to side chain, glucosinolates are categorized into three 

groups: aliphatic, aromatic and indolylic. The amino acids belonging to the aliphatic group are 

methionine, leucine, alanine, isoleucine and valine while phenylalanine and tyrosine are aromatic and 

tryptophane belongs to the indolyl group (Halkier et al., 2006) (Figure 4).  

 

 

Figure 4: Structure of glucosinolates (Textor and Gershenzon, 2009) 

 

The majority of intact glucosinolates in rapeseed are consisting of progoitrin, epiprogoitrin, 

gluconapoleiferin, gluconapin, 4-hydroyglucobrassicin, glucobrassicanapin, glucobrassicin, and 

gluconasturtiin. Glucosinolates are varying in content and distribution among different varieties of 



20 

 

rapeseed and environmental situation (Millán et al., 2009). For example Indian rapeseed mainly 

contains gluconapin (Tyagi, 2002) while in European varieties progoitrin, 4-hydroxyglucobrassicin 

and gluconapin are dominant (Mabon et al., 2000; Leming et al., 2004). 

2.1.3.3.2 Metabolism in plants tissues 

Biosynthesis of glucosinolates in plant has three stages: 1) side-chain elongation of amino acids, 2) 

development of the core structure and 3) side-chain modifications. The concentrations of 

glucosinolates in the plant organs are different. Higher glucosinolate concentration is found in 

reproductive organs such as seeds and flowers (Brown et al., 2003).  

Glucosinolates may be localized in aqueous vacuoles in cells. In case of mechanical damages 

glucosinolates are released and hydrolyzed in the cytoplasm by an enzyme called myrosinase 

(Koroleva et al., 2010). Another hypothesis for the location of glucosinolate and myrosinase in plant 

cells is intracellular or intercellular localization. The first hypothesis explains that glucosinolate and 

myrosinase are localized in the same cell but in separated organelles or vacuoles. During extraction or 

in case of tissue damage, glucosinolate and myrosinase will be released, and glucosinolate hydrolysis 

starts (Kissen et al., 2009). The second hypothesis addresses the possibility of localization of 

myrosinase and glucosinolate in different cells in the plants body (Figure 5) which has been reported 

by Bridges et al. (2002). During the crushing and pressing stages in the oil extraction process, the 

majority of glucosinolates are realized may being released and hydrolyzed by myrosinase. Therefore 

secondary products of rapeseed contain glucosinolates hydrolysis products. Rapeseed varieties with 

very low, low, moderate and high glucosinolate content contain respectively 5, 9, 14 and 26 µmol 

glucosinolate per gram seed. Rapeseed secondary products with approximately 10 µmol glucosinolate 

or less per gram seed are applicable in animal feed (Jensen et al., 2010).  
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Figure 5: S: glucosinolates containing cells; M: myrosinase-expressing phloem cells and guard cells 

respectively; E: epidermal cells; S: cellular co-localization of glucosinolates and ESP (Kissen et al., 2009) 

2.1.3.3.3 Effect of oil extraction methods on glucosinolate content 

Oil extraction methods can affect the content of glucosinolates in rapeseed co-products such as RSM 

and RSC. The level of toxins on dehulled extraction and expeller extraction co-products is lower than 

solvent extraction co-products (Bourdon and Aumaitre, 1990; Glencross et al., 2004) (Table 3). 

Table 3: Effect of extraction on glucosinolates content of rapeseed secondary products.  

 

Extraction process Rapeseed type Total GLS(µmol/g) ITC(mg/g) OZT (mg/g) 

Solvent extracted RSM 0 166 3.5 9.2 

RSM 00 38 1.3 2.4 

Canola meal 3.62 ND ND 

Dehulled extracted RSM 0 151 4.7 11.5 

RSM 00 30 0.8 1.6 

Expeller extracted RSM 00 36 1.3 3.5 

Canola meal 1.1 ND ND 

RSM: rapeseed meal, GLS: glucosinolate, ITC: isothiocyanates, OZT: oxazolidinethion, ND: not determined, 

(Tripathi and Mishra, 2007) 

2.1.3.4 Glucosinolate hydrolysis products 

Glucosinolates may break down into variety of compounds which may have toxic effect on animal 

fed by glucosinolate containing diet. Hydrolysis of glucosinolate results in unstable intermediate 
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compounds. These compounds through further reactions convert into isothiocyanates, nitriles, 

thiocyanates, indoles and oxazolidinethiones (Kleinwächter and Selmar, 2004). 

Several external factors may affect end products of glucosinolate hydrolysis. In low pH, production of 

nitriles is dominant and by increasing pH, isothiocyanate production increases. Various types of 

glucosinolates result in different derivatives. For example sinigrin hydrolysis results in more allyl 

cynaid but in gluconapine hydrolysis production of butenyl cyanide is dominant. Furthermore, 

toxicity of each compound differs from the other. By increasing the percentage of the C-N or N=C=S 

groups in hydrolysis products the toxicity of glucosinolate derivatives increases (Wittstock et al., 

2003) (Figure 6).  

 

Figure 6: Enzymatic breakdown of glucosinolates (Wittstock and Halkier, 2002) 

http://www.sciencedirect.com/science/article/pii/S0079992003800205
http://www.sciencedirect.com/science/article/pii/S1360138502022732
http://www.sciencedirect.com/science/article/pii/S1360138502022732
http://www.sciencedirect.com/science/article/pii/S1360138502022732


23 

 

2.1.3.4.1 Isothiocyanate and nitrile production: 

Glucosinolates hydrolysis in neutral pH normally results in isothiocyanates but in lower pH main 

product of reaction is nitrile. The spicy hot taste of rapeseed is due to presence of isothiocyanates, 

which may reduce FI (Wittstock and Halkier, 2002). Isothiocyanates have been used in food industry 

because of its strong antimicrobial effects. The main group in this category which is intensively 

investigated is allyl isothiocyanate (Obaidat and Frank, 2009).  

2.1.3.4.2 Thiocyanate production: 

Three compounds of derivatives from glucosinolate hydrolysis are categorized in this group: allyl-, 

benzyl- and 4-(methylthio) butyl-glucosinolates. 

2.1.3.4.3 Epithioalkanes: 

Hydrolysis of alkenyl glucosinolates by presence of epithiospecifier protein by affecting the enzyme 

myrosinase functions results in epithioalkanes (Verkerk and Dekker, 2009). 

2.1.4 Myrosinase 

The enzyme myrosinase (β-thioglucosidase, EC3.2.1.147) is located in protein-accumulating cells 

which call myrosin cells (Kissen et al., 2009). In case of tissue damage myrosinase realizes from 

vacuoles (Figure 7) and reacts with glucosinolate.  

 

Figure 7: TEM picture of an idioblastic myrosin cell (M) of R. sativus surrounded by ground tissue cells; mg: 

one of the myrosin grains (Kissen et al., 2009) 

http://www.sciencedirect.com/science/article/pii/S1360138502022732
http://scholar.google.no/citations?user=wv-GYyAAAAAJ&hl=en&oi=sra
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Moisture level, temperature and pH may affect myrosinases activity (Plaipetch and Yakupitiyage, 

2013). Hydrolysis of thioglucoside bonds results in one molecule of glucose and thiohydroxamate-O-

sulfonate which is an unstable compound (Choubdar et al., 2010). Rearrangement of unstable 

compound results in production of glucosinolates hydrolysis products and elementary sulphur (Vig et 

al., 2009). Not only plants but also fungi and bacteria can produce myrosinase-like to hydrolyze 

glucosinolate. Production of myrosinase from GIT microflora (endogenous myrosinase) may affect 

nutritive value of glucosinolate containing feeds (Kiebooms et al., 2012 a,b). 

2.1.4.1 Molecular structure of myrosinase 

The structure of myrosinase molecules consists of glycopeptides (such as thiol groups), disulphids 

and salt bridges and a zinc atom between subunits (Rask et al., 2000; Kumar et al., 2011) (Figure 8). 

It can be connected to other proteins and form a high molecular weight compounds (Rask et al., 

2000).  

Myrosinase has more activity in seeds and seedlings (Bones, 1990). Development stages of mature 

rape plant almost 2 to 5 % of cells are producing and storing myrosinase (Andréasson and Jørgensen, 

2003).  

 

Figure 8: Schematic of myrosinase subunit based on the crystal structure. The Zn
+2

 ion is shown in purple (Rask 

et al., 2000) 

2.1.4.2 Myrosinase properties 

Myrosinase is very pH and temperature sensitive. The heat stability and optimal pH for maximum 

activity of myrosinase differs between different sources. The pH for optimal enzyme activity in 

http://www.sciencedirect.com/science/article/pii/S0079992003800199
http://www.sciencedirect.com/science/article/pii/S0079992003800199
http://www.sciencedirect.com/science/article/pii/S0079992003800199
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mustard and rapeseed is reported between 4.5 and 4.9 (Ludikhuyze et al., 2000) and optimal 

temperature is 60°C (Yen and Wei, 1993). 

Pressure may affect the activation energy of myrosinase. The enzyme is more stable in the pressure 

below 200 MPa and by increasing temperature and pressure; enzymes stability may decrease (van 

Eylen et al., 2007). 

2.1.4.3 Endogenous myrosinase  

The endogenous enzymes may hydrolyze the glucosinolate content of diet and affect the nutritive 

value. The main products of endogenous myrosinases are 5-vinyl-1,3-oxazolidine-2-thione (5-VOT) 

and the thiocyanate ions. These compounds may affect the thyroid glands function and cause 

metabolic problems (Mawson et al., 1994; Gutzweiler, 1996, Kiebooms et al., 2012a). 

Enzymes with myrosinase-like activity have been detected in different species of fungus such as fungi 

Aspergillus sydowi and Aspergillus niger (Ohtsuru et al., 1973, Rakariyatham et al., 2006). Also 

intestinal bacteria such as Enterobacter cloacae and Faracolobactrum aerogenoides have shown 

hydrolysis activity on glucosinolates (Tani et al., 1974; Oginsky et al., 1965; Aires et al., 2009).  

2.1.4.4 Myrosinase inhibitors 

Enzyme inhibitors are molecules which reduce or inhibit enzymes activity by binding the active site 

or non-catalytic site of enzyme. Non-covalent myrosinase inhibitors such as acarbose and nojirimycin 

(Li et al., 2005; Kim et al., 1999) may reduce or inhibit the function of myrosinase by affecting the 

active site. On the other hand some glycosides such as isothiocyanate, epoxides and α-halocarbonyls 

have reactivation function on the enzyme (Marshall et al., 1981). 

The most effective compound which may inhibits myrosinase activity is 2-fluoro-2-deoxy-

glucotropaeolin which makes a covalent glucosyl-enzyme intermediate and deactivates the active site 

of enzyme (Lefoix et al., 2002; Cerniauskaite et al., 2009).  

