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Abstract  

 

During the last decades there has been an increasing awareness of pollution in tunnel wash 

water and highway runoff, and its ecotoxicological effects. The objectives of the present 

thesis were to investigate trace element accumulation and the levels of the biomarkers 

metallothionein (MT), 7-Ethoxyresorufin O-deethylase (EROD), glutathione S-transferase 

(GST) and reduced glutathione (GSH) in common frog (Rana temporaria) embryos and 

tadpoles inhabiting Vassum and Skullerud sedimentation ponds along E6 in southeast 

Norway. A naturally occurring rainwater pond was also included in the study. Tadpoles and 

water samples were collected weekly in May and June 2012 and analyzed for 34 elements, 

including several metals of environmental concern. The chemical analyses detected total 

chromium (Cr), copper (Cu) and zinc (Zn) concentrations in the two sedimentation ponds 

high enough for the water quality to be classified as ‘poor’ or ‘very poor’ at several 

samplings, according to the classification system developed by the Climate and Pollution 

Agency. However, the highest concentrations of the majority of the trace elements were 

identified in the naturally occurring rainwater pond, probably due to impact from an 

abandoned shooting range nearby. For practically all of the rest of the elements the highest 

concentrations were detected in Vassum, while more moderate concentrations of most 

elements were measured in Skullerud. 

Frog embryos and tadpoles in all three ponds showed a significant time dependent trace 

element accumulation. The statistics were performed using the first principal component site 

scores derived from a principal component analysis (PCA) on tadpole tissue element 

concentrations as representative values for overall element accumulation (henceforth referred 

to simply as ‘overall tissue element concentrations’). The overall tissue element 

concentrations reached the highest levels in Vassum tadpoles although the highest total and 

dissolved water concentrations of most elements were detected in the naturally occurring 

pond. No significant correlation was found between trace element concentrations in water and 

tadpoles, respectively.  

The levels of MT, EROD, GST and GSH varied significantly with time in tadpoles in all three 

ponds. Overall tissue element concentrations could not explain the variation in MT, EROD or 

GSH as no significant correlation was found between overall tissue element concentrations 

and these biomarkers. However, significant positive correlation was found between MT and 

tissue lead (Pb) concentrations when testing this separately. Significant positive correlation 

was also found between overall tissue element concentrations and GST, and between GST 

and tissue cadmium (Cd) concentrations, and GST and tissue Pb concentrations when testing 

this separately. Hence, the results suggest that overall tissue element concentrations, as well 

as tissue Cd and Pb concentrations, can possibly explain some of the variation in GST. 

Altogether, the lack of an adequate reference group makes it difficult to conclude whether any 

of the biomarkers are induced above basal level. 

The results suggest that R. temporaria tadpoles growing up in the sedimentation ponds as well 

as the naturally occurring pond may be adversely affected by contaminants in the water. 
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Controlled exposure studies or field studies including a proper reference group are needed to 

identify the basal level of biomarkers in tadpoles and demonstrate any departures from the 

natural variation. 
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Sammendrag 

 

De siste tiårene har det vært økt oppmerksomhet rundt de økotoksikologiske effektene av 

forurensning i tunnelvaskevann og avrenningsvann fra veg i dagen. Formålet med denne 

masteroppgaven var å undersøke akkumuleringen av metaller og andre grunnstoffer i 

embryoer og rumpetroll av vanlig frosk (Rana temporaria) i to rensebasseng langs E6 på 

Østlandet, samt i en naturlig forekommende dam. Dessuten ble nivåene av de fire 

biomarkørene metallotionein (MT), 7-etoksyresorufin O-deetylase (EROD), glutation S-

transferase (GST) og redusert glutation (GSH) også målt i individene. Rumpetroll og 

vannprøver ble samlet inn ukentlig i mai og juni 2012, og analysert for 34 grunnstoffer, blant 

annet flere metaller som ofte er miljømessig problematiske. De kjemiske analysene viste at de 

totale vannkonsentrasjonene av krom (Cr), kobber (Cu) og sink (Zn) i de to rensebassengene 

på et eller flere tidspunkter var høye nok til at vannkvaliteten ble klassifisert som ‘dårlig’ eller 

‘svært dårlig’ etter Klima- og forurensningsdirektoratet (Klif) sitt klassifiseringssystem for 

miljøkvalitet. De høyeste konsentrasjonene av de aller fleste metaller og andre grunnstoffer 

ble målt i den naturlig forkommende dammen. Dette skyldes sannsynligvis påvirkning fra et 

nedlagt skytefelt i nærheten. De høyeste konsentrasjonene av praktisk talt alle de resterende 

grunnstoffene ble målt i Vassum rensebasseng, mens mer moderate konsentrasjoner ble målt 

for de fleste grunnstoffene i Skullerud rensebasseng. 

I alle tre dammene var det en signifikant akkumulering av metaller og andre grunnstoffer (for 

enkelhetsskyld kun referert til som metaller heretter) i froskeembryoer og rumpetroll over tid. 

Statistikken ble utført ved å bruke site scores skaffet til veie ved prinsipalkomponentanalyse 

(PCA) som representative verdier for den generelle konsentrasjonen av metaller i 

rumpetrollene. Herfra vil begrepet ‘generell metallkonsentrasjon i rumpetroll’ referere til 

disse verdiene. Den generelle metallkonsentrasjonen i rumpetroll nådde de høyeste nivåene i 

individer fra Vassum rensebasseng, til tross for at de høyeste totale og løste konsentrasjonene 

av de fleste metaller ble målt i vann fra den naturlig forekommende dammen. Det ble ikke 

funnet noen signifikant korrelasjon mellom generelle metallkonsentrasjoner i vann og 

rumpetroll.  

Nivåene av de fire biomarkørene MT, EROD, GST og GSH varierte signifikant over tid i 

rumpetroll fra alle de tre dammene. Generell metallkonsentrasjon i rumpetroll kunne ikke 

forklare variasjonen i verken MT, EROD eller GSH, ettersom det ikke var noen signifikant 

korrelasjon mellom disse parameterne. Det ble imidlertid funnet signifikant korrelasjon 

mellom MT og konsentrasjonen av bly (Pb) i rumpetroll, da dette ble testet separat. Det var 

signifikant positiv korrelasjon mellom GST og generell metallkonsentrasjon i rumpetroll, og 

også mellom GST og kadmium (Cd), og mellom GST og Pb, i rumpetroll. Resultatene 

antyder at metallkonsentrasjon i rumpetroll muligens kan forklare deler av variasjonen i GST. 

For alle biomarkørene gjør mangelen på en referansegruppe det vanskelig å konkludere om 

hvorvidt noen av dem er indusert over basalnivået.  

Resultatene antyder at rumpetroll av vanlig frosk som vokser opp i de to rensebassengene, 

samt i den naturlig forekommende dammen, kan være negativt påvirket av antropogen 
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forurensning i vannet. Kontrollerte eksponeringsstudier i laboratorium, eller feltstudier med 

en god referansegruppe, er nødvendig for å kunne identifisere basalnivåer for biomarkørene i 

rumpetroll, og for å kunne demonstrere eventuelle avvik fra den naturlige variasjonen.  

 

 

  



 

vi 

 

Table of contents 

 

Preface ......................................................................................................................................... i 

Abstract ...................................................................................................................................... ii 

Sammendrag .............................................................................................................................. iv 

1 Introduction ............................................................................................................................. 8 

2 Background ........................................................................................................................... 11 

2.1 How pollution is spread by highway runoff ................................................................... 11 

2.2 Sedimentation ponds....................................................................................................... 11 

2.3 Pollutants in highway runoff and tunnel wash water ..................................................... 12 

2.3.1 Metals and metalloids .............................................................................................. 14 

2.3.2 Bioavailability and biological complexation ........................................................... 15 

2.3.3 Polycyclic aromatic hydrocarbons ........................................................................... 16 

2.4 Biomarkers...................................................................................................................... 16 

2.4.1 Metallothionein (MT) .............................................................................................. 17 

2.4.2 7-Ethoxyresorufin O-deethylase (CYP1A activity) ................................................. 18 

2.4.3 Glutathione S-transferase (GST) .............................................................................. 18 

2.4.4 Reduced glutathione (GSH) ..................................................................................... 18 

2.5 The study species – the common frog (Rana temporaria) ............................................. 19 

3 Materials and methods .......................................................................................................... 21 

3.1 The study sites ................................................................................................................ 21 

3.1.1 Vassum sedimentation pond .................................................................................... 22 

3.1.2 Skullerud sedimentation pond .................................................................................. 24 

3.1.3 The pond at Prinsdal ................................................................................................ 25 

3.2 Field work ....................................................................................................................... 25 

3.3 Analyses of water samples ............................................................................................. 27 

3.3.1. Total and dissolved trace element concentrations in water .................................... 27 

3.3.2 Anions and total and dissolved organic carbon ....................................................... 27 

3.3.3 Polycyclic aromatic hydrocarbons (PAH) ............................................................... 28 

3.4 Analyses of tadpole tissue .............................................................................................. 28 

3.4.1 Trace element concentration in tadpoles .................................................................. 28 

3.4.2 Biomarkers ............................................................................................................... 29 

3.5 Statistics and calculations ............................................................................................... 33 



 

vii 

 

3.5.1 Multivariate statistics ............................................................................................... 33 

3.5.2 Univariate statistics .................................................................................................. 34 

3.5.3 Bioconcentration factors (BCF) ............................................................................... 35 

4 Results and discussion ........................................................................................................... 36 

4.1 Water quality characterization ........................................................................................ 36 

4.2 Analyses of tadpole tissue .............................................................................................. 50 

4.2.1 Trace element accumulation .................................................................................... 50 

4.2.2 Biomarkers ............................................................................................................... 63 

4.3 Tunnel wash event – June 2012 ...................................................................................... 69 

5 Conclusions ........................................................................................................................... 71 

6 References ............................................................................................................................. 73 

Appendix 1 Limit of detection (LD) and limit of quantification (LQ) in the ICP-MS data .... I 

Appendix 2 Accuracy of measurement of the certified reference material (CRM) ............. IV 

Appendix 3 Bioconcentration factors (BCF) ........................................................................ IX 

Appendix 4 Summaries of principal component analyses (PCA) ....................................... XII 

Appendix 5 Classification system for environmental quality developed by the Climate and 

Pollution Agency ............................................................................................................... XIII 

Appendix 6 Results of the correlation tests ....................................................................... XIII 

 



 

8 

 

1 Introduction 

 

The road transport in Europe has grown almost continuously the last decades (Monsrud et al. 

2011). The same trend is evident in Norway, as both the traffic load and the road network 

have increased dramatically in the post-war period (Monsrud et al. 2011; Statens vegvesen 

2011). A functioning transport system is an essential part of our society, but the traffic growth 

also has environmental costs. Traditionally, the main environmental concern of road traffic 

has been air pollution and noise (e.g. Finkelstein et al. 2004), but research done the last 

decades has shown that highway runoff and tunnel wash water also contribute to the 

spreading of pollution into the environment (e.g. Meland et al. 2010a; Norrström & Jacks 

1998; Sriyaraj & Shutes 2001). Engine exhaust, de-icing chemicals, tunnel wash detergents, 

and the wearing of asphalt, road equipment, tyres, and vehicle body create a cocktail of 

anthropogenic pollutants that may be carried to water bodies near the road with rain or 

snowfall (Meland et al. 2010c; Preciado & Li 2006; Westerlund et al. 2003; Westerlund & 

Viklander 2006). In recent years, there has been a growing awareness of the adverse effects of 

non-point source pollution, i.e. pollution that cannot be localized to a specific point of 

discharge, such as highway runoff (Kayhanian et al. 2008; Sansalone & Buchberger 1996). 

This is evident in the implementation of the EU Water Framework Directive. The directive 

was implemented by law in Norway in 2007 and aims to ensure good quality status for all 

European water bodies within 2021 (The European Parliament and the Council of the 

European Union 2000). The status “good quality” includes chemical as well as ecological and 

hydrological parameters, and the directive emphasizes the importance of mitigating pollution 

from diffuse sources, such as highway runoff, in achieving this goal. 

In Norway, the Norwegian Public Roads Administration (NPRA) has the sectorial 

environmental responsibility for monitoring the pollution from road traffic and mitigating any 

negative impact on the aquatic environment (Statens vegvesen 2008). To prevent the 

spreading of pollutants in highway runoff to receiving waters, NPRA started to construct 

sedimentation ponds along roads with heavy traffic in the 1990s (Meland 2010). Today there 

are about 150 ponds in Norway that remove particle bound pollution by sedimentation so the 

water draining into the recipient is cleaner. Unintentionally, many of the ponds have turned 

out to be an attractive habitat for organisms such as aquatic insects and amphibians. As many 

natural ponds and wetlands have been destroyed by human activity, highway storm water 

ponds may possibly provide additional habitat and contribute positively to biodiversity (Brand 

& Snodgrass 2010; Le Viol et al. 2009; Le Viol et al. 2012). However, it is also possible that 

they may constitute ecological traps (Snodgrass et al. 2008), as the water may be toxic to the 

organisms. Hence, the ponds’ role in pollution retention may conflict with their role as 

habitat. Whether sedimentation ponds represents sources or sinks for biodiversity probably 

depends on the species in focus and is a field of increasing research (McCarthy & Lathrop 

2011). 

Several studies have investigated the ecotoxicological effects of highway runoff on 

amphibians. While some species seem to reproduce successfully in sedimentation ponds 
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(McCarthy & Lathrop 2011), lethal and sublethal effects have been reported on other species. 

For instance Snodgrass et al. (2008) observed 100 per cent mortality for larvae of the species 

Rana sylvatica that had been exposed to storm water pond sediment in the laboratory, and 

Brand et al. (2010) documented increased mortality for newly hatched Hyla versicolor 

embryos. Reports of sublethal effects include a field study documenting metal accumulation 

in tadpoles of common frog (Rana temporaria L. 1758) (Damsgård 2011), and reduced size at 

metamorphosis for tadpoles exposed to storm water sediments (Snodgrass et al. 2008), but 

also increased size at metamorphosis combined with earlier metamorphosis (Brand et al. 

2010). There have been reports of significant zinc accumulation in froglets that had been 

exposed to weathered tyre debris from egg to metamorphosis (Camponelli et al. 2009), and 

Casey et al. (2005) reported tissue metal concentrations that could indicate bioconcentration 

in the gut coils of tadpoles inhabiting storm water ponds in Maryland, USA. 

The objective of this thesis was to investigate the accumulation of trace elements and levels of 

the four biomarkers metallothionein (MT), 7-Ethoxyresorufin O-deethylase (EROD), 

glutathione S-transferase (GST) and reduced glutathione (GSH) in common frog tadpoles 

growing up in two sedimentation ponds plus one naturally occurring rainwater pond in 

southeast Norway. Metallothionein was measured because it is a commonly applied 

biomarker of metal exposure, while measurement of GST and GSH were of interest since they 

are common biomarkers of oxidative stress caused by metals as well as organic contaminants. 

EROD is a commonly used biomarker of organic contaminants, and was measured because 

the organic contaminants polycyclic aromatic hydrocarbons (PAH) are prominent pollutants 

in highway runoff. The literature on biomarkers in amphibians is growing and includes field 

studies (Cooper & Fortin 2010; Murphy et al. 2006; Othman et al. 2012) as well as controlled 

exposure studies (Huang et al. 1998; Kostaropoulos et al. 2005; Loumbourdis et al. 2007; 

Papadimitriou & Loumbourdis 2002). However, to the author’s knowledge no studies on 

biomarkers have been conducted on amphibians in sedimentation ponds.  

Initially, the naturally occurring pond was intended to represent a reference site, and trace 

element accumulation and biomarker concentrations in tadpoles were to be compared to those 

of the tadpoles in the sedimentation ponds. Unfortunately, the pond turned out to be polluted 

by trace elements such as lead and antimony from an abandoned shooting range nearby. A 

preliminary water sample analysis did not reveal this, probably due to dilution of the trace 

element concentrations in melt water and rain during early spring. Consequently, the focus of 

the thesis was changed to investigate the temporal accumulation of trace elements and 

variation in biomarker levels, without regarding the naturally occurring pond as a reference 

site. 

The problems to be addressed in this thesis are: 

 Do the frog embryos and tadpoles in the three ponds accumulate trace elements with 

time? 

 Can trace element concentrations in water explain variation in trace element 

concentrations in tadpole tissue? 
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 Do the levels of MT, GST, GSH and CYP450, measured as EROD activity, vary 

temporally in tadpoles at an early life stage development? 

 Can trace element concentrations in tadpole tissue explain variation in levels of MT, 

GST, GSH and EROD activity, at different samplings?  

Investigation of any relationship between trace element concentrations in tadpole tissue and 

EROD was of interest because of an assumed correlation between organic and inorganic 

contaminants in highway runoff. Hence, any correlation between tissue element 

concentrations and EROD would most likely be a reflection of correlation between PAHs and 

EROD. Since PAHs are readily metabolized in living organisms they are difficult to measure 

accurately in tissue, and consequently correlation with trace elements was tested as a 

substitute.   
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2 Background 

 

2.1 How pollution is spread by highway runoff  

 

Pollution deposited on the road surface will sooner or later be washed off by rain showers or 

snowmelt and end up in the soil or water bodies along the road. Runoff processes on 

impervious surfaces are distinguished from those on vegetated surfaces and bare soil by the 

phenomenon called “first flush” (Deletic 1998). It refers to the assumption that the initial part 

of the runoff during a storm carries the most concentrated load of pollution and may also have 

the most toxic effect on biota (Barbosa & Hvitved-Jacobsen 1999; Kayhanian et al. 2008). 

The water that runs off later contains lower concentrations, as the first masses of water have 

“cleansed” the road. Vegetated surfaces are not cleansed as easily, hence the phenomenon 

does not apply here. There is controversy regarding whether the first flush phenomenon really 

exists, even for impervious surfaces, and if so, when it becomes apparent (Deletic 1998; Färm 

2002). 

Concentrations of e.g. certain metals may be considerably higher in highway runoff than 

background levels (Meland et al. 2010c), and snowmelt-induced runoff is often more polluted 

than rainfall-generated runoff (Sansalone & Buchberger 1996; Westerlund et al. 2003; 

Westerlund & Viklander 2006). The reason for this is that pollution may accumulate in the 

snow pack during winter, and because of low temperatures, there is little or no runoff until 

spring. When spring comes, the snow may melt over a short period, carrying water with high 

concentrations of contaminants into the recipient (Sansalone & Buchberger 1996; Westerlund 

& Viklander 2006). 

Pollution that accumulates on the road surface inside tunnels will not be washed away by 

precipitation. Hence, to maintain clear sight and clean roads with good friction, the tunnels 

must be washed regularly. Tunnels are washed 2 – 12 times a year, depending on the size and 

traffic load (Statens vegvesen 2010). Tunnel wash water will normally contain higher 

concentrations of contaminants than runoff from open road areas because pollution is allowed 

to accumulate for a longer time before it is washed away (Meland 2010; Meland et al. 2010a). 

In addition to the debris, dust, and contaminants derived from car and road wearing, the 

tunnel wash water contains detergents, usually at a concentration of 0.5 – 1.0 per cent 

(Meland et al. 2010b), that may also pose a risk to biota in receiving waters (Corneliussen et 

al. 2007). 

 

2.2 Sedimentation ponds 

 

In order to mitigate the spread of pollution from highway runoff to the ambient environment, 

the NPRA constructs sedimentation ponds along roads in Norway with high traffic load. The 

first ponds were built in the 1990s, and the type called wet detention ponds are the most 
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common (Meland 2010). These have a permanent pool of water and remove pollution by 

sedimentation of particle bound contaminants. Removal efficiency is strongly dependent on 

the detention period of the water, which depends on the precipitation and the dimensioning of 

the pond (Åstebøl 2005). The potential optimal cleansing is often not achieved during 

prolonged storms or snow melt periods. An important drawback of wet detention ponds is that 

they have relatively low removal efficiencies for dissolved pollutants and mobile low 

molecular mass species (Meland 2010). An unintentional side effect of the sedimentation 

ponds is that organisms such as aquatic insects and amphibians have adopted them as habitat 

and breeding grounds. In some cases, they may be important refugees for biodiversity and 

provide additional habitat for pollution tolerant species in areas where natural wetlands have 

been destroyed (Le Viol et al. 2009; Le Viol et al. 2012). However, for species less tolerant to 

pollution, the ponds may represent ecological traps as the organisms perceive them as an 

attractive habitat while the water is in fact toxic to them or their offspring (McCarthy & 

Lathrop 2011; Snodgrass et al. 2008). In Norway, time dependent accumulation of metals in 

Rana temporaria tadpoles living in a sedimentation pond has been reported (Damsgård 2011), 

and Zn accumulation in Rana sylvatica tadpoles exposed to weathered tyre material have been 

reported from USA (Camponelli et al. 2009). There is also a growing literature on the adverse 

effects on tadpoles due to de-icing salt, e.g. increased frequency and severity of deformities 

(Hopkins et al. 2013; Sanzo & Hecnar 2006), increased mortality and reduced time to 

metamorphosis (Sanzo & Hecnar 2006) and reduced swimming speed and more sluggish 

movements of tadpoles (Collins & Russell 2009; Denoël et al. 2010). 

 

2.3 Pollutants in highway runoff and tunnel wash water 

 

Highway runoff contains a cocktail of organic and inorganic compounds that may be toxic to 

living organisms. Table 1 shows the specific origin of the different pollutants in highway 

runoff and tunnel wash water. 
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Table 1. Contaminants in highway runoff and tunnel wash water. Table modified after Meland (2010). Contaminants 
included in this study are written in bold letters. 

Source Contaminant* References  

V
eh

ic
le

  

Brakes  Ba, Cu, Fe, Mo, Na, Ni, Pb, Sb (Dongarrà et al. 2009; McKenzie et al. 2009; 

Sternbeck et al. 2002; Thorpe & Harrison 2008) 

Tyres (incl. studded 

tyres) 

Al, Zn, Ca, Cd, Co, Cu, Mn, Pb, W, 

hydrocarbons, PAH (pyrene, 

fluoranthene, benzo(ghi)perylene) 

(Glaser et al. 2005; Karlsson & Viklander 2008; 

Lindgren 1998; McKenzie et al. 2009; Ravindra 

et al. 2008; Sternbeck et al. 2002; Thorpe & 

Harrison 2008) 

Catalytic converters Pt, Pd, Rh (Ek et al. 2004; Whiteley & Murray 2005) 

Vehicle body Cr, Fe, Zn (steel) (Taylor & Robertson 2009) 

Combustion  Ag, Ba, Cd, Cr, Co, Mo, Ni, V, Sb, Sr, 

Zn, PAH (naphthalene), MTBE, BTEX 

(Brown & Peake 2006; Desta et al. 2007; Glaser 

et al. 2005; Lin et al. 2005; Marr et al. 1999; 

Ravindra et al. 2008; Wang et al. 2003; 

Weckwerth 2001) 

Oil and petroleum 

spill, dripping, used 

lubricant oil 

PAH (LMM) (Ravindra et al. 2008; Wang et al. 2000) 

N
o

n
-v

eh
ic

le
 

Road surface (asphalt, 

bitumen) 

Al, Ca, Fe, K, Mg, Na, Pb, Si, Sr, Ti, 

PAH (mix of HMM and petrogenic 

LMM, chrysene) 

(Brandt & de Groot 2001; Brown & Peake 2006; 

Sternbeck et al. 2002; Thorpe & Harrison 2008) 

De-icing and dust 

suppression 

Ca, Mg, Na, Cl, ferro-cyanide 

(anticaking agent) 

(Aldrin et al. 2008; Novotny et al. 2008; 

Ramakrishna & Viraraghavan 2005; Viklander et 

al. 2003) 

Road equipment (e.g. 

crash barriers, traffic 

signs, etc.) 

