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Abstract 
 

Grazed grasslands have been identified as an important source of anthropogenic 

nitrous oxide (N2O) emissions. The loss of soil N as N2O is a critical factor for managing 

sustainable agroecosystems, not only with respect to the contribution of N2O to global 

warming by radiative forcing, but also for its effect on stratospheric ozone depletion. An 

experiment was set up on the experimental farm Østervoll, SE Norway,  to investigate 

the effect of clover density in multi species swards (MSS) on N2O emissions from urine 

patches. The species used in the MMS were ryegrass, tall fescue, red clover and white 

clover. Clover densities ranged from 0-100% in mixed stands with grass yielding all 

together nine different treatments. We used artificial urine (50 g N m-2) to simulate urine 

deposition and measured N2O flux using static chambers. Gas samples were analyzed 

by gas chromatography and soil samples were analyzed for NH4
+ and NO3

-. Harvest 

took place on the 13th of September and the plant samples were analyzed for N yield 

and clover percentage. The data obtained were analyzed using one way ANOVA. The 

results showed no significant differences in cumulative N2O emission in the period from 

urea application to ley harvest between grass treatments and grass dominated 

mixtures, however high emissions were associated with clover monocultures. The high 

standard error within replicates of the same treatments suggested an effect of 

topography, resulting in lower emissions in plots situated on a slope, presumably 

because of nitrogen leaching. When scaled for N-yield, cumulative N2O emissions 

tended to be higher for treatments with high clover percentage. In conclusion, clover 

percentage and species distribution had little effect on urine-associated N2O emissions. 

This warrants that there might be tradeoff between increasing N uptake by companion 

grass and N yield-scaled N2O emissions in grazed multispecies pastures. 

 

Key words: Clover density, Nitrous oxide, grasslands, urine patches 
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1. Introduction 
1.1 Nitrous oxide: greenhouse gas emission and N cycle 

 

 “ Most of the global average warming over the past 50 years is very likely due to 

anthropogenic greenhouse gas (GHG) increases and it is likely that there is a 

discernible human induced warming averaged over each continent (except 

Antarctica)” (Intergovernmental Panel for Climate Change, IPCC AR4  synthesis 

report, 2007)  

Climate change poses a serious threat to all forms of life, starting from loss of 

biodiversity and natural habitats of a wide range of species, to undermining food 

production, and increasing crop failures. The increase in the concentration of 

greenhouse gases in the atmosphere enhances the natural radiative forcing that affects 

the earth surface temperature. The concentrations of the greenhouse gases carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have increased strongly over 

those recorded throughout the last 650,000 years (IPCC WGI, 2007). CO2 has 

increased due to fossil fuel use and land use change, the increase in CH4 is attributed 

to fossil fuel use, agricultural activities (ruminants) and possibly permafrost melting, 

while the increase in N2O concentration is primarily attributed to the ever rising use of 

reactive nitrogen (N) by agriculture (IPCC, 2007a). However, the magnitude by which 

anthropogenic GHG emissions contribute to increasing the earth surface temperature is 

still uncertain (Fang et al., 2011). The concentration of nitrous oxide in the atmosphere 

has increased globally from its pre-industrial value of 270 ppb to 319 ppb in 2005 

(IPCC, 2007a). N2O has a global warming potential of 298 times as much as that of 

carbon dioxide (ibid.) The atmospheric N2O abundance of 314 ppb in 1998 results in an 

additional radiative forcing (RF) of +0.15 ± 0.02 W m–2. The primary driver for the 

industrial era increase of N2O was concluded to be enhanced microbial production in 

expanding and fertilized agricultural lands (IPCC, 2007a). 
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Nitrous oxide has received particular attention in agro-ecological research, since N2O 

emissions from agricultural soils account for 70% of atmospheric N2O (Mosier, Kroeze 

et al. 1998). In agroecosystems, anthropogenic emissions of N2O result from a 

disruption of the N cycle due to the excessive use of artificial N fertilizers. Thus, they are 

a form of loss of reactive nitrogen from soil. Early studies showed that N2O contributes 

to the photochemical destruction of ozone once it reaches the stratosphere (Crutzen, 

1981) with an ozone depleting potential (ODP) comparable to that of 

Chlorofluorocarbons (CFCs), estimated to be one sixtieth of the ODP of CFC’s 

(Ravishankara, et al. 2009). 

 

Most anthropogenic N2O emissions are caused by microbial nitrogen transformations in 

soil and manure. Direct sources of N2O emission include artificial fertilizers, animal 

excreta, and cultivation of organic soils and mineralization of N-rich crop residues 

(Smith, et al. 2000). Indirect emissions occur from leached nitrate (NO3
-), short-range 

transported and deposited NH3 or from nitrogen oxides (NOx) elsewhere (Mosier 2001). 

An estimated 5% of N2O in the atmosphere originates from NH3 oxidation (Novak and 

Fiorelli 2010) whereas the remainder of the anthropogenic N2O loading is considered to 

be from microbial denitrification.  

 

Norway was one of the nations that ratified the Kyoto Protocol, devoting itself to 

produce a national inventory for N2O emissions from agricultural land use. Based on 

Tier 1 methodology (IPCC , 2007a), which relates estimated N2O emissions linearly to 

fertilizer sales, N2O accounted for 7.5% of Norway’s aggregate GHG emissions in 2007 

(statistics Norway, 2011), and was predominately caused by agriculture and 

manufacturing commercial fertilizer.  The annual sales of N fertilizer in Norway have 

increased steadily until 1980 and remained above 10,000 tons since then (Fig. 1). Only 

a slight decline in the sales of N Fertilizer was recorded in 1998 when farm holdings that 

receive production grants were obliged to implement fertilization plans. Estimated N2O 

emissions in Norway in the period 1990 to 2010 are shown in Figure 2 together with 

other GHGs, the sum of which was slightly higher than the assigned amount under 

Kyoto protocol in 2010.  
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Figure 1: Sales of nitrogen and phosphorus fertilizers in Norway 1946-2007 (source: Statistics Norway, ssb.no, 

2011) 

 

 
Figure 2: Estimates of greenhouse gas emissions in the period of  1990-2010 and Norway's assigned amount 

2008-2012 by the Kyoto protocol (shaded). (source: Statistics Norway, ssb.no, 2011) 
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An emission factor as defined by IPCC is a ”… rate of emission per unit of activity, 

output or input” (IPCC 2007b). For N2O emissions from soils, EFs based on N input 

have been reported to vary greatly both spatially and temporally. This is caused by 

different parameters that influence the microbial processes that lead to N2O production 

(Flechard et al., 2007). The default EF recommended by the IPCC is 1.25% of N applied 

as artificial and organic fertilizers and 2% of the N from the excreta of grazing animals 

(IPCC, 2001) which was later changed to 1% (IPCC 2006).  

 

 

1.1.1 Microbial processes involved in the production and reduction of nitrous 

oxide (N2O) 

 

The production of N2O mainly results from two processes mediated by bacterial 

matabolism: 1) aerobic nitrification by autotrophic ammonia-oxidizing bacteria (AOB; 

genus Nitrosomonas) (Kowalchuk and Stephen 2001) or archea (AOA, Crenarcheota) 

(Leininger, Urich et al. 2006) where ammonium (NH4
+) is oxidized into nitrite (NO2

-) and 

from the oxidation of nitrite (NO2
-)  to NO3

- by nitrite oxidizers (genera Nitrobacter and 

Nitrospira)(Fig 3A); and 2) anaerobic denitrification by heterotrophic bacteria, where 

NO3
- acts as an electron acceptor and is reduced successively to  NO2

-, nitric oxide 

(NO),  N2O and N2 in the absence of oxygen (Skiba and Smith 2000),  (Dalal, et al. 

