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Abstract 

The application of integrated study of water quality and statistics for environmental modelling 

is considered as a powerful analytical tool that has been thrived significantly during recent 

years. The present study was conducted to identify the significant physico-chemical factors 

that affects the raw water quality, and to study statistical interrelationships amongst them. 

Multiple linear regression models were developed to estimate microbial load in the raw water 

source, using data from the NRV drinking water treatment plant published from 1999 to 2012 

and also from Norwegian school of veterinary science through VISK project. The study was 

conducted based on indicator microbial load which contain Total viable count "Kimtall", 

Coliform bacteria, Escherichia coli, Clostridium perfringens, and Intestinal Enterococci. In 

addition, microbial pathogen load of Noro virus, and Adeno virus were also incorporated. The 

explanatory variables examined for regression analysis were monitored properties of raw 

water and hyro-climatic data from the catchment which include; river discharge, raw water 

temperature, rainfall, pH, turbidity, conductivity, colour, and total organic carbon. Each 

indicator and pathogenic microbial loads have its own unique set of selected explanatory 

variables. The statistical significance tests were applied to the coefficients of the multiple 

linear regression models, and they are found to be significant. The regression equations were 

evaluated using measures of variability, including adjusted R
2
, which ranges from 38.0 % for 

Adeno virus concentration to 50.0 % for Ecoli concentration. The results revealed that the 

regression analysis provide useful mean for rapid monitoring of microbial raw water quality 

based on the physico-chemical parameters. 
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1. INTRODUCTION 

1.1 Background  

Surface water is widely used as a source for drinking water production. There is a wide range 

of microbial and chemical constituents of drinking water that can cause either acute or chronic 

detrimental health effects. Besides, water of poor quality can also be harmful from an 

economic perspective, as resources have to be directed towards improving the water supply 

system. For these reasons, there is growing pressure to improve water treatment and water 

quality management at catchment scale in order to ensure safe drinking water at reasonable 

costs (Astrom et al. 2007b; Won et al. 2013).  

Pathogens present in surface waters originate from both point and diffuse sources and 

concentrations may vary considerably over time. Point sources for pathogens may include 

municipal wastewater discharges and heavily polluted tributaries within a river system. 

Diffuse sources, on the other hand, include urban, agricultural and forestry runoffs with 

microbial impact from livestock and wild animals in the catchment area. Furthermore, the 

microbial load to the raw water within a catchment is influenced by natural factors, such as 

climatological parameters (rain, sunlight and temperature), hydrology and topography 

(Kinzelman et al. 2004; Mills & Thurman 1994). 

To produce high-quality drinking water from surface water, the contaminants in the raw water 

such as physical, chemical and microbial contaminants must be removed by the water 

treatment process. The performance of a water treatment plant is highly related to the 

characteristics of the raw-water entering the plant. To optimize the treatment processes and 

thus provide good quality potable water in an economical manner, the ability to predict the 

raw-water quality over time is desired by the water treatment industry. This would allow 

advanced warning of changes in raw-water quality which require alternation of process 

conditions (Astrom et al. 2007a; Han et al. 2012; Sedmak et al. 2005). 

Analytical tools must be developed to properly evaluate raw water quality, adapt management 

practices and predict water quality improvement or deterioration at different catchment scales. 

In this regard, an integrated study of water quality and statistics for environmental modelling 

has grown significantly during recent decades. However, fewer systematic studies have been 

undertaken to model and predict the microbial raw water quality based on available physic-

chemical parameters to assess the level of health risks related to drinking water production 
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and to improve catchment management practices (Kubeck et al. 2009; Zhang & Stanley 

1997). 

Among modelling approaches, multiple linear regression analysis is a statistical tool used to 

examine relationships among variables. It provides a method for quantifying the impact of 

changes in one or more explanatory variables (known as independent variables) on a variable 

of interest (known as the dependent variable). Regression analysis is widely used in the field 

of econometrics, finance, sociology, hydrology, biology, psychology, pharmacology, and 

engineering, among other fields of study (Fedotovai et al. 2013; Hasani & Shanbeh 2010; 

Moustris et al. 2012; Noller & Whitehouse 1982; Noorossana et al. 2010; Seidou & Ouarda 

2007). In this paper, we perform a multiple linear regression analysis and discuss a number of 

applications in the microbial water quality context.  

1.2 Objectives of the study  

This project aims to improve modelling of microbial load of source water by taking into 

account the physico-chemical parameters. The main objectives of this research are: 

1. To identify the specific physico-chemical factors most associated with the specific 

indicator microorganisms and / or microbial pathogen load in the raw water. 

2. To build and evaluate, for each indicator microorganisms and microbial pathogens, 

multiple regression models that predict microbial load of raw water, using physico-

chemical factors as independent variables. 

1.3 Structure of the thesis 

To overcome the proposed objectives, the present thesis is structured as follows. Following 

brief background information, Part 1 outlines the objectives of the study. Part 2 serve as a 

general review of microbial water quality, source of contamination, monitoring and modelling 

issues. Part 3 reports the methodology used to achieve the designed goal. The results of the 

study have also been discussed more concisely and critically in Part 4. Finally in Part 5 which 

is the concluding chapter of the thesis have been highlighted. 
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2. LITRATURE REVIEW 

2.1 Microorganisms in drinking water sources 

Drinking water comes from surface water and ground water sources. Large-scale water supply 

systems tend to rely on surface water resources, and smaller water systems tend to use ground 

water. Surface water includes rivers, lakes, and reservoirs. On the other hand, ground water is 

pumped from wells that are drilled into aquifers. Usually surface water has to undergo many 

more purification steps than groundwater to become suited to drink (Bociort et al. 2012; 

Davies & Mazumder 2003). 

The most common and widespread health risk associated with drinking water sources are 

contamination, either directly or indirectly through human, animal and occasionally bird 

faeces and with the microorganisms contained in their faeces. Contamination problems also 

arise from improperly designed, failing, or overloaded waste water treatment systems, 

including septic systems from private homes, and leaking sanitary sewer pipes. Floodwater 

commonly contains high levels of bacteria from numerous sources. (Bociort et al. 2012). An 

understanding of microbial quality of source waters is essential, because it facilitates selection 

of the highest quality water source for drinking-water supply, and provides a basis for 

establishing treatment requirements to meet health based targets. The occurrence of pathogens 

and indicator organisms in raw water sources depends on a number of factors, including 

intrinsic physical and chemical characteristics of the catchment area and the magnitude and 

range of human activities and animal sources that release pathogens to the environment. In 

surface waters, potential pathogen sources include point sources, such as municipal sewerage 

and urban storm water overflows, as well as non-point sources, such as contaminated runoff 

from agricultural areas and areas with sanitation through onsite septic systems and latrines. 

Other sources are wildlife and direct access of livestock to surface water bodies. Many 

pathogens in surface water bodies will reduce in concentration due to dilution, settling and 

die-off due to environmental effects (thermal, sunlight, predation, etc.) (Obasohan et al. 2010; 

Payment et al. 2000). 