Zn (galvanized steel) (Thorpe & Harrison 2008) 

Tunnel wash 

detergents  

Tensides  (Meland et al. 2010b) 

*Abbreviations: Ag=silver, Al=aluminium, Ba=barium, BTEX=benzene, toluene, ethylbenzene and xylenes, Ca=calcium, 
Cd=cadmium, Cl=chlorine, Co=cobalt, Cr=chromium, Cu=copper, HMM=high molecular mass species, K=potassium, 
LMM=low molecular mass species, Mg=magnesium, Mn=manganese, Mo=molybdenum, MTBE=methyl tert-butyl ether, 
NA=sodium, Ni=nickel, Pb=lead, Pd=palladium, Pt=platinum, Rh, rhodium, Si=silicon, Sr=strontium, Ti=thallium, Zn=zinc. 

 

The most prominent contaminants in highway runoff are polycyclic aromatic hydrocarbons 

(PAH) and metals and metalloids (Meland 2010). In the northern hemisphere road salt, 

primarily sodium chloride (NaCl), is an important constituent of highway runoff, as it is used 

as a de-icing agent during winter. Sodium chloride may have negative impact on biota in 

several ways. First, increased salinity and density may cause strong stratification in the water 

body, preventing thermocline mixing and leading to hypoxic conditions at the bottom 

(Marsalek 2003). Second, high concentrations of chloride may be toxic to fresh water 

organisms due to disruption of the osmoregulation (Marsalek 2003). Third, increased salt 

concentrations enhance mobilization and the potential for bioavailability of metals from soils 

and sediment by cation exchange processes and chloride (Cl) complexation, and consequently 

their potential toxicity to biota in sedimentation ponds or recipients increases (Bäckström et 

al. 2004; Norrström & Jacks 1998).  
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2.3.1 Metals and metalloids 

 

Highway runoff often contains large amounts of metals and metalloids due to wearing of 

tyres, brakes, vehicle body, asphalt and road equipment (Meland 2010). Especially copper 

(Cu) and zinc (Zn) have been found to be major causes of toxicity in such runoff (Kayhanian 

et al. 2008), but also cadmium (Cd), mercury (Hg) and lead (Pb) are of great concern (Napier 

et al. 2008). Metals and metalloids, henceforth referred to as metals for simplicity, are 

elements occurring virtually everywhere in the environment, either from natural or 

anthropogenic sources (Fairbrother et al. 2007). Although they are natural substances they 

may have considerable toxic effects on aquatic organisms if they reach high enough 

concentrations. For instance, metals may generate reactive oxygen species (ROS) that cause 

oxidative stress potentially resulting in DNA damage and lipid peroxidation (Lushchak 2011; 

Watanabe et al. 2003). 

It is common to distinguish between nutritionally essential and non-essential metals. 

Nutritionally essential metals are required for the physiology and metabolism of an organism 

to function normally (Walker 2006). This group includes the macronutrients calcium (Ca), 

potassium (K), magnesium (Mg) and sodium (Na), which are required in relatively high 

amounts, and micronutrients like Cu, Zn and nickel (Ni), which are required in smaller 

amounts (Fairbrother et al. 2007). Essential metals exhibit a dose-response relationship with 

an optimal intermediate dose called the “window of essentiality” (Fig. 1), and with deficiency 

effects  occurring at too low doses and toxic effects occurring at too high doses (Fairbrother et 

al. 2007; Hopkin 1993). Non-essential metals are those that are not required for maintaining a 

physiological function, although some may be beneficial at very low concentrations 

(vanadium (V) and arsenic (As) in animals) (Fairbrother et al. 2007). Non-essential elements 

such as Pb, antimony (Sb) and Cd have no beneficial effects at all, and are toxic above certain 

levels (Walker 2006).  

 

 

Figure 1. Schematic diagram showing the relationship between the amount of an essential element available for uptake 
by an organism, and the organism’s performance (growth, survival, fecundity, etc.). Modified after Hopkin (1993). 



 

15 

 

An important feature of metals is that they cannot be created or destroyed by chemical or 

biological processes. However, they can be transformed into other physicochemical forms 

called species (Chapman & Wang 2000). Free metal ions, dissolved complexes with e.g. 

humic ligands, and metals in the form of inorganic sulphide solids, are examples of different 

species (Chapman & Wang 2000; Fairbrother et al. 2007). The composition of different 

species of a metal under certain environmental conditions is called speciation. The speciation 

is, among other factors, dependent on pH, redox potential, ionic strength and availability of 

important complexing ligands such as Cl ions (important for e.g. Cd complexation) or organic 

matter (very important for Cu complexation) (Fairbrother et al. 2007; VanLoon & Duffy 

2011). These factors determine the nuclear composition, electronic state, oxidation state and 

structure of the metal complex or molecule (Chapman & Wang 2000), which in turn is crucial 

for the bioavailability of the metal (see section 2.3.2 Bioavailability and biological 

complexation).  

Since metals are non-biodegradable, they cannot be decomposed into less toxic substances by 

metabolism (Walker 2006). Hence, organisms have evolved other mechanisms to protect 

themselves against the toxic effect of metals. This involves metal-binding proteins, such as 

metallothionein and ferritin, and storage of metals in intracellular granules (Chapman & 

Wang 2000; Fairbrother et al. 2007). This will be further addressed in section 2.4 Biomarkers.  

 

2.3.2 Bioavailability and biological complexation  

 

There is some confusion on the definition of bioavailability in the literature. Fairbrother et al. 

(2007) describes it as “the extent to which bioaccessible metals absorb onto, or into, and 

across biological membranes of organisms”, while Chapman (2008) define bioavailability as 

“the portion of a substance that is immediately available for uptake by organisms”. 

Bioaccessible metals may be defined as the fraction of metals present in the ambient 

environment that may be available for biological uptake in the long term (Chapman 2008).  

Usually, low molecular mass species (LMM) such as the free metal ion are the species 

assumed to cause toxicity because they are more bioavailable than high molecular mass 

species (HMM) (Fairbrother et al. 2007; Meland 2010). Metals bound in complexes and 

polymers are assumed to be too large to cross a biological membrane and hence they are of 

less concern. According to the biotic ligand model, toxicity of a metal occurs when free metal 

ions reacts with the physiological active binding sites at a biotic receptor, for instance the 

surface of a gill (Di Toro et al. 2001). The gill may be regarded as a biotic ligand that forms a 

complex with the metal. pH is assumed to be the most important factor for the behaviour of 

metals in water, as metals are usually highly soluble and bioavailable at acid conditions while 

complexation with carbonate and hydrogen complexes increases with increasing pH 

(Fairbrother et al. 2007). The presence of major cations like Na, Ca and Mg in the water is 

also of great importance for the toxicity. The reason is that they compete for the binding sites 

at the biotic receptor and therefore may reduce the uptake of metals (Fig. 2) (Di Toro et al. 

2001).  
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Figure 2. Schematic showing the importance of cations and complexing agents for the toxicity of metals. Particulate 
organic carbon (POC), dissolved organic carbon (DOC) and carbonate (CO3

2-
) bind metals in complexes and hence reduce 

their bioavailability, while the presence of cations such as Mg and Ca may reduce the bioavailability due to competitive 
binding at the gills. Modified after Paquin et al. (2000). 

 

2.3.3 Polycyclic aromatic hydrocarbons  

 

Polycyclic aromatic hydrocarbons are organic planar molecules that consist of three or more 

aromatic rings (benzene rings). They are produced by geological processes in the Earth’s crust 

and during incomplete burning of organic material (Walker 2006). They are present in 

highway runoff due to oil spill and emissions from burning of fossil fuels in combustion 

engines (Meland 2010). Road traffic is an important source of PAHs to the environment, and 

its contribution is increasing due to increase in traffic load and increasing numbers of diesel 

vehicles on the roads (Napier et al. 2008; Van Metre et al. 2000). Examples of prominent 

PAHs from combustion are fluoranthene, pyrene, benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene and benzo(a)pyrene (Van Metre et al. 2000). 

Polycyclic aromatic hydrocarbons are highly lipophilic and in principle inert. They must 

undergo biotransformation by enzymes in the body in order to become water soluble, before 

they can be excreted. Many PAHs have carcinogenic and mutagenic properties. However, it is 

often the metabolic products rather than the original compound that damage the DNA, as the 

biotransformation creates reactive metabolites that are able to bind to the DNA (Walker 

2006). 

 

2.4 Biomarkers  

 

The scientific literature is not entirely consistent on the definition of a biomarker (van der 

Oost et al. 2003). Peakall (1994) defines it as a biological response to an environmental 

chemical that gives a measure of exposure or toxic effects, ranging all the way from the 

molecular level to the functioning of ecosystems. Gestel and Brummelen (1996) on the other 

hand, define a biomarker as a biological response to an environmental chemical at only the 
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sub individual level, indicating that the normal status in the organism is disturbed. Others 

comprise biological responses at the individual level or below, including biochemical, 

physiological, histological, morphological and behavioural responses (Walker 2006). The 

last-mentioned will be employed here. 

Biomarkers are useful in that they are considered intermediates between the mere presence of 

environmental pollution and adverse effects at a higher level in the ecosystem (van der Oost 

et al. 2003). Their identification may give information of adverse effects of contaminants 

before the whole organism or population is irreversibly affected, and hence they may function 

as early warning signals of effect (Sparling et al. 2010; van der Oost et al. 2003). In this way 

they make it possible to implement mitigation measures at an early stage and at sublethal 

levels. 

It is common to distinguish biomarkers of exposure, which indicate that the organism is 

exposed to a toxicant but does not enable a grading of the adverse effects, from biomarkers of 

toxic effect, which can be related to an actual health impairment (Hagger et al. 2006; van der 

Oost et al. 2003; Walker 2006). However, Peakall and Walker (1994) claim that the division 

may be misleading as all biomarkers are to some degree a biochemical effect of an exposure. 

All the biomarkers investigated in the present thesis may be classified as biomarkers of 

exposure, although they are also to some degree related to the health of the organism, 

particularly GST and GSH which are important in the defence against oxidative stress. The 

biomarkers included in this thesis have the advantages that they are easy to standardize, they 

are contaminant-related and associated to the organism’s health (Hylland et al. 2006). 

However, their disadvantage is that their ecological relevance might be limited. Even if high 

concentrations of e.g. MT or EROD are measured in an organism, it does not necessarily 

imply adverse effects on ecologically relevant endpoints such as reproduction or survival.   

Several factors cause uncertainty and difficulties of comparing populations when studying 

biomarkers. Sex, developmental stage, ambient temperature and season may have great effect 

on the activity of a biomarker in amphibians (Sparling et al. 2010). Hence, the induction of a 

certain biomarker may vary between different populations, even when the exposure to a 

xenobiotic is equal. 

 

2.4.1 Metallothionein (MT) 

 

Metallothionein is a family of cysteine rich proteins that sequesters trace metals and prevents 

them from damaging cells and organelles (van der Oost et al. 2003). It is present in most types 

of tissue in vertebrates, but especially in those responsible for uptake, storage and excretion 

such as the liver (Hylland et al. 2006; van der Oost et al. 2003). The metal binding capacity of 

MT owes to the sulfhydryl (S-H) content of cysteine. The biomarker is widely used as an 

indicator of exposure to metal pollution. Although Cd is considered the primary MT inducer, 

it also sequesters other metals such as Cd, Cu, Zn, Hg, cobalt (Co), Ni, and silver (Ag) (van 
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der Oost et al. 2003). One MT molecule is able to bind 7 divalent metal cations (e.g. Cd
2+

 or 

Zn
2+

) (Cai & Stillman 1988; Hylland et al. 2006).  

 

2.4.2 7-Ethoxyresorufin O-deethylase (CYP1A activity) 

 

In animals, organic, lipophilic xenobiotics such as PAH and polychlorinated biphenyls 

(PCBs) are metabolized by a two-phase enzymatic metabolism (Walker 2006). During Phase 

I, oxygen is added to the compound to make it more polar and water soluble, and 

consequently it is more easily excreted. Iron rich enzymes of the system called cytochrome 

P450 monooxygenase, particularly the subfamily CYP 450 1A, are important for Phase I 

biotransformation. 7-Ethoxyresorufin O-deethylase (EROD) is a specific CYP450 1A enzyme 

activity that is widely used as a biomarker of exposure to PAH (van der Oost et al. 2003). The 

enzymes are found in the endoplasmic reticulum (ER) in a variety of tissues, primarily in that 

of the liver. The EROD activity is determined by quantifying the increase in the amount of 

resorufin produced, measured as increase in fluorescence over time (van der Oost et al. 2003).  

 

2.4.3 Glutathione S-transferase (GST) 

 

During Phase I biotransformation, oxidation creates functional groups in the xenobiotic that 

enables it to be conjugated to an even more polar compound with reduced glutathione (GSH). 

The conjugation process is part of the Phase II biotransformation, and it is catalysed by an 

enzyme family called glutathione S-transferase (GST) (van der Oost et al. 2003). Glutathione 

S-transferases are important in the defence against oxidative damage. Their activity is 

primarily used as a biomarker of exposure to organic pollutants such as PAHs, PCBs, dioxins 

and organochlorine pesticides (van der Oost et al. 2003), but it has also been suggested that 

they may be used as a biomarker of metals like Pb and Cd (Othman et al. 2012; Wright et al. 

1998) or other metals that can induce oxidative stress. 

 

2.4.4 Reduced glutathione (GSH) 

 

Glutathione is an intracellular low-molecular-weight thiol found in both plants and animals 

(Kamencic et al. 2000; Sies 1999). It is the main defence mechanism in aerobic cells against 

oxidative stress and participates actively in the neutralization of ROS (Wang & Ballatori 

1998). Besides, it may be conjugated with Phase I biotransformation metabolites which can 

finally be excreted through the bile or kidney (Sies 1999; van der Oost et al. 2003). 

Glutathione may be conjugated with xenobiotics either spontaneously or catalysed by GST 

(Fig. 3) (Wang & Ballatori 1998). Glutathione is commonly applied as a biomarker of 

oxidative stress caused by metals as well as organic pollutants.  
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Figure 3. Schematic showing conjugation of electrophiles (e.g. reactive Phase I metabolites) with glutathione (GSH) 
catalysed by glutathione S-transferases (GSTs) (A), and spontaneous conjugation of GSH with metals (B). Modified after 
Wang and Ballatori (1998). 

 

2.5 The study species – the common frog (Rana temporaria) 

 

The common frog (Rana temporaria) (Fig. 4) is widely distributed all over Scandinavia and is 

the most common amphibian in Norway (Dolmen et al. 2004). Amphibians worldwide are in 

decline regarding their numbers as well as species composition (Beebee & Griffiths 2005; 

Dolmen 2008; Skei 2006). The decline is probably due to several factors such as habitat 

destruction, anthropogenic acidification, pesticides, increased UV-B radiation, disease and 

introduction of alien species. Rana temporaria has also experienced local declines, but in 

general it seems to have large and stable populations (Dolmen et al. 2004; Kuzmin et al. 

2009). The species is a habitat generalist (eurytopic), and in Norway they are spawning at 

altitudes of at least 1000 m a.s.l. (Dolmen 2008).  

 

 

Figure 4. Adult common frog (Rana Temporaria). Foto: Kjell Isaksen. 

 

Both eggs and larvae are dependent on freshwater for development. The mating and spawning 

usually takes place in small lakes and ponds in April – June, depending on altitude and 

latitude (Dolmen 2008). The common frog is philopatric, which means that the adults usually 

return to their birthplace to spawn and use the same pond every year (Kauri 1981; Savage 

1962). A female may lay 400 – 6000 eggs which are surrounded by jelly that swells after 

fertilization. The fully swollen jelly consist of about 0.3 % protein and salts from the water, 

and 99.7 % water (Savage 1962). Larval development is highly dependent on degree-days as 
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they are poikilotherms (Riis 1991), and the lower limit for development is 5 – 6 °C (Kauri 

1981). Successful reproduction is also dependent on water quality parameters such as pH, 

ionic strength (NaCl) and Ca content (Dolmen et al. 2004).  

The larvae breathe with external gills the first days after hatching, but these are soon 

overgrown with operculum (Gosner 1960). They feed on pelagic algae, detritus, etc. (Dolmen 

2010). The larvae usually metamorphosizes in July – October and then leaves the pond 

(Dolmen 2008). During the metamorphosis the gills and tail are completely resorbed, the 

lungs develop, the skin thickens, the mouth parts are transformed and the forelegs emerge 

(Kauri 1981; Sparling et al. 2010). The adult frogs spend most of their time on land, except in 

the spawning time. Both larvae and adults have permeable skin through which they can 

breathe and process water. This is an important route of uptake of waterborne contaminants in 

tadpoles, in addition to the uptake through food and breathing with gills, and makes them 

susceptible to pollution in water (Sparling et al. 2010). 

In this thesis individuals not yet hatched, roughly speaking Gosner stages 1 – 20, are referred 

to as embryos (Gosner 1960). Hatched individuals, i.e. Gosner stage 21 and onwards, are 

referred to as larvae or tadpoles. 
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3 Materials and methods  
 

3.1 The study sites 

 

All three ponds investigated in this study are located in southeast Norway (Fig. 5). Both 

sedimentation ponds are of the type wet detention ponds.  

 

Figure 5. Map of the area around the Oslo fjord in southeast Norway showing the locations of the sedimentation ponds 
at Skullerud and Vassum, and the naturally occurring pond at Prinsdal. 

 

 

 



 

22 

 

3.1.1 Vassum sedimentation pond 

 

Vassum sedimentation pond is located by the highway E6 in the municipality of Frogn, 

County of Akershus (Fig. 6 and Fig. 8). It was built in year 2000 and the annual average daily 

traffic (AADT) was 29 000 vehicles in 2011 (Statens vegvesen 2012a). The pond receives 

tunnel wash water from three tunnels (the Nordby tunnel, the Smiehagen tunnel and the 

Vassum tunnel) in addition to water from 1.7 ha of open road area (Meland et al. 2010a). The 

recipient of the cleansed water is the river Årungselva, which is a locally important river for 

brown trout (Salmo trutta). The pre-sedimentation pond is concreted, and separated from the 

main pool by a mound. The sedimentation pond was emptied and cleansed the autumn 2011 

(Meland 2012). A study carried out by Snilsberg et al. (2002) showed a removal efficiency of 

50 per cent for Zn, 75 per cent for Cu and 90 per cent for total suspended solids. There is a 

large diversity of Dytiscidae in the pond, and frogs are usually spawning there in spring (Fig. 

7) (Ole Wiggo Røstad, Department of Ecology and Natural Resource Management at the 

Norwegian University of Life Sciences, personal communication, October 2012).  
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Figure 8. Vassum sedimentation pond seen from the inlet. Photo: Susanne Lund Johansen. 

 

 

 

Figure 6. Orthophoto showing the E6 junction at Vassum 
and the sedimentation pond by the acceleration lane. 

Figure 7. Rana temporaria eggs in the waterline near 
the outlet of Vassum sedimentation pond. Photo: 
Susanne Lund Johansen. 
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3.1.2 Skullerud sedimentation pond 

 

Skullerud sedimentation pond is located by E6 in Oslo municipality, County of Oslo (Fig. 9 

and Fig. 10). The pond was built in 1999 simultaneously with a general upgrade of the stretch 

of highway (Åstebøl 2005). The recipient of the cleansed water is Ljanselva, which is locally 

important for fish (including brown trout), wildlife and recreation. The pre-sedimentation 

pond is closed while the main pool is open. The pond receives road runoff from 2.2 ha of 

asphalted surface and the AADT was 64 000 vehicles in 2011 (Statens vegvesen 2012b). The 

removal efficiency of contaminants such as metals, oil and PAHs varies from 60 – 90 per cent 

depending on the chemical (Åstebøl 2005). Common frogs are usually spawning in the pond 

in spring (Fig. 11), and there is also minnow (Phoxinus phoxinus) and a diversity of aquatic 

insects in the pond (Damsgård 2011).  

   

   

 

 

 

Figure 10. The sedimentation pond at Skullerud seen 
from the outlet. Photo: Susanne Lund Johansen. 

Figure 11. Common frogs (Rana temporaria) mating in 
Skullerud sedimentation pond in April 2012. Photo: 
Susanne Lund Johansen. 

 

Figure 9. Orthophoto showing the E6 junction at 
Skullerud and the sedimentation pond underneath the 
bridge. 
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3.1.3 The pond at Prinsdal 

 

The pond at Prinsdal is located in the southern part of Oslo municipality, County of Oslo, in 

the edge zone between an abandoned shooting range and a mixed forest. A vast number of 

frogs are spawning there every spring (Fig. 12). The pond is assumed to be shielded from road 

runoff due to its location high in the terrain and far from roads. However, it is probably 

affected by metal pollution from ammunition, although the shooting range has been 

abandoned since 2007 (see Table 2). The pond is smaller and shallower than both the 

sedimentation ponds and has no outlet, and it often dries up during dry summers (Strand 

2006). 

 

 

Figure 12. Common frogs (Rana temporaria) spawning in the pond at Prinsdal in April 2012. Photo: Susanne Lund 
Johansen. 

 

3.2 Field work 

 

Water samples and frog embryos and tadpoles were collected weekly from the three ponds 

during May and June 2012. The sampling started in week 18 at Prinsdal and in week 19 at the 

two sedimentation ponds, and proceeded to week 24 at all sites. There was always 6 – 8 days 

between each sampling. Three water samples were collected in 50 mL BD Falcon tubes at 

approximately 10 cm depth at each sampling point: one for analysis of total trace element 

concentrations, one for dissolved trace element concentrations and one for analysis of total 

organic carbon (TOC), dissolved organic carbon (DOC) and anions. Samples for analysis of 

dissolved trace element concentrations were filtrated in situ with VWR sterile syringe filters 

(0.45 µm cellulose acetate membrane). Samples for total and filtered trace element 

concentrations were acidified with 5 % ultrapure nitric acid (HNO3) prior to storage. All 

water samples were stored dark and chill in a fridge at the laboratory until analysis. At each 
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sampling point a 1000 mL glass bottle (dark) was filled with water for analysis of PAHs. In 

addition, general water quality parameters were measured at each sampling point using 

Extech ExStik II EC510 (pH, conductivity and temperature) and Extech DO600 Oximeter 

(dissolved oxygen). 

Frog eggs, and hatchlings basking on top of the eggs, were collected with a small plastic box, 

while larger tadpoles were collected with a hand net. Subsequently they were put on 2 mL 

VWR CryoTubes. The jelly surrounding the black vitellus was removed prior to conservation 

in CryoTubes. To ensure enough tissue material for analysis, approximately forty eggs were 

put on each tube at the first sampling. The number decreased at subsequent samplings as the 

larvae grew bigger, and at the last samplings each tube contained only one – three tadpoles. 

Six CryoTubes were filled for each of the tissue analyses at each sampling to provide six 

replicates. When a tube was filled it was snap frozen in situ on a tank containing liquid 

nitrogen. Tadpoles sampled at the two last samplings at Vassum sedimentation pond had 

grown too large for the tubes and were wrapped in aluminium foil instead (glossy side in). All 

samples were stored in an ultra-low temperature freezer (-82 °C) at the laboratory until 

analysis.  

In both sedimentation ponds the eggs were laid in one or two clusters in a relatively confined 

part of the pond, by the outlet. Eggs were collected randomly from these clusters. In both 

ponds many of the tadpoles stayed in proximity to where the eggs had been, when they 

hatched. Consequently, the tadpoles were mostly collected from the same spot as the eggs. 

The water samples were also collected from this same spot. At Prinsdal the eggs where 

spawned across most of the surface. Here, eggs and larvae where collected from several 

random places in the pond at each sampling, while water samples were collected from one 

and the same spot each time. 

Determination of species was done in situ at Skullerud and Prinsdal during spawning. The 

common frog resembles the moor frog (Rana arvalis), that also occur in the area around the 

Oslo fjord. The common frog can be recognised on its call during mating. Besides, the 

common frog also has a smaller and softer metatarsal tubercle than the moor frog (Dolmen 

2008). At Vassum, the species was identified based on the labial tooth rows of the tadpoles 

(Fig. 13) because the adult frogs had already left the pond. 

