STATISTICAL TESTS FOR CONNECTION ALGORITHMS
FOR NEURAL NETWORKS

Daniel Hjertholm

S3ONZIDS 3417 40 ALISHIAINN NVIOIMAUON

ADOTONHOAL ANV S3ONFIOS TVIOILLVINIHLYIN 40 INJIW1YVd3d

Preface

This master thesis, written during the spring of 2013 at the Department of
Mathematical Sciences and Technology, Norwegian University of Life Sciences,
marks the end of my five year study program, Environmental Physics and
Renewable Energy. The aim of this thesis has been to develop statistical test
for some of the main connection algorithms used in neural networks.

The subject of this thesis is located somewhere in the intersection between
the fields of statistics, computer science and neuroscience. I have some basic
training in the first two, but the last one was completely new to me before
I started this work. That was partly why I chose this subject. It was an
opportunity to gain some insight into this exciting field, that is unraveling
the mysteries of the human mind, and might come to shape technology in the
future. Working on this project has been just as educational and interesting
as | had hoped for.

I would like to thank my supervisor, Hans Ekkehard Plesser, and my co-
supervisor, Birgit Kriener, for their guidance along the way, and for always
taking the time to answer my questions thoroughly. Our fruitful conversations
have been of great help. I would also like to thank my parents for their uncon-
ditional love and support throughout my life, and for cheering for me from the
sidelines through this project. Last, but not least, I would like to thank Elina.
You have been very supportive, and always patient, even through the most
stressful times, when I was glued to my computer for hours on end, unable to
tear myself away.

Abstract

Simulations of increasingly sophisticated neural network models have acceler-
ated the progress of neuroscience, but have also led to an increased reliance
on the simulation software. Testing the quality of this software therefore be-
comes important. Here we develop test strategies for some of the most common
probabilistic connection algorithms used in simulators, and implement these
as Python based test suites. We develop approaches to alleviate the problems
of statistical software testing, i.e., the unavoidable occurrence of false positives
and negatives. The tests are developed for the NEST simulator, but can easily
be adapted to work with analogous connection algorithms in other simulators.

For random connections with predefined in- or out-degree, observed ran-
dom degrees are compared with expectation using Pearson’s chi-squared test.
For networks with structure in two- or three-dimensional space, i.e., with a
distance-dependent connection probability, the Kolmogorov-Smirnov (KS) test
is used to compare the empirical distribution function (EDF) of distances be-
tween connected source-target pairs with the expected cumulative distribution
(CDF), obtained by numerical integration of the normalized product of the
radial distribution of nodes and the distance-dependent connection probabil-
ity (kernel). A Z-test comparing the total number of connections with the
expectation is also implemented. For all three of these tests, a two-level test
can be used, comparing the distribution of p-values from multiple tests of indi-
vidual network realizations with the expected uniform distribution, using the
KS test. This approach results in greatly increased sensitivity. For automated
tests used in test suites, an adaptive approach is proposed. Here, one test is
performed, and if the result is suspicious, the more thorough two-level test is
performed. This approach is fast, as the two-level test is only invoked for a
fraction of the test cases under normal circumstances. It also results in a very
low rate of false positives.

The probabilistic connection algorithms of NEST were tested under a vari-
ety of conditions, e.g. with different network sizes, different number of virtual
processes (VPs) and different distance-dependent connection probability func-
tions (kernels). No evidence of any error or bias was found in the algorithms.
The test strategies themselves were shown to detect an array of small errors
and biases when these were deliberately introduced into the algorithm.

Sammendrag

Simuleringer av stadig mer sofistikerte nevrale nettverksmodeller har veert med
pa a drive nevrovitenskapen fremover, men har samtidig fgrt til en gkt avhen-
gighet av simuleringsprogramvare. A teste kvaliteten til denne programvaren
der derfor viktig. Her utvikler vi strategier for testing av noen av de mest brukte
koblingsalgoritmene, og vi implementerer disse som Python-baserte testpak-
ker. Vi utvikler metoder for a redusere hyppigheten av type I og type II feil.
Testene er utviklet for simulatoren NEST, men kan modifiseres for a fungere
med tilsvarende koblingsalgoritmer i andre simulatorer.

For tilfeldige koblinger med forhandsbestemt inn- eller utgrad sammenlig-
nes de observerte tilfeldige gradene med forventningsverdier ved hjelp av Pear-
sons kjikvadrattest. For nettverk med romlig struktur, dvs. nettverk med en
koblingssannsynlighet som avhenger av avstand, brukes Kolmogorov-Smirnov-
testen (KKS-testen) til & sammenligne den empiriske kumulative fordelingen av
avstander mellom sammenkoblede node-par med den forventede kumulative
fordelingen, funnet ved numerisk integrasjon av det normaliserte produktet
av den radiale fordelingsfunksjonen av noder og den avstandsavhengige kob-
lingssannsynligheten. En Z-test som sammenligner det totale antallet koblinger
med forventningsverdien er ogsa implementert. For alle disse testene kan en
to-niva-test anvendes. Denne sammenligner fordelingen av p-verdier fra flere
tester av individuelle nettverksrealiseringer med den forventede uniforme for-
delingen ved hjelp av KS-testen. Dette gir en betraktelig gkt sensitivitet. For
automatiserte tester brukt i testpakker foreslar vi en adaptiv lgsning. Denne
gar ut pa at en enkel test kjores, og kun dersom resultatet er mistenkelig kjg-
res den mer grundige to-niva-testen. Pa denne maten kan automatiserte tester
kjgre fort, siden to-niva-testen normalt kun vil kjores for en liten andel av
test-tilfellene. 1 tillegg far vi fa feilaktige godkjennelser (type I feil).

De tilfeldige koblingsalgoritmene i NEST ble testet under ulike forhold, for
eksempel med forskjellig nettverkstgrrelse, forskjellig antall virtuelle prosesser
og foreskjellige avstandsavhengige koblingssannsynligheter. Det ble ikke funnet
noe bevis pa feil eller skjevheter i algoritmene. Det ble vist at teststrategiene
oppdaget en rekke feil og skjevheter nar disse bevisst ble lagt inn i algoritmene.

Contents

Preface

Abstract

Sammendrag

List of Figures

List of Tables

List of Symbols

1

2

Introduction

Statistical testing
2.1 Pearson’s chi-squared test

2.2 The Kolmogorov-Smirnov test
23 The Z-testo

Distribution of connections

3.1 Random convergent connections
3.1.1 Implementation
312 Results.

3.2 Random divergent connections
3.2.1 Implementation
322 Results.

3.3 Automated test procedure
3.3.1 Implementation

Spatially structured networks

4.1 Two-dimensional space
4.1.1 Implementation
4.1.2 Results.

4.2 Three-dimensional space

iii

xi

xiii

11
13

15
15
16
17
22
22
23
23
24

viii

CONTENTS

4.2.1 Implementation 38

422 Results. 38

4.3 Automated test procedure, 40

4.3.1 Implementation 41

5 Discussion 43

A NEST - A short tutorial 47

B Test script for random convergent connections 59

C Test script for random divergent connections 63
D Automated test suite for random convergent and divergent

connections 67

E Test script for 2D spatially structured network 69

F Test script for 3D spatially structured network 73

G Automated test suite for spatially structured networks 77

References 81

List of Figures

1.1
1.2

2.1

3.1
3.2

3.3
3.4

4.1

4.2
4.3

4.4

4.5

4.6
4.7

4.8

4.9

4.10

Al
A2

A random divergent connection pattern
A spatially structured network

CDF for X ~ U(1,0) and EDF of pseudorandom numbers from
aPRNG o

Histogram and EDF of p-values from 10,000 chi-squared GOF
tests . . . Lo
EDF of 100 p-values from the two-level tests procedure
The effect of small parameter values on the EDF of p-values
Distribution of p-values after introducing a bias into the con-
nection algorithmo oo

Ilustration of the derivation of the expression for the radial
distribution function o L.
The effect of the mask on the radial distribution function
Exemplary PDF, CDF and connectivity pattern for a network
in 2D space, using a Gaussian kernel00
Theoretical and empirical PDF and CDF of source-target dis-
tances using a constant kernelo 00000
Connectivity pattern with periodic boundary conditions and a
source node shifted away from the layer’s center
Detection rate as a function of network size
[lustration of the effect of a cubic mask on the radial distribu-
tion function L
[llustration of the derivation of the surface area E of the inter-
section between adjacent spherical caps
Exemplary PDF, CDF and connectivity pattern for a network
in 3D space, using a Gaussian kernel
Theoretical and empirical PDF and CDF of source-target dis-
tances using a constant kernel

Example of free two-dimensional layer
Example of free three-dimensional layer

LIST OF FIGURES

A.3 Example of connectivity pattern 56
A.4 Distribution of distances between source node and connected
target nodeso 57

List of Tables

3.1 Default parameter set for reported results 17
3.2 Default parameter set for sensitivity testing 21
A.1 Neuron models in NEST 48
A2 Devicesin NEST 49
A.3 Synapse models in NEST 50

A4 Kernels in NEST Topology 95

List of Symbols

level of significance / probability of making a type I error
probability of making a type II error

uniform distribution on the interval [a, b]

outcome of a trial with a fixed number 7 of possible outcomes
number of trials

number of possible outcomes A;

probability of outcome A;

vector of outcome probabilities p;

frequency of outcome A;

vector of frequencies

expected frequency of outcome A;

vector of expected frequencies

Pearson’s test statistic

the chi squared distribution

cumulative distribution function of a random variable
empirical distribution function that converges to F'(x)
hypothesized cumulative distribution function
Kolmogorov-Smirnov test statistic

standard score (z-score)

normal distribution with mean p and variance o>

fixed in or out degree (number of connections) in network
with random convergent or divergent connections, respec-
tively

number of source nodes in network

number of target nodes in network

number of times to run chi-squared test in two-level test
side length of square or cubic layer

number of nodes in spatially structured network

TP YTV TTOTRYD DT

T T T YT

O © © © © © © © © 3 3 3

—_
(@)

. 10

11

11
11
11
.13
.13
.15

Xiv List of Symbols

D distance from center node p. 27

D;; distance from node 7 to node j p- 27

0o areal or volumetric node density for networks in 2D or 3D p. 28
space, respectively

p(D) radial distribution function (RDF) p. 28

P(D) distance-dependent connection probability (kernel) p. 29

f(D) probability density function (PDF) of source-target dis- p. 29
tances

F(D) cumulative distribution function (CDF) of source-target dis- p. 29
tances

H(x) the Heaviside step function p. 30

C total number of connections in spatially structured network p. 30

Chapter 1

Introduction

The brain is a truly remarkable machine. It routinely performs tasks that
are impossible for even the most powerful supercomputer, and it does so in a
highly energy-efficient manner. It can analyze patterns extremely efficiently,
interpret them, and produce appropriate behavioral responses. It can store
enormous amounts of information, allowing us to recollect things like phone
numbers, familiar faces, songs and episodes from early life. But perhaps even
more impressively, the brain is capable of producing consciousness, and allows
us to experience our own thoughts and feelings.

Scientists’ desire to unlock the mysteries of the brain is obvious. Not only
would it allow us to better understand, and perhaps cure, the hundreds of
different brain diseases that exist, such as depression, Alzheimer’s disease,
Parkinson’s disease, epilepsy, and migraine. The knowledge of how the brain
solves complex problems would likely also result in radical changes to how
computers work. New storage technologies that mimic the way the brain stores
and recollects memories might emerge, and computers might finally be able
to learn the way humans do. Artificial intelligence (AI) might seem a lot less
artificial.

However, understanding the brain is one of the greatest challenges facing
scientists today. A great deal is understood about how single neurons function,
how they communicate with other neurons through synapses, and how these
synapses are formed and change over time. What is not well understood is
how brain function emerges from billions of neurons communicating with each
other over trillions of synapses. One way to address this problem is to simulate
the activity of a large number of neurons in a computer. With such a simu-
lation, the effects of small changes in neurons and synapses on the dynamics
of large networks can be studied. The Human Brain Project (HBP), recently
awarded one billion euros by the European Commission (Abbott 2013), aims to
simulate a full scale human brain within a decade (The Human Brain Project
Preparatory Study Consortium 2012). With this flagship project engaging
and inspiring the scientific community, the importance of simulations in brain

2 Introduction

science is likely to continue to increase in the years to come.

A number of neural network simulators are available, such as NEURON,
GENESIS, Brian, and NEST (Brette et al. 2007). This thesis will focus on
NEST (Gewaltig and Diesmann 2007), a popular simulation environment for
simulating large networks of point neurons. As scientists are increasingly rely-
ing on tools like these to make new discoveries, the need for quality checking
of the software increases. There is always a chance that a mistake has crept
into a piece of computer code, one that does not make the program crash, but
causes erroneous scientific results. In a famous example, a paper detailing the
structure of a protein called MsbA (Chang and Roth 2001), had to be retracted
because the reported structure turned out to be wrong. The reason for the
incorrect result was that two columns of data were flipped in the computer
program that derived the protein structure (Miller 2006). It took more than
five years before the mistake was detected, and by that time the paper had
been cited by 364 publications, according to Google Scholar. Four other papers
also had to be retracted due to the same malfunctioning computer program.

A good way to detect these kinds of mistakes in computer code is through
unit testing. The idea here is to divide the program into small units that
can be tested rigorously by comparing the units output with our expectations
(Huizinga and Kolawa 2007). While this approach has its merits, tests will
not be able to detect all conceivable error that could occur. In the words of
Dijkstra et al. (1970), “Program testing can be used to show the presence of
bugs, but never to show their absence!”.

When testing probabilistic algorithms using statistical tests, some addi-
tional challenges arise. For instance, the tests will occasionally give false pos-
itives, i.e., they will report a problem with the tested algorithm where none
exists. One can not get completely rid of false positives, but strategies can be
devised to reduce the frequency with which they occur. Statistical tests will
also give false negatives, i.e., they will fail to report true problems. Again, this
is unavoidable, all we can do is to try to increase the sensitivity of the tests,
i.e., their ability to detect problems. This ties in with a more general problem:;
that of testing randomness.

To generate a sequence of seemingly random numbers, computer software
relies on pseudorandom number generators PRNGs (L’Ecuyer 2004). The se-
quences they produce is not truly random, but generated by a deterministic
algorithm (hence the prefix “pseudo”). For most applications, however, the
numbers are sufficiently unpredictable as to be considered random, depend-
ing on the specific algorithm used and how it is implemented. There are
several ways to test the output of a PRNG. One approach is to look for a
systematic bias by comparing the expected distribution of numbers with an
observed sample distribution using some goodness-of-fit (GOF) test, such as
the Kolmogorov-Smirnov (KS) test or the Anderson-Darling (AD) test, but
this approach will not detect other kinds of patterns such as clustering of the

Connectivity patterns in neuronal network models 3

produced numbers, as long as the clusters are distributed relatively evenly.
Other methods may pick up such clustering, but yet other unforeseeable pat-
terns might still go undetected. As argued by L’Ecuyer and Simard (2007), no
statistical test or battery of tests can guarantee that the output of a PRNG
will be sufficiently random under all circumstances. Some application might
cause some structure to emerge due to an artifact of the PRNG’s algorithm.

When testing probabilistic algorithms using statistical tests, we are faced
with the same problem. No statistical test or battery of tests can prove beyond
any doubt that the algorithm is without biases or patterns that affects the
output of a computer program. Still, the more tests the algorithms can pass,
the greater our confidence in them, and hence the scientific findings based on
them.

Connectivity patterns in neuronal network models

A neural network can be described as a directed, weighted graph where the
nodes are neurons, or sometimes devices, and the edges are connections or
synapses between them. Events can be transmitted in one direction over the
connections. These events are action potentials (spikes) or other types of
signals that can be transmitted over synapses.

In any type of network modeling, the network structure must be specified.
In principle, this could be done by listing all the nodes and their connections.
This kind of specification, however, is not very manageable for us humans. To
be able to work with network models, discuss them, and share them, higher-
level descriptions of connection patterns are needed. Populations of nodes
can then be connected following some basic rules to create these patterns.
Ways to unambiguously describe and document connection patterns have been
lacking, but recent efforts have been made to standardize their terminology
and notation (Nordlie and Plesser 2010; Djurfeldt 2012; Crook et al. 2012).
Since NEST is used in this thesis, we will mainly use NESTs terminology. We
will now describe the relevant connection patterns and related concepts and
terminology.

A random divergent connection between a source population and a
target population is defined as the connection pattern resulting from connect-
ing each node in the source population to a prescribed number C' of randomly
drawn target nodes. An example of this kind of network is shown in Figure 1.1.
The target nodes are drawn with replacement, meaning multiple connections
can exists between any pair of nodes (multapses). If the source and target
populations are the same population, nodes will also be able to connect to
themselves (autapses). It is possible to disallow multapses and autapses in
NEST, but we will assume they are allowed.

In a random convergent connection, C' source nodes are randomly
drawn, with equal probability, for each target node. The in-degree is now C'

4 Introduction

for all target nodes, while the source nodes might have different out-degrees.

Network models can also have spatial structure. In such models, connection
probabilities, as well as connection properties such as weight and delay, can
be a function of the distance between the source and the target node. In this
way, connectivity patterns that mimic observed axonal projection patterns can
be created. Thus, when referring to a spatially structured network in this
thesis, we mean a network whose connection probabilities depend on source-
target distance. In spatially structured networks, populations of nodes can
exist in two- or three-dimensional space. The distance-dependent connection
probability function is referred to as the kernel. Only nodes inside an area
or volume called the mask are eligible connection targets. The location of
the mask is usually given relative to the node considered. A two-dimensional
spatially structured network is shown in Figure 1.2, where a square mask and
a Gaussian kernel are used.

Aims and organization of this thesis

The aim of this thesis is to develop statistical tests for the probabilistic con-
nection algorithms used in neural network simulators, both for networks with
and without spatial structure. Further, an automated test suite that can run
relatively quickly, with a low rate of false positives, possibly as part of the au-
tomated testing in a continuous integration system, is developed. To demon-
strate the utility of the test procedures, they are used to test the connection
algorithms of NEST. It is worth emphasizing that the test suites can easily be
modified to work with data obtained from any other simulator that shares the
basic connection schemes.

Chapter 2 will start with a short introduction to the statistical tests that
will be used later, and introduce the concept of a two-level test procedure.

1 2 3 4 5 6 7 8 9 10 Target
L J L J L] L] L J L J ® L J L J
nodes
Source
[J []
1 2 3 4 5 6 7 8 9 10 nodes

Figure 1.1: Example of how a random divergent network might look. All source nodes
have an out-degree of 3, while the target nodes have different in-degrees.

Aims and organization of this thesis 5

Figure 1.2: Example of how a spatially structured network might look. 1,000 nodes are
scattered across the layer. The centered source node is connected to the red nodes, but not
the grey. The mask is shown in purple, and the blue rings mark o, 20 and 30 from the
Gaussian kernel.

In Chapter 3, a test procedure for random connections with predefined in- or
out-degree is developed. NEST-specific implementations are discussed, and
results are presented, both for convergent (Section 3.1) and divergent (Section
3.2) connections. In Section 3.3, an automated test procedure is proposed and
implemented for NEST.

Networks with spatial structure are discussed in Chapter 4. Test strategies
are developed and implemented for NEST, and results are presented, first for
two-dimensional space in Section 4.1, then for three dimensions in Section
4.2. A general discussion about findings and perspectives for future research
is found in Chapter 5.

As the tests proposed in this thesis are implemented for NEST, there will
be references to functions in NEST. The reader might therefore want to take
a look at the NEST tutorial found in Appendix A before proceeding.

Chapter 2

Statistical testing

The p-value approach to statistical hypothesis testing consists of the following
five steps (Ewens and Grant 2004).

Step 1 is to state the null hypothesis (Hy) and the alternative hypothesis
(Hy). The aim is to either reject or accept Hy. Accepting Hy does not mean
that it is necessarily true, only that there was insufficient evidence against it.

Step 2 is to determine the level of significance «. This is the probability
of making a type I error, i.e., rejecting Hy when it is true. We obviously want
this probability to be small, but a too small o will increase the probability £ of
making a type II error, i.e., accepting Hy when it is false. The choice of a will
therefore depend on the situation and what type of error is most important
for us to avoid.

Step 3 is to decide on a test statistic T. Which test statistic is used de-
pends on the situation.

Step 4 is to compute the value t,,s of this test statistic from the observa-
tions.

Step 5 is to compute the p-value, i.e., the probability that the test statis-
tic 7" would have a value at least as extreme as the observed value t.,s under
Hy. If the alternative hypothesis corresponds to large values of T', the p-value
is calculated as Prob(T > tops). Thus, roughly speaking, a small p-value in-
dicates that Hjy is unlikely. The p-value is compared with the chosen level
of significance a (typically 0.05 or 0.01). If the p-value it is smaller, Hy is
rejected, otherwise, Hy is accepted.

When the test statistic is continuous, the p-value is a continuous, random vari-
able with a uniform distribution ¢(0,1) under H, (Ewens and Grant 2004),

8 Statistical testing

meaning it will satisfy the equation
Prob(p-value < x| Hy true) =z (2.1)

for € [0,1]. When the test statistic is discrete, the p-value is also discrete,
but it is not discrete uniform under Hy. The reason is that a p-value that
satisfies the equation above might not exist. Instead, the p-value will satisfy

Prob(p-value < z | Hy true) < z. (2.2)

The deviation from the uniform distribution is large when data is sparse, but
for larger data sets, the deviation is often negligible.

In certain situations, a two-level test procedure is advantageous. First, the
expected distribution is compared with the empirical distribution observed,
using some goodness-of-fit (GOF) tests. In accordance with classical hypoth-
esis testing, a failure to pass such a test at some level of significance o would
result in the rejection of the null hypothesis Hy that the empirical frequencies
follow the expected distribution, with a probability a of making a type I er-
ror. Successfully passing a test would typically cause Hy to be accepted, with a
probability 8 of making a type II error. [is often quite large. We might there-
fore want to run the test several times before we feel confident that Hy can be
accepted. When doing experiments on a computer, the cost of re-running the
test is usually small. We can, therefore, run the experiment a large number
of times, and check whether the test fails the expected fraction « of the tests.
But this way we would lose a lot of information, and it is arguably not the
best approach in this situation. In the case where the p-value is (sufficiently)
uniform under Hy, we can instead test the observed p-values generated against
the expected U(0,1). This approach, sometimes referred to as a two-level test
procedure, is similar to the one used by L’Ecuyer and Simard (2007) to test
PRNGs. The test of the p-values will of course have its own p-value, which in
turn could be compared to the expected uniform distribution using some GOF
test, and so on, repeating endlessly. Nevertheless, it should suffice to do one
test against uniformity, and compare the resulting p-value to some predefined
level of significance . The main advantage of this two-level approach is that
if a connection algorithm passes the test, our confidence in it will be much
greater than if only a single test was performed.

The GOF test used in the first step of the procedure will vary depending
on the data. The tests we will use are introduced below. For the second step
(the test of GOF of the p-values to U(0, 1)) the Kolmogorov-Smirnov test is
used.

2.1 Pearson’s chi-squared test

The following section is based on A Guide to Chi-Squared Testing (Greenwood
and Nikulin 1996). Pearson’s chi-squared test, sometimes ambiguously referred

2.1 Pearson’s chi-squared test 9

to as “the chi-squared test”, is a test of the null hypothesis that there is a good
fit between some theoretical distribution and the observed data.

Consider an experiment, or trial, resulting in one outcome, A;, of r possible
outcomes, Ay, As, ..., A,. The probability of outcome A; is p;. We conduct n
independent trials, indexed k = 1,2, ...,n. We define a random variable

1 if outcome A; occurred in kth trial
ki = (2.3)
0 otherwise
for i = 1,2,...,r. We now define a vector
i = (s k2 ooy fer)y K =1,2,..0n (2.4)

which, for each trial %k, describes which outcome occurred. It has only one
nonzero component, the one indexed 7, which is equal to 1. The frequency of
outcome A; is defined as

k=1

All these frequencies must satisfy the condition v; + v5 + ... + v, = n. The
vector of frequencies becomes

v = Zp,k = (11, V2, ..oy Up). (2.6)
k=1

The expected frequency of a single outcome A; is E(v;) = np;, with a
variance var(v;) = np;(1 — p;). This matches that of the binomial distribution,
and we might therefore be fooled into thinking that the vector of frequencies
v is binomially distributed. This is not the case, as the individual frequencies
are dependent random variables with a restrained sum equal to n. Instead, the
vector of frequencies v has a multinomial distribution, with parameters n > 0
and p = (p1,p2, ..., pr), where 0 < p; < 1 and > p;, = 1.