2003) (Fig. 3B). Wrage, et al. (2001) described a third pathway for the production of 

N2O, so called “nitrifier denitrification” by which autotrophic nitrifiers reduce toxic NO2
- 

and NO to N2O and N2 under suboxic conditions (Fig. 3A).  

 

The NO3
- ion formed by nitrification can be easily lost by leaching or be subject to 

denitrification in the root zone (Giles 2005; Philippot, et al. 2009). Complete 

denitrification in soil closes the N cycle as soil nitrogen is returned to the atmosphere as 
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N2. This process results in the depletion of nutrient N from soil but also mediates the 

removal of NO3
- from waters and sediments (Philippot et al., 2009).  

 

 

 

 

 

 

NH4 
+  NH2OH NO2 

‐ NO3 
‐ 

NO, N2O, N2 

NH3
 

B denitrification 

A nitrification 

2 NO3 
‐  2 NO  N2O  N2 2 NO2 

‐ 

[HNO] 

NO, N2O N2O, N2 

 

Figure 3 Formation of gaseous N species (NO, N2O, N2) in the course of nitrification (A) and denitrification 

(B). Adapted from Simek and Cooper (2006). NH4
+, ammonium; NH3, ammonia; NH2OH, hydroxylamine; HNO 

nitroxyl; NO2
-, nitrite; NO, nitric oxide, N2O, nitrous oxide 

 

1.1.2 Factors controlling N2O emissions. 

N2O emissions in cultivated soils are controlled by a multitude of complex factors and 

their interactions. Both nitrification and denitrification are regulated by temperature, pH, 

availability and quality of C sources, and by soil moisture which influences the oxygen 

availability (Oenema, Velthof et al. 1997). The biogenic formation of N2O is also 

dependent on the form of the available mineral N which contributes to determining 

which process would be more dominant  (Skiba and Smith 2000). Both nitrification and 

denitrification are influenced by soil temperature; water-filled pore space (WFPS), the 

form of available mineral nitrogen (NH4
+ or NO3

-), soil pH, and the alternation of dry and 

wet seasons.  A consistent relationship with any of these factors alone could not be 

established with the rate of N2O emission flux, but the interplay of these factors was 

found to have a positive relationship with N2O emissions (Abdalla, Jones et al. 2010). 

 

9 
 



 
 

Denitrification requires availability of NO3
-, whether it is applied directly as a fertilizer or 

produced by nitrification from NH4
+ (Dalal, et al. 2003). However the availability of N 

alone does not account for N2O emissions (Rochette, et al. 2004). The water regime 

within the soil plays a crucial role for the release of reactive N as N2O. When the water 

filled pore space (WFPS) reaches 60-70%, anaerobic conditions are created in zones of 

low O2 diffusivity such as in soil aggregate cores, favoring denitrification. Above 80-90% 

WFPS, transport of N2O out of the soil becomes limiting and NO3
- is more completely 

reduced to N2.  Soil pH below 3.5 reduces denitrification (Dalal et al., 2003). Land use, 

crop type, soil temperature and oxygen pressure also influence the magnitude of N2O 

emissions  (Granli and Bockman 1994). Climate and soil conditions have more influence 

on N2O emission than N fertilization (Jungkunst, et al. 2006). 

Given the complex regulation of N2O emissions, emission factors for N2O are expected 

to vary greatly with fertilizer regime (fertilizer type, quantity and timing), type of crops 

and management practices (tillage, grazing), all of which result in spatial variability on a 

regional level. Seasonal and annual weather fluctuations on the other hand result in 

temporal variability (Kuikman et al., 2006). The uncertainty generated with respect to 

emission factors of N2O is thus attributed to the interplay of agronomic regime and 

variation in climatic conditions from one season to another, and from one year to 

another (Skiba and Smith, 2000). Given this variability and the resulting uncertainty 

about N2O emissions on regional or national scales, the simple Tier 1 emission factor 

based on N application rate should be disintegrated and replaced by site specific 

models (Tier 2 and 3, IPCC 2007) that include the different factors that influence N2O 

emission (Skiba and Smith, Jungkunst et al., 2006). 

 

1.1.3 Nitrous oxide consumption 

The main sink for N2O is stratospheric destruction by reaction with excited oxygen 

atoms (Crutzen 1981, Dalal et al., 2003). Unlike carbon, which can be sequestered by 

soils, little is known about possible N2O sinks in soil-plant systems. Ecosystems 

influence the lifetime of N2O either as sources or as sinks depending on a variety of 

climatic conditions and soil properties (Field, Lobell et al. 2007). High WFPS values 
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(>80 %) can result in reduction of N2O to N2 by the denitrification enzyme N2O 

reductase (N2OR) (Dalal et al. 2003; Chapuis-Lardy et al. 2007). Similar to N2O 

production, N2O consumption by biological reduction in soils depends on a wide range 

of factors interacting with each other. Mosier et al. (1998) suggested that soil uptake of 

atmospheric N2O is not significant enough to be included in the N2O budget of a given 

agricultural system. However, Chapuis Lardy et al. (2007) countered this argument by 

suggesting that negative N2O flux, i.e. net N2O uptake from the atmosphere should not 

be neglected. 

 

1.2 Grasslands and N2O emission 

Grasslands in Norway (both temporary and permanent) represent 64% of the overall 

agricultural area and 2.15% of the overall land area (Tab. 1). Grazing pastures have 

been recognized as important sources for N2O emissions (de Klein, et al. 2003) 

Table 1 : Pasture area in relation to agricultural land, and the overall land area in Norway (source: FAOSTAT 

2009) 

item 2009 

Country area 32378.00 1000 Ha 

Land area 30547.00 1000 Ha 

Agricultural area 1014.38 1000 Ha 

Temporary meadows and pastures 482.90 1000 Ha 

Permanent meadows and pastures 174.80 1000 Ha 

 

 

In order to devise mitigation strategies for N2O emission in agricultural ecosystem, it is 

important to consider the management regime and its specific C and N cycling on a 

farm level (Ledgard, et al. 2009). Grasslands, provide a number of environmental 

services such as supporting biodiversity, animal welfare, and reducing NO3-N leaching, 

11 
 



 
 

while increasing protein self-sufficiency within the farm system (Peyraud et al., 2010). 

Grasslands have been also reported to have the potential to sequester carbon even 

more than trees can (Pearson and Ison, 1997). In addition, well managed grassland 

systems can provide a number of economic benefits such as competitiveness, high 

product quality and efficient energy use, as well as social benefits such as overall 

wellbeing of farm workers. Grassland systems define the landscape in which they exist 

(Hopkins and Wilkins 2006). 

Managed Grasslands cover 3 billion hectares and have been implicated as “a key 

contributor to N2O emissions” (Lee et al. 1997; (Klumpp, Bloor et al. 2011). According to 

the IPCC Guidelines (1996), grazed pastures emit 1600 Gg N2O-N per year, which 

amounts to 28% of the global anthropogenic N2O load (Denmead, Leuning et al. 2000). 

GHG fluxes in grassland-based agricultural systems are dependent on pasture 

management practices (Soussana,et al. 2004). Grasslands with no N fixing legumes are 

dependent on the input of external N fertilizer to improve productivity. In this case the 

applied N may exceed the plant needs, resulting in N losses through NO3 leaching or 

volatilization of NH3, NO, and N2O (Flechard, et al. 2007; Soussana, et al. 2007).  