 

Figure 13. The mouth parts of a the common frog (Rana temporaria) tadpole sampled at Vassum in week 22, 2012. The 
four lower labial tooth rows are characteristic of R. Temporaria in contrast to Rana arvalis that only has three. Photo: 
Susanne Lund Johansen. 
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3.3 Analyses of water samples 

 

Except when specified, processing and analysis of water samples were performed by the 

author. 

 

3.3.1. Total and dissolved trace element concentrations in water 

 

Water samples for analysis of total and dissolved element concentrations were decomposed in 

Milestone UltraCLAVE (MLS GmbH, Leutkirch im Allgäu, Germany) to remove organic 

material. All samples were added additional HNO3 so that they contained 10 % acid in total 

(included the acid added prior to storage). Internal standard consisting of 20 µg/L of rhodium 

(Rh), indium (In), tellur (Te) and thallium (Tl) dissolved in 2 % HNO3 were diluted 10 x and 

added all samples. Subsequently, the samples were analysed for a number of elements by 

inductively coupled plasma mass spectrometry (ICP-MS) (Agilent 8800 QQQ ICP-MS, Santa 

Clara, CA, USA). The ICP-MS analysis was performed by Principal Engineer Karl Andreas 

Jensen at Department of plant and environmental sciences (IPM) at the Norwegian University 

of Life Sciences (UMB). The elements analysed were sodium (Na), magnesium (Mg), 

aluminium (Al), silicon (Si), phosphorus (P), sulphur (S), potassium (K), calcium (Ca), 

scandium (Sc), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper 

(Cu), zinc (Zn), arsenic (As), selenium (Se), strontium (Sr), molybdenum (Mo), silver (Ag), 

cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), lanthanum (La), cerium (Ce), europium 

(Eu), gadolinium (Gd), ytterbium (Yb), lutetium (Lu), lead (Pb), thorium (Th) and uranium 

(U). Analytical method blanks and the house standard 1643h, which largely is a copy of the 

certified reference material 1643e (National Institute of Standards and Technology, 

Gaithersburg, USA), were also analysed for quality control.  

Limit of detection (LD) equalled 3 x the standard deviation of 6 blanks and limit of 

quantification (LQ) equalled 10 x the standard deviation of 6 blanks (see appendix 1.1 for 

exact values). The measured values of the certified reference material (CRM) were in good 

agreement with the certified values, the per cent difference being ≤ 12 % for all elements 

(appendix 2.1).  

 

3.3.2 Anions and total and dissolved organic carbon  

 

Analysis of anions, TOC and DOC was performed by Principal Engineer Johnny Kristiansen 

at IPM, UMB. Total organic carbon and DOC were measured using the instrument Shimadzu 

Total Organic Carbon analyzer (TOC-Vcpn, Shimadzu, Tokyo, Japan). The anions analysed 

were Cl
-
 and sulphate (SO4

2-
), and they were determined by ion-exchange 

chromatography (Lachat 5000, Loveland, CO, USA) using Dionex column AS22 and Dionex 
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suppressor. Blanks and a control sample for the relevant analysis range were added for 

analytical quality control. 

 

3.3.3 Polycyclic aromatic hydrocarbons (PAH) 

 

Water samples collected in 1000 mL dark glass bottles were analysed for the 16 PAHs 

naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, 

fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(ghi)perylene and 

indeno(123cd)pyrene. The analysis was conducted at ALS Laboratory Group Norway AS at 

Skøyen in Oslo (see appendix 1.3 for LQs). 

 

3.4 Analyses of tadpole tissue 

 

Except when specified, processing and analysis of tadpole samples were performed by the 

author. 

 

3.4.1 Trace element concentration in tadpoles 

 

The frog embryos and larvae were decomposed in UltraCLAVE to generate homogeneous 

samples, remove organic material and enable analysis of trace element content. The embryos 

and larvae were transferred from the CryoTubes into separate Teflon tubes. Internal standard 

(the same as the one used for the water samples, but not diluted) was added prior to 

decomposition, in addition to 5 mL HNO3 resulting in a final HNO3 concentration of 10 % 

after dilution. Analytical method blanks and the certified reference materials 1577b Bovine 

liver (National Institute of Standards and Technology, Gaithersburg, USA), 8415 Whole egg 

powder (National Institute of Standards and Technology, Gaithersburg, USA), and Dorm-3 

(National Research Council, Ottawa, Canada) were also analysed to provide quality control. 

Principal Engineer Karl Andreas Jensen (IPM, UMB) performed the ICP-MS. The tissue 

samples were analysed for the same elements as the water samples. 

Limit of detection equalled 3 x the standard deviation of 9 blanks and limit of quantification 

equalled 10 x the standard deviation of 9 blanks (see appendix 1.2 for exact values). The 

analysis of CRM showed measured values of the elements in good accordance with the 

certified values (appendix 2.2). The mean per cent difference was ≤ 13 % for all elements 

except Sn and Cr. Hence, Sn and Cr were excluded from the statistical analysis.  
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3.4.2 Biomarkers 

 

3.4.2.1 Metallothionein (MT) 

 

Tracer technique using the radioactive isotope 
109

Cd was applied in order to detect any MT in 

the frog larvae. There are two important assumptions behind the use of radioactive tracers: 

first, one assumes that the radioactive isotope is chemically identical to any stable isotope of 

the same element (Choppin et al. 2002). Second, it is assumed that the radioactivity does not 

affect the chemical and physical properties of the radioactive isotope (Choppin et al. 2002). 

Based on this, the radioactive isotope is expected to behave identically with a stable isotope of 

the same element when introduced to for instance a biological system. This is the foundation 

for using radioisotopes to study the uptake, binding, etc. of an element in an organism. 

The method applied in this thesis is similar to the method described by Bartsch et al. (1990) 

and modified by Olsvik et al. (2001). Prior to analysis, the frog embryos and tadpoles were 

homogenized in 5 mM Tris-HCl homogenisation buffer (pH 7.4) (1:5 w/v) with 15 strokes 

using a Potter-Elvehjem homogenizer. Subsequently, the homogenate was centrifuged at 

10 000 g for 12 minutes at 3 °C. The samples were kept on ice during homogenization and 

other handling to ensure a temperature of 4 °C or lower at all times. After centrifugation, 100 

µL of the supernatant was transferred to a new Eppendorf tube and frozen at -82 °C until 

analysis.  

For analysis of MT, 100 µL acetonitrile was added to 100 µL sample and vortexed. After 3 

minutes of incubation at room temperature 1 mL premade buffer A (10mM Tris-HCl, 85 mM 

NaCl, pH 7.4) and 40 µL tracer solution was added. The sample was vortexed and the tracer 

was incubated for 5 minutes. The tracer was prepared by adding radioactive 
109

Cd and Cd-

acetate in solution (2 mg/mL) containing stable Cd isotopes to buffer A. After incubation, 100 

µL of the complex binder Chelex-100 resin (Bio-Rad, Hercules, CA, USA) was added and the 

sample was rotated slowly for 15 minutes. The Chelex was washed with washing buffer 

beforehand (10mM Tris-HCl, 1M NaCl, pH 7.4), and kept in 60 % suspension with buffer A. 

After rotation, the sample was centrifuged at 12 000 rpm for 5 minutes at 4 °C. Subsequently 

0.9 mL of the supernatant was transferred into a 20 mL plastic vial and the gamma radiation 

emitted from the sample was measured on a sodium iodide (NaI) automatic gamma counter 

(Wallac, Perkin Elmer, Wizard 3, 1480 automatic gamma counter).  

The activity of the sample in the plastic vials reflects the amount of 
109

Cd bound to MT in the 

sample, and hence the amount of MT present. Superfluous Cd is assumed to be bound to the 

Chelex and left in the precipitate after centrifugation. Chelex has a relatively strong binding 

capacity of metals, but slightly lower than that of MT. Therefore, Chelex binds only free 

metal species, and does not pull metal atoms away from the MT (Cai & Stillman 1988). 

Background samples were prepared and analysed to measure the Cd binding efficiency of 

Chelex, and blank samples were analysed to measure the amount of Cd added to the samples. 
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The MT concentration was calculated assuming a binding capacity of 7 Cd atoms per MT 

molecule, and given in nmol/g wet weight.  

 

3.4.2.2 7-Ethoxyresorufin O-deethylase (CYP1A activity) 

 

Prior to EROD analysis the embryos and tadpoles were processed on ice with refrigerated 

buffers. Each sample was added 2.5 mL 0.1 M potassium-phosphate buffer (pH 7.8) 

(approximately 1:2.5 w/v) containing KCL (0.15 M), dithiothreitol (DTT) (1 mM), glycerol 

(5% v/v) and protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN, USA) and 

homogenized with 15 strokes at 1000 rpm using a Potter-Elvehjem homogenizer. 

The homogenate was centrifuged at 10 000 g for 30 minutes at 4 °C. The supernatant (S9 

fraction) now containing both the cytosolic and the microsomal fraction was transferred to 

new centrifuge tubes and centrifuged once more at 50 000 g for 120 minutes at 4 °C to obtain 

the S100 microsomal and cytosolic fraction. The supernatant containing the cytosolic fraction 

was transferred to 5 mL tubes for mixing, prior to freezing in Nunc 96-deep well plates in 

three aliquots at -80 °C. The pellet containing the microsomal fraction was resuspended in 

0.75 mL 0.1 M potassium-phosphate buffer (pH 7.8) containing KCl (0.15 M), DTT (1 mM), 

EDTA (1 mM) and glycerol (20% v/v), and homogenized with 10 strokes at 1000 rpm. 

Finally the microsomal fraction was transferred to Nunc 96-well plates in three aliquots and 

frozen at -80 °C. 

The protein concentration in the microsomal fraction were analysed applying a modified 

version of Lowry’s method  (Lowry et al. 1951) using the DC Protein Assay Kit I from Bio-

Rad according to the producer’s protocol (Bio-Rad, Hercules, CA, USA). The microsomal 

samples were diluted 1:3 with 0.1 M Tris buffer (pH 8.0). Four different dilutions of Bio-

Rad’s Bovine gamma globulin standard were prepared to make a linear regression model for 

protein concentration and absorbance. Subsequently, 10 µL of diluted samples, standards and 

blanks were pipetted in triplicates into 96-well microtiter plates (Sarstedt AG & Co, 

Nümbrecht, Germany). Each well was added 25 µL of Bio-Rad’s reagent A and 200 µL of 

Bio-Rad’s reagent B. The plates were incubated for 15 minutes and absorbance was read in a 

ThermoMax microplate reader (Molecular Devices, Sunnyvale, CA, USA) at 750 nm using 

the SoftMax pro software. Protein concentration was calculated based on the regression 

model derived from the standard curve. 

The EROD assay was performed in a spectrophotometry room to ensure that the 7-

ethoxyresorufin reagent was shielded from direct light as it is light sensitive. Microsomal 

samples were diluted in 0.1 M potassium-phosphate buffer (pH 8.0) to obtain protein 

concentrations between 1 – 2 mg/mL. A resorufin standard curve was prepared by making 8 

different dilutions from 0 to 0.64 µM from a 10 µM stock solution. The resorufin standard 

(Sigma-Aldrich, St. Louis, MO, USA) was calibrated by measuring the absorbance of the 10 

µM concentration at 572 nm. Subsequently, 20 mL 7-ethoxyresorufin reagent (Sigma-

Aldrich, St. Louis, MO, USA) per plate was prepared by adding 0.75 mL 7-ethoxyresorufin 

for every 50 mL of buffer. The reagent was calibrated by measuring the absorbance at 450 
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nm. A NADPH solution was prepared by dissolving NADPH (Sigma-Aldrich, St. Louis, MO, 

USA) in buffer. The final concentration of NADPH solution in the wells should be 2.4 mM. 

Thereafter, 275 µL of the resorufin standards was pipetted in duplicates, and 50 µL of sample 

was pipetted in triplicates, into 96-well microtiter plates. Blanks and a cross plate reference 

sample made of cod liver were added to each plate for analytical quality control. Finally, 200 

µL 7-ethoxyresorufin reagent and 25 µL NADPH solution was added all wells, except those 

containing resorufin standards. The plates were read immediately (8 readings) in microplate 

reader (Victor 1420 Multilabel Counter, PerkinElmer, Waltham, MA, USA) at excitation 530 

nm and emission 590 nm.   

The EROD activity was determined from the slopes of the measured fluorescence (FU), by 

relating FU to the resorufin standard curve. Finally, the EROD activity was related to the 

protein concentration of each sample, to give the EROD activity in pmol/min/mg microsomal 

protein. After calculation all plates were multiplied with a correction factor given by the 

performance of the reference sample to correct for variation in readings of the reference.  

 

3.4.2.3 Glutathione S-Transferase activity (GST) 

 

The cytosolic fraction obtained during the processing of tissue for EROD analysis was thawed 

and protein content was analysed as described in section 3.4.2.2 7-Ethoxyresorufin O-

deethylase (CYP1A activity), except the samples were diluted 1:10 (Fig. 14). Subsequently, 

50 µL of blanks and diluted samples was pipetted in triplicates into 96-well microtiter plates. 

One of the tadpole cytosol samples was utilized as cross plate reference. A solution consisting 

of 25 mL 1 mM glutathione solution and 500 µL 100 mM 1-chloro-2,4-dinitrobenzene 

(CDNB) solution (dissolved in 2 mL DMSO) was prepared, and 200 µL of this was added 

each well. The plates were read immediately in microplate reader at 340 nm and monitored 

through 5 minutes. 

GST activity was calculated from the slopes of absorbance increase over the 5 minutes of 

measuring, and related to protein concentration, by using this formula:  

 

After calculation all plates were multiplied with a correction factor given by the performance 

of the reference sample to correct for variation in readings of the reference.  

 



 

32 

 

 
Figure 14. Analysis of protein concentration in tadpole cytosol prior to the glutathione S-Transferase (GST) assay. Photo: 
Eivind Farmen.  

 

 

3.4.2.4 Reduced glutathione (GSH) 

 

Reduced glutathione was measured in the cytosolic fraction of the samples by conjugation of 

monochlorobimane (mBCl) (Life Technologies Ltd, Paisley, UK) to the sample GSH, 

forming a stable and fluorescent product (Kamencic et al. 2000). All samples were diluted 

1:10 to obtain protein concentration between 0.1 and 1 mg/mL and pipetted in four replicates 

into 96-well microtiter plates (50 µL in each well). Two of the four replicates were added 0.1 

pmol GSH (spike) to correct for quenching (reduction of the fluorescence due to high 

concentrations of protein). A GSH standard curve was prepared by making 8 different 

dilutions from 0 to 100 µM from a 10 mM stock solution, and pipetted in triplicates (50 µL) 

into the microtiter plates. Finally, 50 µL of the reaction buffer, consisting of Trisbuffer pH 7.8 

with 200 µM mBCl and 1U/mL of equine GST (Sigma-Aldrich, St. Louis, MO, USA) was 

added all wells. The plates were incubated in darkness for 16 hours and read the morning after 

in microplate reader at 486 nm emission and 405 nm excitation. 

Concentration of reduced GSH activity was determined by relating measured FU to the GSH 

standard curve. A correction factor for quenching was derived by calculating the difference 

between the expected spike FU and the spike FU observed in the spiked samples. Finally 

GSH was related to the cytosolic protein concentration of each sample, to give the GSH 

activity in nmol/mg protein. 
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3.5 Statistics and calculations 

 

All statistical analysis was conducted using the software R version 2.15.2 (R Core Team 

2012). Elements in the ICP-MS results with more than 15 per cent of the values below LD 

were excluded from the analysis. This pass for the elements Ag, S, Se and Sn in the water 

data and Co, Cr, Eu, Lu, Ni, Sb, Sn and Yb in the tadpole tissue data. For the remaining 

element concentrations below LD, a value equal to half the LD was employed in the statistical 

analysis, as suggested by United States Environmental Protection Agency (U.S. 

Environmental Protection Agency 2000). All values below LQ were included in the statistics 

despite the uncertain accuracy associated with their low values.  

 

3.5.1 Multivariate statistics   

 

The primary ICP-MS data set was large, consisting of several spatial and temporal 

measurements of 34 elements. Hence, the ordination technique principal component analysis 

(PCA) was applied to reduce the number of variables, identify any patterns in this data set and 

reduce the risk of type 1 error associated with performing a large number of unviariate 

statistical tests. The data were log transformed (log(x+1)) prior to analysis to reduce the 

importance of extreme values. 

Principal component analysis is an unconstrained analysis (also called indirect gradient 

analysis) with many response variables and no explanatory variables. The analysis detects the 

ordination axes that correspond to the greatest variability in the data set (Lepš & Šmilauer 

2003). The first principal component (henceforth referred to as PCA axis 1 or the PC 1 axis) 

describes the most of the variation; the second principal component (henceforth referred to as 

PCA axis 2 or the PC 2 axis) describes the second most, and so on. The number of axes 

equals the number of variables, and all of them are uncorrelated. Usually, only the first axis, 

and sometimes the second, is interpreted as they account for the bulk of the variation in the 

data set. 

The results of the PCA analysis are presented in ordination diagrams called biplots. It is the 

relative positions and directions of the objects that is important for the interpretation, while 

the absolute values of the coordinates have no meaning (Lepš & Šmilauer 2003). The 

quantitative environmental variables (elements, in this case) are displayed as arrows pointing 

in the direction of which the value of the variable increases (Lepš & Šmilauer 2003). The 

angle between two arrows indicates the degree of correlation between the variables. Arrows 

pointing in the same direction represents elements that are predicted to exhibit high 

correlation. An angle of 90 means there is no correlation, while arrows pointing in opposite 

directions are negatively correlated.  

Samples from the different ponds at different times are shown in the diagram as points. Points 

close to the coordinate system of origin are predicted to have a value close to the mean value. 
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A point close to the extremity of an arrow is predicted to have an above-mean value of the 

element that the arrow represents, while a point projecting in the opposite direction of an 

arrow is predicted to have a below-mean value (Lepš & Šmilauer 2003). Points close to each 

other have much in common regarding element composition while points distant from each 

other are dissimilar.  

When conducting a PCA, the R software gives a summary where the site scores and species 

scores are presented. The species scores indicate to what extent an element is correlated with 

the different axes, e.g. the PC 1 axis. The site scores of the PC 1 axis gives an estimate of the 

relative concentration level of elements best correlated with the PC 1 axis in each sample. 

That is, the site scores give an indication of which sampled that have the highest overall 

element concentrations and which samples that have the lowest. Since the PC 1 axis usually 

accounts for a large portion of the variation, the PC 1 axis site scores can be regarded as a 

good representative for the overall element concentration levels. In the current thesis the PC 1 

axis site scores were utilized further in inferential statistics to represent the overall levels of 

element concentrations in each sample. 

 

3.5.2 Univariate statistics 

 

Principal component analysis is only a descriptive statistical method. In order to test any 

hypotheses it must be followed by inferential statistical tests, such as correlation analyses and 

analyses of variance. One-way analysis of variance was conducted on the PC 1 axis site 

scores for tadpole tissue element concentrations and biomarker data to test for any significant 

temporal differences in concentrations. For simplicity, the phrase ‘overall tissue element 

concentrations’ refer to the PC 1 axis site scores of tissue concentrations in the description of 

the statistics below. 

Kruskal-Wallis test and pairwise Wilcoxon post hoc test were carried out on all three data sets 

for overall tissue element concentrations, the MT data set for Vassum, and the GST and GSH 

data set for Prinsdal, as these were not normally distributed. The GSH data set for Prinsdal 

was log transformed to meet the Kruskal-Wallis assumption of equal variance. 

ANOVA, followed by the post hoc test Tukey’s honestly significant difference (Tukey’s 

HSD), were performed on the MT data sets for Prinsdal and Skullerud, the EROD data set for 

Vassum, and the GST and GSH data sets for Skullerud and Vassum. The MT data set for 

Skullerud, the EROD data set for Vassum, and the GST and GSH data sets for Vassum and 

Skullerud, were log transformed to meet the ANOVA assumptions of normal distribution and 

equal variance. The GST data sets for Skullerud and Vassum were square root transformed.  

There was a problem with non-normal distribution and heteroscedasticity (unequal variance) 

in the EROD data for Prinsdal and Skullerud. Transformations helped to some extent ((log 

(x+2)) and (square root (x+2)) respectively), but the heteroscedasticity was still an issue. 
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Hence Welch’s one-way test was performed on these data sets after transformation, as this 

test does not assume equal variance (Dalgaard 2008).  

Pearson correlation test was performed to check whether there was correlation between total 

or dissolved element concentrations in water (PC 1 site scores), and overall tissue element 

concentrations. The water data sets were log transformed (log(x+2)) to meet the assumptions 

of normal distribution and equal variance.  

Correlation analyses were also performed to test for any correlation between overall tissue 

element concentrations, and levels of the four biomarkers MT, EROD, GST and GSH. As the 

MT datasets were not normally distributed, the non-parametric Spearman method was 

conducted. Correlation between MT and Cu, Zn, Cd and Pb was also tested separately. 

Pearson correlation test was performed on the EROD data, the GSH data and the GST data. 

The EROD and GSH data were log transformed (the EROD data log(x+2)) prior to the 

correlation test. 

In all statistical tests the significance level was set to p = 0.05. 

Negative values of EROD activity was calculated for many of the samples. Negative activities 

are impossible so these results only means the value is below limit of detection. Hence, in the 

box plots these numbers were replaced with the half of the lowest measured positive value. In 

the statistical tests the original data with negative values were used to avoid extremely non-

normal distribution and heteroscedasticity.  

 

3.5.3 Bioconcentration factors (BCF) 

 

A bioconcentration factor (BCF) for each element was calculated by this formula: 

 

The BCF is a measure of the concentration of an element in an organism relative to the 

concentration in water, assuming uptake only from water. The mean of the biological 

replicates was used to avoid pseudoreplication since there was only one water sample from 

each sampling (Lepš & Šmilauer 2003). Finally, a PCA was performed on the BCFs to get an 

overview of potential patterns.  
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4 Results and discussion  

 

In the present thesis a suite of different elements were determined in water and frog embryos 

and tadpoles. In addition, the levels of the four biomarkers MT, EROD, GST and GSH were 

measured. The total data material is fairly large and complex, thus the discussion will focus 

on the most important trends and patterns, and the key factors influencing pond water quality, 

biological uptake of trace elements and levels of the biomarkers. Note that the sampling 

started one week earlier at Prinsdal than at the sedimentation ponds. 

 

4.1 Water quality characterization  

 

The values of different water quality parameters and element concentrations at Vassum, 

Skullerud and Prinsdal in different samples in May and June 2012 are presented in Table 2, 3 

and 4. Some of the trace elements are included in the five-parted classification system for 

environmental quality developed by the Climate and Pollution Agency (Climate and Pollution 

Agency 2012). In table 2, 3 and 4 it is indicated by colour shading which class the water 

belongs to, according to the total concentration of these elements (assuming soft water when 

classifying according to Cd). Blue colour denotes the natural state (class I), green colour 

denotes good water quality (class II), yellow indicates moderate water quality (class III), 

orange indicates poor water quality (class IV) and red colour means very poor water quality 

(class V) (see appendix 5 for the concentrations that define the class limits). No colour 

shading means there is not developed any classification criteria for the trace elements in 

Norway. 

For some elements, dissolved concentrations were higher than total concentrations, which was 

contradictory to the expected relationship. In the cases where the difference was small, the 

elevated dissolved concentrations may be attributed to sources of error in the sampling 

method or to measuring uncertainty. However, for Sb at all ponds and Zn at Prinsdal, the 

difference was large and seemed systematic. The other elements analysed in the same 

particular samples did not exhibit the same pattern, so there has probably not been any 

confusion of samples. It is difficult to explain this phenomenon. It might be that the syringe 

filters contaminated the water with Sb and Zn, but this was not tested. Consequently, the 

dissolved concentrations of Sb and Zn must be interpreted with care.  
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Table 2. General water quality parameters measured by the outlet of Vassum sedimentation pond at the different 
samplings in May and June 2012 (week 19 to week 24). Dissolved element concentrations are given in brackets. The 
colour shading indicates which class the water belongs to according to the classification system for environmental quality 
developed by the Climate and Pollution Agency. Blue = class I, green = class II, yellow = class III, orange = class IV, red = 
class V (Climate and Pollution Agency 2012). 

