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Abstract 

Bread wheat (Triticum aestivum, BBAADD) is one of the most important food-crops world-wide. 

The genome of bread wheat is allohexaploid, meaning that it contains three related diploid genomes 

(termed A, B and D). This implies that most wheat genes exist in three similar copies (i.e. 

homeologs), which together with the fact that the genome mainly consists of repeats from 

transposable elements, makes the wheat genome very hard to sequence and assemble. Currently 

there is an effort by the International Wheat Genome Sequencing Consortium (IWGSC) to generate 

a wheat genome reference sequence. An enabling factor is the use of flow cytometry to isolate the 

individual chromosome arms which then can be sequenced and assembled separately. The final 

reference sequence is still a long way from being finished, however a short-read shot-gun sequence 

assembly of each chromosome arm, referred to as chromosome survey sequencing (CSS) assembly, 

has been made available from the IWGSC. Using the CSS assembly as reference for analyses of 

RNA-sequencing (RNA-seq) data enables us, for the first time, to distinguish and quantify the 

transcription level of the homeologous genes. In this study I use RNA-seq data sampled from the 

starchy endosperm, aleurone layer, and transfer cells of the developing wheat endosperm to analyze 

the homeolog-specific aspects of the hexaploid transcriptome. I found that three quarters of the 

genes have an expression bias towards either one of the sub-genomes, but that no sub-genome is 

favored on a general level. The pattern of homeolog bias shows no correlation with functional gene-

groups, but 28% of the genes show developmentally controlled homeolog-specific regulation when 

comparing the sampled tissues. There is also evidence supporting that the D-genome has a different 

distribution of expression levels than A and B. This could be explained by the polyploidization 

history, or indicate the presence of hybridization in a D-genome ancestor. Greater understanding of 

the mechanisms that govern homeolog-specific gene regulation can have an impact on the way 

breeding of allopolyploids is performed. This study illustrates the importance of homeolog specific 

reference sequences, and the potential hexaploid wheat has as a model to study mechanism of gene-

regulation in allopolyploids.  
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1 Introduction 

1.1 The hexaploid bread wheat genome 

Bread wheat (AABBDD, Triticum aestivum) is a ~17GB allohexaploid that was formed through 

two relatively recent polyploidization events (i.e. genome duplication). Allopolyploids are formed 

through species hybridization and contain two different diploid genomes, as opposed to 

autopolyploids which arise through duplication of a single genome. The three genomes that make 

up the bread wheat genome are referred to as the A, B and D genomes. The diploid progenitors of 

the three genomes diverged from a common ancestor about 2.5-4.5 million years ago (Huang et al., 

2002). The current model of hexaploid wheat evolution is that the tetraploid Triticum dicoccoides 

(AABB) formed about 0.5 million years ago when Triticum urartu (AA) crossed with an unknown 

species (BB) related to Aegilops speltoides (Salse et al., 2008). Subsequently, around 10k years ago 

(Nesbitt and Samuel, 1996), tetraploid wheat (AABB) hybridized with diploid goat grass (DD, 

Aegilops tauschii) to form the hexaploid bread wheat we know today (Figure 1A).  

 

Figure 1: (A) Evolution of hexaploid wheat genome from its diploid ancestors (B) Relationship with other important grass 

species (Poaceae). (Grass Phylogeny Working Group et al., 2001; 1Paterson et al., 2009; 2Schnable et al., 2009; 3Mayer et al., 2012; 
4The International Brachypodium Initiative, 52010; Yu et al., 2002)  

 

Wheat belongs to the Poaceae family, also called Gramineae or true grasses.  Of the Poaceae 

species, several important agricultural species like rice, maize and sorghum have been sequenced 
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(Figure 1B). However in the sub-family Pooideae, which includes wheat, sequencing efforts are 

lagging behind because of their typically large genomes and high levels of repeat content (Kellogg 

and Bennetzen, 2004). Brachypodium, with its uncharacteristically small genome, has been selected 

as a model system for the Pooideae and was sequenced and annotated in 2010. 

Currently the International Wheat Genome Sequencing Consortium (IWGSC) is working to 

establish a reference genome for bread wheat. To overcome the problem of polyploidy they are 

using flow cytometry to isolate the individual chromosome arms (Dolezel et al., 2007), which then 

can be sequenced separately. The strategy of the IWGSC is to do BAC-by-BAC sequencing of the 

minimal tiling path of each of the isolated chromosome arms to create a high quality wheat genome 

assembly; however this work is labor intensive, expensive, and not expected to be finalized before 

2015. Hence, to be able to provide the wheat breeders and research community with a catalogue of 

wheat genes the IWGSC launched a wheat chromosome survey sequencing (CSS) project in 2010. 

This project aims at generating chromosome arm shot-gun assemblies of the hexaploid wheat 

genome. Although these assemblies are highly fragmented they provide the possibility to, for the 

first time, study the molecular biology of hexaploid wheat at the nucleotide resolution within and 

between the A, B and D sub-genomes. 

1.2 The wheat endosperm  

The endosperm makes up the nutritious fraction of the wheat grain; hence understanding endosperm 

biology, especially with respect to baking quality, is of major importance for future wheat breeding 

(Olsen et al., unpublished). The wheat endosperm is also interesting as a model to study general 

aspects of developmental biology in plants and polyploids in particular. In angiosperms the 

megagametophyte goes through a double fertilization process where both the egg that gives rise to 

the embryo and the central cell that gives rise to the endosperm is fertilized at the same time 

(Raghavan, 2003). The endosperm can therefore be considered an organism on its own, which 

develops next to the embryo. Its biological role is to provide nutrition to the developing embryo and 

seedling. Endosperm consists of three different types of tissues (Olsen, 2004) of which the major 

part is the starchy endosperm that contains starch and storage proteins. Along the surface on the 

basal side is a layer of transfer cells that connect the endosperm with the vascular tissue of the 

maternal plant and have the role of transferring nutrients from the plant into the endosperm (Olsen, 

2004). Along the rest of the surface the starchy endosperm is surrounded by a single layer of 

aleurone cells, which produce enzymes that break down the starch and protein in the starchy 

endosperm when the seed germinates (Olsen, 2004).  
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As part of the IWGSC effort to annotate the wheat genome and to improve our understanding of 

endosperm biology in the hexaploid bread wheat, RNA-sequencing of the endosperm tissues at 

different timepoints during grain development has been performed in the research group of Odd-

Arne Olsen at IPM/UMB. This RNA-seq dataset is the basis for my master thesis project.  

1.3 Genetic effects of allopolyploidy 

The conditions in the cells of a newly formed allopolyploid are very different from its diploid 

progenitors. There are the physical constraints from having twice as much DNA and having to 

replicate it, effects of having an extra dose of every gene, and unintended interactions between the 

regulatory networks of the different genomes. To investigate the effects of polyploidy studies often 

use neopolyploids, i.e. synthetic polyploids that have been produced in the lab. This makes it 

possible to study the early effects in the first few generations and also facilitates direct comparisons 

with the diploid progenitors, such as in differential expression experiments. For natural 

allopolyploids (such as wheat) the original progenitor may have diverged or died out since the 

polyploidization event, making it difficult or often impossible to do direct comparisons between a 

polyploid genome and its diploid ancestors. 

One of the difficulties a new polyploid has to overcome is incorrect chromosome pairing during 

meiosis (Zhang et al., 2013). The homeologous chromosomes derived from each progenitor are 

typically so similar that they are mistakenly paired, leading to aneuploidy in the next generation. In 

wheat, the gene Ph1 (Pairing homeologous) is associated with an increased ability to correctly pair 

homologous chromosomes (Wall et al., 1971). Despite the presence of the Ph1 gene, neopolyploid 

wheat still suffer frequent aneuploidy as is shown in a comprehensive study of chromosomal 

variation in 11 consecutive selfed-generations of neopolyploid wheat (Zhang et al., 2013). Feldman 

et al. (1997) identified sequences specific to each chromosome that occur in all three diploid 

progenitors but occur only in one copy in hexaploid wheat. They suggested that elimination of these 

sequences occur in the developing allopolyploids and provide the physical basis for diploid-like 

stable homologous pairing. It has been shown that wheat allopolyploids, both natural and first 

generation neopolyploids, contain less DNA than the sum of their progenitors, suggesting that loss 

of DNA occur during/after polyploidization (Eilam et al., 2008). 

Another difficulty allopolyploids have to overcome is the effect of altered gene expression resulting 

from having an extra gene copy and interactions between the regulatory networks of the diverged 

genomes. The altered expression may be advantageous, deleterious, or have no effect. Reproducible 

physical gene deletions, activation and suppression of gene transcription as well as changes in 
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cytosine methylation patterns (with putative gene regulatory consequences) have been observed in 

neopolyploid wheat (Shaked et al., 2001; Kashkush et al., 2002; He et al., 2003). Later studies have 

used microarrays (Affymetrix GeneChip Wheat Genome Array) to measure genome-wide 

transcription levels of neopolyploids and their progenitors (Akhunova et al., 2010; Chagué et al., 

2010; Qi et al., 2012). These studies conclude that even though most genes show additive 

expression in the neopolyploid compared to progenitors, a significant fraction (7% or 19%) displays 

non-additive expression patterns. Furthermore, studies of tetraploid cotton have given rise to the 

idea of parental genomic expression dominance where the expression profile of the polyploid 

typically is closer to one parent than the other (Rapp et al., 2009; Yoo et al., 2013). Akhunova et al. 

(2010) have reported evidence for this kind of dominance by the A+B genome in re-synthesized 

wheat.  

1.4 Homeolog specific expression 

Very few studies have looked at homeolog specific expression in wheat, probably because of the 

technical difficulty of distinguishing and quantifying homeolog specific transcripts prior to the 

availability of the CSS assembly. Attempts have been made to use microarrays to measure genome 

specific expression in re-synthesized polyploid wheat by identifying probes that specifically bind to 

either of the parental tetraploid AB or diploid D genome. However, apart from being unable to 

distinguish between the A and B homeologs, verification of a subset of the probes revealed that the 

method was error-prone (15-20% probes were incorrectly classified) (Akhunova et al., 2010).  

Mochida et al. (2004) managed to quantify homeolog specific expression of 90 genes in hexaploid 

wheat by sequencing. This study first identified SNPs from EST databases and then used 

nullisomic/tetrasomic wheat strains that lack a specific chromosome to determine the chromosome 

of origin. By sequencing the transcripts, they could identify the pattern of SNPs that are unique for 

each homeolog. They found that homeolog silencing varied between the 10 tissues they had 

sampled and that the level of silencing was independent of chromosome or sub-genome, concluding 

that silencing occurs on the basis of individual genes. 

The use of homeolog specific SNPs (homeoSNPs) as markers to identify and quantify homeolog 

specific expression have also been used in allotetraploid cotton (Chaudhary et al., 2009). Note that a 

homeoSNP can typically only distinguish between two homeologs, which works great for 

tetraploids, but for hexaploid wheat several homeoSNPs are required to identify the originating sub-

genome of a transcript.  



5 

 

Another method that has been used to evaluate the extent of homeolog specific expression is single-

strand conformation polymorphism (SSCP). Using SSCP in combination with nullisomic/tetrasomic 

wheat strains, Bottley et al. (2006) investigated the homeolog specific expression of 236 genes in 

both leaf and root tissues of hexaploid wheat. In leaf tissue, 27% of the genes had one silenced 

homeolog, while 26% of the genes in the root had one or two homeologs silenced. In several cases 

the homeologs were reciprocally silenced, i.e. one was silenced in the leaf and the other in the root. 

This phenomenon of tissue specific reciprocal silencing of homeologs has also been observed in 

allotetraploid cotton (Chaudhary et al., 2009; Adams et al., 2003). Reciprocal silencing represents a 

type of subfunctionalization as each homeolog is specialized to function in different tissues. 

Subfunctionalization is thought to preserve duplicate genes and subsequently allow 

neofunctionalization of each copy as they adapt to the specific needs in the tissues where they are 

expressed (Rastogi and Liberles, 2005; Lynch and Force, 2000). 

Interestingly, when comparing the pattern of homeolog specific silencing between different wheat 

cultivars there seems to be a great deal of variation. In a study of 15 genes in 16 wheat cultivars, 

Bottley and Koebner (2008) found that 8 genes showed homeolog specific silencing and that out of 

the 16 cultivars, only 2 cultivars had the same pattern of homeolog specific silencing. They suggest 

that this variation in homeolog gene expression is linked to epigenetic silencing through 

methylation. Methylation-based homeolog expression differences have been shown in a study of the 

three homeologs of two MADS-box genes in wheat, WSEP and WLHS1. The B homeolog of 

WLHS1 is silenced by cytosine-methylation, while the A homeolog has lost its function but is still 

expressed (Shitsukawa et al., 2007). 

1.5 Study aims 

The recently generated survey sequences from the IWGSC CSS project in combination with RNA-

seq data makes it possible to analyze genome-wide homeolog specific expression with 

unprecedented precision and accuracy.  