In a bid to mitigate such risks to human health by contaminated surface waters, monitoring, 

assessing, and managing microbiological quality of surface waters is an unending process. 

Such assessment and monitoring of the microbiological quality of surface waters involve 

identifying the main sources of fecal microorganisms by analysing river water samples for 

traditional faecal indicator bacteria; Escherichia coli, intestinal enterococci, and spores of 
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Clostridium perfringens, and in some cases the test targets specific pathogen (Nnane 2011). 

The pathogenic organisms of concern include bacteria, viruses and protozoa. The diseases 

they cause vary in severity from mild gastroenteritis, to severe and sometimes fatal diarrhoea, 

dysentery, hepatitis, cholera, typhoid fever and campylo-bacteriosis (Farkas et al. 2013).  

The multiple barrier approach to providing safe drinking water includes source water 

protection, treatment, and maintenance of distribution system integrity. Development of 

watershed management strategies relies on an understanding of the impact of watershed 

activities and land uses on receiving water quality. Controlling the risks related to these 

pathogens is a permanent challenge for the water industry. The supply of safe drinking-water 

involves the use of multiple barriers to prevent the entry and transmission of pathogens. The 

effectiveness of these multiple barriers should be monitored by a programme based on 

operational characteristics and testing for microbial indicators of faecal contamination and in 

some circumstances actual pathogens (Plummer & Long 2007). In addition to the constantly 

evolving range of pathogens to consider, assessing and managing such risks requires the 

integration of information issued by a wide range of disciplines. 

2.2 Sources of microbial contaminants and its preventive measures 

The first step in protecting a public water supply is the development of a watershed or 

wellhead protection program. Controlling or eliminating microbial sources before they 

contaminate a water supply will go a long way toward simplifying treatment and reducing 

costs associated with a contaminated supply. The following are sources of microbial 

contamination within a water supply protection area and suggested protection measures aimed 

at reducing the risk they pose to drinking water (Canada 2006; Okoh et al. 2007).  

2.2.1 Sewage Disposal Systems 

Wastewater collection and treatment systems vary from community to community depending 

on the population size and local needs. Such systems may separate the storm and sanitary 

flows, or have a combined sewer system, or both. Wastewater collection and treatment 

systems are responsible for collecting and treating residential, commercial and industrial 

wastewater. All of the practices and procedures used to collect and treat wastewater have the 

potential to pollute surface and subsurface drinking water sources. Failing sewage disposal 

systems represent the major source of microbial contamination from human waste. 

Contamination of drinking water sources by sewage can occur from raw sewage overflow, 

septic tanks, leaking sewer lines, land application of sludge and partially treated waste water. 
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Sewage itself is a complex mixture and can contain many types of contaminants. Seepage 

overflow into drinking water sources can cause disease from the ingestion of microorganisms 

(Ritter et al. 2002). 

2.2.1.1 Raw Sewage Overflow 

Storm water systems in urban areas are sometimes combined with sanitary sewer systems en 

route to sewage treatment plants. Excessive storm water can cause this joint system to 

overflow. In this event, excess flow will be directed into waterways untreated, resulting in 

sewage contamination. Urban runoff is usually collected by a separate storm sewer system 

and discharged directly into waterways. Combined systems are cheaper, but the potential to 

harm health is higher. Some systems have diversions to accommodate heavy flow (Even et al. 

2007; Walker 1994).  

2.2.1.2 Septic Tanks 

Septic tanks are enclosures that store and process wastes where no sewer system exists, such 

as in rural areas or on boats. Treatment of waste in septic tanks occurs by bacterial 

decomposition. The resulting material is called sludge. Large portions of the population are 

still served by septic systems as opposed to public waste treatment facilities. Contamination 

of water from septic tanks occurs under various conditions (Cheung & Venkitachalam 2004; 

Khwaja et al. 1999): 

 Poor placement of septic leach fields can feed partially treated waste water into a 

drinking water source. Leach fields are part of the septic system for land based tanks 

and include an area where waste water percolates through soil as part of the treatment 

process. 

 Badly constructed percolation systems may allow water to escape without proper 

treatment. 

 System failure can result in clogging and overflow to land or surface water. 

 High density placement of tanks, as in suburban areas, can result in regions containing 

very high concentrations of waste water. This water may seep to the land surface, run-

off into surface water or flow directly into the water table. 

There are also site specific environmental factors around the tank and leach field such as soil 

properties, water table location, subsurface geology, climate, and vegetation which may affect 

the quality and quantity of released waste water. 
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2.2.1.3 Leakage from Sewer Lines 

Effluent that leaks from sewer lines is generally untreated raw sewage. It may contain 

industrial waste chemicals. When leaking sewer lines are located deep underground below the 

biologically active portion of the soil, the sewage can enter groundwater directly. This can 

result in the introduction of chlorides, microorganisms, organics, trace metals and other 

chemicals that may cause disease and foul tastes or odours in drinking water. Sewer leaks can 

occur from tree root invasion, soil slippage, seismic activity, loss of foundation due to 

washout, flooding and sewage back up, among other events. High pressure systems will push 

leaks to the soil surface where they can be easily detected by sight or odor. Systematic 

inspection of sewer lines, exclusion of hazardous waste, and adherence to modern 

construction and maintenance specifications are necessary preventative measures for 

protection of groundwater sources from sewer leaks (Eiswirth & Hotzl 1997). 

2.2.1.4 Land Application of Partially Treated Waste Water and Municipal Sludge 

Sludge is the residue of the chemical, biological, and physical treatment of municipal and 

industrial wastes. It can be applied to land as fertilizer or as fill. Land application is an 

alternative to incineration, which causes air pollution. Sludge usually contains concentrated 

organic matter, nitrogen, inorganic salts, heavy metals, and bacteria. It is a common practice 

to use partially treated waste water for fertilization, irrigation, and water supply recharge as an 

alternative to direct discharge into waterways. Waste water is also commonly stored in wells, 

holes, trenches, open pits and lagoons. Movement and percolation of waste water through the 

soil biologically and physically removes biodegradable substances, pathogenic organisms, and 

inorganic substances (Gerba & Smith 2005; Okoh et al. 2007). The effectiveness of this 

treatment depends upon:  

 Processing or turnover time: Waste water must spend a sufficient amount of time on 

or within the soil to allow for filtration and biological processes to degrade the waste. 

If sufficient time is not allowed for these treatment processes to bring down 

contaminant levels before introducing waste water to a water system, contamination 

will occur. 

 Excess waste water and high concentrations of contaminants in the waste water: High 

concentrations of waste can take much longer to treat, especially when the consistency 

reaches that of a slurry or sludge. On the other hand, irrigation of soil with large 

quantities of waste water will saturate the soil and overload the biological degradation 
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process. Excess untreated waste water can run off or percolate down to groundwater, 

causing contamination of drinking water supplies. 