Variable Unit Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Mean ± SEMA) 

TOC mg/L 2.5 4.1 4.5 5.4 6.1 6.3 4.8 ± 0.58 

DOC mg/L 2.3 3.8 4.0 5.2 5.8 6.2 4.6 ± 0.59 

Cl mg/L 280 483 586 852 866 937 667 ± 106 

SO4 mg/L 14 31 30 29 30 27 27 ± 2.6 

pH  7.5 7.8 7.5 7.4 7.6 8.1 7.6 B) 

Temp.C)  °C 14 11 20 20 18 19 17 ± 1.5 

Cond.D) µs/c

m 

1010 1747 2050 2980 3070 3250 2351 ± 364 

Dissolved 

oxygen 

mg/L 8.1 7.8 6.1 4.9 5.2 5.3 6.2 ± 0.56 

Sum 16 

PAHs 

µg/L <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 

Na mg/L 180 (180) 300 (290) 340 (340) 520 (520) 560 (540) 580 (600) 413 ± 67 (412 ± 68) 

Mg mg/L 3.4 (2.4) 4.7 (4.4) 4.9 (4.9) 6.1 (6.1) 6.7 (6.6) 7.0 (6.7) 5.5 ± 0.56 (5.2 ± 0.67) 

Al µg/L 4000 (54) 510 (49) 240 (27) 400 (40) 230 (53) 1100 (33) 1080 ± 598 (43 ± 4.6) 

Si µg/L 11000 

(430) 

1400 

(<370) 

810 (<370) 1100 (<370) 560 (<370) 3100 (1000) 2995 ± 1642  

(382 ± 132) 

P mg/L 0.22 

(0.0084) 

0.045 

(0.012) 

0.033 (0.013) 0.062 

(0.030) 

0.054 

(0.037) 

0.35 (0.038) 0.13 ± 0.053  

(0.023 ± 0.0055) 

S mg/L 5.5 (5.2) 13 (12) 11 (11) 11 (11) 10 (10) 9.9 (9.4) 10 ± 1.0 (10 ± 1.0) 

K mg/L 4.0 (2.7) 5.0 (4.8) 5.8 (5.8) 7.8 (7.7) 6.9 (6.9) 7.7 (7.3) 6.2 ± 0.6 (5.9 ± 0.77) 

Ca mg/L 17 (14) 30 (30) 31 (32) 37 (35) 37 (37) 47 (37) 33 ± 4.1 (31 ± 3.6) 

Sc µg/L 0.95 

(<0.021) 

0.096 

(0.025) 

0.065 (0.021) 0.088 

(0.029) 

0.061 

(0.033) 

0.24 (0.041) 0.25 ± 0.14  

(0.028 ± 0.0034) 

Cr µg/L 8.9 (0.50) 1.4 (0.42) 0.80 (<0.25) 0.85 (0.27) 0.53 (0.41) 1.8 (0.32) 2.4 ± 1.3 (0.36 ± 0.040) 

Mn µg/L 71 (11) 24 (5.4) 24 (14) 100 (87) 97 (89) 140 (97) 76 ± 19 (51 ± 18) 

Fe µg/L 3500 (84) 590 (86) 370 (120) 800 (420) 860 (580) 1600 (620) 1287 ± 474 (318 ± 103) 

Co µg/L 1.8 (0.17) 0.74 

(0.38) 

0.38 (0.24) 0.50 (0.32) 0.47 (0.36) 0.91 (0.38) 0.80 ± 0.22  

(0.31 ± 0.035) 

Ni µg/L 5.8 (0.96) 2.6 (2.2) 2.5 (2.2) 2.0 (1.7) 1.7 (1.6) 2.8 (1.6) 2.9 ± 0.60 (1.7 ± 0.19) 

Cu µg/L 25 (5.1) 11 (9.5) 7.0 (6.1) 4.2 (2.3) 3.2 (2.1) 7.0 (1.8) 10 ± 3.3 (4.5 ± 1.2) 

Zn µg/L 94 (17) 69 (58) 39 (32) 20 (10) 15 (8.9) 45 (8.7) 47 ± 12 (22 ± 8.0) 

As µg/L 0.41 

(0.17) 

0.31 

(0.25) 

0.33 (0.29) 0.77 (0.71) 0.77 (0.76) 1.0 (0.85) 0.60 ± 0.12  

(0.51 ± 0.12) 

Se µg/L <0.27 

(<0.27) 

<0.27 

(<0.27) 

<0.27 (<0.27) <0.27 

(<0.27) 

<0.27 

(<0.27) 

<0.27 

(<0.27) 

<0.27 (<0.27) 

Sr µg/L 85 (72) 160 (150) 160 (160) 220 (220) 220 (230) 250 (240) 183 ± 24 (179 ± 26) 

Mo µg/L 3.0 (2.1) 3.5 (3.3) 3.2 (3.2) 3.3 (3.3) 3.8 (3.7) 3.9 (4.0) 3.5 ± 0.14 (3.3 ± 0.26) 

Ag µg/L 0.033 

(0.029) 

0.032 

(<0.029) 

<LD (<LD) <0.029 

(<LD) 

<0.029 

(<LD) 

0.074 (<LD) <0.029 (<LD) 

Cd µg/L 0.047 

(<0.015) 

<0.015 

(<0.015) 

<0.015 

(<0.015) 

<0.015 

(<0.015) 

<0.015 

(<LD) 

0.029 (<LD) 0.020 ± 0.0064 (<0.015) 

Sn µg/L 1.7 (<LD) <0.86 

(<0.86) 

<0.86 (<0.86) <0.86 

(<0.86) 

<0.86 

(<0.86) 

0.96 (<0.86) <0.86 (<0.86) 

Sb µg/L 4.8 (2.4) 1.7 (2.9) 1.4 (1.8) 2.7 (3.1) 2.9 (3.1) 2.8 (3.1) 2.7 ± 0.49 (2.7 ± 0.22) 

Ba µg/L 50 (<26) 40 (35) 40 (39) 68 (65) 76 (75) 87 (78) 60 ± 8.1 (52 ± 10) 

(continued) 
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Table 2 continued. 

Variable Unit Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Mean ± SEMA) 

La µg/L 5.7 (0.31) 0.58 

(0.081) 

0.33 (0.054) 0.61 (0.14) 0.42 (0.19) 1.4 (0.21) 1.5 ± 0.85  

(0.16 ± 0.038) 

Ce µg/L 13 (0.68) 1.2 (0.15) 0.66 (0.098) 1.2 (0.28) 0.87 (0.38) 2.9 (0.40) 3.3 ± 2.0 (0.33 ± 0.085) 

Eu µg/L 0.16 

(0.0085) 

0.018 

(<0.0057) 

0.012 

(<0.0057) 

0.020 

(0.0086) 

0.017 

(0.011) 

0.044 

(0.011) 

0.045 ± 0.023  

(0.0082 ± 0.0011) 

Yb µg/L 0.23 

(<0.0084) 

0.029 

(0.0086) 

0.017 

(<0.0084) 

0.023 

(0.0087) 

0.022 

(0.0087) 

0.060 

(0.011) 

0.064 ± 0.034  

(0.0080 ± 0.00088) 

Gd µg/L 0.83 

(0.035) 

0.087 

(0.014) 

0.045 (0.010) 0.091 

(0.027) 

0.074 

(0.035) 

0.22 (0.038) 0.22 ± 0.12  

(0.027 ± 0.0048) 

Lu µg/L 0.029 

(<0.0022) 

0.0043 

(<0.0022) 

<0.0022 

(<0.0022) 

0.0038 

(<0.0022) 

0.0029 

(<0.0022) 

0.0091 

(<0.0022) 

0.0085 ± 0.0042 

(<0.0022)  

Pb µg/L 2.0 (0.11) 0.54 

(0.15) 

0.3 (0.079) 0.54 (0.23) 0.48 (0.33) 1.2 (0.31) 0.84 ± 0.26  

(0.20 ± 0.043) 

Th µg/L 0.56 

(0.030) 

0.089 

(<0.020) 

0.049 

(<0.020) 

0.069 

(<0.020) 

0.051 

(0.020) 

0.22 

(<0.020) 

0.17 ± 0.082 (<0.020) 

U µg/L 0.94 

(0.73) 

2.1 (2.0) 1.6 (1.4) 1.4 (1.3) 1.6 (1.6) 1.8 (1.7) 1.6 ± 0.16 (1.5 ± 0.18) 

A)
 SEM = Standard error of the mean.

 

B)
 For pH, the median value is given instead of the mean value due to logarithmic scale. 

C)
 Temp. = temperature.  

D)
 Cond. = conductivity. 
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Table 3. General water quality parameters measured by the outlet of Skullerud sedimentation pond at the different 
samplings in May and June 2012 (week 19 to week 24). Dissolved element concentrations are given in brackets. The 
colour shading indicates which class the water belongs to according to the classification system for environmental quality 
developed by the Climate and Pollution Agency. Blue = class I, green = class II, yellow = class III, orange = class IV, red = 
class V (Climate and Pollution Agency 2012). 

Variable Unit Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Mean ± SEMA) 

TOC mg/L 4.2 6.0 5.6 5.5 5.9 6.0 5.5 ± 0.28 

DOC mg/L 4.0 5.8 5.2 5.5 5.7 5.7 5.3 ± 0.29 

Cl mg/L 111 9.2 26 54 73 97 62 ± 16 

SO4 mg/L 22 5 11 24 22 20 17 ± 3.1 

pH  8.4 7.8 7.3 7.6 7.4 7.8 7.7 B) 

Temp.C)  °C 12 13 18 15 11 15 14 ± 1.0 

Cond.D) µs/c

m 

544 81 176 354 411 493 343 ± 74 

Dissolved 

oxygen 

mg/L 9.3 9.6 7.7 10 6.1 6.1 8.2 ± 0.74 

Sum 16 

PAHs 

µg/L <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 

Na mg/L 68 (65) 6.5 (6.3) 17 (17) 34 (35) 44 (44) 60 (60) 38 ± 10 (38 ± 9.5) 

Mg mg/L 6.4 (6.2) 1.4 (1.3) 2.4 (2.2) 5.0 (5.2) 5.1 (5.2) 5.4 (5.3) 4.3 ± 0.79 

(4.2 ± 0.81) 

Al µg/L 1900 (120) 450 (120) 210 (66) 620 (74) 44 (20) 60 (17) 547 ± 286 (70 ± 19) 

Si µg/L 5600 

(1100) 

1800 (960) 720 (<370) 1600 (<370) <370 (<LD) <370 (<370) 1699 ± 826  

(491 ± 175) 

P mg/L 0.12 

(0.013) 

0.037 

(0.011) 

0.10 (0.048) 0.049 

(0.014) 

0.033 

(0.015) 

0.034 

(0.016) 

0.062 ± 0.016  

(0.020 ± 0.0057) 

S mg/L 7.6 (7.5) <3.3 (<3.3) 3.6 (3.4) 8.2 (7.8) 7.3 (7.5) 7.0 (6.8) 5.9 ± 1.0 (6.0 ± 1.0) 

K mg/L 3.4 (2.8) 0.83 (0.71) 1.2 (1.1) 2.4 (2.2) 2.1 (2.2) 2.2 (2.0) 2.0 ± 0.37  

(1.8 ± 0.32) 

Ca mg/L 28 (27) 6.9 (6.8) 12 (12) 26 (25) 25 (25) 25 (25) 20 ± 3.6 (20 ± 3.5) 

Sc µg/L 0.37 

(0.034) 

0.088 

(0.046) 

0.053 

(0.028) 

0.12 (0.027) 0.020 

(0.015) 

0.03 (0.020) 0.11 ± 0.054  

(0.028 ± 0.0044) 

Cr µg/L 7.2 (3.5) 1.7 (0.38) 1.4 (1.0) 1.5 (0.73) 0.48 (0.42) 0.95 (0.76) 2.2 ± 1.0 (1.1 ± 0.48) 

Mn µg/L 66 (7.0) 15 (4.2) 20 (12) 20 (17) 19 (18) 17 (16) 26 ± 8.0 (12 ± 2.3) 

Fe µg/L 1600 (110) 390 (110) 220 (77) 510 (100) 120 (77) 130 (84) 495 ± 230 (93 ± 6.4) 

Co µg/L 0.77 (0.12) 0.19 

(0.054) 

0.12 (0.087) 0.24 (0.10) 0.078 

(0.070) 

0.088 

(0.080) 

0.25 ± 0.11  

(0.085 ± 0.0094) 

Ni µg/L 3.0 (0.92) 0.89 (3.6) 0.88 (0.67) 1.3 (0.88) 0.93 (0.83) 0.97 (0.81) 1.3 ± 0.34 (1.3 ± 0.46) 

Cu µg/L 13 (6.9) 3.1 (7.0) 4.5 (3.7) 5.5 (3.8) 3.8 (3.6) 4.9 (4.3) 5.8 ± 1.5 (4.9 ± 0.66) 

Zn µg/L 53 (7.8) 9.7 (3.8) 10 (8.9) 12 (7.5) 4.9 (4.5) 6.0 (6.7) 16 ± 7.5 (6.5 ± 0.81) 

As µg/L 0.44 (0.23) 7.4 (0.22) 0.27 (0.24) 0.36 (0.37) 0.31 (0.32) 0.34 (0.33) 1.5 ± 1.2  

(0.29 ± 0.026) 

Se µg/L <0.27 

(<0.27) 

<0.27 

(<0.27) 

<0.27 

(<0.27) 

<0.27 

(<0.27) 

<LD (<0.27) <0.27 

(<0.27) 

<0.27 (<0.27) 

Sr µg/L 120 (110) 24 (24) 44 (42) 100 (110) 100 (110) 110 (110) 83 ± 16 (84 ± 16) 

Mo µg/L 2.7 (2.5) 0.46 (0.38) 1.1 (1.0) 2.5 (3.0) 2.2 (2.2) 2.1 (2.0) 1.8 ± 0.36 (1.8 ± 0.40) 

Ag µg/L <0.029 

(<LD) 

<0.029 

(<LD) 

<0.029 

(<LD) 

<0.029 

(<LD) 

<LD (<LD) <LD (<LD) <0.029 (<LD) 

Cd µg/L 0.034 

(<0.015) 

<0.015 

(<0.015) 

0.019 

(<0.015) 

0.022 

(<0.015) 

<0.015 

(<0.015) 

<0.015 

(<0.015) 

0.018 ± 0.0039  

(<0.015) 

Sn µg/L 0.97 

(<0.86) 

<0.86 

(<0.86) 

<0.86 

(<0.86) 

<0.86 (<LD) <0.86 (<LD) <LD (<LD) <0.86 (<LD) 

 (continued) 
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Table 3 continued. 

Variable Unit Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Mean ± SEMA) 

Sb µg/L 1.4 (2.0) 0.32 (0.92) 0.88 (2.4) 0.68 (1.7) 0.66 (1.3) 0.77 (0.76) 0.79 ± 0.15 (1.5± 0.26) 

Ba µg/L 38 (<26) <26 (<LD) <26 (<26) <26 (<26) <26 (<26) <26 (<26) <26 (<26) 

La µg/L 1.6 (0.18) 0.61 (0.29) 0.31 (0.16) 0.78 (0.16) 0.12 (0.086) 0.11 (0.057) 0.59 ± 0.230  

(0.16 ± 0.033) 

Ce µg/L 2.9 (0.26) 1.1 (0.38) 0.46 (0.20) 1.4 (0.22) 0.16 (0.11) 0.16 (0.068) 1.03 ± 0.43  

(0.21 ± 0.045) 

Eu µg/L 0.045 

(0.0061) 

0.018 

(0.0091) 

0.0099 

(0.0064) 

0.02 

(<0.0057) 

<0.0057 

(<0.0057) 

<0.0057 

(<0.0057) 

0.017 ± 0.0062 

 (<0.006) 

Yb µg/L 0.077 

(0.013) 

0.034 

(0.019) 

0.022 

(0.015) 

0.035 

(0.012) 

0.010 

(0.0085) 

0.010 

(<0.0084) 

0.031 ± 0.010  

(0.013 ± 0.0017) 

Gd µg/L 0.21 

(0.027) 

0.093 

(0.047) 

0.048 

(0.031) 

0.10 (0.026) 0.021 

(0.015) 

0.019 

(0.011) 

0.082 ± 0.029  

(0.026 ± 0.0052) 

Lu µg/L 0.011 

(<0.0022) 

0.0049 

(0.0029) 

0.0029 

(<0.0022) 

0.0049 

(<0.0022) 

<0.0022 

(<0.0022) 

<0.0022 

(<0.0022) 

0.0045 ± 0.0014 

(<0.002) 

Pb µg/L 1.5 (0.17) 0.40 

(0.083) 

0.23 (0.085) 0.43 (0.11) 0.12 (0.08) 0.10 

(<0.073) 

0.46 ± 0.21  

(0.10 ± 0.017) 

Th µg/L 0.28 

(0.033) 

0.070 

(0.037) 

0.050 

(0.026) 

0.097 

(0.024) 

<0.020 

(<0.020) 

<0.020 

(<0.020) 

0.088 ± 0.040  

(0.023 ± 0.0048) 

U µg/L 1.8 (1.6) 0.25 (0.23) 0.45 (0.41) 1.6 (1.7) 0.87 (0.83) 0.74 (0.70) 0.95 ± 0.25   

(0.91 ± 0.25) 
A)

 SEM = Standard error of the mean.
 

B)
 For pH, the median value is given instead of the mean value due to logarithmic scale. 

C)
 Temp. = temperature.  

D)
 Cond. = conductivity. 
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Table 4. General water quality parameters measured at Prinsdal at the different samplings in May and June 2012 (week 
18 to week 24). Dissolved element concentrations are given in brackets. The colour shading indicates which class the 
water belongs to according to the classification system for environmental quality developed by the Climate and Pollution 
Agency. Blue = class I, green = class II, yellow = class III, orange = class IV, red = class V (Climate and Pollution Agency 
2012). 

Variable Unit Week 18 Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Mean ± SEMA) 

TOC mg/L 4.7 5.4 5.1 6.4 12 10 33 11 ± 3.9 

DOC mg/L 4.6 5.4 5.1 6.5 9.4 9.4 14 7.8 ± 1.3 

Cl mg/L 2.9 2.4 2.2 2.0 2.2 2.2 0.8 2.1 ± 0.20 

SO4 mg/L 1.7 1.8 1.9 1.3 0.6 0.7 1.0 1.3 ± 0.20 

pH  6.1 6 6.2 6.1 6.3 6.2 5.7 6.1 B) 

Temp.C)  °C 5.9 13 12 18 12 11 15 12 ± 1.4 

Cond.D) µs/c

m 

26 25 24 26 36 30 26 28 ± 1.6 

Dissolved 

oxygen 

mg/L 6.9 7.0 7.5 3.1 4.0 3.0 1.5 4.7 ± 0.90 

Sum 16 

PAHs 

µg/L <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 

Na mg/L 1.7 (1.7) 1.7 (1.7) 1.7 (1.7) 1.7 (1.9) 2.1 (2.1) 2.4 (2.3) 2.5 (2.1) 2.0 ± 0.092  

(1.9 ± 0.092) 

Mg mg/L 0.50 

(0.53) 

0.43 

(0.43) 

0.46 

(0.45) 

0.50 

(0.51) 

0.97 

(0.91) 

0.84 

(0.81) 

1.2( 0.73) 0.70 ± 0.11  

(0.62 ± 0.072) 

Al µg/L 170 (120) 170 (130) 290 (110) 210 (130) 970 

(230) 

840 (230) 4300 

(890) 

993 ± 565 (263 ± 106) 

Si µg/L 2600 

(3000) 

2400 

(2200) 

2000 

(1800) 

1600 

(1600) 

4600 

(3200) 

3900 

(2900) 

8400 

(2200) 

3643 ± 888  

(2414 ± 235) 

P mg/L 0.034 

(0.010) 

0.012 

(0.0066) 

0.048 

(0.010) 

0.025 

(0.014) 

0.17 

(0.033) 

0.095 

(0.033) 

0.35 

(0.18) 

0.10 ± 0.046  

(0.041 ± 0.024) 

S mg/L <LD 

(<3.3) 

<LD (<LD) <LD (<LD) <LD (<LD) <LD 

(<LD) 

<LD (<LD) <3.3 

(<LD) 

<LD (<LD) 

K mg/L 0.37 

(0.33) 

0.32 

(0.31) 

0.36 

(0.37) 

0.29 

(0.26) 

0.76 

(0.50) 

0.58 

(0.39) 

1.4 (0.30) 0.58 ± 0.15  

(0.35 ± 0.030) 

Ca mg/L 2.3 (2.2) 2.2 (2.2) 2.3 (2.3) 2.7 (2.6) 3.8 (4.2) 2.5 (2.8) 3.5 (3.0) 2.8 ± 0.24 (2.8 ± 0.27) 

Sc µg/L 0.091 

(0.080) 

0.091 

(0.072) 

0.11 

(0.053) 

0.10 

(0.083) 

0.30 

(0.16) 

0.28 

(0.17) 

1.1 (0.41) 0.30 ± 0.14  

(0.15 ± 0.047) 

Cr µg/L 0.48 

(0.41) 

0.41 

(0.35) 

0.69 

(0.39) 

0.63 

(0.51) 

1.8 

(0.76) 

1.4 (0.82) 5.7 (2.1) 1.6 ± 0.71  

(0.76 ± 0.23) 

Mn µg/L 25 (35) 22 (17) 13 (69) 41 (36) 460 

(460) 

230 (230) 400 (340) 170 ± 73 (170 ± 67) 

Fe µg/L 490 (360) 330 (230) 540 (690) 750 (510) 11000 

(4700) 

6200 

(3200) 

41000 

(29000) 

8616 ± 5610  

(5527 ± 3965) 

Co µg/L 0.51 

(0.59) 

0.43 

(0.35) 

0.30 (1.0) 0.85 

(0.83) 

6.7 (6.7) 2.3 (2.5) 6.3 (5.0) 2.5 ± 1.1 (2.4 ± 0.94) 

Ni µg/L 1.9 (2.0) 2.0 (1.9) 2.3 (1.9) 3.0 (2.7) 6.0 (5.0) 4.1 (3.9) 10 (7.4) 4.2 ± 1.1 (3.5 ± 0.78) 

Cu µg/L 8.5 (6.2) 16 (13) 14 (9.7) 15 (13) 9.9 (8) 4.3 (4.1) 12 (6.6) 11 ± 1.6 (8.7 ± 1.3) 

Zn µg/L 10 (8.5) 10 (13) 13 (14) 13 (33) 14 (29) 5.6 (39) 11 (16) 11 ± 1.1 (21 ± 1.3) 

As µg/L 0.21 

(0.18) 

0.22 

(0.21) 

0.25 

(0.27) 

0.35 

(0.33) 

1.1 

(0.73) 

0.75 

(0.60) 

3.3 (2.7) 0.88 ± 0.42   

(0.72 ± 0.34) 

Se µg/L <0.27 

(<0.27) 

<LD 

(<0.27) 

<0.27 

(<0.27) 

<0.27 

(<0.27) 

<0.27 

(<0.27) 

<0.27 

(<0.27) 

0.49 

(0.33) 

<0.27 (<0.27) 

Sr µg/L 8.7 (9.1) 8.4 (8.4) 8.7 (8.7) 9.9 (9.8) 18 (19) 12 (13) 21 (16) 12 ± 1.9 (12 ± 1.6) 

Mo µg/L 0.27 

(<0.16) 

<0.16 

(<0.16) 

<0.16 

(<LD) 

<0.16 

(<0.16) 

<0.16 

(<0.16) 

<0.16 

(<0.16) 

0.59 

(0.39) 

0.19 ± 0.072 (<0.16) 

Ag µg/L <0.029 

(<0.029) 

<0.029 

(<0.029) 

<0.029 

(<0.029) 

<0.029 

(<0.029) 

0.064 

(0.033) 

0.045 

(<0.029) 

0.12 

(0.066) 

0.044 ± 0.014 

(<0.029) 

(continued) 
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Table 4 continued. 