The first goal of this thesis is to develop a pipeline/algorithm to determine homeolog specific 

transcript abundance from the endosperm RNA-seq data. Secondly, the homeolog expression levels 

generated by the pipeline will be used to explore and analyze aspects of homeolog expression bias, 

with focus on three topics: 

1. Sub-genome dominance on whole genome or chromosome level – Does any of the sub-

genomes show any over-all expressed bias? 
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2. Reciprocal silencing between tissues – This phenomenon has been observed in smaller 

studies before (Mochida et al., 2004; Bottley et al., 2006), but how prevalent is it? 

3. Genomic asymmetry of certain traits/functions – It has been suggested that many traits 

are preferentially controlled by a single sub-genome (Feldman et al., 2012). I will use gene 

ontology (GO) to test if any gene function or process is over-represented in any sub-

genome.  

Note that, although the RNA-seq data is from the endosperm, the goal of this thesis is not to 

investigate any aspects of endosperm biology. 
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2 Materials and Methods 

2.1 Plant material, sample preperation and sequencing 

(Note that sampling and sequencing was carried out before my involvement in the project) 

Bread wheat cv. Chinese Spring was grown in pots in two separate rooms. Each room had 75 pots 

with three seedlings per pot. Plants were tagged at anthesis and ears were harvested at 10, 20 and 30 

days post anthesis (DPA). Only the 20 DPA samples are included in this analysis. The middle part 

of each ear was harvested and stored at -80°C until use. Seeds were dissected using dry ice and 

covered by RNAlater©-ICE under the microscope. The embryo was removed and the seeds cut in 

slices for isolation of the aleurone layer (AL), transfer cells (TC) and starchy endosperm (SE). Due 

to difficulties in dissection of the different tissues, there is some contamination of SE in the TC 

samples and possibly some in the AL samples, whereas SE samples should be pure (Figure 2). 

Dissected tissues were put in liquid nitrogen and stored at -80°C for RNA isolation. Tissues from 15 

pots were pooled before RNA isolation, with two replicates per room, giving a total of four 

replicates per tissue. 

 

 

Figure 2: Dissection of the wheat endosperm tissues. Note that there can be some contamination of SE in the AL, and TC samples 

whereas SE samples should be pure. 

 

Total RNA was extracted from frozen plant material using the RNeasy Lipid Tissue Mini kit 

(QIAGEN). For starchy endosperm and transfer cells we did a pre-extraction step in order to 

remove starch. The concentration of RNA was measured using a Nanodrop 8000 spectrophotometer 

(ND8000, Thermo Scientific, Wilmington, USA). RNA integrity was assessed on an Agilent 2100 

Aleurone Layer Transfer Cells Starchy Endosperm
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Bioanalyzer (DE54704553, Agilent Technologies, Inc., CA, USA) using an RNA 6000 LabChip kit. 

RNA samples were stored at -80°C until sent for sequencing. RNA samples with good quality and 

quantity were sent for sequencing on Illumina HiSeq2000 at Norwegian Sequencing Centre 

(www.sequencing.uio.no). 

Table 1 lists the samples that have been included in this study. 

Table 1: List of samples included in the analysis. 

SampleID Room# DPA Tissue Rep# 

Room1_20DPA_AL_1 1 20 AL 1 
Room1_20DPA_AL_2 1 20 AL 2 

Room1_20DPA_AL_31 1 20 AL 3.1* 
Room1_20DPA_AL_32 1 20 AL 3.2* 
Room2_20DPA_AL_1 2 20 AL 1 
Room2_20DPA_AL_3 2 20 AL 3 
Room1_20DPA_Ref_1 1 20 Ref** 1 
Room1_20DPA_Ref_2 1 20 Ref** 2 
Room1_20DPA_SE_1 1 20 SE 1 
Room1_20DPA_SE_2 1 20 SE 2 
Room2_20DPA_SE_1 2 20 SE 1 
Room2_20DPA_SE_2 2 20 SE 2 
Room1_20DPA_TC_1 1 20 TC 1 
Room1_20DPA_TC_2 1 20 TC 2 

Room2_20DPA_TC_1 2 20 TC 1 
Room2_20DPA_TC_2 2 20 TC 2 
* Technical replicates 

    ** Mix of AL, SE and TC 

     

 

2.2 Chromosome Survey Sequences 

As a reference sequence for the transcriptional analyses I used the bread wheat CSS assemblies 

generated by the IWGSC (www.wheatgenome.org/). The CSS assemblies are derived from shotgun 

sequencing of whole chromosomes or chromosome arms that have been sorted by flow cytometry 

(Dolezel et al., 2007). Due to the high level of repeats in the wheat genome, the CSS assembly 

consists of mostly short contigs (N50 = 2292 base pairs).   

2.3 Genome zipper 

The genome zipper is a virtual map of wheat genes based on combining genetic maps with 

information of syntenic relationships between the related sequenced grass species Oryza sativa, 

http://www.sequencing.uio.no/
http://www.wheatgenome.org/
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Sorghum bicolor and Brachypodium distachyon. The zipper was constructed by the IWGSC using 

the method described in Mayer et al. (2009). Syntenic regions are discovered by mapping the wheat 

survey sequences against the related grass genomes which are then anchored to a scaffold of 

mapped genetic markers. The resulting genome zipper is represented as an ordered table for each 

chromosome that contains the names of the orthologous genes and the contig(s) they relate to in the 

survey sequence. Some zipper-loci can refer to several contigs which reflect genes that has been 

split into several contigs or genes existing in multiple copies. However, to simplify the analysis I 

am only using a single contig to represent each gene.  

2.4 RNA-seq analysis – an experimental algorithm to calculate homeolog 

specific expression 

RNA-seq allows expression levels to be estimated by counting the number of RNA-seq reads that 

map to each of the genes in a reference genome. In my case, I use the CSS assembly as reference. In 

the CSS assembly, the identity of the chromosome arms and sub-genomes is known, but gene 

models are not available. It is therefore necessary to identity regions that contain the genes. 

Furthermore, to be able to compare the expression between homeologs of each gene it is necessary 

to also locate the regions in each sub-genome that contain the homeologous genes.  

The method I developed solves the problem of locating the homeologs by using the ID-numbers of 

the mapped reads to identify those reads that map to homeologous regions. Homeologous regions 

are defined by their high sequence similarity, and in gene coding regions they are expected to be 

about 98-99% identical. The reads are mapped to each of the sub-genomes with two base-pair 

mismatch allowed so that it is likely that the 101 base-pair long reads map to all three homeologous 

gene-copies. By comparing read IDs, the reads that map exactly once to all three sub-genomes are 

picked out. These reads essentially represents a multiple alignment of the regions in the three 

homeologs that are at least 98% identical and are hereby referred to as homeoreads. Since the 

samples are taken from the same wheat cultivar (Chinese spring) as the reference, the homeoreads 

will map perfectly to the originating sub-genome. The presence of nucleotide mismatches between 

the three homeologs (i.e. homeoSNPs) is used to determine the sub-genome of origin. 

However, the homeoreads only define the homeologous regions, it is also necessary to locate the 

genes. To do this, I use the contigs referred to in the genome zipper. Using the genome zipper has 

the advantage of avoiding non-coding transcribed elements and ribosomal RNA as well as having 

an estimated position along the chromosome and the identity of orthologous genes in sequenced 

grass genomes. Expression levels per homeolog-triplet are calculated by counting the number 
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homeoreads mapping to each contig in the reference zipper, which is converted into an estimate of 

homeolog specific expression based on the nucleotide mismatches between the three homeologs. 

The method can be divided into 6 steps (Figure 3) which are described in the following sections. 

See Appendix A for the source code of steps 2-6, which are implemented as a set of scripts that can 

be run from a main R script.  

 
Figure 3: Homeoread pipeline flow-chart 

2.4.1 Step 1: Align reads 

The CSS sequences from each chromosome arm are pooled together to get three reference genome 

assemblies – one for each of the three sub-genomes A, B and D. The reads are mapped against each 

of the three sub-genomes in three separate runs using TopHat (Trapnell et al., 2009) with  two base-

pairs mismatch allowed. Reads that map several places within sub-genomes (multireads) are 

removed. 

2.4.2 Step 2: Extract reads mapping to zipper contigs 

The zipper for one of the sub-genomes is used as reference to select contigs that contain genes with 

known orthologs. The choice of zipper reference genome is arbitrary (I used the B-genome). For the 

selected sub-genome, only the reads that map to the contigs from the reference zipper are kept. 

These reads are assumed to have been transcribed from the genes we want to study, and in step 3 

they will be used to find the homeologous regions in the other sub-genomes. 
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2.4.3 Step 3: Find homeoreads 

By the using the IDs of the reads that mapped to the reference genome zipper contigs, I identify and 

keep only reads that also map to both of the two other sub-genomes. Note that paired reads are 

treated as two independent single reads. The remaining reads (homeoreads) map to all three 

homeologs of the zipper genes. 

2.4.4 Step 4: Filter biased reads 

Homeologous regions with certain combinations of homeoSNPs can create a read count that is 

biased towards one of the sub-genomes. A homeoSNP is a nucleotide in a homeologous aligned 

region that is different in one sub-genome compared to the two other. For example, if sub-genome 

A has a ‘T’ nucleotide and both sub-genomes B and D has a ‘C’ nucleotide, then there is a 

homeoSNP in sub-genome A. Bias occurs when a 101bp region contains 3-4 homeoSNPs where 

one homeolog has no homeoSNPs and the two other homeologs have 2 and 1-2 homeoSNPs (Figure 

4). In this case, if a read is transcribed from the first genome with no homeoSNPs, it will 

successfully align since it has no more than 2bp mismatch with the two other genomes. However, if 

a read is transcribed from one of the two sub-genomes with homeoSNPs, they will fail to align 

because they will have 3 mismatches. Since this kind of bias only occurs when certain patterns of 

homeoSNPs are present, it is possible to detect biased homeoreads and discard them. Mismatch 

information, including position and type of each mismatch, is contained in the SAM file (output 

from TopHat) and is used to exclude gene regions that create homeoSNP-bias.  

 

 

 

Figure 4: Example of homeoSNP pattern that cause read-count bias. Three reads from the same homeologous region of the three 

sub-genomes mapped against each sub-genome. The reads originating from B and D fails to map because they have more than 2bp 

mismatch to at least one sub-genome. 
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2.4.5 Step 5: Count perfect matches 

The reads are divided into 7 groups depending on which sub-genome(s) they map perfectly to: the 

A, B or D specific (unambiguous) reads; the AB, AD or BD ambiguous (maps to two of the sub-

genomes); or the completely ambiguous ABD reads that map to all three sub-genomes. The number 

of reads that fall into each of these groups is counted for each zipper gene. 

Figure 5 provides an example of read count assignment. In this example there are 6 reads that are 

mapped without any mismatches to sub-genome A. Four of these reads marked in red have 

mismatches when aligned against either B or D and is therefore counted as A specific. The purple 

colored read has mismatches only against B and is therefore counted as AD ambiguous. The white 

read maps perfectly to all three. Note that the black reads have more than two mismatches in at least 

one of the sub-genomes and therefore will not be included in the analysis (discarded in step 3). 

 

Figure 5: Example of homeoreads mapped to the three sub-genomes. The colors of the reads indicate the inferred origin of the 

reads. The number of reads per group is given in the legend. The stars indicate where there is a mismatch between a base-pair in the 

read and the genome. The black colored reads fails to map to at least one of the sub-genomes since it has more than 2bp mismatch 

and is therefore excluded from the analysis. 

 

2.4.6 Step 6: Estimate homeolog read-counts  

An estimate of the number of reads originating from each homeolog is made based on the counts of 

both ambiguously and unambiguously mapped reads. Reads that map ambiguously to two or three 

homeologs are divided proportionally between them based on following model: 

A genome

B genome

D genome

Mismatch

ABD (1)

Discarded

AB (0)

AD (1)

BD (2)

D (1)

B (3)

A (4)
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For each set of homeologous genes, depending on the locations and number of homeoSNPs, there 

will be a certain chance that a homeoread originates from a region that is either: unique for all 

homeologs (  ); unique for A but B and D are identical (   ); unique for B but A and D are 

identical (   ); unique for D but A and B are identical (   ); or identical for all homeologs (    ). 

The problem can be presented as a geometrical problem (Figure 6).       and    are the estimated 

numbers of reads originating from homeolog A, B and D that we want to find. The known variables 

are the areas marked with different colors that represent the read counts for the 7 different groups 

named:                      and      . 

 

 

Figure 6: Geometrical representation of the homeolog read count estimation problem. The areas shown with different colors are 

known and represent the counts of reads that map to a specific homeolog or ambiguously to several of the homeologs, 

(                     and      ).                or      represents the proportion of the aligned homeologous regions 

that will yield reads that are unique for all homeologs, indistinguishable between homeologs B and D, A and D, A and D or any of 

the homeologs, respectively.       and    represents the estimated number of reads originating from each of the homeologs. 

