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Abstract

The geoid is an equipotential surface of Earth’s gravity field, coinciding with mean ocean sur-
face level, serving as a reference surface for orthometric heights. In addition to this geodetic
application, the geoid finds geophysical uses in that it gives insight into Earth’s inner density
distribution.

This thesis comprises a literature study on three methods for regional geoid computation. The
methods are Stokes integration with various kernel modifications, least-squares collocation and
spherical wavelets, or more general spherical radial basis functions. The primary goal of this
thesis is to compare these methods, theoretically and numerically with synthetic data.

Theoretically, in the global case, the three methods are equivalent. Regional numerical compar-
ison of Stokes integration and least-squares collocation was done by closed-loop testing using a
synthetic gravity field computed from the global geopotential model EGM2008. Both methods
are practically equal.

The theoretical equivalence of global geoid computation with Shannon radial basis function and
spherical harmonics was confirmed numerically.

For the signal representation with radial basis functions, parameter estimation methods were ap-
plied. When estimating parameters from observations, inverse problems are encountered. Spheri-
cal harmonic analysis and radial basis function analysis by least-squares adjustment are examples
of linear inverse problems. Such problems are often ill-conditioned. Hence, the secondary goal of
this thesis is to investigate ill-conditioned linear inverse problems as well as possible remedies.

Tikhonov regularization with prior information was applied to several cases of spherical harmonic
analysis of a global gravity field computed from EGM2008. In turn, synthesized gravity fields
were compared to “true” gravity fields computed from the EGM2008 spherical harmonic coeffi-
cients. The L-curve approach for choosing an optimal regularization parameter was applied. The
necessity of choosing the regularization parameter correctly, as well as the benefits of correctly
applied regularization, was demonstrated.

Global radial basis function analysis by least-squares adjustment using Shannon RBF also formed
an ill-conditioned problem that called for regularization. Tikhonov regularization with prior
information was applied here as well, generally presenting similar traits as the spherical harmonic
analysis cases.

If no regularization was applied, still, mathematically correct RBF coefficients were obtained,
in that the solution allowed for the reconstruction of the input data. With the introduction of
regularization, physically meaningful RBF coefficients were obtained.
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Sammenfatning

Geoiden er en ekvipotensialflate i Jordas tyngdefelt, sammenfallende med midlere havnivå. En
geodetisk anvendelse av geoiden er at den er en referanseflate for ortometriske høyder. I tillegg
finner geoiden anvendelser i geofysikken, i det at den gir innsyn i Jordas indre massefordeling.

Denne oppgaven omfatter et litteraturstudium av tre metoder for regional geoideberegning.
Metodene er Stokes-integrasjon med forskjellige kjernemodifikasjoner, minste kvadraters kol-
lokasjon og sfæriske wavelets, eller mer generelle sfæriske radielle basisfunksjoner. Hovedmålet
med oppgaven er å sammenligne disse metodene teoretisk og numerisk med syntetiske data.

Teoretisk, i det globale tilfellet, er de tre metodene ekvivalente. Regionale numeriske sammen-
ligninger av Stokes-integrasjon og minste kvadraters kollokasjon ble gjort i en lukket sløyfe, ved
at både syntetiske observasjoner benyttet i metodene og den til sammenligning “sanne” geoiden
beregnes fra én og samme globale tyngdemodell, EGM2008. For alle praktiske formål viste begge
metoder seg å være like.

Den teoretiske ekvivalens mellom en global geoide beregnet med den radielle basisfunksjonen
Shannon og sfærisk-harmoniske funksjoner ble bekreftet numerisk.

For signalrepresentasjonen med radielle basisfunksjoner, ble parameterestimeringsmetoder an-
vendt. Når parametre skal estimeres fra observasjoner, utgjør dette inverse problemer. Sfærisk-
harmonisk analyse og analyse med radielle basisfunksjoner ved minste kvadraters metode er ek-
sempler på lineære inverse problemer. Slike problemer er gjerne dårlig stilte. Derfor er oppgavens
sekundære mål å undersøke dårlig stilte lineære inverse problemer samt mulige løsninger.

Tikhonov-regularisering med tilleggsinformasjon om de ukjente parametre ble anvendt i flere til-
feller av sfærisk-harmonisk analyse av globale tyngdefelt beregnet fra EGM2008. Videre ble tyn-
gdefeltene syntetisert og sammenlignet med “sanne” tyngdefelt beregnet fra de sfærisk-harmoniske
koeffisienter i EGM2008. L-kurve-metoden for bestemmelse av regulariseringsparameteren ble
anvendt. Nødvendigheten av riktig bestemmelse av regulariseringsparameter, samt fordelene ved
riktig anvendelse av regularisering, ble demonstrert.

Global analyse med den radielle basisfunksjonen Shannon ved minste kvadraters metode utgjør
også et dårlig stilt problem som behøver regularisering. Tikhonov-regularisering med tilleggsin-
formasjon om de ukjente parametre ble anvendt også her, med lignende trekk som i tilfellene
sfærisk-harmonisk analyse.

Dersom ingen regularisering ble anvendt, var det likevel mulig å estimere matematisk korrekte
RBF-koeffisienter, i det at inngangssignalet lot seg rekonstruere fra disse. Innføring av regularis-
ering gjorde det mulig å estimere fysisk meningsfulle koeffisienter.
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Chapter 1

Introduction

Geodesy, geomatics and navigation are parts of the geosciences and engineering sciences
(Torge and Müller, 2012). Geodesy may further be divided into global geodesy, geodetic
surveys and plane surveying.

Global geodesy concerns the determination of the size and shape of the Earth. This
includes the determination of Earth’s external gravity field, since it to a large extent shapes
the surface of the Earth. Accurate and stable terrestrial and celestial reference systems
to relate geodetic measurements to are critical (especially when monitoring temporal
changes in the Earth system). Therefore, Earth’s orientation in space is also a part of
global geodesy.

The relation between global geodesy, geodetic surveys and plane surveying is close, since
plane surveys relate to control points established by geodetic surveys, which in turn are
linked to reference frames established by global geodesy (Torge and Müller, 2012). Also,
applied measurement techniques in global geodesy, geodetic surveying and plane surveying
have become more similar. For example, satellite geodesy (e.g., GNSS) is a classical
technique in global geodesy, but is now also commonly used in plane surveying.

Rummel et al. (2005) divide into three “pillars of geodesy”:

1. Geometry. Changes in Earth’s position with respect to the celestial reference system
as well as Earth’s surface geometry and its displacement.

2. Earth orientation. Variability of the orientation of Earth’s spin axis relative to the
stars and changes in Earth’s rotation speed.

3. Gravity field. Variations in space and time.

Narrowing down, Hofmann-Wellenhof and Moritz (2005) define physical geodesy as “the
science of determining the figure of the Earth and its gravity field”.

The initial awareness that dropped objects fall to the ground and subsequent realization
that Earth has a force of attraction, dates way back (Blakely, 1996). Galileo Galilei quan-
tified observations around 1590, and in 1687, Isaac Newton, in his Principia Mathematica,
proposed that gravitation is a universal property of masses, Earth included.
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The gravitational acceleration is a key observable in physical geodesy, and is one of two
constituents of observed gravity. The other constituent is the centrifugal force, owing to
Earth’s rotation. The direction of the gravity vector is the only way to physically define
“up” and “down”, rendering gravity indispensible for the definition of heights.

A common functional of the gravity field is the geoid. Mathematician, physicist, as-
tronomer and geodesist Carl Friedrich Gauss (1777-1855) defined the geoid as follows
(Torge and Müller, 2012):

“What we call surface of the Earth in the geometrical sense is nothing more than that
surface which intersects everywhere the direction of gravity at right angles, and part of
which coincides with the surface of the oceans.”

Horizontal in the physical sense, the geoid acts as reference surface for the determination
of physical heights, e.g., orthometric ones (heights above sea level), and the definition of
vertical reference frames (height systems).

1.1 Geophysical applications of the geoid

Being a functional of Earth’s gravity field, the geoid finds numerous possible applications
within geophysics, a few of which will be mentioned in the following.

The static mean geoid is commonly of geophysical interest, since it includes both direct
and indirect permanent effects of tidal forces (attraction of Sun and Moon), but neglects
the time-variable effects, cf. section 3.1.1.1. Such a geoid gives insight into Earth’s inner
density distribution, since the shape of the geoid is a result of mass anomalies in the Earth
interior, cf. Figure 1.1 (Geodesy for the layman, 1983).

However, from a mean geoid alone it is impossible to know if a feature is caused by a mass
anomaly in Earth’s crust, or a considerably larger mass anomaly deeper in the mantle
(Wahr, 2009). Geoid signals rapidly varying with time, on the other hand, can usually
be attributed to mass changes on Earth surface level. The dedicated satellite gravity
mission Gravity Recovery and Climate Experiment (GRACE) provides monthly gravity
field solutions. Thus, shorter-term cycles in the geoid signal can be analyzed. Such
signals most certainly come from a combination of atmosphere and hydrosphere (where
the hydrosphere includes oceans, liquid land water masses and frozen land water masses).
This is due to the fact that few solid Earth processes vary this rapidly. Consequently, if
the tidal forces are considered removed from the signal, solid Earth processes are unlikely
to show short-time cycles.

Part of the time-variable gravity field signal are also glacial isostatic adjustment (GIA)
effects. For example, when doing mass balance analysis of glaciers, GIA effects must be
identified and separated , since they interfere with the signal (Breili, 2013). GIA is the
rise of land masses that were depressed by the weight of the continental glaciers during
the last glacial period, and comprises geometrical deformations as well as local variations
in Earth’s gravity field.
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A further challenge of analyzing Earth’s time-variable gravity field is that such signals
are very weak compared with signals due to the relatively immobile major portion of
Earth’s mass (Wahr, 2009). However, looking at GRACE, geophysical processes causing
mass redistribution over 100 km scales are suitable targets for analysis. In particular, the
time-variable signals related to water storage on land can contribute to monitoring the
accelerated mass loss of the large ice sheets (continental glaciers) of the Antarctic and
Greenland, which in turn contributes to sea-level changes.

The mean geoid coincides with “undisturbed” sea level, thus being of particular interest
for oceanography (Torge and Müller, 2012). The ocean surface does not coincide with the
mean geoid, and the deviations are called sea surface topography (SST). Thus, in order
to study SST, an accurate geoid is needed.

As it happens, each of the three pillars of geodesy are important when monitoring sea level
(Church et al., 2010). Geometry plays an important role when observing sea-level change.
Further, melting polar ice sheets affect Earth’s rotation and orientation. In static equi-
librium, the sea surface coincides with the geoid, and consequently, mass redistribution
due to sea-level change also changes the shape of the geoid.

1.2 Thesis objective

Several methods for modeling the gravity field, or the geoid in particular, exist, based
on different (homogeneous or heterogeneous) gravity field quantities. In addition, gravity
observations are done on land (terrestrial), on sea and in the air as well as by satellite
techniques. Some gravity field modeling approaches are well-suited for global data, other
fit regional or local data better. Every method has benefits and downsides, so to compute
the best possible gravity field, ideal method combinations are sought.

For example, terrestrial gravity measurements contain the complete signal spectrum, but
are in the form of point values, and not globally available. Dedicated satellite gravity
missions are well-suited for determining the global geoid, and model the long wavelength
part of the signal spectrum particularly well. A combination of these observations is
therefore of interest when computing a local or regional geoid.

Among the classical methods for geoid computation are least-squares collocation and
Stokes integration with various kernel modifications. Currently, there is an increased
interest in radial basis functions for more efficient gravity field modeling.

This thesis investigates and compares classical and new methods for geoid computation,
theoretically and numerically with synthetic data, with focus on local to regional appli-
cations.

Inverse problems, such as gravity field analysis, are often ill-conditioned. This is no-
tably the case with radial basis function analysis by least-squares adjustment. There-
fore, a further objective of this thesis is to look into regularization techniques for solving
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ill-conditioned problems, and apply regularization in cases of both spherical harmonic
analysis and radial basis function analysis.

1.3 Thesis summary

• This first chapter is an introduction to geodesy and physical geodesy in particular,
mentioning only a few of the manifold geophysical applications of the geoid.

• Chapter 2 covers the mathematical fundamentals of Earth’s gravity field and goes
through the two classical approaches to solve the geodetic boundary problem and
their important conceptual differences. Also, an introduction to applied statistics
in physical geodesy is given.

• Chapter 3 formulates the different gravity field functional models and compares
them theoretically. Treated models are the classical integral formulae, least-squares
collocation and radial basis functions.

• Chapter 4 covers important reductions and corrections, which must be considered
when a geoid is to be determined in practice. The chapter also comprises different
practical approaches to the actual numerical evaluation of the gravity field models.

• Chapter 5 illuminates the theory of inverse and ill-posed problems, as geodetic
problems often have this character — as well as practical numerical solutions to
such problems, accompanied by examples. This chapter also includes numerical
comparisons of the different gravity field modeling approaches with synthetic data,
as a supplement to the theoretical comparisons in chapter 3. Results are commented
and discussed.

• Chapter 6 closes the thesis with some final summarizing remarks with regards to
the results in chapter 5 as well as some comments on recommendations for future
work.
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Chapter 2

Fundamentals of Earth’s gravity field

This chapter is an elaboration of mathematical terms and concepts of Earth’s gravity field
leading to the geodetic boundary value problem for geoid determination.

2.1 Gravitational potential and gravity

Newton’s law of universal gravitation can be written as follows:

F = G
mm0

r2
(2.1)

where F is a mutual force between a particle of mass m and a particle of mass m0,
separated by a distance r (Blakely, 1996). G is Newton’s gravitational constant, G =
6.6742 · 10−11 m3kg−1s−2.

Considering a unit mass m0 at point P , then dividing equation (2.1) with m0 yields the
gravitational attraction exerted by m at P , a distance r from m:

F = G
m

r2
(2.2)

The gravitational attraction of the Earth is a vector force field, which may be found from
the scalar field:

V = G
m

r
(2.3)

where V is a potential of F , known as gravitational potential, the work done by the field
on the unit mass (Blakely, 1996).

The components of the gravitational field can be written as (in cartesian coordinates):

F =

[
∂V

∂x
,
∂V

∂y
,
∂V

∂z

]
= grad(V ) = ∇V (2.4)

The gravitational field is conservative, since the energy at hand in the field is conserved,
i.e., no energy is lost or gained when a body is moving from a point P in the field and
back to P again.
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If we consider point masses continuously distributed over a volume v with density ρ = dm
dv

,
where dm is a mass element and dv a volume element, then the potential may be written
as an integral:

V = G

∫∫∫
v

dm

r
= G

∫∫∫
v

ρ

r
dv (2.5)

where r is the distance between the mass element dm = ρ · dv and the attracted point
P .

The gravitational potential satisfies Poisson’s equation:

∆V =

[
∂2V

∂x2
,
∂2V

∂y2
,
∂2V

∂z2

]
= −4πGρ (2.6)

where the Laplacian ∆ of a scalar field is the divergence of the field’s gradient, i.e.,
∆V = ∇2V = div(∇V ) = div(F).

In empty space, ρ = 0 and the gravitational potential obeys a simpler differential equa-
tion:

∆V = 0 (2.7)

This was shown by French mathematician and astronomer Pierre-Simon Laplace in 1782,
and therefore equation (2.7) is called Laplace’s equation (Blakely, 1996).

Solutions of Laplace’s equation are harmonic functions, where the simplest example of
such a function is the reciprocal distance 1/r. If the gravitational potential as given in
equation (2.5) is inserted into Laplace’s equation we get:

∆V = G∆

∫∫∫
v

ρ

r
dv

 = G

∫∫∫
v

ρ∆

(
1

r

)
dv = 0 (2.8)

The centrifugal force is a result of Earth’s rotation, and acts on all bodies of mass which
rotate with the Earth. The centrifugal force f may also be found from a potential:

f = ∇Φ =

[
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

]
(2.9)

where, expressed in terms of a constant angular velocity ω about Earth’s spin axis:

Φ =
1

2
ω2(x2 + y2) (2.10)

Gravity is the force composed of both the gravitational force and the centrifugal force,
and consequently, the gravity potential may be written as:

W = V + Φ = G

∫∫∫
v

ρ

r
dv +

1

2
ω2(x2 + y2) (2.11)
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Figure 2.1: Potential, equipotential surfaces and gravity

The gradient of W is the gravity acceleration (see Figure 2.1):

g = ∇W =

[
∂W

∂x
,
∂W

∂y
,
∂W

∂z

]
(2.12)

The magnitude g, is generally known as gravity, and measured in Gal, where 1 Gal =
0.01 ms−2.

A surface W (x, y, z) = const. on which the gravity potential remains constant, is termed
an equipotential, level or geopotential surface. This property makes an equipotential sur-
face a good vertical reference surface, i.e., a reference for heights. The equipotential surface
which corresponds to the mean ocean surface level, proposed by Gauss as the “mathemat-
ical figure of Earth”, is what has become known as the geoid (Hofmann-Wellenhof and
Moritz, 2005). It is defined by:

W = W0 = const. (2.13)

The gravity vector as expressed in equation (2.12) at point P is normal to the equipotential
surface through the same point, cf. Figure 2.1. The lines of force, plumb lines or verticals
that intersect every equipotential surface at right angles, are slightly curved. The gravity
vector is tangent to the plumb line at the same point. The orthometric height, or height
above sea level, H, is measured along the plumb line, starting on the geoid (Hofmann-
Wellenhof and Moritz, 2005):

dW = −g dH (2.14)



10 Chapter 2 Fundamentals of Earth’s gravity field

Λ Φ

0

x

y

z

Greenwich

merid
ian

plane

Equatorial
plane

Local astronomic 

meridian plane

P

Plumb line

H g
sea level

W
=W

0

W
=W

P

Earth's surface

Direction of the 

plumb line at P

Figure 2.2: Astronomical latitude Φ and longitude Λ, orthometric height H and equipotential
surfaces W = const.

In equation (2.14), a clear relation between height H and potential W is observed.

“Natural coordinates” Φ,Λ,W may be defined in the gravity field. Astronomical latitude
Φ and longitude Λ describe the direction of the vertical in a point P and is observed
through astronomical methods, cf. Figure 2.2. The gravity potential W defines P in a
system of equipotential surfaces W = const. Thus, the gravity acceleration may also be
written as follows:

g = ∇W = −g

 cos Φ cos Λ
cos Φ sin Λ

sin Φ

 (2.15)

Earth’s density distribution, i.e., ρ, is not well known, and therefore equation (2.5) can-
not be evaluated directly. If we consider the Earth’s exterior (empty space), however,
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Laplace’s equation, cf. equation (2.8), may be solved and V expanded into a convergent
spherical harmonic series (in spherical coordinates) (Torge and Müller, 2012):

V (r, θ, λ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

P̄nm(cos θ)
[
C̄nm cosmλ+ S̄nm sinmλ

]
(2.16)

where P̄nm(cos θ) are the fully normalized associated Legendre functions of degree n and
order m and C̄nm and S̄nm the fully normalized and dimensionless potential coefficients,
containing the amplitudes of different spectral parts. GM is the product of Newton’s
gravitational constant and Earth’s mass, R a mean Earth radius and r the distance from
Earth’s center of mass to the computation point P . θ is the colatitude, θ = 90◦ − ϕ
(Hofmann-Wellenhof and Moritz, 2005).

Equation (2.16) is known as a spectral decomposition of the gravity field, correspond-
ing to a Fourier expansion of V (r, θ, λ) with basis functions P̄nm(cos θ) cosmλ and
P̄nm(cos θ) sinmλ. Determination of V (r, θ, λ) from the amplitudes of the gravity field
signal, i.e., the coefficients C̄nm and S̄nm is known as spherical harmonic synthesis.
Theoretically, V (r, θ, λ) is a continuous function, but the number of potential coefficients
is finite, and so the series in equation (2.16) is cropped at some maximal degree Nmax

(Gerlach, 2003).

The potential coefficient C̄20 = −J2 is termed the dynamical form factor of the Earth
and describes its polar flattening. It is the largest deviation from a spherical Earth, three
orders of magnitude larger than the values of the successive coefficients. Furthermore,
it follows that a similar spherical harmonic expansion of W is obtained by adding the
centrifugal potential Φ to equation (2.16) (Torge and Müller, 2012).

As a consequence of the above, the determination of Earth’s gravity field is the main
problem of physical geodesy. It will ultimately become apparent that in order to determine
the gravity potential function, a boundary value problem has to be formulated and solved,
i.e., to determine a harmonic function outside a surface by the function’s value on the
surface (Gerlach, 2003).

However, we need to simplify Earth’s gravity field so that it becomes mathematically
feasible.

2.2 The geodetic Earth model and normal gravity

The Earth is slightly flattened at the poles, yielding a discrepancy between polar and
equatorial radius of approximately 21 km. An even better approximation of the Earth
than a sphere would therefore be an ellipsoid, cf. Figure 2.3.

A point on the surface of the ellipsoid may be described by the geodetic coordinates ϕ and
λ, cf. Figure 2.4. These coordinates may be extended to a spatial coordinate system by
introducing a height h above the ellipsoid, and so we have ellipsoidal geodetic coordinates
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a

b

R=a

Figure 2.3: Relationship between a sphere with radius R = a and an ellipsoid with semi-major
axis a and semi-minor axis b. The flattening of the ellipsoid, f = a−b

a

(ϕ, λ, h) in contrast to the already introduced “natural coordinates” (Φ,Λ,W ) (Torge and
Müller, 2012).