 Level of biological processing: Lack of appropriate microbial activity can slow the 

degradation process or provide insufficient treatment. Bacteria which break down 

wastes without the use of oxygen, known as anaerobic bacteria, are very important in 

the process of breaking down nitrogen containing substances. Aerobic bacteria, which 

use oxygen, break down organic waste. Some of the breakdown products include 

water, carbon dioxide, methane gas, nitrates and other small organic and inorganic 

substances.  

In order to prevent microbial contamination of drinking water sources by sewage disposal 

system, the following measures are recommended 

 Implement proper planning for sewage systems within the watershed.  

 Ensure septic systems are inspected and serviced on a regular basis.  

 Promote public education on how to care for a septic system. 

2.2.2 Agriculture  

Non-point sources of pollution from agricultural endeavours have been identified as the 

greatest contributors to water quality degradation. In order for transmission of agricultural 

pathogens to humans to occur through contaminated water the pathogen must be excreted by 

livestock, must reach the waterway in a viable form, must remain viable and virulent in the 

environment, and the concentration of the pathogen must be sufficient to cause infection when 

encountered by humans. Runoff carrying animal waste from barnyards, manure storage areas, 

dairy farms, poultry farms, pig farms, pastures, and the land application of manure is a 

significant source of microbial contamination (Baudisova 2009; Edge et al. 2012; Gerba & 

Smith 2005).  

The best management practices include storing liquid manure in sealed bottom facilities, 

applying manure to fields only when ground is thawed, following appropriate application 

rates and timing, maintaining buffer strips between agricultural fields and waterways, fencing 

animals away from waterways, installing subsurface drainage tiles around agricultural fields, 

and preventing runoff from farmyards (Baudisova 2009).  
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2.2.3 Storm water Runoff 

One of the overriding issues associated with the delivery of microbes to surface waters is 

nonpoint source pollution, and more specifically, storm water runoff from sub urban area. 

Rainwater and snowmelt flow over the land picking up pollutants and deposit them into water 

supplies. Runoff can also pick up microbial contaminants from suburban environments such 

as pet waste on sidewalks (Geldreich 1989; He et al. 2010; Karlaviciene et al. 2009; Sidhu et 

al. 2013).  

 Minimize impervious surfaces within your watershed.  

 Install catch basins and settling basins to slow down flows and filter out 

contaminants.  

 Use landscaping techniques that conserve water and limit runoff such as native 

plants, low maintenance grasses, shrubs, rock gardens, etc.  

 Require the proper removal and disposal of pet waste.  

2.2.4 Wildlife 

Wildlife is an integral part of a balanced watershed. However, birds and mammals can 

introduce microorganisms into a water supply either through direct contact or from watershed 

runoff. Giardia, cryptosporidium, salmonella, campylobacter, and Escherichia coli (E.coli) 

are the most commonly identified microorganisms found in mammals and birds. Wildlife 

commonly associated with microbial contamination of drinking water supplies include: deer, 

beavers, muskrats, gulls, and geese (Bishop et al. 2000; Cimenti et al. 2007).  

The following protection measures should not be implemented without a good understanding 

of the nuisance wildlife population in question. These protection measures should not be 

considered as general practice but should be carefully deployed in specific areas of a water 

supply protection area, for example, near an intake or in areas where a nuisance wildlife 

population is concentrated (Ritter et al. 2002).  

 Monitor wildlife populations in and around water supplies.  

 Keep up a daily human presence along the shoreline.  

 Employ scare techniques such as pyrotechnics.  

 Modify habitat (shoreline fencing, mowing, landscaping changes, and tree branch 

pruning to reduce bird roosting).  

 Prohibit the public from feeding wildlife, especially waterfowl.  
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 Reduce food sources such as palatable plant species.  

 Keep beavers and muskrats from building dams/dens by installing fencing or 

drainage devices.  

 Consider permitted trapping or hunting.  

2.3 Microbial water quality Monitoring 

Monitoring microbial water quality has been conducted for more than a century by measuring 

indicator bacteria that occupy human intestinal systems, primarily fecal coliforms, 

Escherichia coli, and some Enterococci. Technological advances described in provide new 

opportunities for revising these monitoring procedures. Our increased understanding of 

microbiology at the molecular level allows existing indicators to be measured using faster and 

cheaper methods. These advances also provide cost-effective opportunities for measuring new 

indicators or combinations of indicators, and in some cases, pathogens themselves (Devereux 

et al. 2006).  

2.3.1 Indicator microorganism 

The number and variety of microbial agents that might be present in source water is 

considerable. The routine monitoring for all the possibilities is either impossible or 

impractical. The solution to the problem has been the use of indicator microorganisms that 

would be present when potential pathogen containing material was present. Indicator 

organisms are microorganisms whose presence in water indicates probable presence of 

pathogens (disease-causing organisms). Ideally, such microorganisms are non-pathogenic, 

occur consistently in pathogen-contaminated water, do not multiply in waters, are reliably 

detectable even at low concentrations, rapidly detected, easily enumerated, have survival 

characteristics that are similar to those of the pathogens of concern, and are present in greater 

numbers than and have similar survival times to pathogens (Scott et al. 2002). It should be 

emphasized that the presence of indicator bacteria does not mean the water contains 

pathogenic microorganisms but rather the potential exists for the presence of pathogens since 

the indicator bacteria point to the presence of fecal material in the sample. In addition, the 

number of pathogens that might be associated with the concentration of the indicator will be a 

function of the disease incidence in the community at the time the fecal material was 

disposed. The indicators microorganisms used to analyse water quality are Total viable count 

“Kimtall”, Coliforms, Escherichia coli, Enterococci, and Clostridium perfringens were 

chosen because of their efficacy at predicting pathogen presence, and have higher resistance 
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to environmental stresses and disinfection. Definition of some indicator microorganisms that 

are included in this study is as follows (folkehelseinstitutt 2004; Hirata et al. 1991); 

2.3.1.1 Total viable count "Kimtall" 

Waters of all kinds invariably contain a variety of microorganisms derived from various 

sources such as soil and vegetation and estimation of the overall numbers provide useful 

information for the assessment and surveillance of water quality. Total Viable Count (TVC) 

gives a quantitative idea about the presence of microorganisms such as bacteria, yeast and 

mold in the water sample. In Norway, the method refers to "Kimtall" and the colony count at 

22 °C is a measure of bacteria, yeast and mold that naturally belongs in soil and water and the 

count actually represents the number of colony forming units. 

2.3.1.2 Coliform bacteria 

Coliform bacteria are organisms that are present in the environment and in the feces of all 

warm-blooded animals and humans. Coliform bacteria will not likely cause illness. However, 

their presence in drinking water indicates that disease-causing organisms (pathogens) could be 

in the water system. Most pathogens that can contaminate water supplies come from the feces 

of humans or animals. If coliform bacteria are found in a water sample, water system 

operators work to find the source of contamination and restore safe drinking water. There are 

three different groups of coliform bacteria; each has a different level of risk. Total coliform, 

fecal coliform, and E. coli are all indicators of microbial water quality. The total coliform 

group is a large collection of different kinds of bacteria. Fecal coliforms are types of total 

coliform that mostly exist in feces. E. coli is a sub-group of fecal coliform. Some of these 

bacteria can grow during decomposition of plant residues in the soil, and some of the plant 

material in water. Generally the growth of these bacteria in the soil and water are best at 

temperature below 40 °C. The analysis of coliform bacteria is often takes place at 37 °C. 