2.1.4.5 Effects of ascorbic acid and ions on myrosinase activity 

It has been shown that ascorbic acid is able to modulate the function of myrosinase. Accumulation of 

ascorbic acid in high density may inhibit myrosinase function. It can compete with substrate and 

connect to the enzyme irreversibly (Andersson et al., 2009). The effect of ascorbic acid on 
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degradation of different glucosinolates is varying. It may increase the degradation of sinigrin decrease 

the speed of indole glucosinolates hydrolysis such as glucobrassicin (indol-3-ylmethyl glucosinolate) 

and neoglucobrassicin (1-methoxyindol-3-ylmethyl glucosinolate) (Tsuruo and Hata, 1968). 

Metal ions may affect the hydrolysis products. For example, presence of ferrous ions may increase 

nitriles production (Kong et al., 2012). It has been reported that Sn
+2

, Sr
+2

 and Ba
+2

 have been 

strongly activated cauliflower seedling myrosinases while Fe
+3

, Fe
+2

, Zn
+2

 and Cu
+2

 have been 

deactivated myrosinases or reduced enzyme’s activity (Prakash and Gupta, 2012). Also ferrous ions 

may affect epithiospecifier proteins (ESP) activity (Williams et al., 2010). 

2.1.4.6 Epithiospecifier proteins 

Epithiospecifier proteins are small proteins which can regulate myrosinases function by attaching at 

the non-catalytic site of enzyme. Increasing epithionitriles production, decreasing isothiocyanates 

formation and regulate the nitrile formation are some of the functions of ESP. Ions, temperature and 

pH may affect the function of ESP (Williams et al., 2010). Presence of ESP results in rearrangement 

of double bond of isothiocyanate through myrosinase and production of epithionitrile (Rodman, 

1981). Since ESP are heat labile, short term heat treatment may affects their function (Mathusheki et 

al., 2006). Epithiospecifier proteins are located at different cells from myrosinase containing cells and 

at the same cells with glucosinolates (Koroleva et al., 2000; Kissen et al., 2009) (Figure 5). 

2.1.5 Metabolic effects of dietary glucosinolates derivatives 

Intact glucosinolates don’t have negative effect on animal performance; however, glucosinolates 

hydrolysis products may cause metabolic problems in animal fed by diet containing these compounds. 

Goitrogenecity, mutagenecity, hepatotoxicity and nephrotoxicity of glucosinolates hydrolysis 

products have been reported by many investigations (Burel et al., 2000a; Tripathi et al., 2001b; 

Wallig et al., 2002; Tanii et al., 2004). The level of toxicity depends on the type and accumulation of 

glucosinolates derivatives (Wittstock and Halkier, 2002). 

Glucosinolates hydrolysis products may affect palatability of feed. Bitter taste of sinigrin and 

progoitrin reduce FI and causes weak growth performance and production in animal fed by 

glucosinolate containing feed (Traka et al., 2009). Hydrolysis of progoitrin through myrosinase or 

heat treatment increases the bitterness of derivatives more than sinigrin (van Doorn et al., 1998). The 

effect of gluconapin on FI depends on its quantity in feed. It may reduce growth performance by 

decreasing FI (Tripathi et al., 2001a,b). 

http://link.springer.com/article/10.1007%2Fs11101-008-9109-1/fulltext.html#CR62
http://www.sciencedirect.com/science/article/pii/S1360138502022732
http://www.sciencedirect.com/science/article/pii/S1360138502022732
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Goitrogenecity of glucosinolate derivatives is mainly due to production of thiouracil which may 

decrease production of thyroxin (T4) and triiodothyronine (T3) (Courtheyn et al., 2002). 

Thiocyanates, thiourea and oxazolidithione by reducing iodine availability for thyroid may affect its 

function and cause hyperthyroidism (Wallig et al., 2002) (Figure 9).  

 

Figure 9: Mechanism of glucosinolates effect on thyroid (developed from Burel et al., 2001) 

2.1.6 Effect of glucosinolate on fish metabolism 

Tolerance to glucosinolates hydrolysis products differs between different fish species. Inclusion of 

toxic compounds beyond tolerance point of fish may cause metabolic problems. For example snapper 

(Pagrus auratus) can tolerate 2.2–21.8 mol glucosinolate per kg fish body weight per day but 

exceeding this level results in negative effects on growth or thyroid performance (Glencross et al., 

2004; Burel et al., 2000a). 

2.1.6.1 Thyroid responses 

Feeding tilapia by glucosinolates containing diet may affect thyroid functions. It has been reported 

that in comparison with fish fed by glucosinolate free diet, the thyroid follicles had significant taller 

epithelial cells in fish fed by experimental diet the level of T3 and T4 in blood was significantly 

higher than fish fed with glucosinolate free diet (Gatlin et al., 2007; Zhou and Yue, 2010). 

Growth and FI depression, increasing mortality and liver and kidney damages have been monitored in 

fish fed by glucosinolate containing diet (Van Etten and Tookey, 1983; Campbell and Schöne, 1998; 

Tan et al., 2013). 
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2.1.6.2 Immunological responses  

Environmental and nutritional stresses on fish may cause physiological impairment which directly 

affects its immune system (Black and Pickering, 1998). An inappropriate protein source in diet may 

cause nutritional stress in tilapia (Watanabe, 2002). For example presence of ANF in main protein 

source of diet not only reduces growth rate but also affects immune system and reduces disease 

resistance in tilapia due to disruption of immune response (Vazzana et al., 2002).  

There is always a normal level of pathogens in environment which healthy fish is resistance against 

them. By weakening immune system by environmental stresses pathogens may cause acute disease in 

fish population. It is very important to reduce stress in industrial units which have a high density of 

fish in tanks or pools (Bly et al., 1996).  

Garcia and Villarroel (2009) have been demonstrated that feeding frequency may affect immune 

response in tilapia. However, no significant difference was reported between different protein 

sources. They have assessed the level of plasma cortisol as an index for stress measurement (Table 4). 

They have discussed that tilapia is resistance against environmental stresses. However their 

experiment was designed for a short duration and in longer duration bacteria may have enough time 

to inter into macrophages. Different factors such as the number of bacteria in the macrophages, the 

number of white blood cells and mortality may monitor the status of immune system of fish body.  

Intensive large scale aquaculture demands preparing optimal condition. Disease may easily transmit 

between fish in high density. Increasing mortality and feed conversion ratio (FCR) in large scales 

causes a huge financial loss for producers. An optimal diet may keep the immune system on a proper 

condition, prevents poor growth performance, eventual diseases and high mortality. 

Streptococcosis is one of the challenges in tilapia farming which manly causes by Streptococcus, 

Lactococcus and Vagococcus bacteria. The percent of infectivity and mortality for this disease is 

high. It causes many economic losses in many countries on several fish species especially in warm 

water aquaculture such as tilapia (Bowser et al., 1998; Ye et al., 2011; Chen et al., 2012). 

Immunization of fish through vaccination is used when the risk of disease is high. Passive 

immunization may be used in many cases in intensive large scale aquaculture.  
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Table 4: Weight gain, plasma cortisol and phagocytosis results of the four feed type and the two feeding 

frequencies (Garcia and Villarroel, 2009). 

Feed type and feeding 

frequency 

Weight 

gain  

Plasma cortisol (ng 

m l
-1

) 

Phagocytosis
a
 

0 

hpi  

4 

hpi  

24 

hpi 

Soy-2 2 3.07 20.47 5.23 6.44 6.35 

Soy-8 2.61 54.8 5.50 6.46 4.68 

Sun-2 3.09 24.7 5.28 6.53 6.22 

Sun-8 2.46 30.5 5.39 6.37 4.55 

Pea-2 3.03 35.2 5.29 6.57 6.26 

Pea-8 2.64 38.6 5.53 6.35 3.94 

Glu-2 2.71 ND
b
 5.47 6.46 6.02 

Glu-8 2.59 16.6 5.42 6.46 4.49 

a
 Phagocytosis: log n bacteria recovered from macrophages at 0, 4 and 24 h postinfection (hpi). 

b
 ND: not 

determined 

2.1.6.3 Vaccination and immunization 

Vaccination is one of the solutions to reduce mortality. Different methods have been used to produce 

vaccines. Killed and modified live vaccines are popular in aquaculture and provide a long term 

immunization against disease (Garcia et al., 2008).  

To prevent streptococcosis, several vaccines with different formulations have been developed. Eldar 

et al. (1997) reported that formalin-killed Streptococcus iniae vaccine has protective effects on tilapia 

(Pridgeon and Klesius, 2011).  

Immunization of tilapia through toxoid-enriched bacterin has been resulted at different levels of 

protection on different fish size. Immunization of 25gr tilapia resulted in 95.3% survival rate and for 

100gr tilapia the survival rate was reported between 84.2 to 94.7 % (Romalde et al., 1996). Evans et 

al. (2004) founded that different vaccine dosage may result in different survival rate in tilapia.  
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2.1.6.4 Hepatic responses 

Utilization of rapeseed secondary products in fish feed may cause liver damages and changes in 

enzymes status due to presence of ANF (Vilhelmsson et al., 2004). However few investigations have 

been done to assess hepatic damages in tilapia. 

Since liver has important functions on nitrogen metabolism it is crucial to investigate several 

pathways related to protein metabolism which are taking place in liver tissue. Several genes, enzymes 

and metabolic pathways in liver may affect through ANF existing in rapeseed secondary products 

(Vilhelmsson et al., 2004).  

Lin et al. (2010) found that inclusion of 50% RSM in diet reduces growth performance significantly 

in tilapia fed in comparison with fish fed with diet containing SBM or cotton seed meal. They also 

report that RSM causes hepatic damages and changes hepatic factors status. The study showed that 

hepatopancreas, glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and 

superoxide dismutase in liver have been reduced due to negative effect of RSM’s ANF.  

2.1.7 Molecular analysis 

Nowadays, it is possible to observe the function of ANF on several organs in fish body on the 

molecular level. Differences between macromolecules such as proteins, nucleic acids and metabolites 

are possible to assess through several analytical methods such as proteomic and genomic assessment.  

Proteomic analysis results in a quantitative description of protein expression (such as enzymes, 

receptor, or membrane channels). It is possible to detect changes in protein expression after affecting 

by ANF or environmental stresses (Figure 10). Proteomic analysis provides this opportunity to assess 

differences in gene expression after affecting by diseases and environmental stresses (Karim et al., 

2011).  
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Figure 10: Schematic of cellular regulation on protein synthesis 

2.1.7.1 Proteomic analysis vs. genomic analysis:  

Genomic and transcriptomics technologies are good instruments to investigate gene expression. 

Investigation of cellular regulation of mRNA expression from DNA may give valuable data from 

metabolic status of fish. However, mRNA abundance doesn’t translate directly to the protein. Also it 

degrades and disappears in cell in a short time and results from genomic analysis may affect by 

degradation of mRNA. Measurement of protein abundance is directly related to its function 

(Anderson and Anderson, 1998; Pradet-Balade et al., 2001a,b). A proteomic approach which 

investigates the effect of ANF on fish performance may give a more clear view from metabolic status 

and changes than genomic. 