The connection between geodetic and natural coordinates, the first independent of Earth’s
gravity field and the latter dependent on it, is shown in Figure 2.5. The difference between
the direction of the vertical (plumb line) and the direction of the ellipsoid normal is the
deflection of the vertical, ε.

The geoid has been introduced as an equipotential surface of the actual gravity field. An
approximation of the actual gravity field would be to let the ellipsoid have the same mass
and rotational velocity as the actual Earth, its surface being an equipotential surface of
a normal (or reference) gravity field. Such an Earth model is also known as a geodetic
reference system, cf. Table 2.1.

Considering both constituents of the gravity potential W (gravitational and centrifugal
potential), the normal potential U may be defined by four parameters: the product of
Newton’s gravitational constant and the mass of the ellipsoid GM , angular velocity ω and
the geometrical parameters a and f . In this way, the external gravity field of the normal
ellipsoid can be determined unambiguously, and closed formulae may be derived (Torge
and Müller, 2012).

The spherical harmonic expansion of the normal gravity field may be expressed as:

U(r, θ) =
GM

R

∞∑
n=0

(
R

r

)n+1

C̄n0P̄n0(cos θ) +
1

2
ω2r2(sin θ)2 (2.17)

From equation (2.17), several important observations are made, due to our choice of
mathematical surface. The normal gravity field is rotationally symmetric, and is therefore
independent of λ (all longitudes are equivalent). Consequently, all terms with m > 0
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vanish and only zonal terms (m = 0) remain. Furthermore, the normal gravity field
has equatorial symmetry, so only even degree zonal terms, i.e., n = 0, 2, 4, 6, . . ., exist
(Gerlach, 2009).

As mentioned earlier, the main contribution to the slightly flattened, ellipsoidal form
of the Earth comes from the zonal dynamic form factor coefficient J2. In light of this,
the flattening parameter (or “geometric form factor”) f of a geodetic reference system is
often interchanged with the dynamic form factor. Some contribution comes also from the
higher degree coefficients, but because of the smoothness of the normal gravity field the
series expansion in equation (2.17) may be truncated at a low degree, i.e., n > 10 degree
coefficients may be neglected (Gerlach, 2003).

GM (109 m3 s−2) a (m) f J2 (10−6) ω (10−5 rad3 s−1)
GRS67 398603 6378160 1/298.247 7.2921151467
WGS84 398600.4418 6378137 1/298.257223563 1081.874 7.292115167
GRS80 398600.5 6378137 1/298.257222101 1082.63 7.292115

Table 2.1: Geodetic reference systems

In accordance with equation (2.12), the normal gravity acceleration is formulated as fol-
lows:

γ = ∇U =

[
∂U

∂x
,
∂U

∂y
,
∂U

∂z

]
(2.18)

Since the pole is closer to the Earth’s center of mass, γb at the poles will be larger than
γa at the equator. A gravity flattening may be expressed as:

f ? =
γb − γa
γa

(2.19)

Formulae for normal gravity at the poles and at the equator may be found in, e.g.,
(Hofmann-Wellenhof and Moritz, 2005).

A symmetrical expression for the normal gravity on the ellipsoid may be derived, known
as Somigliana’s formula:

γ0 =
aγa(cosϕ)2 + bγb(sinϕ)2√
a2(cosϕ)2 + b2(sinϕ)2

(2.20)

Furthermore, normal gravity at a relatively small ellipsoidal height h may be expressed
as:

γh = γ0

[
1− 2

a

(
1 + f +

ω2a

γa
− 2f(sinϕ)2

)
h+

3

a2
h2

]
(2.21)

An approximation to Clairaut’s theorem reads:

f + f ? =
5

2

ω2a

γa
(2.22)
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Equation (2.22) is interesting, since it shows that the geometrical flattening f may be
found from the gravity flattening f ?. In other words, the Earth’s flattening may be found
through gravimetry (Hofmann-Wellenhof and Moritz, 2005).

Although now having described a mathematical model of Earth’s gravity field which is
easier to compute, we still have the general challenge of non-linearity when wanting to
determine the gravity fieldW from observations, in addition to ∆W not being zero because
of the centrifugal force. If, however, the remaining deviation between the actual gravity
field and the normal gravity field of a level ellipsoid is considered, it will become evident
that it is so small that it may be considered linear (Hofmann-Wellenhof and Moritz,
2005).

2.3 The linear gravity field

The anomalous, perturbing or disturbing potential is the small difference between the
actual geopotential (geoid W = W0) and the normal gravity potential (reference ellipsoid
U = U0 = W0 of same potential), i.e.:

T (x, y, z) = W (x, y, z)− U(x, y, z) (2.23)

Since the centrifugal part of W is well known we may assume that it is equal to the
centrifugal part of U , and the disturbing potential remains a difference in gravitation
between Earth and ellipsoid. It consequently is a harmonic function outside the masses,
and there it fulfills Laplace’s equation, ∆T = 0 (Torge and Müller, 2012).

Subtracting equation (2.17) from W (= (2.16) + Φ), the spherical harmonic expansion of
T is obtained:

T (r, θ, λ) =
GM

R

∞∑
n=2

(
R

r

)n+1 n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ ∆S̄nm sinmλ

]
(2.24)

where

∆C̄nm =

{
C̄nm − C̄normal potential

nm m = 0 ∧ n ∈ {2, 4, 6, 8, . . . , Nmax}
C̄nm else.

(2.25)

∆S̄nm = S̄nm (2.26)

The summation in equation (2.24) begins at n = 2. The zero-degree term
(
T0 = δGM

r

)
vanishes if the mass M and equatorial radius R of the ellipsoid is equal to the mass and
equatorial radius of Earth. This is often assumed, and when defining a geodetic reference
system one tries to keep this difference small. If the center of Earth’s masses coincides
with the origin of the ellipsoid, the first-degree terms vanish (Gerlach, 2003).



16 Chapter 2 Fundamentals of Earth’s gravity field

Geoid

Ellipsoid

W=W0

U=W0

γ

gP

Q

P

Q

N

Ellipsoid

Plumb line normal

Figure 2.6: Geoid, gravity g, reference ellipsoid and normal gravity γ

If the gravity vector g at point P is considered, as is the normal gravity vector γ at point
Q, their difference in magnitude is the gravity anomaly, cf. Figure 2.6:

∆g = gP − γQ (2.27)

Their difference in direction is the already mentioned deflection of the vertical with a
north-south component ξ and an east-west component η, i.e.:

ξ = Φ− ϕ (2.28)

η = (Λ− λ) cosϕ (2.29)

If the vectors g and γ are considered at the same point P , their difference in magnitude
is the gravity disturbance, γP at some ellipsoidal height h may be determined by global
navigation satellite systems (GNSS):

δg = gP − γP (2.30)

The deflection of the vertical is virtually the same in the gravity disturbance case
(Hofmann-Wellenhof and Moritz, 2005)

Also apparent in Figure 2.6 is the distance from the reference ellipsoid to the geoid, N ,
which is the geoid height or geoid undulation. Bruns’s formula relates the geoid height to
the disturbing potential:

N =
T

γ
(2.31)
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In other words, equation (2.31) gives the distance with which the disturbing potential
T displaces the surface of the geoid (Boener, 1994). In accordance with Figure 2.5, the
following connection between geoid height N , orthometric height H and ellipsoidal height
h may be formulated, neglecting the curvature of the plumb line (Torge and Müller,
2012):

H = h−N (2.32)

GNSS observations yield ellipsoidal height, and in combination with a geoid (i.e., N)
heights above sea level may be derived.

It is further assumed that the deflection of the vertical is zero. In addition, a spherical
approximation of the linear quantities T , N , ∆g and δg is made, justified by the fact that
they originate from the small deviation between an ellipsoid and a sphere in the first place
and that the flattening is relatively small (0.3 %). The chosen radius for this sphere is
defined by equating volume of the reference ellipsoid with the volume of the sphere, e.g.,
RWGS84 =

3
√
a2b = 6371 km. A spherically approximated equation relating measurable

gravity to the gravity potential is obtained:

∆g = −∂T
∂r
− 2

R
T (2.33)

Equation (2.33) is known as the fundamental equation of physical geodesy, and has the
form of a differential equation. ∆g, however, is not measurable in space, but on the surface
of the Earth. ∆g may be computed on the geoid after removing or shifting topographic
masses inside the Earth interior, cf. section 4.1. If we assume that there are no masses
outside the geoid, the disturbing potential T fulfills Laplace’s partial differential equation
(∆T = 0), and equation (2.33) may be applied as a boundary condition for solving it.

2.4 Boundary value problems

In potential theory, when solving an exterior boundary value problem (BVP), one tries
to determine a function in outer space from the function’s value on a bounding surface
(the boundary condition) and its behavior in space (a partial differential equation).

In the beginning of this chapter, the problem of determining Earth’s gravity field without
knowing the density ρ was observed. If we want to solve the BVP for Earth’s interior,
Poisson’s equation (2.6) is applied, and density knowledge is assumed. The exterior BVP
is solved with Laplace’s equation (2.7), and three different boundary conditions have
classically been used, cf. Table 2.2.

Dirichlet BVP Neumann BVP Third BVP
V ∂V

∂n
V + ∂V

∂n

Table 2.2: Boundary conditions for different boundary value problems
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When the boundary functions are geopotential values, it is a Dirichlet BVP, if they are
gravity disturbances it is a Neumann BVP. The fundamental equation of physical geodesy
(2.33) is immediately recognized as a boundary condition for the third BVP, i.e., it is a
linear combination of T and the partial derivative of T with respect to a surface normal.
It has historically been of substantial importance, since it relates observable gravity to
the potential, and is therefore termed the geodetic boundary value problem.

Stokes’s and Molodensky’s geodetic boundary value problems

As mentioned earlier, to determine Earth’s surface and external gravity field from obser-
vations on (or close to) the surface of the Earth, the geodetic boundary value problem
must be solved. The classical Stokes approach (published by G. G. Stokes in 1849) uses
the geoid as surface, while the Molodensky approach (published by M. S. Molodensky in
1945) uses the physical surface of the Earth, cf. Table 2.3.

Field equation Boundary condition

Stokes’s theory ∆T = 0, R3 − Ω− geoid ∆g = −∂T
∂r
− 2

r
T

∣∣∣∣
Ω

Molodensky’s theory ∆T = 0, R3 − Σ− telluroid ∆g = −∂T
∂r
− 2

r
T

∣∣∣∣
Σ

Table 2.3: Stokes’s and simple Molodensky’s boundary value problems

The main conceptual difference between the Stokes approach and the Molodensky ap-
proach is the choice of boundary surface. If the geoid serves as boundary surface, we will
have masses outside the geoid (i.e., topography, mass of atmosphere and sea surface to-
pography), and not empty space at all (ρ 6= 0!), which is the crucial criterion for fulfilling
Laplace’s equation, cf. section 3.2.1.

It is then quite tempting to use the physical Earth surface as boundary instead of the
geoid, so that we have no topography on the outside of the surface (albeit the atmospheric
mass). Such a choice of surface also makes sense since all gravity observations are made
on the surface of the Earth. A critical consequence of such a choice is that Earth’s surface
is no equipotential surface of the gravity field, and the gravity vector does not correspond
to the surface normal. Molodensky’s problem therefore involves oblique derivatives of T
(Gerlach, 2009).

Molodensky’s problem as it is shown in Table 2.3 is thus a simplified one.

Earth’s surface is approximated by the telluroid Σ in Molodensky’s world. The gravity
potential W at point P on Earth’s surface S is approximated by the normal potential
U at point Q on Σ, cf. Figure 2.7. Consequently, the gravity anomaly ∆g becomes the
difference between gravity at Earth’s surface and normal gravity at a point Q on the
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Figure 2.7: Geometry of Stokes’s and Molodensky’s BVP

telluroid. The separation between points P and Q, i.e., between Σ and S, is known as
the height anomaly ζ. When ζ is plotted above the reference ellipsoid, the quasigeoid is
obtained. The quasigeoid differs from the geoid by maximum 1 m in mountainous areas
and practically coincides with the geoid over the oceans, but is not an equipotential surface
of the gravity field (Torge and Müller, 2012).

Analogous to the definition of orthometric heights (or height above sea level)H in equation
(2.14), normal heights H? are the distance from Earth’s surface along the ellipsoidal
normal, starting on the quasigeoid, i.e.:

dW = −γ dH? (2.34)

Moreover, in accordance with equation (2.32), the following holds:

H? = h− ζ (2.35)

A further clarification of the gravity anomaly in correspondence with Figure 2.7 is consid-
ered appropriate. In the case of Stokes it is assumed that gravity is measured on the geoid,
and we have to reduce the surface value down to the geoid by an approximated so-called
free-air gradient of normal gravity ∂γ/∂h ≈ 0.3086mGal (treated in section 4.1):

∆g =

(
gP −

∂g

∂h
H

)
− γQ0 ≈

gP0︷ ︸︸ ︷(
gP −

∂γ

∂h
H

)
−γQ0 (2.36)
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In the case of Molodensky, it is assumed that gravity is measured on Earth’s surface, and
γQ is computed from γQ0 on the ellipsoid:

∆g = gP −

γQ︷ ︸︸ ︷(
γQ0 +

∂γ

∂h
H?

)
(2.37)

In other words, in case of Stokes, gravity gP is lowered to the geoid gP0 , in case of
Molodensky, normal gravity is upward continued to the telluroid at normal height H?

above the ellipsoid. As gravity gP refers to Earth’s surface and normal gravity γQ refers
to the telluroid, the (free-air) gravity anomaly in equation (2.37) refers to the ground.

Bruns’s formula expressed in Stokes’s theory in equation (2.31) also holds in the Molo-
densky case, the only difference being the location of the computation point (Gerlach,
2009)!:

ζ =
T

γQ
(2.38)

The quasigeoid is quite similar to the geoid, but the quasigeoid is rougher and not an
equipotential surface. To interchange between geoid and quasigeoid, the separation be-
tween them is of interest. It can be shown that the following holds:

N − ζ =
ḡ − γ̄
γ̄

H (2.39)

where γ̄ is the mean value of normal gravity along the ellipsoid normal, and ḡ a mean
value of gravity along the ellipsoid normal (obtained through a Prey reduction scheme,
cf. section 4.1). H is the orthometric height. ḡ − γ̄ = ∆gB, or the Bouguer anomaly
(approximate, because of ḡ’s density hypothesis). The Bouguer anomaly is a relatively
small number, so we may substitute γ̄ with normal gravity at the surface of the reference
ellipsoid, γ0:

N − ζ ≈ ∆gB
γ0

H (2.40)

2.5 Statistics of the gravity field

A statistical description of Earth’s gravity field is very useful, not only since the intro-
duction of statistics gives an idea of the accuracy or precision (or general quality) of
our measurements and applied methods, but also since it allows the use of statistical ap-
proximation methods such as least-squares prediction, where assumptions regarding the
statistical behavior of our measurements are made in order to predict values at points
where no measured value exists. This section relies partly on a section on statistical
properties of the gravity field found in (Ophaug, 2013).
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Considered is a stochastic signal, whose values are randomly spread around the average (or
mean) value, which is zero. This means that we are not in position to make any assump-
tions regarding the signal value at a specific point. Moreover, the statistical properties
of a stochastic process should be derived from an infinite number of process realizations.
Since only one realization of the gravity field is available, the hypothesis of ergodicity is
required. It states that statistical quantities may also be calculated from average values
over just one gravity field realization (Torge and Müller, 2012).

As fundamental gravity field parameter, the gravity anomaly has been chosen for its
high-resolution availability over both continents and oceans. The average of the gravity
anomaly signal, formed over the whole Earth, is zero, i.e.:

M{∆g} =
1

4π

∫∫
σ

∆gdσ = 0 (2.41)

where M{} is the average over the whole Earth, corresponding to the integral over the
unit sphere σ, divided by its area. However, the integral is zero only if there is no zero-
degree term of the spherical harmonic expansion of ∆g, cf. section 2.3 (Torge and Müller,
2012).

The global gravity anomaly signal variance, is not zero, but formulated similar to equation
(2.41):

M{∆g2} =
1

4π

∫∫
σ

∆g2dσ (2.42)

The square root of equation (2.42) yields the root mean square anomaly, usually in the
range RMS{∆g} = ±35 mGal (Hofmann-Wellenhof and Moritz, 2005).

The statistical quantity termed covariance C describes the correlation between two point
signal values at different positions in the domain, i.e., it is the average product ∆g∆g′ at
points P and P ′ separated by a constant distance s. It thus reflects the average signal
behavior, or the tendency of ∆g and ∆g′ to have the same size and sign. The covariance
function may depend only on the distance s between the two points if the conditions of
homogeneity (the covariance is independent of the absolute position of the point pair in
the domain) and isotropy (the covariance is independent of the connection direction of
the point pair) are met (Gerlach, 2003):

C(s) =M{∆g∆g′} (2.43)

If the points are situated far apart from each other, their gravity anomaly values are
considered uncorrelated, since the gravity anomaly has a local character in general. If the
gravity anomalies are uncorrelated (i.e., independent of each other), their covariance is
zero. If the distance s = 0 we obtain:
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C(s = 0) = C0 =M{∆g2} (2.44)

which is the variance, cf. equation (2.42). In equation (2.44) we observe that as the
distance s approaches zero, the gravity anomalies become increasingly equal, and the
correlation is strong. As the distance increases, correlation decreases and the gravity
anomalies become increasingly independent of each other.

The determination of an exact global covariance function is not an easy task since, in
theory, gravity anomalies at all points on Earth’s surface must be known. From section 3.1
is clear that the gravity anomaly may be expressed as a spherical harmonic series. The
distance s is then converted into the spherical distance ψ i.e., ψ = s/R where R is
the mean Earth radius. If the spherical harmonic expansion of the gravity anomaly is
inserted into equation (2.42) and the orthogonality relations are considered, the following
expression holds:

C∆g
0 =

∞∑
n=2

(λupw
n (n− 1))2

n∑
m=0

(
∆C̄2

nm + S̄2
nm

)
=
∞∑
n=2

c∆g
n (2.45)

Here, c∆g
n are gravity anomaly signal degree variances, cf. section 3.1. The individual

terms c∆g
n of the series represent the contribution of each degree to the total variance.

The signal degree variance thus gives information on the signal content of a gravity field
functional. Degree variances may be calculated for arbitrary functionals of the gravity
field, e.g., the dimensionless signal degree variance cn is linked to gravity anomaly signal
degree variance in the following way:

c∆g
n = γ2

0(n− 1)2cn (2.46)

where γ0 is normal gravity on the surface of the reference ellipsoid.

The covariance function between two signals separated by a spherical distance ψ has the
following spherical harmonic expansion:

C(ψ) =
∞∑
n=2

cnPn(cosψ) (2.47)

Equation (2.47) is as we know point-based. The covariance function of gravity anomaly
block mean values ∆ḡ needs to be smoothed with an averaging operator B(ψ), which
is used to relate spherical harmonics to mean values of circular areas, i.e., a spherical
cap with radius ψ0. The averaging operator itself has the following spherical harmonic
expansion:

B(ψ) =
∞∑
n=0

βn
2n+ 1

4π
Pn(cosψ) (2.48)
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The averaging coefficients, βn(ψ0) are the Pellinen-coefficients. The radius ψ0 (not to be
confused with the correlation length ψ0) is chosen such that the area of the spherical cap
equals the area of the usual rectangular blocks for which we have mean gravity anomalies.
Recursion formulae exist for the computation of βn(ψ0) (Gerlach, 2003).

Thus, the covariance function between gravity anomaly mean block values in spherical
harmonics yields:

C̄(ψ) =
∞∑
n=2

β2
n(ψ0)c∆g

n Pn(cosψ) (2.49)

Several models for degree variances exist, since the typical structure of degree variances is
that it has high values for the lowest degrees and drops with increasing degree, cf. Figure
2.8. Kaula’s model fits well to the dimensionless degree variances (Kaula, 1966):

cn = 0.5
1.6 · 10−10

n3
(2.50)

Another well-established model is Tscherning/Rapp’s model for gravity anomaly degree
variances found in (Tscherning and Rapp, 1974):

cn = sn+2 A(n− 1)

(n− 2)(n+B)
, n ≥ 3 (2.51)

where A = 425.28 mGal2, B = 24, s = 0.999617 and cn=2 = 7.5 mGal2.

Also worth mentioning is Flury ’s model for gravity anomaly degree variances (Flury,
2006). This model fits degrees n ≥ 400 particularly well, and reads (in mGal2):

cn =
6.8 · 107

(n+ 0.5)3.1
, n ≥ 400 (2.52)

From the above it is clear that degree variances may be computed from the potential
coefficients of a GGM, and these coefficients also have uncertainties. The degree variances
computed from the errors of the coefficients are termed error degree variances. Since the
error degree variances are part of the chosen GGM, they represent a commission error.
Further, the signal content above the maximum degree of the GGM (a “neglected” error)
represents an ommission error, calculable from a signal degree variance model such as
Tscherning/Rapp (Gerlach, 2009).

If, for a chosen GGM, the signal degree variances are plotted together with the error
degree variances, their crossing point is where the signal-to-noise ratio is one, and it thus
defines the resolution of the GGM. Above the corresponding degree, the noise supersedes
the signal.

In (Knudsen, 1987), a definition of the local covariance function is reviewed. It reads:
“A local covariance function is a special case of a global covariance function where the
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Figure 2.8: Signal degree variances cn computed from the potential coefficients of the satellite-
only GGM GOCO03s, and the models Kaula and Tscherning/Rapp

information content of wavelengths longer than the extent of the local area has been
removed, and the information outside, but nearby, the area is assumed to vary in a
manner similar to the information within the area.”