 

Grazing systems on legume/grass pastures can be a good example for efficient N 

cycling, where N is fixed by legumes, taken up by grass, consumed by grazing animals, 

and returned to the soil through animal excreta, and through crop residues of legumes 

(Ledgard, Sprosen et al. 2001). Biological nitrogen fixation (BNF) in grass-clover swards 

can be equivalent to 150-250 kg N ha-1 a-1, thus reducing the need for applying external 

fertilizer, and saving the energy required to manufacture artificial N fertilizers (Peyraud 

and Delaby, 2006). However, the presence of legumes in grasslands has been reported 

to contribute to the increase in anthropogenic N2O emissions through enriching the soil 

with fixed N, or through the mineralization of N-rich residues or root exudates (Denmead 

et al., 2000). High N2O losses that have been observed from soils under legume 

pastures were attributed to biological nitrogen fixation (Bouwman 1996). Niklaus et al. 

(2006) argued that N2O emissions increase in the presence of legumes. This could be 

mediated by two mechanisms: 1) supplying the soil microbial community with N-rich 

crop residues and exudates, and 2) supporting rhizobia denitrification (Ohara and 
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Daniel 1985). Some of the symbiotic bacterial strains capable to fix N2 (genus Rhizobia) 

have been reported to be denitrifies reducing excess NO3
- to N2O (Bedmar, et al. 2005). 

However the contribution of rhizobia to total denitrification compared to other soil 

microbes was considered negligible in other studies (Garcia-Plazaola, Becerril et al. 

1993). The main source of N2O emissions associated with legumes appears to be the N 

released from root exudates and the decomposition of crop residues after harvest, 

rather than N fixation itself (Rochette and Janzen 2005). A recent study concluded that 

N fertilization has a bigger impact on N2O emissions compared to N fixing (Zhong, 

Lemke et al. 2009) 

 

Legume/grass pastures use N more efficiently than fertilized grass (Boller and 

Nosberger 1987). More recent studies showed that clover-grass mixtures resulted in a 

smaller N2O flux than N fertilized grass, which has been the basis for the argument that 

legume-grass pastures can be used as a mitigation strategy for N2O emissions (Carter 

and Ambus 2006).  

In grazing pastures animal excreta are a major contributor to increased N2O flux from 

soil. Urine patches result in hot spots for N2O release immediately after urine is 

introduced into the soil (Flessa, Dorsch et al. 1996). Urine patches from grazing animals 

are highly localized N applications (Van Groeningen et al., 2005) that cause an 

immediate but transient increase in N2O flux. However, the default N2O emission factor 

set by IPCC (1997) for animal urine in pastures (2%) was considered too high and was 

corrected to 1% (Bouwman, et al. 2002; Van Groeningen et al. 2005).  According to 

Oenema et al. (1997), 70 % of N in animal urine is in the form of urea. Urea is quickly 

hydrolyzed to NH4
+ in soils, which is then subject to nitrification, and eventually 

denitrification (Bolan,et al. 2004; Luo, et al. 2008). Urine deposition results in immediate 

high N2O flux where nitrification is the most important process triggered by the 

enhanced availability of NH4
+. During nitrification, the production of NO3

- inhibits the 

activity of bacteria that convert NO2
- to NO3

-, resulting in a temporary accumulation of 

NO that is further oxidized into N2O (Oenema et al., 1997). The effect of animal urine on 

increased N2O flux from soil is enhanced by soil compaction from animal treading and 

13 
 



 
 

O2 depletion by easily degradable carbon from animal dung (van Groeningen et al., 

2005). 

 

1.3 Multisward project and the main hypothesis  

The present study was conducted in the framework of the Multisward Project, an EU 

funded fp7 project under the theme of knowledge based bioeconomy, KBBE. The 

overall aim of the project is to “ … assess the performance of multi-species swards 

(MSS) in terms of plant productivity and animal nutrition over a range of environments 

and determine the most appropriate mixtures according to the soil and climatic 

conditions” (Marchoux 2010).  

The project embarks from recent findings supporting the assumption that species 

richness results in higher and more even yields (Kirwan,et al. 2007; Nyfeler, et al. 

2009). Hence, legume-grass pastures are expected to result in more evenly distributed 

seasonal production curves on the longer term given the increased yields that result 

from legume grass interactions.  According to the Multisward project description, “… the 

true functional benefit of increasing plant diversity may only be appreciated when 

multiple ecosystem processes are considered simultaneously“. Thus, the present study 

focuses on the role of clover density within multispecies swards for N2O emissions from 

urine patches. This includes studying the effect of clover on soil N and N yield in 

companion grass. 

 

Previous work by Klumpp,et al. (2011) showed no difference in the effect of clover 

density on N2O emissions. In the present study, artificial urine was applied to simulate 

the condition of grazed pasture, using different proportions of clover ranging between 

0% and 100%. The experiments were conducted at UMB and involve species 

combinations of Phleum pratense, Lolium perenne or Festuca  arundinacea, Trifolium 

repens and Trifolium pretense (Tab. 2). The expected functional interaction studied in 

my experiment is the effect of clover species and density on plant soil N uptake (since 
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N2 fixation will be ceased as a result of N deposition in urine) in competition with soil 

microbial N turnover leading to N2O emissions.  
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2. Materials and Methods 
2.1 Setting up the experiment 

2.1.1 Site description  

 

The N2O measurements reported here were conducted in a fully factorial plot 

experiment established on the experimental farm “Østrevoll” of the Norwegian 

University of Life Sciences in 2010. The experimental field is located at 59° 39’ 54 21 "N 

and 10° 44' 21’’E, 88 meters above sea level (Follokart.no). The field is lying on a slope 

with 3 meters hight difference. The soil is as naturally poorly drained silty clay loam 

(Bakken et al, 2006).  

 

Gras-clover mixtures were sown on June 23rd, 2010 using barley as a cover crop, as it 

is usual in Norway. Two grass species and two clover species were sown in different 

mixtures, ranging from 0% to 100% clover. Each of the four species was sown in pure 

stands Lp_m, Fa_m, Tr_m and Tp_m (where “m” refers to monoculture, Tab. 3), and in 

mixtures Lp_d, Fa_d, Tr_d and Tp_d as the dominant species (67%) whereas the 

remaining three species were sown at 11%, (where “d” refers to dominant, Tab. 3). In 

the centroid treatment, each species was sown at 25%.  Figure 3 shows the northern 

part of the field in August. There were two cutting regimes: 3 harvests per year as 

common in this region and simulated grazing (5 harvests/year). Plots were sown at two 

seeding densities 10 kg ha-1 (plots 1-9) and (20 kg ha-1 plots 10-18). 
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Figure 4 Plots in the northern part of the experimental field in August 2011. (photo by Marina Blekken) 

 

Table 2: Names of sown species and the cultivars used for each. 

Scientific name English name Cultivar 

Lollium perenne Ryegrass Fagerlin 

Festuca arundinacea Tall fescue Kora 

Trifolium repens White clover Milkanova 

Trifolium pratense Red clover Lea 
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Table 3: Distribution of sown species per treatment (% clover) 

Working name Lp Fa Tr Tp Treatment 

Lp_m 100 0 0 0 pure ryegrass 

Fa_m 0 100 0 0 pure fescue 

Tr_m 0 0 100 0 pure white clover 

Tp_m 0 0 0 100 pure red clover 

CC 25 25 25 25 centroid   

Lp_d 67 11 11 11 dominant rye grass 

Fa_d 11 67 11 11 dominant fescue 

Tr_d 11 11 67 11 dominant white clover

Tp_d 11 11 11 67 dominant red clover 

 

N2O flux measurements were set up on selected plots for simulated grazing only (Tab. 