The probability mass function (PMF) of the multinomial distribution is
given by

Prob(v =x) = Prob(vy = x1,15 = 29,...,1p = ;) (2.7)
— n' L1 Lk
where & = (21, ..., z,) is any vector of integers with 0 < z; <nand), z; =
n. The vector of expected frequencies is

E(v) = np = (np1,nps, ..., np;).- (2.9)

10 Statistical testing

In the special case of the multinomial distribution where all the p;, = p = %
are equal, the PMF can be written as
n! n!
Prob(v =) = ———— p"t Tt = i 2.10
() xll...wr!p 1! ..xr!p ()
and the vector of expected frequencies becomes
E(v) = np = (np,np, ...,np). (2.11)

To test whether the observed frequencies v; match the assumed multinomial
distribution, we can define the null hypothesis

Hy: p = pz(o), 1=1,2,...,r. (2.12)

We can then use Pearson’s chi-squared test. Pearson’s test statistic is defined
as

2 2
- (m - anO)) r vE = 2vnp)” + (np50)>

Xt = ZW:Z ©) (2.13)

i=1 np; i=1 npi
T 2 2
v; 0) Vi
= -2y vi+n) p —2n+n (2.14)
SR SEED ILED P
1 12
= — E L _n. (2.15)
n = pEO)

) 1

For the special case where all the p(= p0 = — are equal, this simplifies

further to

T

2 T 2
X = le/ n. (2.16)
When the sample size is large, this statistic has an asymptotic chi-squared
(x?) distribution with r — 1 degrees of freedom. The reduction of 1 degree of
freedom is because there is one constraint, namely that the frequencies have
to sum to n. If the expected frequencies npgo) are too small (typically < 5) the
chi-squared distribution will not be a good approximation to the distribution
of the test statistic. The individual trials are assumed to be independent.
Knowing the distribution, the p-value, defined as the probability of finding
a test statistic as large or larger than the observed, i.e., Prob(x? > X?), can
be calculated. A perfect fit, i.e., v; = npl) for all i, will give a X? = 0, making
the p-value 1. A poor fit will give a large X?, and therefore p-value close to
(but never equal to) 0. Thus, the p-value from a chi-squared test can be seen
as a measure of the goodness-of-fit of the data to the expected distribution, a
property we will later exploit.

2.2 The Kolmogorov-Smirnov test 11

2.2 The Kolmogorov-Smirnov test

The following section is based on Advanced statistics from an elementary point
of view (Panik 2005). Pearson’s chi-squared test is well suited for analyzing
categorical data or data that naturally fall into distinct groups or bins. To use
the chi-squared test on continuous data, we would have to group the data into
somewhat arbitrarily sized bins. Because the expected frequencies of these bins
cannot be too low, there is a lower limit to the bin sizes, and an upper limit
to the number of bins. This necessarily causes information to be lost. The
chi-squared test is therefore not ideal for continuous data. The Kolmogorov-
Smirnov (KS) test is a GOF test that does not require grouping of the sample
data, and is therefore much better suited for continuous data.

Let X be a random variable, and x;, ¢« = 1,2,...,n be an ordered set of
n realizations of X. We wish to determine if X has a specific hypothesized
distribution, or, in other words, if the observed data z; stems from a pop-
ulation with a cumulative distribution function (CDF) F(z) that equals our
hypothesized CDF Fy(z). We formulate our null hypothesis,

Hy: F(x) = Fy(z). (2.17)
For a two-sided KS test, the alternative hypothesis becomes
Hy: F(x) # Fy(x). (2.18)

Our sample data will have an empirical distribution function (EDF) S,,(x) that
converges to the true CDF F(z) for large n. S,(z) equals the proportion of
realizations x; that are below x. It is therefore a discrete function, increasing
stepwise by 1/n at each x = z;. It can be defined as

0, forax <z
Sn(@) =491 fora; <z <wmy, i=12..,n-1 (2.19)

1, forzxz>x,.
The Kolmogorov-Smirnov test statistic is defined as the supremum of the
absolute difference between S, (x) and Fy(z) for all x,

D, :Slip‘sn($) —Fo(l’)‘a (2'20)

or simply the greatest distance between the two. If Hj is true, we expect D,
to be small. The sampling distribution of D,, is known, and we can compare
our value with this distribution and calculate a p-value.

As an example of the usage of the KS test we can test the output of a
PRNG, a series of numbers in the half-open interval [0, 1), against the expected

12 Statistical testing

uniform distribution. Then, under Hy, X ~ U(0,1). The expected CDF
becomes

0, forxz<O0
Fo(z) =<z, for0<az<1 (2.21)
1, forax>1.

Having obtained a set of pseudorandom numbers z;, the first step is to order
these values in increasing order. The EDF can then be found from the defi-
nition of S, in Equation 2.19, and the test statistic D,, is found by Equation
2.20. In Figure 2.1 the red line marks the greatest distance D,, = 0.11 between
Sn(z) and Fy(z) for a set of 100 pseudorandom numbers supposedly drawn
from U(0, 1).

The p-value, i.e., the probability of observing a more extreme value of the
KS test statistic for n = 100, can be shown to be 0.16. There is in other words
no evidence to support a rejection of the null hypothesis that the x; are drawn
from (0, 1) at any meaningful level of significance a.

Unlike the chi-squared test, where the test statistic only approximates the
chi-squared distribution, the KS test is an exact test, meaning it can be used
for small n as well as large.

1.0 T
— S,(2)
o8l — F (=)
"
;; 0.6
"
— 0.4
wn
0.2
0'8.0 0.2 0.4 0.6 0.8 1.0

T

Figure 2.1: Empirical distribution function S, (z) (blue line) of n = 100 pseudorandom
numbers from PRNG, supposedly drawn from a uniform distribution, and the cumulative
distribution function Fy(z) (green line) expected under Hy. The red line marks the KS test
statistic D,,, the greatest distance between the two lines.

2.3 The Z-test 13

2.3 The Z-test

The following section is based on Advanced statistics from an elementary point
of view (Panik 2005).

The Z-test is a test of the hypothesis that a sample is drawn from a nor-
mal population with the mean pug. Let (X, Xs, ..., X,,) be a set of n random
variables, drawn from a normal population with a known variance o2, but
an unknown population mean g. The sample mean is denoted X, and the
standard deviation of the mean is related to the standard deviation of the
population by o5 = o//n.

We wish to determine whether the population mean p equals a hypothesized
mean [ig, 1.€.,

HO U= Wo- (222)
We consider here only the two-sided alternative hypothesis,
Hy:op# po. (2.23)

The test statistic used is the standard score,

(2.24)
0x

which, under Hy, has a standard normal distribution A/(0,1). The p-value of

the two-sided Z-test is the probability of finding a value of Z as extreme or

more extreme than the observed value z under Hy, i.e.,

p-value = Prob(Z < —|z|) + Prob(Z > |2|) (2.25)
= 2Prob(Z > |z|). (2.26)

If the data set consists of a single random variable X, the test statistic

becomes x
7=""H (2.27)
o

The Z-test can only be used for data that can be approximated by a normal
distribution. The central limit theorem is typically invoked to justify the
approximation.

Chapter 3

Distribution of connections

We will now describe a procedure for testing random convergent and diver-
gent connection algorithms for networks without spatial structure. These con-
nection algorithms were described in the introduction, and an example of a
resulting network was shown in Figure 1.1.

3.1 Random convergent connections

For each target node RandomConvergentConnect iterates over, it randomly
draws C' source nodes from the r = N available source nodes and connects
to them. Multapses and autapses are allowed, i.e., nodes are drawn with
replacement. We are interested in checking whether all the source nodes are
drawn with equal probability. In other words, we want to test the observed
distribution of connections against the expected uniform distribution. Each
drawing of a source node can be thought of as a trial as described in Section
2.1, with exactly one outcome A;. The total number of trials is n = N; x C,
where V; is the number of target neurons. After all n trials, each source node
i will have some out-degree (number of outgoing connections), described by
the frequency of outcome A; as defined in Equation 2.5:

n

v, = Zuki. (3.1)

k=1

The vector of frequencies,

v = Zp,k = (11, V2, .oy V), (3.2)
k=1

now contains all observed out-degrees.

In this particular case, the ezpected frequencies are all the same, E(1;)
np©, so the vector of expected frequencies contains r equal entries, E(v) =
np® = (np® np©®, .. np®).

16 Distribution of connections

To test the hypothesis

1
HO . pzngm :p(o) = -, Z: 1,2,...,7’, (33)
i.e., that source nodes are drawn with equal probability, we use Pearson’s
chi-squared (x?) test. As explained in Section 2.1, the statistic becomes

r T

X?==>Y v —n (3.4)

n <
=1

This statistic has an asymptotic chi-squared (x?) distribution with r—1 degrees
of freedom. Knowing the distribution, the p-value can be calculated.

Instead of simply rejecting or accepting Hy based on one p-value, it is, as
argued earlier, better to apply a two-level test, i.e., test multiple p-values for a
uniform distribution. This assumes the p-value is uniformly distributed under
Hy, which is not strictly true for p-values coming from a chi-squared test, as
X? is discrete. To examine the discreteness of X? closer, let us change v; to
v1 + 1, and v, to 15 — 1. The resulting change in X? is

AX? = [% ([V1+1]2+[V2—1}2+iui2> —n] — [%iui—n]

r
- E([V1+1]2+[V2—1]2—V%—1/22)

2r
= _ — — 1
n (Vz ")

Thus, the smallest non-zero difference between two possible values of X? is
2r/n = 2N;/(N,C). As long as n = N;C' is large enough compared to r = N,
therefore, these “jumps” in X? are small, and we may treat it as continuous;
the effects of small N;C' is investigated in Section 3.1.2. This means that the
two-sided Kolmogorov-Smirnov (KS) test can be used to test the uniformity
of the p-values. The KS test produces a p-value which, if it is smaller than
a chosen significance level «, leads us to reject Hy. An advantage of this
approach is that, even though Pearson’s chi-squared test is one-tailed, a “too
good” fit (connections are more evenly distributed than is likely to happen by
chance) will be detected, as there will be an excess of large p-values from the
chi-squared tests.

3.1.1 Implementation

The test procedure outlined above is implemented as a Python module, in-
cluded in Appendix B. The module defines a class, RCC_tester. The class
has two methods, chi_squared_test and two_level_test, for testing the
connections created by RandomConvergentConnect.

3.1 Random convergent connections 17

chi_squared_test creates two sets of nodes, source_nodes and
target_nodes, and connects them using RandomConvergentConnect. It then
runs a chi-squared test on the out-degrees of the source nodes, and returns the
test statistic and the p-value. If the expected frequencies np; are too small,
results may be unreliable. Thus, if they are smaller than e, (10 by default),
a warning is displayed. ey, can be changed. The chi-squared test is imple-
mented using the chisquare function from the scipy.stats library.

The method two_level_test runs chi_squared_test n,u,s times, and
checks the returned p-values for uniformity using the two-sided KS test. The
resulting KS test statistic and p-value is returned. The KS test is implemented
using the kstest function from the scipy.stats library. In the main section
at the end of the module an example of how to use the RCC_tester class is
provided.

Between each run of RandomConvergentConnect, the network is deleted
by calling the function ResetKernel, to avoid memory bloat. This also resets
the PRNGs. Thus, for each run of RandomConvergentConnect, NEST must
be given a new set of PRNG seed values. NEST requires one seed value for
the global PRNG and one for each per-process PRNG, totaling 1 4 n,,, seed
values, where n,;, is the number og virtual processes (VPs) used by NEST. The
chi_squared_test method takes one argument, a “master seed” msd, and the
14n,, PRNGs are seeded with the values (msd, msd+1, ..., msd+n,,). For inde-
pendent results, chi_squared_test should be given a new master seed for each
run, differing by at least ny, + 1. The two_level_test method handles this
automatically when running chi_squared_test. The first of the master seeds
can be passed as an argument start_seed. When running two_level_test
multiple times, start_seed should differ by at least nyuns(ny, + 1).

3.1.2 Results

Running the script in in Appendix B with the parameter set shown in Table
3.1, we obtain a set of chi-squared p-values with the distribution shown in
Figure 3.1. The KS test of the uniformity of these p-values results in the KS

Parameter R N C Nruns start_seed
Value 1,000 1,000 1,000 10,000 0

Table 3.1: Default parameter set for reported results.

test statistic D,, = 5.67 x 1073 and a p-value of 0.905, leading us to accept the
null hypothesis Hy (defined in Equation 3.3) that the nodes were selected with
equal probability.

To assess the two-level testing procedure itself, it might be useful to be
able to run it on data that we can safely assume to fulfill Hy. The test

18 Distribution of connections

120 T - - - 1.
100 P#ﬂ%—ﬁj‘rw 0.8
g 80 O
qﬁ) 03:0'6
=]
B 60| -
~ 8 0.4
= 40 =
S
20 = Theory 0.2 me= Theory
—— Observation — Observation
86— 02 02 o8 038 1.0 0.
p—values 8 0.2 04~ 06 0.8 1.0

Figure 3.1: A: Histogram of p-values from chi-squared goodness-of-fit tests of n = 10,000
individual networks, combined into 100 bins (red) together with the expected uniform dis-
tribution (grey). B: The corresponding empirical distribution S, (z) (red) and expected
cumulative distribution Fy(x) (grey).

script allows us to do this with the optional argument control=True passed
to two_level_test. NEST’s connection algorithm is then swapped with a
simple “control algorithm” that creates data that matches the multinomially
distributed vector of degrees we would expect to get from NEST. It runs faster
than the actual connection algorithm, and can therefore generate a larger data
set in the same period of time. As mentioned briefly in Section 3.1, the p-value
from a chi-squared test is not truly a continuous variable. This distinctness
might cause the two-level test to give a left-skewed distribution of p-values for
certain combinations of parameters. The control algorithm can be used to in-
vestigate this. Running the two-level test procedure on the control algorithm,
with n.,s = 1,000, repeated 100 times, each time with a different starting
seed, yields the EDF of p-values in Figure 3.2. These p-values appear to be
uniformly distributed (a KS test of uniformity results in the p-value 0.468).
This is an important result, as the uniformity of the p-values from the two-
level test procedure under Hy is a prerequisite for drawing conclusions based
on them.

The jumps of the chi-squared p-value will be large when the expected out-
degree NyC/N; is small, i.e., for small NV, and C, and large N;. The effect
of small degrees is investigated. Figure 3.3 shows the EDF of p-values with
four different combinations of small values for these parameters. Jumps in the
p-values are clearly seen. As expected, the jumps grow larger with a smaller
expected out-degree. The p-values from the two-level test corresponding to
the EDFs in Figure 3.3A, 3.3B, and 3.3C, are 2.47 x 107%°, 6.47 x 1075, and
0.0162, respectively. These p-values are clearly left-skewed, even though the
data tested does fulfill Hy. In the last figure, 3.3D, the expected degree is 100,

3.1 Random convergent connections 19

1 0 T T T T
mmm Theory

—— Observation

0.8

S 0.6

LT 0.4

0.2

0.0 1.0
T

Figure 3.2: EDF of 100 p-values from two-level test procedure. For each run, the two-level
test procedure generates n = 1,000 networks using the control algorithm, runs a chi-squared
GOF tests on the vector of degrees, and tests the resulting p-values for uniformity using the
KS test.

and the p-value resulting from the two-level test is 0.237. Re-running multiple
times reveals that the fraction of p-values below « is close to a. Thus, an
expected degree of about 100 seems to suffice to produce p-values that can be
used to draw meaningful conclusions.

Note that even though the two-level test will result in left-skewed p-values
for small expected degrees, the fraction of p-values from a chi-squared test that
lie below some level of significance o will be very close to «, partly because the
biggest jumps of the EDF are in the middle region, while in the lower part,
close to 0, the curves are fairly smooth (see Figure 3.3). In other words, a
two-level test might not be reliable for small expected degrees (< 100), but a
“one-level” chi-squared test can be used with much smaller expected degrees

(~ 5).

Sensitivity

To assess the sensitivity of the two-level test procedure, i.e., its ability to detect
small errors and biases, various errors and biases were deliberately introduced
into the data. Some of these are described below, as well as the resulting p-
values. We emphasize that these p-values are only examples. Rerunning the

20 Distribution of connections

1.0 : : : : 1.0
0.8 08
Ok O
< <
0 o4 0N 04
0.2 0.2
05— 02 04 06 08 1.0 05— 02 04 06 038 1.0
x x
1.0 1.0
0.8 08
. 0.
O O
< <
004 0N 04
0.2 0.2
0502 o024 L 06 08 10 08502 02 L 06 08 10

Figure 3.3: EDFs of 10,000 p-values from chi-squared tests with four different combinations
of values for the parameters Ng, Ni, and C. In A, Ny = 10, Ny = 5, and C = 5, resulting in an
expected out-degree of 2.5. The p-values are clearly distinct, with fairly large jumps between
adjacent values, especially for medium to large values. In B, Ny = 10, Ny = 10, and C' = 5.
This gives an expected degree of 5, resulting in smaller jumps. In C, Ny = Ny = C' = 10,
resulting in an expected degree of 10, and the jumps are smaller yet. In D, Ny = 10,
N =100, and C' = 10, giving an expected degree of 100. The jumps are no longer visible.

tests with the same biased algorithm and the same parameters, but with a
different PRNG seed value, will result in a different p-value, possibly one that
differs by quite a bit. Thus, they are only meant to give an indication of how
well the bias is detected. Unless otherwise stated, the parameter values listed
in Table 3.2 are used.

The first bias that was deliberately introduced was a simple right-skewing
of the data. The degree of the first half of the nodes was reduced by one, and
the degrees of the second half was increased by one. This was easily detected
by the test procedure (p = 1.71x 107°). In Figure 3.4, the distribution of 1,000

3.1 Random convergent connections 21

Parameter A N, C Nruns start_seed | control
Value 1,000 1,000 100 1,000 0 True

Table 3.2: Default parameter set for sensitivity testing.

p-values are shown. It is clear from the figure that a single chi-squared test
would not in any consistent way detect the bias. Only when we accumulate a
large number of p-values is the trend obvious.

When C' was increased to 1,000, the bias was not detected (p = 0.255). A
large C'is clearly not always advantageous for detecting small biases, especially
biases that do not increase with C. Only after n,.,s was increased to 10,000
was the bias again detected (p = 0.00428).

A second bias was introduced by decreasing the degree of every source
node with an even-numbered index by one, and increasing the degree of every
source node with an odd-numbered index by one. This was also easily detected
(p="T7.13 x 107°).

A third bias was caused by increasing by one the degrees below the 5th
percentile, and decreasing by one the degrees above the 95th percentile, thereby
making the vector of frequencies a slightly “too good” fit to the theoretical
distribution. This change was detected, both with C' = 100 (p = 8.02 x 10~4)
and C' = 1,000 (p = 0.00231), for n,,,s = 100, as well as for larger nypns.

A fourth bias was introduced by moving all the connections from one of
the Ny nodes to another node. This kind of error could easily be introduced
by confusion between the zero-based numbering typically used in computer
science and the one-based numbering used in everyday circumstances. The

200 L9

150 —~ o

5 o

= U,

g 0
g 100 =

o S04
LT_‘ (=]
50 m== Th -

eory . 0.2 mms Theory
— Observation — Observation
8o 02 04 06 08 1.0 08055 o4 o6 os 10

p—values T

Figure 3.4: Histogram (A) and CDF (B) showing the distribution of p-values from chi-
squared tests after introducing an error into the connection algorithm. Expectation is shown
in grey.

22 Distribution of connections

error was easily detected (the p-value was reported as 0.0 as it was too small
for Python’s built-in floating point data type to handle). Increasing Ny to
1,000, the error was still detected at v = 0.05 (p = 0.0366).

A fifth, very small bias was introduced by increasing the degree of one of
the source nodes by one, and decreasing the degree of another node by one.
The bias was not detected at a« = 0.05 with C' = 100 and n..,s = 10,000
(p = 0.0740), nor with C' reduced to 10. Reducing N; and N; to 100, the bias
was detected at a = 0.05 (p = 0.0189). A smaller network clearly increases
the sensitivity to certain types of biases, especially biases that do not increase
with network size.

Several similar tests were run. Generally the two-level test procedure seems
quite sensitive to small biases. The sensitivity obviously increases with n,ups,
but not necessarily with C', Ny and Ng;. The effect of these parameters on
the sensitivity depends on the nature of the bias we wish to detect. It might
therefore be a good idea to run the procedure with different sets of parameters.

3.2 Random divergent connections

RandomDivergentConnect works in very much the same way as
RandomConvergentConnect, except that the source nodes are now iterated
over, and target nodes are randomly drawn and connected, meaning that the
out-degrees of the source nodes are now all C', while the in-degrees of the
target nodes will vary. It might therefore seem superfluous to test both func-
tions. Running NEST with multiple VPs, however, the exact implementation
of the connection algorithm is not the same for the two functions. This is
because different nodes are handled by different VPs, and information about
connections is handled by the same VP by which the target node is handled
(Plesser, Eppler, Morrison, Diesmann, and Gewaltig 2007). To minimize the
amount of inter-VP communication necessary, each VP is given its own PRNG.
RandomDivergentConnect uses the global PRNG when drawing connections,
while RandomConvergentConnect uses the per-VP PRNGs. The result is dif-
ferent connectivity patterns, even with the same master seed value. Both
function should therefore be tested with multiple VPs.

3.2.1 Implementation

The Python module for testing RandomDivergentConnect, found in Appendix
C, is very similar to the module for testing RandomConvergentConnect. A class
RDC_tester, with the two methods chi_squared_test and two_level_test,
is defined. These methods take the same parameters as their counterparts in
the convergent case. As before, the usage is demonstrated in the main section
of the module.

3.3 Automated test procedure 23

3.2.2 Results

Running the script in in Appendix C with the same parameter set used for
random convergent connections, listed in Table 3.1, results in a p-value of
0.905. This matches exactly the p-value we got in Section 3.1.2 after run-
ning the test script in Appendix B with the same set of parameters. In fact,
the distribution of connections among source nodes for a network created by
RandomConvergentConnect will exactly match the distribution
of connections among target mnodes for a network created by
RandomDivergentConnect, when NEST is run with one VP. For multiple
VPs, however, the resulting distribution of connections is not the same. The
test class in the test script can be instantiated with the additional argument
threads, causing NEST to operate with the specified number of local threads.
With NEST running as a single process, the number of VPs will equal the
number of local threads. Running the script in Appendix C with the same
parameter set as before (listed in Table 3.1), but with the extra argument
threads = 2, the we obtained a p-value of 0.931, consistent with the expected
multinomial distribution of in-degrees.

3.3 Automated test procedure

We will now describe how to turn a variant of the test procedure described in
the previous sections into an automated test, implemented as a unit test. This
places some practical limitations on the test procedure. The test must not
take too long to run. It should also not have a too high rate of false positives
(type I error). At the same time we do of course not want to loose too much
sensitivity.

A quick and efficient approach would be to generate one single network and
run a chi-squared test on the distribution of connections with some relatively
low level of significance «, say, 0.01, as described earlier, but even with this
low level of significance, we would still see false positives for about 1% of the
test runs. Reducing « further would result in a lower sensitivity. On the other
hand, running the more thorough but slow two-level test procedure described in
Section 3.1 every time is quite time-consuming. Instead, an adaptive approach
is proposed here, similar to the one used by L’Ecuyer and Simard (2007).
First, a single network is generated, and a chi-squared test is performed on the
distribution of connections. If the resulting p-value is deemed too extreme, a
larger number n,,,s of networks is generated, and a more thorough two-level
test is performed, either confirming or allaying our suspicion. This will allow
us to require a fairly high level of significance for the chi-squared test, thereby
keeping the sensitivity high, while at the same time having a low rate of false
positives.

As was shown in Section 3.1.2, not all errors and biases are best detected

24 Distribution of connections

with a large network or with large degrees, as this might hide certain types of
small biases. Tests should therefore be run with different values of N, N;, and
C. For a single chi-square test, the network can be quite small, and the only
limit is that the expected degree must not be below e,,;,, but the two-level test
procedure is more sensitive, and the expected degree should not be much lower
than 100. Both RandomConvergentConnect and RandomDivergentConnect
should be tested. Running tests both with a single VP and with multiple VPs
might also be a good idea, as the implementation of the connection algorithms
are somewhat different for multiple VPs (see Section 3.2).