Topographic reductions (cf. section 4.1) are often applied to smooth the gravity field.
A smooth field simplifies prediction and makes the covariance function less dependent
on the spatial distribution of the observations. The topography may also be seen as a
deterministic part of the observation signal which should be removed before estimating
the covariance function.

Still considering spherical harmonics, the low-frequency part of the global covariance
function may be removed in the following way (Nmax is the maximum degree of the
chosen GGM):

CL(ψ) = C̄(ψ)−
Nmax∑
n=2

β2
n(ψ0)c∆g

n Pn(cosψ) (2.53)

If we consider more local applications, a planar local covariance function CL(s) may
suffice. The local covariance function needs to be fitted to empirical values. To estimate
a local empirical covariance function, all signal observation pairs xi and yi separated by
a distance s are considered:
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CL(s) =
1

n

∑
i

xi · yi (2.54)

Observations are usually free-air or rather Bouguer anomalies, cf. section 4.1. Since one
often considers a limited area, themean value will not necessarily be zero (the observations
do not present a stochastic behavior), long-wavelength trends may occur and the free-air
anomaly correlation with height is accentuated. Assumptions of homogeneity and isotropy
are consequently erroneous, and equation (2.54) not applicable for covariance function
determination.

One way to attack this problem is to expand the deterministic model. By doing this, the
analytical function describes increasingly fine signal structures and the residuals behave
increasingly stochastic. If the mean value of the observations considered is not zero, they
have to be centered. When centering the observations one has to take special care that
the mean value is representative for the domain. An example underlining the importance
of a representative mean value may be the calculation of an arithmetic mean for an area.
A part of the area considered may present dense points that bias the mean value to the
values of those points. A covariance function estimated on such a basis will consequently
be a biased one.

A trend could present itself as a tilt of the observations in some geographical direction
(the observations represent a tilted plane) due to long-wavelength effects. A low-order
trend surface may be determined from this, and the observations reduced for it. Trend
reduction is also crucial for ensuring the stochasticity of the signal and in principle,
any trend function is applicable as long as the observations are reduced by the same
trend before being used for prediction. The remove-restore technique (also described in
section 4.2.1) is applied. Firstly, the observations are reduced by a trend function, the
same trend function that was used for deriving the covariance function. Secondly, new
point values are predicted and, thirdly, the trend reduction is reverted with respect to the
trend function for the new point values.

Subsequently, the discrete values of the local empirical covariance function is fitted to a
functional model, in order to derive covariances for arbitrary distances s. Possible models
are, e.g., the exponential model:

CL(s) = C0 · e
− ln 2

(
s
ψ0

)2

(2.55)

or the Hirvonen model:

CL(s) = C0 ·

(
1 +

(
2

1
J − 1

)( s

ψ0

)2
)−J

(2.56)

where local covariance function parameters C0, ψ0 and J are variance, correlation length
and the curvature parameters respectively.
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Figure 2.9: Local covariance function parameters variance C0, correlation length C(ψ0) and
curvature J

The local covariance function at “full width at half maximum”, i.e., at correlation length
ψ0, is formulated as follows:

C(ψ0) =
1

2
C0 (2.57)

where ψ0 is chosen as the spherical distance for which C(ψ0) = 0.5C0. The variance is a
measure of the size of the signal values, the correlation length a measure of the roughness
of the signal (Gerlach, 2003).

The curvature parameter J is related to the curvature κ of the covariance curve at s = 0,
J = κ(ψ0)2/C0. The three parameters C0, C(ψ0) and J characterize the local covariance
function, cf. Figure 2.9 (Moritz, 1980).

The empirical covariance function can be fitted graphically by testing the different covari-
ance function parameters and seeing which choice of parameters best fits the empirical
values.
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Chapter 3

Gravity field modeling approaches

The different mathematical models for representing the gravity field, hereunder geoid
determination, have different application depending on whether the global or a regional
gravity field is sought.

When the global gravity field, or functionals of it, like the geoidN , is sought, the most used
model is spherical harmonics, introduced in section 2.1 and typified for the gravitational
potential in equation (2.16). A general introduction is given in section 3.1. Spherical
harmonic coefficients are not dependent on position at all, and have perfect frequency
localization. Consequently, spherical harmonics show no spatial localization, i.e., they
have global support and show values significantly different from zero at almost every
position on the sphere (Eicker, 2008).

Whether the regional or the local gravity field is considered, and a regional or local geoid is
to be computed, the same computation scheme applies for both and is explained in detail
in section 4.2. Quite basically, the concept is to remove the low-frequency gravity field
information from a global geopotential model as well as the high-frequency information
from a digital terrain model from measured gravity in a regional or local area and compute
the residual part of the gravity field by e.g.:

• The integral formula solutions to the geodetic boundary value problem, cf. section
3.2

• Least-squares collocation, cf. section 3.3.2

• Radial basis functions, cf. section 3.4

It then becomes clear that the difference between a regional or a local geoid is the ex-
tent, or resolution. A compromise based on the application is made, since smaller areas
(increasingly local) model higher frequencies better (Boener, 1994).

A regional geoid may represent geographical region, and its application may be to derive
orthometric heights from ellipsoidal heights determined from GNSS by equation (2.32),
thus substituting relatively time-consuming spirit leveling. Global, regional as well as
local geoids may aid geophysical and oceanographic research, cf. section 1.1.
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3.1 Spherical harmonics

A more general mathematical view of spherical harmonics follows, to make the transition
to other kinds of base functions more feasible, cf. section 3.4. Any function f(θ, λ) ∈ L2(σ)
(where L2 is a space of square integrable functions) on a unit sphere σ can be developed
into a series of spherical harmonics, i.e., a sum of all solutions to Laplace’s equation:

f(θ, λ) =
∞∑
n=0

n∑
m=−n

FnmYnm(θ, λ) (3.1)

Equation (3.1) is known as spherical harmonic synthesis. Fnm are the spherical harmonic
coefficients (also known as Stokes coefficients), a more compact way of expressing the
spherical Fourier coefficients. E.g., if the considered gravity signal is the potential V ,
Stokes coefficients are:

Fnm =
√

4π

{
C̄nm for m = 0, 1, 2, . . . , n

S̄n|m| for m = −n, . . . ,−2,−1
(3.2)

Laplace’s surface spherical harmonics are defined as follows:

Ynm(θ, λ) =
1√
4π

{
P̄nm(cos θ) cosmλ for m = 0, 1, 2, . . . , n

P̄n|m|(cos θ) sin |m|λ for m = −n, . . . ,−2,−1
(3.3)

An important property of spherical harmonics is orthogonality, i.e., when two base func-
tions Ynm and Ypq are considered, their integrated product over the sphere is zero if their
variables differ:

1

4π

∫∫
σ

Ynm(θ, λ)Ypq(θ, λ)dσ = δnpδmq (3.4)

where the Kronecker delta δnp = 1 for p = n and δnp = 0 for p 6= n.

In light of the above, a function f(θ, λ) on the sphere σ as represented in equation (3.1)
has a unique representation and the base functions Ynm form an orthonormal basis.

Since the spherical harmonic basis is orthonormal the least-squares projection of a scalar
function f defined over σ is done by integrating the product of f and the base functions.
Thus, the spherical harmonic coefficients may be determined by the spherical Fourier
transform, which is known as spherical harmonic analysis :

Fnm =

∫∫
σ

f(θ, λ)Ynm(θ, λ)dσ (3.5)
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The addition theorem of spherical harmonics establishes a relationship between the Leg-
endre polynomials Pn(cosψ) on the left-hand side and the base functions Ynm on the
right-hand side:

2n+ 1

4π
Pn(cosψ) =

n∑
m=−n

Ynm(θ′, λ′)Ynm(θ, λ) (3.6)

Equation (3.6) may be considered as a generalization of the following trigonometric iden-
tity:

cos (θ′ − θ) = cos θ′ cos θ + sin θ sin θ′ (3.7)

where the role of the trigonometric functions on the right-hand side is played by spherical
harmonics and that of the left-hand side is played by the Legendre polynomials.

Also, the norm of the function f may be expressed in spherical harmonics:

‖f(θ, λ)‖2 =
1

4π

∫∫
σ

f(θ, λ)2 dσ =
∞∑
n=0

n∑
m=−n

F 2
nm =

∞∑
n=0

c2
n (3.8)

where c2
n are the degree variances of degree n, quite relevant for the statistical description

of Earth’s gravity field, cf. section 2.5.

As mentioned in section 2.1, the spherical harmonics are adaptable to the geodetic problem
of describing functionals of Earth’s gravity field. We go from the unit sphere σ, to the
exterior of a sphere σR with mean Earth radius R and express the gravitational potential
as follows:

V (r, θ, λ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=0

(C̄nmR̄nm + S̄nmS̄nm) (3.9)

The factor GM/R renders the potential coefficients dimensionless. The upward continua-
tion factor

(
R
r

)n+1 describes the potential at a point (r, θ, λ) in the exterior of the sphere.
Further, the spherical harmonic coefficients, or potential coefficients in this special case,
are explicitly separated into sine and cosine functions, and the base functions are chosen
as follows, cf. Figure 3.1:

Ynm(θ, λ)

{
R̄nm = P̄nm(cos θ) cosmλ

S̄nm = P̄nm(cos θ) sinmλ
(3.10)

where P̄nm(cos θ) are the fully normalized Legendre functions of degree n and order m,
calculable from, e.g., (Holmes and Featherstone, 2002), t = cos θ:
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Figure 3.1: The surface spherical harmonics from left to right: Y5,0 (zonal harmonics, m = 0),
Y5,5 (sectorial harmonics, m = n) and Y10,5 (tesseral harmonics, n > m, m > 0)

P̄n,m(t) = an,mtP̄n−1,m(t)− bn,mP̄n−2,m(t) ∀ n > m (3.11)

for the fully normalized non-sectorial (i.e., n > m) P̄nm(t), with:

an,m =

√
(2n− 1)(2n+ 1)

(n−m)(n+m)
(3.12)

bn,m =

√
(2n− 1)(n+m− 1)(n−m− 1)

(n−m)(n+m)(2n− 3)
(3.13)

The sectorial (i.e., n = m) P̄nm(t) serve as seed values for equation (3.11), with start
values P̄0,0(t) = 1 and P̄1,1(t) =

√
3u with u = sin θ:

P̄m,m(t) = um
√

3
m∏
i=2

√
2i+ 1

2i
∀ m ≥ 1 (3.14)

For the fully normalized Legendre polynomials (i.e., m = 0), the following holds, cf.
Figure 3.2:

P̄n(t) =
√

2n+ 1Pn(t) =
√

2n+ 1

(
1

2nn!

dn

dtn
(t2 − 1)n

)
(3.15)
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Figure 3.2: The first few unnormalized Legendre polynomials (m = 0), with t = cos θ and
θ = [−π, π]
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3.1.1 Global geopotential models

A global geopotential model, GGM, contains a set of potential coefficients C̄nm, S̄nm up to a
maximum degree Nmax specifically related to the defining constants GM and R. Degree-
dependent weighting of the potential coefficients when functionals of the linear gravity
field are sought, is done through the different spherical harmonic syntheses, cf. Table
3.1.

GGMs are obtained from one or more of several data sources, e.g., surface gravity anoma-
lies and dedicated satellite gravity missions such as CHAMP, GRACE and GOCE. This
leads to the distinction between satellite-only (containing data only from satellite ob-
servations) and combined (containing both low-frequent satellite data and high-frequent
surface data such as gravity anomalies) GGMs (Gerlach, 2003).

The potential coefficients are obtained from observations through spherical harmonic anal-
ysis, cf. equation (3.5). Its solution based on least-squares adjustment is presented in
section 3.1.2.

An example of a satellite-only GGM is the recently (2012) released GOCO03s model
up to degree Nmax = 250 based on combination of satellite data sets from GOCE,
GRACE, CHAMP and satellite laser ranging (SLR). A state-of-the-art combined GGM
is EGM2008, based on a satellite-only GRACE model up to degree n = 180 and a global
gravity anomaly database with a resolution of 5 arc minutes (corresponding to a maximum
degree of Nmax = 2190).

The degree of a global geopotential model can be related to the spatial resolution on the
sphere. If the number of cycles on the sphere generated by the Legendre polynomials is
considered, we may observe that the degree number is equal to the number of cycles. An
approximation of the wavelength of harmonics n is obtained, and the spatial resolution is
half of the wavelength of the smallest spatial feature (Gerlach, 2003), i.e.:

∆ =
λ

2
=
πR

n
≈ 20000 km

n
(3.16)

All linear functionals of the gravity field may be expressed in terms of spherical harmonics
and the global geopotential models account for the low-frequency part of the gravity
field. The global geoid is an important part of local and regional geoid determination, cf.
section 3.2.

The spherical harmonic expansion of the disturbing potential T was presented in equation
(2.24). The relations between T and other gravity field functionals allow spherical har-
monic expansions of, e.g., the geoid height, the height anomaly, the gravity disturbance
and the gravity anomaly. The spherical harmonic expansions are summarized in Table
3.1, where a common upward continuation operator is introduced, by placing the geocen-
tric radius r of the computation point in front of the summation instead of the scaling
factor R:



3.1 Spherical harmonics 33

λupw
n =

(
R

r

)n
(3.17)

T = GM
r

∞∑
n=2

λupw
n

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
ζ = GM

γr

∞∑
n=2

λupw
n

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
∆g = GM

r2

∞∑
n=2

λupw
n (n− 1)

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
δg = GM

r2

∞∑
n=2

λupw
n (n+ 1)

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
Trr = GM

r3

∞∑
n=2

λupw
n (n+ 1)(n+ 2)

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
Table 3.1: Spherical harmonic synthesis of disturbing gravity field functionals

A GGM only provides the potential on the Earth surface, while the geoid, in large parts
located inside the topographic masses, is not directly computable from a GGM, cf. sec-
tion 3.2.2 on analytical continuation.

When computing the geoid height N , γ0 on the ellipsoid may be used as an approxima-
tion. In addition, we have topographic masses in the exterior of this surface and density
knowledge is assumed. However, by taking the separation between geoid and quasigeoid
into account (cf. section 2.4), the geoid height may be computed in the following way
(Torge and Müller, 2012):

N(r, θ, λ) = ζ(r, θ, λ) +
∆gB
γ0

H (3.18)

However, the separation between quasigeoid and geoid is also an approximation, depen-
dent on topographic height differences, and not precise in mountainous areas. It therefore
holds only in areas where the separation is quite small.

Also in Table 3.1, different spectral eigenvalues of the functionals are observed. They allow
easy transfer between the different functionals in the spectral domain (Gerlach, 2003), see
the spectral eigenvalue summary in Table 3.2. The spectral eigenvalues are of great aid,
e.g., when computing cross-covariance functions, cf. section 3.3.2.

3.1.1.1 A remark on tides

Tides also influence Earth’s gravity field. They comprise the gravitational attraction of
the Sun and Moon on a point in space or on Earth’s surface, relative to Earth’s center of
mass. Tidal forces are always present and therefore included in every gravity observation.
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Disturbing gravity field functional Spectral eigenvalue λn

ζ 1

∆g (n− 1)

δg (n+ 1)

Trr (n+ 1)(n+ 2)

Table 3.2: Gravity field functional eigenvalues

The problem arises in that the masses of Sun and Moon are outside the Earth, and
Laplace’s equation consequently does not hold. We split the tidal effect into a direct
effect in that the attraction from Sun and Moon changes the potential, and an indirect
effect due to Earth deformation caused by tidal forces also changing the potential (Torge
and Müller, 2012). The indirect effect, however, causes Earth mass distribution changes
and therefore does not violate Laplace’s equation as such.

Tidal forces may be split into time-dependent and time-independent parts, where the
time-dependent periodic part is caused by Earth’s rotation and the orbits of Sun and
Moon, and evens out over time. What must be considered when determining the gravity
field is the time-independent part, which is ever present, and therefore termed permanent
tidal deformation (Torge and Müller, 2012).

If the time-dependent part of the tidal forces is removed from the observed gravity field
quantity, we are in the mean-tide (MT) system (Petit and Luzum, 2010). The permanent
part is also included in this system, i.e., both direct and indirect effects. A MT geoid, for
instance, would correspond to a mean ocean surface free of non-gravitational effects (like
wind or ocean currents).

If the direct effect of the permanent part is also removed, we are in the zero-tide (ZT)
system. For the potential, the removal of the permanent direct effect gives ZT potential.
The permanent indirect effect related to deformation is still present. For geometry-related
quantities such as station positions on the crust, ZT is synonymous with MT (Petit and
Luzum, 2010), i.e.:

Geopotential: MT 6= ZT 6= TF (3.19)

Geometry: MT = ZT 6= TF (3.20)

If the indirect effect is also removed, we are in the tide-free (TF) system, supposing no
Sun and Moon exists and consequently no tidal forces. For the removal of the permanent
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indirect effect, however, a model must be applied. Tidal models recommended by the
Internatinal Earth Rotation and Reference System Service (IERS) use conventional Love
numbers, which are dimensionless parameters describing the sensitivity of the solid Earth
to tidal forces. Results using the IERS models are then in the so-called conventional
tide-free (CTF) system, and not in a TF system (supposing no perturbing bodies at all).
If the indirect effect of the permanent tide is to be removed, so-called fluid limit values
for the Love numbers could be applied in the models (Petit and Luzum, 2010).

For example, in case of GGM EGM2008, the difference between ZT and TF value of C20

is −4.1736 · 10−9 (Petit and Luzum, 2010).

A 1984 IERS recommendation stated that, “the indirect effect due to the permanent
yielding of the Earth be not removed”, i.e., a ZT system was recommended for quantities
associated with Earth’s geopotential, and a MT system for quantities related to oceanog-
raphy, station displacements and alike (Petit and Luzum, 2010). This means that, in
practice, geodetic products are given in different tidal systems depending on application
(Torge and Müller, 2012).

3.1.2 Spherical harmonic analysis by least-squares adjustment

If the potential f(r, θ, λ) is known, the spherical harmonic coefficients Fnm are obtainable
through spherical harmonic analysis, cf. equation (3.5). Determining the “output values”
f(r, θ, λ) from the “input values” Fnm, e.g., spherical harmonic synthesis, is a forward
problem (Eicker, 2008). Determining the input values Fnm from the output values f(r, θ, λ)
is known as an inverse problem.

Equation (3.5) may be solved through numerical integration or parameter estimation.
Parameter estimation or least-squares adjustment solves for the coefficients Fnm (e.g.,
C̄nm,S̄nm). The coefficients are in turn used to reconstruct an approximation of the field
f , increasingly accurate as the number of bands (degrees n) increases.

Advantages of parameter estimation are also underlined in sections 3.3.1 and 3.3.2. We
may combine different types of gravity observations in one step, no preparation of the data
in terms of interpolation (gridding) is necessary, and a concise frame taking the accuracies
of the different observations into account is embedded in the procedure (Bentel et al.,
2013). Even upward and downward continuation is directly done, although downward
continuation presents itself as an ill-posed problem, cf. section 5.1.

A disadvantage with parameter estimation techniques is that, when the number of obser-
vations becomes large, a huge computational effort is needed to invert the matrix product(
ATPA

)−1
= N−1, cf. equation (3.27), and special care has to be taken regarding the

structure and organization of the design matrix A.

Generalizing equation (3.1) by going from the unit sphere to a point in the exterior of
a sphere σR with arbitrary radius R at distance r from the sphere center (cf. equation
(3.9)) through the upward continuation operator yields (Bentel et al., 2013):
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f(r, θ, λ) =
∞∑
n=0

n∑
m=−n

(
R

r

)n+1

FnmY
R
nm(r, θ, λ) (3.21)

with Y R
nm(r, θ, λ) = 1

R
Ynm(r, θ, λ). We observe that equation (3.21) also holds for points

on the sphere.

The observation equation of observed signal f and associated error v in terms of spherical
harmonics may be formulated as follows (note that x is used to describe both the position
vector and the vector of unknowns):

l + v = Ax (3.22)

where the expectation E{l} = Ax and dispersion (scatter, spread) D{l} = Qll. Writ-
ten out (expressed with position vector x = r[sin θ cosλ, sin θ sinλ, cos θ]T for brevity),
equation (3.22) reads:


f(x1)
f(x2)

...
f(xL)

+


v(x1)
v(x2)

...
v(xL)

 =

Y
R

0,0(x1) · · · Y R
Nmax,Nmax

(x1)
... . . . ...

Y R
0,0(xL) · · · Y R

Nmax,Nmax
(xL)

 ·


F0,0

F1,−1
...

FNmax,Nmax

 (3.23)

where L observations l and L×(Nmax +1)2 base functions Ynm are considered. We observe
that the evaluation of f at point x is a dot product between the coefficient vector x and
the design matrix A of evaluated base functions. The above functional model is associated
with the following stochastic model:

v ∼ N(E{v} = 0,Σll) (3.24)

E{v} = 0 expresses that the residual (discrepancy) vector v has zero expectancy, i.e., the
model is unbiased. In terms of the weight matrix of the observations:

P =
1

σ2
0

Σ−1
ll = Q−1

ll (3.25)

σ2
0 is the a priori variance of unit weight, relating the weight matrix and the inverted

covariance matrix Σ. Qll is the cofactor matrix of the observations. σ2
0 may also be

estimated from observations as an a posteriori variance of unit weight σ̂2
0. If both are

statistically equal, the least-squares adjustment is dependable (Leick, 2004).