Variable Unit Week 18 Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Mean ± SEMA) 

Cd µg/L 0.020 

(<0.015) 

0.023 

(0.020) 

0.029 

(0.020) 

0.025 

(0.025) 

0.038 

(0.018) 

0.032 

(<0.015) 

0.065 

(0.025) 

0.033± 0.006 

(0.020+/ 0.0016) 

Sn µg/L <0.86 

(<0.86) 

<0.86 

(<LD) 

<LD (1.5) <LD (<LD) <LD 

(<LD) 

<LD (<LD) <LD (<LD) <LD (<0.86) 

Sb µg/L 1.7 (1.8) 3.3 (3.2) 2.3 (3.5) 2.1 (3.4) 0.7 (5.4) 0.34 (6.7) 1.0 (2.6) 1.6 ± 0.39 (3.8 ± 0.64) 

Ba µg/L <26 (<26) <26 (<26) <26 (<26) <26 (<26) <26(<26) <26 (<26) 51 (19) <26 (<26) 

La µg/L 0.49 

(0.43) 

0.51 

(0.49) 

0.61 

(0.43) 

0.63 

(0.59) 

2.6 (1.3) 1.9 (1.4) 13 (7.7) 2.8 ± 1.7 (1.8 ± 1.0) 

Ce µg/L 1.1 (1.0) 1.1 (1.1) 1.3 (1.0) 1.4 (1.3) 5.5 (2.9) 4.0 (3.0) 23 (16) 5.3 ± 3.0 (3.8 ± 2.1) 

Eu µg/L 0.022 

(0.019) 

0.021 

(0.020) 

0.024 

(0.017) 

0.027 

(0.026) 

0.084 

(0.049) 

0.064 

(0.052) 

0.32 

(0.21) 

0.080 ± 0.041  

(0.056 ± 0.026) 

Yb µg/L 0.062 

(0.060) 

0.058 

(0.055) 

0.069 

(0.047) 

0.072 

(0.072) 

0.18 

(2.0) 

0.13 

(0.11) 

0.47 

(0.32) 

0.15 ± 0.056  

(0.38 ± 0.27) 

Gd µg/L 0.11 

(0.10) 

0.10 

(0.11) 

0.13 

(0.088) 

0.13 

(0.13) 

0.44 

(0.26) 

0.32 

(0.24) 

1.5 (1.1) 0.39 ± 0.191  

(0.29 ± 0.14) 

Lu µg/L 0.0076 

(0.0083) 

0.0078 

(0.0079) 

0.0091 

(0.0077) 

0.0094 

(0.010) 

0.026 

(0.018) 

0.016 

(0.014) 

0.06 

(0.041) 

0.019 ± 0.0072  

(0.015 ± 0.0045) 

Pb µg/L 1.4 (0.72) 1.7 (1.2) 2.2 (1.4) 2.6 (1.5) 7.1 (3.2) 2.8 (1.4) 16 (9.2) 4.8 ± 2.0 (2.7 ± 1.1) 

Th µg/L 0.074 

(0.075) 

0.078 

(0.064) 

0.10 

(0.046) 

0.12 

(0.092) 

0.38 

(0.23) 

0.34 

(0.20) 

1.4 (0.83) 0.36 ± 0.18   

(0.22 ± 0.11) 

U µg/L 0.048 

(0.043) 

0.056 

(0.052) 

0.059 

(0.041) 

0.059 

(0.056) 

0.13 

(0.078) 

0.17 

(0.11) 

0.55 

(0.34) 

0.15 ± 0.068  

(0.10 ± 0.041) 
A)

 SEM = Standard error of the mean.
 

B)
 For pH, the median value is given instead of the mean value due to logarithmic scale. 

C)
 Temp. = temperature.  

D)
 Cond. = conductivity. 

 

The air temperatures increased over the sampling period, which was expectable as the field 

work took place in springtime (Fig. 15 A). There were several days with rain during the whole 

period, but the bulk of the precipitation fell during the first half of the sampling period (Fig. 

15 B).  
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Figure 15. The mean 24 hours temperatures (A) and the precipitation (B) measured at the field station for agroclimatic 
studies at Sørås (municipality of Ås, County of Akershus) during the sampling period (1 May – 12 June 2012), in addition 
to data for the 7 days before the field work started. The data are assumed to be fairly representative for the weather 
conditions for all three ponds, although the field station is situated approximately 6 km from Vassum sedimentation 
pond, 19 km from the pond at Prinsdal and 23 km from Skullerud sedimentation pond. Modified after Hansen and 
Grimenes (2013). 

 

The range of the measured DOC concentrations were 2.3 to 6.2 mg/L in Vassum, 4.0 to 5.7 

mg/L in Skullerud and 4.6 to 14 mg/L in Prinsdal. The mean measured concentrations of both 

TOC as well as DOC were higher in Prinsdal than the two sedimentation ponds. This stands 

to reason, as the pond is shallow and situated in the edge zone of a forest where it receives a 

lot of organic material from plants. This may also explain why the median measured pH was 
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more than one unit lower at Prinsdal than in the sedimentation ponds. Decomposition of plant 

material has an acidifying effect due to generation of organic and inorganic acids (Brady et al. 

2010). 

The conductivity was considerably higher in the sedimentation ponds than in Prinsdal, the 

mean being 12 times higher in Skullerud and 85 times higher in Vassum. The high 

conductivity was most likely due to road salt, which was also indicated by their relatively 

high Cl and Na concentrations. The Cl concentrations ranged from 280 – 937 mg/L at Vassum 

and 9.2 – 111 mg/L at Skullerud. This is in good agreement with other measurements of Cl 

concentrations in highway runoff in Norway (Amundsen & Roseth 2004; Damsgård 2011; 

Åstebøl et al. 2002; Åstebøl 2005). There was a consistent temporal increase in Cl and Na 

concentrations in Vassum sedimentation pond, and a similar trend in Skullerud, with the 

exception of the first sampling. The increasing concentrations may be explained by 

evaporation from the ponds, as increasing air temperatures during the sampling period 

coincided with relatively little precipitation in the second half of the sampling period. In 

contrast to particle bound contaminants, NaCl is highly water soluble and mobile and will not 

readily sediment (this is particularly true for the chloride ion) (Amundsen et al. 2008). Hence, 

evaporation may lead to increased NaCl concentrations in the water. 

The highest mean total and dissolved concentrations of the macronutrients Na, Mg, K, Ca, 

and the trace elements Zn, Sr, Mo, Ba and U, were identified in Vassum. The highest mean 

total concentrations of Al, Cr and Sb were also measured in water from this pond. 

Considerably lower total and dissolved concentrations were identified for most elements in 

Skullerud, with the exception that the highest mean total concentrations of As, and the highest 

dissolved concentrations of Sc and Cr, were identified here. The difference between the two 

ponds is in agreement with earlier studies (Damsgård 2011; Meland et al. 2010a; Meland et 

al. 2010c) and is most likely due to Vassum receiving tunnel wash water in addition to runoff 

from open road area, while Skullerud only receives runoff from open road. Tunnel wash water 

often contains higher concentrations of pollution than storm water runoff does, due to the long 

term accumulation of contaminants on the road surface between washing (Meland 2010). At 

one or more times the total water concentrations of Cr, Cu and Zn were high enough for the 

water quality to be classified as ‘poor’ at Skullerud according to the Climate and Pollution 

Agency’s classification system. At one or more times this was also true for the concentrations 

of Cr and Cu at Vassum, while the Zn concentrations justified classifying the water quality as 

‘very poor’ at two occasions. 

In Vassum, several trace elements such as Al, Cr, Fe, Co, Zn, Sb, La and Ce, were measured 

at higher concentrations in week 19 than later in the period. This may be explained by 

snowmelt episodes before the field work started or rainfall before or in the beginning of the 

sampling period, carrying loads of pollution accumulated on the road as demonstrated by 

Sansalone and Buchberger (1996). Sedimentation of particle bound trace elements during the 

period may also be an explanation, indicating that the pond functions as intended.  

The mean total concentrations of trace elements of environmental concern such as Cr, Ni, Cu, 

Zn, Cd and Pb were slightly lower in the two sedimentation ponds than earlier measurements 
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of their outlet water (Damsgård 2011; Åstebøl 2005). It is difficult to compare element 

concentrations in highway runoff across sites, since several factors such as meteorological 

conditions, drainage area and AADT influence their concentrations. Nevertheless, to give a 

pointer of the relative pollution levels in Vassum and Skullerud it is worth mentioning that the 

mean total concentrations of Cu, Zn and Pb in both ponds were considerably lower than 

measurements of highway runoff in Canada from two highways with comparable AADT 

(Preciado & Li 2006), and also lower than measurements from a sedimentation pond in 

Sweden by a highway with lower AADT (Färm 2002). 

Surprisingly, very high concentrations of several elements were detected in the pond at 

Prinsdal. In fact, the highest mean total concentrations for 17 elements and the highest mean 

dissolved concentration for 21 elements (out of 34 measured) were identified here. These 

included among others total and dissolved concentrations of Mn, Fe, Co, Ni, Cu, Pb and all 

the measured lanthanides (La, Ce, Eu, Yb, Gd and Lu), and dissolved concentrations of Al 

and Sb. Consequently, the pond could not be regarded as a reference site as originally 

intended. The high concentrations were most likely due to contamination from the abandoned 

shooting range nearby, or some other influences in the catchment. The link to the shooting 

range was particularly evident in the high concentrations of Pb and Sb, which are commonly 

used in ammunition (Heier et al. 2010). At Prinsdal, total concentrations of Pb and Sb reached 

levels of 16 and 3.3 µg/L respectively, which are in good accordance with studies of runoff 

from shooting ranges in Norway (Heier et al. 2009; Heier et al. 2010). There was a 

noteworthy increase in overall element concentrations over time, probably due to the pond 

drying up towards summer (Strand 2006). There was considerably less water in the pond in 

the last samples than at the earlier ones, probably because of little precipitation in the second 

half of the sampling period, which dramatically increased the concentrations even though 

there was presumably little supply of trace elements from external sources during the 

sampling period.  

All values of the 16 PAHs were below limits of quantification in all ponds.  

The temporal variations in total and dissolved concentrations of the metals Cu, Zn, Cd and Pb 

in the three ponds are visualized in Fig. 16. 
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Figure 16. The temporal variations in total (A) and dissolved (B) Cu, total (C) and dissolved (D) Zn, total (E) and dissolved 
(F) Cd and total (G) and dissolved (H) Pb concentrations at Vassum and Skullerud sedimentation ponds, plus the naturally 
occurring pond at Prinsdal. Water samples were collected weekly in May and June 2012. Note that sampling at Prinsdal 
started one week earlier than at the two other ponds. All concentrations are given in µg/L. 
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A principal component analysis was performed on both total and dissolved water 

concentrations to get an overview of potential patterns in the data material. The biplots in Fig. 

17 show how the three ponds are grouped in relation to the first and second principal 

component axes.  

For the total concentrations, the elements that correlated best with the PC 1 axis were Al, Si, 

P, Sc, Cr, Mn, Fe, Co, Ni, Cu, Cd, La, Ce, Eu, Yb, Gd, Lu, Pb and Th. The PC 1 axis 

accounted for 53 per cent of the variation in the data. The PC 2 axis accounted for 28 per cent 

of the variation and the elements that correlated best with this axis were the macronutrients 

Na, Mg, K and Ca, plus the trace elements Zn, Sr, Mo, Sb, Ba and U. Arsenic correlated 

better with another axis. 

For dissolved concentrations, Al, Si, Sc, Mn, Fe, Co, Ni, Cd, La, Ce, Eu, Yb, Gd, Lu, Pb and 

Th were best correlated with the PC 1 axis, which accounted for 58 per cent of the variation. 

The elements Na, Mg, P, K, Ca, As, Sr, Mo, Ba and U on the other hand, correlated best with 

the PC 2 axis, which accounted for 21 per cent of the variation in the dataset. The trace 

elements Cr, Cu, Zn and Sb correlated better with other axes. 

For total water concentrations, Prinsdal (red points) had several samplings with mean or 

above-mean values of elements that correlated best with the PC 1 axis, while Vassum (green 

points) had more samples with concentrations below-mean values. On the other hand: All 

samples at Vassum showed above-mean concentrations of elements that correlated best with 

the PC 2 axis while all samples from Prinsdal showed below-mean values. 

For dissolved concentrations, all Prinsdal samples showed above-mean values for elements 

that correlated best with the PC 1 axis, while all Vassum samples showed below-mean values 

for these elements.  

For both total and dissolved concentrations, almost all Skullerud samples (blue triangles) 

exhibited below-mean values for elements that correlated best with the PC 1 axis. For 

elements that were best correlated with the PC 2 axis the pattern is less apparent, as about 

half-and-half of the samples exhibited above- and below-mean values. 
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Figure 17. Biplots displaying the results of principal component analysis (PCA) conducted on total (A) and dissolved (B) 
element concentrations in water from Vassum (green circles), Skullerud (blue triangles) and Prinsdal (red circles). A: The 
PC 1 axis accounted for 53 % of the variation while the PC 2 axis accounted for 28 %.  B: The PC 1 axis accounted for 58 % 
of the variation while the PC 2 axis accounted for 21 %. Trace elements are displayed as arrows pointing in the direction 
of which the value of the element increases. Points close to the coordinate system of origin have a predicted value close 
to the mean value. A point close to the extremity of an arrow has an above-mean predicted value of that element. Points 
(samples) close to each other have similar trace element composition. 
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The temporal variations in levels of overall water element concentrations in the samplings 

relative to each other, are displayed in Fig 18. The site scores of the PC 1 and PC 2 axes are 

used as representatives for the overall levels of element concentrations as they account for the 

bulk of the variation in the data. The graphs can be regarded as a synthesis of the variation in 

the elements seen in Fig. 16, in addition to many other elements. During the whole sampling 

period, Prinsdal had the highest levels of both total and dissolved element concentrations that 

correlated best with the PC 1 axis, except from total concentrations in week 19 (nothing can 

be concluded for week 18 since the sampling had not yet started at Skullerud and Vassum). 

Vassum generally had the highest levels of total and dissolved element concentrations that 

correlated best with the PC 2 axis. 
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Figure 18. Total (A and B) and dissolved (C and D) element concentrations in water presented as principal component 
analysis (PCA) site scores. The site scores for total element concentration (both PCA axis 1 and 2) were transformed 
(multiplied with -1) to enable an intuitive visualization, as the PCA returned increasing values as increasingly negative 
(see biplot Fig. 17 A). A: PCA axis 1 site scores for total concentrations (accounted for 53 % of the variation in total 
concentrations). B: PCA axis 2 site scores for total concentrations (accounted for 28 % of the variation in total 
concentrations).  C: PCA axis 1 site scores for dissolved concentrations (accounted for 58 % of the variation in dissolved 
concentrations). D: PCA axis 2 site scores for dissolved concentrations (accounted for 21 % of the variation in dissolved 
concentrations). 
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4.2 Analyses of tadpole tissue 

 

The trace element tissue concentrations and the biomarker levels of the frog embryos and 

tadpoles were analysed in order to identify any impact of xenobiotics in the water on the 

organisms. The embryos and tadpoles from the different ponds were not at the exact same 

developmental stage at all times. This complicated comparison across sites, since there may 

be differences in trace element accumulation and biomarker levels due to differences in 

developmental stage. Hence, results will primarily be discussed according to temporal trends 

within each pond. 

 

4.2.1 Trace element accumulation 

 

The whole-body wet weight concentrations of the 34 elements measured in tadpole tissue are 

presented in table 5, 6 and 7. For simplicity, all concentrations will be referred to as tissue 

concentrations, although it cannot be ruled out that parts of the concentrations stem from 

sediment and undigested food in the gut, since the digestive tract was not removed. However, 

this is probably not relevant for the individuals of the prefeeding Gosner stages 1 -25 (Gosner 

1960) sampled in week 19 at Vassum, 19 and 20 at Skullerud and 18 and 19 at Prinsdal.  
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Table 5. Whole-body wet weight concentrations of different elements measured by ICP-MS in tadpole tissue sampled in 
Vassum sedimentation pond in May and June 2012 (week 19 to 24), given as the mean of 6 biological replicates ± 
standard error of the mean (SEM).  

Element Unit Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 

Na g/kg 0.66 ± 0.017 1.1 ± 0.042 1.6 ± 0.16 1.9 ± 0.12 2.0 ± 0.070 1.8 ± 0.065 

Mg g/kg 0.086 ± 0.0039 0.28 ± 0.011 0.41 ± 0.039 0.68 ± 0.093 0.66 ± 0.053 0.72 ± 0.063 

Al mg/kg 19 ± 5.3 530 ± 28 880 ± 84 1300 ± 190 1300 ± 115 1300 ± 138 

Si mg/kg 39 ± 11 310 ± 23 380 ± 67 300 ± 17 220 ± 11 240 ± 11 

P g/kg 1.5 ± 0.065 0.61 ± 0.023 0.55 ± 0.066 0.56 ± 0.043 0.78 ± 0.024 0.96 ± 0.066 

S g/kg 0.61 ± 0.028 0.41 ± 0.013 0.40 ± 0.040 0.57 ± 0.049 0.73 ± 0.034 0.75 ± 0.034 

K g/kg 0.90 ± 0.033 0.78 ± 0.037 0.89 ± 0.097 1.0 ± 0.092 1.3 ± 0.031 1.4 ± 0.049 

Ca g/kg 0.077 ± 0.0053 0.30 ± 0.019 0.49 ± 0.052 0.89 ± 0.11 1.3 ± 0.073 1.9 ± 0.12 

Sc mg/kg 0.0051 ± 0.0018 0.17 ± 0.012 0.28 ± 0.026 0.41 ± 0.060 0.40 ± 0.033 0.46 ± 0.052 

Cr mg/kg 0.044 ± 0.016 1.4 ± 0.085 2.1 ± 0.21 3.5 ± 0.53 3.3 ± 0.32 3.7 ± 0.44 

Mn mg/kg 0.62 ± 0.13 13 ± 0.80 26 ± 2.9 44 ± 8.1 62 ± 7.0 47 ± 5.6 

Fe mg/kg 37 ± 7.4 650 ± 37 1200 ± 105 2100 ± 303 2000 ± 169 2200 ± 229 

Co mg/kg <LD 0.36 ± 0.017 0.63 ± 0.063 1.0 ± 0.14 1.1 ± 0.063 1.1 ± 0.11 

Ni mg/kg <0.066 0.68 ± 0.032 1.1 ± 0.10 1.8 ± 0.24 1.7 ± 0.14 1.8 ± 0.19 

Cu mg/kg 1.0 ± 0.058 4.1 ± 0.18 6.0 ± 0.59 11 ± 1.2 10 ± 0.94 9.6 ± 0.92 

Zn mg/kg 23 ± 1.4 29 ± 1.0 48 ± 4.3 74 ± 9.0 73 ± 6.9 69 ± 5.9 

As mg/kg 0.031 ± 0.0074 0.079 ± 0.0038 0.14 ± 0.014 0.21 ± 0.028 0.27 ± 0.016 0.29 ± 0.015 

Se mg/kg 0.26 ± 0.026 <0.14 <0.14 0.15 ± 0.012 0.18 ± 0.0087 0.20 ± 0.015 

Sr mg/kg 0.15 ± 0.023 1.4 ± 0.082 2.3 ± 0.23 4.0 ± 0.54 4.2 ± 0.35 5.5 ± 0.42 

Mo mg/kg 0.018 ± 0.0056 0.13 ± 0.0068 0.22 ± 0.020 0.34 ± 0.024 0.38 ± 0.025 0.35 ± 0.021 

Ag mg/kg 0.016 ± 0.0017 0.010 ± 0.00071 0.011 ± 0.0013 0.014 ± 0.0017 0.013 ± 0.0014 0.015 ± 0.0013 

Cd mg/kg <0.0051 0.0094 ± 0.00040 0.018 ± 0.0024 0.022 ± 0.0033 0.023 ± 0.0023 0.020 ± 0.0018 

Sn mg/kg <LD <0.27 0.37 ± 0.031 0.68 ± 0.059 0.62 ± 0.078 0.38 ± 0.070 

Sb mg/kg <0.012 0.12 ± 0.0042 0.15 ± 0.021 0.14 ± 0.036 0.15 ± 0.032 0.096 ± 0.022 

Ba mg/kg 0.31 ± 0.050 3.6 ± 0.19 5.6 ± 0.55 9.3 ± 1.3 10 ± 0.82 10 ± 0.83 

La mg/kg 0.018 ± 0.0064 1.1 ± 0.25 1.7 ± 0.17 3.0 ± 0.48 2.8 ± 0.24 3.4 ± 0.39 

Ce mg/kg 0.036 ± 0.013 2.3 ± 0.52 3.5 ± 0.34 5.9 ± 0.95 5.6 ± 0.48 6.8 ± 0.76 

Eu mg/kg <0.00082 0.027 ± 0.0032 0.042 ± 0.0043 0.070 ± 0.011 0.071 ± 0.0065 0.082 ± 0.0088 

Yb mg/kg <0.0014 0.042 ± 0.0048 0.066 ± 0.0065 0.093 ± 0.014 0.090 ± 0.0076 0.10 ± 0.010 

Gd mg/kg 0.0025 ± 0.00089 0.12 ± 0.016 0.21 ± 0.020 0.33 ± 0.051 0.32 ± 0.027 0.37 ± 0.039 

Lu mg/kg <LD 0.0054 ± 0.00062 0.0087 ± 0.00088 0.012 ± 0.0018 0.011 ± 0.00097 0.013 ± 0.0014 

Pb mg/kg <0.018 0.48 ± 0.024 0.80 ± 0.077 1.2 ± 0.18 1.2 ± 0.10 1.3 ± 0.14 

Th mg/kg 0.0025 ± 0.00076 0.23 ± 0.055 0.32 ± 0.035 0.50 ± 0.081 0.46 ± 0.044 0.53 ± 0.061 

U mg/kg 0.0017 ± 0.00029 0.15 ± 0.0071 0.17 ± 0.019 0.22 ± 0.016 0.24 ± 0.020 0.20 ± 0.016 

 

 

 

 

 

 



 

52 

 

Table 6. Whole-body wet weight concentrations of different elements measured by ICP-MS in tadpole tissue sampled in 
Skullerud sedimentation pond in May and June 2012 (week 19 to 24), given as the mean of 6 biological replicates ± 
standard error of the mean (SEM).  