For the p-values from the chi-squared test, both very low and very high
values are considered suspicious. Let a1 jower and v ypper be the values below
and above which, respectively, p-values are deemed suspicious. Under Hy,
suspicious values will occur for a fraction a; = Ay jower + (1 — @1 upper) Of the
tests performed. Whenever such an extreme value is encountered, the two-level
test is performed. Let ay be the value below which the p-value from the KS
test is considered too extreme, and Hj is rejected. The total fraction of false
positives will then be

= X Qg = (al,lower +1- O-/l,upper) X g (35)

With a1 jower = 0.025, a1 ypper = 0.975, and ay = 0.05, a becomes 0.0025. The
choice of these critical values, as well as the test parameters (Ng, Ng, C', Nyuns)
will depend on the intended usage of the unit test, the computing power of the
system it will run on, the maximum time the test can be allowed to take, the
desired fraction of false positives, etc.

3.3.1 Implementation

An implementation of the automated test procedure can be found in Appendix
D. It is implemented using the Python unit testing framework unittest. The
test scripts for RandomConvergentConnect and RandomDivergentConnect,
found in Appendix B and C, are imported to avoid code duplication.

The test is repeated three times for each of RandomConvergentConnect
and RandomDivergentConnect, once with a small network, once with a larger
network, and once with multiple VPs, giving a total of six test cases. n,uns
can have different values for each test, as we might want to run a test on a
small network a larger number of times than a test on a large network. The
critical values are o jower = 0.025, @ jower = 0.975, and ap = 0.05. We thus
expect a fraction 0.0025 of the tests to fail. When running the test suite with
the six test cases 500 times, giving a total of 3,000 test runs, 10 failures were
encountered. This is close to the ~ 0.0025 x 3000 = 7.5 false positives we
would expect.

When the six one-level chi-squared tests are passed, the suite takes less
than a minute to complete on most systems. In the event that all six one-level

3.3 Automated test procedure 25

tests fail (which will happen with a probability of 0.05% = 1.5625 x 10~® under
Hy), and the two-level test is invoked, the entire suite might take a few minutes
to complete, depending on hardware, installed version of NEST etc.

Chapter 4

Spatially structured networks

We will now describe the procedure for testing the probabilistic connection
algorithms for spatially structured networks. We briefly discussed spatially
structured networks in the introduction, and an example was show in Figure
1.2. In NEST, these connection patterns can be created between two- or
three-dimensional layers using the function ConnectLayers from the Topology
module (Plesser and Enger 2012).

4.1 Two-dimensional space

Concepts and derivations in this section are based on Kriener (2012). Let
one node be centered on a quadratic L x L layer. It can connect to N other
nodes, uniformly distributed on the layer, as long as they are inside the mask.
The mask has the same size as the layer, and for now, the same position. The
probability of making a connection is given by a distance-dependent connection
probability (kernel). Let (z;),, be the mth component of the coordinate vector
for node i. Let

k

2
m?
m=1

where k = 2 is the number of dimensions, be the distance between nodes 7 and
j. With periodic boundary conditions,

|(@i)m = (25)m] for |(i)m — (j)m| < L/2

(4.2)
L= 1[(@i)m = (2j)m| for [(zi)m — (2j)m| > L/2

(Azij),, = {

We wish to compare the observed distribution of distances between con-
nected nodes with the expected distribution. The expected distribution de-
pends on both on the number of potential targets at a given distance, and the
probability of connecting to nodes at that distance (given by the kernel). We

28 Spatially structured networks

Figure 4.1: A ring of radius D and thickness dD is placed on a layer with a node
density po = N/L?. The expected number of nodes inside the ring is then dN =
por [(D +dD)? — D?].

start by deriving an expression for the number of potential targets at a given
distance.

Let pg = N/L? be the average node density on the layer. Now consider a
ring like the one in Figure 4.1, with radius D and thickness dD. The expected
number of nodes in the ring will be

AN = por [(D + dD)* — D?| (4.3)

and the density of nodes in the ring is given by dN/dD. We now define the
radial distribution function (RDF) as the limit of the node density for an
infinitesimally thin ring

dN
p(D) = d%rgo = 2mpoD . (4.4)
Thus, for distances D € [0, L/2] from the center node, the RDF is proportional
to the circumference of a circle with radius D. For D € (L/2, L/+/2], the mask
comes into play, as part of the circle of radius D is outside the mask. This is
illustrated in Figure 4.2A. As seen in Figure 4.2B, only a fraction 25/7 lies
inside the mask, where

L
b= g — 20 = g — 2 arccos (E) . (4-5)

Substituting for 5 from 4.5 the fraction becomes

% T 4 arccos (%)

(4.6)

™ s

4.1 Two-dimensional space 29

A B

D / , -
' B0
D ,/l _g///\,’ \\\
D I s\

h
~
[\

Figure 4.2: A: Illustration of the effect of the mask on the radial distribution function
(RDF). At distance D1, the RDF is po2wD. At distances D > D, the mask comes into
play. At distance D3, for example, part of the circle is outside the mask, and the number
of nodes eligible for connecting to thus reduced. B: The fraction of a circle with radius D
which is inside the mask is 26 /7. Adapted from Kriener (2012).

The RDF can therefore be summarized as

po2m D for0<D<ZL
p(D) = < po2D (7r — 4 arccos (%)) for % <D< \% (4.7)
0 otherwise.

Let P(D) be a distance-dependent connection probability function (kernel).
The probability density function (PDF) f(D) of distances from the centered
node and connected nodes is the normalized product of the RDF and the
kernel, i.e.,

p(D)P(D)

= JEY? p(RYP(R)dR

0
where the denominator is a normalizing constant!. The cumulative distribution
function (CDF) F(D) can be obtained by integrating f(D), i.e.,

(4.8)

[P p(R)P(R)AR

F(D) = .
| SV p(RYP(R) AR

(4.9)

'R is used instead of D in integrals as D sometimes plays the role of the upper integration
limit, for instance in Equation 4.9.

30 Spatially structured networks

As an example, let L = 1 and the kernel be a linear function of D, P(D) =
(¢ —aD)H(c/a — D), where H is the Heaviside step function. For simplicity
we assume that ¢/a < L/2 so that there are no boundary effects. The PDF
then becomes

£(D) = po2rD(c —aD) _ 6a*D(c — aD) (4.10)
[/ pe2wR(c — aR) dR c ’
and the CDF becomes
2 D 2D2 —92aD
<ﬂD):%;/‘R@—aMdR:a @; aD). (4.11)
0

Using numerical integration, CDFs can be similarly found for other kernels. In
Figure 4.3, an exemplary PDF and the corresponding CDF are shown, as well
as the connectivity pattern of the network. A Gaussian kernel is used.

Using the two-sided KS test, the observed EDFs can now be compared with
these theoretical CDFs, with the null hypothesis Hy that distances are drawn
from the theoretical PDFs. The KS test is the natural choice here because we
are looking at the distribution of a continuous parameter, the distance.

As will be discussed in Section 4.1.2, a few types of errors will not be de-
tected by the KS test of the distribution of source-target distances. A second
test is therefore implemented. It simply compares the total number of connec-
tions C' with the expected number of connections Cy. C' will be the sum of
N independent Bernoulli random variables with different success probabilities
p given by the kernel. Its distribution is the Poisson binomial distribution,
a generalization of the binomial distribution that does not require all success
probabilities to be the same (Wang 1993). For large N it approximates the
normal distribution AV (u, 02), with g = SN | p; and 02 = S°N pi(1 — p;). The
Z-test can thus be used as described in Section 2.3. Using the test statistic

C-CG C-¥Np
YO AN HC S

the two-sided p-value 2Prob(Z > |z|) can be calculated.

Z (4.12)

4.1.1 Implementation

An implementation of the test procedure described above is found in Ap-
pendix E. The main block at the bottom demonstrates the usage. The class
ConnectLayers2D_tester is first instantiated with the required arguments L
(side length of the square layer), N (number of nodes), and kernel _name (name

of the kernel to use, “constant”, “linear”, “exponential”, or “gaussian”). An op-
tional argument, kernel_params, can be used to specify the parameters of the

4.1 Two-dimensional space 31

2.5 1.0

2.0 0.8} T
15 0.6
S})
1.0 & 0.4]

0.5 0.2}

08501 02 03 051 05 06 07 08 980 01 02 03 04 05 06 07 0.8
D

C

Figure 4.3: Exemplary PDF (A), CDF (B) and connectivity pattern (C). A Gaussian
kernel is used, and the layer and mask size is L? = 1. The sharp kink at D = 0.5 in the
PDF is due to the mask. A kink exists in the CDF as well, marked by the arrow.

chosen kernel. Without this argument, sensible default values are used. The
master seed value can be set using the optional argument msd. The value of
msd is used to seed the PRNG used to draw the uniform, random positions
for the nodes. NEST’s global PRNG and each of the per-process PRNGs are
seeded with the values (msd + 1, msd + 2, ..., msd + ny, + 1), where ny, is the
number of virtual processes (VPs). Thus, for independent results, msd should
differ by at least 2 + n,;, between each instantiation of the class. The position
of the source node is (0, 0) by default, but it can be changed with the optional
source_pos argument. The mask is always centered around the source node,
regardless of its position.

32 Spatially structured networks

After the test object is created, the KS test can be run using the ks_test
method. The KS test statistic and p-value is returned. The PDF is cal-
culated on-the-fly as the product of the relevant kernel and the RDF. The
CDF is then found by numerical integration, using the quad function from the
scipy.integrate module. For finite integration limits the function uses the
Clenshaw-Curtis method of numerical integration.

The method z_test implements the Z-test of the total connection count
described earlier. The standard score and the two-sided p-value is returned.

4.1.2 Results

The test script in Appendix E will now be used to test the connection algo-
rithms for connecting 2D layers of spatially structured networks in NEST.

With L =1, N = 1,000,000, and msd = 0, and with the constant kernel
selected, the distribution of distances to connected nodes is as shown in Figure
4.4. There seems to be close agreement between the expected and observed
distributions. According to the KS test, there is no evidence to reject the null
hypothesis that the distances are drawn from the theoretical PDF (p = 0.321).
Similar results are found for the linear (p = 0.837), exponential (p = 0.630)
and Gaussian (p = 0.852) kernels.

By positioning the source node away from the center, while leaving the
mask centered around the node, with the same L x L size, the periodic bound-
ary conditions come into play. The distribution of source-target distances
should not change. An example can be seen in Figure 4.5. With the same
parameters as above, but with the source node located at (L/4, L/4), the
p-values become 0.253, 0.091, 0.004, and 0.113 for constant, linear, exponen-

A B

3.5 " " " " " " " 1.0
| | === Theory mmm Theory

— Observation 0.8 | =™ Observation

0.6

CDF

0.4

0.2

080 01 02 03 04 05 06 07 08 %80 01 02 03 04 05 06 07 08
Distance Distance

Figure 4.4: PDF (A) and CDF (B) of source-target distances, with layer size L? = 1, using
a constant kernel. The grey lines show the theoretical predictions, and the red lines show
the empirical observations. The empirical PDF is plotted with 100 bins.

4.1 Two-dimensional space 33

Figure 4.5: Connectivity pattern with periodic boundary conditions and with the source
node located at (L/4,L/4). The purple line indicates the mask, and the arrows indicate
the direction of shortest distance to the source node. The distribution of distances from the
source node to connected nodes is the same as if the source node was located in the center.

tial, and Gaussian kernel, respectively. The p-value for the exponential kernel,
p = 0.004, is suspiciously low. It appears, however, to be a statistical fluke.
Rerunning the test 100 times with different master seed values results in p-
values seemingly uniformly distributed on (0, 1). A KS test of uniformity
returns a p-values of 0.365.

The tests can also be run with NEST using multiple VPs. This can be
done by instantiating the test class with an extra argument threads. With
4 threads, there is no evidence of deviations from the expected distributions,
both with constant (p = 0.321), linear (p = 0.977), exponential (p = 0.614),
and Gaussian (p = 0.899) kernel.

Sensitivity

As before, a control algorithm is implemented. It performs a Bernoulli trial
on each node, with a probability p = P(D), given by the kernel, of success (a
connection being made). By supplying the ks_test method (or the z_test
method) with an extra argument control=True, NEST’s connection algorithm
is swapped with this control algorithm.

The control algorithm is used to examine the sensitivity of the test to errors
and biases deliberately introduced into the data, as well as what effect different
parameters have on the sensitivity. Note again that the reported p-values are
only examples; a re-run with a different PRNG seed value will give a different
p-value.

One bias was introduced by adding a constant ¢ = 0.01 to the Gaussian

34 Spatially structured networks

:: }{ii"i§;¥ "M
: }# X 8 f
%om % |
QOZV%{H{ ¢ ¢ KS test |

0.0} Y ¥ Z—test |

0 25000 50000 75000 100000 125000 150000
N

Figure 4.6: Detection rate, e.g., proportion of tests that detect a problem with a bias
deliberately introduced into the algorithm, as a function of N, for the KS test (blue) and
the Z-test (red). Error bars show 90% confidence intervals. For this particular bias, the
Z-test has a higher detection rate than the KS test.

kernel. This bias was easily detected with N = 1,000,000 (p = 2.50 x 10729),
as well as with N = 100,000 (p = 6.43 x 107°). With N = 10,000, the bias
was detected at significance level a = 0.05 (p = 0.0159).

A second bias was introduced by increasing the distances passed to the
Gaussian kernel by 1%. This was detected with N = 1,000,000 (p = 1.59 X
1079), as well as with N = 100,000 (p = 8.23 x 1073), but not with N = 10,000
(p = 0.585).

A third bias was introduced by excluding 1% of the nodes, randomly chosen,
as potential targets. This bias is not detected by the KS test with any N,
because there is no change in the overall distribution of connections. The Z-
test, however, detects the bias, both with N = 1,000,000 (p = 6.66 x 101¢) and
with N = 100,000 (p = 5.32 x 10™*), though not with N' = 10,000 (p = 0.988).

As noted earlier, the p-values reported above are only examples. To get a
sense for how consistently biases are detected, and how the sensitivity varies
with NV, we again introduce the first bias into the algorithm, i.e., we add a con-
stant ¢ = 0.01 to the Gaussian kernel. We then choose the level of significance
a = 0.05, and consider p-values below « to be a detection. Running the tests
100 times, each time with a different seed, the detection rate, i.e., proportion
of times the bias is detected, can be found. In Figure 4.6, this detection rate
is plotted as a function of the number of nodes N. Both tests consistently and
reliably detect the bias for large N, though the sensitivity falls off rapidly with
decreasing N. It is worth noting that the Z-test is more sensitive to this par-
ticular bias. Other biases, though, that change the distribution of distances,
without affecting the overall connection count, are best detected by the KS

4.2 Three-dimensional space 35

test.

Generally, both tests are quite sensitive to a range of different errors and
biases, as long as N is large (2 100,000). Biases that do not change the
distribution, but do affect the total number of connections, are not detected
by the KS test, but such biases are detected quite consistently by the Z-test,
as long as N is large.

4.2 Three-dimensional space

The procedure for testing the connectivity pattern of spatially structured net-
works in three-dimensional space is very similar to that for two-dimensional
space, but the expressions for the density of potential targets at a given dis-
tance are different.

Let one node be centered on a cubic L x L x L layer. It can connect to
N other nodes, uniformly distributed on the three-dimensional layer, with a
cubic L x L x L mask, and a connection probability determined by a kernel
P(D). The distance from node i to node j is

(4.13)

Agyy {|<xi>m —@l ol = @l SL2

L= [(@)m = (2j)m| for |(z:)m — (2;)m| > L/2

The average node density is po = N/L3. The radial distribution function
(RDF) p(D) is proportional to the surface area of a sphere with radius D.
Thus, at a distance D € [0,L/2], the RDF is p(D) = podnD?* For D €
(L/2,L/+/2], part of the sphere is outside the cubic mask. Specifically, a
spherical cap will stick out of each of the six sides of the cube, as seen in Figure
4.7B. The surface area of each spherical cap is 2rDh, where h = D — L/2 is
the height of the cap. Subtracting the surface area of these caps from the total
surface area of the sphere, we get 4rD? — 6 (2rDh) = 27D (3L — 4D), and
the RDF becomes p(D) = po27D (3L —4D). For D € (L/v/2,L/3/2], the
derivation becomes somewhat involved. The six spherical caps have “grown”
to overlap each other near each of the 12 edges of the cube. This situation is
seen in Figure 4.7C. If we subtract the surface area C of the spherical caps
from the total area A, this overlap E has been subtracted twice, and has to
be added again. Calling the surface area of the sphere inside the cube I, we
can write

[=A—6C+12E, (4.15)

36 Spatially structured networks

A B C

Figure 4.7: A: For distances D € [0, L/2], the entire sphere is inside the cubic mask. B:
For D € (L/2,L/+/2], only part of the sphere is inside the mask, while six spherical caps are
outside. C: For D € (L/v/2,L\/3/2], the six caps have “grown” to overlap each other.

where A = 47 D? and C' = 27D (D — L/2). To find E, consider Figure 4.8. The
circle outlines one of the spherical caps, sitting on top of one of the cube’s sides.
The sphere intersects one of the cube’s edges at points P and Q. A great circle
passing through P and bisects the area E into two equal halves. Two more
great circles pass through the center point R on the cap’s surface and P and
Q, respectively. The spherical triangle PQR is further bisected into two equal
spherical triangles by a fourth great circle passing through R. One such half
(blue triangle in the figure) has a surface area T'= D? (a + 3 + v — 7), where
«, 3, and v are the corner angles. The area %E can now be found by subtracting
2T from the fraction 2v/27 of the spherical cap’s surface area C' which is
bounded by the two great circle arcs RP and RQ, i.e., £ = 2 ((2y/27)C — 2T).
The area I of the sphere inside the cube is therefore

I = A—6C+12E (4.16)
= A-6C+12(2(2C -2T)) (4.17)
= A—6C(1—2)—48T. (4.18)

Summarizing, the RDF is

(pOA for0 <D< %
A—6C for L <D< L
o) = {7) Rt TEVE (4.19)
0 otherwise,

\

4.2 Three-dimensional space 37

Figure 4.8: Ilustration of the derivation of the surface area E of the intersection between
adjacent spherical caps. The square is one of the cube’s sides, and the circle outlines one
of the spherical caps, a portion of the sphere bounded by the extended plane of the cube’s
side. The area F is seen on the top of the figure, bisected by a great circle passing through
points P and Q. The lines RP and RQ are also arcs of great circles. The surface area PQR
is 2T. The area %E can be found by subtracting 27" from the fraction 5—; of the surface area
of the spherical cap bounded by RP and RQ.

where
A = 4nD? (4.20)
C = 2rD(D-%) (4.21)
T = D’(a+B+vy—m) (4.22)
o = sin”! (1/ 2—%) (4.23)
B =z (4.24)
v = e (Va-Bia-£). (1.25)

As before, the PDF f(D) of source-target distances is the normalized product
of the RDF p(D) and some kernel P(D), and the CDF F(D) can be found by
numerical integration of f(D). Figure 4.9 shows an exemplary PDF and CDF,
together with the corresponding connectivity pattern.

The KS test is used to compare this theoretical CDF with the observed
EDF. A Z-test that compares the observed number of connections with the
expected number is also implemented. It works the same way as the Z-test
implemented for 2D layers.

38 Spatially structured networks

3.0 1
2.5 0.8
2.0
— 0.6
Q15 8
= ~ 0.4
1.0
0.5l | 0.2

085 01 02 03 0‘.4Do‘.5 06 07 08 09 %8001 02 03 04 05 06 07 08 0.9
D

C

Figure 4.9: Exemplary PDF (A), CDF (B) and connectivity pattern (C) for a spatially
structured network in 3D space. A Gaussian kernel is used, and the layer and mask size is
L?=1.

4.2.1 Implementation

A script implementing the test procedure can be found in Appendix F. The
usage is similar to that of 2D layers, and is demonstrated in the main section
of the module. Unless kernel_params is specified, suitable defaults are used.

4.2.2 Results

Using the script in Appendix F, NEST’s connection algorithm for 3D spatially
structured networks can be tested. With L =1, N = 1,000,000, there appears
to be close agreement between the expected and the observed distribution of

4.2 Three-dimensional space 39

A B

3.5 1.0
mm= Theory mm= Theory

— Observation 0.8/ | ™ Observation
2.5
2.0 , 0.6f
= 8
A1 0.4}
1.0
0.2r
0.5

080 01 02 03 04 05 06 07 08 09 %80 01 02 03 04 05 06 07 08 0.9
Distance Distance

Figure 4.10: PDF (A) and CDF (B) of source-target distances, with layer size L? = 1,
using the constant kernel. The grey lines show the theoretical predictions, and the red lines
show the empirical observations. The empirical PDF is plotted with 100 bins.

source-target distances for all four kernels (constant: p = 0.726, linear: p =
0.978, exponential: p = 0.803, and Gaussian: p = 0.770). The theoretical and
observed PDF and CDF for constant kernel are shown in Figure 4.10. When
the source node is moved to (L/4, L/4, L/4) so that the periodic boundary
conditions come into play, there is still a close agreement between theory and
observation (constant: p = 0.965, linear: p = 0.367, exponential: p = 0.217,
and Gaussian: p = 0.707), and the same holds when the number of VPs is
increased to 4 (constant: p = 0.726, linear: p = 0.600, exponential: p = 0.852,
and Gaussian: p = 0.561).

Sensitivity

The same control algorithm that was implemented for 2D layers is implemented
for 3D layers. It can be used both with the KS test and with the Z-test. We
use it again to test the sensitivity of the test procedure to the same biases as
for 2D layers. As before, we note that the reported p-values are only examples.

The first bias, introduced by having the Gaussian kernel function return a
too high value, with a constant ¢ = 0.01 added, was detected by the KS test
with N = 1,000,000 (p = 1.52 x 1075¢) and N = 100,000 (p = 1.48 x 107°),
but not with N = 10,000 (p = 0.350). It was detected by the Z-test with N =
10,000 (p = 6.25 x 107°) as well as with larger N, but not with N = 1,000.

The second bias, where the distances passed to the Gaussian kernel function
are too high by 1%, is detected by the KS test with N = 1,000,000 (p =
1.40 x 107?) and N = 100,000 (at significance level « = 0.05; p = 0.019),
but not with N = 10,000. The Z-test also detects the bias with N = 100,000
(p = 5.46 x 107%), but not with N = 10,000 (p = 0.818).

40 Spatially structured networks

The third bias, where a randomly selected 1% of the nodes are excluded
as potential targets, can not be detected by the KS test, regardless of N. The
Z-test, however, detects the bias with N = 1,000,000 (p = 3.38 x 1071%), N =
100,000 (p = 1.05 x 107%), and N = 10,000 (at « = 0.05; p = 0.035), but not
with N = 1,000 (p = 0.388).

Overall, the KS test is sensitive when N is large, but the sensitivity falls
of rapidly with decreasing N. Perhaps surprisingly, the Z-test is often more
sensitive than the KS test, depending on the nature of the bias we wish to
detect. The two tests are in some ways complementary to each other. The
KS test detects biases that changes the overall distribution of source-target
distances, but it does not detect biases that affect the total number of connec-
tions without changing the distribution. The Z-test does detects biases that
affect the total number of connections without changing the distribution.

4.3 Automated test procedure

We will now describe the automated test procedure for spatially structured
networks, both in 2D and 3D space.

To maintain a high sensitivity while reducing the rate of false positives and
the execution time, an adaptive testing strategy is used. First, a single KS
test is run. If the resulting p-value is suspiciously low, a two-level test is run,
comparing the output of n,.,s KS tests to the expected uniform distribution,
thereby either confirming or allaying our suspicion.

As discussed earlier, certain errors can not be detected by the KS test, but
are detected by the Z-test. We therefore include the Z-test in the automated
test procedure. The adaptive strategy can be used for the Z-test as well as
for the KS test, re-running the Z-test n,.,s times if the first test results in a
suspicious p-value.

Let oy be the value below which the p-value from the single KS test (or
Z-test) is considered suspicious, and ay be the value below which the p-value
from the two-level test is considered too extreme, resulting in the rejection of
H,. The fraction of false positives will be @ = ajas. If k tests are included
in the test suite, the number of false positives is binomially distributed. The
probability of seeing one or more false positives is therefore

Prob(x > 1) = 1— Prob(z =0)
= 1- (S) (1a)°(1 — ayap)*

= 1- (1 — O[loég)k

The choice of a; and as might thus depend on k, as well as other factors,
such as the acceptable rate of false positives and the desired sensitivity and

4.3 Automated test procedure 41

the tests. The number of nodes N in the network and number of re-runs
Nruns UpON suspicion must also be chosen. Large values will clearly increase
sensitivity, but the available computation time is a limiting factor.