Metabolomic approach is also another way to assess the entire metabolisms in organisms. The 

expression of genes and the function of proteins and the interaction between them result in different 

metabolites. Metabolomic analysis gives opportunity to determine the sum of all metabolites (other 

substances than DNA, RNA or protein) in a biological system: organism, organ, tissue or cell (Müller 

and Kersten, 2003) (Figure 11). Studying the effect of toxic compounds such as glucosinolates on 

several metabolites especially in target tissues like liver and thyroid may helps better understanding 

of function of anti-nutrients in nutritional science.  

http://www.sciencedirect.com/science/article/pii/S096800040001776X
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Figure 11: Genes, proteins, and molecular machines (Isaaaa, 2014) 

It has been reported that majority of glucosinolate are responsible for metabolic problems (Ahlin et 

al., 1993). Several processing methods have been tested to reduce content of glucosinolates and their 

derivatives in rapeseed secondary products. A proper processing may decrease content of toxic 

compounds and improve health and growth performance of fish without negative effect on protein 

and other nutrients bioavailability (Seneviratne et al., 2011; Plaipetch and Yakupitiyage, 2013).  

2.2 Different varieties of rapeseed 

Conventional plant breeding achieves significant successes in manipulating chemical composition of 

rapeseed. The toxic compounds have been reduced by the introduction of genetically modified 

organisms (GMO).  

Several varieties of rapeseed are available which according to the content of unwanted compounds 

are destined for different use (edible or non-food). The variety which is called “zero” contains lower 

erucic acid in comparison with traditional varieties. In “double-zero” variety the content of both 

erucic acid and glucosinolates are reduced (Thompson, 1983). The Canadian variety which is called 

“Canola” is the most common variety to use in the world and contains lower amount of erucic acid 

(2%) and glucosinolates than traditional varieties (Augustine et al., 2013). The content of 

glucosinolate, erucic acid and fibers is reduced in variety which is called “triple-low”, “triple-zero” or 

“Candle”. Lower fiber is due to presence of thinner hull which gives yellow color to seeds in this 

variety. However, the content of unwanted compounds still causes growth and FI depression and 

metabolic problems in monogastric animals (Burel et al., 2001). 
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2.3 Effect of processing on ANF 

It is possible to overcome the limitation for applying rapeseed secondary products as a protein source 

in fish diet by reducing the content of ANF through processing. Several processing techniques such as 

steam stripping, solvent extraction (Das and Singhal, 2005), toasting (Newkirk and Classen, 2002), 

yeast fermentation (Plaipetch and Yakupitiyage, 2013), alkaline treatment (NaHCO3 and NH4HCO3) 

(Barrett, et al., 1998) and acid treatments (HCl) (Tripathy et al., 2001b) may reduce or eliminate ANF 

from rapeseed and decrease the level of toxicity.  

There are some disadvantages for many of investigated methods such as reducing amino acids 

bioavailability and hygienic issues (Plaipetch and Yakupitiyage, 2013). So it is very crucial to define 

a proper and feasible method of processing to improve nutrition value of rapeseed secondary 

products. Some of the chemical and physical treatments which have been applied to overcome 

toxicity of unwanted compounds are discussed below: 

2.3.1 Protein concentration  

Fractionating and concentrating protein from rapeseed secondary products improves the nutritional 

value and reduces unwanted compounds. It has been demonstrated that canola protein isolate is more 

digestible than fish meal protein (Slawski et al., 2013).  

Disadvantage of this method is high costs of processing and expensive products.  

2.3.2 Water and metal ions treatment  

It has been demonstrated that soaking RSM in copper sulphate solution may reduce toxicity of 

glucosinolate derivatives especially by affecting isothiocyanates production (Das and Singhal, 2005). 

It may leads hydrolysis reaction toward production of non-toxic and volatile compounds. The other 

hypothesis for this function is rearrangement of structure of toxic compounds into allylamine or 

thiourea. Growth and thyroid function are improved in monogastric animals (broilers and pig) fed by 

copper sulphate treated RSM in comparison with feed containing untreated RSM (Rouzaud et al., 

2003; Das and Singhal, 2005).  

Disadvantage of this method is related to removing added water and hygienic issues during 

processing.  
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2.3.3 Microwaving 

Preconditioning rapeseed through microwaving at 2450-MHz for 2.5 min reduced glucosinolates 

hydrolysis due to deactivation of myrosinase (Aumaitre et al., 1989). This method reduced growth 

depression and goitrogenic effects on mice and pig fed by rapeseed secondary products (Tu et al., 

2012). 

Disadvantages of this method is that the glucosinolate remains intact may be hydrolyzed by 

endogenous myrosinase and in monogastric animals with longer intestine, toxins may be absorbed 

and cause metabolic problems (Rouzaud et al., 2003). Also glucosinolates in secondary products of 

rapeseed are hydrolyzed during oil processing and myrosinase deactivation may not help to reduce 

toxicity.  

2.3.4 Fermentation 

There are two different methods of fermentation for rapeseed secondary products: Wet fermentation 

and solid state fermentation.  

Plaipetch and Yakupitiyage (2013) demonstrated that utilization of yeast fermented RSM in tilapia 

feed doesn’t have any negative effect on thyroid and growth performance. However in previous 

studies it has been reported that fermentation of RSM through S. cerevisiae cannot eliminate 

glucosinolate since yeast doesn’t produce myrosinase (Chen and Halkier, 1999). Another 

investigation it demonstrated that yeast fermented canola contains soluble toxic compounds from 

glucosinolate hydrolysis which may affect thyroid function and growth performance (McCully et al., 

2008).  

In wet fermentations such as yeast fermentation, hygienic issues, removing added water and drying 

the products after fermentation is still a problem for applying this method in commercial production 

(Plaipetch and Yakupitiyage, 2013).  

Solid state fermentation is processing with microorganism without presence of free liquid. Different 

microorganisms such as Rhizopus oligosporus and Aspergillus sp have been used to detoxify 

rapeseeds ANF. These microorganisms may utilize toxic compound as a source of energy and convert 

them to the non-toxic compounds (Rakariyatham and Sakorn, 2002). However, production of 

unknown toxic compounds through aerobic fermentation may reduce nutritive value of rapeseed 

secondary products. 
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2.3.5 Heat treatment 

Non-enzymatic degradation of glucosinolates hydrolysis products or deactivation of myrosinase by 

heating may improve nutritive quality of rapeseed secondary products. Different heat treatment 

methods such as toasting and cooking have been resulted in lower glucosinolates toxic derivatives in 

comparison with non-heated material (Leming et al., 2004). Conditioning factors such as time and 

moisture may affect the results of treatment. Glencross et al. (2004) demonstrated that utilization of 

toasted RSM improves growth performance in fish (Pagrus auratus). Toasting the RSM in 105 to 

110
o
C may reduce content of glucosinolates up to 40% (Figure 12).  

 

Figure 12: Effect of toasting (107
o
C, min) on glucosinolate content of RSM (Holst-Jensen et al., 2009) 

However, heating has some disadvantages on protein content of rapeseed secondary products. Heat 

treatment reduces lysine bioavailability through Maillard reaction and decreases protein solubility 

(Figure 13). It has been demonstrated that content of glucosinolates affects reduction of lysine 

bioavailability by heat treatment. Optimization of processing factors such as moisture and time may 

reduce negative effects of heat treatment on protein value (Holst-Jensen et al., 2009).  
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Figure 13: effect of heat treatment on protein solubility (Holst-Jensen et al., 2009) 

 

Schöne et al. (2001) have demonstrated that moist-heat treatment affects glucosinolate content of 

rapeseed and RSC. They have report that heat treatment may improve nutritional quality of RSC by 

decreasing glucosinolate content of RSC (Table 5).  

The pressure and moisture level may affect result from moist-heat treatment. Different methods have 

been used for heat treatment by application of moisture and/or pressure. Application of steam is a 

common method to add moisture and temperature to the feed ingredients.  

2.3.6 Extrusion 

Extrusion processing is a combination of applying high temperature (120-130
o
C), high pressure (20-

30 bar) and high content of moisture (25-30%) in a short time (Barrows et al., 2007). Extrusion is 

widely applied in fish feed production intensively. It applies heat, pressure and moisture, and can 

improve nutritive quality of some of the feed ingredients (Burel et al., 2000b). Typically, the ANF 

content of plant protein sources may decreases during extrusion processing. However, extrusion may 

affect chemical composition and bioavailability of amino acids negatively. By optimization of 

extruder parameters such as retention time and screw configuration it may be possible to reduce 

negative effects and improve nutrient quality of plant protein sources (Zarkadas and Wiseman 2005; 

Romarheim et al., 2005). 
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Table 5: Effect of moist-heat treatment on glucosinolate content of rapeseed and RSC (Schöne et al., 1997)  

Experiment 
1-RS

a
 

untreated 

2- RPC
b
 

untreated 

3- RS
a
 soaked

c
 

and dried 

4- RPC
b
 

soaked
c
 and 

dried 

Gluconapin 4.0 3.1 0.4 ND 

Glucobrassicanapin 1.3 0.6 0.1 ND 

Progoitrin 10.8 7.3 1.2 0.1 

Pronapoleiferin 0.2 0.2 ND ND 

4-Hydroxy-glucobrassicin 2.9 4.7 0.2 0.2 

Glucobrassicin 0.1 0.3 ND ND 

Neoglucobrassicin 0.1 0.1 ND ND 

Others 
d
 0.5 2.2 0.2 ND 

Total 19.9 18.5 2.1 0.3 

ND, not detectable (<0.1 mmol/kg DM).
a
 Winter cultivar 'Madora' (one batch).

b
 Winter cultivar 'Falcon' (one 

batch).
c
 Crushed RS or RPC (1 kg) was soaked with 1 litre water in a feed mixer and the mash dried to constant 

weight at 60°C.
 d 

Glucoraphanin, glucoallysin, gluconasturtiin and undetectable glucosinolates 

2.4 Utilization of rapeseed secondary products in fish feed 

Global production of RSM and cake has the second rank behind SBM. On the base of Crude protein 

(CP), RSM and RSC have lower price than soybean. In comparison with soybean, the amino acid 

profile in rapeseed has higher value (Sarwar et al., 1984) and feasibility of rapeseed secondary 

products utilization in fish feed as a source of protein has been proved in previous studies (Plaipetch 

and Yakupitiyage, 2013). 

The harmful level of inclusion of glucosinolate differs between species. Juvenile rainbow trout are 

more sensitive than Chinook salmon to presence of glucosinolate in diet. The total glucosinolate level 

of 158µg/g or more have deleterious effects on salmonids performance (Hilton and Slinger, 1986). 

However, tilapia is more resistant to high content of glucosinolate in diet in comparison with 

salmonids since it is an omnivorous fish and more adapted to plants ANF (Hardy, 2010). 