The proportions of the ambiguous reads that originates from each sub-genome can be calculated if 

the total number of reads originating from each sub-genome were known. For example: If    and 

   were known, then the part of     that contributes to    would be    
  

     
 

Following that logic we can define these equations: 
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These equations are solved numerically by making an initial estimate that is gradually improved by 

applying the above formulas repeatedly until they converge. The initial estimates used are based on 

an assumed equal amount of A, B and D counts: 

      
   
 
 
   
 
 
    
 

 

      
   
 
 
   
 
 
    
 

 

      
   
 
 
   
 
 
    
 

 

 

2.5 Differential expression analysis 

The R package “DESeq” (Anders and Huber, 2010) is used to test for differential expression. A 

typical feature for transcriptome data is the relatively few replicates per treatment (result of high 

price), and this makes it difficult to identify statistically significant expression differences. To 

improve the statistical inference, DESeq assumes constant variance for genes with similar read-

counts. The variance between all replicates for all factors and genes are fitted to a model that only 

depends on the read-count. This model takes into account both the shot-noise and the biological 

variance between the samples. The shot-noise, which comes from randomly picking a subset of 

RNA molecules from a larger pool, follows a poisson distribution and it accounts for most of the 

variance in low abundance transcripts. For high-abundance transcripts, the variance is dominated by 

the biological variance. Because the technical replicates (Room1_20DPA_AL_31 and 

Room1_20DPA_AL_32) do not contain any biological variance, they are pooled and treated as a 

single sample (Room1_20DPA_AL_3), as was suggested in Anders and Huber (2010). 

The DESeq package is designed to compare expression levels between the same genes in several 

samples. In this study however, the comparison is made between the homeologs within the same 

sample. This is possible because only the homeoreads are counted, which means that even if the 

length of the homeologs vary, only the parts that are common are compared. Each sample is divided 

into three sub-genomic pseudo-samples separating the read-count contribution of the A, B and D 

homeologs. DESeq treats these pseudo-samples as independent samples with different levels of the 

“subgenome” factor. 

Normalization is performed using DESeq’s estimateSizeFactors( )function which assigns a scaling 

coefficient to each sample to correct for any technical bias that affects the sequencing depth. Since 
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the three sub-genomic pseudo-samples are actually from a single sample, the scaling coefficient 

acquired from the DESeq normalization procedure is averaged for each sample so that the three 

pseudo-samples are equally scaled.  

To test for differential expression DESeq have implemented a generalized linear model (GLM) 

regression procedure. GLM regression makes it possible to use variables that don’t follow a normal 

distribution, such as expression data. Each sample is assigned three factors; “subgenome”, “tissue” 

and “room”. Since there is more than one factor, tests have to be done by comparing different 

regression models. One model that accounts for the effect that is tested, and a reduced model where 

the effect is not accounted for. These tests do not specifically test for differential expression but 

rather tests if a specific factor has a significant effect on the expression levels. The models tested in 

this study are listed in Table 4 in the results section. 

P-values from GLM-tests are adjusted using the Benjamini-Hochberg procedure to control the false 

discovery rate. This adjusted P-values are equivalent to the Q-value and can be interpreted as the 

expected proportion of false positives, e.g. if 1000 genes are called significant with adjusted P<0.01 

it is expected that 10 of these are false positives. 

2.6 Principal component analysis (PCA) 

An indication of good quality for experimental data is that samples from different conditions are 

more different than when comparing replicate samples. Each sample can be viewed as a point in a 

coordinate system with the same number of dimensions as there are genes, i.e. a vector containing 

the expression values of the genes. The distance between these points reflects the level of 

similarity/difference between the samples. If data quality is good, replicates for each condition 

should form clear clusters which can be visualized by projecting the multidimensional points onto a 

two-dimensional plane. To maintain the maximum amount of information, the projection plane is 

defined by the first two principal components (PCs). The first PC is the line that goes through the 

cloud of points in the multidimensional space that minimizes the sum of square of distances 

between the line and all points. Therefore the maximal variance is along the PC. The following PCs 

are found the same way but must be perpendicular to all previous PCs. 

Principal components were calculated in R using the prcomp( ) function. Expression values are 

transformed first using the variance stabilizing transformation function from the DESeq package, 

which attempts to make variance constant regardless of the total expression level. Centering is 

perform by the prcomp( ) function, but not scaling, as the variance stabilizing transformation 

ensures equal variance. 
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2.7 Detecting reciprocal silencing 

Given two tissues X and Y, reciprocal silencing of homeologs (A, B, and D) between tissues is 

present when homeologs switch between being expressed in different tissues:  

X-tissue: A=0, B=10, D=12 

Y-tissue: A=11, B=0, D=0 

In the actual data complete silencing of homeologs is not common. Hence, reciprocal silencing will 

mostly be present in situations with partial silencing (Chaudhary et al., 2009). It is therefore 

necessary to define a test for partial “reciprocality”. 

The GLM-model implemented in DESeq allows for testing of interaction effect between sub-

genome and tissue. If reciprocal silencing is present in the data, this would be expressed as a strong 

interaction effect in the GLM-model tests. However, a significant interaction effect is not sufficient 

to indicate reciprocal silencing. For example, consider the hypothetical gene that has the expression 

level ratio 1:1:2 of homeologs A:B:D in SE and 2:2:3 in AL. Since the relative expression between 

the homeologs differs in the two tissues it could test positive for interaction effect but it clearly isn’t 

reciprocal. To be able to quantify “reciprocality” between three values I found it useful to represent 

the expression levels of A, B and D homeologs using an alternative set of parameters. The idea is 

borrowed from computer graphics, where colors can be represented by their red, green, and blue 

components but also by the parameters hue, saturation, and value (HSV). Since there are three 

homeologs expression values – A, B, and D – they can represent the colors red, green, and blue 

respectively, which then are converted to HSV. In this alternative representation, saturation (S) 

reflects the level of homeolog expression bias: 100% means that one or two homeologs are 

completely silenced, 0% means that all homeologs are expressed equally, and 50% means that there 

is a 2x fold difference between the least and most expressed homeologs. The hue (H) represents a 

measure of which homeologs that dominates the expression (Figure 7). For example, if only one of 

the homeologs A, B, or D are expressed, H will be 0°,120° or 240°, respectively (Figure 7). The 

value parameter (V) represents the expression level of the dominant homeolog. 
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Figure 7: HSV parameterized homeolog-triplet expression profiles. Homeolog expression bias is defined by S (saturation). The 

dominant homeolog(s) is defined by the angle H (hue). Reciprocal expression profiles are characterized by difference in H. 

Reciprocal homeolog silencing between tissues is characterized by differences in H. Say that a gene 

is expressed only in the B sub-genome in one tissue while in another tissue only A and D 

homeologs are expressed. The difference in H would then be 180°. I define any difference in H 

greater than 120° as reciprocal silencing. Given that reciprocal silencing only makes sense if there is 

homeolog specific expression bias in the first place, I require that S is at least 50% for both 

homeologs. An example of two homeolog expression profiles that pass these criteria are shown in 

Figure 7.  

The mean homeolog expression count across all replicates (including room replicates) for each 

tissue is calculated before converting to HSV. Reciprocal silencing is found by pair-wise 

comparisons of the three tissues, where a gene is classified as reciprocal if their HSV values are 

within the chosen thresholds. Because low expression levels are subject to high variance from shot-

noise I try to limit the number of false positives by only including the genes where both tissues have 

V>20. 

 

2.8 Gene set enrichment using Gene Ontology categories 

Gene set enrichment is a method that is used to look for associations of experimental conditions 

with groups of genes that perform a specific function or are involved in a specific process or 

pathway. In this study I used GO terms to define the gene sets. GO terms are standardized terms 

used to annotate gene function, and they are organized in a hierarchical manner so that each term is 

related to a lower level more broadly describing term. All GO terms can be traced down to the three 

main categories “molecular function”, “biological process” or “cellular compartment”. The R 
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package “TopGO” (Alexa and Rahnenfuhrer, 2010) was used to run the analysis. This package 

implements the elimination algorithm described in (Alexa et al., 2006) which improves the test by 

using the relationships between the GO terms. 

The Kolmogorov–Smirnov test (K-S test) implemented in the TopGO package was used to test for 

the association between the GO terms and sub-genome or tissue specific expression patterns. Each 

gene is scored using the Pearson-correlation between the sub-genome/tissue and the expression 

values. For example, to test for genes that are regulated specifically in sub-genome A, the 

expression values for A:B:D is correlated with 1:0:0. In this way genes that are only expressed in A 

will be positively correlated and genes that are only expressed in B+D will be negatively correlated. 

For each GO term the distribution of correlation-scores of genes with that GO term is compared 

with the distribution of scores of the rest of the genes using the K-S test. The test will pick out GO 

terms that have a significantly high proportion of genes with high or low correlation-scores.  

For comparison, the K-S tests are run both with and without the elimination algorithm. The Fisher 

exact test is also used, where the selection criteria is that correlation-score is at least 0.5. Note that 

the K-S test detects both over-expressed and under-expressed genes, while the Fisher test only 

detects over-expressed. 

GO annotations were inferred from the annotations of the orthologous B. distachyon genes 

downloaded from: ftp://ftp.gramene.org/pub/gramene/CURRENT_RELEASE/data/ontology/go/. 

2.9 Filtering contigs based on hit-counts in orthologous regions  

Because the expression values are counted per contig and not per gene, miss-annotations can occur 

if the contig contains more than one gene. The B. distachyon gene sequences was therefore aligned 

with the contigs using “tblastx” in order to find the regions within the contigs that are orthologous 

with the B. distachyon genes specified in the genome zipper. The RNA-seq read-alignments were 

then parsed to count the number of hits that mapped inside the orthologous regions. For the GO 

analysis, contigs were filtered based on the proportion of reads that mapped to the orthologous 

regions. Only contigs with > 90% hits inside orthologous regions was used. 

 

 

  

ftp://ftp.gramene.org/pub/gramene/CURRENT_RELEASE/data/ontology/go/
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3 Results: 

3.1 RNA sequencing and read mapping 

The RNA sequencing generated 476 million read-pairs from 16 samples (Table 2). After discarding 

reads mapping to several locations within sub-genome (~25%) 34%, 40% and 42% of the reads 

mapped to sub-genomes A, B, and D, respectively. 

Table 2: RNA-sequencing and read mapping statistics 

Sample Read-pairs 

Mapped reads*   

A B D Homeoreads** 

Room1_20DPA_AL_1 32919785 35 % 40 % 44 % 6.7 % 

Room1_20DPA_AL_2 30833988 36 % 42 % 44 % 7.1 % 
Room1_20DPA_AL_31 32374902 36 % 42 % 44 % 7.1 % 
Room1_20DPA_AL_32 32685090 36 % 42 % 45 % 7.0 % 
Room1_20DPA_Ref_1 34617242 33 % 39 % 40 % 3.7 % 
Room1_20DPA_Ref_2 30517594 33 % 39 % 40 % 3.9 % 
Room1_20DPA_SE_1 30009734 31 % 37 % 39 % 2.6 % 
Room1_20DPA_SE_2 29714230 30 % 36 % 40 % 2.5 % 
Room1_20DPA_TC_1 18586985 36 % 41 % 43 % 5.2 % 
Room1_20DPA_TC_2 31121623 35 % 41 % 44 % 5.0 % 
Room2_20DPA_AL_1 27753881 38 % 43 % 45 % 7.3 % 
Room2_20DPA_AL_3 31365012 37 % 42 % 44 % 6.7 % 

Room2_20DPA_SE_1 26664432 30 % 36 % 37 % 2.6 % 
Room2_20DPA_SE_2 27602634 32 % 37 % 39 % 2.8 % 
Room2_20DPA_TC_1 29885904 33 % 39 % 40 % 4.0 % 
Room2_20DPA_TC_2 29668161 33 % 39 % 40 % 3.5 % 
* 2bp mismatch allowed. Not including multireads 

** Reads that map to reference zipper contigs and all three sub-genomes 

 

The pipeline used to analyze differential expression (see methods section) only counts homeoreads 

that map to the genome zipper, which means that only 2.5-7.3% of the total reads were used (Table 

2). Of the homeoreads used, 49.3% mapped specifically to only one of the sub-genomes (most 

informative), 33.4% mapped perfectly to two of the sub-genomes (less informative), and 17.3% 

mapped perfectly to all sub-genomes and hold no information regarding homeologous differential 

expression (Table 3). 
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Table 3: Proportion of homeoreads that map perfectly to each sub-genome or combination of sub-genomes 

 

In total, the wheat genome zipper (B sub-genome) contains 15194 gene loci (contigs). Out of these, 

6182 contigs (41%) have no homeoreads mapped to them at all, either because they are not 

transcribed or because the gene has been deleted from one or two of the homeologous sub-genomes. 

Only the 6858 contigs with a certain minimum of mapped homeoreads (>10 mapped reads in at 

least one of the samples) are included in the following analyses. 

3.2 PCA analysis confirms good data quality 

Principal component analysis (PCA) was performed to evaluate the quality of the RNA-seq data. 

Normally, only the first two PCs are used to show the clustering of samples, but by using the first 

four PCs (accounting for 66% of the variance) I was able to improve visualization of the similarity 

between tissues and sub-genome (Figure 8). PC1+PC4 and PC2+PC3 separate replicate samples for 

each tissue and sub-genome, respectively, into clear clusters. There is no indication of bad data 

quality (e.g. sample swapping or technical issues). However, clusters of room-replicates are slightly 

separated, especially for TC, indicating that there is a subtle effect of room-conditions on the 

transcription.  