4.3.1 Implementation

An implementation of the automated test procedure is found in Appendix
G. Each of the four kernels (constant, linear, exponential, and Gaussian) are
tested. In addition, tests are done with the source node shifted away from
the center, and with multiple VPs. These six test configurations are tested
both with the KS test and the Z-test, and both in two-dimensional and three-
dimensional space. A total of 24 tests is thus run. With a; = ay = 0.01,
the entire test suite will falsely report a problem with a probability 1 — (1 —
0.01 x 0.01)** = 2.40 x 1073. With N = 100,000 nodes in the network and
Nruns = 100 re-runs upon suspicion, the test suite will in most cases complete
in a couple of minutes.

Chapter 5

Discussion

We have developed tests for two main types of connection patterns, namely,
random convergent and divergent connections with multapses and autapses
allowed, and structured networks in two- and three-dimensional space with
distance-dependent connection probability. Both tests have been implemented
as Python test suites and have been used to test the connection routines in
NEST. We emphasize that the test suites can be adapted to work with other
simulators, simply by changing the function calls for generating the network
and retrieving the resulting connections.

For random connections, a two-level test was proposed. Pearson’s chi-
squared test is used to test whether nodes are selected randomly and with
equal probability. The resulting p-values are then compared with the expected
uniform distribution using the Kolmogorov-Smirnov (KS) test. Advantages of
this approach are increased sensitivity and the ability to detect too good fits
as well as poor fits.

For spatially structured networks, expressions for the radial distribution
function were derived, both for two- and three-dimensional space. The ob-
served distribution of source-target distances could then be compared with the
expected distribution, found as the normalized product of the radial distribu-
tion function p(D) and the distance-dependent connection probability (kernel)
P(D), using the KS test.

We demonstrated the utility of the tests, both that they are able to detect a
range of errors, and that they do not fail more often than expected when there
is no error in the algorithms tested. To actually show this, rather than assume
it is so, is important, because assumptions used when developing the tests
might not be as accurate as assumed. For example, in the case of Pearson’s chi-
squared goodness-of-fit test, the assumption of uniformly distributed p-values
is not strictly true, due to the discreteness of the p-values. And indeed, for very
sparse data, the two-level test procedure used for testing random convergent
or divergent connections was shown to not be reliable. It was demonstrated,
however, that both tests (1) detect many deliberately introduced errors, and

44 Discussion

(2) do not report more than the expected fraction of false positives under Hy
(as long as data is not too sparse).

The tests were used on NEST’s probabilistic connection algorithms, with
a range of different parameters, under different conditions. No evidence of
errors or biases was found. For example, three-dimensional spatially structured
networks with 1,000,000 nodes were created using each of the four kernels
(constant, linear, exponential, and Gaussian), and the distribution of distances
between connected nodes was tested using the KS test, resulting in the p-
values 0.726, 0.978, 0.803, and 0.770, consistent with our expectations. This
of course does not guarantee that no bias exists. Very small biases, or biases of
a kind not easily detectable by the tests (e.g., biases caused by patterns in the
underlying PRNG), might, indeed probably do, exist. Still, our confidence in
the simulated connection patterns, and therefore the scientific findings based
them, has grown.

An additional goal of this work was to develop automated test suites. An
adaptive test strategy was proposed as a solution to the extra challenges this
entails. A single test is first done on the algorithm being tested. If the resulting
p-value is deemed suspicious, a two-level test is performed, comparing the p-
values from tests of multiple network realizations with the expected uniform
distribution. Using this strategy, the automated test suites achieve a low rate
of false positives, fast run time, and a fairly high sensitivity. In certain cases
one might want to opt for a safer alternative and do a small number of initial
tests, instead of one, to determine whether more tests should be run. This will
increase the sensitivity, while run time and rate of false positives will increase.

Perspectives for future research

Variants of the probabilistic network types tested in this work exist, and tests
have yet to be developed for these. The test for random convergent or diver-
gent connection routines developed here, for example, assumes that autapses
and multapses are allowed, and cannot be used when these are disallowed.
Networks with disallowed autapses are relatively straightforward to test. We
can simply make sure no node is connected to itself, and do a chi-squared test
with the number of nodes available reduced by one. For disallowed multapses,
however, an altogether different distribution will result.

For networks with spatial structure, tests for networks with a prescribed in-
or out-degree (', as well as a kernel, remain to be developed. It is not entirely
clear what is expected from such a connection routine, as a conflict between the
two rules occur. In some cases, the value of the kernel is in this case interpreted
not as a connection probability, but instead as relative probabilities (Plesser
and Austvoll 2009). With kernel value for node 7 equal to k;, the relative
probability of connecting to node i is p; = k;/ K, where K =) k;. For such
a connection routine, one possible test strategy is to use the chi-squared test,

45

with p;C as the expectations.

Another case worth testing is spatially structured networks with open
boundary conditions. When the source node is arbitrarily positioned, the
boundary effects will in this case lead to somewhat involved expressions for
the radial distribution of nodes.

Appendix A
NEST - A short tutorial

NEST (NEural Simulation Tool, Gewaltig and Diesmann (2007)) is a sim-
ulation environment developed by the NEST Initiative, capable of running
simulations of large networks of point neurons. NEST is open source and can
be downloaded free of charge from nest-initiative.org. A brief introduction is
given here. This section is based on the NEST tutorial by Gewaltig, Morri-
son, and Plesser (2012) and the NEST Topology User Manual by Plesser and
Enger (2012). It mainly describes the functions implementing the connection
algorithms tested in this thesis. A Python interface, PyNEST (Eppler et al.
2009), is available, and will be used here. Version 2.2.0 of NEST is used. To
import the PyNEST module into Python we use the following command.

import nest

The concepts of nodes and connections described earlier are used in NEST.
Nodes can be neurons, devices, or sub-networks. The neurons are either point-
neurons (neurons with a single compartment) or neurons with a small number
of compartments. They can be based on one of the many built-in neuron
models, some of which are listed in Table A.1. The default parameters of
each of these models can be modified. Due to NEST’s modular architecture,
researchers can also create their own models from scratch.

Devices are nodes used to either stimulate or measure the activity of neu-
rons. Some of the available devices are listed in Table A.2. Sub-networks (or
subnets) are nodes who themselves are comprised of multiple nodes. Subnets
can also be created inside other subnets. Using nested subnets we can create
complex hierarchical structures of neurons with as many levels as we want.

The Python code below will create a neuron of type “iaf neuron”, using
the default parameters for the model.

neuronl = nest.Create(’iaf_neuron’)

Every node created is assigned number, called a global identifier (GID). This
number is returned and assigned to the variable called neuronl. To create a

http://nest-initiative.org

48

NEST - A short tutorial

Name

Description

aeif cond alpha

Conductance based exponential integrate-and-fire neu-
ron model according to Brette and Gerstner (2005).

ginzburg neuron

Binary stochastic neuron with sigmoidal activation func-
tion.

hh psc alpha

Spiking neuron using the Hodkin-Huxley formalism.

ht neuron

Neuron model after Hill and Tononi (2005).

iaf cond alpha

Simple conductance based leaky integrate-and-fire neu-
ron model. Post-synaptic change of conductance mod-
elled by an alpha function.

iaf cond exp

Simple conductance based leaky integrate-and-fire neu-
ron model. Post-synaptic change of conductance mod-
eled by an exponential function.

iaf neuron

Leaky integrate-and-fire model with alpha-function
shaped synaptic currents.

izhikevich

Implementation of the simple spiking neuron model in-
troduced by Izhikevich (2003).

mat2 psc_exp

Non-resetting leaky integrate-and-fire neuron model
with exponential PSCs and adaptive threshold.

parrot neuron

Neuron that repeats incoming spikes.

pp_psc_delta

Point process neuron with leaky integration of delta-
shaped PSCs.

sli_neuron

The sli_neuron is a model whose state, update and cal-
ibration can be defined in SLI.

Table A.1: A few of the neuron models available in NEST.

neuron with some non-default parameters, say, the threshold potential V4, and
the reset potential Vieset, the code will look as follows.

neuron? = nest.Create(’iaf_neuron’,
params={’V_th’: -50.0, ’V_reset’: -65.0})

To create many identical nodes, the desired number of nodes is passed to
Create as the second argument. In the following code 1,000 neurons are cre-
ated, and the GIDs for all the neurons are stored as a list named neurons.

neurons = nest.Create(’iaf_neuron’, 1000)

Connections in NEST can represent synapses between neurons, but can
also be connections from neurons to other types of nodes (devices and subnets).
All connections are directed, weighted and delayed. Directed means information

49

Name

Description

ac_ generator

This device produce an ac-current.

correlation detector

Device for evaluating cross correlation between
two spike sources

dc_ generator

The DC-Generator provides a constant DC input
to the connected node.

gamma_ sup_generator

Simulate the superimposed spike train of a popu-
lation of gamma process.

multimeter

Device to record analog data from neurons.

noise generator

Device to generate Gaussian white noise current.

poisson__generator

Simulate neuron firing with Poisson processes
statistics.

spike detector

Device for detecting single spikes.

spike generator

A device which generates spikes from an array
with spike-times.

voltmeter

Device to record membrane potentials from neu-

rons.

Table A.2: Some of the devices available in NEST.

travels in one direction. Weighted means the strength of connections can be
varied. Delayed means it takes time for information to travel from one node
to a connected node.

To manually connect one pair of nodes using the default synapse model
“static_synapse” with the default weight of 1.0 and the default delay of 1.0
milliseconds we can use the Connect function:

nest.Connect (neuronl, neuron2)

To use a weight of —1.5 (negative weights means the connection will be in-
hibitory), a delay of 0.5 ms, and the synapse model “tsodyks synapse”, we
pass some extra arguments to Connect as follows.

nest.Connect(nl, n2, -1.5, 0.5, model=’tsodyks_synapse’)

Table A.3 lists some of the synapse models in NEST. Several synapse models
with short-term and long-term plasticity are available.

Connect can also be used to create many one-to-one connections between
two lists of nodes. However, if we wish to make connections that are more
complex than simple one-to-one connections, such as convergent and
divergent connections, several other functions are available. One example is
RandomConvergentConnect. The code snippet below first defines three
variables N;, N; and C. It then creates N, neurons, which will serve

50 NEST - A short tutorial

Name Description

cont _delay synapse Synapse type for continuous delays.

ht synapse Synapse with depression after Hill and Tononi
(2005).

static__synapse Synapse type for static connections.

stdp__dopamine synapse | Synapse type for dopamine-modulated spike-
timing dependent plasticity.

stdp__synapse Synapse type for spike-timing dependent plas-
ticity.
tsodyks synapse Synapse type with short term plasticity.

Table A.3: Some of the synapse models available in NEST.

as source neurons, and N; target neurons. It then connects them using
RandomConvergentConnect.

N_s = 10
N_t = 10
C=3

source_neurons = nest.Create(’iaf_neuron’, N_s)
target_neurons = nest.Create(’iaf_neuron’, N_t)
nest.RandomConvergentConnect (source_neurons, target_neurons, C)

The function call

nest.GetConnections (source_neurons)

will return the resulting connections. RandomConvergentConnect considers
each node in the second list (target_neurons) in turn, and connects C' ran-
domly chosen nodes from the first list (source_neurons). Hence, the target
nodes will all have an in-degree (number of incoming connections) equal to C,
whereas the source nodes might have different out-degrees. Note that two or
more connections (multapses) can be drawn between the same pair of nodes.

A similar function, RandomDivergentConnect, works in very much the
same way, but it iterates over the source nodes instead of the target nodes,
and draws random nodes from the targets instead of the sources. As a result,
the source nodes will now all have the same out-degree C', while the in-degrees
of the target nodes will vary. An example of a random divergent network was
shown in Figure 1.1.

After having created all nodes and connected them, the simulation can
be started with the Simulate function. Simulate only takes one argument;
the number of milliseconds to simulate. The following example, borrowed from
Gewaltig, Morrison, and Plesser (2012), is a simple simulation script. A neuron

51

receives stimuli (events) from one AC generator and two poisson generators.
A voltmeter is also connected to the neuron to record the membrane potential.
The simulation is run for 1,000 ms, and a plot of the membrane potential as a
function of time is displayed.

import nest
import nest.voltage_trace
neuron = nest.Create(’iaf_neuron’)
sine = nest.Create(’ac_generator’, 1,
{’>amplitude’: 100.0, ’frequency’: 2.0})
noise = nest.Create(’poisson_generator’, 2,

[{’rate’: 70000.0}, {’rate’: 20000.0}])
voltmeter = nest.Create(’voltmeter’, 1, {’withgid’: Truel})
nest.Connect(sine, neuron)
nest.Connect(voltmeter, neuron)
nest.ConvergentConnect (noise, neuron, [1.0, -1.0], 1.0)
nest.Simulate(1000.0)
nest.voltage_trace.from_device(voltmeter)

Spatially structured networks and the NEST Topology module

The simulation of spatially structured networks is increasingly a popular tool.
A spatially structured network is a network where connection probabilities and
-properties are determined by the spatial position of the nodes. With NEST,
such networks can be created easily using the NEST Topology module (Plesser
and Austvoll 2009; Plesser and Enger 2012).

To use NEST Topology, the module has to be imported as show below. For
convenience it is given the shorthand name “topo”.

import nest
import nest.topology as topo

In Topology, nodes are placed on layers. Layers are similar to subnets, but with
extra information about the spatial position of each node. The term “layer”
often refers to a two-dimensional structure, but layers in NEST Topology can
be both two- and three-dimensional. They are either grid-based or free. In
grid-based layers, nodes are placed on a Cartesian grid, while on free layers,
nodes can be placed at arbitrary locations. The code below will create a simple
two-dimensional grid-based layer.

layer_specs = {’elements’: ’iaf_neuron’,
‘rows’: 10, ’columns’: 10, ’extent’: [2.0, 2.0]}
layer = topo.CreatelLayer(layer_specs)

52 NEST - A short tutorial

First a dictionary, layer_specs, is created, containing specifications for the
layer. The node type is set to “iaf neuron”. The rows and columns entries
specify the number of desired rows and columns of neurons, and extent is the
size of the layer. Additional parameters can be included, such as the x and y
position of the center of the layer (default is (0, 0)). The layer is assigned a
GID, which is returned by CreateLayer and assigned to the variable layer.
To create a free layer, the position of every node must be passed to
CreateLayer. If a list of positions is given, a node will be created at each. In
the example below, three nodes are positioned on a two-dimensional layer.

pos = [[-0.3, 0.3], [0.4, 0.2], [0.0, -0.4]]
layer = topo.CreatelLayer({’elements’: ’iaf_neuron’,
’positions’: posl})

Here the extent is not specified, so the layer will have the default extent of
1.0 x 1.0.

To place a larger number of neurons at pseudorandom locations, we have
to import and use a pseudorandom number generator (PRNG), such as the
one supplied with numpy. Here, 1,000 neurons are uniformly distributed over
the layer:

import numpy as np

x = np.random.uniform(-0.5,

y = np.random.uniform(-0

pos = zip(x, y)

1 = topo.CreateLayer({’elements’: ’iaf_neuron’,
’positions’: posl})

0.5, 1000)
0.5, 1000)

>

topo.PlotLayer(1)

The last line will display a plot of all the nodes on the layer, similar to the
one in Figure A.1. To create a three-dimensional layer we simply add a third
component to the node positions.

import numpy as np

x = np.random.uniform(-0.5, 0.5, 1000)
y = np.random.uniform(-0.5, 0.5, 1000)
z = np.random.uniform(-0.5, 0.5, 1000)

pos = zip(x, y, z)

1 = topo.CreateLayer({’elements’: ’iaf_neuron’,
’positions’: posl})

topo.PlotLayer(1)

The result is seen in Figure A.2.

For small layers, a large fraction of the nodes will be close to the edge
and therefore have fewer neighboring nodes. This might have an undesired
effect on the simulation. To emulate the effect of a larger layer, the layers can

53

s .Q'.o\...‘ 0:. *’oo..o .}.‘“o‘

[]
00 o °
o o, °, o0 0® J°% pry

Figure A.1: A free layer with 1,000 nodes. x and y positions are drawn pseudorandomly
from U(—0.5,0.5).

therefore be given periodic boundary conditions. The layer is effectively bent
into a torus, so the left and right side are joined, and the top and bottom is
joined.

To create a layer with periodic boundary conditions, an extra entry,
’edge_wrap’: True, is included in the dictionary passed to CreatelLayer:

layer = topo.CreateLayer({’elements’: ’iaf_neuron’,
’positions’: pos,
’edge_wrap’: Truel})

The ConnectLayers function is used to connect two layers. One layer
is considered the source layer, and the other the target layer. Connections
between layers can be convergent or divergent. When creating a convergent
connection, each node in the target layer is iterated over, and connections are
drawn from the source layer. When creating a divergent connection, each node
in the source layer is iterated over, and connections are drawn from the target
layer. The layer which is iterated over is called the driver, and the layer from
which nodes are drawn is called the pool layer.

When connecting two layers, we also specify a mask, and usually a kernel.
A mask is a boundary around the considered node in the driver layer beyond
which no nodes from the pool layer are considered. Masks can be rectangular,
circular, or annulus shaped. The kernel is the distance-dependent connection
probability function. Table A .4 lists all the available kernels in Topology. Users
can also create their own kernels.

=W N =

© 00 3 O Ot

10

12
13
14
15
16
17
18
19
20
21

54 NEST - A short tutorial

: x 0 o . ° » ’
o © [° ...
. ..,: TR PT w .;.\. e, 4 n, ©
° ° T ™% > e s : e :.&.'p' -~ ”*
[° e o:“!..' ...l .:.
e’ o VS L00%% 00 Ly) D : ’
o o & e Jo o sef <. 3}0.{. S F
o 8o % ¢ 0® @ ogfd e 0o " & ¢
.) A S .S't.’ foce’s S
® o :. o0 .".0{.0 .:.“.o: .~. ‘ ‘:. o000 o
:".'\ : . b o :‘: J .".t? '.:M’& '. *°sPe o
[e Moo .:.—'.’.g;.o‘......... 0e?® o . . ’

Figure A.2: A free three-dimensional layer with 1,000 nodes, where z, y, and z positions
are drawn pseudorandomly from U(—0.5,0.5).

In the example below, two identical layers are created, and then connected
using a Gaussian kernel. The result can be seen in Figure A.3.

import nest
import nest.topology as topo

layer_specs = {’elements’: ’iaf_neuron’,
’rows’: 21, ’columns’: 21}

source_layer = topo.Createlayer(layer_specs)

target_layer = topo.Createlayer(layer_specs)

mask = {’rectangular’: {’lower_left’: [-0.4, -0.4],
>upper_right’: [0.4, 0.4]}}
kernel = {’gaussian’: {’p_center’: 1., ’sigma’: .2}}
conn_specs = {’connection_type’: ’convergent’,
’mask’: mask, ’kernel’: kernel}
topo.ConnectLayers(source_layer, target_layer, conn_specs)

fig = topo.PlotLayer(target_layer, nodesize = 60,
nodecolor = ’grey’)

center_node = topo.FindCenterElement (source_layer)
topo.PlotTargets(center_node, target_layer, fig = fig,
mask = mask, kernel = kernel,

22
23
24

55

Name Parameters | Function
constant p e 0,1]
uniform min, max p € [min, max) uniformly
linear a,c p(d) =c+ad
. —d

exponential | a,c, 7 p(d) =c+ae”r

i _(@=n)?
gausslan Dcenter; 0, ,u7 C p(d) =c+ Pcenter€ 202

(dx—px)? _ (dy=py)?) (dx—pa)(dy—py)

. Ox, O - +2p X

gaussian2D Per @ Ty & G -
Hx, :uy7 P, C p<d) = C+pce 2(1-p%)

Table A.4: Kernels available in NEST Topology.

250, src_color = ’red’,
30, tgt_color = ’red’,
’blue’)

src_size
tgt_size
kernel_color =

In lines 4 and 5, layer specifications are stored in the variable layer_specs
No extent is specified, so the default extent of 1.0 x 1.0 will be used. In line 6
and 7, these specs are used to create two identical layers, called source_layer
and target_layer. In line 9 through 11, mask and kernel specifications are
stored. A rectangular mask is chosen, and the extent of the mask is specified
in terms of the locations of the lower left and upper right corners. A Gaussian
kernel is chosen, and the two required parameters of the function, the connec-
tion probability at the center (p_center) and the standard deviation (sigma),
are set. In line 12 and 13 the connection specifications are set using the already
defined mask and kernel, and the connection type set to convergent. In line
14 the layers are actually connected. The rest of the code generates the plot
seen in Figure A.3.

It is possible to specify a fixed degree for the driver layer, similar to what
is done when using RandomConvergentConnect for networks without spatial
structure. In this case, each node in the driver layer selects randomly chosen
nodes from the pool layer and either connects or not based on the probability
given by the kernel, until the number of connections matches the specified
degree. This will allow multapses to be formed (unless specifically prohibited).
To implement a fixed driver layer degree, only a small change to the parameters
given to ConnectLayers is needed:

conn_specs = {’connection_type’: ’convergent’,
’mask’: mask, ’kernel’: kernel,
’number_of_connections’: 100,
’allow_multapses’: True}

Several functions for inspecting different aspects of the network is avail-
able, in addition to the plotting functions demonstrated above. All the query

26
27
28
29

56 NEST - A short tutorial
P s\%
r, N
14 \Q
’ \
04 o> T O e <
’ »$ 0 o S \
4 ’ > \Y
Vi 0% XK oM e \
4 ”o ° eee0e0 e \\ \
1° T 000 1
o o'" o0 o 1
" eee9 0 00 o\‘o ° »
A EEEEEKEX . o o
o0 :o e o000 0 0 e
RTEEEEEEE R
hooos PR
eec e o\‘o e e e /o ° p
A ° \ oo dec e
\{ o Deone. 0" e/
\ ee e eeo o ,’)
\\ ‘o\ o0 ° ® e 'l
\\ > e @ o y
~ - ~
\‘ '..‘ -~ v
N o
N 2
S~ R

Figure A.3: Plot of a layer, with neurons connected to the source node in the center
marked in red. The mask is shown in purple, and the blue rings mark o, 20 and 3o from the
Gaussian kernel function. No nodes outside the mask is connected to the source node. As
expected, the fraction of connected nodes is higher close to the source node. Note however,
that the actual number of connected nodes is higher between the 1o mark and the 20 mark
than between the center and the 1o mark. This is because a greater number of nodes are
available further away from the center.

functions from the main nest module, such as the GetTargetNodes function
explained earlier, can also be used on layered networks created with the Topol-
ogy module. In addition, the topology module provides some extra query
functions, such as FindCenterElement, GetTargetPositions, Distance, and
Displacement. The usage of some of these are demonstrated in the code
below, which is a continuation of the previous example.

targets = topo.GetTargetNodes(center_node, target_layer) [0]
distances = topo.Distance(center_node, targets)

import matplotlib.pyplot as plt

plt.figure()

plt.hist(distances, bins=10)

This will generate a histogram like the one in Figure A.4, showing the distri-
bution of distances between the center source node and connected nodes in the
target layer.

57

18

16

14

12

10

8.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Figure A.4: Distribution of distances between a centered source node and the connected
target nodes.

(000000T) 3UTPURI PUI = PSU
IQUON == psSw JT
:senTeA peos HNUd 308 #

A.muoymlﬁmzphﬁ>|sdnlﬁm00p«dePMPmenmeuwu.pmwﬁ = da"u- y1es
({Speeays - FJTOS : SpeeIU3l WNuU TeDO0T.})SN3ielSTouUIs}l1eg 1s8U
() Teuxe)3esey - 1s8uU

‘pees HNY IL9asel :psu

sao9jouweaed

‘SONTeA podsS 39S pue Touxsy ISAN oYl 19soy

(]
t(psu ‘FTes)3es8I”

S3UN0D UINIDI

T =+ [3Ie3S - WOTS]S3UNOD
:X UT WeTe® IO
STN'FTI®S % [0] = S3umnod
(X)utw = 1Ie3S

*S3UOWeT® JIRTTIWIS JFO S3UNOD SUTUTR3UOD 3STIT

senTeA uIniay

*9s1T Luy :x

sIsjeureIRd
*4STT UT SsjueweTe® JRTTWIS 3UNOYH
(N3

P (X ‘FTes)Iejunod”

STN'FTeS x [0018ep~pegoadxe] = pejoadxe-ITes

((utw~o- yTos ‘oo13ep~pegoadxe)
\ % ¢ UTW ® 8SeaIddp IO STN / D*3 N oSealdu],

*(Ig'9) utw e uweyl ssoT ST (JIg'Y%) 90189p-qno peidadxy,

ySuturepmewtauUNy OSTERI
iutw- o JTos > oox8ep peloadxe IT
(STN"FT®S)2®0TI / D' FI9S % 1 N'JI[9S = 9o13ep pejroadxe

Jop

Jop

68
88
L8
98
a8
¥8
€8
c8
I8
08
6.