2.5 Tilapia 

Tilapia (Oreochromis spp) is a common name for wide groups of fresh water fish belonging to cichlid 

fish species from the family Cichlidae. Some species have been commercialized and cultured 

http://en.wikipedia.org/wiki/Cichlid
http://en.wikipedia.org/wiki/Fish
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intensively in lakes, ponds and tanks. One of the common commercial species is Nile tilapia 

(Oreochromis niloticus) which is important in food production sectors in almost 100 countries (Lim 

and Webster, 2006). Annual production of Nile tilapia is rapidly increasing. Production of tilapia 

between years 2005 - 2009 increases from 1.82 to 2.79 million tons. China is the top producer of 

tilapia in the world (FAO, 2010). Figures 14 and 15 represent a global status of tilapia production in 

recent years.  

 

Figure 14: Global aquaculture production of tilapia (Fitzsimmons et al., 2011) 

 

Figure 15: Global production of Nile tilapia (FAO, 2012) 

2.5.1 Advantages of tilapia farming  

Tilapia has unique features which make it a good option to produce in many countries especially in 

developing countries (Table 6). It is an omnivorous fish which can utilize wide range of low quality 

and cost-effective raw materials such as industrial by-products efficiently. It has high growth rate and 
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short generation interval. Tilapia is well resistance to disease and environmental stresses such as 

temperature changes, water quality and level of dissolved oxygen. Tilapia is able to take commercial 

feed immediately after yolk-sac absorption. In natural environments, it does not need too much 

supplementary feed. It is also good candidate for culturing at variety of production systems either and 

geographic regions. It has good marketing opportunity all over the world (El-Sayed, 2006).  

Table 6: The comparison of major farmed fish (Fitzsimmons, 2011) 

Species Geography Consumer Fish meal Systems Fresh water 

or marine 

Salmon Regional Global Moderate Cage Requires 

both 

Carp Global Regional Minimal Pond and cage Fresh water 

Catfish Global Global Minimal Pond and cage Fresh water 

Tunas Regional Global High Cage Marine 

Sea bass, 

cobia, 

snapper 

Global Global High Recirculation 

systems, cage 

Marine 

Tilapia Global Global Minimal Cages, ponds, 

raceways, 

recirculation 

systems 

Either 

 

2.5.2 Optimal feed requirements of tilapia 

Commercial pellets are produced at different sizes from powdered feed for fry up to bigger pellets for 

larger fish. The optimal size of feed for each stage of tilapia life has been shown in Table 7 (Riche 

and Garling, 2003). 

Optimum feeding rate depends on fish body weight and the optimum feeding interval depends on feed 

composition and energy content of feed. Fish size, age and environmental conditions such as culture 

method and water temperature may affect these parameters (Riche and Garling, 2003).  
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Table 7: Suggested standard pellet sizes used for feeding tilapia from hatching to market size (Riche and 

Donald, 2003) 

 

Size of fish (grams) Optimal feed size 

0-3 
“
00” or “0” (powder) 

3-10 1 mm 

10-25 2 mm 

50-40 3 mm 

40-100 3/32 Inch 

Larger than 100 1/8 Inch 

Tilapia is able to use plant protein intensively. Feasibility of utilization of protein sources such as 

soybean secondary products (Yi and Hualin, 2011), lupins (Abdel-Moneim and Yones, 2010), maize 

gluten meal, and cottonseed meal (Rinchard et al., 2002) have been demonstrated in previous studies. 

Optimal protein requirement of Nile tilapia is estimated from 32 to 50% and for larger tilapia 25 to 

30% (El-Saidy et al., 2005; Nguyen, et al., 2009; Abdel-Tawwab et al., 2010).  

Dietary lipid requirements also have been estimated from 5 to 12%. The optimal level of lipid in feed 

is 6% in dry matter (DM) (Lim et al., 2011). 

Tilapia can utilize starch efficiently from 22 to 46% dietary starch while 22% is considered as 

optimum level for juvenile tilapia (Wang et al., 2005). However a recent study at NMBU-IHA 

(Storebakken, personal communication) on tilapia suggested that optimal ratio of protein to starch in 

tilapia feed is 1:1 and the best level of inclusion of nutritive are 30% protein, 30% starch and 6% 

lipid.  

The sinking rate which is regulating by steam added to barrel in extruder during feed processing is an 

important factor. Feeding behavior of tilapia shows that the utilization of sinking pellet is more 

efficient than floating pellet. However, features and feeding behaviors may differ between tilapia 

species (Tidwell et al., 2010). 

3. Aims and response criteria 

Two experiments were conducted to investigate the nutritional value of RSC in comparison with 

SBM in diets for Nile tilapia.  

The aim of the first experiment was to define a level of dietary RSC that ensured that the fish were 

sensitive to changes in nutritional quality of RSC. The aim of the second experiment was to find out if 
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fine milling or a combination of fine milling and autoclaving affected the nutritional value of the RSC 

when used in feed for tilapias at the sensitive level of replacement defined in experiment 1 (Exp.1).  

The key response criteria chosen to assess sensitivity to RSC as a source of dietary protein were: 

FI to assess the acceptability of RSC as a feed ingredient for Nile tilapia, and to find out if different 

doses or treatments of the RSC gave different feed intake patterns.  

Growth and body composition, apparent protein digestibility, net utilization of dietary DM, nitrogen 

and energy for growth to assess the nutritional value of RSC as a source of dietary protein and energy. 

 Thyroid function (Plasma T4 levels) to indicate if myrosinase-induced metabolites of glucosinolates 

represented a physiological challenge to Nile tilapia.  

 

 Uptake and utilization of cationic mineral elements to evaluate if the high concentration of phytic acid 

in the RSC limited mineralization of the fish.  

In addition to the research presented in this thesis, samples have been taken to investigate: 

 If replacing SBM with RSC affects the responsiveness to vaccination against Streptococcus spp. In 

Nile tilapia. This work is done in collaboration with Professor Øystein Evensen at NMBU, and is 

planned to be published jointly with his group. 

 If the replacing SBM with RSC affects to composition of stable isotopes of carbon and nitrogen in 

muscle (slow turnover tissue) and liver (fast turnover tissue) in Nile tilapia, and if this commonly 

used ecological method to assess sources of FI in ecological studies is useful in controlled nutritional 

studies. This work is done in collaboration with the ecology group at University of Juväskulä in 

Finland, and is planned to be published jointly with them.  
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4. Materials and methods 

4.1 Experiment 1: Definition of intolerance level to RSC) in juvenile 

tilapia 

4.1.1 Diets composition and formulation 

Five experimental diets were produced in order to replace CP from SBM with CP from RSC. CP from 

RSC and/or SBM accounted for 53% of CP in the diet (Table 8). The levels of replacements were 0, 

25, 50, 75, and 100%. The calculated composition of the diets, and ratios between nutrients and 

energy is presented in Table 8. The diets were composed according to Table 9.  

Table 8. Calculated chemical composition, and distribution of gross energy (GE) from energy-bearing nutrients, 

and added process water 

Feed code 0% 25% 50% 75% 100% 

Planned composition, kg DM
-1

      

Dry matter (DM), g 883 884 885 886 888 

Crude protein (CP), g 319 319 319 319 319 

Fat, g 70 70 70 70 70 

Starch, g 313 313 313 313 313 

Ratio CP from (SBM+RSC)/Total, % 53 53 53 53 53 

Ratio CP from (RSC)/ (SBM+RSC), % 0 0.25 0.50 0.75 1.00 

      In feed
1      

GE from protein, kJ g
-1

 5.42 5.42 5.41 5.42 5.42 

GE from starch, kJ g
-1

 5.32 5.32 5.33 5.32 5.32 

GE from lipid, kJ g
-1

 2.60 2.58 2.58 2.60 2.61 

GE from nutrients, kJ g
-1

 13.34 13.32 13.33 13339 13.34 

CP/GE g/kJ 24 24 24 24 24 

      
Added water during processing, g kg

-1
 300 350 400 450 500 

1
Assuming 17 kJ g

-1
 CP or starch and 37 kJ g

-1
 lipid. 

The diet formulation is presented in Table 9. Main ingredients used in this experiment were SBM, 

RSC, corn gluten meal and pre-gelatinized potato starch. The SBM was diluted by cellulose to 

achieve the same level of protein as found in the RSC, in order to simplify formulation of the diets. 

Rapeseed oil was the main source of dietary lipid. All diets were supplemented with minerals and 
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vitamins to cover the requirements (NRC, 1993), and essential amino acids to match the whole body 

amino acid profile of Nile tilapia (Gao, 2011). Sodium alginate was used as a binder and yttrium 

oxide as inert marker for digestibility measurement.  

Table 9. Formulation of the experimental diets 

Feed code 0% 25% 50% 75% 100% 

Ingredient, g kg
-1

      

SBM
a
 334 251 167 84 0 

RSC
b
 0 116 230 345 460 

Corn gluten meal
c
 207 208 209 210 210 

Gelatinized potato starch
d
 286 284 283 281 280 

Cellulose
e
 73 55 37 18 0 

Rapeseed oil
f
 49.0 36.0 24.0 12.0 0.0 

Threonine
g
 0.7 0.3 0.0 0.0 0.0 

Methionine
h
 4.7 4.4 4.1 3.7 3.4 

Phenylalanine
i
 0.4 0.7 1.0 1.2 1.5 

Taurine
j
 1.5 1.5 1.5 1.5 1.5 

Lysine
k
 3.3 3.4 3.5 3.5 3.5 

Tryptophane
l
 0.0 0.1 0.2 0.2 0.3 

Mono calcium phosphate
m

 10.0 10.0 10.0 10.0 10.0 

Premix
n
 10.0 10.0 10.0 10.0 10.0 

Yttrium oxide 0.1 0.1 0.1 0.1 0.1 

Vit-C 35%
p
 0.1 0.1 0.1 0.1 0.1 

Sodium alginate
q
 20.0 20.0 20.0 20.0 20.0 

Total 1000 1000 1000 1000 1000 

a
Soybean meal, Denosoy, Denofa, Fredrikstad, Norway. 

b
Rapeseed cake (Expeller-pressed presscake from 

“double low” winter rapeseed, Mestilla Rapeexpeller "00", UAB Sekargas IR Co., Klaipeda, Lithuania, supplied 

by Felleskjøpet Rogaland & Agder, Stavanger, Norway; origin of material not further specified by the supplier). 
c
Maize gluten, Cargill 13864. 

d
Gelatinized potato starch, Culinar, LYGel F60. 

e
Alpha-Cel™ C100, International 

Fibre Europe NV, Belgium. 
f
Food grade Eldorado, Oslo, Norway. 

h
Adisseo Brasil Nutricao Animal Ltda, Sao 

Paulo, Brazil. 
j
Taurine-JP8, Qianjiang Yongan Pharmaceutical Co., Ltd., Hubei, China. 

n
Contents per kg: 

Vitamin A 2500.0 IU; Vitamin D3 2400.0 IU; Vitamin E 0.2 IU; Vitamin K3 40.0 mg; Thiamine 15.0 mg; 

Riboflavin 25.0 mg; d-Ca-Pantothenate 40.0 mg; Niacin 150.0 mg; Biotin 3.0 mg; Cyanocobalamine 20.0 g; 

Folic acid 5.0 mg; Pyridoxine 15.0 mg; Vitamin C: 0.098 g (Stay-C 35, ascorbic acid phosphate, DSM 

Nutritional Products, Basel, Switzerland); Cu: 12.0 mg; Zn: 90.0 mg; Mn: 35.0 mg; I: 2.0 mg; Se: 0.2 mg; Cd = 

3.0 g; Pb = 28.0 g; total Ca: 0.915 g; total K 1.38 g; total Na 0.001 g; total Cl 1.252 g; Trouw Nutrition, LA 

Putten, The Netherlands. 
o
Metal Rare Earth Limited, Jiaxing, China. 

p
Stay-C 35, ascorbic acid phosphate, DSM 

Nutritional Products, Basel, Switzerland. 
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4.1.2 Diet production 

SBM, RSC and corn gluten meal were ground by a laboratory mill (Model ZM 100, Retsch 

Technology GmbH., Haan, Germany) with 1mm screen size. All ingredients were mixed in a spiral 

dough mixer (Moretti Forni Grain, Italy) for 15 min before processing. Water (heated to 80
o
C) and 

rapeseed oil were added to the ingredients during mixing.  