Specificly mapped Ambiguously mapped

A B D AB AD BD ABD

17.2 % 16.8 % 15.3 % 8.5 % 12.3 % 12.6 % 17.3 %
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Figure 8: Principal component analysis. The letters in the plots refer to the contribution of the corresponding sub-genomes A, B 

and D. 

3.3 Sub-genomes contribute equally to expression per chromosome 

To investigate if any of the sub-genomes dominate the gene expression on the chromosome level, 

the total expression per chromosome for all samples was evaluated (Figure 9A-B). Figure 9B shows 

a normalized chromosome expression measure calculated by dividing each homeolog read count 

with the total count for the homeolog triplet. This prevents expression of high abundance transcript 

(50% of the reads map to the 7% most abundant transcripts) to dominate and override expression 

patterns from low abundance transcripts. From the data presented in Figure 9 each sub-genome is 

transcribed at about the same level for each chromosome arm but that some chromosomes show a 

generally higher expression level per gene than others. For example, chromosome 1 has a higher 

total read count than chromosome 2 although it has fewer genes. Figure 9C shows the distribution 

of how much each homeolog contributes to the expression of each gene. Each homeolog typically 

contributes around one third of the transcripts for each gene, with very few contributing more than 

half. In conclusion, there seems to be no overall expression level dominance of any sub-genome at 

the chromosome level.  
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Figure 9: Sub-genomic expression levels (A) Total read count for all samples per chromosome. (B) Normalized per homeolog 

triplet. (C) Density plot of the normalized homeolog triplet expression, I.e. proportion of reads per sub-genome 

 

3.4 Most genes show significant homeolog specific expression  

To test whether the difference in expression between A, B and D homeologs is significant, the 

regression model that accounts for room, tissue and sub-genome is compared with a reduced model 

that only accounts for room and tissue effects. 5072 out of the 6858 genes tested show significant 

effect (adjusted P<0.01) of sub-genome on expression level. Similar test were done for tissue, room 

and interaction effect between sub-genome and tissue (Table 4). Although many genes show 

significant sub-genome effect, the fold change between the highest and lowest expressed homeologs 

is not necessarily very high. As Figure 10 shows, genes with a mean read count over 100 can show 

statistically significant difference even though the most expressed homeolog is less than 25% higher 

than the least expressed homeolog. 

Table 4: Proportion of genes showing significant differential expression between sub-genomes, tissues, room or interaction 

effect between tissue and sub-genome and the corresponding regression models used. 

 

A B C

interaction 28 %

subgenome 74 %

tissue 67 %

room 15 %

Model: Effect tested Significant genes*

room + tissue + subgenome + tissue:subgenome

room + tissue + subgenome

room + tissue

room + subgenome

tissue + subgenome

* Adjusted p-value < 0.01. Out of 6858 expressed genes
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Figure 10: Read count fold change between highest and lowest expressed homeolog (mean over all samples). Colors indicate 

adjusted P-values for the sub-genome effect. 

 

3.5 Hierarchical gene clustering and expression heatmap 

Figure 11 shows a heatmap of the gene expression for each sub-genome and sample. Genes are 

ordered according to hierarchical clustering based on expression correlation. The heatmap gives an 

overview of the expression patterns and clusters of genes with sub-genome or tissue specific 

expression. The main discernible features of the gene expression clusters are either homeolog 

specific expression or tissue specific expression. A large portion of genes are differently expressed 

between SE and AL tissues (Figure 11, regions annotated on the left), while these same genes seem 

to be expressed at an intermediary level in TC. Another pattern that can be noted is that relatively 

few genes are specifically expressed in TC. Of the genes that show sub-genomic dominance there 

seems to be about equally many that are expressed by a single sub-genome as are expressed in two.  
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Figure 11: Clustering and heat-map of expression data. Expression levels are scaled so that the total for each gene remains 

constant. The “intensity” column shows the scaling factor which reflects total expression level (yellow = high expression). The effect 

columns show the p-values of the different tests for each gene (black = significant). The dominant features are annotated on the left. 

 

 

 



25 

 

3.6 Reciprocal silencing of homeologs between tissues 

Earlier studies have reported that in allopolyploids (cotton and wheat) some genes utilize different 

homeologs in different tissues (e.g. the A homeolog is expressed in the leaf while the B homeolog is 

expressed in the root). In my dataset there is no clear-cut on/off regulation of expression hence it 

was necessary to choose threshold values to classify a gene as “reciprocal” or not (see methods 

section). The number of genes that were classified as reciprocal ranged from 0.9-0.3% in the three 

tissues (Table 5). Figure 12 show plots of expression profiles for a selection of these reciprocal 

silenced genes. By closer inspection of the single cases of reciprocal silencing, it seems that some of 

the genes are not truly reciprocal (Figure 12). An example of an expression profile that looks like 

reciprocal silencing is the one plotted in row 3, column 4. This gene has strong A genome bias in 

TC while in AL the A homeolog is suppressed and both B and D homeologs are up-regulated. 

Another example is found in row 1, column 3, which is dominated by B in AL and A+D in SE. 

Several of the other profiles are more doubtful examples reciprocal silencing, either because they 

have high variation between replicates, or because all homeologs are expressed at much higher 

levels in one of the tissues (e.g. row 4, column 2). 

Table 5: Number of genes classified as reciprocal homeolog silencing between tissues 

 

AL/SE AL/TC SE/TC

Genes tested 4189 4321 4279

Reciprocal 38(0.9%) 17(0.4%) 13(0.3%)
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Figure 12: Expression levels (read-counts) for a selection of genes that are classified as showing signs of reciprocal homeolog 

silencing between tissues. 

 

3.7 Differences in homeolog bias levels between tissues 

The HSV-transformed expression values (see methods) can be useful to visualize general patterns 

of the homeolog expression bias. Saturation, i.e. the level of homeolog bias, is equivalent to the 

inverse of the fold change between the highest and lowest expressed homeolog. Distribution of 

homeolog bias values for each tissue indicates that homeolog bias is most prevalent in SE (Figure 

13A). However, the rightwards shift in the distribution for SE and TC may be an artifact resulting 

from the lower total read-counts from those tissues (Figure 13C). Low read-counts give higher 

spread from shot-noise, which in turn increases the chance of getting higher saturation. 

Nevertheless, that the TC and SE tissues have very similar low read count (Figure 13C) but very 
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different distributions in homeolog bias (Figure 13A) support the presence of true biological 

differences in homeolog bias between tissues. 

 

Figure 13: Tissue specific expression distribution. (A) Distribution of homeolog bias level. (B) Distribution of “hue”, which 

indicates the dominant homeolog. Only genes with significant sub-genome effect included. Hue is given in degrees (0°-360°) and 15° 

was used as bandwidth when calculating kernel density. (C) Total raw read count per homeolog/tissue (not normalized). 

 

3.8 Homeolog expression distribution show that D genome is less dominant 

The hue tells us which homeolog that is dominating expression for each gene. Its distribution 

(Figure 13B) should not be as affected by total read counts as the homeolog bias (Figure 13A). The 

most striking feature of the hue distribution is the clear peaks and valleys which represents single 

homeolog over- and under-expression. This indicates that expression of each gene tends to be 

dominated by a single homeolog. A possible cause is that homeolog expression has diverged in an 

exponential manner, i.e. if up-regulation causes expression to double, the equivalent down-

regulation would make the expression halved. If homeolog expression changes occur in this 

exponential manner then random changes is more likely to result in a single dominant homeolog 

than not. 

Another feature of the hue distribution is that the peak around D is less distinct, i.e. the peak is 

lower and the surrounding valleys are not so deep. This indicates that the D genome is less 

dominant and tends to be co-expressed with A or B more frequently than A and B are co-expressed. 

Log-transforming the read-counts before converting to HSV removes the effect caused by 

exponential expression. The transformed hue plot (Figure 14A) shows a clear dip around D while 

from A to B there are some smaller inconsistent fluctuations. To test if the there is any statistical 

significance to the observed pattern, the same graph is calculated with the read-counts for the A, B 

and D homeologs randomly shuffled. This is repeated to generate a null distribution under the null 

hypothesis that the identity of the homeologs has no consequence. This null distribution is shown as 

the grey area in Figure 14B which marks the interval for which at any given value of hue, 99% of 

A B C
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the permutations falls within. For all three tissues, the dip at D goes below the 99% interval of the 

random distribution, indicating that it is very unlikely to have occurred by chance. This test is 

complicated by the fact that all points along the kernel density graph is somehow dependent on each 

other, e.g. if the graph goes up at one point it must go down at another so that the sum remains 1. 

Assuming that the D genome has an effect, it is possible to test if there is any significant differences 

between A and B only. Figure 14C shows the distribution when only the A and B homeologs are 

shuffled. This time the graph remains (mostly) inside the 99% interval, indicating that A and B are 

more similar to each other than D.  

 

Figure 14: Log transformed hue. (A) Distribution of hue for each tissue. (B) Comparison with random distribution resulting from 

shuffling the A, B and D homeolog. Gray area marks the interval for each hue that contains 99% of the permutations at that hue. (C) 

Same, but this time only the A and B homeolog is shuffled. 
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3.9 Gene set enrichment fail to show genome asymmetry of GO terms 

Gene set enrichment was done in R using the package topGO. GO annotation were assigned via the 

B. distachyon GO annotation as the orthologous B. distachyon genes are defined in the genome 

zipper. After excluding 43% of the genes from filtering based on orthologous hits (see methods), 

there was 2311 (33%) genes left with GO annotations. Analysis was run to look for specific gene 

regulation in each of the three sub-genomes and each of the three tissues. In addition, the analysis 

was run using both the “biological process” and “molecular function” ontologies. The top 10 results 

for each of the 12 runs are shown in Table 6-9. No adjusted P-values for sub-genome specific GO 

tests were significant at the 0.1 level. In the tissue specific tests, there was only a few significant 

GO’s, all in AL (Table 7). These GO’s were transcription regulation, nuclear acid binding, protein 

binding and zinc ion binding. Note that, for those GO’s, fewer genes than expected had a 

correlation coefficient higher than 0.5, which indicates that the significant K-S test is based on 

negative correlation, i.e. genes with those GO terms tend to be down-regulated in AL compared to 

SE and TC. 
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Table 6: Gene set enrichment analysis of tissues using biological process GO terms 

  

GO ID GO Term (Biological Process) Annotated 
cor > 

0.5 
Expected Fisher KS elimKS 

elimKS 

adjusted 

A
L
 

GO:0006355 regulation of transcription, DNA-depende... 172 24 38.63 1 1.3E-06 1.3E-06 0.0031 

GO:0044260 cellular macromolecule metabolic process 857 149 192.46 1 3E-09 0.00052 0.62 

GO:0006396 RNA processing 68 7 15.27 1 0.002 0.00203 1.00 

GO:0045037 protein import into chloroplast stroma 4 0 0.9 1 0.0029 0.00292 1.00 

GO:0090304 nucleic acid metabolic process 375 51 84.22 1 1.6E-07 0.00359 1.00 

GO:0010021 amylopectin biosynthetic process 3 0 0.67 1 0.0056 0.00562 1.00 

GO:0006461 protein complex assembly 31 2 6.96 1 0.0062 0.00623 1.00 

GO:0010051 xylem and phloem pattern formation 12 0 2.69 1 0.0073 0.00726 1.00 

GO:0006468 protein phosphorylation 195 40 43.79 0.78 0.0095 0.00946 1.00 

GO:0035670 ovule-producing ovary development 11 0 2.47 1 0.0103 0.01034 1.00 

  
         

S
E
 

GO:0055085 transmembrane transport 136 6 10.71 0.97 0.00065 0.00065 0.95 

GO:0006633 fatty acid biosynthetic process 23 2 1.81 0.55 0.00296 0.00296 0.95 

GO:0055114 oxidation-reduction process 199 19 15.67 0.21 0.00353 0.00353 0.95 

GO:0009239 enterobactin biosynthetic process 9 0 0.71 1 0.00496 0.00496 0.95 

GO:0006790 sulfur compound metabolic process 23 0 1.81 1 0.00552 0.00552 0.95 

GO:0019748 secondary metabolic process 15 0 1.18 1 0.00769 0.00769 0.95 

GO:0010255 glucose mediated signaling pathway 3 0 0.24 1 0.0077 0.0077 0.95 

GO:0006631 fatty acid metabolic process 31 2 2.44 0.71 7.4E-05 0.0098 0.95 

GO:0072522 purine-containing compound biosynthetic ... 41 1 3.23 0.97 0.0098 0.0098 0.95 

GO:0042542 response to hydrogen peroxide 10 0 0.79 1 0.0112 0.0112 0.95 

  
         

T
C

 

GO:0042364 water-soluble vitamin biosynthetic proce... 12 0 0.71 1 0.00012 0.00012 0.26 

GO:0046394 carboxylic acid biosynthetic process 78 1 4.59 0.99 1.2E-06 0.00029 0.26 