0¢

0 D
0 O

I~
00

red

DPERSURIPEIN
1010 10 1O 1O 1O K

—~ N

O~ 0O
< < < S

JIIIN
<

(¢sooxd " TenaITATuNuU Te109,)SNielgTouIay1en - 1seu = da~u- yTes
({Speeiya’ JISS : SpPeSIYl UWNU TEDO0T,})SNIB]STOUIS}1SS 1SoU
() TouIL}19s9Y " 1S8U

speaIy3} = speaiyl’ JTes
UTW ® = UTW ®° J[OS

0 = D" 3¥T8s

N = 37N"FT®S
N = STN'¥TeS

9
s

‘7 ST 3TneFo(Q ‘'SpeaIyj [eJS0T FO ISqUNU 385 :Spesayl
0T ST 3[neFsQ 'UTq yoes

UT SUOT]RAISSQO JO JIoqumu pejoedxe WNUTUTH utw-e
* (woanau 3931

aed suoTioeuUUOD Fo Iequmu) o8I8ep-UJ o)

‘suoanau 308Ie] JO Joqumy : 17N

*SUOIN®U ©0INOS JO Jaqumy : s™N

sI9jlsuweaed

‘UOTINQTIISTP POAISSqOo oYl Y3Tm uostredwod Isjel JOF
SUOTANQTI}STP pojoadxe sejzernored pue ‘jusuriedxe ayj3 dn sj3eg

[

:(T=SpesIyl ‘QT=UTW S ‘D ‘3TN ‘STN ‘I[OS) TITUT T Fop

(3
*300uuo)juUsSIoAUOUOPURY SUT3Se3 IO0F posn SSeT)

ccc¢
: (309(qo) 1995917)DY SSeTd

q3seu 3xodwt

11d se 3ordAd-qrr3ordieu 3xodut
sqeqs-£dros jxodurt

pux se wopuex’Adunu 3xodwt
Adumu 3xodut

(X33
* 309uU0)IUSSISAUCJUOPURY IOF S3ISOJ

wroyzxe(y Tetweq :JIoyinep

[

SUo1j3oauu09 Qﬁ@@pw.\rﬁmvu wopued JI0jJ W—QM.HOm 1S9],

q xipuaddy

ﬁﬁ
€V
v
1%
oy
6€

L€
9¢€
ge
123
€€
ce
1€
0€
6¢
8¢
LG
92
Ge
14
€¢
44
1¢
0¢
61
8T
LT
91
a1
i
€1
4!
IT
0T

[TV

™M <t

— N

Test script for random convergent connections

60

‘peferdstp oq prnoys wei8o3sty Ioyzeym Lyroedg :weiBo3sTY MOUS
‘soaax8epT 108~ Jo pee3sur pesn

oq TTTM TOX3uod~seax8ep~308~ ‘eni] JI ‘onfea uUesTo0q : T0I3u0d

‘onTes pess HNYd ISIATH : peesTaIesas

‘3s93 peoxenbs-tyo jeedex 03 sewry Jo Iequnu : sunI~u
sI9jeweIed

*ase1 JOH Aouxtwg-asoxoJowToy oya Suisn [T Q] uo
peinqriastp ATwrioytun axe senrea-d SuriTnsel Iayleym 3s9]
*SeWT3 SUNI™U 3S83 JO0H PoJenbs-Tyd UNI pue }IOMIOU © 93BDID
(]

: (9sTed=4QD™MoUs

‘00T=SuTtq weI8o31sSTY ‘osTei=wei803sSTY MOYS
‘9sTeJ=T0I3UO0D ‘OUON=POdS~ 3IIS ‘SUNI"U ‘JT[OS)3S03 [OADT OM]

(0=Fopp ¢ (pea1oadxs-ITes)Lerre’ Adumu
¢ (soa13sp) feaxe ' Adumu) exenbstys - sqeqs- AdTos uwingex
JOpp-T1-3 = Fp ‘wopeaiF yo seailep ayj3 03 jusuasnlpe :jopp #

(psw)sea13ep 198~ FTes = sooi13ep
tesTo

(pSw) ToI1u0d " s90139p"108™ * IT9S = sooi13ep
:TO0X3U0D FT

‘9803 pexenbs-tyo> woxy entea-d
*oT3sT3R3lS poxenbs-Tyd

senTeA uInlay

-soox8epT 108~ JO peS3SUT pesn aq
TITA TOIjU0d> seaia8ep 308~ ‘oni] JI ‘oNTeA URSTOOg :TOIJUOD
‘poes HNY Io3se| : psu

sI9jsuweIed

‘3583 409
poxenbs-1ys s, uosiesd SUTSN UOTINQTIIISTP poirdadxe oyl YITM UOTINQTIISIP
o018ep-3no SuriTnsex oy3 aredwod pue NIom3du STSUTS e 93BDIY)

ccc¢
: (9STed=T0I1U0D ‘oUON=pSW °JToS)1se1 parenbs Tyd

seox8eop uinjyex

(u02)I9qUNOD ™~ IT9S = so9i1Fep
(D°ITOS * 3"N"FT®S ‘STN'JFToS Q)IUTPURI PUI = UOD

(psSw)pass * pux
{QUON =i PSW IT

Jop

Fop

*SOpou ©0INOS 9Y3 FO S9oi8ep-3no aYj SUTUTRIUOD 3STT

senTes UIN}ey

‘poes HNY I9ase :psu

sa9jlauweaed

‘UOTINQTIISTP TRTWOUTITNW
pejoeadxe oYl YITM eBIRp SUINISI POUlLW STU3 ‘ISHN SUISn Jo peejsul

[
:(psu ¢ FTes)T0I3u0d " s99I80p 103"

seax8ep uaniex

(SUOT309UUOD ™ ©DINOS) ISJUNOD™ " FTOS = seox8ep
[SuoT308UU0D UT UUOD JIO0F [Q]UUOD] = SUOT3OOUUOD ©2INOS
(Sepou~80Inos * FJTOS=00IN0S) SUOTJDOUUONJOH * 3S8U = SUOTIDBUUOD

()200uuod™ " yTos
OPITng™ " FT°S
(psw)3esex” " FTos

*SOpou ©2INOS U3 JFO sooa8op-3no oYz SUTUTRIUOD 3ISTT

sonTeA uIN}ey

‘poes HNY I93SB| :psuw

SJIejauweIed

*SUOT309UU0D SUT}TNSeI
Y3 SASTIFSI pUR ‘WAY3 3O9UUOD ‘SOpou 93edard ‘ISHN 39sey

(X3

s (psw ‘FTos)seaxdepTa03”

({eni1] : sesdejTnu morTe,}=suotado ‘)-JTeS
‘sepou~1e81eq " JTOS ‘SOPOUTSDINOS * FTOS)109UU0)YIUSTISAUOYUOPURY * 1SU

¢¢¢ SOpOU TT® 3D9UUOD(¢ ¢
: (FTOS)309UU0D ™~

(3"N"JT9S °,UOINSU JBT,)91B0I) 1SOU = Sopou 193Ieq- JTOS
(STN'FT9S ¢ UOINSU™ JeT,)99BoI) 1SOU = SOPOU 92INOS"° JTOS

¢c¢ SOpOU TT® 83BdIAD(¢ ¢
t(FTes)p1Tnqg”

({o8ueapsu : spoas~3uI,
‘da"u- yres + psu :peos~Suil,})snieqgTouIs) 19 1sou
(da~u* yTes + psu ‘psw)o8uer = oFueipsu

FopP

FoP

Fop

FopP

VT
ovl
6¢T
8€T
LET
9€T
ger
Vel
€el
cel
I€T1
0€T
6CT
8C1
LCT
921
gal
i7q!
€al
cal
TcT
0cT
61T
8TT
LTT
91T
ST
VIT
€11
CIT
TTT
01T
60T
80T
L0T
90T
G0t
V0T
€01
cot
10T
00T
66

86

L6

96

G6

76

€6

c6

16

06

61

d ¢ :f3TwroyTun o 3s03-8Y Fo enytea-d, jurad
SY ¢ :0T3STIRAS 3503 Q)¢ 3urad

LVC
4

(0=poosTaIels ‘QQQT=SUNI U)3se] TondT om3-3sey = d sy
(000T=D ‘000T=3"N ‘000T=S"N)I031S9317DDY = 1s°3

icoTutew T == T euweu”

d ‘sy uinjex

(enxr=¥o0Tq)Moys - 2Td
:wex803STY~MOYS IO JQD MOUS FT

((£ousnbexg,)ToqerL a1d
(csentea-d.)TeqeTx" 31d
(sutqurex803sTy=sutq ‘sonread-yres)asty-a1d
()@an8tz-a1d

:wex803STY MOYS FT

((uoTyouUNy uUOTINQTIFSTP Teoratduy,)Teqerd a1d
(¢senTea-d.)TeqeTx " 31d
([0°T] + £ + [0°0] “[0°T] + senTead 3Tes + [0°0])de3s a1d
[((senTead' 3Tes)usT)o3uer ur T I0J
(sentead-yres)ueT / (T + T)] = £
()2x0s-sentead: yTos
()@an8tz-a1d
:@p™moys 3T

((POPTS”OM] =0OATJRUIS]TR
‘cmroFrun, ‘senyead-yres)aselsy-siels-Adros = d sy

(d)puadde- sentead: y1os
(ToI3u0d ‘pess)iaser pexenbs Tys-yTes = d ‘TyYd
(sunx~u ‘dum(~pees / (pesosTaieas - pess) + T)
\ % «<'P% o pY% 3se3 Suruuny, jutad
: (dun(~pees ‘pessTpue ‘peesTiIels)eSueI UT pess JIOJ
dun(~pess x SUNI"U + po9sS~3IRYS = PSS pUS
T + da~u-yres = dum[~pees

:osTe
(d)ypusdde- sentead- yTos
(Tox3uod ‘euop)3ser paxenbs Tys-yres = d ‘Tyd
(sunx™u ‘1 + T) % ('PY% Fo pY aseq Jutuuny, aurad
:(suni"u)eSuex uT T IOF
19UON == peos~3ae3s JIT

[1 = sentead:-zTes

[
‘1893 Q) woxy entea-d
*0T4STIEIS SY

senTeA uIni}ey

‘peferdstp oq prnoys Jqd Ioyzeoym Lytoadg : Jap " moys
‘sutq wex803sSTY FO Xaqumy :Surq weiSo3sTy

T

ige
¥ve
€V
e
1ve
0ve
6€¢C
8€C
LET
9€¢C
GecT
vee
€€C
cee
1€¢
0€T
6¢C
8CC
LCC
92
gee
vee
€2C
(444
144
0cc
61¢C
81¢C
LT1¢C
91¢
e
vic
€1¢c
[qré
11¢
01¢C
60T
80¢C
202
90¢
G0¢C
¥0¢
€0¢
414
10¢
002
66T
86T
L6T
961
61T
V61

(000000T) 3UTPURI PUI = PSU
IQUON == psSw JT
:senTeA peos HNUd 308 #

A.muoymlﬁmzphﬁ>|sdnlﬁm00p«dePMPmenmeuwu.pmwﬁ = da"u- y1es
({Speeays - FJTOS : SpeeIU3l WNuU TeDO0T.})SN3ielSTouUIs}l1eg 1s8U
() Teuxe)3esey - 1s8uU

‘pees HNY IL9asel :psu

sao9jouweaed

‘SONTeA podsS 39S pue Touxsy ISAN oYl 19soy

(]
t(psu ‘FTes)3es8I”

S3UN0D UINIDI

T =+ [3Ie3S - WOTS]S3UNOD
:X UT WeTe® IO
STN'FTI®S % [0] = S3umnod
(X)utw = 1Ie3S

*S3UOWeT® JIRTTIWIS JFO S3UNOD SUTUTR3UOD 3STIT

senTeA uIniay

*9s1T Luy :x

sIsjeureIRd
*4STT UT SsjueweTe® JRTTWIS 3UNOYH
(N3

P (X ‘FTes)Iejunod”

17N'FTeS x [0018ep~pegoadxe] = pejoadxe-ITes

((utw~o- yTos ‘oo13ep~pegoadxe)
9 ¢ UTW ® 9SBaId9p IO 37N / DxS”N oseeIouf,

\ ¢'(3g %) utmw o uweyl sSSOT ST (Ig %) 9o18ep-ur peioadxy,

ySuturepmewtauUNy OSTERI
iutw- o JTos > oox8ep peloadxe IT
(2°N°FT9S)2®0TI / D' FI9S % STN'J[9S = oo13ep pejroadxe

SUOI}09UU0) JUISISAIP WOPUR.

Jop

Jop

68
88
L8
98
a8
¥8
€8
c8
I8
08
6.

0¢

0 D
0 O

I~
00

red

DPERSURIPEIN
1010 10 1O 1O 1O K

—~ N

O~ 0O
< < < S

JIIIN
<

(¢sooxd " TenaITATuNuU Te109,)SNielgTouIay1en - 1seu = da~u- yTes
({Speeiya’ JISS : SpPeSIYl UWNU TEDO0T,})SNIB]STOUIS}1SS 1SoU
() TouIL}19s9Y " 1S8U

speaIy3} = speaiyl’ JTes
UTW ® = UTW ®° J[OS

0 = D" 3¥T8s

N = 37N"FT®S
N = STN'¥TeS

9
s

‘7 ST 3TneFo(Q ‘'SpeaIyj [eJS0T FO ISqUNU 385 :Spesayl
‘0T ST 3Tneys(Q °'UTq yoes

UT SUOTJBAISSQO FO Ioqunu pojoodxe WNWIUTK : UTW ©
* (UOINdU 92INO0S

1od suoTyo9UUOD JO Iaqumu) 99I8ep-1nQ o)
‘suoanau 398Ieq Jo Joqumy : 17N
*SUOINSU 9DINOS JO Joqumy : sTN

sI9jeweIed

‘UOTINQTIISTP POAISSqOo oYl Y3Tm uostredwod Isjel JOF
SUOTANQTI}STP pojoadxe sejzernored pue ‘jusuriedxe ayj3 dn sj3eg

[31
:(T=SpesIyl ‘QT=UTW S ‘) ‘37N ‘STN ‘F[eS) TITUT

For

(N1

*300uuOnIUSSISATqUOPURY SUT3Se3 IOF posn SSel)

ccc¢

: (309(qo) 1995917)QYy SSeTD

3seu
11d se 3ordAd-qrr3ordaeu
sqeas- Ldtos

pux se wopuex -’ Adunu
Kdumu

* 309UU0)IUSSISATqUOPURY IO

3xodut
qxodut
qxodut
qxodut
qxodut

(X3

F sase]

wroyzxe(y Tetweq :JIoyinep

[

10J 13drIos 9897,

M) Xipuaddy

€V
v
1%
oy
6€

L€
9¢€
ge
123
€€
ce
1€
0€
6¢
8¢
LG
92
Ge
14
€¢
44
1¢
0¢
61
8T
LT
91
a1
i
€1
4!
IT
0T

[TV

™M <t

— N

Test script for random divergent connections

64

‘peferdstp oq prnoys wei8o3sty Ioyzeym Lyroedg :weiBo3sTY MOUS
‘soaax8epT 108~ Jo pee3sur pesn

oq TTTM TOX3uod~seax8ep~308~ ‘eni] JI ‘onfea uUesTo0q : T0I3u0d

‘onTes pess HNYd ISIATH : peesTaIesas

‘3s93 peoxenbs-tyo jeedex 03 sewry Jo Iequnu : sunI~u
sI9jeweIed

*ase1 JOH Aouxtwg-asoxoJowToy oya Suisn [T Q] uo
peinqriastp ATwrioytun axe senrea-d SuriTnsel Iayleym 3s9]
*SeWT3 SUNI™U 3S83 JO0H PoJenbs-Tyd UNI pue }IOMIOU © 93BDID
(]

: (9sTed=4QD™MoUs

‘00T=SuTtq weI8o31sSTY ‘osTei=wei803sSTY MOYS
‘9sTeJ=T0I3UO0D ‘OUON=POdS~ 3IIS ‘SUNI"U ‘JT[OS)3S03 [OADT OM]

(0=Fopp ¢ (pea1oadxs-ITes)Lerre’ Adumu
¢ (soa13sp) feaxe ' Adumu) exenbstys - sqeqs- AdTos uwingex
JOpp-T1-3 = Fp ‘wopeaiF yo seailep ayj3 03 jusuasnlpe :jopp #

(psw)sea13ep 198~ FTes = sooi13ep
tesTo

(pSw) ToI1u0d " s90139p"108™ * IT9S = sooi13ep
:TO0X3U0D FT

‘9803 pexenbs-tyo> woxy entea-d
*oT3sT3R3lS poxenbs-Tyd

senTeA uInlay

-soox8epT 108~ JO peS3SUT pesn aq
TITA TOIjU0d> seaia8ep 308~ ‘oni] JI ‘oNTeA URSTOOg :TOIJUOD
‘poes HNY Io3se| : psu

sI9jsuweIed

‘3583 409
poxenbs-1ys s, uosiesd SUTSN UOTINQTIIISTP poirdadxe oyl YITM UOTINQTIISIP
o018ep-ut Suri[nsex syl axedwod pue YIoM3aU STSUTIS e 93BLIDH

ccc¢
: (9STed=T0I1U0D ‘oUON=pSW °JToS)1se1 parenbs Tyd

seox8eop uinjyex

(u02)I9qUNOD ™~ IT9S = so9i1Fep
(D°ITOS * STN'FT®S ‘27N'JTOS °Q)IUTPURI PUI = UOD

(psSw)pass * pux
{QUON =i PSW IT

Jop

Fop

‘sepou 38813 9U3 FO Seoi8ep-ur oYz SUTUTRIUOD 3STT

senTes UIN}ey

‘poes HNY I9ase :psu

sa9jlauweaed

‘UOTINQTIISTP TRTWOUTITNW
pejoeadxe oYl YITM eBIRp SUINISI POUlLW STU3 ‘ISHN SUISn Jo peejsul

[
:(psu ¢ FTes)T0I3u0d " s99I80p 103"

seax8ep uaniex

(SUOT159UU0D 193I8]) I91UNOD™ * JTOS = S90130p
[SUOT3D9UUOD UT UUOD IOF [J]UUOD] = SUOTIDOUUOD 383Ie]
(sepou~1e81e] JT9S=19818]) SUOTIDUUOYSY " 1SOU = SUOTIDSUUOD

()200uuod™ " yTos
OPITng™ " FT°S
(psw)3esex” " FTos

‘sopou 39871e3 oY} FO so0180p-UT oUy3 SUTUTEIUO0D 3ISTT

sonTeA uIN}ey

‘poes HNY I93SB| :psuw

SJIejauweIed

*SUOT309UU0D SUT}TNSeI
Y3 SASTIFSI pUR ‘WAY3 3O9UUOD ‘SOpou 93edard ‘ISHN 39sey

(X3

s (psw ‘FTos)seaxdepTa03”

({ena] : sesdejTnu moTTe,}=suotado ‘)-ITes
‘sepou”1e8Ie1 JTOS SOpOUTSDINOS’ FTOS)109UU0)IUSSISATQUOPURY * 1SU

¢¢¢ SOpOU TT® 3D9UUOD(¢ ¢
: (FTOS)309UU0D ™~

(3"N"JT9S °,UOINSU JBT,)91B0I) 1SOU = Sopou 193Ieq- JTOS
(STN'FT9S ¢ UOINSU™ JeT,)99BoI) 1SOU = SOPOU 92INOS"° JTOS

¢c¢ SOpOU TT® 83BdIAD(¢ ¢
t(FTes)p1Tnqg”

({o8ueapsu : spoas~3uI,
‘da"u- yres + psu :peos~Suil,})snieqgTouIs) 19 1sou
(da~u* yTes + psu ‘psw)o8uer = oFueipsu

FopP

FoP

Fop

FopP

VT
ovl
6¢T
8€T
LET
9€T
ger
Vel
€el
cel
I€T1
0€T
6CT
8C1
LCT
921
gal
i7q!
€al
cal
TcT
0cT
61T
8TT
LTT
91T
ST
VIT
€11
CIT
TTT
01T
60T
80T
L0T
90T
G0t
V0T
€01
cot
10T
00T
66

86

L6

96

G6

76

€6

c6

16

06

65

d ¢ :f3TwroyTun o 3s03-8Y Fo enytea-d, jurad
SY ¢ :0T3STIRAS 3503 Q)¢ 3urad

LVC
4

(0=poosTaIels ‘QQQT=SUNI U)3se] TondT om3-3sey = d sy
(000T=D ‘000T=3"N ‘000T=S"N)I031S9317DQY = 1s°3

icoTutew T == T euweu”

d ‘sy uinjex

(enxr=¥o0Tq)Moys - 2Td
:wex803STY~MOYS IO JQD MOUS FT

((£ousnbexg,)ToqerL a1d
(csentea-d.)TeqeTx" 31d
(sutqurex803sTy=sutq ‘sonread-yres)asty-a1d
()@an8tz-a1d

:wex803STY MOYS FT

((uoTyouUNy uUOTINQTIFSTP Teoratduy,)Teqerd a1d
(¢senTea-d.)TeqeTx " 31d
([0°T] + £ + [0°0] “[0°T] + senTead 3Tes + [0°0])de3s a1d
[((senTead' 3Tes)usT)o3uer ur T I0J
(sentead-yres)ueT / (T + T)] = £
()2x0s-sentead: yTos
()@an8tz-a1d
:@p™moys 3T

((POPTS”OM] =0OATJRUIS]TR
‘cmroFrun, ‘senyead-yres)aselsy-siels-Adros = d sy

(d)puadde- sentead: y1os
(ToI3u0d ‘pess)iaser pexenbs Tys-yTes = d ‘TyYd
(sunx~u ‘dum(~pees / (pesosTaieas - pess) + T)
\ % «<'P% o pY% 3se3 Suruuny, jutad
: (dun(~pees ‘pessTpue ‘peesTiIels)eSueI UT pess JIOJ
dun(~pess x SUNI"U + po9sS~3IRYS = PSS pUS
T + da~u-yres = dum[~pees

:osTe
(d)ypusdde- sentead- yTos
(Tox3uod ‘euop)3ser paxenbs Tys-yres = d ‘Tyd
(sunx™u ‘1 + T) % ('PY% Fo pY aseq Jutuuny, aurad
:(suni"u)eSuex uT T IOF
19UON == peos~3ae3s JIT

[1 = sentead:-zTes

[
‘1893 Q) woxy entea-d
*0T4STIEIS SY

senTeA uIni}ey

‘peferdstp oq prnoys Jqd Ioyzeoym Lytoadg : Jap " moys
‘sutq wex803sSTY FO Xaqumy :Surq weiSo3sTy

T

ige
¥ve
€V
e
1ve
0ve
6€¢C
8€C
LET
9€¢C
GecT
vee
€€C
cee
1€¢
0€T
6¢C
8CC
LCC
92
gee
vee
€2C
(444
144
0cc
61¢C
81¢C
LT1¢C
91¢
e
vic
€1¢c
[qré
11¢
01¢C
60T
80¢C
202
90¢
G0¢C
¥0¢
€0¢
414
10¢
002
66T
86T
L6T
961
61T
V61

¢ (SPR2IU3Y ¥ YITM 308UU0)IUSBISAUODWOPURY FO 3583 T[BOTISTIBIS,
P (FTes)pepeaIyl DDy 3so3

(¢ *oanpecoxd 1se] TeoTasTIeasS oYl ssed,
\ ¢ 30u pIp 3osuUUC)IUsSILAUC)UOPURY, ‘possed)enifiiesse- FTes
(e81eT U JTOS=SUNI"U ‘3s03)3s01 oarrdepe’ yTes = pessed
(e8xeT D" FTOS=) ‘98IeT N’ FTOS=3"N ‘o8IeT ' FTOS=STN)I93S037DDY = 3593