Element Unit Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 

Na g/kg 0.19 ± 0.0088 0.36 ± 0.032 1.1 ± 0.031 1.4 ± 0.032 1.4 ± 0.068 1.7 ± 0.056 

Mg g/kg 0.052±0.0039 0.086 ± 0.0098 0.11 ± 0.0056 0.29 ± 0.010 0.22 ± 0.019 0.29 ± 0.014 

Al mg/kg <2.7 10 ± 2.0 100 ± 10 780 ± 27 540 ± 58 820 ± 51 

Si mg/kg <11 25 ± 5.7 220 ± 15 310 ± 17 310 ± 24 380 ± 25 

P g/kg 0.96 ± 0.080 1.9 ± 0.22 0.92 ± 0.029 0.70 ± 0.0081 0.56 ± 0.035 0.63 ± 0.034 

S g/kg 0.45 ± 0.029 0.77 ± 0.097 0.41 ± 0.010 0.42 ± 0.0081 0.33 ± 0.037 0.46 ± 0.025 

K g/kg 0.37 ± 0.030 0.73 ± 0.063 1.1 ± 0.036 1.0 ± 0.022 0.85 ± 0.055 1.1 ± 0.056 

Ca g/kg 0.056±0.0023 0.043 ± 0.0053 0.12 ± 0.0042 0.36 ± 0.0089 0.35 ± 0.034 0.49 ± 0.032 

Sc mg/kg <0.0013 0.0023± 0.00052 0.024 ± 0.0026 0.21 ± 0.0068 0.15 ± 0.014 0.21 ± 0.013 

Cr mg/kg <0.021 0.038 ± 0.014 0.20 ± 0.022 1.8 ± 0.066 1.5 ± 0.28 2.1 ± 0.15 

Mn mg/kg 0.25 ± 0.018 0.63 ± 0.10 4.2 ± 0.64 33 ± 1.6 32 ± 3.6 28 ± 3.4 

Fe mg/kg 9.2 ± 0.95 22 ± 2.9 100 ± 10 780 ± 25 600 ± 59 790 ± 55 

Co mg/kg <LD <LD <LD 0.38 ± 0.0089 0.31 ± 0.026 0.38 ± 0.026 

Ni mg/kg <LD <0.066 0.11 ± 0.010 0.87 ± 0.040 0.61 ± 0.066 0.89 ± 0.058 

Cu mg/kg 0.68 ± 0.055 1.3 ± 0.16 1.1 ± 0.074 5.0 ± 1.2 5.6 ± 2.4 4.2 ± 0.30 

Zn mg/kg 21 ± 2.2 34 ± 5.5 18 ± 0.45 24 ± 1.8 13 ± 1.3 18 ± 1.1 

As mg/kg 0.15 ± 0.056 0.15 ± 0.11 0.048 ± 0.0050 0.14 ± 0.0024 0.12 ± 0.0095 0.14 ± 0.0087 

Se mg/kg <0.14 0.18 ± 0.023 <0.14 <0.14 <0.14 <0.14 

Sr mg/kg 0.18 ± 0.0097 0.092 ± 0.013 0.29 ± 0.025 1.5 ± 0.049 1.3 ± 0.12 1.9 ± 0.080 

Mo mg/kg 0.0089± 

0.00069 

0.014 ± 0.003 0.026 ± 0.0019 0.18 ± 0.0077 0.13 ± 0.026 0.23 ± 0.0086 

Ag mg/kg <0.0062 0.019 ± 0.0033 0.0068± 0.00049 0.013 ± 0.00060 0.0096 ± 0.0011 0.012 ± 0.00067 

Cd mg/kg <LD <0.0051 <0.0051 0.026 ± 0.00066 0.021 ± 0.0039 0.037 ± 0.0025 

Sn mg/kg <LD <LD <LD <0.27 <0.27 <0.27 

Sb mg/kg <LD <LD 0.028 ± 0.0074 0.081 ± 0.0027 0.067 ± 0.0057 0.092 ± 0.0031 

Ba mg/kg 0.12 ± 0.014 0.26 ± 0.035 1.1 ± 0.12 7.2 ± 0.25 5.4 ± 0.52 8.5 ± 0.51 

La mg/kg 0.0021± 

0.00065 

0.0096 ± 0.0023 0.09 ± 0.011 0.95 ± 0.019 0.97 ± 0.087 0.98 ± 0.079 

Ce mg/kg 0.0038 ±  

0.0013 

0.019 ± 0.0045 0.18 ± 0.021 1.8 ± 0.045 1.9 ± 0.14 1.9 ± 0.12 

Eu mg/kg <LD <0.00082 0.0025± 0.00030 0.023 ± 0.00060 0.020 ± 0.0017 0.026 ± 0.0014 

Yb mg/kg <LD <0.0014 0.0045± 0.00059 0.043 ± 0.00087 0.036 ± 0.0027 0.046 ± 0.0023 

Gd mg/kg <LD 0.0011± 0.00028 0.012 ± 0.0016 0.12 ± 0.0024 0.11 ± 0.0081 0.12 ± 0.0075 

Lu mg/kg <LD <LD <0.00083 0.0053± 0.00017 0.0046± 0.00032 0.0057± 0.00031 

Pb mg/kg <LD <0.018 0.072 ± 0.0085 0.61 ± 0.022 0.49 ± 0.054 0.71 ± 0.042 

Th mg/kg <LD 0.0018± 0.00067 0.022 ± 0.0022 0.19 ± 0.0058 0.22 ± 0.014 0.19 ± 0.012 

U mg/kg 0.0025± 

0.00016 

0.0019± 0.00076 0.034 ± 0.0041 0.29 ± 0.016 0.24 ± 0.068 0.48 ± 0.045 
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Table 7. Whole-body wet weight concentrations of different elements measured by ICP-MS in tadpole tissue sampled in 
the naturally occurring pond at Prinsdal in May and June 2012 (week 18 to 24), given as the mean of 6 biological 
replicates ± standard error of the mean (SEM).  

Element Unit Week 18 Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 

Na g/kg 0.30 ± 0.025 0.33 ± 0.029 0.95 ± 0.090 1.3 ± 0.031 1.7 ± 0.017 1.6 ± 0.021 1.5 ± 0.045 

Mg g/kg 0.095± 
0.0062 

0.057± 
0.0043 

0.087± 0.0080 0.12 ± 0.0073 0.16 ± 0.0049 0.21 ± 0.0048 0.47 ± 0.029 

Al mg/kg <2.7 3.2 ± 1.1 64 ± 12 340 ± 44 550 ± 40 850 ± 30 2200 ± 149 

Si mg/kg <LD <11 160 ± 23 350 ± 22 360 ± 106 270 ± 18 410 ± 23 

P g/kg 2.5 ± 0.20 1.1 ± 0.078 0.90 ± 0.054 0.65 ± 0.0093 0.58 ± 0.016 0.63 ± 0.0031 0.66 ± 0.016 

S g/kg 1.0 ± 0.085 0.43 ± 0.030 0.39 ± 0.024 0.35 ± 0.0037 0.32 ± 0.0083 0.34 ± 0.0021 0.38 ± 0.0091 

K g/kg 0.93 ± 0.058 0.63 ± 0.047 1.0 ± 0.067 0.94 ± 0.019 0.95 ± 0.019 1.1 ± 0.017 1.5 ± 0.070 

Ca g/kg 0.03± 0.0019 0.035± 
0.0025 

0.085± 0.0062 0.14 ± 0.0042 0.18 ± 0.0056 0.21 ± 0.0017 0.39 ± 0.021 

Sc mg/kg <LD <0.0013 0.014± 0.0024 0.073± 0.0087 0.12 ± 0.0080 0.19 ± 0.0056 0.46 ± 0.030 

Cr mg/kg 0.043± 0.027 <LD 0.076 ± 0.014 0.44 ± 0.049 0.72 ± 0.048 1.1 ± 0.042 3.0 ± 0.20 

Mn mg/kg 0.59 ± 0.053 1.6 ± 0.11 5.7 ± 0.60 9.8 ± 0.83 19 ± 0.43 24 ± 1.8 29 ± 2.5 

Fe mg/kg 22 ± 1.7 13 ± 2.0 120 ± 16 510 ± 43 1400 ± 26 1200 ± 21 1900 ± 99 

Co mg/kg <LD <LD <0.2 0.28 ± 0.020 0.51 ± 0.013 0.54 ± 0.019 0.81 ± 0.043 

Ni mg/kg <LD <LD 0.11 ± 0.013 0.42 ± 0.037 0.72 ± 0.025 0.81 ± 0.024 1.7 ± 0.11 

Cu mg/kg 1.8 ± 0.23 0.79 ± 0.052 1.3 ± 0.13 4.1 ± 0.17 3.5 ± 0.19 2.2 ± 0.060 3.1 ± 0.095 

Zn mg/kg 42 ± 2.9 18 ± 1.4 16 ± 0.95 11 ± 0.40 7.9 ± 0.19 8.1 ± 0.12 11 ± 0.43 

As mg/kg 0.015± 
0.0054 

0.016± 
0.0028 

0.027± 0.0017 0.076± 0.0045 0.12 ± 0.0031 0.13 ± 0.0043 0.18 ± 0.0079 

Se mg/kg 0.36 ± 0.035 0.15 ± 0.011 <0.14 <0.14 <0.14 <0.14 <0.14 

Sr mg/kg 0.040 ±  
0.0040 

<0.035 0.12 ± 0.017 0.41 ± 0.033 0.71 ± 0.046 1.0 ± 0.035 2.4 ± 0.17 

Mo mg/kg 0.020± 
0.0049 

0.0049 ±  
0.00037 

0.0090 ±  
0.0013 

0.040± 0.0076 0.054± 0.0015 0.073± 0.0015 0.11 ± 0.0051 

Ag mg/kg 0.033 ±  
0.0067 

0.011 ±  
0.00094 

0.0095 ±  
0.00077 

0.014 ±  
0.00052 

0.021 ± 
0.00067 

0.035± 0.0014 0.041± 0.0021 

Cd mg/kg <0.0051 <0.0051 <0.0051 0.0098 ±  
0.00062 

0.013 ±  
0.00040 

0.017 ±  
0.00079 

0.022 ±  
0.00084 

Sn mg/kg <LD <LD <LD <LD <LD <LD <LD 

Sb mg/kg <LD <LD 0.032± 0.0043 0.11 ± 0.0054 0.086 ± 0.013 0.026± 0.0014 0.022± 0.0017 

Ba mg/kg 0.24 ± 0.036 0.13 ± 0.016 0.9 ± 0.15 3.6 ± 0.35 5.6 ± 0.39 8.1 ± 0.26 20 ± 1.3 

La mg/kg 0.0028 ±  
0.0010 

0.0034 ±  
0.0014 

0.071 ± 0.011 0.34 ± 0.034 0.58 ± 0.033 0.84 ± 0.031 1.7 ± 0.092 

Ce mg/kg 0.0053 ±  
0.0020 

0.0077 ±  
0.0031 

0.16 ± 0.025 0.72 ± 0.079 1.1 ± 0.042 1.6 ± 0.049 3.3 ± 0.19 

Eu mg/kg <LD <LD 0.0020 ±  
0.00029 

0.0093 ±  
0.00090 

0.015 ±  
0.00056 

0.019 ±  
0.00054 

0.043± 0.0026 

Yb mg/kg <LD <LD 0.0035 ±  
0.00057 

0.017± 0.0017 0.029± 0.0015 0.034± 0.0011 0.076± 0.0049 

Gd mg/kg <LD <0.0011 0.0099 ±  
0.0017 

0.046± 0.0042 0.074± 0.0028 0.094± 0.0035 0.20 ± 0.011 

Lu mg/kg <LD <LD <0.00083 0.0022 ±  
0.00023 

0.0035 ±  
0.00018 

0.0044 ±  
0.00014 

0.0098 ±  
0.00056 

Pb mg/kg <0.018 0.039± 0.016 0.63 ± 0.095 2.6 ± 0.23 2.6 ± 0.095 2.0 ± 0.082 2.9 ± 0.18 

Th mg/kg <LD <0.0014 0.012± 0.0022 0.064± 0.0073 0.11 ± 0.0076 0.16 ± 0.0043 0.39 ± 0.025 

U mg/kg <LD <LD 0.0052 ±  
0.00086 

0.027± 0.0024 0.036± 0.0023 0.053± 0.0016 0.11 ± 0.0078 
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For certain trace elements of environmental concern there was a considerable accumulation in 

tadpoles, as tissue concentrations exhibited a 100-fold increase or more during the sampling 

period. In Skullerud tadpoles this was true for Al, Sc, Cr and Mn. In Vassum tadpoles Mn and 

Mo increased a 100-fold over the sampling period, while at Prinsdal this pass for Al, Sc, As 

and Pb. In all three ponds there was also a 100-fold increase in tissue concentrations of the 

lanthanides La, Ce and Gd.  However, the maximum concentrations were 3.4 mg La/kg and 

6.8 mg Ce/kg in Vassum tadpoles, which was considerably higher than in Skullerud (0.98 mg 

La/kg and 1.9 mg Ce/kg) and Prinsdal (1.7 mg La/kg and 3.3 mg Ce/kg). In Vassum there was 

also a 100-fold increase in concentrations of Eu and a strong increase in Yb that was not 

found in tadpoles in the two other ponds. The higher accumulation of lanthanides in Vassum 

tadpoles is interesting as these elements are being increasingly utilized in the automobile 

industry (Goonan 2011). Hence, it is reason to believe that organisms inhabiting 

sedimentation ponds are exposed to these elements. However, the highest total and dissolved 

water concentrations of these elements were measured in Prinsdal (see section 4.1 Water 

quality characterization). 

A principal component analysis was performed on the dataset for tadpole tissue element 

concentrations to identify potential patterns. The PC 1 axis accounted for 66 per cent of the 

variation in the data set and the elements Na, Mg, Al, Ca, Sc, Mn, Fe, Cu, As, Sr, Mo, Cd, Ba, 

La, Ce, Gd, Pb, Th and U correlated best with this axis. The elements P, S, Zn and Se 

correlated best with the PC 2 axis, which accounted for 15 per cent of the total variation. 

Silver correlated better with another axis than the first and the second. The majority of 

Vassum tadpole samples showed mean or above-mean concentrations of elements that 

correlated best with the PC 1 axis, as well as elements that correlated best with the PC 2 axis 

(Fig. 19). Among the tadpole samples from Skullerud and Prinsdal, considerably fewer 

samples showed above-mean values of any elements. 
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Figure 19. Biplot displaying the results of principal component analysis (PCA) conducted on element concentrations in 
tadpole tissue at Vassum (green circles), Skullerud (blue triangles) and Prinsdal (red circles). The PCA axis 1 accounted for 
66 % of the variation in metal concentrations while axis 2 accounted for 15 %. Tissue trace elements are displayed as 
arrows pointing in the direction of which the value of the element increases. Points (samples) close to the coordinate 
system of origin have a predicted value close to the mean value. A point close to the extremity of an arrow has an above-
mean predicted value of that element. Points close to each other show tadpole samples with similar tissue element 
composition. 

 

For tadpoles in all ponds there was a time dependent accumulation of the trace elements that 

correlated best with the PC 1 axis (Fig. 20). Kruskal-Wallis/pairwise Wilcoxon tests and 

ANOVA/Tukey's HSD tests revealed that several samplings were significantly different from 

each other, as indicated by the significance letters in the box plots. Accordingly, the increases 

in tadpole tissue trace element concentrations were statistically significant. The results are in 

agreement with a field study by Kelepertzis et al. (2012) who showed that Pelophylax 

kurtmuelleri tadpoles growing up in contaminated areas accumulated considerable amounts of 

metals. The whole-body metal concentrations were the highest ever reported in tadpole tissue 

and reached dry weight concentrations of 182 mg Cu/kg, 11 460 mg Zn/kg, 82 mg Cd/kg and 

4490 mg Pb/kg (Kelepertzis et al. 2012). If assuming a dry weight to wet weight ratio of 5, 

which is common for e.g. fish and bivalves (Consortium for Risk Evaluation with Stakeholder 

Participation 2006), these levels are far higher than those in the present thesis. A field study of 

Rana temporaria tadpole populations in an area in the Alps with little direct human impact 

documented accumulation of Al, Cd and Pb (Hofer et al. 2005) The metals in the water were 

assumed to stem from atmospheric deposition and geological processes (Hofer et al. 2005). 

Tissue concentrations of Al, Cd and Pb were given in dry weight but if assuming a dry weight 
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to wet weight ratio of 5, the concentrations reported were in the lower range of the current 

results. 

 

 

 

Figure 20. Box plots showing time dependent element accumulation in tadpoles presented as the principal component 
analysis axis 1 (PCA axis 1) site scores obtained by PCA on element concentrations in tadpole tissue. Each sample 
constitutes 6 biological replicates. A box constitutes the middle 50 % of the sample values and the remaining 50 % are 
situated between the box and the whiskers. Circles represent outliers from this setup. The black lines across the boxes 
show median values. Different letters indicate significant differences between the samplings within a pond according to 
Tukey's HSD or pairwise Wilcoxon post hoc tests (significance level set to p=0.05). The letters does not denote any 
difference between samples across sites. 

 

Laboratory experiments exposing amphibians to metal contaminated water have shown 

considerable time dependent accumulation of metals such as Cr, Cu, Zn and Cd where the 

skin probably is an important route for uptake (Dobrovoljc et al. 2012; Loumbourdis et al. 
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2007; Papadimitriou & Loumbourdis 2002; Papadimitriou & Loumbourdis 2003). The 

tadpoles investigated in the present thesis may have taken up trace elements through the 

permeable skin and gills, as well as by ingestion of food and sediment. When comparing with 

results from other studies one should keep in mind that significant species-specific differences 

have been observed regarding metal accumulation in tadpoles and susceptibility to 

contamination (Snodgrass et al. 2004; Snodgrass et al. 2008).  

Pearson correlation tests showed no significant correlation neither between total nor dissolved 

trace element concentrations in water, and trace element concentration in tadpoles, when 

looking at elements best correlated with the PC 1 axis (r = -0.15, p = 0.55 for total 

concentrations vs. tissue concentrations, r = -0.38, p = 0.11 for dissolved concentrations vs. 

tissue concentrations). Consequently, other factors must be considered to explain the 

bioaccumulation. Sediment concentrations of elements may be one explanation factor. 

Tadpoles are omnivores that eat plenty of sediment, and have been referred to as benthic 

“bulldozers” as they disturb the sediment while foraging (Flecker et al. 1999; Ranvestel et al. 

2004). Hence, they are highly exposed to pollution in the sediment and strong correlation has 

been found in other studies between sediment and tadpole tissue concentrations of trace 

elements (Kelepertzis et al. 2012; Sparling & Lowe 1996). Unfortunately, sediment was not 

sampled for this thesis. However, previous measurements of Vassum and Skullerud 

sedimentation ponds detected higher sediment concentrations of trace elements at Vassum 

than at Skullerud (Damsgård 2011), which is interesting as the highest tissue element 

accumulation was measured in tadpoles from Vassum in the current results.  

The element concentrations in tadpole tissue reached the highest levels in the tadpoles from 

Vassum, despite Prinsdal having the highest total and dissolved concentrations for most of 

these elements. ANOVA and Tukey’s HSD performed on the sampling with the highest 

element concentration from each pond (i.e. the last sampling) showed that Vassum 

concentration levels were significantly different from the two other ponds (p = 0.0022 for 

Vassum vs. Prinsdal, and p <0.001 for Vassum vs. Skullerud). Skullerud and Prinsdal were 

not significantly different from each other (p = 0.18). A possible explanation for the lower 

bioaccumulation at Prinsdal relative to Vassum is the high concentrations of DOC at Prinsdal 

(the mean DOC concentration being 7.8 mg/L at Prinsdal compared to 4.6 mg/L at Vassum) 

providing strong complexation of trace elements and hence making them less bioavailable (Di 

Toro et al. 2001), especially at the later samplings. 

The tadpoles’ growth and metabolism patterns may provide another explanation for the higher 

trace element accumulation in Vassum. The mean weight of the tadpoles at Vassum 

apparently exceeded that of the tadpoles in the two other ponds at the late samplings (Fig. 21), 

although this was not statistically tested. They also had a considerably larger body size at 

most of the samplings, which is evident to some degree by counting the squares on the graph 

paper in the two last pictures in Fig. 22, 23 and 24, respectively.  
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Figure 21. The mean wet weight of the tadpoles at the different samplings, calculated by dividing the total weight of the 
individuals on randomly picked CryoTubes, by the number of individuals on the tube and thereafter calculating the mean 
of the estimated individual weight of tadpoles from 3 – 8 different tubes (i.e. n varies from 3 – 8). Error bars denotes 
standard error of the mean (SEM).   

 

Several factors may have influenced this development. First, Vassum is highly sun exposed, 

in contrast to Prinsdal, that is situated shadily by the forest edge, and Skullerud that is partly 

roofed over by the highway and surrounded by more vegetation. Besides, the pond at Vassum 

is smaller than Skullerud so it takes shorter time to heat. Consequently, the overall water 

temperature is probably higher at Vassum than the two other ponds, providing a higher sum of 

degree-days. This is to some extent reflected in the temperature measurements, which were 

highest at Vassum at all samplings except one (the mean temperature at Vassum was 5 C° 

higher than at Prinsdal and 3 C° higher than at Skullerud). However, to actually demonstrate 

the difference, a temperature logger should have been applied instead of the single-point 

measurements that were taken during the field work for this thesis. Hence a higher sum of the 

degree-days at Vassum cannot be demonstrated, only assumed.  

A higher sum of the degree-days would most likely accelerate the tadpole development, 

growth and metabolism, as they are poikilotherm. In addition, a laboratory study showed that 

tadpoles exposed to storm water pond sediment with elevated road salt concentrations grew 

more rapidly and metamorphosized at a larger size, than tadpoles of the control groups (Brand 

et al. 2010). It was suggested that this may be due to the water being isotonic with regard to 

their body fluids, saving the tadpoles for energy demanding osmoregulation. Hence, more 

energy could be allocated to growth. It is possible that this mechanism is in work in the 

Vassum tadpoles. Their high growth rate may explain their higher tissue trace element 

concentrations compared to the two other ponds, because fast growing organisms need high 

food intake which may increase the tadpoles’ ingestion of potentially contaminated food and 

sediment. Köck et al. (1996) also explained increasing metal accumulation in Arctic char 

(Salvelinus alpinus) during summer by increasing temperatures. They suggested that one of 
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the mechanisms behind temperature driven metal accumulation may be increased gill 

ventilation leading to higher processing of water and higher metal uptake (Köck et al. 1996).  

The mere accumulation of trace elements does not necessarily imply adverse health effects, as 

tissue concentrations may include trace elements involved in essential processes or stored in 

inert forms (e.g. bound to MT), as well as those causing damage (Wood 2012). Still, 

increasing trace element concentrations in tadpoles during spring is worth notice as they may 

be remobilized and potentially cause toxic effects during the metamorphosis as the organs 

undergo extensive reconstruction (Hofer et al. 2005). In that respect, the trace element 

accumulation observed in the current thesis may be potentially harmful to the tadpoles. The 

digestive tract was not removed or emptied in tadpoles in the present thesis. If this had been 

done, the results may have been different. This ought to be considered in any further research. 

 

 

Figure 22. Developmental stages of common frog tadpoles (Rana temporaria) sampled in Vassum sedimentation pond 
from week 19 to 24, 2012. 

Week 19 Week 20 Week 21 

Week 22 Week 23 Week 24 
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Figure 23. Developmental stages of common frog tadpoles (Rana temporaria) sampled in Skullerud sedimentation pond 
from week 19 to 24, 2012. 

 

 

 

Figure 24. Developmental stages of common frog tadpoles (Rana temporaria) sampled in the naturally occurring pond at 
Prinsdal from week 19 to 24, 2012. Sampling at Prinsdal started in week 18 2012, but photography from this week is 
missing. 

 

The bioconcentration factors (BCFs) of most elements varied considerably throughout the 

sampling period (see appendix 3 for exact BCF values). For several metals of environmental 

concern such as Al, Mn, Fe, Cu, Zn, Cd and Pb, plus for the lanthanides La, Ce and Gd, the 

BCFs were far higher at Vassum and Skullerud than at Prinsdal. For instance, the BCF for Pb 

was in the range of 0.019 to 16 at Skullerud and 0.11 to 10 at Vassum, while it was only 0.015 

Week 19 Week 20 Week 21 

Week 22 Week 23 Week 24 

Week 22 

Week 20 Week 19 

Week 24 Week 23 

Week 21 
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to 1.7 at Prinsdal.  A PCA was performed on the BCFs to detect any patterns and the results 

are displayed in Fig. 25. The elements Al, Sc, Mn, Fe, Cu, As, Cd, La, Ce, Gd, Pb and Th 

correlated best with the PC 1 axis, which accounted for 48 per cent of the variation in the 

dataset. The PC 2 axis accounted for 25 per cent of the variation, and the elements that 

correlated best with this axis were Na, Mg, P, K, Ca, Sr, Mo, Ba and U. An interesting finding 

was that all Prinsdal samples showed below-mean BCF values for elements best correlated 

with the PC 1 axis, despite this pond having the highest mean total and dissolved water 

concentrations of most of these elements. The majority of Vassum samples showed above-

mean BCF values for elements best correlated with the PC 1, while Skullerud samples showed 

BCFs equally distributed between above- and below mean values. 