GO:0055114 oxidation-reduction process 199 6 11.71 0.98 0.00038 0.00038 0.26 

GO:0009853 photorespiration 6 0 0.35 1 0.00044 0.00044 0.26 

GO:0044242 cellular lipid catabolic process 10 0 0.59 1 0.0006 0.0006 0.29 

GO:0042445 hormone metabolic process 14 0 0.82 1 0.00081 0.00081 0.31 

GO:0008610 lipid biosynthetic process 65 0 3.83 1 9.4E-06 0.00092 0.31 

GO:0006725 cellular aromatic compound metabolic pro... 50 2 2.94 0.8 0.00159 0.00159 0.48 

GO:0009081 branched-chain amino acid metabolic proc... 12 1 0.71 0.52 0.00195 0.00195 0.52 

GO:0006979 response to oxidative stress 34 1 2 0.87 0.00224 0.00224 0.54 

 

Table 7: Gene set enrichment analysis of tissues using molecular function GO terms 

  

GO ID GO Term (Molecular Function) Annotated 
cor > 

0.5 
Expected Fisher KS elimKS 

elimKS 

adjusted 

A
L
 

GO:0003676 nucleic acid binding 497 52 106.43 1 4.8E-13 2E-07 0.00025 

GO:0005515 protein binding 423 64 90.58 1 4.6E-06 4.6E-06 0.0028 

GO:0008270 zinc ion binding 303 58 64.89 0.87 1.2E-05 1.2E-05 0.0049 

GO:0003677 DNA binding 245 28 52.47 1 9.6E-06 5.6E-05 0.017 

GO:0008026 ATP-dependent helicase activity 33 3 7.07 0.98 0.0027 0.0027 0.66 

GO:0043565 sequence-specific DNA binding 49 5 10.49 0.99 0.004 0.004 0.74 

GO:0003723 RNA binding 132 17 28.27 1 0.0023 0.0043 0.74 

GO:0046527 glucosyltransferase activity 17 4 3.64 0.51 0.0057 0.0057 0.83 

GO:0005524 ATP binding 500 98 107.07 0.88 0.0062 0.0062 0.83 

GO:0000049 tRNA binding 3 0 0.64 1 0.0082 0.0082 0.99 

  
         

S
E
 

GO:0016747 transferase activity, transferring acyl ... 37 1 2.96 0.96 0.00032 0.00032 0.39 

GO:0051539 4 iron, 4 sulfur cluster binding 4 0 0.32 1 0.00274 0.00274 1.00 

GO:0004620 phospholipase activity 7 0 0.56 1 0.0038 0.0038 1.00 

GO:0022891 substrate-specific transmembrane transpo... 150 8 12.01 0.93 0.0041 0.0041 1.00 

GO:0008667 2,3-dihydro-2,3-dihydroxybenzoate dehydr... 9 0 0.72 1 0.00451 0.00451 1.00 

GO:0016491 oxidoreductase activity 212 19 16.97 0.33 0.0025 0.00964 1.00 

GO:0019200 carbohydrate kinase activity 12 1 0.96 0.63 0.01006 0.01006 1.00 

GO:0042562 hormone binding 5 0 0.4 1 0.01013 0.01013 1.00 

GO:0004312 fatty acid synthase activity 6 0 0.48 1 0.01018 0.01018 1.00 

GO:0015075 ion transmembrane transporter activity 122 7 9.77 0.87 0.01214 0.01214 1.00 

  
         

T
C

 

GO:0030170 pyridoxal phosphate binding 22 1 1.39 0.76 0.00014 0.00014 0.17 

GO:0016491 oxidoreductase activity 212 9 13.35 0.93 0.00012 0.0003 0.18 

GO:0016651 oxidoreductase activity, acting on NADH ... 9 0 0.57 1 0.00161 0.00161 0.65 

GO:0003824 catalytic activity 1522 78 95.83 1 3.6E-06 0.00226 0.68 

GO:0015291 secondary active transmembrane transport... 42 2 2.64 0.75 0.00339 0.00339 0.77 

GO:0005198 structural molecule activity 107 5 6.74 0.82 0.00455 0.00455 0.77 

GO:0016614 oxidoreductase activity, acting on CH-OH... 52 2 3.27 0.85 0.00507 0.00507 0.77 

GO:0022890 inorganic cation transmembrane transport... 80 6 5.04 0.39 0.00524 0.00524 0.77 

GO:0015662 ATPase activity, coupled to transmembran... 16 0 1.01 1 0.00609 0.00609 0.77 

GO:0016810 hydrolase activity, acting on carbon-nit... 20 0 1.26 1 0.00641 0.00641 0.77 
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Table 8: Gene set enrichment analysis of sub-genomes using biological function GO terms 

  

GO ID GO Term (Biological Process) Annotated 
cor > 

0.5 
Expected Fisher KS elimKS 

elimKS 

adjusted 

A
 g

e
n

o
m

e
 

GO:0006944 cellular membrane fusion 4 0 0.46 1 0.0018 0.0018 1.00 

GO:0044087 regulation of cellular component biogene... 4 0 0.46 1 0.0066 0.0066 1.00 

GO:0044403 symbiosis, encompassing mutualism throug... 6 1 0.69 0.52 0.0067 0.0067 1.00 

GO:0048437 floral organ development 23 3 2.64 0.5 0.0075 0.0075 1.00 

GO:0048467 gynoecium development 13 1 1.49 0.8 0.0096 0.0096 1.00 

GO:0016485 protein processing 7 0 0.8 1 0.0098 0.0098 1.00 

GO:0009646 response to absence of light 6 0 0.69 1 0.0103 0.0103 1.00 

GO:0006465 signal peptide processing 4 0 0.46 1 0.0114 0.0114 1.00 

GO:0048440 carpel development 12 1 1.38 0.77 0.0156 0.0156 1.00 

GO:0032271 regulation of protein polymerization 3 0 0.34 1 0.0233 0.0233 1.00 
  

         

B
 g

e
n

o
m

e
 

GO:0009733 response to auxin stimulus 36 2 4.07 0.93 0.0024 0.0024 1.00 

GO:0008283 cell proliferation 10 0 1.13 1 0.0034 0.0034 1.00 

GO:0009909 regulation of flower development 22 2 2.48 0.73 0.008 0.008 1.00 

GO:0006869 lipid transport 8 0 0.9 1 0.0084 0.0084 1.00 

GO:0010229 inflorescence development 5 0 0.56 1 0.0086 0.0086 1.00 

GO:0009817 defense response to fungus, incompatible... 5 0 0.56 1 0.0117 0.0117 1.00 

GO:0006310 DNA recombination 13 1 1.47 0.79 0.0121 0.0121 1.00 

GO:0009648 photoperiodism 10 1 1.13 0.7 0.0134 0.0134 1.00 

GO:0006323 DNA packaging 12 0 1.36 1 0.0143 0.0143 1.00 

GO:0006333 chromatin assembly or disassembly 14 0 1.58 1 0.0158 0.0158 1.00 

  
         

D
 g

e
n

o
m

e
 

GO:0009873 ethylene mediated signaling pathway 9 0 0.83 1 0.0012 0.0012 1.00 

GO:0007062 sister chromatid cohesion 4 0 0.37 1 0.0032 0.0032 1.00 

GO:0009112 nucleobase metabolic process 4 0 0.37 1 0.0052 0.0052 1.00 

GO:0006075 (1->3)-beta-D-glucan biosynthetic proces... 4 0 0.37 1 0.0058 0.0058 1.00 

GO:0009850 auxin metabolic process 9 0 0.83 1 0.0162 0.0162 1.00 

GO:0009629 response to gravity 10 0 0.93 1 0.0192 0.0192 1.00 

GO:0006206 pyrimidine nucleobase metabolic process 3 0 0.28 1 0.0194 0.0194 1.00 

GO:0009870 defense response signaling pathway, resi... 3 0 0.28 1 0.0211 0.0211 1.00 

GO:0006613 cotranslational protein targeting to mem... 6 0 0.56 1 0.024 0.024 1.00 

GO:0006614 SRP-dependent cotranslational protein ta... 6 0 0.56 1 0.024 0.024 1.00 

 

Table 9: Gene set enrichment analysis of sub-genomes using molecular function GO terms 

  

GO ID GO Term (Molecular Function) Annotated 
cor > 

0.5 
Expected Fisher KS elimKS 

elimKS 

adjusted 

A
 g

e
n

o
m

e
 

GO:0003677 DNA binding 245 22 26.95 0.88 0.0032 0.0052 1.00 

GO:0003690 double-stranded DNA binding 5 0 0.55 1 0.0073 0.0073 1.00 

GO:0008026 ATP-dependent helicase activity 33 4 3.63 0.5 0.0116 0.0116 1.00 

GO:0070035 purine NTP-dependent helicase activity 33 4 3.63 0.5 0.0116 0.0116 1.00 

GO:0030145 manganese ion binding 5 0 0.55 1 0.0202 0.0202 1.00 

GO:0004702 receptor signaling protein serine/threon... 9 0 0.99 1 0.0207 0.0207 1.00 

GO:0005057 receptor signaling protein activity 9 0 0.99 1 0.0207 0.0207 1.00 

GO:0016772 transferase activity, transferring phosp... 325 27 35.75 0.96 0.0217 0.0217 1.00 

GO:0003899 DNA-directed RNA polymerase activity 11 1 1.21 0.72 0.0263 0.0263 1.00 

GO:0034062 RNA polymerase activity 11 1 1.21 0.72 0.0263 0.0263 1.00 

  
         

B
 g

e
n

o
m

e
 

GO:0051537 2 iron, 2 sulfur cluster binding 5 0 0.57 1 0.0046 0.0046 1.00 

GO:0016705 oxidoreductase activity, acting on paire... 25 0 2.87 1 0.0137 0.0137 1.00 

GO:0004519 endonuclease activity 16 0 1.83 1 0.0141 0.0141 1.00 

GO:0004550 nucleoside diphosphate kinase activity 2 0 0.23 1 0.0207 0.0207 1.00 

GO:0004518 nuclease activity 29 4 3.32 0.43 0.0214 0.0214 1.00 

GO:0008171 O-methyltransferase activity 3 0 0.34 1 0.0218 0.0218 1.00 

GO:0016209 antioxidant activity 16 3 1.83 0.28 0.0245 0.0245 1.00 

GO:0005509 calcium ion binding 49 3 5.62 0.93 0.0248 0.0248 1.00 

GO:0003909 DNA ligase activity 2 0 0.23 1 0.0253 0.0253 1.00 

GO:0003910 DNA ligase (ATP) activity 2 0 0.23 1 0.0253 0.0253 1.00 

  
         

D
 g

e
n

o
m

e
 

GO:0003924 GTPase activity 42 0 3.82 1 0.0031 0.0031 1.00 

GO:0003843 1,3-beta-D-glucan synthase activity 4 0 0.36 1 0.0055 0.0055 1.00 

GO:0070011 peptidase activity, acting on L-amino ac... 113 5 10.28 0.98 0.0148 0.0148 1.00 

GO:0003746 translation elongation factor activity 6 0 0.55 1 0.0173 0.0173 1.00 

GO:0008233 peptidase activity 116 6 10.55 0.96 0.0319 0.0319 1.00 

GO:0016838 carbon-oxygen lyase activity, acting on ... 2 0 0.18 1 0.0355 0.0355 1.00 

GO:0016853 isomerase activity 47 3 4.27 0.82 0.0362 0.0362 1.00 

GO:0016866 intramolecular transferase activity 14 2 1.27 0.37 0.0395 0.0395 1.00 

GO:0004091 carboxylesterase activity 5 0 0.45 1 0.0397 0.0397 1.00 

GO:0008234 cysteine-type peptidase activity 19 1 1.73 0.84 0.0412 0.0412 1.00 
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4 Discussion 

4.1 Differential expression of homeologs are common in the wheat genome 

With the CSS assembly it is now for the first time possible to measure homeolog specific 

expression on a whole-genome level. About three quarters of the expressed genes showed 

noticeably different expression of its homeologs (Table 4), although the fold change is not very high 

for most genes (Figure 10). The high number of significant tests without large expression 

differences (about half had less than 2x fold change) reflects the high sensitivity of the DESeq test 

applied, and the proportion of genes that show sub-genome effect could possibly be even higher 

than 75% if more replicates or tissues had been included.  Even though it is evident that most 

homeologs are expressed differently it is less clear what this means regarding evolution and 

partitioning of gene expression in the polyploidy wheat genome. Since the A, B, and D genomes 

ancestors diverged about 2-4 million years ago, these genomes evolved as diploids for several 

million years before they came together in polyploidy wheat. It is therefore likely that much of the 

expression level variation observed reflect fixed differences between the diploid ancestors 

(ancestral) rather than expression differences that have evolved after polyploidization (i.e. true 

homeolog divergence). To differentiate between these types of homeolog expression differences it 

is necessary to include diploid ancestors (or close relatives) in future experiment. 