¢ ¢ (MIOM3PU ©8IRT B YITM 3D0UU0HFUSSISAUOJWOPURY FO 3S83 TROTISTIRIS (¢
: (FTes)98IRTDOY 23S0

(¢ *oanpecoad 3se] TeosTasTleas ay3 ssed,
\ ¢ 30u pTp 3dsuUUC)IUsSIsAUCJUOPURY, ‘possed)enifiIesse- FTes
(TTews U’ yres=suni~u ‘3se3)isej oaTidepe- yTes = possed
(TTeWS™D" FTOS=) ‘TTeWS™N'FToS=3"N ‘TTeWS N’ FToS=STN)I23s917DDY = 3s°83

¢ ¢ (IOMIOU TTRUWS © YITM 309UU0HJUSSIOAUOHUOPURY FO 3593 TROTISTIBIS ¢«
1 (FTOS) TTRWS DDY 2S99

osTeq osTe geuydre ' yres < d FT onil uinjiex

(oUON=poeS~1Ie]S ‘SUNI U=SUNI U)3S8] [oAdT oM3-3s03 = d ‘sY
1osTo

oNIJ] UIN}OI
:zoddn~teydre- yres > d > zemor teydre-yres JFT

(suoN=psw)1se1~parenbs Tyo-qaseq = d ‘Tyo

ccc¢
‘osTMIOY3lO osTeJ ‘possed sem 3se3 JT ONI] 'ONTRA URSTOOQ

sonTeA uInleoy

‘s3Tnsex ozATeue 03 posn ST 3s93 QY oU3 pue
‘sewr) Suni u pejeadel ST 3s93 ‘STTeJ 3s93 axenbs-Tyo FI :suni u
*SSeTD 193593700y IO I93S5037))Y JO ©OURYSUI : 3S9%

sJI9jeweied

*1S9] TOAST-OM} B UNI ‘(MOT IO YSTY) SweIlxd ST 3TNSaI oyl JI
‘UOTINQTIIFISTP UOTIOOUUOD oY} UO 3503 JOH porenbs-1yso e uni pue

Fop

Jop

Fop

&3]
I8
08
6.
8L
9.
G
VL
€L
cL
T
0L
69
89
L9
99
<9
79
€9

0 OO = A
1010 10 10 10 © © ©

D O

A

<t
0

(5]
[Tl Il Tn) Tl Vs

an)

—

100uuo)juelIaA{Tq/uo)}mopuey SUTSN FIomisu ST3UIS ' 93eLI)

(X3
i(suni"u ‘g9se3 ‘yres)asej aaradepe jep

50°0 = geydre-yres
zaddn~teydre- yTos
TomoT TeydrR" FTOS
sonTeA TeOTITI) #

0
N~
oo
o o
i

1se3 jeadsx 03 sSewrl JO Iaqumy # (0T = o8xer u- yres

epou 1od suor3deUUOD JO Ioqunu oSeISAY # Q00T = o8IeT D' FIes
sepou jo xoqumy # Q00T = ©8IeT N’ FToS

yIomieu o3IeT #

1503 jeadsx 03 SeWT] JO I9qUMN # Q0T = WNTPOW U FTOS

spou 1od suor3odoUUOD JO Ioqunu oSeISAY # (00T = WNTpaW D' FTes
sepou Jo Isqumy # 00T = WNTPoW N FTOS

YIOMIOU POZIS UMTPO| #

1se3 jeadex 03 sewry Fo Xequmy # Q00T = [TRWS U F[eS

opou Iod SUOT3D9UUOD JO Joqumu oFeIsAy # (00T = TTeWS D' FIes
sopou jo Xequmy # QT = [TRWS N F[es

YIOMJoU TTewS #

(¢ SenTeA TedST3TIO pue siojzewered 1s03 388,
1 (3Tes)dpaes zop

¢ ¢ ¢ "30°UU0DIULBIOA{T(UOD}WOPURY I0F S350 TROTASTI®IG
: (9seD3s9] " 35933TUN)SSR)ISOLIADH SSBTD
I93s9370QYy 3IodwT DAY IS} WOIF
193593700y 3xodut DDYTISO3 WOIF

3se33Tun 3xodut

[
*300UU0)IUSSISATQUOPURY PUR 309UU0HJUSIIOAUOHUOPURY IOF S3S933TUN

uroyazs(y ToTuURQ :IoUinep

X3

SUO0I1}09U

-U0) JUISIOAIP PUL JUISIOAUOD WIOPURI I0] NS 1S9} PAIRUOIN Y

(I xtpuaddy

Iy
ov
6€
8¢
LE
9€
ge
123
€¢
€S
RS
0€
6¢
8¢
LC
9¢
514
Ve
€¢
¢4
X4

61
8T
LT
9T
cl
71
€1

AN <o

—

Automated test suite for random convergent and divergent connections

68

(()®3Ins)uni IeuuUNI

—£1TS0qIoA) IoUUNY1SS[1XS] 1S911TUN = JSUUNI
(z=£2Ts0qIan) Y1S9T1XS], T

LooTurtew T == ~_eureu

93INS UIN3SI
(<1891, ‘@Se)1SeIHEDY)eITNGeYew 1S939TUN = 99TNS

It

:()93tus Fop

(¢ *oanpacoxd 3seq TesT1STIeRAS Oyl ssed,
\ ¢ 20U pPTp 3deuuo)jruslIsATqUOPURY, ‘pessed)enijiesse-JTes
(UNTPSW U’ FJTOS=SUNI U ‘1se1)3lsel oaradepe’ J[es = pessed
(¥=speoiya
‘unTpew) FJTOS=) ‘WNTPOW N'FTOS=3 N ‘UNTPaW N'JTOS=S"N)JI93S937DQY = 3s°3

(¢ (SPeaIyl § YITA 309UU0DIUSBISATqUOPURY FO 3593 TeOTISTIBIS((¢
: (FTOS)PopeeIyI DAY 1893 FOP

(¢ *oanpacoxd 3seq TedTaSTIRAS Oyl ssed,
\ ¢ 20U pPTp 3deuuo)IUeSIsATqUOPURY, ‘possed)eniyjiesse-JTes
(e81eT U’ FJToS=sunI U ‘1se3)31sel oaradepe’ JTes = pessed
(81T D" FTOS=) ‘08IeT N FToS=1"N ‘©8IeT ' IToS=s"N)I01s917)QY = 3S°1

(¢ (qIOM3PU ©8IRT B YITM 300UU0)IUSSIOATQWOPURY JO 1503 TeOTISTARAS (¢
: (3Tes)e8IeT DAY 3803 FOp

(¢ "oanpacoxd 3seq TeoTasTieas oY3 ssed,
\ ¢ 30U pIp 3DdsuUUO)IUsSIsATqUOPURY, ‘possed)enifiIssse-ITss
(TTeWS U’ JTOS=SuUNI"u ‘1se3)qsel oaTqdepe- yTes = pessed
(TTews D' FTOS=D ‘TTeWS N'JFTOS=1"N ‘TTRWS N'F[OS=S"N)I93s937DQY = 3593

(¢ IOMISU TTRWS ® YITH 309UUOHIUSSISATqUOPURY FO 3593 TeOTISTIRIS(((
: (FTeS) TTRWS DAY~ 3s93 Fop

(¢ *oanpacoxd 3seq TeosTasSTIRAS oYl ssed,
\ ¢ 20U pPTp 2309uuUo)jUaSIaAUOJUOPURY, ‘passed)enijissse-’JTes
(UNTPeW U’ JTOS=SUNI U ‘1s83)3sel oaradepe’ JTes = pessed
(y=speaiys
‘untpew) FTOS=) ‘WNTpewW N'JFTOS=3 N ‘UNTPAW N'JTOS=S"N)JI83S837DDY = 3583

cal
TcT
0ct
61T
8TT
LTT
91T
GTT
VIT
€11
[an!
TTT
OTT
60T
80T
20T
90T
G0t
V0T
€01
coT
10T
00T
66
86
L6
96
G6
76
€6
6
16
06
68
88
18
98
a8
78
€8

¢ (3Ue8IDATD, "Amm>pln0Hpowﬁnounw = 30TPUUOD " JTOS
{swered' yTes :eureu”TouUISY ' JTOS} = TOUISY' JTOS
:osTe
swexed: JTos = Touxay' yTes
1 (3UR]SUOD, == OWRU T[OUISdY JT
{{lzc/
‘'z / I198] :(aySta~aeddn,
‘'z / T ¥18s -
‘'z / T IT9S-] :(aFS9T I8MOT.} : TeTndueldei,} = Ysew' Jos
{eniy :.deam~e8ps, ‘[T FTOS ‘T ITOS] :,1UL9IXd,
‘sod : suotqtsod, ¢ uUoINOUTJET, :SIUSWSTS,} = 3 IOTPT° IS
(£ ‘x)dtz = sod
T°FTOS-)WIOFTUN PUI = £
T°FTOS-)WIOFTUN PUI = X
(psw)pees ' pux
1ouoN 30u ST psw FT

1" FTes
T

Az.wﬂww,.m
(N"3T8s ‘T

{en1y :.deam~e3ps, ‘[T°FTOS ‘7T ITOS] : 3USIXD,
¢ [sod~edanos] :,suotatsod, ¢, uUOINOUTJBT, :,SIUSWOTS,} = S IDTPT ITOS
('0 “'0) = sod”edanos :auoyN ST sod edinos JT

H@EdﬁleﬁhwxumeﬁHwM = Junj TouIey’ JTes

(surexed”Teuisy)eqepdn suered: yTes
iosTo
swered Touisy = swexed' y{es
{ (JUR3SUOD, == OWeU [OUIdY'JTOS IT
:ouoN q0u sT swered Teurey JT
[oureu~ Touxey] swrered qTnegep = surexed- JTos

{{°0 ¢ ‘10 i uesu,
‘*y / T ITes :.ewdTs, ‘-7 : I9qued~d,} : uerssne3,
LT / (0 - 1))8oT"du (g)3sbs-du)
/ T 3Tes-: nej,
‘0°0 t¢d¢ ‘0°T:cB(} i TeTauduUOdX®,
‘{0°T :¢d¢ ‘1°FTES / (T)aabs-du-: e } : TeRUTT
‘0°T f(3URYISUOD,
} = swexed aTnegep
{ssne3~ ' y1es : uerssned,
‘Terjusuodxe” * FJTOS @ TeTjuUsuUOdX®
‘IeQUTT™ ' JTOS : JIBOUTT,
€qUR]SUOD ™" JTOS : JURLSUOD
} = sTouiey

SWRU [OUISY = OWRU [OUISY ' JTOS

68
88
L8
98
a8
¥8
€8
c8
I8
08
6.

0¢

0 D
0 O

I~
00

red

DPERSURIPEIN
1010 10 1O 1O 1O K

—~ N

O~ 0O
< < < S

JIIIN
<

N = N'FT°S

(T)3eoTF = T JTeS

pSW = psu* y1es
speaiy3 = Speaiysl’ JTes

‘7 ST 3TneJsQ 'Speaiyl [ed0T FO Iaqumy : speaayl
‘9UON ST 3[neFo('Peos HNUJ I93ISe| psu
*I9qued ST 3Tneyeq ‘uoratsod epou 8dINog : sod~edanos

‘9zTs I9fel uo peseq

PojeTnNdOTed aIe S3TNeIOp STqISUSS ‘pPojaTwo
JI "UOT3OUNF TOUISY JIOF sIojowerded :swered [ouray

*q1se] 07 (TouIsy) uoTIOUNJ

£3111qeqoxad juspusdep ©OoURYSTIP FO SWEN : OWRU [OUILY

‘sopou o Joqumy : N

‘z0feT axenbs Jo ya8ueT opIg : 1
sIsjewered

© sxejewered UOT308UUOD
pue 1ofel xIomisu sourjyop pue ‘juswriredxe oy3 dn si3eg

‘309[qo x93s03”(QZSIofeTI00UUO) UR SZTITeTITUT
[]
: (T=Speaiya ‘suoN=psu ‘suoN=sod esIno0S
‘ouoN=swered [ouIey ‘oureu” [ouIdy ‘N ‘T ‘I[OS) T2TUT " Jop

¢ ¢ ¢ "SIefeTroeuuc) SuTlsel IOF POSN SSBTD((¢
: (309[qo) x915091 " (QgsI0LeT)0oUUO) SSBTD

odog se £8orodo3s-3seu jxodut
aseu axodwt

31d se jordAd-qrr3ordrew j3xodut
sqeqs-Adros qxodut
o3ex8equr - Adtos axodwrt

pux se wopuex’Adunu 3xodwt

du se Adumu j3xodut

(X33
*sI10feT300UU0) IOF S3SOL

wroyzxe(y Tetweq :JIoyinep

[

S I0M)oU paanyoni)ys Aqreryeds (Ig 103 1diaos 9s97,

 xipuaddy

ﬁﬁ
€V
v
1%
oy
6€

L€
9¢€
ge
123
€€
ce
1€
0€
6¢
8¢
LG
92
Ge
14
€¢
44
1¢
0¢
61
8T
LT
91
a1
i
€1
4!
IT
0T

[TV

™M <t

— N

Test script for 2D spatially structured network

70

: (JToS)SeoueysSTP 3038~
(30TpUuUOD " JT9s ‘97" JI9S ‘ST’ JT9s)sIaafeTrdeuuo) odog

¢ ¢ ¢ "SIoLeT 300UUO), (
: (JTOS)300UuU0d™

(ST* FTOS) UeWO THILAUSDPUT 0do] = ISATIP' JTOS
(3720o1pT " FTos) 10feToqeax) -odoy = 37" IToS
(sT2oTpPT " FToS) I0feToqeax) odog = ST'JToS

¢ sI0LRT 83BOID (
1 (FTeS)PITNq”

({o8ueapsu : spoos~Jur,

‘daTur 3TeS + psw : peas~Suil,})snielgTouUIL)19S 1SoU
(da"u- yTes + psw ‘psw)oSuer = sSuerpsm

*TT3TUTTT UT poOsn SeM 3SATF OUL # T + PSW’ F[OS = psuw
1osTo

(000000T) 3UTPURI ' PUI = PSUW
:9UON ST psw' FToS IT
:senTeA peas HNUJ 39S #
(¢S201d”TEN1ITATUMU TE309) SNJR]STOUIS}19Y 4sou = da~u- JTes
({speeIya’ JToS : SpPesIyl Wnu [ed0T,})SNIelSToUIS) 1SS 1SOU

Avﬂwﬁwapwwwm.waﬁ

(cc'SenTeA Pess HNYJ 1eS pue Toursy ISHAN 9UI IS«
1 (FT9s)30s01”

FPOTPOWIOU UINIDI

Jpo~peowIoOuU = 3STT FpO- FIoS
xe3eT peazold 2q 03 ST QD oU3 @SED UT PaIols #

doa / Fpo> = Fpo~peuwrou
[0] ((g)aabs-du / T-31es ‘0 ‘zpd~ - zros)penb-sjeildsqur-Adios = doa

(Fpo)umsumo - du

P2

P = pasel

([0] (P ‘pTaser ‘Fpd~-zTos)penb-eqex8equr-Adros)pusdde- 1po
i@ UT p I0F
‘0 = pTasel
[] = 70

*q UT P ©OUBISTP UYO®® I0F (P)JdD FO 3STT

sonTeA uIn3eoy

*[(2)2abs/T 0] TeAIejuUT UT SedOUR}STP JO oTqeIel] :(

Fop

Jop

Jsp

Jop

€61
61
T6T
06T
68T
881
L8T
98T
G81
V8T
€81
81
81
08T
6L1
8LT
LLT
9L1
QLT
VLI
€LT
CLI
TLT
0LT
691
89T
291
991

791
€91
91
19T
091
64T
84T
LGT
941
T

0
10

— AN <
1010 10 10 10
— o

—

671
8yl
17T
9¥1
orT
i

(47!

sa9jlsuweaed

*(4QD) UOTAOUNF UOTANQTIISTP SATIETNUMD POZTTRUWION

(X3

1(Q@ “FTES)FPOT FOP

*Q uxnjex
HEER)
(((C'z * @) / T FITes)soooxe du x ' - 1d-du) %
* (((Q)oung~Teuxsy’ FIes ‘I)UTW ‘‘'(Q)Xew) uUInlex
1(g)axbs'du s 7°3718s => @ > ‘T / T ITeS IIT®
(@ * td-du % (((Q)oungy [ouUISY " JTOS ¢ T)UTW °‘Q)Xew) UINISI
1°g / T 3Tes => d IT

*@ ©0UR}STIpP 3e JOd PezZITewIouul

SenTeA UIN}LY

*[(2)2abs/T ‘0] TeaIequr UT 8OURASIQ :(

sIejeuweIRd

*(dad) uotaouny Krtsuep £3TTTqeqoxd pezTTewIouun

[
1(a ‘Fres)zpd” FOp
(((T **x [(ewdTs]suwered I78S * ')
/ T *% ([ueow,]swered:F7os - q))- *x o-du

* [(19qued~d,]surexed- TS + [O]swexed’JTos) uInjex

(¢ ¢ UOTROUNF TOUIDY URTSSNRY,
:(Q ‘ITes)ssned” Fep

(([(nea,]suexed y7es / @-) *x o-du
x [ce.]suwered’ yres + [(o.]swered- yTes) uiniex

(¢ UOT3OUNF Touxey Teriusuodxd, ..
1 (@ ‘ITes)Terqusuodxs” Fop

a * [(e.]swered y1es + [(o,]swered’JTes uInjex

¢¢¢ UOTIOUNT TOUISY JISUTT, ¢ ¢
:(Q ‘FTeS)IRSUIT” FOP

swexed -’ JTos uIniex

(¢ ¢'UOTAOUNF TOUISY IUWEASUOD((
:(Q €IT9S)3uelsuod” Fap

{TouIey JToS : [oUISY, ‘YSew' JToS : MSeu,

VT
ovl
6¢T
8€T
LET
9€T
ger
Vel
€el
cel
[€T
0€T
6CT
8C1
LCT
9¢1
gal
i7q!
€al
cal
TcT
0cT
61T
8TT
LTT
91T
ST
VIT
€11
¢It
TTT
01T
60T
80T
L0T
90T
G0t
V0T
€01
cot
10T
00T
66

86

L6

96

G6

76

€6

c6

16

06

71

(¢2Y8TI 199U (=DOT)puelat-aTd
(¢dad¢)TeqeT4 a1d
((@oue3st(q.)TeqeTx 3T1d

(t ‘oyurtk-atd
(z=a0pI0z ° Tedotatdwy,=Teqel ‘[=UIPTMOUTT
¢ (pox,=10T0d ‘K + [0°0] ‘asTP + [0°0])deas-atd
[((asTp)ueT)eBuel UT T I0F (3STP)WeT / (‘T + T)] = £
(T=109p10z K109Y[=ToqeT
‘E=UIPTMOUTT ‘ ¥OeTq =I0TO0D ‘-, ‘3ASTT FPo-FTos ‘3stp)3ord-31d
()ean3tz-a1d
14ap"mMoys IT

(¢P9I,=10T05 187 ‘ozTISopou=ozIS 137
¢ ({ORTQq(=I0TOD™2IS ‘()G=9ZTS OIS
¢ ordand ,=10T00 3 Sew ‘YsSew' JToS=3Seu
‘817=8TF ‘2T FToS ‘IoATIp'JTos)s3e8reliord odoq
rosTo
(¢PoI,=I0T0D2 187 ‘ozZTISepou=ozIS 137
¢ ({ORTQ(=I0OTOD™D2IS ‘()G=0ZTS OIS
¢ ONTq,=I0TOD TOUISY
¢ (oTdand ,=x0T00"¥SRW
‘TouIaY " JTOS=ToUIdY ‘¥Sew' JToS=¥SeU
‘317=817 ‘91 ITes ‘IoATIp'JT9S)s3e81el10Td odoa
: uetssne8, == SWRU [OUISY' F[OS IT
‘pejzord oq ueo Teuxey uerssneS oyl ATup #

(£o18 =10T029pPOU
‘9ZTSOpOouU=9ZTSopou ‘4T°JTos)IakeTroTd odos = 317

((C°000TT / N'FT®S - TT / °"TITT)PUROI)3IUT ‘[)XBW = 9ZTSOpOU
*sepou Jo Jequnu uo peseq 30Td UT sepou jo ozrTs asulpy #
:TOI3UOD 30U pUBR IOMJDU MOUS FT

(9AT1RUIS]TR=0ATIRUISITR
‘IpPoT ' JTeS ‘3sTp)asoasy-sieas-Adros = d ‘sy

()sedoue3sTp 308~ ' JTOS = 3STP
1osTo

() TOTQUOD~SedUR)STP 398~ " JTOS = 3STP
:T0X3U0D FT

ccc¢
‘3893 Q) woxy enrea-d
*OT31STIRYS QY

senTeA uInley

‘301d Jad I0F surq weiS03STY FO Ioqum) :SUTH WeIS03STY
‘pekerdstp °oq prnoys Jqd xeyieys Lyroedg : AQqd™moys
‘peferdstp °oq prnoys i@y Ieyzeys Lyroedg AQD~moys

‘poferdstp oq prnoys 3o1d MIomjeu Ioyzeym Lyroedg : YIOMIOU MOUS

4
4

™
0 10
AN AN

<0 010
N AN

[«
[a\}

/¥
L¥C
9z

© I03e018, IO (SSOT,

‘(aTnegep) (peprsTomi, °stseylrodLy sATIeRUILATY : SATjRUISLTR
*S90UR]STP 108~ JO peslsur pasm oq TIIM
T0I3uU0D~Seoue3STP 308~ ‘oni] FI ‘onTea uesaToog : T0I3U0d
sIejeweIRd

*SOpPOU PO3DdUU0D 03 SOOURLSIP JO
UOTANQTILSIP Y3 UO 3S93 JOH AOUITWS-A0IOSOWTOY © WIOFIDJ
[

: (00T=sutq weido3sTy

‘osTed=J0d MoUs ‘osTed=Jd) Moys ‘osTeJ=}I0M]d3U MOUS
¢ (POPTS OM] (=9ATIRUISLTR ‘OSTeJ=T0I3U0D ‘JIT8S)3S037 Sy

1STP uInjex

() 3I0S " 3STP
[(p)oung [ouIey oS > ()WIOFTUN'PUI JT ISTP UT P I0F P] = 3ISTP
([0] (3T FT®S)SoAreTI®H 1SOU ‘ISATIP" JTOs)eouelsSTq 0dol = 3STP

(PTITNq™ " FT8S
()319sex” " IToS

*SOpOU Po3OdUU0D 03 SOOURYSTIP FO 3ISTT PaIapiQ

sonTeA uIN}ey

‘UOTINQTIISTP Po3doadxe oYl YITM e3ep S93eald poyleu
STY3 ‘wy3TIoS[e UOT309UU0d Tenjioe s,ISHN Sursn Jo pesalsul

[%1
“AWHmmvHOHuﬁoolmwunmpmﬁvlpmml

1STp uInjex

()3x08°1STP

(sepou~1e381e] ‘ISATIP' IT9S)edueRlST(q 0dol = 2STP

SUON ‘OoUON UIN3eI :Q == (Sopou 3e3Ieq)usT IT
[SUOT1D9UUOD UT UUOd JI0F [J]uuod] = sepou 383Ieq
(ISATIP* FJTOS=9DIN0S)SUOTIDSUUOYISH 1SOU = SUOTIDOUUOD

()3o08uuod™ * yTOS
()PITNqQ™ - FT8S
()39sd8x1” " 3188

*SOpouU Pe3OeUU0D 03 SIOURLSTIP FO 3STT PaIepiQ

senTeA uIni}ey

*SOpOU Pe3OoUUOD 03 S9OURISTP 308 pue ‘siefe] 309UUOD pUR 93BII)

[

FoP

FopP

¥ve
€V
e
1ve
0ve
6€¢C
8€C
LET
9€¢C
GecT
vee
€€C
cee
1€¢
0€T
6¢C
8CC
LCC
92
44
vee
€2C
(444
144
0cc
61¢C
81¢C
LT1¢C
91¢
e
vic
€1¢c
[qré
11¢
01¢C
60T
80¢C
202
90¢
G0¢C
¥0¢
€0¢
414
10¢
002
66T
86T
L6T
961
61T
V61