Least-squares adjustment is an optimal estimation procedure where the parameters x are
estimated with a minimum-variance optimization criterion:
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x̂ = min{vTPv} (3.26)

Equation (3.22) may be solved for the unknown parameters (in our case coefficients Fnm)
in the following way:

x̂ =
(
ATPA

)−1
ATPl (3.27)

where ATPA is known as the normal matrix N. For the expectation and dispersion of x̂
we may write (Sneeuw, 2000):

E{x̂} =
(
ATPA

)−1
ATPE{l} =

(
ATPA

)−1
ATPAx = x (3.28)

D{x̂} =
(
ATPA

)−1
= N−1 = Qxx (3.29)

where Qxx is the cofactor matrix of the unknowns. The estimated covariance matrix of
the unknowns:

Σ̂xx = σ̂2
0

(
ATPA

)−1
= σ̂2

0Qxx (3.30)

The a posteriori variance of unit weight is computed by:

σ̂2
0 =

vTPv

L− (Nmax + 1)2
(3.31)

with estimated residuals (or observation errors) v̂:

v̂ = Ax̂− l (3.32)

If the normal equation matrix N−1 exists, the point grid system for the observation is
admissable and L ≥ (Nmax + 1)2 (the system is overdetermined) (Bentel et al., 2013).
Regularization, cf. section 5.2, may be used to solve singular systems.
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3.2 Integral formulae

Spherical harmonics, as presented in section 3.1, delivers high-frequent gravity field in-
formation at fairly high cost (since the degree of the spherical harmonic expansion must
be very high). Representing an alternative approach are the integral formula solutions to
the geodetic boundary value problems of Stokes and Molodensky, allowing a point-wise
calculation (allowing in principle an arbitrarily high gravity field resolution) of gravity
field quantities. Only the data availability (density) and quality act as limits (Torge and
Müller, 2012).

In the following, the well-established Stokes integral formula for geoid determination is
derived, and subsequently, Molodensky’s integral formula for determining height anoma-
lies.

3.2.1 Derivation of Stokes’s formula

The transferring from a reference surface to a point in space is known as upward contin-
uation. A harmonic function H’s value in space, known on the spherical Earth’s surface,
may be evaluated by Poisson’s integral, which is a more direct solution to Dirichlet’s BVP.
Moreover, H may be expanded into a spherical harmonic series, with degree one and zero
omitted:

HP =
1

4π

∫∫
σ

(
−r3 −R2r

l3
+ 1 +

3R

r
cosψ

)
H dσ (3.33)

where ψ is the spherical distance, l =
√
r2 +R2 − 2Rr cosψ.

∫∫
σ
is the surface integral

over a reference sphere. H is the value of the harmonic function at the variable surface
element R2dσ, HP refers to the fixed point P , cf. Figure 3.3.

The fundamental equation of physical geodesy, (2.33), may only be regarded as a boundary
condition as long as the gravity anomalies ∆g are known on the surface. With equation
(3.33), gravity anomalies in space may be computed and equation (2.33) becomes a dif-
ferential equation integrable with respect to r. This is possible, since T , in addition to
the boundary condition fulfills Laplace’s equation ∆T = 0. Equation (2.33) is multiplied
by −r2:

−r2∆g(r) =
∂r2T

∂r
(3.34)

Equation (3.34) is integrated over [∞, r]:

r2T

∣∣∣∣r
∞

= −
r∫
∞

r2∆g(r) dr (3.35)
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Figure 3.3: Geometric quantities concerned in Poisson’s integral

The left-hand side of equation (3.35) becomes only r2T since limr→∞ r
2T = 0. Substi-

tuting the surface function H with ∆g allows to compute T at a point P in space from
surface gravity anomalies:

r2T =
R2

4π

r∫
∞

∫∫
σ

(
−r3 −R2r

l3
+ 1 +

3R

r
cosψ

)
∆g dσ

 dr (3.36)

The order of integration is changed, the improper integral evaluated, the spherical distance
is expanded into a series and Pizzetti’s formula is obtained:

T (r, θ, λ) =
R

4π

∫∫
σ

S(r, ψ)∆g dσ (3.37)

On the geoid, it holds r = R, and equation (3.37) becomes radially independent. Applying
equation (2.31) Stokes’s formula is obtained:

N =
R

4πγ

∫∫
σ

∆gS(ψ) dσ (3.38)

where S(ψ) is known as the Stokes function, interpreted as a weight function, which
expanded into a spherical harmonic series may be expressed as:

S(ψ) =
∞∑
n=2

2n+ 1

n− 1
Pn(cosψ) (3.39)
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Figure 3.4: Original Stokes’s function S(ψ) and modified Stokes’s function F (ψ), breaking the
singularity at ψ = 0

The Stokes function also has a closed expression:

S(ψ) =
1

sin ψ
2

+ 1− 5 cosψ − 6 sin
ψ

2
− 3 cosψ ln

(
sin

ψ

2
+

(
sin

ψ

2

)2
)

(3.40)

ψ is the spherical distance between the variable coordinates (ϕ, λ) of the surface element
dσ and the computation point (ϕ′, λ′):

cosψ = sinϕ sinϕ′ + cosϕ cosϕ′ cos (λ′ − λ) (3.41)

Stokes’s function is shown in Figure 3.4. Its singularity at ψ = 0, giving the gravity
anomaly at the computation point infinite weight, may be avoided by modifying Stokes’s
function in the following way (Hofmann-Wellenhof and Moritz, 2005):

F (ψ) =
1

2
S(ψ) sinψ (3.42)

Several assumptions have been made throughout the description of the anomalous po-
tential culminating in Stokes’s formula for the computation of geoid heights. Equation
(3.38) performs an integral over a reference sphere, so an error of approximately 0.3 % is
introduced (equivalent to Earth’s flattening). Moreover, the deflection of the vertical is
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assumed to be zero, which may not be completely true in mountainous areas. The mass
and radius of the reference ellipsoid is assumed equal to the mass and radius of Earth,
e.g., δGM

r
= 0, and also the origin of the reference ellipsoid is assumed to coincide with

Earth’s center of mass.

However, perhaps the greatest concerns with Stokes’s formula is firstly that it assumes
that the gravity anomalies ∆g are given on the surface of the geoid, and secondly that the
geoid is a boundary surface where the anomalous potential in the exterior of the surface
fulfills Laplace’s equation, i.e., is harmonic and ∆T = 0.

The gravity anomalies are measured on the surface of the Earth, not on the geoid, but
topographic reductions may be performed and the gravity anomalies downward continued
from the Earth’s surface to the geoid, cf. section 4.1.

Since we have topographic masses outside the geoid, it cannot serve as a boundary sur-
face, and Laplace’s equation is not fulfilled (but rather Poisson’s equation). Topographic
reductions can either remove the masses outside the geoid completely, or shift the masses
inside the geoid, thus ensuring that the geoid is a boundary surface and Laplace’s equation
is fulfilled. However, by shifting or removing masses, the potential T also changes, and
consequently the geoid itself. This indirect effect also needs to be accounted for (Gerlach,
2009).

Several approaches to topographic reductions exist, and they all rely on different hy-
potheses on the density distribution of the topographic masses. This is exactly what
Molodensky sought to avoid.

3.2.2 Solving Molodensky’s problem by analytical continuation

As mentioned in section 2.4, the gravity vector does not correspond to Earth’s surface
normal in the Molodensky approach, and with gravity anomalies measured on Earth’s
surface, equation 3.38 cannot be applied directly. However, it may be extended so that it
holds also in the Molodensky case, by analytical continuation.

The method of analytical continuation is based on the Runge-Krarup theorem, which
states that a harmonic function T ? inside the topographic masses but approximating the
potential of the exterior (empty space) T may always be found. T ? is then called the
harmonic or analytical continuation of T in the topographic interior (Hofmann-Wellenhof
and Moritz, 2005).

Analytical continuation thus extends the domain in which a function is defined. However,
it does not provide the true values of that function in the extended domain (Gerlach,
2009)!

Gravity anomalies measured on the surface of the Earth are analytically downward con-
tinued to a common level. Further, the analytical continuation of the height anomaly



42 Chapter 3 Gravity field modeling approaches

at that level are computed with Stokes’s formula and subsequently analytically upward
continued to the surface again, expressed as:

ζ =
R

4πγ0

∫∫
σ

S(ψ)

∆g?︷ ︸︸ ︷(
∆gP −

∂g

∂h
h

)
dσ +

∂ζ

∂h
h (3.43)

where h is the height above the chosen continuation level, ∆gP the gravity anomalies mea-
sured on the surface and ∆g? the analytically downward continued gravity anomalies.

As mentioned, the analytically continued values refer to the exterior potential, and are not
true values for the interior. The main goal, however, is achieved by analytical continuation:
The gravity anomalies refer to a common height, and that spherical surface can serve as
a boundary surface. The direction of the surface normal corresponds with the radial
direction. The third BVP is applicable again. The chosen continuation level may be at
the height of the computation point P , in which case the height anomaly is already at the
surface and the last term in equation (3.43) vanishes (Hofmann-Wellenhof and Moritz,
2005).

Equation (3.43) is actually a first-order solution, and the series solution theoretically goes
to infinity:

ζ =
R

4πγ0

∫∫
σ

S(ψ) (∆g + g1 + g2 + g3 + · · · ) dσ (3.44)

The higher-order Molodensky terms are all dependent on the terrain inclination, so that
they can be neglected in relatively flat areas (Gerlach, 2009). The first term g1 may be
approximated by a terrain correction, cf. section 4.1.

3.3 Least-squares collocation

3.3.1 Least-squares prediction

The geodetic boundary value problems may be solved in terms of integral formulae over
the whole Earth, cf. section 3.2. For instance, Stokes’s integral formula presupposes the
continuous knowledge of gravity anomalies on the surface of the geoid. It is quite clear,
however, that our measurements are restricted to discrete points on land and oceans. To
“fill in” values where no measurements exist, prediction (interpolation within the range of
observed data points and extrapolation beyond that) is essential.

Predicted values, however, are not the true ones, and therefore a prediction method
which minimizes the prediction error in a least-squares sense is suitable. Global and local
covariance functions provide knowledge of the spatial signal characteristics in order to get
optimized estimates on global or local scales.
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Assuming the signal covariance function C to be known, an estimate ∆ĝP of the gravity
anomaly ∆gP at point P from discrete observations ∆gi may be determined as follows:

∆ĝP = CPiC
−1
ij ∆gi (3.45)

or, written out:

∆ĝP =
[
CP1 CP2 · · · CPi

]

C11 C12 · · · C1j

C21 C22 · · · C2j
...

...
...

Ci1 Ci2 · · · Cij


−1 

∆g1

∆g2
...

∆gi

 (3.46)

where CPi is the covariance matrix between predicted point P and observations i and
Cij is the covariance matrix between observations. All covariances stem from the same
covariance function, only dependent on the distance between the considered points, i.e.,
CPi = C(sPi) and Cij = C(sij) (Moritz, 1980).

Analogous, the gravity anomaly block mean values are calculable from point anomalies
(or even other block mean values):

∆ˆ̄gP = C̄PiC
−1
ij ∆gi (3.47)

In equation (3.47), C̄Pi is the covariance between point and block mean values.

The accuracy of the predicted values follow from the variance-covariance propagation law
(e.g., (Moritz, 1980)):

Ĉ∆gP = C0 −CPiC
−1
ij CT

Pi (3.48)

3.3.2 Generalization to least-squares collocation

Least-squares prediction as described in section 3.3.1 is actually a specific case of collo-
cation, as collocation in its most general setup is combined estimation, prediction and
filtering. Collocation is mainly applied to estimate heterogeneous data, e.g., different
quantities of the linear gravity field such as the potential T or geoid heights N from het-
erogeneous data such as gravity anomalies or deflections of the vertical (Moritz, 1980).
Decisive for collocation with regard to quality is the determination of a good covariance
function as introduced in section 2.5 (Tscherning, 1983).

In section 3.3.1 the covariance function was used to compute gravity anomalies at any
point on Earth from a known gravity anomaly data set, cf. equation (3.45).

The covariance function is determinable from a convolution integral (Moritz, 1980):
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C(ψ) =
1

8π2

∫∫
σ

2π∫
0

xy dα dσ (3.49)

where α is azimuth between gravity field signal value x and y. Integration over the surface
σ ensures homogeneity, integration over α ensures isotropy. If equation (3.49) is calculated
for all ψ, the covariance function is obtained.

As presented in section 2.5, the covariance function is also determinable by a spherical
harmonic expansion, including the signal degree variances, cf. equation (2.47). Through
the different spectral eigenvalues, signal degree variances of different gravity field quantities
are easily obtainable, cf. equation (2.46). This holds also for the upward continuation
factor λupw

n . Consequently, through (2.47), covariance functions of different gravity field
quantities are just as easy to compute.

Although several gravity field functionals (e.g., gravity anomalies, gravity disturbances,
geoid height, height anomaly or general upward continuation) are linked to the disturbing
potential by isotropic spectral eigenvalues, many functionals (e.g., deflections of the verti-
cal) do not have the isotropic operator link. The relatively simple spectral determination
of the covariance function is not applicable in these cases, and more complex differential
operations must be performed (Gerlach, 2003).

With the spectral eigenvalues, the signal degree variances between different gravity field
functionals may also be found. A covariance function computed from such degree variances
is termed a cross-covariance function. The cross-covariance function does not only describe
the correlation of, e.g., gravity anomalies with other gravity anomalies, but also the
correlation of, e.g., gravity anomalies and geoid height:

CN∆g(ψ) =
∞∑
n=2

r

γ0(n− 1)
c∆g
n Pn(cosψ) (3.50)

With the cross-covariance function in equation (3.50), geoid heights are determinable from
gravity anomalies by a generalization of equation (3.45):

N̂P = CN∆g
P i C−1

ij ∆gi (3.51)

Equation (3.51) is an example of collocation, with the following accuracy, cf. equation
(3.48):

ĈNP = C0 −CN∆g
P i C−1

ij (CN∆g
P i )T (3.52)

The covariance matrix of observations, Cij, is the sum of the covariance matrices of signal
and noise (Moritz, 1980), and is consequently frequently found in a split up notation. If all
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measurements of an observed gravity field are assumed uncorrelated, the noise covariance
matrix is diagonal.

The general scheme for computing the covariance functions (also holds for the gravity field
functionals isotropically linked in the spectral domain as described above) comprises the
general kernel function K(r, r′, ψ) (a function of the spherical coordinates of two consid-
ered points, their latitude and longitude hidden in the spherical distance ψ), containing
disturbing potential covariances between two points, from which any cross-covariance
function may be determined through the correct functional operator (Moritz, 1980).

For example, linear functionals of geoid height, gravity anomaly and deflections of the
vertical (their relation to the disturbing potential) read:

N =
1

γ0

T (3.53)

∆g = −∂T
∂r
− 2

r
T (3.54)

ξ =
1

γ0r

∂T

∂θ
(3.55)

η = − 1

γ0r sin θ

∂T

∂λ
(3.56)

The covariance and cross-covariance functions are thus obtained by applying the above
functionals to the general kernel, some examples follow:

CN∆g =
1

γ0

(
−∂K
∂r′
− 2

r′
K

)
(3.57)

CNξ =
1

γ2
0r
′
∂K

∂θ′
(3.58)

CNη = − 1

γ2
0r
′ sin θ′

∂K

∂λ′
(3.59)

C∆g∆g =

(
− ∂

∂r
− 2

r

)(
−∂K
∂r′
− 2

r′
K

)
(3.60)

=
∂2K

∂r∂r′
+

2

r′
∂K

∂r
+

2

r

∂K

∂r′
+

4

rr′
K (3.61)

The kernel is dependent on the spherical distance, given as a function of the considered
point coordinates (and in geodetic coordinates) in equation (3.41). The partial derivatives
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of the kernel function can thus be formulated, e.g., as follows (spherical coordinates,
colatitude and longitude):

∂K

∂θ′
=
∂K

∂ψ

∂ψ

∂θ′
(3.62)

where formulae for computing partial derivatives such as ∂ψ
∂θ′

can be found in (Hofmann-
Wellenhof and Moritz, 2005).

The strength of collocation is its ability to incorporate several gravity field data sources,
e.g., for the computation of geoid heights from gravity anomalies and gravity disturbances
one could set up the following collocation equation:

N̂P =
[
CN∆g
P1 · · ·C

N∆g
P i CNδg

P,i+1 · · ·C
Nδg
Pj

]


C∆g∆g
11 · · · C∆g∆g

1i C∆gδg
1,i+1 · · · C∆gδg

1j
...

...
...

...
C∆g∆g
i1 · · · C∆g∆g

ii C∆gδg
i,i+j · · · C∆gδg

ij

Cδg∆g
i+1,1 · · · Cδg∆g

i+1,i Cδgδg
i+1,i+1 · · · Cδgδg

i+1,j
...

...
...

...
Cδg∆g
j1 · · · Cδg∆g

ji Cδgδg
j,i+1 · · · Cδgδg

jj



−1 

∆g1
...

∆gi
δgi+1
...
δgj


(3.63)

The main obstacle in collocation is that the linear system of equations is as large as the
number of observations, making the covariance matrix inversion computationally chal-
lenging.

As with the other gravity field modeling methods, the remove-restore approach is applied
also when using collocation. The effect of a GGM as well as the topography is removed
from the data, and in the end added back to the result. This leaves us with residual data,
for which a covariance function must be determined in the area of interest. A regional
gravity field approximation is then computed using collocation, we obtain both estimates
of the sought gravity field quantity as well as its error. The obtained model can be verified
by using parts of the data not used to compute the model in the first place.

3.3.3 A remark on collocation with parameters

A further generalization of collocation is the introduction of systematic (non-random)
functional parameters to the model (Moritz, 1980). The “systematic” or “parametric”
part is the well-known Ax found in, e.g., observation equation (3.22). The random and
variable part contains the aforementioned signal and noise. This general model reads:

l + v = Ax + Bt (3.64)
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Figure 3.5: Graphic display of the least-squares collocation model with a systematic part Ax
and a random part Bt, where t is a vector containing signal and noise

where l are the observations with associated errors v, A is a matrix accounting for the
effect of the parameters x on the observations, the matrix B contains the functionals of
the observations and t contains both signal and noise. For A = 0, equation (3.64) reduces
to l + v = Bt, i.e., the observation equation for collocation without parameters (only
signal and noise). For B = 0 or t = 0 we obtain l + v = Ax, which again is the linear
observation equation in usual least-squares adjustment (parameter estimation).

Equation (3.64) is visualized in Figure 3.5. Ax is a linearized function of parameters x,
smooth and slowly varying. The random function Bt contains signal and noise, oscillating
about zero. The curve Ax + Bt containing a systematic regular trend and a random part
is to be determined by discrete observations l. The noise is an observational error and thus
occurs only at observation points (it is discrete), as opposed to the signal, representing
continuous irregularities.

The general formulation of collocation could be applied to, e.g., gravity measurements
(Moritz, 1980). In such a case, l would be the gravimeter reading, v a measurement error
and the signal would represent the gravity anomaly. Systematic parameters x could be of
different kinds, e.g., the parameters of the normal gravity formula as well as instrument
parameters and instrument drift.
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3.4 Radial basis functions

As pointed out in sections 3.1 and 3.2, spherical harmonics are global functions, and the
series expansion has to be done up to a very high degree to provide the high-frequent
information of a considered signal, e.g., the gravity field. We have seen that more locally
dependent point-based integral formulae may instead account for that part in addition to
their collocation alternative (cf. section 3.3.2).

Another approach is given through a different choice of base functions than spherical
harmonics. Radial basis functions (RBFs) are isotropic (radial-symmetric) functions that
store most of their energy in a limited spatial area, i.e., they have the ability to localize in
space (Wittwer, 2009). Radial basis functions may have quasi-local support, in that they
in spite of their space-localizing abilities represent global functions (they are not strictly
zero outside their support area, cf. the oscillations in the space domain in, e.g., Figure
3.10). With the RBF approach, we do not only have a vast variety of possible RBFs to
choose from, but also have to take their bandwidth and network design (i.e., a grid for
positioning the RBFs must be chosen) into account.

RBFs have space-localizing properties that spherical harmonics lack, and consequently,
these bases may be assumed more efficient in modeling spatially dependent higher fre-
quencies of a considered signal. The spherical harmonic Stokes coefficients Fnm are global
parameters, since they do not depend on spatial position, but have optimal frequency
localization because of their direct relation to the frequency values degree n and order
m (Schmidt, 2001). The coefficients of the considered radial basis functions are spatially
dependent parameters, since they are a function of the position vector ! However, the fre-
quency localization is worse than for spherical harmonics, since each coefficient is related
to a frequency band.

Localization refers to the area in the frequency or space domain in which the function
does not vanish, and the function localizes better as this area shrinks (Eicker, 2008). It is
actually not possible to have both ideal frequency and space localization at the same time,
due to Heisenberg’s uncertainty principle. The better a function localizes in one domain,
the worse it localizes in the other.

So-called Dirac functions present the direct opposite of spherical harmonics in that they
are different from zero at only one single point, i.e., they have optimal space-localizing
properties (Bentel et al., 2013). However, frequency localization is non-existent. RBFs
can be seen as a compromise between these two extremes, and are consequently very
adjustable.

In addition to conventional evaluation of convolution integrals, as found in equation (3.5),
by numerical integration, parameter estimation methods may be applied, utilizing statis-
tical models.