Although we cannot reveal the nature of homeolog expression divergence from this study it is worth 

commenting on possible mechanisms that might be involved. Since all homeologs are subject to the 

exact same cellular (trans-acting) conditions, sub-genomic expression bias is only possible through 

local (cis-acting) differences between the homeologs. These differences could be mutations in 

promoter/regulatory regions, methylation, chromatin remodeling or any sequence changes that 

affects the stability of the mRNA. Since polyploid wheat is fairly young (~500.000 years) (Salse et 

al., 2008), we would expect that true homeolog divergence should more often have evolved through 

DNA-methylation or chromatin modifications divergence rather than mutations in the DNA 

(mutation rate is very low). Several studies have linked methylation with homeolog suppression 

(Kashkush et al., 2002; Shitsukawa et al., 2007). Bottley and Koebner (2008) found different sub-

genomic expression patterns in different wheat cultivars. They suggested that the variation is caused 

by epigenetic factors, which are inheritable and can affect phenotype and therefore be important for 

breeding. The data in my study cannot be used to look for epigenetic effects directly, but for a 
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further study it could be interesting to identify the promoter and regulatory regions of the genes to 

see if any sequence variation there can explain the variation in homeolog expression. To investigate 

the claim that there is variations between cultivars, one could re-examine the RNA-seq dataset from 

a recent study that sampled the same tissues but from a different cultivar (Gillies et al., 2012).  

4.2 Large scale sub-genomic expression bias 

Figure 9 shows that among the homeoreads, there is no clear sign of homeolog specific expression 

bias on whole genome level or in each chromosome-arm. It is therefore more likely that homeolog 

regulation occurs on individual genes. However, the homeoreads only accounts for genes that exist 

in one copy in each sub-genome. When looking at the total number of mapped reads to each of the 

sub genomes in Table 2, there is a statistically significant difference; there are consistently more 

reads mapped to D genome than B, and there are more mapped to B than A. There are many 

possible explanations for this observed bias. Some genomes can have experienced more gene-loss 

than others or there could be differences in quality of genome assemblies. Another explanation 

could be differential expression of rRNA between homeologous chromosomes as a result of 

nucleolar dominance (Pikaard, 1999). 

4.3 Reciprocal silencing 

Tissue-specific reciprocal silencing is interesting as it could represent a form of rapid 

subfunctionalization (Adams et al., 2003). Bottley et al. (2006) reported that between root and leaf 

tissues in hexaploid wheat, 5 out of the 236 genes they tested were reciprocally silenced, and at 

least one of them showed complete reciprocal silencing. In my study, by comparing the homeolog 

specific expression between the three tissues in the endosperm, 0.3-0.9% of the genes was classified 

to be (partially) reciprocally silenced. This figure is comparable with the proportion of reciprocally 

silenced genes found in Bottley et al. (2006).  

The earlier studies identifying complete reciprocal silencing in cotton (Adams et al. 2003) and 

wheat (Bottley et al. 2006) used SSCP to score expression or silencing. A later study on cotton 

(Chaudhary et al., 2009) using Sequenome MassARRAY technology tested far more genes and 

tissues than the Adams et al. (2003) study, but could only find partial reciprocal silencing. Similarly 

I did not find any cases of complete reciprocal silencing in wheat, suggesting that SSCP tends to 

overestimate the level of silencing and that reciprocal silencing is typically only partial. In 

conclusion I can only say that reciprocal silencing does occur between the tissues in the endosperm 

for some genes, but only at a level of partial silencing.  
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4.4 The special expression distribution of the D genome 

On the overall level each sub-genome is equally expressed (see Figure 9C), but from Figure 13B 

and Figure 14 it seem like the D genome has a different expression pattern as there are fewer genes 

dominated specifically by the D genome compared to the A and B genome while there are more 

genes that are equally dominated by D+A or D+B. In other words, the expression pattern of the D 

homeologs seems to be slightly more similar to either A or B than the A and B are to each other. 

Another case where the D genome is different is seen in Table 3, where there are more reads that 

map to both sub-genomes D+A or D+B, than there are reads that map to both A+B. This indicates 

that the D genome sequence is more similar to A and B than the A and B are to each other. 

One explanation for this pattern can be that during the time the A and B genome has evolved as a 

tetraploid, the extra gene-copies could have created a genetic redundancy that allows for mutations 

to accumulate at a higher rate and thus also lead to diverged homeolog expression levels. However, 

it is unlikely that enough mutations could accumulate during that relatively short evolutionary 

period. Another explanation is that these differences where present before polyploidization. An 

unpublished phylogenetic study looking at the origins of the wheat sub-genomes have shown that 

the D genome may have evolved from a hybridization between the ancestors of the A and B 

genomes (S. R. Sandve, personal communication). The phylogenies show that similar numbers of D 

homeologs are closest related to A and B genomes, which fits well with my observations of 

sequence and expression level similarity. 

 

4.5 Gene set enrichment does not suggest genomic asymmetry in wheat 

One goal of the gene set enrichment test was to test for genomic asymmetry (Feldman et al., 2012), 

in which some functions or traits are controlled by a single sub-genome. The assumption is that the 

asymmetrically controlled functions are annotated with specific GO terms. Test results indicated 

that no GO functional group of genes was specifically up or down-regulated in any of the sub-

genomes (Table 8-9). In the topGO manual (Alexa and Rahnenfuhrer, 2010) they do comment that 

P-values from enrichment analysis often are not very extreme and that multiple testing correction of 

P-values could mask out interesting results. However, this does not change the fact that 

randomizing the data would result in equally (un)extreme P-values. 

Gene ontology analysis of RNA-seq expression data from the SE and AL tissues of wheat has been 

performed before (Gillies et al., 2012), where they showed that the two tissues display different 

molecular functions. Such divergence in GO terms between tissues is expected based on the highly 
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different biological functions of the SE and AL tissues. Hence, I used GO enrichment tests for 

tissue specific regulation as a control for the power/sensitivity of the GO term test applied in my 

thesis. The low proportion of GO terms significant for tissue specific expression in my study (Table 

6-7) therefore seem to indicate low method sensitivity or that some other factor influence the GO 

analysis. However, the comparison with Gillies et al., (2012) might not be valid because of 

differences in time of tissue sampling (they sampled at 6, 9 and 14 DPA) compared to the data 

analyzed in this thesis. 

There are many different ways to perform gene set enrichment, all of which can give different 

results and conclusions (Hung et al., 2012). In this study, both Fisher exact test and K-S test was 

applied, which resulted in highly different P-values. The Fisher test was performed for genes that 

had a certain level of positive correlation the condition, while the K-S test is based on the 

correlation-score which can test significant on negative correlations as well as positive correlations. 

How the GO annotations were acquired may also have affected the results. The GO annotations 

where inferred from the annotations of orthologous B. distachyon genes. In the Gillies et al. (2012) 

study they used blast2GO, which uses blast to find annotated orthologous genes. They also used a 

GO slimmer which reduces the number of GO terms by using a select set of broader terms. 

Finally, it is possible that genomic asymmetry is caused by different genome content due to loss of 

genes or divergent gene family sizes in certain sub-genomes and not by homeolog specific 

suppression of expression. This study only includes the genes that exist in one copy each of the 

three sub-genomes and therefore cannot account for asymmetry in genome content. It is also 

possible that asymmetry in phenotypic traits are caused by functional mutations in certain sub-

genomes while sub-genomic expression levels are unaffected and therefore not detectable in this 

study. 

4.6 Limitations of the homeoreads method 

The pipeline developed to calculate expression levels is designed to give unbiased relative levels of 

expression between homeologous genes when no gene-models are available. The use of 

homeoreads to find homeologous regions and the use of genome zipper contigs to select genes has 

some inherent limitation that could be improved upon:  

4.6.1 Using contigs to represent genes 

The homeoreads method relies on the assumption that each gene resides within a single contig and 

that there are no other transcribed elements within that contig. These assumptions are 

simplifications and do not hold for all genes. Where the survey sequence assembly is highly 
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fragmented it is likely that the exons of a gene will end up in different contigs (GENE1_B in Figure 

15A). In that case, since only a single contig represents the gene, only a part of the gene is 

considered and the absolute expression level will be underestimated. As the aim of this thesis is to 

analyze expression between sub-genomes, an underestimate of the total expression level per se does 

not affect our conclusions. However, lower read counts do increase the uncertainty of the 

expression measurements. Another situation occur where the assembly is less fragmented and 

several genes or transcribed elements co-reside in a single large contig (Figure 15B). Assuming that 

sub-genome B is used as reference and we want to measure the expression of GENE2 which resides 

in Contig_B_4, since GENE3_B is inside the same contig, we end up measuring the sum of the 

expression of both genes. As it is illustrated, only GENE3 is expressed and is therefore measured 

instead. To circumvent this problem, an extra filtering step was performed before the GO analysis 

that ensures that there is no mistaken gene identity. 

 

Figure 15: Illustration of pitfalls of assuming that one contig = one gene. (A) Fragmentation of exons. (B) Multiple genes in one 

contig.  

4.6.2 Arbitrary choice of reference zipper 

Figure 15 illustrate examples where the choice of reference zipper can have an impact on the 

calculated expression levels. A comparison of the expression levels obtained when using each of the 

sub-genomes as reference showed that most expressed genes give varied counts and that only about 

a quarter of the expressed genes are completely unaffected. This tells us that the situations like 

those illustrated in Figure 15 are common. However, the relative homeolog expression levels should 

not be affected and most major conclusions from this study are expected to be valid if the reference 

genome is changed. Unfortunately, I did not have time to re-run the major analyses using a different 

reference genome due to time constraints. 

4.6.3 Inflated variance from ambiguous hits 

When a read maps perfectly to several of the sub-genomes it is not known from where it actually 

originated. The read-count of these ambiguously mapped reads is divided proportionally to each 
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sub-genome based on the reads that are mapped specifically to only one sub-genome. When there 

are only a few reads that map specifically, the variance from shot-noise of the specifically mapped 

reads will propagate to the calculation of expression. Since DESeq is designed to estimate the shot-

noise based on the raw read-counts, the software will underestimate the expression variance when 

given the mixed read-counts. The result is that genes with low proportion of specifically mapped 

reads will have a slightly higher level of false positives, but it is unclear to what extent.  

4.6.4 Effect of discarding multireads within sub-genome 

Multireads are reads that map to several positions in the genome. This occurs when a gene or parts 

of a gene exists in several copies. The homeoreads method uses the fact that reads from 

homeologous genes map to all three homeologs. If a gene exists in more than one copy within the 

sub-genome, it would be difficult to determine which of them to count as the homeologous copy. To 

avoid that problem, all multireads within the sub-genome are discarded. One consequence of this is 

that genes that have paralogs will not be counted or will have reduced read-counts, but there is also 

a possibility that homeolog specific bias is introduced for some genes. As an example, take a gene 

that has three homeologs A, B and D. At some point in evolution, the B homeolog is copied, 

creating the copy B*. It is possible that in a 100bp region there is one homeoSNP in each of A,B 

and D and that B* carries the same SNP as B plus one extra SNP. In that case, reads originating 

from B or B* will map to each other and be discarded as multireads. Reads originating from A and 

D, on the other hand, will not map to B* because there are 3 mismatches. The result is that reads 

from A or D will be counted while reads from B will not, in other words: the count is biased. It is 

not clear to what extent this kind of bias occurs in this study, but it is reasonable to expect a few 

false-positives as a consequence of this. 

4.6.5 Is 2bp mismatch a good choice? 

When the reads are mapped they are allowed to have 2bp mismatch. This is allowed so that the 

reads can map to all three homeologs, not only the one they originate from. This number was 

chosen arbitrarily (it is the default setting). Since reads will fail to map to all three homeologs if the 

region contains too many homeoSNPs, allowing more mismatches should be consider.  

By assuming that homeoSNPs are distributed uniformly we can calculate the expected proportion of 

reads that will fail to map to all three homeologs. Based on the observed number of specifically and 

ambiguously mapped reads we find that the chance of a base pair having a homeoSNP is about 

2.5%. When only 2bp mismatch is allowed this means that about 34% of the reads will fail to map 

to one or more of the three homeologs. By using the same model with 3bp mismatch allowed there 

will be only 20% of reads that fails to map. The additional homeoreads acquired by increasing the 
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allowed number of mismatches will mostly map specifically and therefore contribute to a more 

accurate estimation of the homeolog specific expression. From these calculations it seems to be 

better to allow 3bp mismatch or even more. However, there might be a higher chance of multireads 

when allowing more mismatches and the mapping procedure might get more time consuming. 

Unfortunately, there was no time to re-run the mapping with altered parameters. 
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5 Conclusion  

It is evident that the use of RNA-seq in combination with the newly available CSS assembly as 

reference makes it possible to measure the genome-wide homeolog specific expression levels at 

unprecedented accuracy and precision. This provides new and exciting opportunities for researchers 

to understand polyploid genome function in general, and hexaploid wheat biology in specific.  

Analysis of the homeolog specific expression showed that most genes have a reproducible 

homeolog specific expression bias, although the level of expression difference may not be very 

strong. For many genes the homeolog specific expression is developmentally controlled and there 

are signatures of reciprocal silencing suggesting partitioned use of homeologs in different cellular 

context. The homeolog bias seems to affect genes individually as there is no clear bias on 

chromosome level and there was no evidence for genomic asymmetry in relation to different 

molecular or biological functions. The most striking result was that the D genome exhibits a 

different expression distribution, possibly reflecting an evolutionary history involving hybridization 

in the D-genome lineage. 