4, Fig. 5). The experiment preparations started on the 12th of August 2011, after the 

fourth harvest (3rd of August.) The experiment was started by visual assessment of the 

sward composition. Then, areas of about 70*140 cm were demarcated in 2-3 plots per 

treatment. A part of each of the selected plots was used for setting one frame for the 

static flux chambers (see below) and the rest was used for soil sampling (Fig. 5). A total 

of 30 frames were distributed, three frames per treatment, apart from the centroid which 

received 6 frames. 
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Table 4: Different treatments and the distribution of frames on field plots. N indicates plots on the northern part of the field, 
while SW indicates the southwestern part of the field. 

 

Working name Plots frames 

Lp_m N1-SW10 5, 19,26 

Fa_m N2, N11 8 , 13, 22 

Tr_m N3-N12 10,23,28 

Tp_m N13 9, 12, 16 

CC N14, N5 6,14,15/18,24,25 

Lp_d N6-N15 7,11,17 

Fa_d N7- SW16 2,20,27 

Tr_d N8-SW8- SW17 3,4,30 

Tp_d SW9-N9 1,21,29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 
 



 
 

 

Figure 5: Distribution and enumeration of plots and frames of the Multisward N2O trial according to treatment 

(Table 3). The arrow indicates the North direction 

 

 

Figure 6:  Areas designated for soil sampling (65 cm x 80 cm) were adjacent to the frames 
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2.1.2 Artificial urine 

 

On August 22nd, 2011, artificial urine was applied at a rate of 5 L m-2, adding 50 g N m-2. 

The components of artificial urine are given in Table 5 modified from Ambus, et al. 

(2007). 

Table 5: Chemical composition of artificial urine 

Artificial urine Amount  Nitrogen g L-1 

Urea 21.74 g L-1 10.0004 

KHCO3 12.8 g L-1    

KCl 10 g L-1   

 

The solution was added to the 65 x 80 cm area adjacent to the frame and the area of 

the metal frames (0.250 m 2). Each frame received 1.3 L of artificial urine solution. 2.6 L 

of the same solution was added to the area adjacent to the frame. For practical reasons 

we prepared a concentrated solution and used 100 ml concentrate solution per frame 

and 200 ml per adjacent area which was diluted to 1.3 and 2.6 L, respectively, directly 

before the application.   

 

2.2 Sampling 

2.2.1 Flux Sampling 

 

Prior to sampling N2O emission flux, permanent aluminium frames were driven 5 cm into 

the soil. The frames were equipped with a group on top, which was filled with water to 

ensure airtight connection between soil and flux chamber during flux measurement. For 

each flux measurement, vented, closed static chambers (51.2 x 52.2 x 20 cm) were 
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deployed onto the preinstalled frames from which four gas samples were drawn at 0, 

15, 30 and 45 min deployment time using a 20 ml disposable syringe which was 

connected to the chamber volume with a tube. Prior to taking a gas sample, the plunger 

of the syringe was pumped 5 times to mix the gas inside the chamber, before injecting a 

20 ml gas sample into a 12 ml evacuated vial. Flux measurements were conducted 

twice weekly, and once a week after the 5th harvest. Soil and chamber temperatures 

were recorded at the start and end of the deployment time. 

 

2.2.2 Plant samples 

 

The botanical composition of the swards in the different treatments was determined 

after the 5th harvest on the 13th of September. For this, plants inside the frame were cut 

5 cm above soil and sorted into following groups: L. perenne, F. arundinacea, T. repens, 

T. pratense, others. The dry matter mass of each group was registered after drying at 

60 ⁰C. Thereafter, a subsample of each group was chopped and ground for analysis of 

total N content in each of the three replicates collected per treatment. 

 

2.2.3 Soil samples  

 

Two soil cores (30 mm diameter, 20 cm depth) were taken from each area adjacent to 

the frames and pooled to composite sample for each treatment. For the centroid, two 

separate composite samples were taken. The first sampling was conducted before urine 

application, thereafter about once a week, for a total of 9 sampling dates (Tab. 4). The 

samples were transferred to the laboratory, homogenized manually and 40 g of each 

sample were placed into a 150 ml Duran glass and frozen (-18oC) for later extraction. 

Another 10 grams of fresh weight soil were suspended in 25 ml distilled water and 
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shaken horizontally for 30-60 minutes, before measuring the pH by with an ORION 

SA720 electrode pH meter connected to a Orion ROSS Ultra pH Electrode. Water 

content was measured gravimetrically by taking 20 g of soil in glass beakers, 

determining weights, and drying the sample at 105oC for two days. 

For extraction of NO3
- and NH4

+, the frozen samples were thawed and 50 ml 2 M KCL 

solution was added immediately. After shaking the suspension for 1 hour, it was poured 

into funnels lined with Whatman filter paper, (Blauband 589/3 ø 125 mm) and the 

solution was allowed to drip in plastic tubes. The tubes were sealed and labelled 

together with two blanks (KCl solution without the soil sample) and were kept in the 

freezer before sending to analysis. 

Due to an error with the attribution of numbers to the frames in the field, most samples 

were excluded from the first five samplings (before the 30th of September), leaving only 

four samples from each sampling date which could be assigned unequivocally to each 

of the treatments given in table 3. Samples from the first five sampling dates had to be 

reconstructed according to the contributions of different treatments in the mixed sample. 

They were assigned to one of the following three classes “Grass”, “White clover-

dominated” and “Red clover-dominated” (Tab. 6).  In addition, one “pure” treatment 

could be reconstructed, which was the treatment dominate white clover (Tr_d;  Tab. 3) 

and is the only treatment that had intact soil sampling throughout the whole trial period. 

Samples which could not be assigned to any of the four “classes” were discarded. 

 

Table 6 Composite soil samples obtained in the period before 30th of September. the Grass sample 
represents ryegrass and tall fescue treatments. WC and RC represent white clover and red clover-dominant 
treatments, respectively. Numbers following the treatment names denote frame numbers (Fig 4) from which 
samples were retrieved. 

Reconstructed 

classes 
treatments 

Grass Lp_m 5 + Fa_d 27 +  Fa_m 22 

WC Tr_m  23 + Tr_m  28 +  Tp_d 29 
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RC Tp_m 12 + Tp_m 16 +  CC 6 

 

 

2.3 Analysis of Samples 

 

2.3.1 Plant and Soil samples 

 

The determination of total N was done according to the Dumas method, described in 

Bremmer and Mulvaney (1982). Sample material was ground by a mortar before 

weighing. About 200 mg of each sample was weighed in a tin foil (100-150 mg for 

samples high in organic material). Samples were analyzed by a combustion CN 

analyser (Leco CHN 1000) at the Institute for Plant and Environmenmtal Sciences, 

UMB. During the analysis (at 1050°C), nitrogen oxides are reduced with the help of 

copper to N2. The concentration of N2 gas is determined by a thermal conductivity 

detector (TCD). 

 

2.3.2 Gas Analysis 

 

The mixing ratios of N2O and CO2 in chamber air over deployment time were 

determined by gas chromatography (GC) in the GHG-laboratory of the UMB-Institute for 

Plant and Environmental Sciences.  The GC used was a Agilent 7890A (USA),  

equipped with a 250 µl sampling loop mounted on a pneumatic 6-port valve, a packed 

Haysep-precolumn for back flushing and a 30 mm long 0.53 mm diameter Poraplot U 

capillary column separating CO2, CH4 and N2O from air. Helium was used as a carrier 

gas. CO2 was measured by a thermal conductivity detector (TCD) and N2O by an 

electron capture detector (ECD). The latter operates at 340o C with Ar/CH4 (90/10 vol%) 

as make up gas. Data acquisition and peak integration was done by EZchrome 

software, and the auto sampler was operated by in-house software (Molstad, et al. 
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2007). A 120 ml bottle filled with a calibrated standard close to ambient air was included 

into the measurement sequence after each 8 analyses of unknown samples and used 

for calibration and drift correction. The vials were organized systematically according to 

the frame number in groups of four in order to see the increase in gas emission over 

time.  