There is in principle a vast amount of possible RBFs to choose from, as long as they
are harmonic kernel functions. Numerical simulations using different RBFs (i.e., varying
kernel coefficients Bn in equation (3.74)) under the same conditions were conducted by
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Bentel et al. (2013). As pointed out earlier, a good compromise between localization in the
frequency domain and the space domain is sought. The signal f has been considered non
band-limited in the above equations, but in practice it may be band-limited, i.e., truncated
at some maximum degreeN . Bentel et al. (2013) concluded that the frequency localization
with respect to the signal bandwidth plays a minor role for a band- (or frequency-) limited
RBF. For good results in regional gravity field modelling, the spatial behavior of the RBF
is of more importance.

An example of a band-limited kernel function is when frequencies higher than a chosen
maximum degree N are omitted. The convolution of the signal with such a kernel func-
tion will then act as a low-pass filter. If a frequency window is chosen for the kernel
function, the convolution of the signal with the kernel function will act as a band-pass
filter. Tailoring of the filtering properties of a kernel is done through the choice of kernel
coefficients Bn (Bentel et al., 2013).

A general kernel (or weight) function may be formulated as:

B(x,xP ) =
∞∑
n=0

2n+ 1

4πR2

(
R

r

)n+1

BnPn(rT rP ) (3.65)

where the Legendre (kernel) coefficients Bn define the kernel and reflect its frequency
behavior (Bentel, 2010). The distance between the origin of the RBF on the sphere xP
and the computation point x, which may be in the exterior of the sphere, is the only
variable in the kernel (it is isotropic). For xP = x the kernel is at its maximum.

There is no single conclusive way of selecting the bandwidth of a RBF, but it must be
chosen properly so that the RBFs approximate the signal in an optimal way (Wittwer,
2009). Both the spatial and frequency behavior of the RBF must be observed. If the
bandwidth is too narrow, the RBFs will approximate the data well, but the quality of
the solution between data points will be poor, and a denser grid of RBFs is needed.
Conversely, if the bandwidth is chosen too large, the RBFs overlap too much (become too
similar) and the normal equation system will be singular and an exaggerated smoothing of
the solution may occur. The RBFs will not represent the frequency behavior of the signal
very well in such a configuration. Leakage of the signal outside the considered area is
more of a spatial effect, due to the RBFs not being strictly spatially-localizing but rather
band-limited in the frequency domain.

Different methods exist for choosing the RBF bandwidth (Wittwer, 2009). One approach
for choosing the bandwidth is to assume the same frequency behavior of the RBFs as
the signal (Eicker, 2008). The norm of a signal as presented in equation (3.8) can be
interpreted as the energy content or frequency behavior of the signal (Schmidt, 2001).
The Legendre coefficients Bn defines the frequency behavior of the kernel, and the norm
of B(x,xP ) may be written as follows:

‖B(x,xP )‖2 =
∞∑
n=0

c2
n (3.66)
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Figure 3.6: A regular latitude-longitude grid

where c2
n are the signal degree variances of degree n:

c2
n =

2n+ 1

4πR2
|Bn|2 (3.67)

Thus the RBFs may be constructed such that their energy content corresponds to the
energy content of the signal.

Another important aspect of regional gravity field modeling are the boundary effects that
occur in the boundary of the considered area or region (Wittwer, 2009). If observations
outside the target area are available, these can be used to reduce boundary effects by
extending the data grid to some degrees outside the target or computation area.

The RBFs are dependent on position, and consequently they have to be placed at chosen
locations. Grid type and associated spacing or level must be chosen such that under-
or over-parametrization is avoided (Wittwer, 2009). A number of potentially applicable
point grid systems exist, the easiest one probably being the equiangular latitude-longitude
grid with a regular distance (grid spacing) between the latitude and longitude values of
each point, cf. figures 3.6 and 3.7 (Bentel, 2010).

Another option is the Reuter grid, where the spherical distance between the grid points
is almost constant, making it an equidistributed point system, cf. figures 3.8 and 3.9
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Figure 3.7: A regular latitude-longitude grid with 7◦ spacing on the unit sphere
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Figure 3.8: A Reuter grid with γ = 30

(Wittwer, 2009). A Reuter grid defined by points expressed in spherical coordinates (θ, λ)
for a chosen level γ (to define the number of points) may be constructed as follows:

θ0 = 0, λ0,1 = 0 North Pole (3.68)
∆θ = π/γ (3.69)
θi = i∆θ, 1 ≤ i ≤ γ − 1 (3.70)

γi = 2π/ cos
(
(cos ∆θ − (cos θi)

2)/(sin θi)
2
)−1 (3.71)

λi,j =

(
j − 1

2

)
(2π/γi), 1 ≤ j ≤ γi (3.72)

θ0 = π, λγ,1 = 0 South Pole (3.73)

Wittwer (2009) showed that γ ≈ Nmax, where Nmax is the maximum spherical harmonic
degree that can be modeled by RBFs placed in such a grid.

K RBFs are placed at different locations xk in a grid system with K points. If the
unnormalized Legendre polynomials Pn are used, the intensity values (y-axis in the 2D
case, see, e.g., Figure 3.10) are relatively large. However, normalization may be done at
a later stage, e.g., in the normalization of the design matrix A.
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Figure 3.9: A reuter grid with γ = 30 on the unit sphere. Note the equidistribution of points.
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The number of RBFs depends only on the resolution achievable with the input data and
the size of the target area, and therefore the number of observations does not directly
influence the number of RBFs. Wittwer (2009) presents a rule of thumb, stating that
“choosing a grid with an amount of basis functions equal to one third the number of
observations is a good starting point”.

xk is the origin of RBF number k, x is the computation point. If R = r = 1, both RBFs
and computation points are defined on the unit sphere and equation (3.65) reads:

B(x,xk) =
∞∑
n=0

2n+ 1

4π
BnPn(rT rk) (3.74)

3.4.1 Gravity field functionals in terms of radial basis functions

The above kernel expressions are quite general, in that they hold for any signal outside
or on the sphere. The direct link to spherical harmonics, considered in detail in section
3.5.3, allows us to model different isotropic gravity field quantities by RBFs in the same
manner as it is done by spherical harmonics (Bentel, 2010).

The disturbing potential, for instance, is (in theory) a non band-limited harmonic function
that could be represented as an infinite sum of RBF as follows (Wittwer, 2009):

T (x) =
GM

R

∞∑
k=0

dk

∞∑
n=0

2n+ 1

4π

(
R

r

)n+1

BnPn(rT rk) (3.75)

where dk are the RBF coefficients, determinable by, e.g., least-squares adjustment,. This
is described in section 3.4.3. In the practical evaluation of equation (3.75), of course the
disturbing potential signal is band-limited (Nmax < ∞), and the number of RBFs k is
finite (Wittwer, 2009).

From the RBF expression for the disturbing potential (equation (3.75)) other gravity field
functionals may be derived (Wittwer, 2009).

For gravity anomalies, for instance, we set up the well-known link between gravity anoma-
lies and the disturbing potential, i.e., the fundamental equation in spherical approxima-
tion:

∆g = −∂T
∂r
− 2

R
T (3.76)

For the gravity anomaly representation by a (theoretical) infinite set of RBFs, we get:
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∆g(x) = − ∂

∂r
T (x)− 2

R
T (x) =

GM

R2

∞∑
k=0

dk

∞∑
n=2

2n+ 1

4πR2
(n− 1)

(
R

r

)n+1

BnPn(rT rk) (3.77)

3.4.2 Examples of radial basis functions

A very simple radial basis function is the Shannon low-pass function (Bentel et al., 2013),
where all kernel coefficients up to a degree N are set to one and all above are set to zero,
cf. figures 3.10 and 3.11. It may be formulated as follows:

Bn = 1 ∀ n ∈ [0 , N ] (3.78)

Further, the Shannon band-pass function covers an exact spectral window [n1 , n2], lead-
ing to larger oscillations in the spatial domain and a negative effect on regional gravity
field modelling (Bentel et al., 2013):

Bn =

{
1 ∀ n ∈ [n1 , n2]

0 else.
(3.79)

Another radial basis function is the Blackman low-pass function, cf. figures 3.12 and 3.13.
When compared with the Shannon RBF, a smoother drop is observed in the frequency
domain. Because of this smoothing, oscillations in the space domain are reduced. The
RBFs are global functions, so strong oscillations outside the observation area lead to data
leakage (Bentel et al., 2013). The Blackman RBF is adjustable through the frequency
parameters n1 and n2 defining the “drop window”:

Bn =


1 for n < n1

(A (n))2 for n = n1, . . . , n2

0 for n > n2

(3.80)

where

A(n) = 0.42− 0.5 cos

(
2π(n− n2)

2(n2 − n1)

)
+ 0.08 cos

(
4π(n− n2)

2(n2 − n1)

)
(3.81)

The kernel coefficients of the Cubic polynomial radial basis function are given by a cubic
polynomial equal to one at degree zero and equal to zero at maximum degree nmax, cf.
figures 3.14 and 3.15:
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Figure 3.10: The Shannon low-pass radial basis function with N = 250 in the space and fre-
quency domains.
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Figure 3.11: The Shannon low-pass radial basis function with N = 250 in 3D.
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Figure 3.12: The Blackman low-pass radial basis function with n1 = 250 and n2 = 450 in the
space and frequency domains.
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Figure 3.13: The Blackman low-pass radial basis function with n1 = 250 and n2 = 450 in 3D.
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Bn =

(
1− n

nmax

)2(
2n

nmax
+ 1

)
(3.82)

3.4.3 Radial basis function analysis by least-squares adjustment

We may solve for the RBF coefficients dk by least-squares adjustment (Bentel et al., 2013).
Thereby only a finite number of coefficients can be estimated, i.e.:

f(x) =
∞∑
k=1

dkB(x,xk) ≈
K∑
k=1

dkB(x,xk) (3.83)

The coefficients dk constitute the RBF part which represents the signal and thus play a
similar role as the Stokes coefficients in the spherical harmonic approach.

The low-frequency part of the gravity signal is modeled very well by global spherical har-
monic base functions. For the high-frequency part, radial basis functions are better suited.
Thus a combination of spherical harmonics and radial basis functions seems reasonable.
The gravity signal up to maximum degree Nmax is represented by spherical harmonics,
while the regional or local features found in the residual gravity signal ∆f is modeled
with radial basis functions (Bentel et al., 2013):

f(x) =
Nmax∑
n=0

n∑
m=−n

FnmYnm(x) + ∆f(x) (3.84)

An observation equation based on equation (3.83) may be formulated:

∆f(x) + v(x) =
K∑
k=1

dkB(x,xk) (3.85)

In matrix notation, equation (3.85) reads:

∆f + v = Ad (3.86)

or, written out:

∆f1(x1
1)

...
∆f1(x1

i )
∆f2(x1

j)
...

∆f2(x1
L)


+



v1(x1
1)

...
v1(x1

i )
v2(x1

j)
...

v2(x1
L)


=



B1(x1
1,x1) · · · B1(x1

1,xK)
... . . . ...

B1(x1
i ,x1) · · · B1(x1

i ,xK)
B2(x1

j ,x1) · · · B2(x1
j ,xK)

... . . . ...
B2(x1

L,x1) · · · B2(x1
L,xK)


·

d1
...
dK

 (3.87)
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Figure 3.14: The Cubic polynomial radial basis function with nmax = 450 in the space and
frequency domains.
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Figure 3.15: The Cubic polynomial radial basis function with nmax = 450 in 3D.
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Signal frequencies higher than the maximum degree of the kernel are not modeled, but
projected into the error vector v (Bentel et al., 2013). Equation (3.87) also opens up for
two (or more) different observation types (e.g., satellite and terrestrial gravity observa-
tions), indicated by indices 1 and 2. Superscripted x1 denote the computation points,
while x without superscript are the RBF origins. In the case of satellite and terrestrial
gravity observation types, the kernels B1 and B2 would be chosen to cover the respective
observation bandwidths.

Further, equation (3.87) is presumably singular, one reason being that downward contin-
uation is an ill-posed problem by itself, cf. section 5.1. In addition, normally more RBFs
than strictly needed are used and observation sets may contain data gaps. The singularity
of the normal equation matrix N can be overcome by regularization, cf. section 5.2.

3.4.4 From radial basis functions to wavelets

In the above combination approach a lower resolution spherical harmonic model is com-
bined with a regionally refined higher resolution model based on radial basis functions.
This may be seen as a two-scale approach, and seems applicable to, e.g., a combination
of satellite and regionally restricted terrestrial data (Eicker, 2008). However, when for
instance both satellite and terrestrial gravity data is considered, the resolution span is
so wide that a decomposition of the signal into different detail signals might be of inter-
est, i.e., an extension to several scales, which is known as multi-scale or multi-resolution
representation (MRR).

A wavelet representation may be applied in a MRR, since wavelets may be used to decom-
pose a signal into detail signals on different scales, dependent on frequency (Eicker, 2008).
In a wavelet representation, the basis functions are made up of both scaling functions (ra-
dial basis functions) and wavelet functions, each wavelet function being the difference
between two scaling functions. When wavelets are used for modeling a function on the
sphere, they are known as spherical wavelets.

At the German Geodetic Research Institute (DGFI) in Munich, Germany, regional gravity
field modeling incorporating MRR has been investigated through several years, using, e.g.,
the Shannon and Blackman scaling functions.

3.5 Model comparison

The goal of this section is to show that the different mathematical models for gravity field
representation are equal, at least in the global case.
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3.5.1 Least-squares collocation versus Stokes integration

In the integral formulae, linear operations are performed on the data directly (Moritz,
1980). This is often solved by numerical integration techniques, involving interpolation
for data gridding. In collocation, linear operations are performed on a kernel function,
and may be solved analytically. Collocation operations are inverse to integral formula
operations, e.g., we deal with differentiation instead of integration. Consequently, while
inversion is done analytically in the integral formulae, it must be done numerically in
collocation, i.e., by inverting the covariance matrix. Also, collocation can handle hetero-
geneous data as opposed to the integral formulae, handling data of only one type.

However, de Min (1995) showed that Stokes integration and collocation are indeed equiv-
alent methods in the global case. For this comparison purpose, an integration point
P (ϕP , λP ) is introduced, as well as gravity anomalies at points i for prediction of grav-
ity in any point (or block) Q, cf. section 3.3.1. Stokes’s formula and the least-squares
prediction formula are presented again:

N(P ) =
R

4πγ

∫∫
σ

S(ψPQ)∆g(Q) dσ (3.88)

∆g(Q) = CQiC
−1
ij ∆gi (3.89)

Given an area of i gravity anomalies ∆gi, gravity anomalies ∆g(Q) can be predicted in
any point on Earth Q. It is further assumed that ∆g(Q) are given for all points on Earth,
and may be inserted into Stokes’s formula as follows:

N(P ) =
R

4πγ

∫∫
σ

S(ψPQ)∆g(Q) dσ (3.90)

=
R

4πγ

∫∫
σ

S(ψPQ)CQiC
−1
ij ∆gi dσ (3.91)

=
R

4πγ

∫∫
σ

S(ψPQ)CQi dσC−1
ij ∆gi (3.92)

Since integration is performed globally, a spherical harmonic expansion of the integral in
equation (3.92) may be formulated and the decomposition formula applied:
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R

4πγ

∫∫
σ

S(ψPQ)CQi dσ (3.93)

=
R

4πγ

∫∫
σ

∞∑
n=2

2n+ 1

n− 1
P̄n(cosψPQ)

∞∑
k=2

ckPk(cosψQi) dσ (3.94)

=
∞∑
n=2

R

γ(n− 1)
cnPn(cosψPi) (3.95)

= CN∆g(ψPi) (3.96)

where ck or rather cn are the gravity anomaly signal degree variances, as described in
section 2.5. Equation (3.96) is immediately recognized as the cross-covariance function
presented in equation (3.50). Thus, the expression for N(P ) in equation (3.92) becomes

N(P ) = CN∆g
P i C−1

ij ∆gi (3.97)

which is the collocation formula, cf. section 3.3.2. To summarize, least-squares collocation
performs least-squares prediction over the entire Earth, and applies Stokes’s formula to
the globally continuous ∆g function.

If, as normally is the case, we use Stokes’s formula in a regional application, the equiva-
lence is not immediately clear. In practice, Earth is split up into a near zone containing
gravity anomaly measurements, and a distant zone accounted for by a GGM. Stokes’s for-
mula is applied to a residual gravity signal ∆gRES in the near zone (where the low-frequent
gravity signal from a GGM has been subtracted from the original gravity anomaly, cf.
section 4.2). In this case, least-squares prediction is performed over the entire Earth using
∆gRES, which means an interpolation in the near zone — but also an extrapolation in the
distant zone.

The extrapolation in the distant zone is actually not wanted in the practical approach,
since the covariance function used is not necessarily valid outside the original gravity
anomaly data area. de Min (1995) suggests to modify the covariance function such that
the extrapolation is not taken into account. The topic of kernel modifications, of which
the following is a part, is properly introduced and treated in detail in sections 4.2 and
4.2.5.

We go back to equation (3.92), but integrate only in a near zone σ0, defined by a spher-
ical cap with radius ψ0 around computation point P . By modifying Stokes’s function
(modifying the kernel), we can still write equation (3.92) as a global integral:

N(P ) =
R

4πγ

∫∫
σ

SL(ψPQ)CQi dσC−1
ij ∆gi (3.98)
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where

SL(ψPQ) =

{
S(ψPQ), 0◦ ≤ ψ < ψ0

0, ψ0 ≤ ψ ≤ π
(3.99)

Equation (3.99) has the following spectral representation:

SL(ψPQ) =
∞∑
n=2

(
2

n− 1
−Qn(ψ0)

)
2n+ 1

2
Pn(cosψ) (3.100)

where Qn(ψ0) are Molodensky’s truncation coefficients. With this modification, equation
(3.97) may be written as follows:

N(P ) = CNL∆g
P i C−1

ij ∆gi (3.101)

with

CNL∆g =
∞∑
n=2

R

2γ

(
2

n− 1
−Qn(ψ0)

)
cnPn(cosψ) (3.102)

Thus, the collocation formula, expressed with the modified covariance function, still per-
forms least-squares interpolation and extrapolation over the entire Earth using the gravity
values in the near zone, but Stokes’s formula is only applied to the continuous gravity
function up to integration radius ψ0 from the computation point (i.e., only the near zone).
With this modification, collocation and Stokes integration should be identical (de Min,
1995).

3.5.2 Stokes integration versus spherical harmonics

We may start with the spherical approximation of the fundamental equation of physical
geodesy, relating the disturbing potential T to gravity anomalies ∆g, cf. equation (2.33).
That is, Earth’s flattening is neglected and a mean Earth radius R is introduced. Repeated
here for convenience, the fundamental equation reads:

∆g = −∂T
∂r
− 2

R
T (3.103)

Generally, outside the boundary sphere, we may formulate the spherical harmonic expan-
sion of the disturbing potential T as follows:
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T (r, θ, λ) =
∞∑
n=0

(
R

r

)n+1 n∑
m=0

[
∆C̄nm(T ) cosmλ+ S̄nm(T ) sinmλ

]
P̄nm(cos θ) (3.104)

Inserting equation (3.104) into equation (3.103) yields for ∆g:

∆g(θ, λ) =
∞∑
n=0

n∑
m=0

[
∆C̄nm(∆g) cosmλ+ S̄nm(∆g) sinmλ

]
P̄nm(cos θ) (3.105)

Spectral eigenvalues and dimensioning factors of T and ∆g are part of the respective
coefficients. Applying the abbreviations R̄nm and S̄nm introduced in equation (3.10), the
coefficients ∆C̄nm(∆g) and S̄nm(∆g) are given by:

{
∆C̄nm(∆g)
S̄nm(∆g)

}
=

1

4π

∫∫
σ

∆g(θ′, λ′)

{
R̄nm(θ′, λ′)
S̄nm(θ′, λ′)

}
(3.106)

where (θ, λ) is our point of interest, and (θ′, λ′) an arbitrary point.