However, in this study it was not possible to know if the observed homeologous expression patterns 

are a result of polyploidization or if the pattern was established already in the progenitor species of 

each sub-genome. Previous studies using microarrays have solved this by using synthetic hexaploid 

wheat and include samples from the parental plants for comparison. To do such a study again, only 

using RNA-seq instead, would be of great help to further improve knowledge of expression 

regulation in hexaploid wheat. Another gap in the knowledge is how much homeolog specific 

expression varies between different cultivars of wheat. An RNA-seq study that compares different 

cultivars could also investigate the importance of epi-genetic effects as a mediator of expression 

variance. If homeolog specific expression varies without differences in DNA-sequence it would be 

a good idea to investigate methylation levels in those genes. 
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Appendix A Scripts for the homeoreads pipeline 

 

The following scripts are used to calculate the estimated homeolog specific expression as described 

in the method section. It is assumed that TopHat read alignment has been performed (step 1 in the 

pipeline, see methods). As input it requires an ordered list of contig names (reference zipper 

contigs) and a table that contains the description of each sample (room, DPA, tissue, rep#) as well 

as paths to the BAM files generated by TopHat when mapping against sub-genomes A, B and D. 

Script hierarchy: 

 main.R – Runs step 2-6 of the pipeline for all samples 

o extractZipperAndFindHomeoreads.R – Step 2-3. Uses the following scripts: 

 scripts/reformatSam 

 scripts/extractZipperContigs 

 scripts/extractHomeoReads 

 scripts/getSubset.py 

 scripts/addPairedEndSuffix.py 

o scripts/removeBiasedReads.R – Step 4 

o scripts/countReadGroups.R – Step 5 

o scripts/calcExprRecursive.R – Step 6 



1 #
2 # Main script for running homeoread method
3 #
4
5 source("scripts/extractZipperAndFindHomeoreads.R")
6 source("scripts/removeBiasedReads.R")
7 source("scripts/countReadGroups.R")
8 source("scripts/calcExprRecursive.R")
9

10 #
11 # folder structure:
12 # / # current (project) dir , contains main script(s)
13 # /scripts/ # sourced R-scripts , shell/python scripts
14 # /input/ # All input data: bamTbl , raw genezipper , BdAnnot , Bd.fasta ...
15 # /output/ # All files generated by scripts
16 # /output/Room1_20 DPA_AL_3.1/ # (example generated path for a sample)
17
18
19 # calcHomeoreadExpression function
20 #
21 # Parameters :
22 # bams: Vector of characters specifying the path of the BAM files mapped against
23 # sub -genome A, B and D respectively
24 # outdir: Directory to save output files
25 # contigsFile : Path to file containing list of reference contigs
26 # refGenome : Specify which genome which is used as reference ("A","B" or "D")
27 calcHomeoreadExpression <- function(bams ,outdir ,contigsFile ,refGenome){
28
29 # create directory for output files
30 dir.create(outdir)
31
32 # Extract zipper contigs and find homeoreads
33 homeoreads <- extractZipperAndFindHomeoreads(bams ,outdir ,contigsFile ,refGenome)
34
35 # Filter biased reads
36 homeoreads <- removeBiasedReads( homeoreads )
37
38 # Count perfect matches
39 countTbl <- countReadGroups( homeoreads , contigsFile )
40
41 # Estimate expression from each homeolog
42 expTbl <- calcExprRecursive(countTbl)
43
44 # Store counts and estimated expression
45 write.table( cbind(countTbl ,expTbl [ ,2:5]), file=file.path(outdir , "counts.txt"),
46 sep="\t", col.names=T, row.names=F, quote=F)
47
48 return(expTbl [ ,2:4])
49 }
50
51
52
53 # load list of BAM files with description
54 bamTbl <- read.table("input/bamFileDesc.txt",header=T,stringsAsFactors=F)
55
56
57 refGenome <- "B"
58 contigsFile <- "output/simpleZipper/GZcontigsB.txt"
59
60 # Run homeoread method for each sample
61 for( i in 1:nrow(bamTbl) ){
62 outdir <- file.path("output",bamTbl$SampleID[i])
63 bams <- as.character( bamTbl[i,c("bamA","bamB","bamD")] )
64 calcHomeoreadExpression(bams ,outdir ,contigsFile ,refGenome)
65 }
66
67 # Put all expression values in one table
68 fullExpTbl <- NULL
69 for( i in 1:nrow(bamTbl) ){
70 outdir <- file.path("output",bamTbl$SampleID[i])
71 tbl <- read.table( file=file.path(outdir , "counts.txt"), sep="\t", header=T,stringsAsFactors=F)
72 exp <- tbl [ ,10:12]
73 exp <- round(exp)
74 names(exp) <- paste(bamTbl$SampleID[i],c("A","B","D"),sep="_")
75 if( is.null(fullExpTbl) )
76 fullExpTbl <- exp
77 else
78 fullExpTbl <- cbind(fullExpTbl ,exp)
79 }
80
81 write.table(fullExpTbl , "output/fullExpTbl.txt", sep="\t", col.names=T, row.names=F, quote=F)

main.R

1 # Parameters :



2 # bams: Vector of characters specifying the path of the BAM files mapped against
3 # sub -genome A, B and D respectively
4 # outdir: Directory to save output files
5 # contigsFile : Path to file containing list of reference contigs
6 # refGenome : Specify which genome which is used as reference ("A","B" or "D")
7 extractZipperAndFindHomeoreads <- function(bams ,outdir ,contigsFile ,refGenome){
8 subGenome=c("A","B","D")
9

10 # Extract zipper contigs
11 refBAM <- bams[subGenome == refGenome]
12 refSAM <- file.path(outdir ,"ref.sam")
13 system(paste("scripts/extractZipperContigs",refBAM ,contigsFile ,refSAM))
14
15
16 # Find homeoreads
17 homeoBAMs <- bams[subGenome!=refGenome]
18
19 # extract reads from BAM files that have same read ID as those mapped to reference zipper
20 homeoSAM1 <- file.path(outdir ,"homeo1.sam")
21 homeoSAM2 <- file.path(outdir ,"homeo2.sam")
22 system(paste("scripts/extractHomeoReads", homeoBAMs [1], refSAM , homeoSAM1))
23 system(paste("scripts/extractHomeoReads", homeoBAMs [2], refSAM , homeoSAM2))
24
25 # Order sam -files according to sub -genome
26 samFiles <- character (3)
27 names(samFiles) <- subGenome
28 samFiles[refGenome] <- refSAM
29 samFiles[subGenome!=refGenome] <- c(homeoSAM1 , homeoSAM2)
30
31 # load sam -file data
32 hitsA <- read.table(file=pipe( paste("scripts/reformatSam", samFiles["A"]) ),
33 col.names = c("read","contig","pos","CIGAR","MD"),
34 stringsAsFactors=F)
35 hitsB <- read.table(file=pipe( paste("scripts/reformatSam", samFiles["B"]) ),
36 col.names = c("read","contig","pos","CIGAR","MD"),
37 stringsAsFactors=F)
38 hitsD <- read.table(file=pipe( paste("scripts/reformatSam", samFiles["D"]) ),
39 col.names = c("read","contig","pos","CIGAR","MD"),
40 stringsAsFactors=F)
41
42 # make table of reads using hits to A as reference
43 idxAinD <- match(hitsA$read ,hitsD$read)
44 idxAinB <- match(hitsA$read ,hitsB$read)
45
46 homeoreads <- data.frame( read=hitsA$read ,
47 contig.A=hitsA$contig ,
48 contig.B=hitsB$contig[ idxAinB ],
49 contig.D=hitsD$contig[ idxAinD ],
50 MD.A = hitsA$MD,
51 MD.B = hitsB$MD[ idxAinB ],
52 MD.D = hitsD$MD[ idxAinD ],
53 CIGAR.A = hitsA$CIGAR ,
54 CIGAR.B = hitsB$CIGAR[ idxAinB ],
55 CIGAR.D = hitsD$CIGAR[ idxAinD ],
56 stringsAsFactors=F)
57 homeoreads <- homeoreads[!(is.na(idxAinB) | is.na(idxAinD)),] # remove reads that are not also in B

and D
58
59 return(homeoreads)
60 }

scripts/extractZipperAndFindHomeoreads.R

1 #!/bin/bash
2
3 # Extract only the interesting fields (i.e. QNAME , RNAME , POS , CIGAR , MD) from a sam file.
4
5 # validate parameters
6 if [[ $# != 1 ]]
7 then
8 echo "Invalid number of parameters!"
9 echo ""

10 echo "Usage: reformatSam <sam -file >"
11 exit 1
12 fi
13
14 cat $1 | perl -lne ’m|([^\t]+)\t[^\t]+\t([^\t]+)\t([^\t]+)\t[^\t]+\t([^\t]+)\t.+\tMD\:Z\:([^\t]+)|g&&

print "$1\t$2\t$3\t$4\t$5"’

scripts/reformatSam

1 #!/bin/bash
2
3 # Read bamfile , remove all multi -reads , keep only reads that map to given contigs
4 # and add pair -end suffix ("_1"/"_2") if not present.



5 # Write result to outfile in sam format
6
7 # validate parameters
8 if [[ $# != 3 ]]
9 then

10 echo "Invalid number of parameters!"
11 echo ""
12 echo "Usage: extractZipperContigs <bam -file > <contig -file > <output -file >"
13 exit 1
14 fi
15
16 BAMfile=$1
17 contigs=$2
18 outfile=$3
19
20 pbin=$(dirname $0)
21 # samtools is not in PATH when executing from R, so add it now.
22 export PATH=/local/genome/bin:$PATH
23
24 echo "samtools view $BAMfile | grep \"NH:i:1$\" | python $pbin/getSubset.py -c 3 $contigs | python $

pbin/addPairedEndSuffix.py > $outfile"
25 samtools view $BAMfile | grep "NH:i:1$" | python $pbin/getSubset.py -c 3 $contigs | python $pbin/

addPairedEndSuffix.py > $outfile

scripts/extractZipperContigs

1 #!/bin/bash
2
3 # Read bamfile , remove all multi -reads , add pair -end suffix ("_1"/"_2") if not present
4 # and keep only reads have same read IDs as in given SAM file.
5 # Write result to outfile in sam format
6
7 # validate parameters
8 if [[ $# != 3 ]]
9 then

10 echo "Invalid number of parameters!"
11 echo ""
12 echo "Usage: extractHomeoReads <bam -file > <sam -file > <output -file >"
13 exit 1
14 fi
15
16 BAMfile=$1
17 SAMfile=$2
18 outfile=$3
19
20 pbin=$(dirname $0)
21 # samtools is not in PATH when executing from R, so add it now.
22 export PATH=/local/genome/bin:$PATH
23
24 echo "samtools view $BAMfile | grep \"NH:i:1$\" | python $pbin/addPairedEndSuffix.py | python $pbin/

getSubset.py -c 1 $SAMfile > $outfile"
25 samtools view $BAMfile | grep "NH:i:1$" | python $pbin/addPairedEndSuffix.py | python $pbin/getSubset

.py -c 1 $SAMfile > $outfile

scripts/extractHomeoReads

1 import sys
2 from optparse import OptionParser
3
4 usage = "Usage: python %prog <list of identifiers to extract >"
5 parser = OptionParser(usage)
6 parser.add_option("-c", dest="c", type="int", default=1, metavar="N",
7 help="Specify column to search for identifers [default: %default]")
8 parser.add_option("-i", "--invert",
9 action="store_true", dest="invertSubset", default=False ,

10 help="keep lines that are NOT in list")
11 (opt ,args) = parser.parse_args()
12 if len(args) != 1:
13 parser.error("Incorrect number of arguments")
14
15 # load the identifiers
16 items_file = args [0] # file containing list of identifiers in first column
17 items = set()
18 with open(items_file , ’rb’) as f:
19 for line in f.readlines ():
20 items.add(line.split("\t")[0]. rstrip ())
21
22 # Write only lines (from stdin) that contains one of the specified identifiers in specified column to

stdout
23 c = opt.c - 1
24 line = sys.stdin.readline ()
25 if opt.invertSubset:
26 while line:
27 if not line.split("\t")[c] in items:
28 sys.stdout.write(line)



29 line = sys.stdin.readline ()
30 else:
31 while line:
32 if line.split("\t")[c] in items:
33 sys.stdout.write(line)
34 line = sys.stdin.readline ()

scripts/getSubset.py

1 import sys
2
3 # append paired -end suffix ("_1"/"_2") to sam file
4 while 1:
5 try:
6 line = sys.stdin.readline ()
7 except KeyboardInterrupt:
8 break
9 if not line:

10 break
11 c = line.split("\t")
12 if not c[0][ -2] == ’_’:
13 c[0] = c[0]+"_"+str((int(c[1])&0xC0) >>6)
14 sys.stdout.write("\t".join(c))

scripts/addPairedEndSuffix.py

1 library("inline")
2
3 # checkReadBias function
4 # ----------------------. .-. .-. .-.
5 # \ / \ / \ / ’._.’
6 # ’-’ ’-’ ’-’
7 # Check for bias that occurs when potential homeoreads from the other two sub -genomes
8 # would have failed to map because of too many mismatches .
9 #