Additional process water increased along with increasing RSC inclusion in diet. In diet with 0% 

replacement, the additional water was 30% of the weight of dry mix of ingredient. By each 25% 

replacement of CP from SBM by RSC, 5% more water was added to dry mix of ingredients to 

achieve proper lubrication during processing (Table 8).  

All diets were mixed and passed 3 times through a pasta extruder (P55DV, Italgy, Carasco, Italy) at 

NMBU. The temperature of the die was 45
o
C. During the two first passings (conditioning), a 4-mm 

die was used. During the last passing, diets were shaped during 2.5 mm and 4 mm dies. The knife 

speed was adjusted to produce short (3 mm) and long (4 mm) pellets shaped through the 4-mm dies, 

in order to have optimal pellet size as the tilapias grew larger. Pellets were dried at 54
o
C until the 

moisture content was approximately 10%.  

A 100 g representative sample from each diet was taken for chemical composition analysis. 

4.1.3 Fish keeping facilities 

The experiment was conceded at the fish laboratory of NMBU, between August 2013 and January 

2014. The Nile tilapias were hatched at the fish laboratory and fed on a commercial diet (Aller Aqua, 

Denmark) until the individual body weight was approximately 20 g. The broodstock was GIFT tilapia 

(Eknath et al., 1993) originating from the 12
th
 generation of selection for rapid growth by Genomar 

AS (Oslo, Norway). The experiment lasted for 6 weeks. 

Fish were distributed randomly to 10 tanks (size: 70×50×50 cm) with 20 fish per tank and 

approximately equal biomass for all tanks (398±2g (mean±s.e.m.), with a mean fish weight of 19.9 g).  

The average of water temperature during experiment was 27
o
C. Water flow for all tanks kept 

approximately equal and the average was 150 l min
-1

. Dissolved oxygen was approximately 7.5 mg
-1

 

which was measured daily online by oxygenmeter (Oxyguard Commander, DO probe, Farum, 
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Denmark) and ammonia which was 0.7 mg l
-1

 (Merck 114752, Spectroquant NOVA 60) once per 

each 3 weeks.  

4.1.4 Feeding and FI assessment 

Recovery of dietary DM in feed collected after passing through the system was determined as 

described by Helland et al. (1996) for each diet and each tank, receiving the same feeds as being used 

in the experiment.  

Fish fed each of the five diets in two replicate tanks. An electrically driven band feeder was allocated 

for each tank. Fish were fed 3 times per day at 9 am, 1 am and 5 pm, each meal lasting 40 min. The 

fish were fed approximately 30% in excess of appetite. The 2.5 mm pellets were fed during the 2 first 

weeks, 4 mm short pellets were fed during the next 3 weeks, and the 4 mm long pellets were applied 

during the last week.  

The cylindrical tanks with conically shaped bottoms were constructed to allow FI estimation 

according to Helland et al. (1996). Uneaten feed was collected by strainers under the water outlet 

during and for 15 min after each feeding. Then, the daily dietary DM intake was assessed by drying 

the daily collection of uneaten feed overnight at 105
o
C and correcting for DM recovery.  

4.1.5 Sampling and sample preparation 

An anesthetic agent (MS-222, 0.1 g l
-1

 water, buffered with NaHCO3, 0.1 g l
-1

 water, Western 

Chemical Inc. Washington USA) was used before weighing and sampling. Fish were weighed by tank 

at 0 and 6 weeks.  

Faeces for digestibility assessment were collected on the last day of feeding, from the last 10 cm of 

the distal intestine by dissection from 5 fish per each tank. All collected faces were pooled by tank, 

stored at -20
o
C and subsequently freeze-dried (Beta 1-6, LMC-2, Christ, Osterode, Germany) at -56

o
C 

and 25 mBar for 96 hours. Freeze-dried faces were homogenized with a pestle and mortar.  

Five fish were randomly taken from each tank and the individual body weight liver weights were 

measured. Sampling for liver weight was done simultaneously with faces collection, in fish that were 

not starved.  
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Blood sample was taken from caudal vein of 5 fed fish per tank, using heparinized syringes. The 

blood samples were centrifuged within 20 min after collection for 10 min at 3000*G to separate 

plasma. One m1 of plasma from each fish was pipetted into each of two pooled samples per tank and 

stored at -20
o
C. One sample was used for analysis and one sample kept as backup.  

Two samples, each containing three fish were taken randomly at the beginning of the experiment for 

whole body composition analysis. One sample of five fish was taken from each tank after 6 weeks of 

feeding. Fish were starved for 24 hours before each sampling. The samples were ground in a 

laboratory blender. Representative samples were taken and kept in freezer at -20
o
C and subsequently 

freeze-dried. Freeze-dried samples were ground along with CO2 ice in order to efficiently grind the 

tough skin of the tilapias along with the other body components.  

4.2 Experiment 2: Fine milling and autoclaving of RSC  

The experiment was planned and analyzed according to a model for one-way analysis of variance. On 

the base of results from Exp.1, 50% replacement level seemed sensitive to nutritive quality of the diet. 

So the diet formulation for Exp.2 was based on the diet formulation with equal contribution of CP 

from RSC and SBM (Table 9). 

Three diets were produced in the second experiment, all with the same formulation (50%, Table 9), 

except for the treatment of the RSC. One diet utilized RSC ground through a 1 mm screen (D 1.0), the 

same as in Exp1. In the second diet (D 0.5) the RSC was ground through a 0.5 mm screen. For diet 3, 

the RSC was ground to 0.5mm and autoclaved for 10 min in 120
o
C and 0.11 MPa (HiClave HV-50, 

HMC Europe, GmbH, Tüssling, Germany) (D 0.5+A). All facilities and the other material which 

were used in Exp.2 for diet production were the same as Exp.1. Samples from each diet were taken 

for nutrients analysis.  

The 3 diets were each fed to 3 replicate groups of tilapia. Each tank contained 20 fish to similar 

weight and age. The average biomass in each tank was (747.5±7.5 g (mean±s.e.m)). The experiment 

lasted for 3 weeks. Feeding, FI assessment and sampling were the same as in Experiment 1.  

4.2.1 Chemical analysis  

All diet samples were ground with a pestle and mortar and analyzed for DM (105
o
C), CP (Kjeldahl, 

1883), lipid (HCl hydrolysis followed by diethyl ether extraction (Commission dir.98/64/EC)), starch 

(McCleary et al., 1994), ash (550
o
C, overnight), yttrium and mineral elements (Ca, P, Mg, Mn, Zn) by 
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ICP and gross energy (Bomb calorimeter Parr 1281, Moline, Illinois, USA), Amino acids (except 

tryptophan) were analyzed according to EC (98/64). Tryptophan was analyzed according to 

EC (2000/45). In addition, the diets from Exp.2 were analyzed for free glucose content, by the same 

colorimetric reaction employed to quantify glucose in the starch analysis.  

Freeze dried whole body samples were analyzed for DM, protein, ash, mineral elements (to be 

reported when the results are published) and gross energy, by the same methods as used for diets. 

Lipid analysis for samples from freeze-dried initial and final whole body was done without HCl 

hydrolysis. Freeze dried faeces were analyzed for nitrogen by Dumas method, yttrium and mineral 

elements (Ca, P, Mg, Mn, Zn) by ICP.  

Blood plasma samples were analyzed for free thyroid hormone (T4) by RIA (dog assay, method 

developed from: Lindstedt et al., 1994; Hay et al., 1991), and plasma minerals (inorganic phosphate, 

Ca, Mg, Mn, Zn) by ICP. 

Analyses on blood plasma were done by NMBU Central Laboratory in Oslo. ICP analyses on feeds, 

feces and whole bodies, and Dumas analysis were done by Eurofins, Moss, Norway. Dietary glucose 

and tryptophan were analyzed by Master Lab, Putten, The Netherlands. Bomb calorimetry and free 

glucose in the diets from Exp.2 were done by NMBU-IHA. The rest of the analyses were performed 

by Skretting ARC, Stavanger, Norway. 

4.3 Calculations and statistical analyses 

Daily feed intake (g DM) was calculated as: DFI =DM of daily feed (g) – (DM of daily uneaten feed 

(g)/recovery factor, RF), where the RF was defined as Dietary DM recovered from outlet 

water/Dietary DM supplied in a tank without fish. 

Cumulative feed intake (CFI) was calculated as the sum of DFI over the feeding period. 

Weight gain (WG) was calculated as: Final average fish weight (FW, g) – Initial average fish weight 

(IW, g). 

Feed Conversion Ratio (FCR) for the whole feeding period was calculated as: FCR= CFI/WG. 

Daily feed intake on Day i, in percent of estimated fish weight (PDFIn) was calculated as:100* DFIi / 

(FWi-1+DFIi-1 / FCR).  
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Protein or energy retention (%) was calculated as: 100*(R in gain/R in CFI), where R in gain was 

calculated as (IW*Rinitial) – (FW*Rfinal), with R denoting the concentration of energy (kJ) or CP (g) in 

whole fish body and R in CFI was the concentration in DM.  

Apparent nitrogen or mineral digestibilities (AD, %) were calculated as: 100 – ((100*Yttrium in feed 

(mg kg
-1

) / Yttrium in feces (mg kg
-1

))*(R in feces (kg
-1

) / R in feed (kg
-1

))), where R is the 

concentration of a nitrogen or a mineral (g kg
-1

). 