Test script for 2D spatially structured network

d ¢,:qs03-7 Fo onTea-d, jurad

z ¢,:0x1008-7, qutrad

()asey™z'3seq = d ‘z

d ¢, :1se31-gy Fo ontea-d, jurad

sy ¢.:0T3ST3RIS 3883 S aurad

(eNIL=JQD MOYS ‘oNII=40d MOUS ‘ONII=IOMISU MOYS)1s91~s¥-3se3 = d ‘sy
(0=psu ¢ ueTssned,=oueU ToUISY

‘00000T=N ‘0’ T=T)Ie31s83 (qZsIefeT3oeuuo) = 3593

72

d ¢z uinjex

d

z

((2)Fpo - wrou-syeys-£dios - ‘1) % ¢

(ps / (dxs - umu))sqe

(xer)qabs-du = ps

0'7 ‘uweu'du uIniex :() == IeA JT

([sd ut d x03 (d - 1) x d])ums = Tea

(sd)ums = dxe

([3sTp UT q I0F (((@)ouUng Touiex'Fres ‘-y)utum ‘-g)xem]) = sd
([0] (31" FTOS)SoARSTI®N 1SOU ‘ISATIP' JT9S)90uUeySTQ 0dol = 3STP

(()seoueasTp 308~ - FToS)UST = uwnu
:osTo

(() TOI3U0D S00URYSTP 308~ ' JTOS)UST = umu
:TOI3UOD JT

[
ronTea-d peprs-om]
* (9I100S-2Z) ©I05S pIepuels

senTeA uUIN}ey

*Se0Ue3STP~ 308~ JO peajsur
pesn oq TTTM T[OI3UOD S9OURLSTP 308~ ‘oni] FI ‘'onfes ueoToog :TOIFUOD

SJI9j3suweaed

*SUOT3D9UUOD JO JISQUNU TB303 Y3} UO 3S93-7 © WIOFISd
(X3
: (9STeJ=T0I3UO0D ‘JT0S)1S937Z

d ‘sy uanjex

(enx1=¥20Tq)moys aTd
{{IOM3OUMOYS IO JOd MOUS IO JOD Moys IT

(¢2y8TI I9qued=d0T)puelat aTd
(¢dQd.) TeqeT4 21d
(¢@oue3sT(q,) ToqeTx " 31d

(ro=utmk)wrTL-q1d
(g=10paoz ° Teotatdug,=Toqel
¢ (P9I =I0TO0D ‘ONII=POWIOU ‘T=UJIPIMOUTIT
¢ (doys =edh33sTy ‘surq weido3sTy=surq ‘3sIP)3sTY- 31d
(T=x8pi0z LI08YL,=TOqRT ‘E=UIPTMOUIT ° ¥OoBIQ.=I0T0> ‘£ ‘x)3r01d-31d
eore / ([x ut q 107 (q)Fpd -zres])Aexre-du = £
[0] ((g)aabs-du ,/ T-FT1es ‘0 ‘zpd™ ' Fros)penb-ojeildequr-Adros = eoxe
(0007 ‘(Z)aabs'du ,/ 7'119s ‘Q)ededsury-du = x
()ean3tz-a1d
:4ad"moyus 3T

67€
3%
L€
9F€
cre
e
ey
e
1848
oFE
6€€
€€
L€
9g€
cee
vee
eee
zes
TeE
0€€
62
8z€
128
9z¢
cze
Ve
€ze
r@4s
12
02€
6T€E
8T€
JARS
91€
T
vIE
€T
rars
K3
0T€E
60€
80€
L0€
90€
cog
v0€
€0¢
o€
T0€
00€
66C
86¢

swered: JTos = TouIay' JToS

{ QUR3SUOD , == OWRU TOUIdY JT
{{l'c / T 7188
‘'z / ' 318s
‘'z / T I19s] :(1ySta~xeddn,
‘['z / T 3188 -
‘' / T FIeS -

€°Z / T FTOS-] :.3FOT IOMOT(} :.XOq,} = ¥seuw yes
{eniy :.deam~e3ps, ‘[T°FTOS ‘T ITOS ‘T FTOS] :(2ULIXD,

‘sod : suotatsod, ¢, uoinsuTFyeT, :,SJUSWETS.} = 1 1DTPT’ ITOS

(z ‘£ ‘x)drz = sod

(N"ITes ‘2 /1 f°Z / T ITeS-)WIOITUN ' DPUI = Z

(N*3Tes ‘'z / T'¥Tes ‘'z / T §les-)uwriogrun-pur = £

(N"FT®Ss ‘¢ / 1 ‘€z / T FTeS-)WIOFTUN PUIL = X

(psw)pees ' pux
1ouoN 30u ST psw FT

{eni] :.deam~e3pa, ‘[T°FTOS ‘T ITOS ‘T FTOS] : 3ULIXD,
¢ [sod~edanos] :,suotatsod, ¢, uUOINOUTJBT, :,SIUSWOTS,} = S IDTPT ITOS
(0 ‘0 “'0) = sodedoanos :suoyN ST sod edinos JT

H@EdﬁleﬁhwxumeﬁHwM = Junj TouIey’ JTes

(surexed”Teuisy)eqepdn suered: yTes
iosTo
swered Touisy = swexed' y{es
{ (JUR3SUOD, == OWeU [OUIdY'JTOS IT
:ouoN q0u sT swered Teurey JT
[oureu~ Touxey] swrered qTnegep = surexed- JTos

{{°0 ¢ ‘10 i uesu,
‘*y / T ITes :.ewdTs, ‘-7 : I9qued~d,} : uerssne3,
‘LT / (0 - 17))8o1°du % 0°7)
/ (g)aabs-du x T'FIes-:.neq,
‘0°0 t¢d¢ ‘0°T:cB(} i TeTauduUOdX®,
“L0°T :¢9¢ “(T°FT®S % (g)aabs-du) / 0'g-:(e} : TeoUTT,
‘0°T f(3URYISUOD,
} = swexed aTnegep
{ssne3~ ' y1es : uerssned,
‘Terjusuodxe” * FJTOS @ TeTjuUsuUOdX®
‘IeQUTT™ ' JTOS : JIBOUTT,
€qUR]SUOD ™" JTOS : JURLSUOD
} = sTouiey

SWRU [OUISY = OWRU [OUISY ' JTOS

68
88
L8
98
a8
¥8
€8
c8
I8
08
6.

0¢

0 D
0 O

I~
00

red

DPERSURIPEIN
1010 10 1O 1O 1O K

—~ N

O~ 0O
< < < S

JIIIN
<

N = N'FT°S

(T)3eoTF = T JTeS

pSW = psu* y1es
speaiy3 = Speaiysl’ JTes

‘7 ST 3TneFaQ °'speaIyl Ted0T FO Iaqumy : speaayl
‘oUON ST 3TneFo('Pees HNUJ I9ISe| : psu
*I9qued ST 3Tneyeq ‘uoratsod epou 8dInog : sod~edanos

*9zTs Jofel uo peseq

Pe3eTnNOTed aJe S3TNeJop oTqISuUSsS ‘pol3jTwo
FI "UOT3OUNF TOUISY JIOF siojewered : suwered Touxsy

*1Se] 07 (TPuIsy) uUOTIOUNT

£a11Tqeqoad juepusdep edouUR3ISTP JO SWe) : oWRU~ TOUIS

‘sepou yo Jequmy : N
+x0feT otqno jo yzBueT opIg : 1
sIsjewered

© sxejewered UOT308UUOD
pue 1ofel xIomisu sourjyop pue ‘juswriredxe oy3 dn si3eg

‘309[qo x93s03”(QgsIefeTi00UUC) UR SZTITeT3TUI
[]
: (T=Speaiya ‘suoN=psu ‘suoN=sod esIno0S
‘ouoN=swered [ouIey ‘oureu” [ouIdy ‘N ‘T ‘I[OS) T2TUT " Jop

¢ ¢ ¢ "SIefeTroeuuc) SuTlsel IOF POSN SSBTD((¢
: (309[qo) x915091 - ggsI0LeT)00UUO) SSBTD

odog se £8orodo3s-3seu jxodut
aseu axodwt

31d se jordAd-qrr3ordrew j3xodut
sqeqs-Adros qxodut
o3ex8equr - Adtos axodwrt

pux se wopuex’Adunu 3xodwt

du se Adumu j3xodut

(X33
*sI10feT300UU0) IOF S3SOL

wroyzxe(y Tetweq :JIoyinep

[

MIOM)OU PaInonals Aqerjyeds (¢ Ioj 3diios 9saf,

q xtpuaddy

ﬁﬁ
€V
v
1%
oy
6€

L€
9¢€
ge
123
€€
ce
1€
0€
6¢
8¢
LG
92
Ge
14
€¢
44
1¢
0¢
61
8T
LT
91
a1
i
€1
4!
IT
0T

[TV

™M <t

— N

Test script for 3D spatially structured network

74

({e8ueapsu : spossSur,

‘daTur 3TeS + psuw : peasTSuil,})snielgTouUIL)19S 1SoU
(da"u- yTes + psw ‘psw)oSuel = sSuerpsm

psu
1esTo

(000000T) FUTPURI " PUI = PSU
:oUON ST psw' FToS JIT
:senTeA peas HNUJ 39S #

*TT3TUTTT UT pPosn SeM 3SATF OUL # | + PSU’ FTOS

(¢S201d”TEN1ITATUMU TE309) SNIR]STOUIS} 19 4sou = da~u- JTes
({speeIya’ FJToS : SpPesIyl Wnu [ed0T,})SNIelSToUIL) 1SS 1SOU
() TouIL)219SY " 1S8U

(cc'SenTeA Pess HNYJ IeS pue Toursy ISHAN SUI IS (.
1 (FT9s)39s01”

FpoTpewIouU UIN}OI

Jpo~pewIouU = 3STT IPO - FTOS
xe3eT peazoTd oq 03 ST QD oU3 9SED UT PaIols #

doy / Fp> = Fpo~peuwrou
[0] (2 / (g)agbs-du x T-31es ‘0 ‘zpd~ - zres)penb-sjeildsqur-Adios = doa

(Fpo)umsumd ‘du = Ipd
P = pTaser
([0] (P ‘pTaser ‘Fpd~-zTos)penb-eqer8equr-Adios)pusdde- 1po
i@ UT p I0F
‘0 = pTaser
[J = 3po

" UT P 9OURISTP YOeS I0F (P)JAD FO 3ISTT

senTeA uIn3ey

*[(2)2abs/T 0] TeAIequUT UT SedUR}STP JO oTqeIel] :(

sJIejeuweied

*(4QD) UOTIOUNT UOTINQTIISTP SATIRTNUMD POZTTRUWION
ccc¢

1(@ ‘ITes)IPo”T

‘0 uInjex
:9sTe
((L * "8y - (td-du / ewwreS x % + "T-) * D * "9 + ¥)
* (((@)ouny~Teouxaey yTes ‘'T)UTW °‘(Q)Xew) uInjal
(td*du - ewmre3 + ®39q + eydye) x ‘g #x Q@ = L
((C'T *x (@ / T"3T®S) * ST° - "T)
/ (T x%x (Q / T°IT®S) % §° - °"1))axbs-du)ursore-du = eunre3

Jop

Fop

‘gz / 1d'du = ejeq
((C'Z ** @ * "T) / 'T *x T I[eS - -g)aabs-du ; -7)ursore-du = eydre
('z /T°31es - @) * @ x d'du x ‘g = D
‘T oxx @ x Tddu x p =¥
i°g / (g)3abs-du x T 31es => @ > (g)3xbs'du / T 3OS FTT®
((@* "% - T°IT9S % '€) * q » d-du x g
* (((@ouny Touxey FIes ‘ I)UTW ‘°'(Q)XeW) UINIOI
1(g)aabs du / 3188 => @ > ‘g / T ¥IeSs ITT®
'z ** @ * Tddu x °§
* (((Q)ouny~Teouxey ' J[es ‘ T)UTW °'()Xew) UIN}dI
1'g / T'3TeSs => q IT

*@ °oouelSIp 3® Jdd POZITeuw.Iouu[)

sonTeA UIN}Y

*[(2)aabs/T ‘0] TeAISQUT UT 95URLSTIQ :(Q

SJI9j3suweaed

*(dad) uotaouny LaTsuep K31TTqeqord pezITeuwrouun

(X3

1(a ‘Fres)Fpd”

(((T ** [(ewdrs]swered-y18s % ')
/ T x* ([(uesw,]suexed:y7os - q))- *x o-du
% [(TI0qued~d,]swered- y7os + [(O.]swered-ITos) uinjex

(¢ UOT]OUNF TOUIOY URTISSNRY,
:(Q@ ‘FTOs)ssned”

(([¢nea,]suered - 370s / -) *x o°'du
*x [ce.]swexed’ yTes + [(d]swered- JTos) uiniex

¢¢¢"UOT3OUNF Touxey Terjusuodxd,
1 (@ ‘Fres)Terausuodxe”

a * [(e(]swexed-z1os + [O]swered-ITos uInjax

¢¢¢ UOTIOUNT TOUIDY TBUTT(¢ ¢
1 (@ ‘Fres)xesutrt”

swered® JToS uInlex

¢¢ ¢ UOTIOUNF TOUISY JUBISUOD(¢ ¢
(@ ‘FTeSs)3uelsuod”

{TouIey JToS : ToUISY, ‘YSew: JToS : YSeuw,
¢ (queBxaaTp, : . odf1 uUOT300UUOD(} = 3DTPUUOD "’ ITOS
{swered- yTos :oweu [oUISY ' JTOS} = TOUISY" JTOS
:osTe

FoP

FoP

FopP

Fop

FoP

VT
ovl
6¢T
8€T
LET
9€T
ger
Vel
€el
cel
I€T1
0€T
6CT
8C1
LCT
921
gal
i7q!
€al
cal
TcT
0cT
61T
8TT
LTT
91T
ST
VIT
€11
CIT
TTT
01T
60T
80T
L0T
90T
G0t
V0T
€01
cot
10T
00T
66

86

L6

96

G6

76

€6

c6

16

06

75

¢ (oeTQq=I0T0D™D2IS ‘(QG=9ZTS~2IS
¢ oTdand ,=10T00 3Sew ‘ysew' JToS=3Seu
‘817=8TF ‘a1 FToS ‘IoATIp'JTos)s31e38relioTd odoq
rosTo
(¢P9I,=I0T02 187 ‘ozTISopou=ozIS 137
¢ ({ORTQ(=I0TOD™2IS ‘()G=9ZTS OIS
¢ (9NTQq=I0TO0D T[oUISY
¢ (oTdand ,=x0T00 " ¥SRW
‘TouIay " JTOS=ToUIdY ‘¥Sew' JToS=¥SeW
‘817=8TF ‘2T FToS ‘IoATIp'JTos)s3e8reliord- odoq
: uetssne8, == SWRU [OUISY ' F[OS IT
‘pejzord eq ueo Teuxey uerssne8 oy3 ATug #

(£o18 =10T029pPOU
‘9ZTSopou=9zIsopou ‘qT°J1os)IafeTroTd odoa = 317

(((C'000TT / N'FT®S - IT / "TTT)PUNOI)3UT ‘T)XeW = SZTSOPOU
‘sopou yo xequnu uo peseq 3o0Td UT sepou jo ozTs 3sulpy #

:TOIJUOD 30U pUR MIOMISU MOUS JT

(9AT]RUISITR=0ATIRUISLTR
fIpoT ' ITes ‘1sTp)asoasy-sieas-Adros = d

()seoueysTp 308~ ' JTOS = 3STP

‘sy

1osTo

() TOTQUOD~SedUR]STP 398~ " JTOS = 3STP

:TOX3U0D FT

*3s93 Q) woxy onrea-d
*OT3ISTIRYS QY

€ce¢

sen{eA uIniey

‘301d Jad I0F surq wei803STY FO Ioqum) :SUTH WeIS03STY
‘pekerdstp oq prnoys Jqd reyieys Lyroedsg : JAQqd~moys
‘pederdsTp oq prnoys J4q) Ieyreym Lyroedg AQD~moys

‘peferdstp oq prnoys 3o1d MIomjeu xoyzeym Lyroedg : NIOMIBU MOUS

©(I93e018, I0 (SSOT,

‘(2Tnegyep) (peprs oMy, ‘sTseylrodAy aATIRUILATY : aATJRUIS]TE
*S00UR3STP~ 308~ JO peo3lSUT posn oq TTTM
T0I3UOD " S9OUR}STP 308~ ‘oni] JI ‘enfea uesToog : T0I3u0d
sIojoweIRd

*SOpOU pPo3DoUU0D 03 SOOURISTP FO
UOTINQTIISTP OY3 UO 35903 JOQH AOUITWS-AOIOSOWTOY © WIOFISJ

: (00T=Sutq wex30qsTY
‘osTed=Jd0d MOoUys ‘esTei=Jd) MOUS ‘oSTRJI={IOMI8U MOUS

¢ (POPTSTOM] =8AT]RUIS]TE ‘OSTeJ=T0IJUO0D ‘IToS)1S917 Sy JFop

€cc¢

4
4

o™
0 10
AN AN

<0 010
N AN

[«
[a\}

/¥
L¥C
9z

3STp uanjisx

()3I0S " 3STP
[(p)oungy~Touxey yT8s > ()WIOFTUN PUI JT 3ISTP UT P IOF P] = 3ISTP
([0] (21" IToS)SoAROT10DH 1SOU ‘ISATIP' ITO9S)oduelsT(q 0dol = 2STP

(PITNq™ " FT8S
()319sex” " yToS

*SOpOouU Po3OdUU0D 03 SOOURYSTIP FO 3ISTT PaIepiQ

sonTeA uUIN}ey

‘UOTINQTIFSTP pojoadxe oyl YITM elep S93e8Id poy3lau
STUY3 ‘Wy3tIoSTe UOT309UUO0d Tenjoe s,ISHN Suisn Jo peoisul

(X33
: (3JT9S) T0I3U0D~SedOURISTP 308~

1STp uInjex

()3x08°1STP

(sepou~10381e] ‘ISATIP' IT9S)eduelsST(q 0dol = 2STP

SUON ‘OUON UIN}eI :() == (Sopou 3a88Iei)usy JFT
[SUOT1D9UUOD UT UUOD I0F [[]uuod] = sapou 1s88i1eq
(ISATIP* JTOS=9DINOS) SUOTIDOUU0)ISN " 1SOU = SUOTIDOUUOD

()308uuod™ " yTes
()PITNq™ - JT8S
()3esax™ - FToS

*SOpouU Po3OeUUOD 03 SOOURYSIP FO 3STT PoIapiQ

SenTeA UIN}LY

*SOpOU Pe3OdUUOD 03 S9OURISTP 308 pue ‘siefe] 309UUOD puUe 93BDI)

[
: (FToS)seduelSTP 203~

(30TpuUUOD " JT8S ‘9T' FTOs ‘ST’ JTos)sIafeTarosuuo)-odoy

¢¢¢"sIekeT 300UUOY,
: (FT®8)308UU0D ™

(ST' FToS) 1usua THIa3us)put-0dol = ISATIp® FToS
(3730TpT " FT9s) I0feTorear) -odoq = 3T FTeS
(STa0TpT " FT9s) 10heToqea1) - odoq = ST IToS

¢ ¢ sI0LRT °3BOID((
s (FTes)p1ITng”

FoP

For

FopP

Fop

¥ve
€V
e
1ve
0ve
6€¢C
8€C
LET
9€¢C
GecT
vee
€€C
cee
1€¢
0€T
6¢C
8CC
LCC
92
44
vee
€2C
(444
144
0cc
61¢C
81¢C
LT1¢C
91¢
e
vic
€1¢c
[qré
11¢
01¢C
60T
80¢C
202
90¢
G0¢C
¥0¢
€0¢
414
10¢
002
66T
86T
L6T
961
61T
V61

Test script for 3D spatially structured network

76

d ¢, :qse03-7 3o enrea-d, jurad

z ¢,:9100s-7, jutrad

()asea™z'1se7 = d ‘z

d ¢,:3se03-gy Jo onTea-d, jurad

SY ‘(:0T2STIR3S 3593 Q)¢ utad

(eNII=4QD~MOYS ‘ONII=4dd MOYS ‘onII=y¥Iomjeu moys)isal sy-3seq = d ‘sy
(0=psu ¢ ueTssned=sweu [oUISY

‘00000T=N ‘0°T=T)Ie3se31 (QgsIafe3douuc) = 3503

tTTutew T, == ~Teweu "~

d ¢z uinjex

d

4

((2) Fpo - wrou-sqeqs - Ad1os - 1) % ‘g

(ps / (dxe - umu))sqe

(xea)qabs-du = ps

0'7 ‘uweu-du winjex :Q == JIeA JT

([sd ut d x07 (d - '1) % d])ums = ea

(sd)ums = dxeo

([3sTP UT I0F (((Q)ounj [euirey-Fres ‘-y)uru ‘-Q)xew]) = sd
([0] (3T' IToS)SoALOT10NH 1SOU ‘ISATIP" JToS)edueasTq-odol = 3sSTP

(()seoueasTp 408~ ' JTOS)UST = uUMuU
19sTo

(() TOI3UOD~SeOURYSTP 308~ ' JTOS)UST = umu

T

VLE
€LE
cLE
T.€
0L€
69€
89¢
L9€
99¢
g9¢
2%
€9¢
c9¢€
19¢€
09€
649¢
8G¢
LG€
9g¢
age
4%
€9€
(459
T4€
0g¢

:ToI3u0d IT

‘onrea-d peprs-om]L
* (9100S-Z) 9I0D0S pIepueig

SenTeA UINISY

*S9oURASTP 108~ JO pROISUT
pesn oq TTTM TOI3UOD~S9OURASTIP 308~ ‘eni] FI 'oN[RA URSTOOg :TOIFUOD

sSI9jlsuweIed

*SUOT3D9UUOD JO ISQUNU T[e103 SYJ U0 3S83-7 © WIOIIDJ

(]
: (9STed=T0I3U0D ‘J[oS)1S91™2Z

d ‘sy uinjex

(enxl=yo0T1q)Moys 3T1d
(JIOM3BUTMOYS I0 J(Qd MOUS I0 QD MOUS T

(¢2y8TI 19quU8d =doT)puelet-aTd
(¢dad¢)TeqeTd 21d
((®oue3stg.)TeqeTx " 31d

(ro=utuk)wrTL-a1d

(g=10p10z ¢ Teotatdug,=ToqeT

¢ (P9I =I0TO0D ‘ONII=POWIOU ‘T=UJIPTMOUTT
¢ (deqs =odf1qsTy ‘surq uwer8olsTy=sutq ‘1sTp)3sTy-1Td
(T=I9p10Z ¢ L100YI,=TOqeT ‘E€=UIPTMOUTIT ° ¥OeTq,=I0T0d> ‘K ‘x)q01d-a1d
eoaxe / ([x ut q X0y (q)Ipd™ - Fres])Aeixe-du = £

[01(z / (g)aabs:du x 7T-3TeS
‘0 ‘Fpd” - zTes)penb-ejeirdequr-Adros = eoxe
(000T ‘T / (€)aabs-du % T-FTes ‘g)ededsury-du = x
()ean8tz-a1d
:4ad"moys 3T

(¢2Yy8TI 19quU8d =dOT)puelet-aTd
(¢daD¢)TeqeTL 31d
((@oue3st(g.)TeqeTx " 31d

(1 ‘o)ywrrL atd
(z=19p10Z ¢ TeoTaTduy =ToqeT ‘[=UYIPTMOUTT
€ (poxc=1070> ‘£ + [0°0] ‘asTP + [0°0])deas-a1d
[((asTp)ueT)eBuer ut T I0F (2asTP)usl / (T + T)] = £
(T=10pI0Z ° LI0OYL,=TOqET
‘E=UIPTMOUTT * OBTQ(=IOTOD ‘.-, ‘3ISTT FP2> JTos ‘asTtp)3ord-atd
()@an8ty-q1d
140 moys JIT

(¢PoI,=I0T0D"137 ‘oZTSOpouU=9ZTS 137

FopP

67€
3%
L€
9F€
cre
e
ey
e
I7¢
oFE
6€€
8ee
L€
9g€
cee
vee
eee
zes
TeE
0€€
62
8z€
L2€
9z¢
cze
Ve
€ze
r@4s
12
02€
6T€E
8T€
JARS
91€
T
vIE
€T
rars
11€
0T€E
60€
80€
L0€
90€
cog
v0€
€0¢
o€
T0€
00€
66C
86¢

senTeA uInjeoy

*7 ST 3Tnegeq ‘Teuotadg ‘spesaysz TedoT JFO Iaqumy :
*I93ued ST 3Tneyeq ‘Teuoradg ‘uoritsod spou ©2IN0g :
‘TeuoTadQ ‘UOTIOUNF TOUISY JIO0F sIojouered :swered [ouIsy