2.3.1.3 Escherichia coli 

Escherichia coli (E. coli) bacteria normally live in the intestines of people and animals. It is 

gram-negative, facultative anaerobic, rod-shaped bacterium that is commonly found in the 

lower intestine of warm-blooded organisms. Most E. coli are harmless and actually are 

an important part of a healthy human intestinal tract. However, some E. coli are pathogenic, 

meaning they can cause illness, either diarrhea or illness outside of the intestinal tract. The 

types of E. coli that can cause diarrhea can be transmitted through contaminated water or 

food, or through contact with animals or persons. Still other kinds of E. coli are used as 
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markers for water contamination, which are not themselves harmful, but indicate the water is 

contaminated. It is the most appropriate group of coliforms to indicate faecal pollution from 

warm-blooded animals. 

2.3.1.4 Clostridium perfringens 

Clostridium perfringens is a bacterium that grows in the absence of oxygen; it is gram-

positive, spore-forming and anaerobic bacterium. It is included in the feces of humans and 

animals, but in much smaller quantity. These spores survive very long in waters. If a 

watercourse or groundwater source has been applied feces from humans or animals, the 

spores will always be detected. Most of these bacteria have natural habitat in soil and 

sediment in the water, but can cause disease in humans and animals that get them out. Some 

of them can also grow in foods and cause illness. Spores can withstand more adverse 

environment, heat and disinfectants than the active (vegetative) bacteria do. 

2.3.1.5 Intestinal enterococci  

Intestinal Enterococci: are a subgroup of the larger group of organisms defined as faecal 

streptococci, comprising species of the genus Streptococcus. These bacteria are Gram-positive 

and relatively tolerant of sodium chloride and alkaline pH levels. They are facultative 

anaerobic and occur singly, in pairs or as short chains. Faecal streptococci including intestinal 

enterococci all give a positive reaction with Lancefield’s Group D antisera and have been 

isolated from the faeces of warm-blooded animals. The subgroup intestinal enterococci 

consist of the species Enterococcus faecalis, E. faecium, E. durans and E. hirae. This group 

was separated from the rest of the faecal streptococci because they are relatively specific for 

faecal pollution. However, some intestinal enterococci isolated from water may occasionally 

also originate from other habitats, including soil, in the absence of faecal pollution. 

2.4 Microbial water quality modelling 

Due to regional and national legislation on water quality and to protect human health, the 

microbial pollution of catchments is an issue that requires increased attention and analysis. 

However, the management of microbial pollution sources at catchment scale is challenging 

(Jamieson et al. 2004). Analysis tools must be developed to properly evaluate alternate 

management practices and to predict water quality improvements at the catchments scale. 

Microbial water quality models can be useful tools to simulate and predict the levels, 

distributions, and risks of microbial pollutants in a given catchment scale and water body. The 

modeling results from these models under different pollution scenarios are very important 
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components of environmental impact assessment and can provide a basis and technique 

support for environmental management agencies to make right decisions (Pullar & Springer 

2000). 

The wide variety of waterborne pathogens that contaminate water and the lack of quantitative 

data concerning their origin and distribution within drinking water catchments have made the 

development of predictive models of pathogen loads from catchments difficult (Ferguson et 

al. 2005). A comprehensive understanding of the problem requires that watershed factors, 

including climatic conditions, hydrologic parameters, and site-specific parameters be 

considered in combination with anthropogenic factors (Coffey et al. 2007). 

Available models for waterborne pathogens were evaluated and assessed based on a number 

of set criteria including: type of model (qualitative or quantitative); treatment of input 

variables (stochastic or deterministic); use of input data (vector or raster); ability to 

incorporate various input factors; ability to produce output facilities; and overall model 

functionality. Specific criteria including land use, meteorological conditions, and 

soil/geological characteristics were regarded as key risk factors for source water catchment 

contamination with microbial pathogens and model ability to adequately account for these 

were considered as important individual parameters when assessing available models (Coffey 

et al. 2007).  
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3. MATERIALS AND METHODS 

3.1 Glomma River basin 

The Glomma River (Fig 1) is Norway’s largest river. It is located in South Eastern Norway 

where it covers 41,200 km2
 (13% of Norway’s total area). The north-western parts consist of 

high mountain areas. The eastern part is covered by forest, whereas the central and southern 

parts comprise large agricultural areas. In total the agricultural area covers 5.8% of the 

catchment. The Glomma river basin contains Lake Mjøsa, the Norway’s largest lake, which 

has a surface area of 350 km2. The river mean annual flow at Solbergfoss (outlet of Lake 

Øyeren, the lowermost reservoir) is 700 m3/s. The flow normally varies during the year from 

150 to 3500 m3/s. The river Glomma catchment comprises approximately 675,000 inhabitants. 

There are 8 cities, in which half of the population lives. Hydropower production is an 

important water use. In the Glomma catchment there are 45 hydropower stations and 26 

hydropower reservoirs (Grizzetti B. 2007). 

3.2 Data set 

This study is based on the records of five microbial raw water quality parameters namely, 

total viable count "Kimtall" (TVC), clostridium perfringens, intestinal enterococci, 

Escherichia coli, and coliform bacteria, whose concentration were monitored at Nedre 

Romerike Vannverk (NRV) drinking water treatment plant in Furuhaugli Mountain at 

Strømmen, Norway. The report includes weakly records of raw water microbial load for 

Escherichia coli, and coliform bacteria from 1999 to 2013, for intestinal enterococci from 

2002 to 2013, and for total viable count "Kimtall" and clostridium perfringens from 2005 to 

2013. However, some records are missing and during analysis, the missing values treated as a 

missing data (not filled with mean or neighborhood values). In addition to these, 16 months 

record of virus concentration from the same raw water source were taken by Norwegian 

School of Veterinary Science through the Reduced Vulnerability to Waterborne Viral 

Infection (VISK) project and incorporated in this study. The record include Adeno virus (85 

observations), Noro virus G1 (Genome-1, 71 observations), Noro virus G2 (Genome-2, 62 

observations).  

The selections of explanatory variables are based both on the theory and availability of data. 

Since the microbial pathogen concentration in the raw water reflects the overall 

conduciveness of the environment for the indicator and pathogenic microorganisms, it can be 
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explained by the physico-chemical condition of the environment, according to the theoretical 

basis (Crowther et al. 2001). First, in order to reflect the aspect of the environment, raw water 

temperature, rainfall, pH, turbidity, electrical conductivity, colour and total organic carbon are 

selected to represent the physico-chemical indicators of the environment. Secondly, in order 

to track the source area association with the microbial load, five tributary river discharge 

gauging station records also included. All regression analysis and graphical presentations in 

this study were performed by Addinsoft’s XLSTAT 2012 Statistical Software.  