By inspection of equation (3.104) and equation (3.105) we observe that they are equal,
albeit the coefficients. Thus, if a relation between the coefficients is found, the geodetic
boundary value problem (equation (3.103)) is solved in terms of ∆g. Equation (3.104)
and equation (3.105) are inserted into equation (3.103):

{
∆C̄nm(∆g)
S̄nm(∆g)

}
= − 2

R

{
∆C̄nm(T )
S̄nm(T )

}
− ∂

∂r

{
∆C̄nm(T )
S̄nm(T )

}
, n = 0, . . . ,∞ and m = 0, . . . , n

(3.107)

where the derivative of the radial term on the surface of the sphere gives:

∂

∂r

(
R

r

)n+1

= −
(
R

r

)n+1
n+ 1

r
= −n+ 1

R
(3.108)

The relation between T and ∆g becomes:

{
∆C̄nm(T )
S̄nm(T )

}
=

R

n− 1

{
∆C̄nm(∆g)
S̄nm(∆g)

}
(3.109)

Thus, for T in terms of ∆g:

T (θ, λ) =
∞∑
n=2

R

n− 1

n∑
m=0

[
∆C̄nm(∆g)R̄nm(θ, λ) + S̄nm(∆g)S̄nm(θ, λ)

]
(3.110)
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The surface integration expression for the coefficients (equation (3.106)) is interchanged
with the summation expression (equation (3.110)):

T (θ, λ) =
R

4π

∫∫
σ

∆g(θ′, λ′)
∞∑
n=2

1

n− 1

n∑
m=0

×

[
R̄nm(θ′, λ′)R̄nm(θ, λ) + S̄nm(θ′, λ′)S̄nm(θ, λ)

]
dσ (3.111)

Legendre’s decomposition formula reads (Hofmann-Wellenhof and Moritz, 2005):

Pn(cosψ) =
1

2n+ 1

n∑
m=0

[
R̄nm(θ′, λ′)R̄nm(θ, λ) + S̄nm(θ′, λ′)S̄nm(θ, λ)

]
(3.112)

where ψ is the spherical distance between point of interest and arbitrary point. Equation
(3.112) inserted into equation (3.111) yields:

T (θ, λ) =
R

4π

∫∫
σ

∆g

Spectral form of Stokes’s function︷ ︸︸ ︷
∞∑
n=2

2n+ 1

n− 1
Pn(cosψ) dσ (3.113)

which can also be expressed as:

T (θ, λ) =
R

4π

∫∫
σ

∆gS(ψ) dσ (3.114)

By applying Bruns’s formula, we arrive at Stokes’s formula:

N(θ, λ) =
R

4πγ

∫∫
σ

∆gS(ψ) dσ (3.115)

As a result of the above, spherical harmonics and Stokes’s formula are equivalent in the
global case. This also underlines that, since integration is performed globally, globally
available ∆g are strictly needed.
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3.5.3 Spherical harmonics versus radial basis functions

Spherical harmonics may be directly related to radial basis functions (Wittwer, 2009).
All radial basis functions are kernel functions that can be represented in an expansion in
Legendre polynomials as presented in equation (3.65) (Eicker, 2008). The gravitational
potential is a harmonic function, and consequently the radial basis functions are chosen
to be harmonic kernel functions.

Again, the spherical harmonic expansion of the disturbing potential T outside the bound-
ary sphere is our starting point, using position vector xP at computation point P for
brevity:

T (xP ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

FnmY
R
nm(xP ) (3.116)

If the Stokes coefficients Fnm are derived from a disturbing potential by spherical harmonic
analysis (equation (3.5), in terms of Y R

nm(xP )), we may write:

T (xP ) =
GM

R

∞∑
n=0

n∑
m=−n

(
R

r

)n+1 ∫∫
σR

T (xQ)Y R
nm(xQ) dσR Y

R
nm(xP ) (3.117)

=

∫∫
σR

T (xQ)
GM

R

∞∑
n=0

(
R

r

)n+1
1

R2

Right-hand side of equation (3.6)︷ ︸︸ ︷
n∑

m=−n

Ynm(xQ)Ynm(xP ) dσR (3.118)

=

∫∫
σR

T (xQ)
GM

R

∞∑
n=0

2n+ 1

4πR2

(
R

r

)n+1

Pn(rTP rQ) dσR (3.119)

where rTP rQ = cosψPQ is the scalar product of two unit vectors in the directions of
computation point P and arbitrary point Q and ψPQ is the distance between the two
points.

Inserting equation (3.65) into equation (3.119) yields:

T (xP ) =
GM

R

∫∫
σR

B(xP ,xQ)T (xQ) dσR (3.120)

=
GM

R
(B ∗ T )σR xQ ∈ σR and xP ∈ σexterior

R (3.121)

The above equation is known as the convolution formula, expressing that the integral of
a product of two different functions over a sphere σR, where one of the functions must be
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dependent on distance only, is a convolution on the sphere. Consequently, the potential
outside a sphere can be computed from the potential known on the sphere by a spherical
convolution (Bentel, 2010).

In turn, the spherical convolution in equation (3.121) may be expressed as:

GM

R
(B ∗ T )σR =

GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

BnFnmY
R
nm(xP ) (3.122)

For proof, see (Bentel, 2010). If the Shannon low-pass RBF is applied, Bn = 1 up to a
maximum degree N , and equation (3.122) is equivalent to equation (3.116).

The convolution in equation (3.121) is solvable through numerical integration and the
field is obtained directly. As presented in section 3.1.2 we can alternatively represent the
convolution as a linear combination of the kernel function, treated further in section 3.4.3,
now x is the computation point, and xk the origin of RBF number k:

(B ∗ f) (x) =
∞∑
k=1

dkB(x,xk) ≈
K∑
k=1

dkB(x,xk) (3.123)

Coefficient transfer between RBFs and spherical harmonics

We may derive spherical harmonic coefficients from RBF coefficients. If we consider a
general gravity field signal, its representation by a finite set of RBFs defined on the unit
sphere is presented in equation (3.85). When applying the addition theorem to equation
(3.85) and compare it with a gravity field signal in spherical harmonics (equation (3.1)),
the following connection is observed (Wittwer, 2009):

Fnm = Bn
4πR2

2n+ 1

K∑
k=1

dkP̄nm(rk) (3.124)

That is:

xSH = AxRBF (3.125)

or, written out:

 F00
...

FNmaxNmax

 =

 B0P̄00(xk1) · · · B0P̄00(xkn)
... . . . ...

BNmax
4πR2

2Nmax+1
P̄NmaxNmax(xk1) · · · BNmax

4πR2

2Nmax+1
P̄NmaxNmax(xkn)

·
d1

...
dK


(3.126)
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By the variance-covariance propagation law, we get the covariances of the SH coefficients
as follows (Leick, 2004):

CFnm = ACdkA
T (3.127)

Thus spectral analysis and direct comparison with spherical harmonics is possible.
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Chapter 4

Practical aspects of gravity field
modeling

This chapter explores the different practical aspects of gravity field modeling — necessary
reductions and corrections as well as practical computation schemes for geoid determina-
tion.

4.1 Reductions and corrections

Regardless which approach to geoid determination is chosen, the assumption that there
are no masses in the exterior of the surface does not hold. Molodensky’s approach does not
take the mass of the atmosphere into account. Stokes’s approach incorporates a spherical
approximation as well as the most important factor needed to be corrected for: no masses
outside the geoid is assumed. We must find a way to deal with the remaining topographic
masses.

4.1.1 Topographic reduction schemes

Several models for representing the topography and schemes for its reduction exist. Com-
mon for most of the methods is that knowledge of Earth crust density is assumed, for
which often a constant density (the standard density of the surface rocks of the continental
crust, ρ = 2.67 g · cm−3) is used.

The magnitude of the so-called indirect effect (the fact that a relocation of the masses
changes the geoid itself) as well as the smoothness and magnitude of the resulting gravity
anomalies are important considerations when choosing a specific gravity reduction scheme
(Bajracharya, 2003). The gravity anomalies have different geophysical interpretations
dependent on the reductions scheme used.

For a theoretically correct reduction of gravity to the geoid, the vertical gradient of gravity
is needed, i.e., ∂g/∂H (Hofmann-Wellenhof and Moritz, 2005). If g is the observed gravity
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value on Earth’s surface, then the value g0 on the surface of the geoid may be obtained
through a Taylor expansion:

g0 = g − ∂g

∂H
H · · · (4.1)

where H is the height of the gravity observation station P above the corresponding point
P0 on the geoid. If we further assume that there are no masses outside the geoid and keep
only the linear term of the series in equation (4.1) we obtain:

g0 = g + F (4.2)

where

F = − ∂g

∂H
H (4.3)

is the free-air reduction. For most applications, the normal gradient of gravity suffices,
such that:

F = −∂γ
∂h
H = +0.3086H [mGal] (4.4)

The free-air gravity anomaly is the gravity anomaly corrected for the observation station
height (the gravitational effect of topography is neglected):

∆gFA = g − γ + F (4.5)

It refers to the geoid in the Stokes approach and to Earth’s surface in the Molodensky
approach (i.e., normal gravity on either the ellipsoid or telluroid is applied, respectively),
see also Figure 2.7. For the geoid, however, the attraction of the topography must also
be accounted for.

The Bouguer reduction scheme removes all topographic masses above the geoid, and
smooth gravity anomalies are obtained (desired for numerical reasons). The topographic
masses are represented by a Bouguer plate. If we further assume that the area around the
gravity station P is flat and that the topographic masses between the geoid and Earth’s
surface have constant density, the attraction of the Bouguer plate (a circular cylinder with
thickness H and infinite radius) is:

AB = 2πGρH = 0.1119H [mGal] (4.6)

Equation (4.6) is the direct effect of the Bouguer plate on the measured gravity.
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By removing the Bouguer plate, the attraction of the observed gravity is subtracted. To
complete the reduction, free-air reduction must be applied, and the Bouguer gravity on
the geoid is obtained, summarized in Table 4.1.

Measured gravity in P g
Subtract Bouguer plate AB −0.1119H
Free-air reduction F +0.3086H
Bouguer gravity in P0 gB = g + 0.1976H

Table 4.1: Bouguer gravity on the surface of the geoid

Ultimately, the Bouguer anomaly is computed as follows:

∆gB = gB − γ0 (4.7)

A refined Bouguer reduction takes the deviation of the Bouguer plate from the topography
into account (compensates for the plate’s lack of shape) through a terrain correction
term, illustrated in Figure 4.1. At A we have a mass surplus ∆m+ causing an upward
attraction which, when removed, leads to an increase in g at P . At B a mass deficiency
∆m− is observed, which when added also leads to an increase in g at P . Thus, the
terrain correction term cP will always be positive. The refined Bouguer gravity anomaly
is computed as follows (with the total effect of the topographic masses AT = −AB+cP ):

∆gB = gP − γ0 + AT + F (4.8)

The terrain correction will be treated later in this section.

The indirect effects of the Bouguer reduction can become large ( 100 m) and consequently,
Bouguer anomalies are not suitable for precise geoid determination (Bajracharya, 2003).
Still, they may be used for gravity interpolation, cf. sections 2.5 and 3.3.1.

If g at a point Q inside the Earth is sought, a Prey reduction scheme may be used
(Hofmann-Wellenhof and Moritz, 2005). gQ can be computed from the observed gP by
the following approximation, cf. Table 4.2:

gQ = gP + 0.0848(HP −HQ) (4.9)

In summary, when free-air anomalies are corrected for the topography, Bouguer-anomalies
are obtained. They are smoother than the free-air anomalies, but still influenced by the
topography (Gerlach, 2003). In mountainous areas, the Bouguer anomalies are strongly
negatively correlated with the topography, suggesting that the topographic masses are in
some way compensated for, i.e., there is a form of mass deficit under the mountains. A
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Topography

Terrain correction

Terrain correction

Bouguer plate

Figure 4.1: Terrain correction in refined Bouguer reduction

Measured gravity in P g
Remove Bouguer plate above Q −0.1119(HP −HQ)
Free-air reduction +0.3086(HP −HQ)
Restore Bouguer plate above Q −0.1119(HP −HQ)
Gravity in Q gQ = g + 0.0848(HP −HQ)

Table 4.2: Prey reduction scheme by the remove-restore principle.
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similar effect can be seen in the deflections of the vertical, which are smaller than one
would expect in mountainous areas (Hofmann-Wellenhof and Moritz, 2005).

As it happens, the Earth is isostatically-compensated, and several theories describing this
exist. Generally a static equilibrium is assumed at some depth, where the pressure ex-
erted by the density layers above is constant (Gerlach, 2003). Classical isostasy theories
assume that isostatic compensation takes place locally, in vertical columns. The theory of
Airy-Heiskanen proposes that the thickness of the crust varies, the crust having constant
density. In other words, the compensating masses are in the form of “undulations in the
crust-mantle interface” (Blakely, 1996). Below mountains, crust with lower density ex-
tends into mantle with higher density. Conversely, below deep oceans the mantle extends
upward into the crust. The truth, however, is more complicated, and Earth’s isostatic-
compensation mechanisms vary with location depending on geology. Isostasy is mainly a
regional phenomena, and a region may be either uncompensated or compensated at deep
levels, e.g., the oceanic trenches and ridges (Forsberg, 1984).

A topographic-isostatic reduction scheme formalizes isostasy theories, such as the Airy-
Heiskanen model, where the thickness of the root (i.e., how deep into the mantle the crust
extends) is given by (Forsberg, 1984):

t =
ρ

(ρM − ρC)
h =

ρ

∆ρ
h (4.10)

where ρ is the density of the topography, ∆ρ the density contrast between crust ρC and
mantle ρM , and the normal density model has crust thickness D, cf. Figure 4.2.

Thus isostatic gravity anomalies are formed by removing the effect of the topography
in addition to restoring the compensated masses in the Earth’s crust using, e.g., the
Airy-Heiskanen model:

∆gAiry-Heiskanen = gP − γ0 + F − δA (4.11)

where δA = ATopography−AAiry-Heiskanen is the direct topographic effect, i.e., the difference
between the attraction of topography and the attraction of the compensated masses.
Both ATopography and AAiry-Heiskanen may be computed by the following integrals, based on
Newton’s integral, and for a planar Earth σ:

ATopography = Gρ

∫∫
σ

 h∫
0

h−H
r3

dH

 dσ (4.12)

AAiry-Heiskanen = Gρ

∫∫
σ

 −D−h∫
−D−t−h

h−H
r3

dH

 dσ (4.13)
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Figure 4.2: Airy-Heiskanen isostasy model

To summarize the computation scheme for Airy-Heiskanen anomalies, we start with grav-
ity gP measured on Earth’s surface. Next, the topography above the geoid is removed,
and the following effect on gravity ATopography determined. The masses are shifted in-
side the geoid, and this mass compensation effect AAiry-Heiskanen is computed, allowing the
determination of δA.

As mentioned above, most of Earth’s topography is isostatically compensated, and conse-
quently the isostatic anomalies are usually quite small (Torge and Müller, 2012). Typical
uncompensated areas are the boundaries of continental plates and regions experiencing
glacial isostatic adjustment (e.g., Scandinavia). A consequence of the nature of isostatic
anomalies is that they are of interest to the field of geodynamics (deviations of the isostatic
anomalies from zero indicate isostatic imbalance and may reveal geological features). Like
Bouguer anomalies, isostatic anomalies may also be successfully applied in gravity inter-
polation. However, the indirect effects of isostatic anomalies may amount to 10 m, and
consequently, they are not recommended for precise geoid determination.

Another reduction scheme which yields small indirect effects, and therefore works well for
geoid determination, is Helmert’s condensation method. It is a classical reduction scheme
which is suitable to determine the geoid. In the first Helmert condensation method, the
topographic masses are shifted along the vertical and condensed at a parallel surface below
the geoid. In the second condensation method, the masses are condensed onto the geoid
directly. The latter method will be introduced here. It is assumed that the condensed
layer has a surface density equal to the product of the density and the topographic height,
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Figure 4.3: Helmert’s second condensation reduction

cf. Figure 4.3. The attraction of the condensed topography, represented with a Bouguer
plate, becomes:

AHelmert = 2πGρH (4.14)

Recalling the refined Bouguer direct topographical effect AT = −AB + cP , we get δA =
+cP . The quantity represents the high frequency of the gravity signal.

Helmert anomalies (also known as Faye anomalies) are thus formed in the following way:

∆gHelmert = gP − γ0 + F + cP (4.15)

Free-air gravity anomalies, cf. equation (4.5), should not be confused with Helmert anoma-
lies, but free-air anomalies can be seen as an approximation to Helmert anomalies at
gravity stations on the sea surface or in relatively flat terrain, since the terrain correction
term is negligible in those cases (Bajracharya, 2003).

A main purpose of introducing the quasigeoid instead of the geoid, was to avoid assump-
tions on topographic density, i.e., avoid (a full) topographic reduction. Residual Terrain
Modeling (RTM) is a common tool for terrain reduction in quasigeoid computation (Fors-
berg, 1984). The reduction is applied mainly to smooth the gravity values, making them
easier to interpolate and form block mean values from. It is not a full topographic reduc-
tion (containing all frequencies of the topographic spectra), and is applied only on the
higher frequencies, i.e., on the residual (remaining) terrain model. The RTM anomalies
are similar to the isostatic anomalies.
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Figure 4.4: Residual terrain model as a difference between the effects of topography and reference
topography

In RTM we introduce a mean surface topography (MST), which generates a gravity field.
The residual terrain model refers to the MST, and is the deviation of the MST from
Earth’s surface. As the RTM values are positive and negative depending on whether the
represented areas are above or below the MST respectively, they will even out when the
distance from the computation point is large. The MST may be modeled by a spherical
harmonic expansion of the topography as follows:

HMST =
Nmax∑
n=0

n∑
m=0

P̄nm(cos θ)
[
CMST
nm cosmλ+ SMST

nm sinmλ
]

(4.16)

where CMST
nm and SMST

nm are the spherical harmonic coefficients of topography from a digital
terrain model (DTM), and are thus purely geometrical. Nmax is normally chosen equal to
the GGM used in the geoid or quasigeoid computation.

The direct effect of the RTM (topography and MST) may be calculated by Newton’s
integral as introduced for the Airy-Heiskanen approach. It may also be approximated by
(Forsberg, 1984):

δARTM = −2πGρ(H −Href) + cP (4.17)

In equation (4.17), the first term is the difference between a Bouguer plate computed with
the thickness of the computation point height and a Bouguer plate computed with the
height of the MST, cf. Figure 4.4.

Also, when applying RTM, we may find ourselves in a situation where the gravity mea-
surements are inside the topographic masses after the MST is added. It follows that the
requirement of harmonicity is not fulfilled, and a harmonic correction needs to be added
(Omang et al., 2012).
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RTM gravity anomalies are computed as follows:

∆gRTM = gP − γ0 + δARTM (4.18)

The terrain correction is generally important in the different gravity reduction schemes,
representing the irregular part of the topography (Bajracharya, 2003). The terrain cor-
rection integral also stems from Newton’s integral for the potential, but does not contain
the full topographic signal, only the highest frequencies (Omang and Forsberg, 2000):

cP = Gρ

∫∫
σ

 h∫
HP

h−HP

r3
dH

 dσ (4.19)

There are various ways to compute the terrain correction as given in equation (4.19) (or,
indeed the other triple integrals presented in this section). Direct numerical integration
in three dimensions (triple summation) may be performed, or an analytical expression
for the integral in the brackets (with respect to height H) may be found, and in turn, a
two-dimensional numerical integration may be performed (double summation). Alterna-
tively, the computation can be done efficiently in the frequency domain with Fast Fourier
Transform techniques, cf. section 4.2.7. Even expressions based on a model of rectangular
prisms (bounded by planes parallel to the coordinate planes and defined by coordinates
(x1, x2, y1, y2, z1, z2)) may be derived (Bajracharya, 2003). The contribution of one prism
only (subsequent numerical integration over all prisms necessary) may be formulated as:

cP = Gρ
∣∣∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z

(
tan

xy

zr

)−1 ∣∣∣x2

x1

∣∣∣y2

y1

∣∣∣z2
z1

(4.20)

In Molodensky’s approach, the terrain correction can approximately replace the g1 term
(Moritz, 1980).

To summarize, terrain reductions are used, even when not theoretically necessary, to
smooth the gravity field making it easier to predict gravity values and form block mean
values. The classical terrain correction, which is always positive, must be computed for
an area at a relatively large distance from the computation point, compared to RTM.
The small RTM values with varying positive and negative sign can be neglected at larger
distances, making it computationally preferable.

A summary of the treated reduction methods is found in Table 4.3, based on (Bajracharya,
2003).

As mentioned in the introduction of this section, the relocation of the topographic masses
changes the gravity field itself, and this indirect effect has to be considered. Thus after
applying a reduction scheme (the direct effect), we are on a different level surface than the
geoid, which is termed the co-geoid (Torge and Müller, 2012). The indirect effect varies
with the applied terrain reduction scheme, but a general setup for the geoid or quasigeoid
computation can be formulated:
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Reduction scheme Indirect effects Geophysical meaning
Bouguer ∼ 100 m Yes, correlated

with tectonic structures
Airy-Heiskanen ∼ 10 m Yes, deeper crustal

structures may
be revealed

Helmert condensation ∼ 0.1 m No
RTM ∼ 0.5 m restored terrain effect No

Table 4.3: Summary of gravity reduction characteristics

1. Measured gravity is reduced by the direct effect of the topographic masses (and a
direct effect of the dislocated masses may be added, cf. Airy-Heiskanen or RTM).
Newton’s law of gravitation is the starting point for the different computations.

2. The primary indirect effect on the potential, due to the aforementioned displacement
of masses, must be computed, depending on the reduction method used:

∆T = T − T(Helmert,Airy-Heiskanen,RTM) (4.21)

where T is the potential of the actual topography and T(Helmert,Airy-Heiskanen,RTM) is
the potential of the masses for a chosen reduction scheme.

3. The vertical distance between geoid and co-geoid is computed by Bruns’s formula:

∆N =
∆T

γ0

(4.22)

4. The gravity values must be reduced from the co-geoid to the geoid, which is termed
a secondary indirect effect. A free-air reduction may be used here (Torge and Müller,
2012).

5. The co-geoid NC is computed using, e.g., Stokes’s formula

6. The geoid N is computed by N = NC + ∆N .

For the RTM reduction scheme, we will have an indirect effect on the quasigeoid, equal
to the distance between the actual telluroid and the changed telluroid.
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Figure 4.5: Atmospheric layers above and below computation point P

4.1.2 Atmospheric correction

Further, the mass of the atmosphere has to be considered and reduced for (Gerlach, 2003).
In a remove-restore manner, the gravity values are reduced by the atmospheric effect δga
and ultimately the effect is restored to the geoid. The Earth is spherically approximated
and the topography neglected. Density variations are only experienced in the vertical
direction. The atmospheric layers above a considered point P (Labove(h > hP )) have no
gravity effect on P , only the layers below P (Lbelow(h < hP )) are considered, cf. Figure
4.5. The effect comprises:

ga =
Gmbelow(r)

r2
(4.23)

where r is the geocentric radius vector of P , mbelow(r) the mass of Lbelow.