 

 

Figure 25. Biplot displaying the results of principal component analysis (PCA) conducted on the bioconcentration factors 
(BCF) of elements for Vassum (green circles), Skullerud (blue triangles) and Prinsdal (red circles). The PCA axis 1 
accounted for 48 % of the variation in the data set, while PCA axis 2 accounted for 25 %. Bioconcentration factors are 
displayed as arrows pointing in the direction of which the value of the BCF increases. Points close to the coordinate 
system of origin have a predicted value close to the mean value. A point close to the extremity of an arrow has an above-
mean predicted value of that BCF. Points close to each other have similar BCF composition. 

 

The PC 1 axis site scores derived from the PCA performed on the BCFs are displayed in Fig. 

26 to visualize the temporal variation in BCFs at the three ponds throughout the sampling 

period.  
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Figure 26. Bioconcentration factors (BCFs), calculated by dividing dissolved element concentrations in water on element 
concentrations in tadpoles, displayed as the site scores of principal component analysis (PCA) axis 1 (A) and 2 (B). The 
site scores were transformed by multiplying the values with -1 to enable a more intuitive visualization of the data, as the 
PCA returned increasing values as increasingly negative (see biplot, Fig. 25). 

 

There is an evident inverse relationship between water concentrations and BCFs, as all 

Prinsdal samples showed below-mean BCF values for elements best correlated with the PC 1 

axis, at the same time as this pond exhibited the highest mean dissolved water concentrations 

for almost all these elements. Although this may seem counterintuitive, it is a common 

phenomenon for metal BCFs, giving a high value when the water concentrations are low, and 

a low value when the water concentrations are high (McGeer et al. 2003). This owes among 

other factors to the hydrophilic nature of most metals, which makes active uptake by ion 

channels necessary for them to cross the lipid-rich cells membranes (Wood 2012), such as Cd 

uptake through channels for Ca uptake in fish gills (Wicklund & Runn 1988). These channels 

are often saturable and the organisms have a high ability to regulate them by feedback 

mechanisms (Wood 2012). For instance, a wide range of aquatic organisms show high ability 

to regulate the essential metal Zn, keeping the internal levels fairly constant independent of 

the ambient concentrations (McGeer et al. 2003), resulting in very low BCFs at high water 

concentrations. Such mechanisms may explain the inverse relationship in the present results. 

Besides, it is an important assumption for the use of BCF that it reflects equilibrium 

conditions between concentrations in water and the organism, which is difficult to ascertain 

for conditions in the field (McGeer et al. 2003). It is possible that BCFs calculated here 

underestimates the real value because the conditions are not in equilibrium, especially at 

Prinsdal where the concentrations increased strongly in the last samples.  
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4.2.2 Biomarkers  

 

The concentrations of the biomarkers MT, EROD, GST and GSH in tadpoles in different 

samples are displayed in Fig. 27. For all ponds and all biomarkers there were statistically 

significant temporal variations in biomarker levels. Since the embryos and tadpoles were 

growing and developing almost continuously, some of the differences in biomarker levels 

may be due to different ability of the organisms to produce stress proteins and induce 

biomarkers at different developmental stages. Since it was difficult to find biomarker 

literature on R. temporaria direct comparison of biomarker concentrations will be done with 

studies of other frog species, preferably genus Rana, taking certain reservations that there 

might be species-specific differences in biomarker induction.   

All biomarkers were tested for correlation with tadpole tissue element concentrations, to 

identify any relationships between trace element accumulation and induction of biomarkers. 

This was done by using the PC 1 site scores derived from the PCA on tadpole tissue element 

concentrations as representative values for overall element accumulation. Henceforth, the 

phrase ‘overall tissue element concentrations’ refer to the PC 1 axis site scores of tissue 

concentrations. The PCA axis 1 accounted for 66 per cent of the variation in tadpole tissue 

concentrations. Hence the bulk of the variation is accounted for when using this value in 

further statistics, although it is of course a simplification. 
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Figure 27. Levels of metallothionein (MT) (nmol/g wet weight), 7-Ethoxyresorufin O-deethylase (EROD) (pmol/min/mg 
protein), glutathione S-transferase (GST) (nmol/min/mg protein) and reduced glutathione (GSH) (nmol/mg protein) in 
tadpoles sampled in May and June 2012. A box constitutes the middle 50 % of the sample values and the remaining 50 % 
are situated between the box and the whiskers. Circles represent outliers, while the black lines across the boxes show 
median values. Different letters show significant differences between the samplings within a pond (significance level of p 
= 0.05). The letters do not denote any difference between samples across sites. 
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Metallothionein was measured and tested for correlation with overall tissue element 

concentrations because it is a commonly used biomarker of metal exposure (van der Oost et 

al. 2003). The tadpoles from the different ponds exhibited very different temporal patterns of 

MT concentrations. Vassum tadpoles showed a decreasing trend in the beginning from 

relatively high MT levels at week 19 (median value 26 nmol/g) to about half of that 

concentration at week 21 (median value 11 nmol/g), while there was an increasing trend at the 

last samplings. In contrast, both Skullerud and Prinsdal showed an increasing trend at the 

beginning that was reduced (Skullerud) or levelled out (Prinsdal) at the later samplings. The 

range of the median values was relatively similar for all sites, being 7 – 31 nmol/g wet weight 

at Prinsdal, 4 – 28 nmol/g wet weight at Skullerud and 11 – 29 nmol/g wet weight at Vassum. 

Spearman correlation test did not reveal any significant correlation between overall tissue 

element concentrations and MT (rho = 0.33, p = 0.17). Correlation between MT and tissue 

concentrations of Cu, Zn, Cd and Pb was tested separately, as these metals in particular are 

known to induce MT (van der Oost et al. 2003). The Spearman test showed significant 

positive correlation between Pb and MT (rho = 0.57, p = 0.01). This may be a result of MT 

induction by Pb, and is in accordance with Campana et al. (2003) who measured increased 

hepatic MT levels in the toadfish Halobatrachus didactylus after exposure to Pb. However, 

correlation does not necessarily imply causality. No significant correlation was found for MT 

and Cu, Zn or Cd (see appendix 6 for rho- and p-values). This is in line with Othman et al. 

(2012) who reported no significant correlation between hepatic Cd and MT in rice frogs 

(Fejervarya limnocharis). On the other hand, Loumbourdis et al. (2007) reported strong 

positive correlation between MT and Cd in adult marsh frog (Rana ridibunda) exposed to Cr 

and Cd in a laboratory experiment, and Cooper and Fortin (2010) observed correlation 

between hepatic MT, Cu and Cd concentrations in a field study of American bullfrogs (Rana 

catesbeiana). Current results may suggest that the Cu, Zn and Cd concentrations in the ponds 

are too low to induce MT. The values for most of the samplings in the current thesis are 

higher than induced MT values reported by Papadimitriou and Loumbourdis (2003) for adult 

female R. ridibunda. They measured mean Cu induced MT levels of 5.7 – 8.6 nmol/g wet 

weight and mean reference values of 2.85 – 3.12 nmol/g wet weight. The relatively high MT 

levels in the present results strengthen the hypothesis that MT may be induced by Pb. 

The EROD (CYP1A) activity was measured because it is a commonly used biomarker of 

PAHs, which are common pollutants in highway runoff (Meland 2010). The analysis of 

EROD did not detect CYP1A activity to any great extent. Indeed, at most of the samplings 

from Skullerud and Prinsdal the EROD activity was not measurable (returned negative mean 

values, which in practice means zero or negligible concentration). In the box plots these 

values were replaced with the half of the lowest measured positive value. In the statistical 

tests the original data with negative values were used. The levels are in accordance with 

concentrations reported for northern green frog (Rana clamitans melanota) tadpoles by Jung 

et al. (2004) ranging from 0.2 to 0.5 pmol/min/mg protein. The researchers found no 

correlation between EROD activity and the planar halogenated hydrocarbons (PHHs) that was 

in focus for the controlled exposure study. Hence the reported concentrations may be regarded 

as the basal level.  It is difficult to establish whether the low concentrations in the current 

thesis are evidence of the tadpoles not being exposed to PAHs, or if it is due to the biomarker 
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being inadequate for indicating exposure. Amphibians show lower catalytic activities, and 

lower and slower induction of the enzymes of the mixed-function oxidase system (MFO) after 

exposure to xenobiotics, than other animal groups does (Ertl & Winston 1998). Hence 

CYP1A enzymes may not be sensitive biomarkers in amphibians (Huang et al. 1998; 

Venturino et al. 2003), and the lack of CYP1A activity may not be an evidence of absence of 

PAHs. In addition, it has been suggested that tadpoles have less developed CYP450 enzyme 

activity than adult amphibians (Jung et al. 2004). Certainly, analysis of water samples did not 

detect any PAHs in any of the ponds, and this may be the reason for the low EROD activity. 

However, it is still possible that the tadpoles, primarily those in the sedimentation ponds, are 

exposed to PAHs through ingestion of and contact with sediment. A previous study measured 

PAH dry weight concentrations of 3.05 mg/kg in the sediment in Vassum sedimentation pond, 

including several PAHs assumed to be human carcinogens (Meland 2012). The level 

corresponds to class III in the classification system for environmental quality developed by 

the Climate and Pollution Agency, characterized by risk of chronic effects by long term 

exposure (Meland 2012). Polycyclic aromatic hydrocarbons have also been measured in 

tunnel wash water ending up in Vassum sedimentation pond (Meland et al. 2010b). The 

tadpoles from Vassum seem to exhibit slightly higher levels of EROD than the others. This 

may indicate induction by PAH exposure, although this was not tested statistically. On the 

other hand, the highest median value at Vassum is only 1.1 pmol/min/mg protein, which is 

well below the concentrations measured in adult amphibians. Murphy et al. (2006) reported 

EROD concentrations in adult Rana clamitans in the range of 5 – 13 pmol/min/mg protein 

(females) and 13 – 21 pmol/min/mg protein (males) for animals sampled from agricultural 

and non-agricultural sites. The researchers found no correlation between EROD activity and 

the herbicide atrazine, which was the contaminant in focus. Rocha-e-Silva et al. (2004) 

measured EROD levels of 238 nmol/min/mg protein in cane toad (Bufo marinus) and 34 

nmol/min/mg protein in bullfrog, which is a 30,000-fold greater than the measurements in the 

current thesis. Test for correlation between EROD and overall tissue element concentrations 

was performed because of an assumed correlation between tissue element concentrations and 

PAHs, since sedimentation ponds often contains high concentrations of both trace elements 

and PAHs (Meland 2012). Polycyclic aromatic hydrocarbons are readily metabolized in living 

organisms, while trace elements are not. Hence, trace elements are easier to measure 

accurately in tissue. Consequently, correlation between EROD and overall tissue element 

concentration was tested as a substitute for correlation between EROD and tissue PAH 

concentrations. However, no statistically significant correlation between overall tissue 

element concentrations and EROD activity was found (r = 0.35, p = 0.14). 

Glutathione S-transferase was measured and tested for correlation with overall tissue element 

concentrations because GST is important in the defense against oxidative stress. At all three 

ponds the GST activities seemed to increase at the early samplings and decrease or level out 

at the later ones. The median activity ranges was 0.19 – 1.1 nmol/min/mg protein at Vassum, 

0.13 – 0.87 nmol/min/mg protein at Skullerud and 0.14 – 0.94 nmol/min/mg protein at 

Prinsdal. There was significant positive correlation between GST and overall tissue element 

concentrations (r = 0.71, p < 0.001). Positive correlation between GST and Pb (r = 0.81, p < 
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0.001) and between GST and Cd (r = 0.60, p = 0.0067) was also detected when testing these 

separately (Fig. 28).  

 

 

 

Figure 28. Correlation between glutathione S-transferase (GST) activity and overall tissue element concentrations, 
represented by first principal component site scores (PC 1 site scores) obtained by principal component analysis (PCA) on 
tissue element concentrations (A). Correlation between GST activity and tissue Cd concentrations (B) and between GST 
activity and tissue Pb concentrations (C). r = correlation coefficient, p = significance level. 

 

Hepatic GST levels have been measured in rice frogs in the range of 0.20 – 0.33 

µmol/min/mg protein at Cd contaminated sites and 0.15 – 0.16 µmol/min/mg protein at a 

reference site (Othman et al. 2012). This is roughly speaking a 1000-fold greater than the 

measurements in this thesis, and similar GST activity ranges was reported for marsh frog by 
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Kostaropoulos et al. (2005). The initial increase in GST activity may indicate GST catalysed 

conjugation of GSH with xenobiotics, but the low activities compared to other studies may 

indicate that there is no induction above basal level. However, the low values may be due to 

differences in life stages as the current thesis investigated tadpoles, while Othman et al. 

(2012) and Kostaropoulos et al. (2005) studied adult individuals. The strong correlation 

between GST and overall tissue element concentrations, and between GST and Cd and GST 

and Pb, may indicate GST being induced by trace element exposure. This is in accordance 

with Othman et al. 2012 who found strong significant correlation between hepatic GST and 

Cd in Cd exposed F. limnocharis, and Wright et al. (1998) who reported strong correlation 

between Pb and GST in rats. Based on such observations it has been suggested that GST 

might be a promising biomarker of exposure to different metals (Othman et al. 2012; Wright 

et al. 1998), although the literature is not unambiguous as significant negative correlation 

between hepatic GST and both Cd and Cr in R. ridibunda also have been reported 

(Kostaropoulos et al. 2005). Glutathione S-transferase is often regarded a biomarker of 

organic contaminants (Ahmad et al. 2006; van der Oost et al. 2003; Venturino et al. 2003). In 

the present thesis overall tissue element concentration may be correlated with concentrations 

of organic pollutants, as sedimentation ponds often contain high levels of both organic and 

inorganic contaminants (Meland 2010). For instance, a previous study of the sediment in 

Vassum sedimentation pond showed high concentrations of both metals and PAHs (Meland 

2012). Hence, correlation between GST and overall tissue element concentrations may 

indirectly represent a correlation with organic pollution, such as PAHs.  

Glutathione is a very important antioxidant and is often used as a biomarker of metal induced 

oxidative stress. The GSH concentrations in tadpoles from all three ponds are in the range of 

8.8 to 99 nmol/mg. At Vassum the GSH concentration starts at its maximum level and 

decreases steadily thereafter. At Prinsdal and Skullerud the GSH concentrations show an 

increasing trend at the early samplings and decreases after day 8 and 13 respectively. There 

was a slight negative correlation between GSH and overall tissue element concentrations, 

although not statistically significant (r = -0.35, p = 0.14). Papadimitriou and Loumbourdis 

(2002) performed a controlled exposure study on adult R. ridibunda and studied GSH 

induction following Cu exposure. They reported increased oxidative stress and hepatic GSH 

levels as a result of Cu exposure. Although GSH is commonly used as a biomarker for 

oxidative stress with elevated concentrations indicating metal exposure (Kuroshima 1995), 

decreasing levels may also imply exposure as it may indicate GSH depletion (Papadimitriou 

& Loumbourdis 2002). This may happen when the availability of reduced GSH decreases to 

due metal binding or oxidation during conjugation processes, while the regeneration is 

insufficient. This has been reported for metal exposed freshwater catfish (Ictalurus melas) 

(Elia et al. 2003), metal exposed Antarctic scallop (Adamussium colbecki) (Regoli et al. 

1998), European eel (Anguilla anguilla L.) (Ahmad et al. 2006) and marsh frog 

(Papadimitriou & Loumbourdis 2002). This mechanism may be at work in the tadpoles in the 

present thesis, but the lack of any statistically significant positive or negative correlation with 

overall tissue element concentrations makes it difficult to conclude. Current results may 

indicate that GSH is the limiting factor for GST activities. 
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Generally, the lack of a proper reference group makes it difficult to demonstrate whether the 

measured biomarker levels results from induction by xenobiotics above the basal level. It is 

also possible that the observed variations in biomarker levels to some extent were due to 

variations in developmental stage rather than exposure time. A controlled exposure study in a 

laboratory ensuring comparable developmental stages at all times would be necessary to 

differentiate between variations due to developmental stage and xenobiotic exposure 

respectively. This ought to be considered for any further research. 

 

4.3 Tunnel wash event – June 2012  

 

All tadpoles in Vassum sedimentation pond died after washing of the Nordby tunnel 14 – 16 

June 2012 (Fig. 29). Over 400 dead individuals were counted, and many of them were 

undergoing metamorphosis (Johansen & Thygesen 2012). Measured concentrations of 

selected water quality parameters by the inlet and the outlet of Vassum sedimentation pond 

during three hours of the washing event, are presented in Table 8. The measurements were 

conducted as part of an ecological risk evaluation for the Norwegian Public Roads 

Administration, and not as part of the present thesis. High concentrations of elements such as 

Na, Cl, Cu and Zn were measured, particularly in the inlet water.  

 

Table 8. Minimum, maximum and mean values of selected water quality parameters during washing of the Nordby 
tunnel 14 – 16 June 2012. Measurements were taken by the inlet and the outlet of Vassum sedimentation pond every 
half hour during three hours of the washing (i.e. n = 6). Modified after Johansen and Thygesen (2012).  

 Inlet water Outlet water 

 Fraction Minimum Maximum Mean (n=6) Minimum Maximum Mean (n=6) 

DOC (mg/L)  8 192 92 9 24 15 

pH  8.2 9.6 9.1A) 7.8 8.4 8.3A) 

Conductivity (ms/cm)  0.0088 7.5 5 3.1 3.3 3.2 

Temperature °C  9.7 15 13 13 15 14 

Cl (mg/L) Total 144 2370 1541 891 969 921 

Ca (mg/L)  Total 47 114 73 35 37 36 

Dissolved 40 59 49 39 42 40 

Mg (mg/L)  Total 6.7 58 30 6.2 6.5 6 

Dissolved 6 16 11 6 6 6 

Na (mg/L) Total 98 1360 899 543 628 597 

Dissolved 111 1440 976 559 614 583 

Cd (µg/L)  Total 0.056 2.7 1 0.051 0.056 0.054 

Dissolved 0.047 1.5 0.47 0.0064 0.037 0.018 

Cu (µg/L) Total 23 1010 584 6.9 25 12 

Dissolved 22 307 106 3.3 18 9 

Zn (µg/L) Total 460 20500 11415 66 625 246 

Dissolved 397 9200 4016 41 515 204 

A)
 For pH, the median value is given instead of the mean value, due to logarithmic scale. 
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The exact cause of the tadpoles’ death is not certain. The lethal effect of the tunnel wash 

water may be due to high levels of metals, road salt or detergents, or a combination of these or 

other factors (Johansen & Thygesen 2012). Although the incident was not directly related to 

the problems addressed in the present thesis, it was a noteworthy event. It demonstrated that 

sedimentation ponds, in particular those receiving tunnel wash water, may indeed represent 

ecological traps for amphibians, as pointed out by Snodgrass et al. (2008) and McCarthy and 

Lathrop (2011). 

 

 

Figure 29. Dead Rana temporaria tadpoles in Vassum sedimentation pond after washing of the Nordby tunnel 14 – 16 
June 2012. All tadpoles in the pond (several hundred) were dead, and many of them were undergoing metamorphosis at 
that point, as evident by the emerged forelegs on one of the tadpoles in the present picture. Photo: Susanne Lund 
Johansen. 
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5 Conclusions  

 

The water quality in  Skullerud and Vassum sedimentation ponds was classified as ‘poor’ or 

‘very poor’ at several samplings according to the Climate and Pollution Agency’s 

classification system due to high total concentrations of Cr, Cu and Zn. The pond at Prinsdal 

exhibited concentrations of Ni, Cu, Zn and Pb that justified classifying the water quality as 

‘poor’ at several samplings. Polycyclic aromatic hydrocarbons were not detected in any of the 

ponds. The concentrations of important metals of environmental concern such as Cr, Ni, Cu, 

Zn, Cd and Pb were slightly lower in Skullerud and Vassum than measurements in earlier 

studies of the ponds. Surprisingly, the highest concentrations of the majority of the 34 

measured elements were identified in Prinsdal. This was probably due to impact from an 

abandoned shooting range nearby. For practically all of the rest of the elements the highest 

concentrations were detected in Vassum, while more moderate concentrations of most 

elements were measured in Skullerud. 

The trace elements Al, Cr, Mn, Fe, Mo, La, Ce, Eu and Gd may be of particular 

ecotoxicological concern in the sedimentation ponds, as they increased strongly in tadpole 

tissue. In Prinsdal tadpoles particularly Al and Pb accumulated strongly. In all three ponds the 

frog embryos and tadpoles showed a time dependent accumulation of trace elements. The PC 

1 site scores obtained from PCA were used as representative values of the overall tissue trace 

element levels (referred to as ‘overall tissue element concentrations’ henceforth). The overall 

tissue element concentrations reached the highest levels in Vassum tadpoles, despite Prinsdal 

having the highest total and dissolved water concentrations of most elements. The water 

element concentrations could not explain the variation in tissue concentrations, as neither total 

nor dissolved element concentrations in water (represented by PCA axis 1 site scores) showed 

any statistically significant correlation with overall tissue element concentrations.  

The levels of the four biomarkers MT, EROD, GST and GSH showed significant temporal 

variation in embryos and tadpoles. Metallothionein was positively correlated with Pb. Hence, 

Pb tissue concentrations can possibly explain some of the MT variation, and may indicate that 

MT is induced by Pb in tadpoles in the present study. On the other hand, no significant 

correlation was found between MT and overall tissue element concentrations. Hence, the 

overall tissue element concentrations could probably not explain the variation in the MT 

levels. The GSH levels exhibited a decreasing trend in all ponds, which may indicate a 

depletion of GSH as a result of trace element induced oxidative stress. However, there was no 

significant correlation between GSH and overall tissue element concentrations. Hence, the 

overall tissue element concentrations could not explain variation in GSH levels. Strong 

correlation was found between GST and overall tissue element concentrations, and also 

between GST and Cd and GST and Pb when testing these separately. This may imply that the 

organisms experience metal induced oxidative stress, and tissue element concentrations may 

explain some of the variation in GST activity. The correlation between GST and trace element 

concentrations in tadpole tissue may suggest that GST is a useful biomarker of trace element 

exposure. The EROD activity was highest at Vassum where earlier studies have reported 

considerable concentrations of PAH. Correlation between EROD and overall tissue element 
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concentrations was tested as a substitute for correlation between EROD and tissue PAH 

concentrations, since trace elements and PAHs are often correlated in sedimentation ponds 

and trace elements are easier to measure in tissue. However, overall tissue element 

concentrations could not explain the variation in EROD, as there was no statistically 

significant correlation between these parameters.  

Altogether, there are indices in the results that Rana temporaria tadpoles inhabiting the two 

sedimentation ponds may be negatively affected by contaminants in highway runoff. The 

tadpoles at Prinsdal may be negatively affected by contaminants from the abandoned shooting 

range nearby. The lack of a reference group makes it difficult to conclude if any of the 

biomarkers are induced above basal levels. Further research in the form of controlled 

exposure studies in the laboratory, or field studies including a good reference group, is 

necessary to identify the basal level of biomarkers and to demonstrate any departures from the 

natural variation. Further investigations are also necessary to identify any links these 

endpoints and ecologically relevant endpoints such as reproduction and survival.  
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Appendix 1 Limit of detection (LD) and limit of quantification (LQ) in the 

ICP-MS data 

 

Appendix 1.1. Limit of detection (LD) and limit of quantification (LQ) for elements analysed by ICP-MS in water samples. 