Exp.1 was statistically analyzed by linear or 2
nd

 degree polynomial regression analysis in MS 

EXCEL, depending on which model gave the highest R
2
. Only results with R

2
>0.35 were presented as 

graphs. If the R
2
 values were <0.35, the results were presented as means±s.e.m. of all observations 

(n=9). Exp.2 was analyzed by one-way analysis of variance by the General Linear Models procedure 

in SAS (SAS, 1991). Significant (P<0.05) differences were ranked by P-diff under LSmeans in SAS, 

and were indicated by different superscript letters.  
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5. Results 

5.1 Experiment 1: Definition of intolerance level to RSC in juvenile tilapia 

5.1.1 Chemical analysis of experimental diets 

The composition of all diets used in Exp.1 is shown in Table 10. Different additional water during 

processing resulted in difference in content of moisture in different diets. The content of CP, lipid, 

ash, minerals and essential amino acids in all diets were almost the same and didn’t show notable 

differences by increasing the inclusion of RSC in diet formulation. Also no notable differences were 

observed between expected composition from formulation and the analyzed diets.  

Table 10. Analyzed composition of the diets used in Exp.1 

 Dietary ratio CP from RS:CP from RSC+SBM, % 

 0 25 50 75 100 

Dry matter (DM), g kg
-1

 886 889 869 934 958 

In DM, kg
-1

      

Crude protein, g 326 322 317 328 313 

Lipid, g 78 76 73 74 70 

Starch, g 345 307 334 322 306 

Ash, g 54 54 54 52 52 

Calcium% 8.5 8.7 8.2 7.7 7.7 

Phosphorus% 9.5 9.6 9.7 9.7 9.9 

Magnesium% 1.9 2.1 2.4 2.5 2 

Manganese, mg 74 82 80 75 74 

Zinc, mg 311 316 318 324 312 

Yttrium, mg 67 81 62 55 89 

Energy , MJ 19.2 19.2 19.4 19.5 19.4 

      

Essential amino acids, g       

Arginine 17 16 15 15 14 

Histidine 7 7 7 7 7 

Isoleucine 13 13 13 12 12 

Leucine 35 35 35 34 33 

Lysine 15 15 15 14 14 

Methionine 10 10 10 10 10 

Phenylalanine 17 16 18 16 15 

Threonine 12 12 11 11 11 

Valine 14 14 14 14 14 

Tryptophan     3        3       3       3       3 

Semi EAA      

Tyrosine 12 11 12 11 10 

Cyst(e)ine 5 5 6 6 6 

Total AA 317 311 311 302 293 

 



50 

 

5.1.2 Feed intake 

The calculated CFI intake shows a gradual reduction along with increasing the level of replacement of 

CP from SBM with RSC up to 50% and after this point tended to be constant. Thereafter, the 

regression shows a flat pattern up to 100% replacement of CP (Figure 16). This relationship was best 

explained by a second degree polynomial regression (CFI = 0.003RSC
 2

 - 0.4169RSC + 57.76, R² = 

0.59). 

 

Figure 16. CFI intake over 6 weeks of feeding of the tilapias, (mean ± s.e.m. of 2 tanks) 

 

5.1.3 Weight gain and survival  

By increasing the inclusion of RSC in diet weight gain tended to decrease sharply up to 50% 

replacement, followed by a flat response for higher inclusion levels (Figure 17). This relationship was 

best explained by a second degree polynomial regression (Gain = 0.0019RSC
 2

 - 0.3382RSC + 

55.986, R² = 0.63). 
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Figure 17. Weight gain (mean ± s.e.m. of 2 tanks) of the tilapias during 6 weeks feeding, (mean ± s.e.m. of 2 

tanks). Mean start weight: 398±2g (n=10 tanks). 

Five fish (2.5%) died during the experiment in treatments fed by 0%, 25% and 100% replacement of 

CP from SBM with RSC. Mortality was not systematically related to the different diets. 

5.1.4 Weight gain of the tilapias in relation to feed intake 

The relation between weight gain and CFI followed a 2
nd

 degree polynomial pattern (CFI= 0.0254 

gain
2
 – 1.539 gain + 63.323, R² = 0.84) (Figure 18). 

 

Figure 18. Weight gain of the tilapias in relation to CFI 
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5.1.5 Feed conversion ratio  

The calculated FCR values for all treatments were almost the same and ranged from 0.9 to 1.2. By 

increasing the level of inclusion of RSC in diet the regression line is almost flat up to 75% 

replacement of CP from SBM with RSC and after that the FCR value increases mildly for 100%. 

However no significant difference was seen between FCR for diet with 100% replacement and the 

other treatments. The best explanation for this ratio was a second degree polynomial regression (FCR 

= 4E-05RSC
 2 

- 0.0025RSC + 1.021, R² = 0.63) (Figure 19). 

 

 

Figure 19. Feed conversion ratio (FCR, g DM intake (g gain)
-1 

of the tilapias, (mean ± s.e.m. of 2 tanks) 

5.1.6 Daily feed intake in percent of estimated body weight 

Daily feed intake in percent of estimated daily body weight during the first three weeks of feeding is 

presented in Figure 20. Three different DFI patterns were observed. Tilapias fed the diet without RSC 

rapidly approached DFI of 4%, and had no decline in DFI after pellet size was increased at day 6. All 

dietary treatments with RSC showed higher variability in DFI than the fish fed the diet without RSC. 

The fish fed diets with 25 to 75% replacement levels approached 4% DFI at the same rate as the ones 

fed the diet without RSC. Their DFI, however, declined after this. Tilapias fed the diet with 100% 

replacement had lower initial DFI (2% of BW) than the other groups (3%), and used 3 weeks to 

approach 4% DFI. 
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Figure 20. Daily feed intake (DFI, g DM) in percent of estimated body weight (BW, g) of the tilapias during the 

first 3 weeks of feeding, (mean ± s.e.m. of 2 tanks). 
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5.1.7 Liver weight to body weight 

Liver in percent of whole body weight is presented in Figure 21. The ratio on liver weight to body 

weight increased from 0% replacement up to 50% replacement and after this point tended to reduce 

up to 100% replacement. (Liver weight percent = - 0.0289 RSC
2
 + 0.0324 RSC + 0.0328, R² = 0.38). 

 

 

 

Figure 21. Liver, % of body weight, mean ± s.e.m. of 2 tanks 

 

5.1.8 Blood plasma minerals and thyroid hormone concentrations 

None of the plasma mineral compositions were significantly (P>0.05 by regression analysis) affected 

by the dietary ratio of CP from rapeseed vs that from soy:  

Inorganic phosphate: Regression R
2
=0.075; mean±s.e.m., n=10 (5 diets, 2 replicates): 2.69±0.09 mM. 

Calcium: R
2
=0.14, 3.54±0.11 mM. 

Magnesium: R
2
=0.073, 1.25±0.01 mM. 

Zinc: R
2
=0.003, 644±9 µM. 

A similar lack of significant effects of dietary ratio between dietary RSC and SBM was seen for free 

T4 (thyroid hormone) in blood plasma: R
2
=0.034, 19.7±1.7 pM. 
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5.2 Whole body compositions 

Whole body protein did not follow any specific pattern related to the dietary treatments (R
2
=0.34 for a 

2
nd

 degree polynomial regression). The protein concentration in tilapias at the beginning of the 

experiment (g kg
-1

, mean±s.e.m., n=2), crude protein: 144±4.7. The mean concentration of CP in the 

fish at the end of the experiment was 146±1 g kg
-1

 (n=9 tanks). 

There was a tendency that whole body lipid followed a 2
nd

 degree polynomial development in 

response to dietary RSC inclusion (Figure 22): Whole body lipid, g kg
-1

= 0.005 RSM
2
 - 0.548 RSM + 

119.13, R² = 0.36. The initial whole body lipid concentration in the fish was 94.0±1.6 g kg
-1

.  

 

 

 

Figure 22: Whole body lipid concentration in the tilapias after 6 weeks of feeding (g kg
-1

, mean±s.e.m., n=2). 

 

The same pattern became more evident for whole body energy concentration (Figure 23): Whole 

body energy, kJ kg
-1

= 0.0002 RSC
2
 – 0.0284 RSC + 8.5057, R² = 0.53. The initial whole body energy 

concentration was 6.23±0.02 kJ.  
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Figure 23: Whole body energy in the tilapias after 6 weeks of feeding (kJ kg
-1

, mean±s.e.m., n=2). 

 

 

The whole body ash concentration (g kg
-1

) declined with increasing concentration of RSC in the diet 

(Figure 24; Whole body ash, g kg
-1

 = 0.0003 RSC
2
 – 0.0614 RSC + 39.522, R² = 0.45). The initial 

value was 32.7±1.1 g kg
-1

. 

 

 

Figure 24: Whole body ash in the tilapias after 6 weeks of feeding (g kg
-1

, mean±s.e.m., n=2). 
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5.2.1 Nutrient digestibilities and retentions 

Neither the apparent digestibility (AD) of crude protein nor the apparent absorption (AAb) of mineral 

elements were notably affected by dietary RSC inclusion. The R
2
 values from linear functions and 

mean±s.e.m. (n=9) were as follows: 

Nutrient  R
2
  AD or AA  

(%, mean±s.e.m.) 

Crude protein 0.15  73.4±1.8 

Calcium  0.16    1.8±7.9 

Phosphorous 0.01  51.4±3.6 

Magnesium  0.14  0.45±0.06 

Manganese  0.14  99.6±0.1 

Zinc  0.0  100±0 

 

The same lack of effect of dietary inclusion of RSC was observed for retention of crude protein 

intake: R
2
=0.27, mean±s.e.m.=44.3±0.8%. The energy retention (Figure 25) tended to follow a 2

nd
 

degree polynomial pattern (Energy retention, % = 0.0005 RSC
2
 – 0.1239 RSC + 46.109, R² = 0.39). 
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Figure 25: Energy retention (% of GE intake) during 6 weeks of feeding (g kg
-1

, mean±s.e.m., n=2). 

 

5.3 Experiment 2: Effect of fine milling and steam treatment on 

nutritional value of RSC. 

5.3.1 Chemical analysis of experimental diets 

The composition of all 3 different diets used in Exp.2 is shown in Table 11. No significant difference 

was seen among the content of CP, lipid, ash, minerals and essential amino acids in all three diets. 

The composition of diet with 50% of replacement of CP from SBM to CP from RSC in Exp.1 did not 

have any significant difference in the level of inclusion of nutrients with diet D 1.0 in Exp.2. The 

main difference between the expected composition from formulation and the diet analyzes was that 

the concentration of starch declined with increasing dietary concentration of RSC. The content of 

glucose in Table 11 is measured for different diets in Exp.2. Content of CP, starch, ash, lipid, 

minerals, energy, essential amino acids and glucose content of experimental diet are shown in Table 

11.  
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5.3.2 Survival, feed intake, weight gain and feed conversion 

No fish died during the 3 week experiment. 

CFI, weight gain and FCR for tilapias fed diets with equal amounts of CP from SBM and RSC, with 

the RSC milled through 1.0 mm dies (D 1.0), 0.5 mm dies (D 0.5), or milled through 0.5 mm dies and 

autoclaved (D 0.5+A) are presented in Table 12.  