Important to note when reducing gravity anomalies for the atmospheric effect is that
Earth’s mass as defined in different geodetic reference systems already includes the mass
of the atmosphere, i.e., γ0 includes the atmospheric mass. We get for the atmospheric
reduction of the gravity anomaly:

∆g = gP − γ0 −
(
−Gmabove(r)

r2

)
= gP − γ0 + δga (4.24)

A simplified formula for computing δga is:

δga = 0.87e−0.116H1.047

(4.25)

where the result is given in mGal and the orthometric height H of the computation point
is in km.
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4.1.3 Ellipsoidal correction

Stokes’s formula as presented here is a solution to a spherical boundary value problem,
cf. Table 2.3. The gravity anomaly input data must strictly be given on the sphere, while
in reality, gravity anomalies are observed on Earth’s surface. As mentioned earlier, the
systematic error of neglecting the small flattening of the Earth is about 0.3 % of N .

Solving the ellipsoidal boundary value problem rather than the spherical one can be
laborious, with regard to the representation of the disturbing potential T in terms of
ellipsoidal harmonics (Fei and Sideris, 2000). Another solution sees Stokes’s formula as
a first-order solution to the ellipsoidal boundary value problem, and introduces a power
series approximation up to the order of the square of the eccentricity of the ellipsoid, given
by:

e2 =
a2 − b2

a2
(4.26)

Thus for the ellipsoidal reduction of the gravity anomaly, we obtain:

∆g = ∆g0 + e2∆g1 (4.27)

where e2∆g1 is the ellipsoidal correction term. The gravity input data is given on the
ellipsoid, but since the direct transfer of the gravity observable to the disturbing potential
T by solving the ellipsoidal boundary value problem is not practical, spherical approx-
imation is introduced. Therefore, as can be seen in (4.27), ∆g1 must be computed in
order to transfer the gravity observable ∆g to ∆g0. Formulae for the computation of ∆g1

can be found in, e.g., (Fei and Sideris, 2000). In light of this, Stokes’s formula takes the
following form:

N =
R

4πγ0

∫∫
σ

(
∆g − e2∆g1

)
S(ψ) dσ (4.28)

The ellipsoidal correction can be applied to the collocation equation as follows (Moritz,
1980):

N̂P = CN∆g0

C−1
ij

(
∆gi − e2∆g1

i

)
(4.29)

The ellipsoidal correction can alternatively be computed using spherical harmonic ex-
pansions of the disturbing potential and gravity anomalies at the ellipsoid, which is also
applicable in a combined geoid solution and easily supports different kernel modifications
(Claessens and Featherstone, 2007).
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4.2 Practical evaluation methods for geoid
determination

The previous sections in this thesis suggests that the gravity signal can be split up in
parts containing the low frequencies (represented by a GGM), the medium frequencies
(represented by regional gravity information) and the high frequencies (represented by
the topography, e.g., a digital terrain model) as follows:

N = NGGM +N∆g +Nterrain reduction (4.30)

Spherical harmonic synthesis, as presented in section 3.1 is suitable for computing NGGM.
N∆g may be computed by Stokes integration, cf. section 3.2, by the RBF approach using
parameter estimation (numerical integration is also possible here), cf. section 3.4, or by
collocation, cf. section 3.3.2.

For the computation of a precise geoid, the input gravity data must not only present a
high resolution, but also have global coverage. Observed gravity values may account for
the high resolution (or the finer structures of the geoid), but are not globally available.
GGMs give global geoid solutions, but do not incorporate high resolution data.

The geoid (or quasigeoid) is mostly estimated using the remove-restore principle, a com-
bination in the frequency domain of the different gravity field sources mentioned above.

Generally, the remove-restore technique can be described in the following steps (Gerlach,
2003):

1. A relatively large part of the gravity signal is removed (long-wavelength GGM effect
and the effect of topography), its value becomes a relative small residual and easy
to grid.

2. Stokes’s or Molodensky’s formula, collocation or radial basis functions is applied to
transform the gravity signal to geoid height or height anomaly.

3. The removed part of the signal is restored. The effect of topography depends on the
reduction method used, cf. section 4.1.

The remove-restore principle has many advantages (Gerlach, 2003). The computationally
intensive integral formulae may be restricted to a limited area where high resolution
information is available. The integration areas farther away are covered by the long-
wavelength information found in a GGM. The error due to spherical approximation of
Stokes’s formula is reduced, since the residual gravity signal is only a small part of the
whole gravity signal, especially when the high-frequency structures of the topography
is additionally reduced. In addition, topographic reductions make the gravity values
smoother, and subsequently it is easier to form block mean values needed when evaluating
the surface integrals.
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4.2.1 Combination in the frequency domain

There are, in principle, two different methods for combining gravity field data: combina-
tion in the frequency domain, which is the classical remove-restore approach, or combina-
tion in the spatial domain (Gerlach, 2003). In the following, we assume the application
of Stokes’s integral formula, but other approaches for modeling the N2 term, such as
collocation, may of course be used as well.

By combination in the frequency (or spectral) domain, the gravity signal is as readily
mentioned divided into different frequency parts. The gravity anomaly ∆g is reduced for
the long- and medium-wavelength parts of the gravity anomaly ∆gGGM = ΣNmax

n=2 ∆gn, cf.
Table 3.1, such that only the short-wavelength information remains. As seen above, N2

may be further reduced for topographic effects. The subsequent integration yields the
short-wavelength part of the geoid. The long- and medium-wavelength parts of the geoid
are computed by a GGM, and are thus restored as follows:

N = N1 +N2 +N3 (4.31)

where

N1 =
GM

γ0r

Nmax∑
n=2

λupw
n

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
(4.32)

N2 =
R

4πγ0

∫∫
σ0

(∆g −∆gGGM)S(ψ) dσ (4.33)

N3 =
R

4πγ0

∫∫
σ−σ0

(∆g −∆gGGM)S(ψ) dσ (4.34)

The integration of the residual anomalies is done in two separate zones, where the near
zone is a spherical cap σ0 with radius (spherical distance) ψ0 from computation point P ,
and the distant zone comprises σ − σ0, cf. Figure 4.6. The integration of gravity data in
σ0 with integration radius ψ0 is a truncated integration (Šprlák, 2010). Since the residual
signal is only a small portion of the total signal and its influence decreases with increasing
distance from the computation point, the residual signal of the far zone (N3, also termed
the truncation error or omission error) can be neglected if ψ0 is large enough (Gerlach,
2003). In practice, the size of σ0 may be chosen such that N3 is negligible. Consequently
integration has to be performed in the near zone only.
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Figure 4.6: Near (inner) zone σ0 and distant (far) zone σ − σ0 in geoid computation

4.2.2 Combination in the spatial domain

Combination in the spatial domain was originally proposed by Molodensky (Šprlák, 2010).
It similarly secures that integration only has to be performed in the near zone, and splits
the gravity signal in different spatial parts, such that N = N1 + N2 + N3. However, in
part N2, instead of integrating the residual signal, the unreduced gravity anomaly ∆g is
integrated (the complete spectral bandwidth) (Gerlach, 2003). Only the contribution of
the distant zone is missing. The distant zone is split into parts N1 covering the spectral
domain up to degree Nmax of a chosen GGM, and N3 the frequencies above that. Both
N1 and N3 are filtered in such a way that the near zone in no way contributes to the
spherical harmonic syntheses. This is done by looking at the effect of the distant zone:

R

4πγ0

∫∫
σ−σ0

S(ψ)∆g dσ (4.35)

Equation (4.35) accounts for the truncation (omission) error, i.e., N3. A truncation error
kernel is introduced (Šprlák, 2010):

∆K(ψ) =

{
0, 0◦ ≤ ψ ≤ ψ0

S(ψ), ψ0 < ψ ≤ π
(4.36)

The truncation error kernel may also be expressed as a series with Legendre polynomials
as base (a Fourier expansion of the error kernel) :
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∆K(ψ) =
∞∑
n=2

2n+ 1

2
Qn(ψ0)Pn(cosψ) (4.37)

where Qn(ψ0) are Molodensky’s truncation coefficients (i.e., the Fourier coefficients of the
truncation error kernel):

Qn(ψ0) =

π∫
0

∆K(ψ)Pn(cosψ) sinψ dψ (4.38)

=

π∫
ψ0

S(ψ)Pn(cosψ) sinψ dψ (4.39)

The truncation coefficients are not computed analytically or by numerical methods, but
rather by recurrence relations (Šprlák, 2010).

With the truncation error kernel, equation (4.35) may be written as follows:

R

4πγ0

∫∫
σ

∆K(ψ)∆g dσ (4.40)

Now, equation (4.40) performs an an integration over the whole sphere (a global integral),
allowing a spherical harmonic expansion! Equation (4.40) thus equals:

R

4πγ0

∫∫
σ

∞∑
n=0

2n+ 1

2
Qn(ψ0)Pn(cosψ)∆g dσ =

R

2γ0

∞∑
n=2

Qn(ψ0)∆gn (4.41)

Equation (4.41) is a series formula for the distant zone, and for the geoid height we may
write:

N1 =
GM

γ0r

Nmax∑
n=2

λupw
n

(n− 1)

2
Qn(ψ0)

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
(4.42)

N2 =
R

4πγ0

∫∫
σ0

∆gS(ψ) dσ (4.43)

N3 =
GM

γ0r

∞∑
n=Nmax+1

λupw
n

(n− 1)

2
Qn(ψ0)

n∑
m=0

P̄nm(cos θ)
[
∆C̄nm cosmλ+ S̄nm sinmλ

]
(4.44)

Note that the truncation error N3 in equation (4.44) is completely equivalent to N3 in
equation (4.34).
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Figure 4.7: Concept of combination in the frequency and spatial domains

4.2.3 Geoid estimators

Geoid estimators corresponding to the different combination approaches may be formu-
lated. A geoid estimator is a practical computation estimator for the geoid, based on the
combination techniques described above. The following estimators have neglected the N3

term.

Geoid estimators for the combinations in the frequency (FD) and spatial (SD) domains
take the following form (Šprlák, 2010):

ÑFD =
R

4πγ0

∫∫
σ0

[
∆g −

Nmax∑
n=2

∆gn

]
S(ψ) dσ +

R

2γ0

Nmax∑
n=2

2

n− 1
∆gn (4.45)

ÑSD =
R

4πγ0

∫∫
σ0

S(ψ)∆g dσ +
R

2γ0

Nmax∑
n=2

Qn(ψ0)∆gn (4.46)

Both combinations in the frequency domain (section 4.2.1) and spatial domain (section
4.2.2) are completely equivalent, and there is no particular reason to choose one over the
other, cf Figure 4.7 (de Min, 1996).

A downside to combination in the spatial domain is that gravity anomalies often are given
as block mean values in a regular grid (Gerlach, 2003). The truncation error kernel cuts
out a spherical cap around the computation point, thus we might get inconsistencies at
the cap edge. However, combination in the spatial domain is well suited for studying error
behavior, e.g., estimate the truncation (omission) error, see section 4.2.4.
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Ågren and Sjöberg (2004) concluded that the classic remove-restore combination in the
frequency domain is quite sensitive to gravity anomaly data correlations (which are often
present in a data set) and also sensitive to the lower frequencies of the terrestrial gravity
data.

Ellmann (2010) states that although “one would intuitively expect that any numerical error
in the integration becomes smaller due to the use of reduced gravity anomalies” studies
referred to show that the remove-restore “result is as sensitive to various biases as is the
case when Stokes’s formula is used with complete anomaly as the integral argument”.

4.2.4 Statistics of geoid estimators

The statistical behavior of a geoid estimator is commonly described by the global mean
square error (GMSE) of the estimator. It measures the global average over the sphere of
the square of the error, where the error is the difference between values implied by the
estimator and the true geoid height as formulated in the original Stokes formula. Ophaug
(2013) reviewed the GMSE of the geoid estimator ÑSD and found it to be:

m2
ÑSD =

1

4π

∫∫
σ

(
ÑSD −N

)2

dσ

=

Errors of the GGM︷ ︸︸ ︷[
R

2γ0

]2 Nmax∑
n=2

[Qn(ψ0)]2δcn +

Truncation errors︷ ︸︸ ︷[
R

2γ0

]2 ∞∑
n=Nmax+1

[Qn(ψ0)]2cn

+

Terrestrial data errors︷ ︸︸ ︷[
R

2γ0

]2 ∞∑
n=2

[
2

n− 1
−Qn(ψ0)

]2

σ2
n (4.47)

The signal degree variances cn are computed from the potential coefficients of a GGM as
follows:

cn =

(
GM

r2

)2

(n− 1)2

n∑
m=0

(
∆C̄2

nm + S̄2
nm

)
(4.48)

For the degrees above Nmax a degree variance model such as Tscherning/Rapp (equation
(2.51)) may be used. The error degree variances δcn are computed from the errors of the
potential coefficients of the same GGM:

δcn =

(
GM

r2

)2

(n− 1)2

n∑
m=0

(
δ(∆C̄nm)2 + δ(S̄nm)2

)
(4.49)
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As for the terrestrial gravity anomaly variance, it can be estimated as follows (Moritz,
1980):

σ2
n = cT (1− µ)µn, 0 < µ < 1 (4.50)

where cT and µ are constants estimable from an isotropic covariance function C(ψ), pre-
sented here in a closed form:

C(ψ) = CT

{
1− µ√

1− 2µ cosψ + µ2
− (1− µ)− (1− µ)µ cosψ

}
(4.51)

With a spherical distance of zero, we get the variance C0 = C(0) = cTµ
2, and C(ψ0) =

1
2
cTµ

2, where ψ0 is the correlation length, cf. section 2.5. cT and µ may then be found
iteratively.

Ellmann (2005) suggests to adapt the value of C0 that corresponds best to the local
terrestrial data to be used for geoid determination. For example, if the gravity anomalies
are gridded, their accuracy can be determined by comparing the gridded anomalies with
known gravity anomalies. The RMS of the differences between gridded and “true” gravity
anomalies may be used for determining C0. With C0 determined, σ2

n can be computed.
One should bear in mind that the quality of the terrestrial data involved (with varying
coverage and accuracy) may differ substantially from the global average! Therefore, any
σ2
n model may be questioned and should be treated carefully.

The errors of the GGM represent a commission error, while the truncation error represents
an omission error, cf. section 2.5. The GMSE describes how errors in terrestrial and
satellite data propagate in the chosen geoid estimator. Individual terms of equation
(4.47) may be studied to see how each contribute to the global error. Convergence and
filtering properties of a chosen kernel modification can be investigated and information
with regard to a suitable integration radius ψ0 and error propagation of the terrestrial
gravity anomalies σn can be derived. The GMSE may be used in kernel modification
comparison studies, such as (Ågren and Sjöberg, 2004), (Ågren, 2004) or (Šprlák, 2010).

4.2.5 Kernel modifications

The truncation error term, N3, is often neglected. This does not, of course, mirror real-
ity, since the residual gravity anomalies are not necessarily zero outside the integration
domain. Instead one could try to reduce the truncation error, which is the main goal with
kernel modifications.

Two kernel modification approaches exist:

1. Deterministic modifications, focusing on minimizing the truncation error and faster
convergence (Šprlák, 2010)
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2. Stochastic modifications, aiming to reduce the constituents of the GMSE (truncation
error, GGM error, terrestrial data error) in a least-squares sense (Ellmann, 2001)

4.2.5.1 Deterministic modification schemes

The original idea of kernel modifications stems from Molodensky, which will be presented
in the following. The following geoid estimator was proposed:

ÑMol =
R

4πγ0

∫∫
σ0

[
S(ψ)−

L∑
k=2

2k + 1

2
skPk(cosψ)

]
∆g dσ (4.52)

+
R

4πγ0

∫∫
σ−σ0

SL(ψ)︷ ︸︸ ︷[
S(ψ)−

L∑
k=2

2k + 1

2
skPk(cosψ)

]
∆g dσ (4.53)

+

N1︷ ︸︸ ︷
R

4πγ0

∫∫
σ

L∑
k=2

2k + 1

2
skPk(cosψ)∆g dσ (4.54)

The effect of the distant zone was considered most important, so this term was sought
minimized by the use of the Schwarz inequality, which gives the upper bound of the square
of an integral. The

∫∫
σ−σ0

∆g2 dσ term cannot be minimized, since ∆g is our given data.

The kernel, however,
∫∫

σ−σ0

[SL(ψ)]2 dσ can be minimized, i.e., a lowest upper bound for the

integral may be found. The kernel is thus partially differentiated with respect to the
coefficients sk and set equal to zero:

π∫
ψ=ψ0

[
S(ψ)Pn(cosψ)−

L∑
k=2

2k + 1

2
skPk(cosψ)Pn(cosψ)

]
sinψ dψ = 0 (4.55)

L∑
k=2

2k + 1

2
sk

enk(ψ0)︷ ︸︸ ︷
π∫

ψ=ψ0

Pk(cosψ)Pn(cosψ) sinψ dψ =

Qn(ψ0)︷ ︸︸ ︷
π∫

ψ=ψ0

S(ψ)Pn(cosψ) sinψ dψ (4.56)

where enk are termed Paul’s coefficients, numerically computable by recurrence formulae
(Šprlák, 2010). L is often termed the degree of modification, and here it is chosen equal
to the maximum degree of the chosen GGM. Equation (4.56) represents the system of
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equations, solvable for the unknown sk coefficients. If it is assumed that harmonic coef-
ficients of ∆g are available up to a certain degree Nmax, we may formulate the following
geoid estimator (Jekeli, 1981):

ÑMol =
R

4πγ0

∫∫
σ0

SL(ψ)∆g dσ +
R

2γ0

Nmax∑
n=2

sn∆gn (4.57)

Meissl’s kernel modification makes the kernel continuous by subtracting the value of
Stokes’s kernel at the edge of the near zone, SMeissl(ψ) = S(ψ) − S(ψ0), 0◦ ≤ ψ ≤ ψ0

(Jekeli, 1981). The following geoid estimator can be formulated:

ÑMeissl =
R

4πγ0

∫∫
σ0

SMeissl(ψ)∆g dσ +
R

2γ0

Nmax∑
n=2

QMeissl
n (ψ0)∆gn (4.58)

For the truncation coefficients, we may write:

QMeissl
n (ψ0) =

π∫
0

∆KMeissl(ψ)Pn(cosψ) sinψ dψ (4.59)

= S(ψ0)

ψ0∫
0

Pn(cosψ) sinψ dψ +

Qn︷ ︸︸ ︷
π∫

ψ0

S(ψ)Pn(cosψ) sinψ dψ (4.60)

Wong and Gore suggest a kernel modification that removes the low-degree Legendre poly-
nomials from Stokes’s kernel, not requiring any minimization. The idea is that when only
high frequencies are present in the kernel, the lower frequencies will never be multiplied
by our terrestrial ∆g data. The lower frequencies are readily available in the harmonic
coefficients of ∆gn. Wong and Gore’s kernel modification thus acts as a high-pass filter.
Their geoid estimator can be written as follows:

ÑWG =
R

4πγ0

∫∫
σ0

[
S(ψ)−

L∑
k=2

2k + 1

k − 1
Pk(cosψ)

]
∆g dσ (4.61)

+
R

4πγ0

∫∫
σ−σ0

[
S(ψ)−

L∑
k=2

2k + 1

k − 1
Pk(cosψ)

]
∆g dσ (4.62)

+
R

4πγ0

∫∫
σ

L∑
k=2

2k + 1

k − 1
Pk(cosψ)∆g dσ (4.63)
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From the above it is clear that Wong and Gore have made a particular choice of coefficients
sk, i.e., sk = 2/(k − 1). If convolution of Stokes’s integral using Wong and Gore’s kernel
is performed over the whole sphere, the result is identical to the remove-restore approach,
where the low frequencies are removed from the gravity anomalies to yield a residual
gravity signal. However, in a regional application, if the degree of modification L differs
from Nmax different results may be expected.

4.2.5.2 Stochastic modification schemes

The following stochastic kernel modification approach has been fronted by Professor L.
E. Sjöberg at the Royal Institute of Technology (Kungliga Tekniska Högskolan, KTH) in
Sweden since the mid-1980s (Sjöberg, 2003). In the literature, this stochastic modification
of Stokes’s kernel is therefore often termed the “KTH approach”, “method of KTH” or
“Sjöberg’s approach”, e.g., (Ellmann, 2005) or (Ågren, 2004). However, others have also
pursued kernel modification utilizing stochastic models, e.g., (Wenzel, 1981).

Sjöberg (2003) proposes the following optimum geoid estimator, with modification pa-
rameters sn and bn:

ÑS =
R

4πγ0

∫∫
σ0

SL(ψ)∆g dσ +
R

2γ0

Nmax∑
n=2

bn∆gn (4.64)

where

bn = (QL
n + s?n)

cn
cn + δcn

, 2 ≤ n ≤ Nmax (4.65)

Note that, e.g., for Meissl’s deterministic modification, bn = 0 and sn = 2S(ψ0), for
Molodensky’s modification bn = sn and for Wong and Gore’s modification bn = QNmax

n +sn
and sn = 2/(n− 1) (Sjöberg, 2003).