 

Figure 1 Study catchment showing Glomma River and main tributaries, discharge gauging 

stations, and NRV water treatment plant (Base map source: (Grizzetti B. 2007)). 

3.3 Multiple Linear Regression Analysis 

Descriptive statistics was used to describe the basic features of the data set in the study. 

Correlation analysis was used to examine the relations between microbial pathogen load and 

environmental and physico-chemical water-quality variables. A linear correlation coefficient 

(Pearson’s r) was used to determine the degree to which variables were related to covariates. 

The more the coefficient differed from 1 or -1 (close to zero), the weaker the relation. 
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Multiple linear regression models are used to study the linear relationship between a 

dependent variable and several independent variables by fitting a linear equation to observed 

data samples (Coelho-Barros et al. 2008). The generic form of the linear regression model is 

 ...
0 1 1 2 2

y x x xi ii i k ki
          ,   i =1,2,...N    (1) 

Where y is the dependent variable, x1, x2..., xk are the independent or explanatory variables, 

and i index the n sample observations, the term ɛ is a random error term. The fitting is 

performed by minimizing the sum of the squares of the vertical deviations from each data 

point to the line that best fits for the observed data (Agirre-Basurko et al. 2006; Ferraro & 

Giordani 2012; Kovdienko et al. 2010). We have employed a stepwise regression procedure to 

select the independent variables that would result in the best possible model, while at the 

same time ensuring statistical significance of the results. The t-statistics was used to test 

whether a particular variable contributes significantly to the regression model or not so as to 

eliminate statistically insignificant variables. The level of significance (α) for the inclusion of 

a variable in the model was 0.05. For the coefficient bj of the j variable, H0: bj = 0 and Ha: bj ≠ 

0. This t statistic can be formed as   

 
j

bj

b
t

s
           (2) 

where Sbj is the standard deviation of the respective coefficient bj (Vounatsou & Karydis 

1991). The F-ratio, which is computed from the mean squared terms in the Analysis of 

variance (ANOVA) table, estimates the statistical significance of the regression equation. The 

F-ratio is given by 

 
MSR

F
MSE

           (3) 

where MSR mean square error of regression and MSE mean square error of the residuals 

(Kufs 1992; Pugh et al. 2001). 

3.4 Evaluation of the models 

To evaluate the models we used statistical performance measures, which is included: 

coefficient of determination (R
2
), Adjusted R

2 
(

adj
2R ), mean square error (MSE), root mean 

square error (RMSE), Akaike’s Information Criteria (AIC), and Schwarz Bayesian Criteria 

(SBC). The definitions of the statistical measures of the goodness of fit used herein are the 

following: 
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SSE2R  = 1 -
SST

          (4) 

 
( )2 1
( )

n i SSE
R

adj n k SST


 


        (5) 

 MSE=
SSE

n k
          (6) 

 
SSE

RMSE
n k




         (7) 

 
SSE

AIC = *ln( ) + 2kn
n

        (8) 

  
SSE

SBC=n*ln( ) + k ln n
n

         (9) 

Where SSE is the sum of squared errors, SST is total sum of squares, n is number of 

observations, k is the number of independent variables, ln is natural logarithm (Archer & 

Lemeshow 2006; Bedrick & Crandall 2010; Fagerland & Hosmer 2013; Kieseppa 2001; 

Naidu et al. 2012; Shih 1998; Stone 1979; Yang et al. 2011).  

3.5 Checking Multiple Linear Regression Assumptions 

In order to use the proposed multiple regression analysis, it is necessary to test and verify that 

the proposed equation satisfies the assumptions. Assumptions of multiple linear regression 

tested in this study to validate the proposed multiple regression analysis are: (1) 

homoscedasticity (Constant variance), nonautoregression (randomness of residuals), 

nonstochastic (errors are uncorrelated with the individual predictors), normality of the error 

distribution, were examined by plotting of the residuals against predicted values (2) 

multicollinearity among predictor variables were tested by Variance Inflation Factor (VIF) 

described in 

 
1

21
VIF

J
R

J Others




        (10) 

Where 2R
J Others

 is multiple coefficient of determination between xij and all xi  (Ukoumunne 

et al. 2002) 
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4. RESULTS AND DISCUSSION 

Multiple linear regression analysis is one of the modelling techniques that enable us to depict 

relationships between microbial raw water quality and physico-chemical properties by fitting 

a linear equation to the observed data set. In this study, an attempt has been made to establish 

multiple linear regression equations to provide a prediction of microbial load in the raw water 

based on the physico-chemical parameters.  

Analyses for the presence of waterborne pathogens are extremely difficult and complicated 

because some pathogens cannot be cultured in the laboratory, or may be injured after 

exposure to stressful environments. As a result, indicator microorganisms are widely used to 

detect possible contamination. The study was conducted based on indicator microbial load 

which contain Total viable count "Kimtall", coliform bacteria, Escherichia coli, clostridium 

perfringens, and intestinal enterococci. In addition, direct monitored microbial pathogens 

load, namely, Noro virus, and Adeno virus were also incorporated.  

The summary of descriptive statistics of the results of the analysis is presented in Table 1, 

indicating the mean, standard deviation, variance, skewness, kurtosis, minimum, 1st quartile, 

median, 3rd quartile, and maximum value. Total viable count "Kimtall" recorded the highest 

mean value of 1062 per ml while clostridium perfringens the list value of 6.6 per 100 ml. The 

descriptive statistical result shows that the variation of records for Total viable count and 

intestinal enterococci was high and the distribution of intestinal enterococci was skewed as 

compare with the other microbial record data. The raw water temperature in the plant ranged 

from 0.9 to 21.5 
o
C, while the pH, turbidity, conductivity, colour and total organic carbon 

varied from 5.7 to 7.8, 0.1 to 570 NTU, 1.3 to 9.2 mS/m, 3 to 87 mg pt/l, and 1 to 8.8 mg C/l 

respectively. A wide range of turbidity can be explained by the variation in runoff generated 

from different land use with a high tendency of washing microbial pathogens from different 

sources. 
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Table 1 Descriptive statistics of explanatory variables and raw water microbial load used for modelling 

Variable N Mean StDev Variance Skewness Kurtosis Min Q1 Median Q3 Max 

Rånåsfoss (m
3
/s) 411 705 375 140644 1.16 1.10 136.4 425.7 592.9 897.3 2451.2 

Blaker (m
3
/s) 341 646.7 325.2 105780 1.51 3.74 98.1 425.8 567.9 789.2 2471.9 

Funnefoss o.vann (m
3
/s)          547 367.0 190.7 36364 0.84 0.91 125.3 191.2 336.2 502.3 1243.7 

Ertesekken ndf. (m
3
/s)           492 355.1 200.9 40386 1.29 1.36 63.3 207.8 301.0 441.0 1110.5 