10 # Example: A homeoread matches perfectly to sub -genome A, when mapped against
11 # the other sub -genomes it has the following pattern of mismatches :
12 # Sub -genome B: --T----C-- MD ="2 T4C2" snpPos [] = {2 ,7} snp [] = {’T’,’C’}
13 # Sub -genome D: -G-------- MD ="1 G8" snpPos [] = {1} snp [] = {’G’}
14 # If a read was transcribed from the corresponding locus in B and mapped against D
15 # or vice versa , it would have 3 mismatches and would have been discarded , thus any
16 # reads transcribed from this locus would be result in biased read counts.
17 #
18 # The pattern of mismatches is given in the MD field from the tophat result , so the
19 # first thing to do is to decode the MD string to a position (snpPos []) and base (snp [])
20 # for each mismatch aka SNP (see examples).
21 #
22 # Note that deletions and insertions are ignored except that knowledge of insertions
23 # are used to correct the SNP positions. Insertions are described in the CIGAR field.
24 #
25 # The number of mismatches between B and D is the sum of number of SNPs for both
26 # minus the SNPs that are the same for both. E.g:
27 # Sub -genome B: -C---T---- MD ="1 C3T4" snpPos [] = {1 ,5} snp [] = {’C’,’T’}
28 # Sub -genome D: -----T---- MD ="5 T4" snpPos [] = {5} snp [] = {’T’}
29 # Here the total number of SNPs is 3 but 2 are the same SNP. Mapping B against D would
30 # yield 3 -2=1 mismatch.
31 #
32 # Often the reference sequence for one sub -genome is reverse complementary with the
33 # other sub -genome. In that case the SNP pattern needs to be reversed and the bases
34 # switched before comparing. E.g
35 # Sub -genome B: ----A---G- MD ="4 A3G1" snpPos [] = {4 ,8} snp [] = {’A’,’G’}
36 # Sub -genome D: -----T---- MD ="5 T4" snpPos [] = {5} snp [] = {’T’}
37 # Here it looks like mapping B agianst D would yield 3 mismatches , but actually it is
38 # the same as the previous example except that sub -genome B has been reversed.
39 #
40 # The number of mismatches is calculated for both forward and reverse , if both are
41 # higher than 2 then it flagged as biased.
42 #
43 # parameters :
44 # MD1: vector of characters containing the MD field of one of the other sub -genomes
45 # MD2: vector of characters containing the MD field of the second other sub -genome
46 # CIGAR1: vector of characters containing the CIGAR field of one of the other sub -genomes
47 # CIGAR2: vector of characters containing the CIGAR field of the second other sub -genome
48 # Return value:
49 # vector of logical that is TRUE for biased reads.
50 checkReadBias <- cfunction(signature(MD1="character", MD2="character", CIGAR1="character", CIGAR2="

character"),
51 "
52 SEXP res;
53 int nprotect = 0, c, num , pos , nSnp , refGen;
54 int n = length(MD1);
55 PROTECT(res = allocVector(LGLSXP , n)); nprotect ++;
56 int *pRes = INTEGER(res);
57 int snpPos [2][10] = {0,0,0,0}; // SNP positions (2 reference genomes)
58 char snp [2][10] = {0,0,0,0}; // SNP base type (2 reference genomes)



59 int totSnp [2] = {0,0}; // number of SNPs found per ref. genome
60 const char *pStr;
61
62 for( int i = 0; i < n; i++ ){
63 for( refGen = 0; refGen < 2; refGen ++ ){
64 if( refGen == 0 )
65 pStr = CHAR(STRING_ELT(MD1 , i));
66 else
67 pStr = CHAR(STRING_ELT(MD2 , i));
68
69 pos = 0; nSnp = 0;
70 for( int j = 0; pStr[j] != 0; j++){
71 switch(pStr[j]){
72 case ’^’: // deletion
73 do {
74 j++;
75 } while(pStr[j] != 0 && pStr[j] >= ’A’ && pStr[j] <= ’Z’ );
76 j--;
77 break;
78
79 case ’A’:
80 case ’C’:
81 case ’G’:
82 case ’T’:
83 case ’N’: // SNPs
84 snpPos[refGen ][nSnp] = pos; // store SNP position
85 snp[refGen ][nSnp] = pStr[j]; // store SNP base
86 pos ++; // increment base position count
87 nSnp ++; // increment snp count
88 break;
89
90 default:
91 if( pStr[j] >= ’0’ && pStr[j] <= ’9’ ){
92 num = (int)(pStr[j] - ’0’);
93 j++;
94 while(pStr[j] >= ’0’ && pStr[j] <= ’9’) {
95 num = 10*num + (int)(pStr[j] - ’0’);
96 j++;
97 };
98 j--;
99 }

100 pos += num; // increment base position count
101 break;
102 }
103 } // next j (character in MD)
104 totSnp[refGen] = nSnp; // store number of SNPs found
105
106 if( refGen == 0 )
107 pStr = CHAR(STRING_ELT(CIGAR1 , i));
108 else
109 pStr = CHAR(STRING_ELT(CIGAR2 , i));
110
111 pos = 0;
112 for( int j = 0; pStr[j] != 0; j++){
113 // get number
114 num = 0;
115 while(pStr[j] >= ’0’ && pStr[j] <= ’9’) {
116 num = 10*num + (int)(pStr[j] - ’0’);
117 j++;
118 };
119
120 switch(pStr[j]){
121 case ’M’: // Match
122 pos += num; // update position
123 break;
124
125 case ’I’: // Insertion. Adjust snpPos accordingly
126 for ( nSnp = 0; nSnp < totSnp[refGen ]; nSnp++ ){
127 if(snpPos[refGen ][nSnp] >= pos){ // if SNP comes after insertion
128 snpPos[refGen ][nSnp] += num; // increment SNP pos with number of insertions
129 }
130 }
131 pos += num; // update position
132 break;
133
134 case ’D’: // Deletion
135 case ’N’: // Junction (intron)
136 default:
137 break;
138 }
139 } // next j (character in CIGAR)
140 } // next refGen
141
142 // Compare the SNP patterns and calculate number of mismatches
143 // for both forward and reverse
144
145 // assume first that all SNPs yields mismatches



146 int cMismatchForward = totSnp [0] + totSnp [1];
147 int cMismatchReverse = totSnp [0] + totSnp [1];
148
149 // reduce mismatch count for SNPs that are same in both
150 for ( int snp0 = 0; snp0 < totSnp [0]; snp0++ ){
151 for ( int snp1 = 0; snp1 < totSnp [1]; snp1++ ){
152 if( snpPos [0][ snp0] == snpPos [1][ snp1] ){ // SNP at same pos
153 if( snp [0][ snp0] == snp [1][ snp1] ){ // same SNP
154 cMismatchForward -= 2; // reduce mismatch count
155 break;
156 }
157 }
158 // reverse check
159 if( snpPos [0][ snp0] == 100- snpPos [1][ snp1] ){ // SNP at reverse pos
160 if( ( snp [0][ snp0] == ’C’ && snp [1][ snp1] == ’G’ ) ||
161 ( snp [0][ snp0] == ’T’ && snp [1][ snp1] == ’A’ ) ||
162 ( snp [0][ snp0] == ’A’ && snp [1][ snp1] == ’T’ ) ||
163 ( snp [0][ snp0] == ’G’ && snp [1][ snp1] == ’C’ ) ||
164 ( snp [0][ snp0] == ’N’ && snp [1][ snp1] == ’N’ ) ){ // complementary SNP
165 cMismatchReverse -= 2; // reduce mismatch count
166 break;
167 }
168 }
169 }
170 }
171
172 // if both counts are higher than 2 then read is flagged as biased.
173 if( cMismatchForward > 2 && cMismatchReverse > 2)
174 pRes[i] = 1; // more than 2 mismatches. Biased
175 else
176 pRes[i] = 0; // 2 or less mismatches. Unbiased
177
178
179 } // next i (homeoread)
180
181
182 UNPROTECT(nprotect);
183 return res;
184 ")
185
186 removeBiasedReads <- function( homeoreads ){
187 # use MD field to see which reads that have perfect hits in A, B and D
188 inA <- homeoreads$MD.A == "101"
189 inB <- homeoreads$MD.B == "101"
190 inD <- homeoreads$MD.D == "101"
191 # Which reads have only perfect hits in A, B or D
192 onlyA <- inA & !inB & !inD
193 onlyB <- !inA & inB & !inD
194 onlyD <- !inA & !inB & inD
195
196 isBiasedA <- checkReadBias(homeoreads$MD.B, homeoreads$MD.D, homeoreads$CIGAR.B, homeoreads$CIGAR.D

)
197 isBiasedB <- checkReadBias(homeoreads$MD.A, homeoreads$MD.D, homeoreads$CIGAR.A, homeoreads$CIGAR.D

)
198 isBiasedD <- checkReadBias(homeoreads$MD.A, homeoreads$MD.B, homeoreads$CIGAR.A, homeoreads$CIGAR.B

)
199
200 isBiased <- (isBiasedA & onlyA) | (isBiasedB & onlyB) | (isBiasedD & onlyD)
201
202 return(homeoreads[!isBiased ,])
203 }

scripts/removeBiasedReads.R

1 countReadGroups <- function(homeoreads , contigsFile){
2
3 # Make table of contigs with number of hits per group
4 tbl <- as.data.frame(table( inA = homeoreads$MD.A == "101",
5 inB = homeoreads$MD.B == "101",
6 inD = homeoreads$MD.D == "101",
7 contig = homeoreads$contig.B))
8
9 # Reshape table

10 tbl$abd <- as.logical(tbl$inA) + 2*as.logical(tbl$inB) + 4*as.logical(tbl$inD)
11 tbl2 <- reshape(tbl[,c("contig","Freq","abd")],
12 idvar=c("contig"),timevar="abd",direction="wide")
13 colnames(tbl2) <- c("contig","abd","Abd","aBd","ABd","abD","AbD","aBD","ABD")
14
15 # load genome zipper contigs
16 contigGZ <- read.table( file=contigsFile ,sep="\t",stringsAsFactors=F)$V1
17 # complete the table by adding zeros for all contigs that don ’t have expression
18 missingContigs <- contigGZ[!(contigGZ %in% tbl2$contig)]
19 zeros <- numeric(length(missingContigs))
20 zeroTbl <- data.frame(contig=missingContigs ,abd=zeros ,Abd=zeros ,aBd=zeros , ABd=zeros ,
21 abD=zeros , AbD=zeros , aBD=zeros , ABD=zeros )
22 tbl3 <- rbind(tbl2 ,zeroTbl)



23
24 # sort according to genome zipper
25 row.names(tbl3) <- tbl3$contig
26 return( tbl3[ contigGZ , ] )
27 }

scripts/countReadGroups.R

1 calcExprRecursive <- function(countTbl , MAX_RECURSIONS = 100, CONVERGE_DIFF = 0.01){
2 # make empty table for results
3 expTbl <- data.frame( contig = countTbl$contig , expA = numeric(nrow(countTbl)),
4 expB = numeric(nrow(countTbl)), expD = numeric(nrow(countTbl)),
5 recursions = numeric(nrow(countTbl)))
6
7 for( irow in 1:nrow(countTbl)){
8 A = countTbl$Abd[irow]; B = countTbl$aBd[irow]; D = countTbl$abD[irow]
9 AB = countTbl$ABd[irow]; BD = countTbl$aBD[irow]; AD = countTbl$AbD[irow]

10 ABD = countTbl$ABD[irow]
11
12 # Handle cases where all homeologs has 0 reads to avoid divide by 0
13 if( AB==0 & BD==0 & AD==0 & ABD ==0 ){
14 expTbl$expA[irow] <- A
15 expTbl$expB[irow] <- B
16 expTbl$expD[irow] <- D
17 }else{
18
19 # initial estimates
20 Xa <- A + AB/2 + AD/2 + ABD/3
21 Xb <- B + AB/2 + BD/2 + ABD/3
22 Xd <- D + AD/2 + BD/2 + ABD/3
23
24 # recursively estimate new expression values until they converge
25 for( i in 1:MAX_RECURSIONS){
26 Xa.next <- A + AB*Xa/(Xa+Xb) + AD*Xa/(Xa+Xd) + ABD*Xa/(Xa+Xb+Xd)
27 Xb.next <- B + AB*Xb/(Xa+Xb) + BD*Xb/(Xb+Xd) + ABD*Xb/(Xa+Xb+Xd)
28 Xd.next <- D + AD*Xd/(Xa+Xd) + BD*Xd/(Xb+Xd) + ABD*Xd/(Xa+Xb+Xd)
29 if( abs(Xa - Xa.next) < CONVERGE_DIFF &
30 abs(Xb - Xb.next) < CONVERGE_DIFF &
31 abs(Xd - Xd.next) < CONVERGE_DIFF ) {
32 break
33 }
34
35 Xa <- Xa.next
36 Xb <- Xb.next
37 Xd <- Xd.next
38 }
39 expTbl$recursions[irow] <- i
40
41 expTbl$expA[irow] <- Xa.next
42 expTbl$expB[irow] <- Xb.next
43 expTbl$expD[irow] <- Xd.next
44 }
45 }
46 return(expTbl)
47 }

scripts/calcExprRecursive.R
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