*1s97 07 (TOUISY) UOTIOUNF
£a171Tqeqoad juepusdep eoURASIP JO SWeEN : OWRU [OUISY
193893~ (JgsI0£eT300UU0) IO I93S93 (JZSIoLRTI00UUO) : SSBTO I93S03%

speaiys
sod~eoanos

sJI9jeuweied

*3893 Q) oYl SUTSN UOTINQTIFSTP WIOFTUn poildadxe
oUy3 yYatM paredwod axe senTea-d Suri[nsex oYz pue ‘sewrl suni u pezesadsl
ST 3s93 oy3 ‘snototrdsns ST 3TNSeI 9Y3 JI °3UNOD UOTIOOUUOD Te103
aY3 uo 3s93-7 e wxogiad pue ‘sisfeTiosuuo) Suisn yIom3zau oTSUTS ' 83eDI)
(]

: (T=speaiya ‘suopN=sod esanos
‘{}=swered Touroy ‘oweu [OUISY ‘SSBTD I91S91 ‘JIT0S)1S91”Z

osTeq osTe geydie'Ires < d JT oni] uiniax
(¢<pPepTIsTom) =oATqRUIS}TR ¢ mIoFTun, ‘sd)qseasy-sieas-Adros = d ‘sy
([1] ()31sea~ sy aseq)puadde-sd
(euoN=psu ‘sod”edanos=sod"ed1nos
‘swexed " Touxey=swered ToUIDY
¢ oUleU” ToUIS=0OWRU T[OUIDY
‘N°FTOS=N ‘7" FTOS=T)SSBID 193593 = 3593
(suni~u-y{es ‘T + T) % 'PY% FO pY% 21seq Suruuny, jurad
1 (suni u- yres)eSuer UT T JI0F
¢ autad
[0 = sd
iosTo
enI] uInjex
:7eydre-yres < d It

()ase3 sy 3seq = d ‘sy
(euoN=psu ‘sod~edinos=sod”es5Inos
‘ swrered " Teuxey=surered TouIsy
‘ oWRU” TOUISN=oWeU T[OUISY ‘N'JFT[OS=N ‘7' F[9S=T)SSe[D 191591 = 1593

‘osTMIOY3lO osTe ‘possed sem 3se3 JT ONI] 'ONTRA URSTOOQ

sonTeA uInley

SI0M)U paInonays Aqreryeds 10j

Fop

68
88
L8
98
a8
¥8
€8
c8
I8
08
6.

o
o ©o

0
010 10

D

r~

red

™M <0
1010 10 1O 1O 1O K

—~ N

O~ 0O
< < < S

JIIIN

*I93ued ST 3Tnejeq ‘Teuoridg ‘uor3ztsod epou 85IN0g

‘7 ST 3Tnegyeq ‘'Teuoradg ‘speeays [edo0T JO Iaqumy : spesays

sod~eoanos

‘Teuoradg ‘UOT3OUNF [OUISY I0F SIojoweIed :swexed Touxsy
*1S93 09 (TOUISY) UOTIOUNT

£3111qeqoxad juspusdep ©OoURYSTIP FO SWEN : OWRU [OUILY

- 191591 ggsIafeT100UU0) IO 191591 (gsIofeTideuuc) : SSeTd I93S07]

sa9jlauweIed

3593 gy oYz Sursn UoTINqIIISTIP

wroytun pejzoadxe oyl Y3t peredwoo axe sentea-d Surjnsex oyl pue ‘souwWrl
suni~u pojeadex ST 35031 oY} ‘snorordsns ST 3[NSOX 9Y3 FI °SOOURLSTIP

108187-90IN0S JO UOTINQTIISTP 9YJ U0 3593 (S)) AOUITWS-A0IOSOWTOY
e wrojyiad pue ‘siefeTroeuuc) Jursn NIom3zesu oTJUIS e 93BLIY
(X3
: (T=speaaya ‘suoN=sod esinos
‘{}=swered Touroy ‘oweU [oUISY ‘SSBTO I91S91 ‘JTOS)1S017S{ JOp

10°0 = geudre- y1es
10°0 = teydre- yres
SonTeA TeOTITI) #

3se3 jeedex o3 sewr3 yo Iequmy # (0T = SURI U FTeS
‘ozT1s IofeT # 0'T = T ¥Tes
sepou yo Iaqumy # 00000T = N FTes

(¢ SenTeA TeoT3TIO pue siojzewered 3503 388,
1 (3Tes)dpass zop

¢ ¢¢"sI9feT1d0UUO) TOF S3ISe3 TBOTISTIBAS (!
: (9SBD1S9] *1S911TUN)8SL)YISO[SI0LLT100UU0) SSBTD
I99s09”ggsIafeTroouuc) jxodwt JgT3S03 WOIF

I93s01”(qgsaokeroouuo) jxodwut gz 3S93 WOIF

syeqs - Adros qxodut
aseq3Tun 3xodut

(X3

*S}IOM3OU painjonils Arrerzeds (g pue (g JI0F S3S033TUN

wroyzxe(y Tetweq :JIoyinep

[

9)INS 1S9 pajewoiny
) xipuaddy

a1
€V
v
1%
oy
6€

L€
9¢€
ge
123
€€
ce
1€
0€
6¢
8¢
LG
92
Ge
14
€¢
(€4
1¢
0¢
61
8T
LT
91
|
i
€1
4!
IT
0T

[TV

™M <t

— N

Automated test suite for spatially structured networks

78

¢ ¢ (S9OURSTp opou 308Ie3-90an0s UO pawxoFrad 3503 SY¢ ¢
: (FTOS) S queasuod~qgT1se1 Jop

(¢1s92-7 9y3 ssed 07 peTTeRJ SIsfeTrdouuo),

¢ (p=speoIyl
¢ (IeOUTT, ‘I91S91” (gSIoLeT109UU0))1S9] Z JTOS)ONI[1ISSSR " ITOS

¢ ¢ ¢3UNOD UOT309UU0D Te303 Uo pawxoyiod 3803-Z.
: (FT9S)Z PeeIylTATNW IesUTT (g 3893 Fop

(¢*2s91 S) @Ya ssed 03 paTTeJ SI8LeTIDUUOY,
¢ (p=Speaaya
¢ IBSUTT, €I91S91~(ZSIofeT100Uuc))1se1 sy FJ[OS)oNI[1I9SSe" JTS

¢ ¢ (SOOURSTP opou 308Ie3-90In0S U0 powxoFrad 3503 SY¢ ¢
: (IT0S)S¥Y pesIyITATNW IesuT] (g 1591 Jop

(¢1s92-7 9y3 ssed 07 peTTeRJ SIskeTrdeuuo),

‘(C% / T ¥19s “'% / 1 F19s)=sod sd1nos
¢ IeOUTT, ‘I91S91 (IgSIofeT100UU0))1S0] Z" JTOS)ONI[IISSSR " ITOS

(¢ (1UNOD UOT109UUOD Te3103 U0 pouwxoyied 1893-7,
1 (FT9S)Z Pe3FTUS IBSUTIT (Z 3593 Fop

(¢*2s91 SY @y3 ssed 0] peTTeJ SI8LeTID0UUOY,

‘(C'v / T°3ITes ‘% / 1 FTes)=sod eoainos
¢ TedUTT, ‘I91S971 (gsIeofeT100uUuc))qse1”s¥ " JTOS)ONI[1IoSSR" JTOS

¢ ¢ (SPOUR}STpP opou 30871e3-90Inos uo pawxoFiad 393 S¥¢ ¢
1 (FT®S)SY PeIFTYS IBdUTT (T 3S83 jFop

(¢2s92-7 ay3 ssed 07 peTTeJ SIakeTrdeuuo),
‘((uerssne8, ‘193591 (qgsIoLe109UU0)) IS8 "Z" JTOS)SNI[I1ISSSR " IS

¢ ¢ ¢3UNOD UOT3D09UUO0D Te303 Uo pauwxoyxad 3s93-Z.
“AHHmmVNlﬁmHmmdmwlmmlpmmu Jop

(¢*2s91 SY oya ssed o3 peaTTeRI SIofeTadoUUOY,
‘((uetssne8, ‘I91s9] (qZSIeLeT100UU0))1S9] SH ' JTOS)ONIL]ISSSR " JTOS

¢ ¢ (SeOURSTp opou 388Ie3-00IN0S U0 pamxoFiad 3s83 SM .«
1 (FTos) sy uerssne8~qz"1se3 Jop

(¢3s93-7 oya ssed o3 peTTeJ siafeTirdeuuo),
¢ (¢TeTausUOdxe, ‘I91591 (ZSI0ARTIDOUU0))1S9] Z" JTOS)ONI[1IoSSE" JTOS

¢ ¢ (3UNOD UOT309UU0D Te303 uo peuwroyxad 3s03-7.
: (FTes)z TeTqusuodxa~(qz~1s93 Jop

(¢*2s91 S) oya ssed 07 peTTeRJ SIofeTIDLUUOY,
¢ ((Tetausuodxe, ‘I93s91”(ZSIofeT10oUU0)) 1S9 SH JTOS)ONI[II9SSR " IS

¢ ¢ (SOOURLSTP opou 308Ie3-90In0S U0 powroFiad 3503 S«
: (FTeS)s¥ Terausuodxe~(qz 3Se1 JoOp

(¢1se1-7 oya ssed 07 peTTeJ SIiekeTi1deuUU0),
¢ ((IeSUTT, ‘I91S93”(ZsIofeT1doUU0))1S94”Z" JTOS)oNI[)I9SSR " JTOS

¢ ¢ ¢3UNOD UOTJO9UUOD Te303 uo paumroyaad 3Se3-Z.
P (FTes)z"IedUIT (g~ 3S93 JOp

(¢"3se1 gy oya ssed o3 parTey sisfeTirdsuuc),
¢ ((IBOUTIT, ‘I998917 (JZSISARTIDOUUO))1S9] ™ SY " JTOS)ONIL1IoSSE " ITOS

¢ ¢ (Seoue}STp opou 388xe3-oo0anos uo pewroyiod 3503 S¥¢ .
1 (FTeS) Sy IedUTT (T 3S83 Fop

(¢1se1-Z ay3 ssed 07 peTTeJ SIafeTidoUU0),
¢ (§' 0=swered TouIsy
¢ (1UR]SUOD, ‘I99S01 (gsIofeT109UuU0))qS071”Z JTOS)ONILIISSSE " ITOS

(¢ ¢3UNOD UOT3D9UUOD Te303 U0 pouwrxofiod 31803-7 ...
1 (¥TOS)Z73uR}SUOD (g~ 3893 FOp

(¢*21s92 g) oya ssed oq pearTey siaafeTirdeuuo),
¢ (§' 0=suered TouIsy
¢ JUBQSUOD, ‘I93S071 (gsIofeT100Uu0))1S01”SY " FTOS)ONI[1IoSSE " FTOS

¢ ¢ (Seoue}STp opou 3e8xe3-oo0anos uo pewroyiod 3503 S¥¢ .
1 (¥ToS) S} JUelSUOD~ (g 3593 FOp

osTe osTe geydre yes < d FT oniI] uInlax
((PopTISTOM] =oATqeuIs)TR ¢, mIoFTun, ‘sd)aseasy-sieas-Adios = d ‘z
([T]) asea"z 1seq)puadde sd
(suoN=psu ‘sod~esinos=sod”eo1nos
‘ surered - Tourey=swered [ouIoy
‘ OWRU TOUIS{=0WRU [OUIDY
‘N°FT®s=N ‘T°JT[eS=T)SSe[d I93S93 = 3s083
(sunx u-gy1es ‘T + T) % ('PY Fo Py 3se3 Suruuny, jurad
:(suni u- yres)eSuex ut T 107
¢¢ 2utad
0 =sd
:osTe
oNI] UIN}SI
:7eydre-yres < d 3T

I
o,
N

()3se3”z"3s9]
(euoN=psu ‘sod”edanos=sod~edInos
‘suwrexed " Tourey=swered Touisy
‘oureu” TOUIS=oUWRU [OUISY ‘N'JTOS=N ‘T’ FTOS=T)SSeId 191593 = 23S°1]

‘9STMIaY30 osTeq ‘possed sem 3s93 JT OnI] 'on[es uUeaT00q

VT
ovl
6€T
8€T
LET
9€T
ger
Vel
€el
cel
I€T1
0€T
6CT
8C1
LCT
921
gal
i7q!
€al
cal
TcT
0cT
61T
8TT
LTT
91T
ST
VIT
€11
CIT
TTT
01T
60T
80T
L0T
90T
G0t
V0T
€01
cot
10T
00T
66

86

L6

96

G6

76

€6

c6

16

06

79

(()®2TNS) UNI* ISUUNT
(Z=£1Ts0qIoA) TOUUNYISOIXS] " 1S933TUN = ISUUNI

rTTutew T == o eweu ~ JT

921TINS uUIN3}LI
(c2593, ‘ose)iselsiefe]100Uuc))elINGoxeUW 1S933TUN = 93INS
1()e3Ins Fop

(¢3s93-7 oya ssed o3 paTTeJ sxsfeTirdeuuo),
¢ (f=spesaya
¢ TeSUTT, ‘I93S99 (gSIefeT]00Uu0))1Se] Z" JTOS)oNI[1I9SSR " JTOS

¢ ¢ ¢2UNOD UOT308UU0D Te303 U0 powxoyiod 3s03-Z,
: (JT9S)Z PeOIYITITOW IesUTT (e~ 2593 Fop

(¢*1s92 Q) oya ssed o3 paTTeJ sIafeTirdouuo),
¢ (F=speo1ys

¢ TedUTT, ‘I93S0q~(ggsIofe]]00uuc))qse sy’ JT9S)oNI[1I9SSE" JTOS

¢ ¢ (SeOURSTp opou 388Ie3-00IN0S U0 pamxoFiad 3s83 SM .«
$(FTeS)SH pedIylITATNUW IBSUTT (JE™ 3583 F°op
(¢3s93-7 oya ssed o3 peTTeJ siafeTirdeuuo),
‘(C% / T IT9s ‘"% / T ¥TeS ‘'%y / T IT9s)=sod edinos

¢ (IeSUTT, ‘I93S99 (gSIefeT]00Uu0))1Se] Z JTOS)oNI[1I9SSe " JTOS

¢ ¢ ¢3UNOD UOT309UUO0D Te303 UOo pouwroyxad 3803-Z.
1 (FT9S)Z Pe3FTUS IeSUTT AL~ 3593 Fop

(¢*3s91 SY oy3 ssed 03 peTTeF SIoLeT3d0UU0Y,

LLT
9.¢
GLC
VLT
€LC
CLT
[LC
0Lc
69¢
89¢C
L9¢
99¢
G¢9¢
¥9¢
€9¢
c9¢C
19¢
09¢
69T
84¢C
L8G¢
94¢C
jjerd
vae
€49¢C
[4%14
14¢
09¢c
67¢C
87T
LVC
igd

‘(C% / T°ITes “°% / T FIeS ‘'% / T ITos)=sod edanos
¢ (TedUTT, ‘I91S931”(JgsIefe]10ouUuc))1se) sy JT9S)onI[lI9SSe " JT8S

¢ ¢ (Seoue]STIp opou 388xe3-odanos uo pawroyiad 3503 S¥¢ .
:(FTIOS)SY Po3FIYS IedUTT (L 3593

(¢1se1-7 oY1 ssed o031 peTTeJ SIokeT1deuUU0),
‘((uetssned, ‘I91s93 (JgsIeofeT1D0UU0))1S0] Z" JTOS)ONILII9SSR " ITOS

¢ ¢ ¢3UNOD UOT3D9UUOD [e303 U0 pauwroyiad 3S93-Z.
: (FTes)z uetssneS~qgT1se1

(¢ 3s92 g) oya ssed oq paTTey saafeTirdouuoc),
‘((uetssned, ‘1915917 (JgSI0LRTIOOUU0))1S9] 7 SY " ITOS)ONIL1ISSSR " ITOS

¢ ¢ (S9OURLSTp opou 308Ie3-90In0s UO powroFiad 3503 S¥¢ ¢
1 (FToS)sY uetssne3~qgTaso

(¢1se1-7 oya ssed 07 peTTeJ SIakeT1deuUU0),
¢ ((TeTausuodxe, ‘I91s03~(ggsIofeTi0euUu0))qse3 "2 JTOS)onIljIesse" JTos

¢ ¢ ¢3UNOD UOT308UU0D Te303 Uo pawrxoyiod 3S93-Z.
: (FT9s)z TeTqueuodxe—(QgT1s92

(¢*3se1 gy oya ssed o3 parTey sIsfeTirdsuuc),
¢ ((TeTausuOdxe, ‘I99591 (JgSISABRTIOOUU0))1S9]~SY ' JTOS)ONILIISoSSR " ITOS

¢ ¢ (Seoue}STp opou 3e8xe3-oo0anos uo pewroyiod 3503 S¥¢ .
1 (FT9s) sy TeTausuodxs~qg 1597

(¢1se1-Z oy3 ssed 07 peTTeJ SsIafeTideuuc),
¢ ((IedUTT, ‘I91591°(QgsIafe]100UU0))1S9]”Z" JToS)oNI[)I9SSe " JT8S

¢ ¢ ¢3UNOD UOT308UU0D Te303 Uo pawrxoyiod 3S93-Z.
1 (FTOS)Z TeourT Qg 1592

(¢*2s92 g) oya ssed o3 peaTeI SIokeT1d9UUOY,
‘((TedUTT, ‘I01S5931”(QgsIafeTa0ouu0)) 15917 Sy JTOS)ONI[1ISSSR " ITOS

¢ ¢ (Seoue]STIp opou 3e8xe3-ooanos uo pewroyiod 3583 S¥¢ .
1 (JT9S) Sy TeaurT Qe 31se1

(¢1se21-7 oy3 ssed 03 peTTeJ sIaefe]3deuuoc),
¢ (G o=swered TouIsy
¢ JUR]SUOD, ‘I93S01”(gsIofeT100Uu0))1se3”2 JToS)oNnI[IIosSe JTOS

¢ ¢ ¢3UNOD UOT3D9UUOD [e303 Uo pouwroyiad 3S03-Z.
: (FTS)Z aue]sSuUOO~ Qg 1S9

(¢"3se1 gy oya ssed o3 parTey sisfeTirdsuuc),
¢ (§'0=suered TouIoy
¢ (JUB]SUOD, ‘I93S03”(gsIofe]100Uu0))1se1 SY " FJTOS)ONI[I1I9SSE " FTOS

Fop

FoP

Fop

For

FoP

FopP

FopP

FopP

ige
¥ve
€V
e
1ve
0ve
6€¢C
8€C
LET
9€¢C
GecT
vee
€€C
cee
1€¢
0€T
6¢C
8CC
LCC
92
gee
vee
€2C
(444
144
0cc
61¢C
81¢C
LT1¢C
91¢
e
vic
€1¢c
[qré
11¢
01¢C
60T
80¢C
202
90¢
G0¢C
¥0¢
€0¢
414
10¢
002
66T
86T
L6T
961
61T

References

Abbott, A. (2013). Brain-simulation and graphene projects win billion-euro
competition. Nature.

Brette, R. and W. Gerstner (2005). Adaptive exponential integrate-and-
fire model as an effective description of neuronal activity. Journal of
Neurophysiology 94 (5), 3637-3642.

Brette, R., M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower,
M. Diesmann, A. Morrison, P. H. Goodman, F. C. H. Jr., M. Zirpe,
T. Natschlager, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner,
O. Rochel, T. Vieville, E. Muller, A. P. Davison, S. E. Boustani, and
A. Destexhe (2007). Simulation of networks of spiking neurons: A review
of tools and strategies. J Comput Neurosci 23, 349-398.

Chang, G. and C. B. Roth (2001). Structure of MsbA from E. coli: A
homolog of the multidrug resistance ATP binding cassette (ABC) trans-
porters. Science 293(5536), 1793-1800.

Crook, S. M., J. A. Bednar, S. Berger, R. Cannon, A. P. Davison, M. Djur-
feldt, J. Eppler, B. Kriener, S. Furber, B. Graham, et al. (2012). Creat-
ing, documenting and sharing network models. Network: Computation
in Neural Systems 23(4), 131-149.

Dijkstra, E. W., E. W. Dijkstra, and E. W. Dijkstra (1970). Notes on struc-
tured programming. The Netherlands: Technological University Eind-
hoven.

Djurfeldt, M. (2012). The connection-set algebra—a novel formalism for
the representation of connectivity structure in neuronal network models.
Neuroinformatics 10(3), 287-304.

Eppler, J. M., M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig
(2009). PyNEST: a convenient interface to the NEST simulator. Fron-
tiers in Neuroinformatics 2(12).

Ewens, W. and G. Grant (2004). Statistical methods in bioinformatics: an
introduction, Volume 10. New York: Springer Science+Business Media.

Gewaltig, M.-O. and M. Diesmann (2007). NEST (NEural Simulation Tool).
Scholarpedia 2(4), 1430.

82 REFERENCES

Gewaltig, M.-O., A. Morrison, and H. E. Plesser (2012). NEST by example:
An introduction to the neural simulation tool NEST. In N. Le Novére
(Ed.), Computational Systems Neurobiology, pp. 533-558. Dordrecht:
Springer Science+Business Media.

Greenwood, P. and M. Nikulin (1996). A guide to chi-squared testing. New
York: Wiley.

Hill, S. and G. Tononi (2005). Modeling sleep and wakefulness in the thala-
mocortical system. Journal of Neurophysiology 93(3), 1671-1698.

Huizinga, D. and A. Kolawa (2007). Automated defect prevention: best prac-
tices in software management. Hoboken, NJ: Wiley-IEEE Computer So-
ciety Press.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transac-
tions on Neural Networks 14(6), 1569-1572.

Kriener, B. (2012). Testing connectivity in spatial networks. Internal report.

L’Ecuyer, P. (2004). Random number generation. In J. E. Gentle, W. Haer-
dle, and Y. Mori (Eds.), Handbook of Computational Statistics, pp. 35—
70. Springer-Verlag.

L’Ecuyer, P. and R. Simard (2007). TestU01: A C library for empirical test-
ing of random number generators. ACM Transactions on Mathematical
Software 33(4), 22.

Miller, G. (2006). A scientist’s nightmare: Software problem leads to five
retractions. Science 314 (5807), 1856-1857.

Nordlie, E. and H. E. Plesser (2010). Visualizing neuronal network con-
nectivity with connectivity pattern tables. Frontiers in Neuroinformat-

ics 3(39).

Panik, M. J. (2005). Advanced statistics from an elementary point of view.
Burlington, MA: Elsevier Academic Press.

Plesser, H. E. and K. Austvoll (2009). Specification and generation of struc-
tured neuronal network models with the NEST Topology module. BMC
Neuroscience 10, P56.

Plesser, H. E. and H. Enger (2012). NEST Topology User Manual for NEST
2.2.

Plesser, H. E.; J. M. Eppler, A. Morrison, M. Diesmann, and M.-O. Gewaltig
(2007). Efficient parallel simulation of large-scale neuronal networks on
clusters of multiprocessor computers. In A.-M. Kermarrec, L. Bouggé,
and T. Priol (Eds.), Furo-Par 2007 Parallel Processing, Volume 4641 of
Lecture Notes in Computer Science, pp. 672—681. Springer Berlin Hei-
delberg.

REFERENCES 83

The Human Brain Project Preparatory Study Consortium (2012). The Hu-
man Brain Project: A report to the European Commission. Lausanne.
http://www.humanbrainproject.eu/files/HBP _flagship.pdf.

Wang, Y. (1993). On the number of successes in independent trials. Statistica
Sinica 3(2), 295-312.

	Preface
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Statistical testing
	Pearson's chi-squared test
	The Kolmogorov-Smirnov test
	The Z-test

	Distribution of connections
	Random convergent connections
	Implementation
	Results

	Random divergent connections
	Implementation
	Results

	Automated test procedure
	Implementation

	Spatially structured networks
	Two-dimensional space
	Implementation
	Results

	Three-dimensional space
	Implementation
	Results

	Automated test procedure
	Implementation

	Discussion
	NEST - A short tutorial
	Test script for random convergent connections
	Test script for random divergent connections
	Automated test suite for random convergent and divergent connections
	Test script for 2D spatially structured network
	Test script for 3D spatially structured network
	Automated test suite for spatially structured networks
	References