CFI and gain in tilapia fed the D 0.5+A was significantly (P<0.05) lower than the other groups. No 

significant difference was seen for FRC among the dietary treatments. The percent of energy retention 

in fish fed by different experimental diets did not indicate significant difference.  

 

5.3.3 Daily feed intake in percent of estimated body weight 

Daily feed intake in percent of estimated body weight during the three weeks trail is presented in 

Figure 27. No notable difference in DFI pattern was observed among the three dietary treatments. The 

drop in DFI in treatments fed with D 0.5+A is sharper than the other treatments. All three dietary 

treatments reached 4% DM intake at one week, and maintained their DFI at this level for the two 

subsequent weeks.  
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Table 11: Analyzed composition of the diets used in Exp.2 

Diet D 1.0 D 0.5 D 0.5+A 

Composition, kg-1    

Dry matter (DM), g 919 782 824 

In DM    

Crude protein, g 316 314 324 

Lipid, g 728 719 749 

Ash, g 53 54 54 

Calcium, g 8.1 8.2 8.2 

Phosphorus, g 9.8 9.9 9.9 

Magnesium, g 2.3 2.4 2.3 

Manganese, mg 76.4 79.0 77.0 

Zinc, mg 311 320 313 

Yttrium, mg 53 53 59 

Energy, MJ 20.0 20.2 19.5 

Free glucose, g 3.1 4.1 4.5 

Amino acids, g    

EAA    

Arginine 16 15 16 

Histidine 8 8 8 

Isoleucine 13 13 13 

Leucine 36 36 38 

Lysine 15 15 15 

Methionine 10 10 10 

Phenylalanine 17 17 17 

Threonine 12 12 12 

Valine 14 15 15 

Tryptophan 30 30 32 

Semi EAA    

Cyst(e)in 60 60 60 

Tyrosine 12 11 13 

Total AA 316 318 325 

1
Essential amino acids 
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Table 12. Cumulative feed intake (CFI), weight gain and feed conversion  

Diet D 1.0 D 0.5 D 0.5+A Pooled s.e.m P<F
1 

Feed intake (CFI), g DM fish
-1

 46.1
b 

43.9
b 

39.3
a 

1.1 0.013 

Start weight, g fish
-1

 37.4 37.21 37.45 0.5 0.20 

Gain, g fish
-1

 44.5
b 

43.1
b 

37.5
a 

1.2 0.0075 

FCR, g DM intake (g gain)
-1

 1.04 1.02 1.06 0.01 0.37 

1
Different superscript letters

a,b
 indicate significant (P<0.05) differences, ranked by P-diff in the LSmeans 

procedure in SAS (1991). 

 

The relation between weight gain and CFI followed a linear pattern: Gain = -1.0096 FI – 2.00; R² = 

0.87 (Figure 26).  

 

Figure 26. Linear regression of CFI on weight gain 
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Figure 27. Daily dietary DM intake, % of estimated biomass (mean±s.e.m., 3 replicates per diet) 
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5.4 Whole body composition, apparent protein digestibility, and 

retentions of crude protein and energy 

 

Whole body chemical composition and retention of protein and energy of the tilapias is presented in 

Table 13. The content of DM and CP in tilapia fed the D 0.5+A was significantly lower than that in 

the two other treatments. Also the retentions of energy crude protein into growth were significantly 

lower for the fish fed the diet with autoclaved RSC than for those who received D 0.5 or D 1.0.  

Table 13. Liver to body weight (BW) ratio, whole body composition, protein digestibility, energy and protein 

retentions  

Diet D 1.0 D 0.5 D 0.5+A Pooled s.e.m P<F 

Liver BW
-1

, % 2.7 2.3 2.8 0.1 0.33 

 
   

  

Body composition
2
, kg

-1
 

   
  

  Dry matter (DM), g  291
b
 287

b
 267

a
 4.3 0.013 

  Crude protein (CP), g 145
b
 143

b
 138

a
 1.1 0.0063 

  Lipid, g 99 97 88 2.8 0.24 

  Ash, g 34 34 33 0.2 0.19 

  Energy, MJ  8.2 8.0 7.9 1.1 0.9 

      

Apparent CP digestibility, % 75.0 76.4 69.6 2.0 0.41 

      

Retention, % of intake      

  CP
3 

43.2
b
 42.8

b
 38.1

a
 0.9 0.0019 

  Energy 44.1
b
 45.0

b
 38.0

a
 1.3 0.026 

1
Different superscript letters

a,b
 indicate significant (P<0.05) differences, ranked by P-diff in the LSmeans 

procedure in SAS (SAS, 1991). 
2
Initial values (mean±s.e.m., n=2, kg

-1
): DM, 250±3 g; CP, 147±2 g; Lipid, 

65±0.2 g; Ash, 34.6±0.2 g; Energy, 6.7±0.1 MJ ; 
3
Only 2 replicates per diet due to limited amounts of feces 

sample. 

 

5.4.1 Apparent mineral absorption and blood plasma analysis 

Calcium displayed negative values for apparent absorption in diet D 0.5+A, which tended (P=0.073) 

to differ from the other treatments. No significant differences in apparent absorption of P, Mg, Mn 

and Zn was observed. The dietary content of Mn and Zn was completely absorbed for all diets.  

The level of minerals (Ca, Mg, Zn and inorganic P) in blood plasma of tilapia fed by different 

experimental diets have no significant difference (P>0.05). There was, however, a trend 

(0.05<P≤0.10) towards the concentration of zinc being lower in the plasma of tilapias fed the two 



64 

 

diets with RSC ground at 0.5 mm than in the fish fed a diet with RSC ground by 1.0 mm dies. No 

significant difference was observed for thyroid hormone (Table 14).  

Table 14. Plasma thyroid hormone (T4), apparent mineral absorptions, and plasma mineral concentrations  

Diet D 1.0 D 0.5 D 

0.5+A 

Pooled 

s.e.m 

P<F
 

Free plasma T4, pM 23.7 22.7 15.0 2.9 0.48 

      

Apparent mineral 

absorption, % 

     

  Ca 21.6 3.7 -9.5 5.9 0.073 

  P 61.6 56.7 51.4 2.3 0.20 

  Mg 59.2 60.3 55.4 2.2 0.69 

  Mn 99.9 99.9 99.9 0.0 1.0 

  Zn 99.9 99.9 99.9 0.0 1.0 

      

Plasma minerals      

  Ca, mM 3.4 3.3 3.1 0.08 0.30 

  Inorganic P, mM 3.4 2.5 2.4 0.3 0.27 

  Mg, mM 1.4 1.3 1.3 0.03 0.16 

  Zn, µM 590 539 530 12.3 0.071 
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6. Discussion  

6.1 Experiment 1: 

6.1.1 Diet formulation and processing 

By increasing RSC inclusion in the feed formulation, viscosity of the mixed ingredients was increased 

during feed processing. This in term necessitated increased water addition in order to achieve 

satisfactory technical quality of the pellets. The increased viscosity probably is due to differences 

between content of soluble NSP such as pectic polysaccharides between RSC and SBM (Thakur et 

al., 1997; Bach-Knudsen, 2001). It can be also realized by difference between water binding 

properties of proteins in SBM and RSC. Moreover, the added oil to diet composition was decreased 

along with increasing the level of RSC.  

6.1.2 Nutritional responses to replacing CP from SBM with CP from RSC 

The relationship between CFI and weight gain is demonstrated with a second degree polynomial 

regression. However, this pattern was strongly driven by one point (59.5, 63.9), one of the 

observations from the treatment fed RSC free diet. By removing this observation, the regression line 

will turn to a linear pattern with the following equation: FI = 0.6809 gain + 15.521, R² = 0.69.  

This apparently linear relationship between CFI and weight gain demonstrated that FI was the main 

factor to explain differences in growth of the tilapias. In the first experiment, CFI and growth are 

decreasing along with increasing inclusion of RSC in diet up to 50% replacement (23% RSC in diet) 

and after this level remained constant. It can be assumed that fish may adjust the unwanted 

compounds entry to the body with livers capacity to detoxify them up to 50%. After 50% 

replacement, energy requirements of body may not allow fish to reduce CFI since the ratio of DP 

(digestible protein) to DE (digestible energy) is kept almost the same in all diets. By increasing the 

level of toxic compounds entry to body, tilapia may need more energy and protein secretion (enzyme) 

to detoxify and overcome anti-nutritional effects of them. It may increase maintenance energy 

requirements in tilapia in comparison with those are receiving lower percent of RSC from diet and 

may affect FI after 50% replacement. It can be assumed that the threshold effect in CFI at 50% 

replacement may be due to increasing energy requirements for maintenance. Bitterness of certain 

glucosinolates hydrolysis products such as goitrin is known responsible for poor palatability and FI 

depression (van Doorn et al., 1998; Mithen et al., 2000).  
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Presence of toxic components in diet which can negatively affect metabolism may cause a steady 

increase in FCR value (Zhou and Yue, 2010). However, no significant difference was seen in FCR 

among different treatments. However, this value tended to increase mildly after 75% replacement 

non- significantly. A constant FCR was seen in the experiment performed by Luo et al. (2012) along 

with increasing the level of RSM in diet.  

The low and similar FCR along with steady decline in CFI may indicate that the content of 

glucosinolates and their hydrolysis products in RSC used in this experiment did not have any toxic 

effect on tilapias metabolism up to 75% replacement or tilapia were resistant to these toxins and could 

modulate or detoxify the compounds entered to the body. Furthermore, it is interesting to note that no 

significant difference in mortality or abnormal behavior of fish was observed in any treatments of this 

study. The slight threshold effect in FCR after 75% may represent that utilization of more than 460 g 

per kg feed (with equal ANF with RSC used in this experiment) may negatively affect tilapias 

metabolism and FCR.  

No difference in digestibility of protein and minerals among several experimental groups indicates 

that, in comparison with SBM, the applied RSC does not negatively affect digestibility of protein and 

uptake of minerals in Tilapia, compared to what was the case with SBM. Thus, no significant 

negative effect from phytic acid and fiber in the RSC was observed in comparison with SBM.  

The regression analysis of the content of DM in whole body demonstrated a decline from 0% to 50% 

replacement and then an increase up to 100% replacement. It can be caused by the content of lipid in 

body which demonstrated the same pattern as DM. There was no clear relationship (R
2
=0.099) for the 

linear regression of whole body weight on whole body lipid content, when combining observations 

from fish in both Exp.1 and 2. The R
2
 values became even lower when this analysis was done within 

experiment. It has been reported that presence of condensed tannin in diet increases the visceral fat 

deposition in tilapia (Aiura and Carvalho, 2007). Since the level of condensed tannin and phenolic 

compounds in RSC is higher than SBM (Naczk et al., 1998), tilapia may reduce the tannin intake by 

declining FI. However, after reaching the threshold level for CFI at 50% replacement, no further 

reduction in the CFI to body weight ratio was observed. Thus, referring to the literature review and 

the Table 1, the content of tannin entering to the body may have been higher than the capacity of 

tilapia to tolerate. It may cause an increase in the level of visceral fat deposition in tilapia. 