Vorma (m
3
/s) 385 272.6 244.7 59901 1.13 1.22 61.7 153.0 216 280.3 1153.4 

Raw water Temperature (
o
C)   315 8.4 5.8 34 0.35 -1.2 0.9 2.7 7.4 13.4 21.5 

Rainfall (mm) 462 1.13 1.86 3.45 1.73 1.98 0.0 1.1 2.1 3.8 8.5 

pH     531 7.1 0.3 0.10 -1.3 2.96 5.7 6.9 7.1 7.2 7.8 

Turbidity (NTU)            530 4.6 25.7 662.1 20.36 443.5 0.1 1.1 1.9 3.4 570 

Conductivity (mS/m)        527 4.2 0.8 0.69 0.26 4.68 1.3 3.9 4.3 4.6 9.2 

Colour (mg Pt/l)           546 29.4 12.7 162.6 1.26 1.59 3.0 21.0 5.0 35.0 87.0 

Total Organic Carbon (mg C/l)  287 4.1 1.3 1.78 0.80 0.60 1.0 3.0 3.8 4.9 8.8 

Total viable count - v/22°C (count/ml) 298 1062 1764 3110893 3.9 20.2 1.0 200 420 1100 14000 

clostridium perfringens (count/100ml)   302 6.6 6.8 46.6   3.1 16.6 1.0 1.0 5.0 9.0 59.0 

intestinal enterococci (count/100ml)  456 71.2 938.5 880797 20.7 437.3 1.0 2.0 7.0 19.0 1986 

Escherichia coli (count/100ml)    547 41.6 46.6 2168 4 34.2 1.0 10.0 30.0 55.0 579 

coliform bacteria (count/100ml)   547 243.3 374.2 140023 5.2 35.1 1.0 78.0 160 260 4106 

Adeno virus (count) 85 85.6 157.1 24669 3.5 14.5 0.09 4.0 26.6 100 977.8 

Noro virus (g1) (count) 71 26.5 35.5 1260 2 3.6 0.23 4.8 11.9 28.5 148.8 

Noro virus (g2) (count) 62 102.1 134 17945 1.7 2.3 0.18 11.4 38.9 155.7 525 
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Correlation analysis was used to examine the relations between physico-chemical variables 

and microbial water quality variables. A linear correlation coefficient (Pearson’s r) was used 

to detect the degree of association that exists between the variables. In this study, the 

numerical values of the correlation coefficient, r for microbial water quality parameters and 

physico chemical variables are tabulated in Table 2. Highly positive correlation between the 

response variable and the predictor variables are found between intestinal enterococci and 

turbidity (r = 0.45, p<0.01), Escherichia coli and turbidity (r = 0.52, p<0.01), clostridium 

perfringens and conductivity (r = 0.41, p<0.01), total viable count "Kimtall" and colour (r = 

0.36, p<0.01), coliform bacteria and turbidity (r = 0.26, p<0.01), Adeno virus and 

conductivity (r = 0.47, p<0.01), Noro virus G1 and conductivity (r = 0.54, p<0.01), and Noro 

virus G2 and conductivity (r = 0.49, p<0.01). The negative correlation between river 

discharge and microbial water quality ranges from -0.01 to -0.32 and could be explained by 

the dilution effect of the discharge volume. Also, negative correlations were observed 

between microbial water quality and raw water temperature that ranges from -0.06 to -0.40. 

One can explain that the lowest temperature is more favourable for microbial pathogen 

growth than highest temperature for the observed temperature range. The highest correlation 

among the predictor variables was observed between total organic carbon and colour (r = 

0.78), river discharge and raw water temperature (r ranges from 0.61 to 0.84), river discharge 

and conductivity (r ranges from -0.28 to -0.58), pH and conductivity (r = 0.51). In this 

modelling, only one of the highly correlated explanatory variables was considered in order to 

avoid the replication of the same tendency predictor variable. 

Logarithmically transformed variables in a regression model is a very common means of 

transforming a highly skewed variable into one that is more approximately normal so as to  

improve the overall multiple linear regression model. In this study, all microbial pathogen 

load response variables data sets were transformed into Log (10) after they had been tested 

without transform with unsatisfactory. In the modelling of the microbial load response 

variable, twelve predictor variables were accounted for: river discharge from different 

tributaries gauging stations of Glomma River, namely, Rånåsfoss, Blaker, Funnefoss, 

Ertesekken ndf, Vorma; and also raw water temperature, rainfall, pH, turbidity, conductivity, 

colour, total organic carbon.  
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Table 2 Correlation coefficients (r) among explanatory variables and raw water microbial load  

 Rån Bla Fun Ert Vor Tem Rain pH Tur Con Colo T.Ca Kim C.Pe I. En Eco C.ba 

Rånåsfoss  1                 

Blaker  0.93 1                

Funnefoss   0.83 0.83 1               

Ertesekken ndf      0.76 0.68 0.61 1              

Vorma 0.79 0.76 0.72 0.81 1             

Temperature  0.61 0.79 0.75 0.69 0.84 1            

Rainfall 0.42 0.33 0.20 0.29 0.39 0.29 1           

pH     0.05 -0.32 -0.35 -0.29 -0.15 0.21 0.11 1          

Turbidity  -0.01 0.18 0.39 0.17 0.25 0.02 0.07 -0.13 1         

Conductivity  -0.28 -0.55 -0.58 -0.51 -0.49 -0.16 -0.19 0.51 0.16 1        

Colour  0.22 0.34 0.26 0.19 0.21 -0.16 0.01 -0.16 0.04 -0.23 1       

Total OR. Carbon  0.27 0.33 0.23 0.37 0.29 0.06 0.03 -0.24 0.10 -0.28 0.78 1      

TVC “Kimtall” -0.03 -0.05 -0.12 -0.09 -0.12 -0.15 -0.19 0.24 0.20 0.21 0.36 0.17 1     

C. perfringens -0.19 -0.01 0.03 -0.12 -0.22 -0.28 -0.02 0.22 0.23 0.41 0.34 0.06 0.60 1    

Int. enterococci -0.04 -0.11 0.19 -0.03 -0.16 -0.19 -0.01 -0.08 0.45 0.13 0.22 -0.07 0.50 0.44 1   

Escherichia coli -0.19 -0.09 -0.01 0.02 0.04 -0.40 -0.11 0.11 0.52 0.34 0.21 0.07 0.48 0.54 0.53 1  

Coliform bacteria -0.08 -0.02 -0.16 0.09 -0.18 -0.06 -0.10 0.11 0.26 0.23 0.13 0.05 0.39 0.33 0.26 0.55 1 

Adeno virus -0.29 -0.09 -0.11 -0.19 -0,24 -0.16 -0.24 -0.23 -0.04 0.47 0.01 0.02 - - - - - 

Noro virus (g1) -0.20 0.11 -0.08 -0.18 -0,30 -0.27 -0.10 -0.10 -0.32 0.54 0.12 0.12 - - - - - 

Noro virus (g2) -0.23 0.19 -0.13 -0.16 -0.32 -0.32 -0.17 0.04 -0.36 0.49 0.06 0.09 - - - - - 
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In determining what model would be appropriate in predicting the microbial pathogen load in 

the raw water, the interaction of the response variable with all predictor variables was 

considered. A stepwise regression method was applied to select the best possible fitted 

multiple linear regression model having all the variables of interest already in the processes of 

selection. In order to test the significance of each interaction of predictor variables, t-test was 

carried out to test the null hypothesis that the interaction term being tested has no effect on the 

model against the alternative hypothesis that the interaction term has an effect on the model. 