Emission rates of N2O and CO2 were calculated from the increase of concentrations 

over time. For this, gas concentrations were plotted in Excel and inspected individually 

for each measured flux. The slope (ppm min-1) was calculated by least square 

regression and converted to flux rates using the following equation: 

  FN2O = (dN2O/dt x V/Mv) x 60 x f/A 

Where FN2O is the N2O flux (µg N2O-N m-2h-1), dN2O/dt the change of N2O concentration 

in the chamber (ppbv min-1), V the total volume of the chamber (L), A the area covered 

by the chamber (m2), Mv the molecular volume at chamber temperature (moles L-1) and 

F a conversion factor (0.0028).  

 

2.3.3 Ammonium and nitrate in soil  

 

NO3
- and NH4

+ concentrations were analysed by flow injection analyses at UMB-IPM. 

NO3
- is reduced by a cadmium amalgam to NO2

-. The reduction takes in a column 

(Jones reducer) in the presence of ammonium as a buffer solution and forms a complex 

with cadmium ions. Nitrate reacts with a strongly acidic solution (pH between 1.5 and 2) 

with sulfanilamide forming a double bond, which produces the azo-compound N-(l-

nafthyl)-ethylendiamin. The absorbance of the latter compound is measured at 

wavelength of 545 nm. The procedure was carried out according to the protocol 

described in the Norwegian standard for determining the sum of nitrate and nitrite 

nitrogen (NS 4745 1975).  

For ammonium analysis, NH4
+ reacts with a strong alkaline solution (pH 10,8 to 11,4) 

with chlorine to produce monochloramine which in presence of salicylic acid and excess 

hypochloride produces indo-phenole blue. Absorbance of the latter is measured at 
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wavelength 630 nm. The reaction is catalyzed by penta-cyanonitrosulphate 

(nitroprussid). The analysis was performed according to the protocol described in the 

Norwegian standard for determining Ammonium nitrogen (NS 4746 1975). The analysis 

work was performed at the soil laboratory at IPM. 

 

2.3.4 Statistical analysis 

 

All data were compiled and linear regression was performed in Excel. One way ANOVA 

and Fischer test for significance were done using Minitab. 
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3. Results 

3.1 N2O emission response to urea application 

Figure 7A shows N2O fluxes in the experimental plots measured August through 

October 2011. N2O emissions were moderate in magnitude in the beginning of August 

after the fourth cut (< 100 µg N m-2 h-1) and increased markedly after the application of 

artificial urine on August 22nd. However, increase in N2O emission rates was moderate 

directly after fertilization presumably because it took some time for the urea to be 

hydrolyzed and nitrified before becoming subject to denitrification. The urea was applied 

in a solution equivalent to ~50 mm precipitation, but as seen from Fig. 7B and C, NO3
- 

concentrations were low at the time of urea application (< 1 g N m-2 0.2 m-1), apparently 

limiting denitrification in the wet soil after fertilization. N2O emissions increased more 

strongly Aug. 29th after extensive rainfalls resulting in WFPS > 50% (Fig. 7C) along with 

measurable increase in NH4
+ and NO3

- concentrations in the soil (Fig. 7B, D).  This 

resulted in a first N2O emission peak on Aug. 26th for all treatments (300-700 µg N m-2 

h-1) except Tp_m, which peaked later on Aug. 30th. Emission peaks during this period 

were highest in Tr_m, Tr_d, Tp_m and Tp_d, in other words plots dominated by clover 

tended to show stronger N2O emission response to urea application than grass 

dominated plots, although this difference was not significant. 

A second emission peak was observed on the Sept. 8th for  Tp_m  (1008.3 ± 41.4 µg N 

m -2 h-1),  Tp_d (1137 ± 766 µg N m -2 h-1) and Fa_d  (946.8 ± 585 µg N m -2 h-1), where-

as N2O emission for the other treatments remained at rates below 500 µg N m-2 h-1. 

Also this emission peak seemed to be triggered by extensive rainfalls, but due to lack of 

soil samples for this period, no WFPS values are available.  Towards the end of 

September, emissions started to decline gradually. This decline was concomitant with 

declining concentrations of NH4
+ and WFPS until the end of the sampling period, when 

flux rates leveled off to background rates similar to those observed before the 

application of urea. 
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Figure 7: Time course of A) N2O emission (µg m-2 h-1), B) soil NH4
+ for reconstructed samples (g N m-2 0.2 m 

depth), C) soil NO3
- for reconstructed samples (g N m-2 0.2 m depth) and D) rainfall (mm day-1), air 

temperature (°C) and water filled pore space (%). Treatment Tr_d denots the original treatment with dominant 
T. repens. 
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3.2 Soil N dynamics 

 

Due to a mistake in pooling soil samples from the various plots, 3 new “treatment 

groups” were constructed, representing plots dominated by grass (mainly tall fescue), 

white clover and red clover (Tab. 6). Only Tr_d could be assigned unequivocally to soil 

pooled from one of the original treatments. NH4
+ concentrations in soil peaked right after 

the application of artificial urine (Fig. 7B) reaching the highest concentration under grass 

(27.9 g m-2) and somewhat lower concentrations in treatments dominated by white (19.5 

g m-2) and red clover (20.3 g m-2).  The Treatment Tr_d peaked one week later (18.9 g 

m-2) than the other treatments. NH4
+ declined rapidly and reached baseline levels at 21st 

of September. The soil pH did not change after the addition of artificial urine (data not 

shown).   

NO3
- concentrations started rising gradually after the application of artificial urine and 

remained well below NH4
+-N values (Fig. 7C; note different scale of y-axis in figures 7B 

and C).  A sharp decline in soil NO3
- was observed following heavy rainfall on Aug. 29th 

(41.8 mm) after which NO3
- started to rise again, reaching a second peak 3 days later.  

A third peak in NO3
- content was recorded on Sept. 30th, after a longer dry period (cf. 

Fig. 7C and D), without leading to increased N2O emission rates (Fig. 7C).  

Figure 8 compares N2O flux averaged for grass-, white clover-, and red clover-

dominated plots as well as for treatment Tr_d with reconstructed mineral N dynamics 

(Tab. 4) from start of the experiment until Sept. 23rd. Increase in N2O emission rates 

after urea application was weakest in grass dominated plots. Among clover-dominated 

plots, urea-induced N2O flux was clearly higher in white clover-dominated plots and the 

treatment Tr_d than in red clover-dominated plots. However, N2O emission flux in RC-

dominated plots was highest towards the end of the trial period despite similar values of 

mineral N in all treatments. 

Mineral N data for the 9 original treatments (Tab.3) were only available for the last four 

sampling dates and are shown in figure 9 except for the “centroid” treatment. The 

gradual decline in N2O emission corresponded to the decrease in NO3
- for most 
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treatments whereas NH4
+ remained relatively low. Towards the end of the trial (30/09) 

soil NO3
- was higher under grass mixed with legumes treatments Lp_d and Fa_d  (3.83 

and 2.58 g m-2, respectively) than for the pure grass stands Lp_m and Fa_ m (1.67 and 

0.82 g m-2). On the other hand NO3
- under pure clover dominant treatments was 

comparable with that under pure grass stands (1.34 and 0.31 g m-2) and lower than 

pure clover treatments Tr_m and Tp_m (2.37 and 4.58 g m-2).  