Aiura and Carvalho (2007) demonstrated that deposition of lipid in other parts of the fish body is 

decreasing by presence of high content of condensed tannin in tilapia diet. Moreover, Pinto et al. 



67 

 

(2001) demonstrated that condensed tannin may reduce fat deposition in the liver of piauçu fish. As a 

result of the findings from this experiment and previous reports, in may be assumed that the pattern of 

regression line for the percent of liver weight to body weight (an increase from 0% to 50% 

replacement and then a decline up to 100% replacement) can be explained by the difference in 

deposition of lipid in liver and whole body.  

Three different patterns were seen from estimated daily ratio of DFI to biomass for different 

treatments. Apart from diet with 100% replacement, the feed intake first approached 4% of BW, and 

then gradually decreased. The feed intake level at 4% of BW a day was similar to the findings of 

Riche and Garling (2003) who recommended that tilapia (from 20 g BW) should be fed 4% a day. At 

100% replacement, the fish used 3 full weeks to reach 4% DFI.  

One reason for the declining DFI and increased variability between replicate groups in the fish fed the 

diets from 25 to 75% replacement may have been stress in connection with changing pellet size after 

day 6. The results may also indicate that the presence of RSC in diet may causes higher sensitivity to 

change in feed particle size, with negative effects on FI and growth performance if tilapia. Tilapia can 

efficiently utilize small pellets relative to their body weight in comparison with other commonly 

cultured species such as salmon, trout or catfish (Riche and Garling, 2003). Thus, it is recommended 

to keep the pellet size as constant as possible during further experiments. 

Contrary to expectations from some other monogastric animals due to the higher concentration of 

phytic acid in RSC than in SBM (Francis et al., 2001; Al-Kaiesy et al., 2003), this study did not 

indicate  decrease in uptake of cationic elements in tilapia. Results from this experiment show that 

unwanted components such as phytic acid, fiber and tannins, could not change nutrients absorption 

and protein and energy retention in tilapia by replacing CP from SBM with CP from RSC.  

It is argued that, thus, constant protein and energy retention, mineral absorption and FCR may be 

explained by: 1) equal level of available energy provided by nutrients (protein, fat and starch); 2) 

application of well balanced diet supplemented with minerals and essential amino acids; 3) 

equalization of fiber level in all diets by utilization of cellulose in SBM containing diets. This result 

also may be explained by the fact that the ratio of NP/NE was almost constant in all experimental 

diets.  

Previous studies have hypothesized that glucosinolates may have negative effect on thyroid function 

in salmonids and cod (Gatlin et al., 2007; Hossain and Jauncey, 1988). However, the findings of the 
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current study did not demonstrate any significant difference among the level of T4 from different 

treatments. As mentioned in the literature review there is a difference in capability of intolerance to 

glucosinolates among different animals (Tripathi and Mishra, 2007). A possible explanation for this 

might be that tilapia has higher capability to detoxify or tolerate goitrogenic glucosinolates. However, 

T4 detection assays were performed according to kit instructions modified for dog blood plasma and 

may not be fully homologous with tilapia T4. Limited information is found in the literature about the 

thyroid glands and the effect of glucosinolates on thyroid function and hormones in tilapia (Geven et 

al., 2007). 

In the current study, comparing liver weight with body weight indicates that liver size, and then 

possibly liver function was affected by dietary RSC. These results agree with the findings of other 

studies, which have been demonstrated hyperplasia and hyperactivity of liver to detoxify ANF (Burel 

et al., 2000a; Tripathi et al., 2001; Mabon et al., 2000). No previous experiment has been analyzing 

the effect of rapeseeds containing diets on liver in tilapia.  

Hence, it could conceivably be hypothesized that in 50% replacement of CP from SBM with RSC, 

tilapia is sensitive to changes in nutritional quality of the feed. The second experiment was, thus, 

conducted with 50% replacement of CP from SBM with CP from RSC. 

 

6.2 Experiment 2: 

6.2.1 Nutritional responses to pretreatment of RSC 

The results demonstrated that the combination of fine milling and autoclaving RSC has significantly 

negative effect on CFI and consequently weight gain in tilapia. The first hypothesis is that 

combination of fine milling and autoclaving RSC may decreases the palatability of diet dramatically 

since it could provide proper situation for hydrolysis of intact remaining glucosinolates in RSC to 

more bitter components. Since one of the products from hydrolysis reaction is free glucose, the results 

from glucose analysis may proves that further hydrolysis reactions may accrued in fine milled and 

autoclaved RSC. In presence of some intact progoitrin which is non-bitter glucosinolates in rapeseeds 

secondary products, high temperature processing causes progoitrins degradation and production of 

goitrin which is extremely bitter compound (Heaney and Fenwick, 1980) which may have negative 

effect on palatability and FI. However, glucose enhancement can be the result of other unknown 

reactions in RSC. 
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A part from poor palatability, negative effect of heating on content of protein may change the ratio of 

NP/NE in diet containing fine milled and autoclaved RSC. Since very few water vas absorbed by 

RSC during autoclaving process it can be assumed as a dry heating process which may damage 

protein. Furthermore, decreasing lysine bioavailability by heat treatment may also contribute to this 

effect (Morken et al., 2012; Singh et al., 2007). It has been calculated that 99% of reduction in energy 

retention is caused by depression of protein retention. Results from protein retention and energy 

retention can prove this fact that the content of protein and energy of diet were not efficiently utilized 

by fish in diet containing fine milled and autoclaved RSC. 

Although not many similar experiments can be found in the literature to assess the effect of fine 

milling and/or autoclaving rapeseeds secondary products on tilapia; but, there are some reports 

available from utilization of heat treated RSM in chicken and broilers which resulted in different 

responses. In the assessment performed by Chamani et al. (2009) autoclaving RSM could improve 

biological performance of chicken. However, Khan et al. (1998) observed that although autoclaving 

RSM may decrease the content of allylisothiocyanate but no significant difference was reported in 

CFI and growth performance. As mentioned in the literature review, content of glucosinolates in 

different rapeseed secondary product defers with the other. Moreover, the response of different 

animals to presence of glucosinolates hydrolysis products in diet differs with the other species.  

A strong linear relationship between weight gain and CFI with lack of significant difference between 

FCR in different treatments may represent that: 1) FI is the main factor which can affect weight gain, 

2) presence of glucosinolates hydrolysis products on a certain level in tilapia diet may not have any 

toxic effect on fish metabolisms or tilapia is able to tolerate a certain level of toxins and detoxify 

them. No similar experiments have been done previously to assess the variation of FCR value before 

and after fine milling and autoclaving processing in tilapia.  

The pattern of DFI and biomass at different treatments was almost the same. The ratio of DFI to 

biomass increased up to almost 4% and after that gradually decreased. An environmental stress (tank 

cleaning and diet changing) decreased the DFI at the beginning of experiment dramatically. It has 

been demonstrated that fish fed by diet containing fine milled and autoclaved RSC were more 

sensitive to environmental stresses. In treatment fed with diet containing fine milled and autoclaved 

RSC physical stresses caused more dramatic decrease in DFI in comparison with the other treatments.  
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Digestibility of protein in diet D 0.5+A tended to be lower than that from the two other diets. It has 

been argued in literature that overheating during processing can decreases digestibility of protein due 

to formation of strong hydrogen or S=S bonds (Opstvedt et al., 1984), or Maillard reaction. 

Apparent absorption of measured minerals, except Ca, were similar in all three diets, while that of 

calcium (ADCa ≤ 0) tended to be lower in D 0.5 than D 1.0. It is also affected by fine milling and 

autoclaving of RSC inclusion of diet. Presence of RSC in Exp.1 didn’t cause any negative effect on 

Ca digestibility. The possible reason for negative digestibility of Ca in treatment fed D 0.5+A and D 

0.5 may be the secretion of Ca from colon walls into the faeces. Calcitonin is the hormone responsible 

for regulation of Ca metabolism in body. In mammals the main source of calcitonin is parafollicular 

or C cells in the thyroid gland. It is also detected in fish species. Probably the function of 

glucosinolates on thyroid cells is not limited to the level of T4 secretion. Since the glucose assay 

showed an increase in content of glucose in fed D 0.5+A and D 0.5 in comparison with D 1.0, the 

calcium regulation may be affected by production of certain glucosinolates hydrolysis products. 

Tilapia is able to uptake Ca from water and excretes it from large intestine and gills.  

The lack of significant difference among diets in plasma mineral (P, Ca, Mg and Zn) levels support 

the absorption data and the indication that RSC and SBM did not affect utilization of minerals 

differently.  

The complete absorption of dietary Mn and Zn may show that the probably phytic acid content of 

diets in both experiment 1 and 2 could not have any negative effect of minerals digestibility.  

Although it was assumed that autoclaving may reduce the content of goitrogenic glucosinolates in 

rapeseeds secondary products (Khan et al., 1998) but the results of this study did not show any 

significant increase among free T4 in blood plasma taken from different treatments in this 

experiment. However, it has been demonstrated in Exp.1 that presence of RSC in diet does not affect 

the level of free T4 in juvenile Nile tilapia. It may be assumed that after adaptation, tilapia is highly 

resistant to tolerate goitrogens in RSC.  

Although the Exp.1 and Exp.2 were performed at different times, but, all the experimental situations 

were kept constant and no significant difference was seen between treatments fed with diet 50% in 

Exp.1 and diet 1mm in Exp.2 in protein and energy retentions and mineral absorption.  



71 

 

6.3 Conclusion and suggestions for further work 

The present study was designed to determine the critical level of replacement of CP from SBM with 

CP from RSC. The next step was to find out whether fine milling and combination of fine milling and 

autoclaving can affect nutritional value of RSC.  

The present investigation has argued that presence of RSC in tilapia diet may reduce feed 

acceptability. However, it did not show different effects on metabolic function of fish than those 

caused by SBM. Fine milling did not affect the nutritional value of RSC, while autoclaving of RSC 

has negative effect on diet palatability and utilization. 

It would be interesting to assess the effects of utilization of appetizers in combination with 

supplementation with essential amino acids and minerals in diet containing certain level of rapeseed 

secondary products in further studies.  

The current research was not specifically designed to evaluate effects of glucosinolates and their 

hydrolysis products. Further research is needed to determine how important these products are for 

performance of the tilapias, and which level of inclusion of these compounds in different secondary 

products of rapeseed are tolerable in diets for tilapia.  

The current investigation was limited by time. However, feeding trials with longer duration is 

recommended to assess long-term effects of secondary products of rapeseed on fish health, 

performance and physiology.  

The results and information from this investigation can be used to develop a targeted investigation on 

improvement of nutritional quality of rapeseed secondary products as a protein rich non-food 

ingredient in diets of monogastric animals. This research may have a higher focus on diet 

acceptability and lower focus on glucosinolates and their hydrolysis products than traditionally 

anticipated in research with secondary products of rapeseed in feed for fish. 
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