Element Unit LD  LQ  

Na Mg/L 0.50 1.6 

Mg Mg/L 0.00040 0.0010 

Al µg/L 2.6 8.7 

Si µg/L 111 371 

P Mg/L 0.0020 0.0050 

S Mg/L 1.0 3.3 

K Mg/L 0.060 0.21 

Ca Mg/L 0.0030 0.010 

Sc µg/L 0.0060 0.021 

Cr µg/L 0.080 0.25 

Mn µg/L 0.011 0.037 

Fe µg/L 1.8 6.1 

Co µg/L 0.0030 0.0090 

Ni µg/L 0.17 0.56 

Cu µg/L 0.18 0.59 

Zn µg/L 0.20 0.65 

As µg/L 0.030 0.11 

Se µg/L 0.080 0.27 

Sr µg/L 0.23 0.78 

Mo µg/L 0.050 0.16 

Ag µg/L 0.0090 0.029 

Cd µg/L 0.0040 0.015 

Sn µg/L 0.26 0.86 

Sb µg/L 0.013 0.042 

Ba µg/L 8.0 26 

La µg/L 0.0010 0.0020 

Ce µg/L 0.0020 0.0050 

Eu µg/L 0.0020 0.0060 

Yb µg/L 0.0030 0.0080 

Gd µg/L 0.0010 0.0020 

Lu µg/L 0.0010 0.0020 

Pb µg/L 0.022 0.073 

Th µg/L 0.0060 0.020 

U µg/L 0.0030 0.011 

 

 

 

 

 



 

II 

 

Appendix 1.2. Limit of detection (LD) and limit of quantification (LQ) for elements analysed by ICP-MS in tadpole tissue. 

Element Unit LD  LQ 

Na g/kg 0.0030 0.0090 

Mg g/kg 0.00020 0.00060 

Al mg/kg 0.80 2.7 

Si mg/kg 3.0 11 

P g/kg 0.00040 0.0015 

S g/kg 0.0016 0.0055 

K g/kg 0.0012 0.0039 

Ca g/kg 0.0016 0.0055 

Sc mg/kg 0.00040 0.0013 

Cr mg/kg 0.0060 0.021 

Mn mg/kg 0.0040 0.012 

Fe mg/kg 0.12 0.39 

Co mg/kg 0.060 0.20 

Ni mg/kg 0.020 0.066 

Cu mg/kg 0.022 0.072 

Zn mg/kg 0.21 0.70 

As mg/kg 0.0014 0.0047 

Se mg/kg 0.040 0.14 

Sr mg/kg 0.010 0.035 

Mo mg/kg 0.0013 0.0044 

Ag mg/kg 0.0019 0.0062 

Cd mg/kg 0.0015 0.0051 

Sn mg/kg 0.080 0.27 

Sb mg/kg 0.0037 0.0123 

Ba mg/kg 0.0089 0.0295 

La mg/kg 0.00030 0.0012 

Ce mg/kg 0.00040 0.0015 

Eu mg/kg 0.00020 0.00080 

Yb mg/kg 0.00040 0.0014 

Gd mg/kg 0.00030 0.0011 

Lu mg/kg 0.00020 0.00080 

Pb mg/kg 0.0055 0.0183 

Th mg/kg 0.00040 0.0014 

U mg/kg 0.00040 0.0012 

 

 

 

 

 

 

 



 

III 

 

Appendix 1.3. Limit of quantification (LQ) for polycyclic aromatic hydrocarbons (PAH) analysed at ALS Laboratory Group 
Norway at Skøyen (Oslo). 

Element Unit LQ 

Naphthalene µg/l <0.100 

Acenaphthylene µg/l <0.010 

Acenaphthene  µg/l <0.010 

Fluorene µg/l <0.020 

Phenanthrene µg/l <0.030 

Anthracene  µg/l <0.020 

Fluoranthene µg/l <0.030 

Pyrene µg/l <0.060 

Benz(a)anthracene* µg/l <0.010 

Chrysene* µg/l <0.010 

Benzo(b)fluoranthene* µg/l <0.010 

Benzo(k)fluoranthene* µg/l <0.010 

Benzo(a)pyrene* µg/l <0.020 

Dibenz(a,h)anthracene* µg/l <0.010 

Benzo(ghi)perylene* µg/l <0.010 

Indeno(123cd)pyrene* µg/l <0.010 

Sum PAH-16 µg/l Not detected 

* Carcinogenic  
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Appendix 2 Accuracy of measurement of the certified reference material 

(CRM) 
 

Appendix 2.1. Certified values compared with measured values of constituent elements in the certified reference 
material 1643h used in ICP-MS analysis of water samples. 

Element  Unit 1643H (I) 1643H (II) 1643H (III) Mean difference (%) 

Na Measured value Mg/L 19 19 20  

Certified value Mg/L 20.74 20.74 20.74  

Difference Mg/L 1.7 1.7 0.74  

Difference % 8.4 8.4 3.6 6.8 

P Measured value Mg/L 2.5 2.5 2.5  

Certified value Mg/L 2.5 2.5 2.5  

Difference Mg/L 0.0065 0.014 0.025  

Difference % 0.26 0.57 1.0 0.61 

S Measured value Mg/L 2.4 2.4 2.4  

Certified value Mg/L 2.5 2.5 2.5  

Difference Mg/L 0.13 0.12 0.13  

Difference % 5.1 4.8 5.4 5.1 

Mg Measured value Mg/L 7.7 7.7 7.6  

Certified value Mg/L 8.037 8.037 8.037  

Difference Mg/L 0.34 0.34 0.44  

Difference % 4.2 4.2 5.4 4.6 

Al Measured value µg/L 140 140 140  

Certified value µg/L 141.8 141.8 141.8  

Difference µg/L 1.8 1.8 1.8  

Difference % 1.3 1.3 1.3 1.3 

K Measured value Mg/L 2.0 2.0 1.9  

Certified value Mg/L 2.034 2.034 2.034  

Difference Mg/L 0.034 0.034 0.13  

Difference % 1.7 1.7 6.6 3.3 

Ca Measured value Mg/L 31 31 28  

Certified value Mg/L 32.3 32.3 32.3  

Difference Mg/L 1.3 1.3 4.3  

Difference % 4.0 4.0 13.3 7.1 

Cr Measured value µg/L 21 21 21  

Certified value µg/L 20.4 20.4 20.4  

Difference µg/L 0.6 0.6 0.6  

Difference % 2.9 2.9 2.9 2.9 

Mn Measured value µg/L 38 38 38  

Certified value µg/L 38.97 38.97 38.97  

Difference µg/L 0.97 0.97 0.97  

Difference % 2.5 2.5 2.5 2.5 

(continued) 
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Appendix 2.1 continued 

Element  Unit 1643H (I) 1643H (II) 1643H (III) Mean difference (%) 

Fe Measured value µg/L 100 100 100  

Certified value µg/L 98.1 98.1 98.1  

Difference µg/L 1.9 1.9 1.9  

Difference % 1.9 1.9 1.9 1.9 

Co Measured value µg/L 26 26 26  

Certified value µg/L 27.06 27.06 27.06  

Difference µg/L 1.1 1.1 1.1  

Difference % 3.9 3.9 3.9 3.9 

Ni Measured value µg/L 61 60 62  

Certified value µg/L 62.41 62.41 62.41  

Difference µg/L 1.4 2.4 0.4  

Difference % 2.3 3.9 0.7 2.3 

Cu Measured value µg/L 22 22 21  

Certified value µg/L 22.76 22.76 22.76  

Difference µg/L 0.76 0.76 1.76  

Difference % 3.3 3.3 7.7 4.8 

Zn Measured value µg/L 77 77 76  

Certified value µg/L 78.5 78.5 78.5  

Difference µg/L 1.5 1.5 2.5  

Difference % 1.9 1.9 3.2 2.3 

As Measured value µg/L 60 61 60  

Certified value µg/L 60.45 60.45 60.45  

Difference µg/L 0.45 0.55 0.45  

Difference % 0.74 0.91 0.74 0.80 

Se Measured value µg/L 12 12 12  

Certified value µg/L 11.97 11.97 11.97  

Difference µg/L 0.030 0.030 0.030  

Difference % 0.25 0.25 0.25 0.25 

Sr Measured value µg/L 340 350 330  

Certified value µg/L 323.1 323.1 323.1  

Difference µg/L 17 27 7  

Difference % 5.2 8.3 2.1 5.2 

Mo Measured value µg/L 120 120 120  

Certified value µg/L 121.4 121.4 121.4  

Difference µg/L 1.4 1.4 1.4  

Difference % 1.2 1.2 1.2 1.2 

Ag Measured value µg/L 0.95 0.95 0.90  

Certified value µg/L 1.062 1.062 1.062  

Difference µg/L 0.11 0.11 0.16  

Difference % 11 11 15 12 

(continued) 
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Appendix 2.1 continued 

Element  Unit 1643H (I) 1643H (II) 1643H (III) Mean difference (%) 

Cd Measured value µg/L 6 6.1 6  

 Certified value µg/L 6.568 6.568 6.568  

 Difference µg/L 0.57 0.47 0.57  

 Difference % 8.6 7.1 8.6 8.1 

Sb Measured value µg/L 59 58 57  

Certified value µg/L 58.3 58.3 58.3  

Difference µg/L 0.70 0.30 1.3  

Difference % 1.2 0.51 2.2 1.3 

Ba Measured value µg/L 610 600 590  

Certified value µg/L 544.2 544.2 544.2  

Difference µg/L 66 56 46  

Difference % 12 10 8.4 10 

Pb Measured value µg/L 20 20 19  

Certified value µg/L 19.63 19.63 19.63  

Difference µg/L 0.37 0.37 0.63  

Difference % 1.9 1.9 3.2 2.3 

Th Measured value µg/L 0.88 0.87 0.88  

Certified value µg/L 1.0 1.0 1.0  

Difference µg/L 0.12 0.13 0.12  

Difference % 12 13 12 12 

U Measured value µg/L 0.90 0.90 0.87  

Certified value µg/L 1.0 1.0 1.0  

Difference µg/L 0.10 0.10 0.13  

Difference % 10 10 13 11 
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Appendix 2.2. Certified values compared with measured values of constituent elements in the certified reference 
materials (CRM) used in ICP-MS analysis of the tadpole tissue. The certified values expressed as mass fractions (%) are 
based on the dry weight of the CRM. 

Element Unit Egg powder 
8415 

Egg powder 
8415 

Egg powder 
8415 

Dorm-3 Dorm-3 1577b 
Bovine liver 

Mean 
difference 
(%) 

Na Certified 
value 

% 0.377 0.377 0.377 - - 0.242  

Measured 
value 

% 0.36 0.35 0.36 - - 0.22  

Difference % 4.5 7.2 4.5 - - 9.1 6.3 

P Certified 
value 

% 1.001 1.001 1.001 - - 1.1  

Measured 
value 

% 0.94 0.88 0.86 - - 1.0  

Difference % 6.1 12 14 - - 9.1 10 

S Certified 
value 

% 0.512 0.512 0.512 - - 0.785  

Measured 
value 

% 0.51 0.48 0.47 - - 0.71  

Difference % 0.39 6.3 8.2 - - 9.6 6.1 

K Certified 
value 

% 0.319 0.319 0.319 - - 0.994  

Measured 
value 

% 0.30 0.30 0.30 - - 0.94  

Difference % 6.0 6.0 6.0 - - 5.4 5.8 

Ca Certified 
value 

%* 0.248 0.248 0.248 - - 0.116  

Measured 
value 

%* 0.23 0.23 0.22 - - 0.12  

Difference % 7.3 7.3 11 - - 3.4 7.3 

Mg Certified 
value 

g/kg 0.305 0.305 0.305 - - 0.601  

Measured 
value 

g/kg 0.31 0.29 0.3   0.59  

Difference % 1.6 4.9 1.6 - - 1.8 2.5 

Al Certified 
value 

mg/kg 540 540 540 - - -  

Measured 
value 

 560 550 550   -  

Difference  3.7 1.9 1.9 - - - 2.5 

Cr Certified 
value 

mg/kg 0.37 0.37 0.37 1.89 1.89 -  

Measured 
value 

 0.37 0.33 0.70 2.0 1.8 -  

Difference  0.00 11 89 5.8 4.8 - 22 

Mn Certified 
value 

mg/kg 1.78 1.78 1.78 - - 11  

Measured 
value 

 1.7 1.6 1.7 - - 10  

Difference  4.5 10 4.5 - - 4.8 6.0 

Fe Certified 
value 

mg/kg 112 112 112 347 347 184  

Measured 
value 

 100 100 110 350 330 190  

Difference  11 11 1.8 0.90 4.9 3.3 5.4 

Co Certified 
value 

mg/kg 0.012 0.012 0.012 - - -  

Measured 
value 

 0.014 0.012 0.014 - - -  

Difference  14 0.00 13 - - - 8.9 

(continued) 
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Appendix 2.2 continued 

Element Unit Egg powder 
8415 

Egg powder 
8415 

Egg powder 
8415 

Dorm-3 Dorm-3 1577b 
Bovine liver 

Mean 
difference 
(%) 

Ni Certified 
value 

mg/kg - - - 1.28 1.28 -  

Measured 
value 

 - - - 1.4 1.3 -  

Difference  - - - 9.4 1.6 - 5.5 

Cu Certified 
value 

mg/kg 2.7 2.7 2.7 15.5 15.5 160  

Measured 
value 

 2.6 2.6 2.6 19 16 160  

Difference  3.7 3.7 3.7 23 3.2 0.00 6.2 

Zn Certified 
value 

mg/kg 68 68 68 51 51 127  

Measured 
value 

 64 64 63 50 51 130  

Difference  5.2 5.2 6.7 2.5 0.58 2.4 3.8 

As Certified 
value 

mg/kg - - - 6.88 6.88 -  

Measured 
value 

 - - - 7.1 6.5 -  

Difference  - - - 3.2 5.5 - 4.4 

Se Certified 
value 

mg/kg 1.4 1.4 1.4 - - -  

Measured 
value 

 1.4 1.3 1.3 - - -  

Difference  0.72 6.5 6.5 - - - 4.6 

Sr Certified 
value 

mg/kg 5.63 5.63 5.63 - - 0.14  

Measured 
value 

 5.5 5.3 5.3 - - 0.19  

Difference  2.3 5.9 5.9 - - 40 13 

Mo Certified 
value 

mg/kg 0.25 0.25 0.25 - - 3.5  

Measured 
value 

 0.22 0.22 0.20 - - 3.7  

Difference  11 11 19 - - 5.7 12 

Cd Certified 
value 

mg/kg - - - 0.29 0.29 0.50  

Measured 
value 

 - - - 0.30 0.29 0.48  

Difference  - - - 3.4 0.00 4.0 2.5 

Sn Certified 
value 

mg/kg - - - 0.066 0.066 -  

Measured 
value 

 - - - 0.076 -0.030 -  

Difference  - - - 15.2 145.5 - 80 

Pb Certified 
value 

mg/kg 0.061 0.061 0.061 - - 0.129  

Measured 
value 

 0.058 0.045 0.055 - - 0.12  

Difference  4.9 26 9.8 - - 7.0 12 

* The unit of the certified and measured values of Ca in CRM 1577b Bovine liver is mg/L. 
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Appendix 3 Bioconcentration factors (BCF) 
 

Appendix 3.1 Bioconcentration factor (BCF) at Prinsdal at the seven samplings, calculated by dividing mean element 
concentration in tadpole tissue on dissolved element concentration in water. 

Element Week 18 Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 

Na 0.18 0.20 0.56 0.68 0.80 0.68 0.71 

Mg 0.18 0.13 0.19 0.24 0.18 0.26 0.65 

Al 0.010 0.024 0.58 2.6 2.4 3.7 2.5 

P 247 162 90 46 17 19 3.7 

K 2.8 2.0 2.7 3.6 1.9 2.8 5.1 

Ca 0.013 0.016 0.037 0.053 0.042 0.074 0.13 

Sc 0.0030 0.0099 0.26 0.88 0.72 1.1 1.1 

Mn 0.017 0.091 0.082 0.27 0.040 0.11 0.085 

Fe 0.060 0.058 0.18 1.0 0.30 0.36 0.06 

Cu 0.28 0.061 0.13 0.32 0.44 0.54 0.46 

Zn 5.0 1.4 1.2 0.34 0.27 0.21 0.71 

As 0.086 0.076 0.10 0.23 0.16 0.21 0.067 

Sr 0.0044 0.0036 0.014 0.042 0.037 0.077 0.15 

Mo 0.23 0.091 0.37 0.32 0.76 0.65 0.28 

Cd 0.28 0.086 0.19 0.39 0.71 1.2 0.87 

Ba 0.024 0.011 0.074 0.24 0.30 0.67 1.0 

La 0.0064 0.0070 0.17 0.57 0.44 0.60 0.23 

Ce 0.0053 0.0070 0.16 0.55 0.39 0.52 0.21 

Gd 0.0024 0.0040 0.11 0.36 0.28 0.39 0.18 

Pb 0.015 0.033 0.45 1.7 0.81 1.4 0.32 

Th 0.0027 0.011 0.27 0.70 0.47 0.78 0.47 

U 0.0047 0.0066 0.13 0.48 0.47 0.48 0.33 
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Appendix 3.2 Bioconcentration factor (BCF) at Skullerud at the six samplings, calculated by dividing mean element 
concentration in tadpole tissue on dissolved element concentration in water. 

Element Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 

Na 0.0029 0.057 0.066 0.040 0.032 0.028 

Mg 0.0084 0.066 0.052 0.056 0.042 0.054 

Al 0.020 0.086 1.6 11 27 48 

P 74 169 19 50 37 39 

K 0.13 1.0 0.97 0.46 0.39 0.53 

Ca 0.0021 0.0063 0.010 0.014 0.014 0.020 

Sc 0.016 0.049 0.84 7.6 9.9 11 

Mn 0.035 0.15 0.35 1.9 1.8 1.8 

Fe 0.08 0.20 1.3 7.8 7.8 9.4 

Cu 0.10 0.18 0.30 1.3 1.6 0.98 

Zn 2.6 9.1 2.0 3.2 3.0 2.6 

As 0.65 0.67 0.20 0.37 0.37 0.42 

Sr 0.0016 0.0038 0.0069 0.014 0.012 0.017 

Mo 0.0035 0.036 0.026 0.060 0.057 0.12 

Cd 0.078 0.17 0.26 4.9 2.8 4.8 

Ba 0.0057 0.066 0.10 0.35 0.29 0.45 

La 0.012 0.033 0.56 5.9 11 17 

Ce 0.015 0.049 0.88 8.2 18 28 

Gd 0.011 0.024 0.38 4.5 7.1 11 

Pb 0.019 0.096 0.84 5.5 6.1 16 

Th 0.0097 0.049 0.83 8.0 28 18 

U 0.0015 0.0081 0.083 0.17 0.28 0.69 
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Appendix 3.3 Bioconcentration factor (BCF) at Vassum at the six samplings, calculated by dividing mean element 
concentration in tadpole tissue on dissolved element concentration in water. 

Element Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 

Na 0.0037 0.0037 0.0047 0.0036 0.0037 0.0030 

Mg 0.036 0.064 0.083 0.11 0.10 0.11 

Al 0.35 11 33 33 24 40 

P 177 51 42 19 21 25 

K 0.33 0.16 0.15 0.13 0.19 0.20 

Ca 0.0055 0.010 0.015 0.025 0.035 0.052 

Sc 0.28 6.7 13 14 12 11 

Mn 0.057 2.5 1.9 0.51 0.70 0.48 

Fe 0.44 7.6 9.6 4.9 3.4 3.6 

Cu 0.20 0.43 0.98 4.6 4.8 5.3 

Zn 1.3 0.49 1.5 7.4 8.2 7.9 

As 0.18 0.32 0.49 0.30 0.35 0.34 

Sr 0.0021 0.0093 0.014 0.018 0.018 0.023 

Mo 0.0086 0.039 0.067 0.10 0.10 0.087 

Cd 0.24 0.87 2.7 4.6 10 9.0 

Ba 0.017 0.10 0.14 0.14 0.14 0.13 

La 0.057 14 32 21 15 16 

Ce 0.053 15 35 21 15 17 

Gd 0.070 8.9 21 12 9.0 9.7 

Pb 0.11 3.2 10 5.4 3.7 4.2 

Th 0.084 14 38 40 23 27 

U 0.0024 0.077 0.12 0.17 0.15 0.12 
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Appendix 4 Summaries of principal component analyses (PCA)  
 

Appendix 4.1 Eigenvalues and the importance of components in principal component analysis (PCA) performed on total 
element concentrations in water. 

 Eigenvalue Proportion explained Cumulative proportion 

PC1 15.8764 0.5292 0.5292 

PC2 8.3046 0.2768 0.806 

PC3 2.35154 0.07838 0.88442 

PC4 1.1431 0.0381 0.9225 

 

Appendix 4.2 Eigenvalues and the importance of components in principal component analysis (PCA) performed on 
dissolved element concentrations in water. 

 Eigenvalue Proportion explained  Cumulative proportion 

PC1 17.4621 0.5821 0.5821 

PC2 6.1577 0.2053 0.7873 

PC3 2.19051 0.07302 0.86034 

PC4 1.28963 0.04299 0.90333 

 

Appendix 4.3 Eigenvalues and the importance of components in principal component analysis (PCA) performed on 
element concentrations in tadpole tissue. 

 Eigenvalue Proportion explained Cumulative proportion 

PC1 16.4601 0.6584 0.6584 

PC2 3.8052 0.1522 0.8106 

PC3 1.878 0.07512 0.88573 

PC4 0.83453 0.03338 0.91911 

 

Appendix 4.4 Eigenvalues and the importance of components in principal component analysis (PCA) performed on 
bioconcentration factors (BCFs). 

 Eigenvalue Proportion explained Cumulative proportion 

PC1 10.5547 0.4798 0.4798 

PC2 5.4296 0.2468 0.7266 

PC3 2.18439 0.09929 0.82585 

PC4 1.01218 0.04601 0.87186 
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Appendix 5 Classification system for environmental quality developed by 

the Climate and Pollution Agency 

 

The trace element concentrations defining the class limits of the classification system for environmental quality 
developed by the Climate and Pollution Agency. All values are upper concentration limits, except class V where the given 
concentrations denotes the lower limit. Values are given in µg/L. Modified after Climate and Pollution Agency (2012). 

Metal Class I Background Class II Good Class III Moderate Class IV Poor Class V Very poor 

Cadmium  

(hard water) 

0,03 0,19 1,5 15 >15 

Cadmium  

(soft water) 

0,03 0,08 0,45 4,5 >4,5 

Nickel 0,5 1,7 34 67 >67 

Mercury 0,001 0,05 0,07 0,7 >0,7 

Lead 0,05 1,3 14 57 >57 

Zinc 1,5 11 11 60 >60 

Copper 0,3 7,8 7,8 78 >78 

Arsenic 0,15 4,8 8,5 85 >85 

Chromium 0,2 3,4 3,4 360 >360 

 

 

Appendix 6 Results of the correlation tests 

 

The p-values and Pearson’s r/Spearman’s rho obtained from the correlation tests. ‘Tadpole element concentration’ 
refers to the site scores of the principal component analysis axis 1 (PCA axis 1) obtained by PCA on tadpole tissue trace 
element concentrations. Results in bold are statistically significant at a 95 % confidence level. 

Data P-value Degree of correlation 

Tadpole element concentration and log(TMW
1)

+2) 0.55 Pearson’s r = -0.15 
Tadpole element concentration and log(DMW

2)
+1) 0.11 Pearson’s r = -0.38 

Tadpole element concentration and MT
3)

 0.17 Spearman’s rho = 0.33 
Tadpole Cu and MT 0.67 Spearman’s rho = 0.10 
Tadpole Zn and MT 0.17 Spearman’s rho = -0.32 
Tadpole Cd and MT 0.44 Spearman’s rho = 0.19 
Tadpole Pb and MT 0.01 Spearman’s rho = 0.57 
Tadpole element concentration and log(EROD

4)
+2) 0.14 Pearson’s r= 0.35 

Tadpole element concentration and GST
5)

 0.00061 Pearson’s r = 0.71 
Tadpole Cd and GST 0.0067 Pearson’s r = 0.60 
Tadpole sqrt(Pb) and GST 0.000032 Pearson’s r = 0.81 
Tadpole element concentration and log(GSH

6)
)  0.14 Pearson’s r = -0.35 

1)
 TMW = total element concentration in water. 

2)
 DMW = dissolved element concentration in water  

3)
 MT = metallothionein 

4)
 EROD = 7-Ethoxyresorufin O-deethylase 

5)
 GST= glutathione-S-transferase activity 

6)
 GSH = reduced glutathione. 

 