 

 

 

Figure 8: Mean (n=3; error bars: SE) N2O emission rates (µg N m-2 h-2) and NH4
+ and NO3

-  (mg N m-2 ) before 
30 Sept for the three reconstructed treatments grass, white clover-dominated (WC), red clover-dominated  
(RC) and the original treatment white clover-dominated (Tr_d) 
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Figure 9 Mean (n=3) N2O emission rates (µg N m-2 h-1) and NH4
+ and NO3

- (mg N m-2) after 30th of September 
for all treatments except the centroid treatments. 
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3.3 Cumulative N2O emissions 

 

The total amount of N2O released during the trial period (71 days) was calculated for all 

9 treatments (Fig. 5) and is presented in figure 10.  Tp_m (0.42 g m-2) released 

significantly more N2O than Lp_m, Fa_m, Lp_d and Tr_d (0.16, 0.17, 0.34 and 0.26  g 

m-2, respectively). The standard error was high for treatments Tp_d, Tp_m and Lp_d, 

preventing any conclusion about the effect of clover species and density on the basis of 

cumulative emission. Treatments with pure stands of ryegrass (Lp_m) and tall fescue 

(Fa_m) were associated with the lowest N2O emissions (0.17 ± 0.04 g N m-2and 0.16 ± 

0.08 g N m-2, respectively). In grass dominated treatments (Lp_d and Fa_d), N2O 

emissions were higher (0.34 ± 0.15 g N m-2 and 0.54 ± 0.04 g N m-2, respectively) than 

in the pure grass treatments. Highest cumulative emissions were found in the tall fescue 

dominant treatment followed by red clover pure stand (Tp_m; 0.42 ± 0.34 g N m-2) and 

the red clover dominated treatments (Tp_d; 0. 40 ± 0. 33 g N m-2).  

Cumulative flux rates for individual replicates within each treatment of the trial were 

compared (Fig. 11). For most treatments, it was observed that one curve would be 

higher than the other two. This pattern was observed for treatments Lp_m, Fa_m, Tr_m, 

Fa_d and Tp_d. When data for the different replicates were tested by one way ANOVA, 

significant differences were found between the frame associated with the higher 

emissions and the two frames with similar emissions for treatments Tp_d, Fa_d and 

Tr_m.  The frames with the higher emission were usually the ones lying on flat terrain 

within the experimental field which was sloping to the northwest. Therefore, replicates 

were categorized according to topography (Fig. 12), where frames lying on a flat surface 

(frame numbers 1-10) seemed to produce higher emissions than the ones from the 

same treatments situated on a slope (frame numbers 17-30). The effect of slope was 

not evident for treatments CC1, CC2 and Tp_m (see Fig. 5). 
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Figure 10: Cumulative N2O emission (g N m-2) for the 71 days of the experiment (error bars: SE); columns not 
sharing the same letter are significantly different. 
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Figure 11: Cumulative N2O emissions (g N m-2) for single replicates in each treatment  
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Figure 12: Spatial variability of cumulative N2O emission (g N m-2) for each frame/treatment. Red bars indicate 

frames lying on the slope and the blue bars indicate frames on a flat surface. 

 

 

3.4 Clover Density 

 

A weak positive correlation between red clover percentage and cumulative N2O 

emission (g N m-2 71 days-1) could be established on the basis single plots (R2= 0.29) 

and is shown in figure 13. The coefficient of determination was similar when cumulating 

N2O emission flux for the period between the application of artificial urine (22/08) and 

cutting 16/09 (R2= 0.27). No such relationship was found for white clover (R2= 0.011). 

However, there were two frames (Tp_d 1 and Fa_d 2) that showed exceptionally high 

N2O flux rates. When these were removed, the correlation coefficient was R2= 0.50 for 

all treatments, and R2= 0.57 for red clover alone.  Clover percentage was mostly 

ranging between 10% and 40%.  Fig. 13 shows that frames where clover ranged 

between 37-62% gave relatively low cumulative N2O emissions (0.15-0.25 g N m-2). 

These frames (fame numbers 17-30; fig. 4) were positioned on the sloping part of the 
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field. Distinction was made between red and white clover, since the emissions from 

white clover Tr_m were lower than those from red clover Tp_m. 

 

 

Figure 13 Relationship between clover density and cumulative N2O emissions for each plot.  Red squares 

represent red clover, and white squares represent white clover.  Replicates with exceptionally high fluxes are 

highlighted by a circle. 

 

 

3.5 N yield 

 

Average N yield for the different treatments did not differ significantly from the centroid 

except for Lp_m and Tr_m (Fig. 14). The highest average N yield among mixed stands 

was found in Fa_d (11.59 g m-2), whereas Fa_m was the highest among pure stands. 

Yet, using ANOVA test and Fischer method showed that Fa_d was significantly higher 

than Fa_m (P= 0.006). The lowest average N yield was found in Tr_m (5.67 g m-2). 
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Frames 23, and 28 (97.43 and 78.01 g m-2, respectively) of treatment Tr_m had a 

smaller dry matter yield than frame 10 (143.06 g m-2) of the same treatment (see 

annex). Lowest N yields were found with white clover (Tr_m, 284.26 g N m-2 and Tr_d 

30, 4.94 g m-2).  N yield from red clover was slightly higher than from white clover. 

 

 

 

Figure 14: Average N yield per species for each treatment (g N m-2). * denotes treatments that are 

significantly different from the centroid. P value = 0,001 and df = 9 for dry matter weight and a P value of 

0,003 for N yield 

 

 

There was a significant negative relationship between N yield in grass (L. perenne and 

F. arundinacea) and the percentage of clover. N yield was relatively high with a clover 

density between 30-50% (Fig 15).   
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Figure 15 Relationship between clover percentage and N yield in ryegrass and tall fescue per 

replicate/treatment.  P < 0.05 
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3.6 N2O intensity  
 

The ratio between N lost by N2O emission and N uptake as measured in the harvest of 

the cut on Sept 13th was calculated to show the amount of N2O produced per unit N 

produced. N2O emission per unit harvested N was lowest in stands dominated by 

grasses (Lp_m, Fa_m, Lp_d) and tended to be higher in treatments dominated by clover 

(Tp_d, Tr_m and Tp_m) (Fig. 17). The grass-clover mixture Fa_d and the clover-grass 

Tr_d showed comparable ratios as the centroid. Tp_m produced the highest average 

value was 0.08 ± 0.01 g N2O-N per g N yield m-2, while dominant red clover gave a 

value of 0.07 ± 0.06 g N2O-N per g N yield m-2. Pure white clover stand Tr_m produced 

a lower value 0.06 ± 0.01 g N2O-N per g N yield m-2. 

 

 

Figure 16 Cumulative N2O emission per N yield (g/g) for individual replicates replicate. 
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There was a significant relationship between the clover percentage per frame and the 

values of N2O-N per g N yield m-2 (P= 0.0004: data not shown). The relationship 

remained significant even after pure clover treatments were excluded (P= 0.004: data 

not shown). 
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4 Discussion 
 

From an agroecological perspective, this study tackled the N cycle in three subsystems: 

the soil, the atmosphere and the plant populations, and simulated the influence of a 

fourth subsystem (grazing livestock) in the form of artificial urine. The nexus of these 

subsystems was N fixation by clover, and the extent to which the percentage of clover in 

mixed stand with grass would influence N2O emission from urine patches. Addition of 

mineral N, especially in high concentration as in urine is expected to halt N fixation for a 

certain period, causing the plant population to flip from N fixation to competition for soil 

mineral N. The increase in plant growth immediately after urine application indicated 

that a large proportion of urine N or its hydrolysis product NH4
+ was removed by plant 

uptake. However, observed fluctuations of extractable NH4
+ and NO3

- in soil indicated 

that nitrification and denitrification occurred simultaneously, likely fueling high N2O 

emission rates observed after artificial urine application.  Yet denitrification seemed to 

be the predominant process for N2O formation, especially during the second peak of 

N2O emissions since NO3
- content in the soil increased while NH4

+ decreased and 

rainfalls were abundant (Fig. 7). Unfortunately temporal resolved soil mineral N 

dynamics for this period are missing, so that nothing can be said about the role of NO3
- 

leaching during heavy rainfall events. NO3
- declined towards the end of the trial, which 

coincided with a decline in N2O emissions, supporting the idea that denitrification was 

the predominant process for N2O formation during the second half of the experiment.  