Then the t-value was calculated for each parameter estimate, and if the probability associated 

with each t-value is over an alpha level of 0.05 (standard arbitrary p-value chosen in 

statistics), then the interaction term is insignificant and the variable is not considered in the 

model. The t-test eliminates the least significant interaction variable and leaves the model 

with significant variables that have more association with the response variable. The t-test 

results show that all regression coefficients are significant (P-value < 0.05). The least square 

regression coefficients, the standard errors, the t-values and the level of significance for 

rejecting null hypothesis for each selected variable are given in Tables 3. From these 

relationships, it is inferred that the regression analysis has led to the formulation of the 

following multiple linear regression equations for each microbial pathogen load in the raw 

water: 

 Log Kimtall = -4.807 + 0.871*pH + 0.011*Funnefoss + 0.717*Conductivity +  

          0.050*Colour 

 Log Clostridium perfringens = -2,68 -0.003*Rånåsfoss + 0.837*Turbidity +   

                 1.944*Conductivity + 0.077*Colour 

 Log Escherichia coli = 1,633 - 0.078*Raw water temperature + 0.029*Turbidity +  

             0.489*Conductivity + 0.014*Colour 

 Log Coliform bacteria = 0.133 - 0.010*Turbidity + 0.434*Conductivity +   

                        0.011*Colour 

 Log Intestinal Enterococci = -2.428 - 0.033*Raw water temperature - 0.034*Turbidity 

        + 0.977*Conductivity + 0.028*Colour 

 Log Adeno virus = 12.027 - 1.840*pH - 0,132*Rain fall + 0,449*Conductivity 

 Log Noro virus (g1) = 5.543 - 1.023*pH + 0.554*Conductivity 

 Log Noro virus (g2) = 0.046 - 0.326*Turbidity + 0.421*Conductivity - 0.029*Raw  

         water temperature   
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Table 3 Coefficients of regression 

Response Variable Predictors Coefficient Standard error t Pr > |t| 

TVC “Kimtall” 

 

 

 

 

Constant -4,807 1,635 -2,941 0,004 

pH 0,871 0,270 3,220 0,001 

Funnefoss o (m
3
/s) 0,011 0,001 2,776 0,006 

Conductivity (mS/m) 0,717 0,110 6,515 < 0,0001 

Colour (mg Pt/l) 0,050 0,006 8,564 < 0,0001 

Clostridium perfringens  

 

 

 

Constant -2,683 5,748 -0,467 0,642 

Rånåsfoss (m
3
/s) -0,003 0,001 -2,682 0,008 

Turbidity (NTU) 0,837 0,156 5,347 < 0,0001 

Conductivity (mS/m) 1,944 1,134 1,714 0,45 

Colour (mg Pt/l) 0,077 0,032 2,379 0,019 

Escherichia coli  
 

 

 

Constant 1,633 0,500 3,267 0,001 

R.water_temprature (oC) -0,078 0,009 -9,074 < 0,0001 

Turbidity (NTU) 0,029 0,012 2,368 0,019 

Conductivity (mS/m) 0,489 0,095 5,146 < 0,0001 

Colour (mg Pt/l) 0,014 0,004 3,707 0,000 

Coliform bacteria  
 

 

Constant 0,133 0,192 0,690 0,491 

Turbidity (NTU) -0,010 0,004 -2,264 0,025 

Conductivity (mS/m) 0,434 0,041 10,679 < 0,0001 

Colour (mg Pt/l) 0,011 0,002 4,589 < 0,0001 

Intestinal enterococci  
 

 

 

Constant -2,428 0,563 -4,309 < 0,0001 

R. water_temprature (
o
C) -0,033 0,017 -1,952 0,043 

Turbidity (NTU) -0,034 0,008 -4,261 < 0,0001 

Conductivity (mS/m) 0,977 0,117 8,354 < 0,0001 

Colour (mg Pt/l) 0,028 0,008 3,637 0,000 

Adeno Virus 

 

 

 

Constant 12,027 4,319 2,785 0,007 

pH -1,840 0,650 -2,830 0,006 

Rain fall (mm) -0,132 0,037 -3,597 0,001 

Conductivity (mS/m) 0,449 0,108 4,175 < 0,0001 

Noro_G1 

 

 

Constant 5,543 2,624 2,112 0,039 

pH -1,023 0,353 -2,900 0,005 

Conductivity (mS/m) 0,554 0,099 5,596 < 0,0001 

Noro_G2 

 

 

 

Constant 0,046 0,769 0,060 0,953 

Turbidity (NTU) -0,326 0,070 -4,666 < 0,0001 

Conductivity (mS/m) 0,421 0,130 3,232 0,002 

R.water_temprature (
o
C) -0,029 0,015 -1,925 0,049 

 

From the ANOVA (Table 4), we can see that F value ranges from 15.617 (Adeno virus) to 

63.466 (E coli) and significant at p < .0001 for all models. This provides evidence of the 

existence of a linear relationship between the response (microbial pathogen load) and the 

explanatory variables (physico-chemical factors). This means that, the regression model we 

have constructed is well determined by the factors. 
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The other important topic that needs to be discussed in this modelling process is 

multicollinearity, the problem when one independent variable is correlated with another 

independent variable that results in an imprecision in the calculated parameter estimates. The 

problem of multicollinearity can be handled by looking at variance inflation factors (VIF). 

Those independent variables with VIF > 10 (standard VIF value chosen in statistics), are 

considered as having a problem of multicollinearity. If less multicollinearity is not significant 

enough and ignored. Since Table 5 shows that the VIF for all variables are less than 10, we 

can reasonably assume that our explanatory variables are not too strongly correlated so that it 

might increase our confidence in understand that how our individual variables affect our 

response variable. 