N2O emissions in pure red clover stands (0.54 g m-2) were remarkably higher than in 

other treatments, particularly when comparing with pure white clover and dominant 

white clover. This observation lead to the assumption that red clover has a stronger 

effect on N2O emissions than white clover, however, it should be considered that the 

white clover treatment (Tr_m) showed very variable results among replicates, with the 

frame Tr_m 10 being higher than frames Tr_m 23 and Tr_m 28 in both N2O emissions 

(Fig. 11) and dry matter yield (Annex 1) Red clover dominated plots Tp_m showed the 

highest soil NO3
- contents with 6.73 g m-2 and 20 cm depth on Sept 30thbeing the 
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highest concentration observed (Fig. 7C). This is in accordance with the observation of 

Niklaus, Wardle et al. (2006) who showed that legumes, particularly red clover 

accumulate nitrates, and increase the abundance of nitrifiers.  This offers an 

explanation to the high N2O emissions associated with pure red clover stands.   

An explanation for reduced dry matter yield and lower N2O emission in frames Tr_m 23 

and 28 may be infestation by slugs which was observed in these plots.  Most probably 

slug infestation led to reduced root biomass and hence limited rhizodeposition. Root 

exudates are rich in readily degradable carbon which may be a source of NH4
+ for 

nitrifying bacteria and a source of energy for heterotrophic microorganisms depleting 

oxygen in the rhizosphere and supporting anoxic metabolism such as denitrification. 

Topographic position (hill slope versus foot slope) may have been another factor 

influencing N cycling in the plots. It was striking that the two outliers in cumulative N2O 

production (Fa_d2 and Tp_d1) were situated on the flat portion of the experimental field 

and that plots situated on the slope tended to have lower emissions within each 

treatment (Fig. 12). This suggests that runoff of mobile NO3
- by leaching or surface 

runoff may have occurred during the wet summer, overriding the effect of plant 

composition of N cycling characteristics and associated N2O emissions. The high intra-

site variability is ultimately also the reason for the low level of significance in differences 

found between the treatments (Fig. 10). 

 

Towards the end of the experiment, N2O-N losses were lowest and NO3
- contents 

highest in the ryegrass/white clover treatment Lp_d (Fig. 9). This is in contrast to 

Peyraud and Delaby (2006) who attributed high nitrate leaching to high legume 

percentage and associated higher N fixation. Likewise, NO3
- was higher in 

monocultures of clover than in mixed stands of red and white clover treatments towards 

the end of the trial (Fig. 10) suggesting that the monocultures used mineral N less 

efficiently than the mixed swards . The opposite was observed for the grass treatments. 

Here, NO3
- concentrations were higher in the grass dominated mixed treatments than in 

the rye grass and tall fescue monocultures (Fig. 10). Since the harvest took place on the 

13th of September, the light and temperature were too low for plants to take up soil N 
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mineralized in the root zone. Although regrowth took place as observed during the gas 

sampling, Fig. 10 shows that dominant grass mixtures and pure clover could not make 

use of residual mineral N in autumn as was found in dominant clover mixtures Tr_d and 

Tp_d. 

A significant effect of clover density on N2O emissions was seen in this study:  pure 

clover/dominant clover treatments produced more N2O than pure grass treatments, yet 

there were no significant differences among grass-clover mixtures regarding N2O 

emissions even if the frames showing anomalously high emissions were excluded. 

There was no statistically significant difference between emissions from Lp_m and Lp_d 

although emissions were higher in the latter. This finding supports the hypothesis that 

clover can be included in the mixed pasture without increasing N2O emissions. Galbally, 

et al. (2010) argued that grass-legume pastures contribute with less than 0.1 g m-2 N2O- 

N based on his own and other studies (e.g. Simek et al. 2004). However, no figures, to 

the best of my knowledge have been reported on N2O emissions from urine patches 

with different clover densities except in the study conducted by Klumpp et al. (2011) 

which did not include contrasting concentrations (0% to 100%) of clover as in the 

present study. Yet the period of my study is rather short as compared to other studies, 

in which treatment effects were more evident.  

The difference in the effect of white clover and red clover percentages might be due to 

the lower competitive capacity of white clover to establish itself in the field in 

comparison to red clover. However, given the shear amount of ammonium entering the 

soil-plant system by urea application, similar N2O emissions could have been expected 

from clover stands regardless of clover species. Plotting clover percentages against 

cumulative N2O emissions showed that the same clover percentages affected 

cumulative N2O emission differently (Fig. 13); red clover showed a weak positive 

relationship between coverage and N2O emissions, whereas white clover did not. N2O 

emissions in red clover dominated treatments were clearly higher than in white clover 

dominated treatments in the second half of the experiment (Fig. 8), when the initial 

effect of ammonia hydrolyzing from urea was leveling off. Thus, higher N2O emissions in 

red clover stands as compared to white clover stands seem to be associated with less 

efficient N uptake during the late growing season and/or specifically higher 
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mineralization/nitrification in the root zone of red clover as compared with white clover.  

 

 All in all, it can be concluded that the clover percentage had a limited effect on 

stimulating N2O emissions from urine patches in mixed sward pastures, in comparison 

to other factors such as topography. In recent studies, no long term effects of clover on 

soil N pools were detected, except for increased N2O loss from a fertilized low 

percentage clover treatment (Klumpp et al., 2011).  

The role of short term N fixation in inducing N2O emission has been investigated in 

recent studies, and was found to play a very limited role for N2O emissions (Carter and 

Ambus, 2006).  

Following the fluctuation of N2O emission, rainfall seemed to be the main driver of N2O 

emissions. However, there was no significant relationship found between N2O 

emissions and WFPS. High WFPS is recurrently found to be an important factor for high 

N2O emissions e.g. (Ruzjerez, et al. 1994; Anger, et al. 2003) but  environmental factors 

may not always relate directly to N2O emissions in statistical analysis (Simek, et al. 

2004) likely because  denitrification rates as well as the rate of NO3
- loss by leaching 

are influenced by the interaction of topography and soil water regime at the landscape 

level (Pennock, Vankessel et al. 1992). 

With regard to N yield, the effect of clover percentage was clearer than for N2O 

emissions. There was a significant relationship between clover percentage and N yield, 

as well as grass N yield (Fig. 15). This indicates that the presence of clover in mixture 

with grass resulted in an increased uptake of N by grass which should potentially 

decrease the amount of N available for soil microorganisms and hence affecting N2O 

emissions. Scaled for N-yield (Fig. 16), cumulative N2O emissions throughout the period 

between urine application and harvest were highest in clover treatments (monoculture 

and as dominant species in mixture with grass) and despite the reduction in biomass 

from white clover because of slug infestation, N2O emissions per unit N yield was also 

high compared to the grass treatment, yet slightly lower than the other clover 

treatments. This shows that clover pure stands have higher N2O emissions per unit N 
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yield whereas no difference was seen between grass monocultures and grass mixtures. 

Thus, clover monocultures should be avoided. 

The inclusion of clover in mixtures had no effect on area-based N2O emissions in urine 

affected pastures (Fig. 10), which is in line with the hypothesis that clover in 

multispecies swards does not increase N2O emissions. At the same time, the inclusion 

clover resulted in an even N yield in companion grass (Fig. 14) as hypothesized. 

Biodiversity is an important feature in agroecosystems, it provides a wide array of 

ecosystem services, in addition to resilience of the whole system in response to 

disturbance. In the experiment described in my study, urine deposition represents this 

disturbance, which in grazing pastures is accompanied by both dung and trampling. 

Understanding the delicate balance between the functional groups in the grass sward, 

as well as biotic (including macrofauna) and abiotic effects is important for devising 

adequate management strategies especially in climate neutral farming systems.  

In conclusion, clover percentage and species distribution had little effect on urine-

associated N2O emissions. However, treatment effects became evident towards the end 

of the experiment when the effect of urine had leveled off. For the entire experiment 

(including post-harvest N2O emissions), N-yield scaled emissions seemed to be higher 

with increasing clover percentage, warranting that there might be tradeoff between 

increasing N uptake by companion grass and N yield-scaled N2O emissions in grazed 

multispecies pastures. 
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Annex I: Dry matter and Nitrogen yield per species/frame g m2 

 

treatment  frame  plot 
plant 

species 

Dry 

mass 

g m‐2 

total 

N % 

N  yield 

g m‐2 

N‐yield,  per 

frame  g m‐2 

Average  N  yield 

per treatment 

Lp_m  5  S10  ryegrass  106,36  5,91  6,28  6,28   

Lp_m  19  N1  ryegrass  98,42  5,72  5,63  5,63   

Lp_m  26  N1  ryegrass  131,93  5,56  7,34  7,34  6,42 

Fa_m  8  N11  festuca  168,79  5,26  8,88  8,88   

Fa_m  13  N11  festuca  136,87  4,99  6,83  6,83   

Fa_m  22  N2  festuca  156,67  5,07  7,95  7,95  7,89 

Tr_m  10  N3  white clover  143,06  5,30  7,58  7,58   

Tr_m  23  N12  white clover  97,43  5,31  5,18  5,18   

Tr_m  28  N12  white clover  78,01  5,47  4,26  4,26  5,67 

Tp_m  9  N13  red clover  125,58  4,95  6,22  6,22   

Tp_m  12  N13  red clover  166,32  3,98  6,62  6,62   

Tp_m  16  N13  red clover  176,31  4,26  7,52  7,52  6,79 

CC1  18  N5  festuca  12,05  4,56  0,55  6,30   

CC1  24  N5  festuca  18,66  4,59  0,86  4,13   

CC1  25  N5  festuca  26,45  4,86  1,28  6,88   

CC1  18  N5  red clover  47,69  4,28  2,04     

CC1  24  N5  red clover  101,34  4,25  4,31     
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CC1  25  N5  red clover  41,84  4,13  1,73     

CC1  18  N5  ryegrass  83,67  4,99  4,18     

CC1  24  N5  ryegrass  54,45  4,70  2,56     

CC1  25  N5  ryegrass  76,76  5,01  3,85     

CC1  18  N5  white clover  30,66  5,13  1,57     

CC1  24  N5  white clover  13,76  5,17  0,71     

CC1  25  N5  white clover  35,83  4,87  1,75    8,46 

CC2  6  N14  festuca  30,25  5,39  1,63  5,98   

CC2  14  N14  festuca  9,65  4,58  0,44  7,78   

CC2  15  N14  festuca  14,06  5,08  0,71  8,06   

CC2  6  N14  red clover  27,66  5,01  1,39     

CC2  14  N14  red clover  48,94  4,43  2,17     

CC2  15  N14  red clover  20,06  4,74  0,95     

CC2  6  N14  ryegrass  53,46  5,55  2,97     

CC2  14  N14  ryegrass  99,78  5,18  5,17     

CC2  15  N14  ryegrass  120,64  5,30  6,39     

CC2  6  N14  white clover  17,78  6,00  1,07     

CC2  14  N14  white clover  21,32  5,50  1,17     

CC2  15  N14  white clover  31,88  5,53  1,76    8,61 

Lp_d  7  N15  festuca        9,13   

Lp_d  11  N6  festuca  6,57  4,76  0,31  8,26   

Lp_d  17  N6  festuca  3,91  4,69  0,18  8,76   

Lp_d  7  N15  red clover  47,84  4,79  2,29     

Lp_d  11  N6  red clover  46,55  4,98  2,32     
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Lp_d  17  N6  red clover  62,13  4,70  2,92     

Lp_d  7  N15  ryegrass  111,68  5,35  5,97     

Lp_d  11  N6  ryegrass  73,79  5,24  3,87     

Lp_d  17  N6  ryegrass  73,94  5,65  4,18     

Lp_d  7  N15  white clover  15,69  5,53  0,87     

Lp_d  11  N6  white clover  31,92  5,53  1,76     

Lp_d  17  N6  white clover  28,16  5,24  1,48    8,80 

Fa_d  2  S16  festuca  12,08  4,96  0,60  10,25   

Fa_d  20  N7  festuca  83,29  5,04  4,20  10,01   

Fa_d  27  N7  festuca  95,00  4,78  4,54  10,74   

Fa_d  2  S16  red clover  56,16  4,78  2,68     

Fa_d  20  N7  red clover  30,28  4,58  1,39     

Fa_d  27  N7  red clover  21,93  4,17  0,91     

Fa_d  2  S16  ryegrass  104,15  5,43  5,65     

Fa_d  20  N7  ryegrass  42,94  4,94  2,12     

Fa_d  27  N7  ryegrass  78,54  4,96  3,90     

Fa_d  2  S16  white clover  24,62  5,33  1,31     

Fa_d  20  N7  white clover  42,94  5,37  2,31     

Fa_d  27  N7  white clover  26,75  5,19  1,39    10,34 

Tr_d  3  S8  festuca  7,07  4,57  0,32  8,94   

Tr_d  4  S17  festuca  9,35  4,99  0,47  7,10   

Tr_d  30  N8  festuca  8,32  4,30  0,36  4,94   

Tr_d  3  S8  red clover  14,78  4,49  0,66     

Tr_d  4  S17  red clover  30,66  4,65  1,43     
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Tr_d  30  N8  red clover  2,28  3,80  0,09     

Tr_d  3  S8  ryegrass  79,53  5,59  4,45     

Tr_d  4  S17  ryegrass  54,15  5,33  2,89     

Tr_d  30  N8  ryegrass  32,64  5,03  1,64     

Tr_d  3  S8  white clover  58,52  5,99  3,51     

Tr_d  4  S17  white clover  38,23  6,07  2,32     

Tr_d  30  N8  white clover  52,36  5,46  2,86    6,99 

Tp_d  1  S9  festuca  0,00  0  0,00  5,40   

Tp_d  21  N9  festuca  4,86  4,63  0,23  7,08   

Tp_d  29  N9  festuca  23,37  4,88  1,14  7,76   

Tp_d  1  S9  red clover  76,00  4,50  3,42     

Tp_d  21  N9  red clover  88,42  4,39  3,88     

Tp_d  29  N9  red clover  61,37  4,38  2,69     

Tp_d  1  S9  ryegrass  28,19  5,30  1,49     

Tp_d  21  N9  ryegrass  53,27  5,09  2,71     

Tp_d  29  N9  ryegrass  71,21  5,39  3,83     

Tp_d  1  S9  white clover  9,12  5,33  0,49     

Tp_d  21  N9  white clover  4,86  5,28  0,26     

Tp_d  29  N9  white clover  1,98  5,03  0,10    6,75 
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