Table 4 ANOVA for regression 

Response Variable Source DF Sum of squares Mean squares F Pr > F 

Total viable count 
“Kimtall” 

Regression 4 315,616 78,904 55,442 < 0,0001 

Residual 302 429,802 1,423 

 

  

Total 306 745,418 

  

  

Clostridium perfringens  

  

Regression 4 1196,010 299,002 19,961 < 0,0001 

Residual 112 1677,649 14,979 

 

  

Total 116 2873,658 

  

  

Escherichia coli  
  

Regression 4 116,722 29,180 63,466 < 0,0001 

Residual 245 112,647 0,460 

 

  

Total 249 229,368 

  

  

Coliform bacteria  

  

Regression 3 15,078 5,026 40,605 < 0,0001 

Residual 131 16,215 0,124 

 

  

Total 134 31,293 

  

  

Intestinal enterococci  
  

Regression 4 110,886 27,722 22,072 < 0,0001 

Residual 123 154,485 1,256 

 

  

Total 127 265,371 

  

  

Adeno Virus 

  

  

Regression 3 15,149 5,050 15,617 < 0,0001 

Residual 70 22,634 0,323 

 

  

Total 73 37,783 

  

  

Noro_G1 

  

  

Regression 2 6,936 3,468 24,053 < 0,0001 

Residual 60 8,652 0,144 

 

  

Total 62 15,588 

  

  

Noro_G2 

  

  

Regression 3 12,945 4,315 19,039 < 0,0001 

Residual 55 12,465 0,227 

 

  

Total 58 25,410 

  

  

The most commonly used criterion to evaluate model performance is coefficient of 

determination (R
2
); however R

2
 only tell us  how good the model fits with the data used to 

build the models not beyond the extent of the data set. The R
2
 vale in this study ranges from 

0.40 to 0.51 (Table 6) and it indicates how much of the variability in microbial load in the raw 
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water is explained by the independent variables used in the model. The other criteria is 

adjusted R
2
 that also account for the number of explanatory terms that are used in the model. 

The Mean Square Error (MSE) and Root Mean Square Error (RMSE) measure the residual 

error which gives an estimate of the mean difference between observed and modeled values of 

microbial load are relatively low and increase our confidence in the capability of the model.  

Table 5 VIF values for multicollinearity test 

Response Variable Statistic VIF 

Total viable count 
“Kimtall” 

 

pH 1,766 

Funnefoss o.vann 1,208 

Conductivity (mS/m) 1,788 

Colour (mg Pt/l) 1,176 

  

Clostridium perfringens  

 

  

Rånåsfoss 1,602 

Turbidity (NTU) 1,584 

Conductivity (mS/m) 1,959 

Colour (mg Pt/l) 1,648 

 Escherichia coli  
  

  

Raw water Temperature (
o
C) 1,341 

Turbidity (NTU) 1,311 

Conductivity (mS/m) 1,557 

Colour (mg Pt/l) 1,484 

  

 Coliform bacteria  

 

  

  

Rånåsfoss 1,647 

Raw water Temperature (
o
C) 1,942 

pH 2,915 

Turbidity (NTU) 1,729 

Conductivity (mS/m) 3,316 

Colour (mg Pt/l) 1,066 

Intestinal enterococci   
 

Raw water Temperature (
o
C) 2,118 

Turbidity (NTU) 2,859 

Conductivity (mS/m) 4,588 

Colour (mg Pt/l) 1,543 

 Adeno Virus 

  

ph 1,225 

rain 1,128 

conduct 1,175 

Noro_G1 

  

ph 1,041 

conduct 1,041 

 Noro_G2 

  

turbidity 1,235 

conduct 1,592 

Raw water temperature (
o
C) 1,743 

 

The combination of Akaike’s Information Criteria (AIC) and Schwarz Bayesian Criteria 

(SBC) values, coefficient of determination (R
2
)
 
and adjusted R

2
 values enable us to evaluate 

the best model performance. The smaller the difference between AIC and SBC values with a 

combination of the R
2 

and adjusted R
2
 close to one indicates that the constructed multiple 

regression model is an appropriate method for microbial pathogen load prediction (Aertsen et 
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al. 2010). The low difference between AIC and SBC in most models in this study indicates 

the adequacy of the models in terms of prediction of microbial load based on the independent 

variables.   

Figure 1 shows the graph plotting for observed microbial pathogen load and predicted 

microbial pathogen load with 95 % confidence interval. Some observations from overall 

observations were out of the upper and lower boundary range of 95% confidence interval. 

This is due to great difference between observed and predicted values for some of the 

observations points. Otherwise, as it is observed from the graphs, most of the points are 

within the confidence interval. This proved that these models are able to predict microbial 

pathogen load with reasonable precision.  

Finally, the residuals were plotted as a function of the predicted values as illustrated in Fig. 2. 

Analysing the residuals, there is no pattern in the residuals of each model. This means that 

there is no left over information in the residuals that the model did not account for. And also it 

can be seen from the plots that the residuals are attributed evenly above and below zero this 

means we have nearly constant variance and therefore the models are deemed valid to 

describe the explanatory variables data set.  

Table 6 Goodness of fit statistics of the regression models 

Statistics 

TVC 

Kimtall 

Clostridium  

perfringens E coli 

Coliform  

bacteria 

Intestinal  

enterococci 

Adeno  

Virus 

Noro virus 

G1 

Noro virus 

G2 

R² 0.42 0.42 0.51 0.48 0.42 0.40 0.45 0.51 

Adjusted R² 0.41 0.40 0.50 0.47 0.40 0.38 0.43 0.48 

MSE 1.42 14.98 0.46 0.12 1.26 0.32 0.14 0.23 

RMSE 1.19 3.87 0.68 0.35 1.12 0.57 0.38 0.47 

AIC 113.29 321.6 -189.3 -278.11 34.07 -79.66 -119.08 -83.72 

SBC 131.93 335.4 -171.7 -266.49 48.33 -70.44 -112.65 -75.41 
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Figure 2 Microbial water quality index predicted versus actual observation (95 % CI)
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Figure 3 Residuals versus predicted values 
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CONCLUSION 

We have demonstrated that when intensive and regular microbial water quality monitoring 

become very essential, then, we can estimate the concentration of microbial pathogen in the 

raw water only by observing a few explanatory factors that will save our time, money, and 

resources. Hence, this may be an important, economic method for places which  are  found  to  

be  difficult  in monitoring  all  microbial water  quality  parameters and also when the result 

is required for quick decision making in the water treatment plant. While not perfect, such 

systems provide an excellent coarse level tool for regional or even watershed scale river 

management practices such as visualizing the extent and trend of microbial pathogen load; or 

developing management or regulatory standards.  

The overall aim of the research was to gain an understanding of the factors affecting microbial 

pathogen load in the raw water through the development and application of a multiple linear 

regression model. The results indicated that for each microbial pathogen load, different 

physico-chemical variables could explain from 40 percent to 51 percent of the variation of 

microbial concentration.  

Our models intentionally contained independent variables representing degree of microbial 

pathogen load in the raw water. The developed linear regression models are simple and 

provide best fits to the data set. However, the models’ predictive accuracy can be less than 

desired and they have several obvious weaknesses: 1) the quality of the data set; 2) possibly 

lack of linear relationship between the factors and the dependent variable; and 3) these could 

be important factors not accounted in the models. This might be the first time that drinking 

water treatment plants have examined their microbial pathogen load data set in association 

with different physico-chemical factors in a fairly detailed manner in the river basin. As data 

sources and modelling approaches improve through time, these modelling tools will become 

more and more accurate and valuable. 
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Appendix 1: Validation of the model: predicted and measured values of different microbial load of raw water 
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