The modified Stokes function is as usual:

SL(ψ) =

Spectral representation of S(ψ)︷ ︸︸ ︷
∞∑
n=2

2n+ 1

n− 1
Pn(cosψ) −

L∑
n=2

2n+ 1

2
snPn(cosψ) (4.66)

The truncation coefficients are:

QL
n = Qn −

L∑
k=2

2k + 1

2
skenk(ψ0) (4.67)
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where Qn denotes Molodensky’s truncation coefficients and enk(ψ0) are Paul’s coeffi-
cients.

With the introduction of spectral errors εTn and εSn of the terrestrial and GGM derived
gravity respectively, the geoid estimator can be expressed as follows, in spectral form:

ÑS =
R

2γ0

∞∑
n=2

(
2

n− 1
−QL

n − s?n
)

(∆gn + εTn ) +
R

2γ0

Nmax∑
n=2

(QL
n + s?n)(∆gn + εSn) (4.68)

The modification parameters s?n are:

s?n =

{
sn if 2 ≤ n ≤ L

0 if n > L
(4.69)

An expression for the GMSE of equation (4.68) can be expressed as follows, cf. section
4.2.4:

m2
ÑS =

[
R

2γ0

]2 Nmax∑
n=2

(b2
nδcn) +

[
R

2γ0

]2 ∞∑
n=2

[b?n −QL
n(ψ0)− s?n]2cn

+

[
R

2γ0

]2 ∞∑
n=2

[
2

n− 1
−QL

n(ψ0)− s?n
]2

σ2
n (4.70)

where

b?n =

{
bn if 2 ≤ n ≤ L

0 otherwise
(4.71)

Comparing the stochastic approach to Molodensky’s kernel modification approach, where
Molodensky’s approach minimized the kernel in a least-squares sense, the stochastic ap-
proach minimizes the GMSE. Consequently, the least-squares parameters are obtained
by differentiating the GMSE with respect to sn,

∂m2
ÑS

∂sn
. The resulting expression is then

equated to zero, and the modification parameters sn are solved by the method of least-
squares from the following linear system of equations:

L∑
r=2

akrsr = hk, k = 2, 3, . . . , L (4.72)
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where

akr =
∞∑
n=2

EnkEnrCn + δkrCr − EkrCk − EkrCr (4.73)

and

hk = Ωk −QkCk +
∞∑
n=2

(QnCn − Ωk)Enk (4.74)

where

Ωk =
2σ2

k

k − 1
(4.75)

δkr =

{
1 if k = r

0 otherwise
(4.76)

Ck = σ2
k +

{
ckδck/(ck + δck) if 2 ≤ k ≤ Nmax

ck if k > Nmax
(4.77)

Enk =
2k + 1

2
enk(ψ0) (4.78)

Ellmann (2005) has developed software that computes the stochastic modification param-
eters sn and bn for, e.g., the herein described optimum stochastic modification. Ellmann
(2012) released an update to the software, allowing computation of gravity anomaly degree
variances from high-degree GGMs.

Problems arise when trying to solve the above linear system of equations (Ellmann, 2005).
Particularly, the design matrix A is ill-conditioned, cf. section 5.1. Consequently, a
regularization strategy must be chosen for solving the system, and Ellmann (2005) uses
the truncated singular value decomposition (T-SVD) approach, see, e.g., (Aster et al.,
2005). Ågren (2004) discusses, e.g., why the system of equations is ill-conditioned and
needs to be handled by regularization techniques.

Another remark regarding the above described stochastic modification approach, is that
surface gravity anomalies are used for determining the geoid. All necessary corrections
are subsequently added to ÑS, so-called additive corrections. They comprise the combined
topographic correction (including the sum of indirect and direct effects of topography),
downward continuation effect and a combined atmospheric correction and the ellipsoidal
correction. Details can be found in, e.g., (Ellmann, 2001).
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Figure 4.8: Numerical integration on a regular geodetic coordinate grid

4.2.6 Numerical integration

Stokes’s formula, as an integral formula example, may in geodetic coordinates be writ-
ten:

N(ϕP , λP ) =
R

4πγ0

2π∫
λQ=0

π
2∫

ϕQ=−π
2

S(ψ)∆g(ϕQ, λQ) cosϕQdϕQdλQ (4.79)

where (ϕP , λP ) are the geodetic coordinates of the computation point P , (ϕQ, λQ) are the
geodetic coordinates of each gravity anomaly ∆g(ϕQ, λQ) . ψPQ is the distance between
these two points. The integral formulae, such as equation (4.79), may be solved numeri-
cally (approximation by summation). The Earth may then be subdivided into a regular
grid with blocks (or cells) q of size (∆ϕ ×∆λ). Gravity anomalies inside each block are
used to form block mean values ∆ḡq, cf. Figure 4.8. Equation (4.79) becomes:

N(ϕP , λP ) =
R

4πγ0

ϕ2∑
ϕq=ϕ1

λ2∑
λq=λ1

∆ḡqS(ψPq)Aq (4.80)

where Aq = dσ = cosϕq∆ϕq∆λq is the area of each block. ψPq is the spherical distance
from the computation point P to the block center, computable from (Hofmann-Wellenhof
and Moritz, 2005):

cosψPq = sinϕP sinϕq + cosϕP cosϕq cos (λq − λP ) (4.81)



98 Chapter 4 Practical aspects of gravity field modeling

The singularity occurring at ψPq = 0 can be treated as follows: The innermost zone
can be extracted from the solution and treated separately. A good approximation of the
contribution of the innermost zone (0 ≤ ψ < ψi), integrated over polar coordinates (ψ, α)
instead of geodetic coordinates to the singularity, reads (Hofmann-Wellenhof and Moritz,
2005):

Ni =
Rψi
γ0

∆ḡi (4.82)

where ∆ḡi is the gravity anomaly mean block value for the innermost zone. If one deals
with block mean values in a geodetic coordinate grid, ψi in equation (4.82) is chosen such
that the area of the block equals the area of the spherical cap, i.e., ψi =

√
cosϕ∆ϕ∆λ/π

(Gerlach, 2003).

4.2.7 Fast Fourier transform techniques

Alternatively, we can acknowledge that integrals in the form of equation (4.80) form a
convolution of a spatial function ∆ḡq with a weight (or kernel) function S(ψPq), quite
in the same manner as for the general kernel, summarized in equation (3.121). How-
ever, the kernel must be a function of distance only, acting as kind of a window, moved
over the computation points and element-wise multiplied with the spatial function before
all products are summed. Convolution is a computationally intensive procedure in the
spatial domain, but in the spectral domain, it is simply a multiplication. Fast Fourier
transform techniques (FFT) allow efficient convolution in the spectral domain (Schwarz
et al., 1990).

As de Min (1995) pointed out, since FFT-methods are here merely applied for fast com-
putation of convolution integrals, it is not a geoid computation method in itself.

Application of FFT requires the spatial function to be given in a regular grid. Although
the width of the block (∆ϕ ×∆λ) remains constant, the distance ψ between blocks will
vary because of Earth’s curvature (Gerlach, 2003). For the distance ψPq we may write:

(
sin

ψPq
2

)2

=

(
sin

ϕP − ϕq
2

)2

+

(
sin

λP − λq
2

)2

cosϕP cosϕq (4.83)

From equation (4.83) it is clear that ψPq is a function of ϕP and ϕq, and not of ∆ϕ and
∆λ only, in the considered grid, and a planar approximation, with cartesian coordinates
(∆xPq,∆yPq), may introduced to make the two-dimensional Fast Fourier transform (2D-
FFT) applicable. However, the errors due to the approximation of ψPq may amount to
decimeters in regional applications, and is therefore not suitable when a geoid of centimeter
accuracy is sought.

An exact (i.e., identical to numerical integration) one-dimensional FFT solution (1D-FFT)
was proposed by Haagmans et al. (1993), where the FFT is just performed along the
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latitudes (i.e., one dimension), and the convolution in the meridian (longitude) direction
is performed in the spatial domain, so that the solution is limited to a single latitude
circle in a single step, i.e., ∆ϕPq = const.

Stokes’s integral may be evaluated by the following 1D-FFT formula (Gerlach, 2003):

N(ϕP ) =
R∆ϕ∆λ

4πγ0

F−1
1

 ϕ2∑
ϕq=ϕ1

F1{S(∆λPq)} · F1{∆ḡq cosϕq}

 (4.84)

where F1 and F−1
1 denote the 1D-FFT transform operator and its inverse, respectively,

and ∆ϕ and ∆λ are the latitudinal and longitudinal spacing of the computation grid
notes, respectively. Equation (4.84) is finally summed over all parallels ϕP .

The Fast Fourier transform implicitly assumes the signal (i.e., ∆g) to be periodic, which
it actually is if the 1D-FFT is performed along a whole parallel (0 ≤ λ < 2π) (Gerlach,
2003). In a regional application, however, this requirement is not fulfilled. When FFT is
applied in such a case, the signal is implicitly continued to both sides, and on the edges
of the considered region, data from the opposite side of the region is mirrored. Therefore
zero-padding is applied to avoid this. The signal (or spatial function) is continued with
zeros in western and eastern directions in an area corresponding to half of the original area.
For 2D-FFT zero padding must be done in all directions. Although zero padding also does
not reflect reality, since gravity anomalies outside the area of calculation commonly differ
from zero, the mirroring effect is eliminated.

With regard to the singularity occurring at ψPq = 0, again the innermost zone can be
extracted from the solution and treated separately, as with numerical integration.

The terrain (topographic) corrections and primary indirect effects (co-geoid to geoid cor-
rection) may also be computed by 1D-FFT (Gerlach, 2003).

Any kernel fulfilling the FFT criteria may be introduced into the 1D-FFT. In the remove-
restore case, for instance, the residual gravity signal would be introduced instead of the
full gravity anomaly, and equation (4.84) combined with a GGM. The modified integration
kernels presented in section 4.2.5 may also be introduced into the 1D-FFT, each kernel
normally computed before the transformation to the frequency domain.
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Chapter 5

Numerical investigations

In this chapter, numerical challenges that occur as a consequence of trying to solve inverse
problems as well as possible remedies are explored. This chapter also contains numerical
comparisons of the different gravity field modeling approaches (as reviewed theoretically
in section 3.5).

5.1 Inverse and ill-posed problems

A problem is called properly posed if the solution satisfies the requirements of existence (a
solution must exist for arbitrary data), uniqueness (only one solution) and stability (the
solution depends continuously on the data) (Moritz, 1980). We have an ill-posed problem
when one or more of the above requirements are violated. When we go from continuous
systems to discrete linear systems, ill-posed problems are termed ill-conditioned (Aster
et al., 2005).

In case of the linear problems described according to Ax = l, calculating the output l
from a given parameter set x is the forward problem, cf. section 3.1.2. The estimation of
parameters x from observations l, however, is an inverse problem. The stability criterion
of a properly posed problem implies that the solution x depends continuously on the
data, i.e., that small changes in x result in small changes in l. For example, in the case
of downward continuation, the stability criterion is violated.

In geodesy, we often encounter linear inverse problems, as the parameters to be deter-
mined are not directly observable (Eicker, 2008). In turn, inverse problems are often
ill-conditioned, for various reasons (Sneeuw, 2000):

• Irregular data distribution or data gaps (e.g., polar gaps in non-polar orbiting satel-
lite observations).

• The observations may not contain sufficient information about the gravity field (e.g.,
the measuring instrument is not sensitive to all frequencies of the gravity field).

• Downward continuation (as described below) is an ill-posed problem by itself.

• Incorrect choice of radial basis function bandwidth (Bentel et al., 2013).
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• The grid for placing the radial basis functions must be chosen properly, to avoid
under- or over-parametrization (Wittwer, 2009).

The gravity field signal is damped with increasing distance from Earth’s center, since grav-
itation is proportional to the square of the reciprocal distance, cf. equation (2.1). Upward
continuation, as readily described in this thesis, transforms gravity field measurements
from one surface to gravity field measurements on a surface at greater distance from the
source (Blakely, 1996). In other words, the gravity field in space is determined from the
known gravity field on the surface. Consequently, upward continuation is a smoothing
operation. The upward continuation operator is repeated here for convenience:

(
R

r

)n+1

(5.1)

R is the spherical boundary surface radius (spherical Earth’s mean radius) and r is the
distance from Earth’s center of mass to the computation point. The upward continuation
factor could be considered as a weight, and we observe that the weight approaches zero
with increasing degree n.

To illustrate the signal dampening at typical gravity satellite height (∼ 300 km), the global
geoid was computed on the Earth surface (h = 0 km) and at satellite height (h = 300 km).
The GGM EGM2008 was used. The difference of both geoids can be seen in Figure 5.1. In
areas with large variations in topography, differences in geoid heights can amount to about
25 m, which illustrates the smoothing of the signal. In Figure 5.2 the geoid signal degree
variances for both cases are plotted. The signal degree variance curve at satellite altitude
drops much quicker than the curve at Earth’s surface, which means that the signal content
in the high degrees is much smaller. In turn, this means that less small-scale features are
visible in the signal, i.e., it is smoother.

We experience the dampening of the gravity field signal especially when working with
gravity field observations at satellite height. Bringing satellite observations down to the
boundary surface is done through downward continuation. It is the opposite, or inverse,
of upward continuation. Consequently it is an unstable “unsmoothing” (or roughening)
operation, since small observation variations at, e.g., satellite height can cause large and
unrealistic variations in the computed surface values (Blakely, 1996). The downward
continuation operator reads:

( r
R

)n+1

(5.2)

The singular values of the downward continuation operator approaches infinity with in-
creasing n, i.e., the requirement of stability is violated (Eicker, 2008). Consequently,
trying to solve an ill-posed problem such as downward continuation by, e.g., a discrete
linear system of equations Ax = l, will render the system ill-conditioned or singular, the
normal equations (3.27) not solvable by the conventional normal matrix inverse N−1, cf.
section 3.1.2.
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Figure 5.1: Difference between geoid heights at h = 0 km and h = 300 km
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Figure 5.2: Geoid height signal degree variances at h = 0 km and h = 300 km

A singular system has no unique solution, or the solution is not stable. One way to check
if a system is singular is to determine the condition number, measuring the instability of
the solution. The condition number of a matrix A is given by (Aster et al., 2005):

cond(A) =‖ A ‖ ‖ A−1 ‖ (5.3)

Values of equation (5.3) near one indicates a well-conditioned matrix A, and large values
are a characteristic of an ill-conditioned matrix A.

The gradual decay of the eigenvalues of the normal matrix N towards zero and a large
condition number of N are characteristics of the discrete ill-conditioned system (Sneeuw,
2000). If both characteristics are met, the solution space is not accessible. If the eigenval-
ues of the normal matrix N abruptly drop to zero only, the matrix N has a rank deficiency,
which means that the null-space is a part of the solution space.

To be able to solve the system, the normal matrix needs to be regularized (Sneeuw,
2000). Observations l alone are not sufficient to get a unique solution. For example, one
can introduce further solution conditions, such as a priori knowledge of the unknowns x.
In the case of gravity field determination, we often have a priori knowledge to a certain
extent, so regularization by prior information is possible. If no prior knowledge is at hand,
other regularization solutions may be formulated, see, e.g., (Aster et al., 2005).
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The common goal of regularization for solving ill-conditioned systems is smoothing the
solution of the system. It is however, not wanted too smooth the solution to an extent
where important information is lost.

5.2 Tikhonov regularization

A common regularization method for solving inverse and ill-posed problems is Tikhonov
regularization (Moritz, 1980).

The minimum-variance criterion of least-squares adjustment has readily been mentioned,
cf. equation (3.26).

In Tikhonov regularization, the best regularized solution x̂α is assumed to be the one
that minimizes the damped or regularized least-squares problem. The norm in equation
(3.26) is extended by adding further constraints on the unknown vector x. Assuming prior
information is available, the constraints in the extended norm come from prior information
on the unknown parameters (Sneeuw, 2000):

x̂α = min{vTPv + α(x− x0)TPx0(x− x0)} (5.4)

where α is the regularization parameter.

The matrix Px0 is the regularization matrix (Sneeuw, 2000). If no a priori information
on the unknowns x is at hand, we can expect them to be zero, i.e., x0 = 0 with equal
variance (Px0 = αI). In the case of gravity field estimation, signal degree variance models
could be applied. Then the coefficients have expectation zero and are assumed to vary
according to the signal degree variance, i.e., x0 = 0 and Px0 = αK−1, where K is a
diagonal matrix containing the signal degree variances. Another option could be to make
use of information from an already existing gravity field solution x0, and set Px0 = Q−1

x0
,

where Qx0 is the corresponding error cofactor matrix.

Assuming α = 1 or incorporated into Px0 and Px0 containing both a priori signal and
error information, expectation and dispersion of the model may be formulated as follows
(Sneeuw, 2000):

E
{(

l
x0

)}
=

(
A
I

)
x (5.5)

D
{(

l
x0

)}
=

(
Qll 0
0 Qx0

)
x (5.6)

We may solve for the unknown parameters as follows:

x̂ =
(
ATPA + Px0

)−1 (
ATPl + Px0x0

)
(5.7)
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For the regularized solution in equation (5.7) with x0 = 0 and Qx0 containing the signal
covariance only, the following equality holds (Moritz, 1980):

(
ATPA + Px0

)−1
ATPl ≡ Qx0A

T
(
AQx0A

T + Qll

)−1 (5.8)

With signal covariance x : Qx0 → Cxx , signal covariance y : AQx0A
T → Cyy , cross-

covariance xy : Qx0A
T → Cxy and noise covariance y : Qll → Cyy , the right-hand side

of equation (5.8) is formally the same as the collocation formula (Sneeuw, 2000):

x̂ = Cxy(Cyy + Dyy)
−1l (5.9)

The expectation of x̂ in equation (5.7) can be written as (Sneeuw, 2000):

E{x̂} = Ryx + Rxx = x (5.10)

with the following definitions:

Rx =
(
ATPA + Px0

)−1
Px0 (5.11)

Ry =
(
ATPA + Px0

)−1
ATPA (5.12)

and Rx + Ry = I. Rx and Ry are termed resolution matrices, measuring the relative
contributions of data (Ry) and prior knowledge (Rx) to the solution (Sneeuw, 2000).
Note that the resolution matrices are not computed from actual data or actual a priori
values, which means that they can be used for evaluating the necessity of regularization
with a priori information.

The curve of optimal values of ‖ x ‖2 versus ‖ Ax− l ‖2 plotted on a double logarithmic
scale, has a characteristic L shape with a distinct corner, and is therefore known as the L-
curve (Hansen and O’Leary, 1993), cf. Figure 5.3. The form of the curve is due to ‖ x ‖2

being a strictly decreasing function of α and ‖ Ax − l ‖2 a strictly increasing function
of α (Aster et al., 2005). The L-curve may be used for determining the regularization
parameter α, since α is assumed to be at the L-curve corner. This implies that a series
of solutions for a range of parameters α must be computed. Selecting α by this approach
is termed the L-curve criterion for choosing a regularization parameter.

Hansen and O’Leary (1993) suggest two different numerical approaches for determining
the L-curve corner, stressing, however, that visual inspection of the L-curve is a crucial
part of its analysis. One method is to find the point on the curve closest to the origin,
another is to choose the point on the L-curve where the curvature is at its maximum. If
the L-curve function is composed of discrete point-values, a continuous curve has to be
fitted to these values and the curvature of the fitted curve computed.



5.3 Examples of ill-conditioned systems and regularization using synthetic data 107

lo
g 

|| 
x 

|| 2

log || Ax - l ||2

more filtering

less filtering

Figure 5.3: General form of the L-curve.

5.3 Examples of ill-conditioned systems and
regularization using synthetic data

To illustrate the theory presented in sections 5.1 and 5.2, different setups of the problem
of estimating spherical harmonic coefficients from an observed global potential field were
solved by means of spherical harmonic analysis by least-squares adjustment, cf. section
3.1.2.

Synthetic data was used, allowing closed-loop testing, cf. section 5.4, applying the GGM
EGM2008. The global disturbing potential was computed by spherical harmonic syn-
thesis, on a global latitude-longitude grid with 5◦ spacing, up to degree Nmax = 31, for
computational reasons:

TSHS =
GM

r

31∑
n=2

λupw
n

n∑
m=0

P̄nm(cos θ)
[
∆C̄EGM2008

nm cosmλ+ S̄EGM2008
nm sinmλ

]
(5.13)

In turn, (disturbing) potential coefficients were estimated from these observations by
spherical harmonic analysis (least-squares adjustment). Further, the global potential was
computed again, by equation (5.13), but with the estimated coefficients as argument.
Thus, “true” residuals were computable by Test. − TEGM08. Relative contributions from
prior information (regularization) Rx and from the given data set (observations) Ry were
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Figure 5.4: Synthetic observation data, disturbing potential TSHS at height h = 0.

computed. Signal degree variances of “true” EGM2008 dimensionless potential coefficients
were plotted together with the estimated dimensionless potential coefficients, as well as
the error degree variances computed from their difference.

In case 1, the observations were assumed to be on Earth’s surface, i.e., h = 0, and
noise-free. In a more realistic case 2, the observations were assumed to be in typical
gravity satellite altitude, h = 300 km. Since this problem in itself does not yield a very
ill-conditioned system, it was additionally assumed that the observations are ridden by
noise, i.e., σ = 20 m2s−2. As it turned out, this problem benefited from regularization,
but was numerically solvable without any regularization. Case 3 marked an extreme
setup, where it was assumed that the observations were in GPS satellite altitude h =
20000 km, with σ = 0.1 m2s−2. In this setup, no meaningful solutions were obtained
without regularization.

The synthetic observation data at different altitudes h = 0, h = 300 km and h = 20000 km
are found in figures 5.4, 5.5 and 5.6, respectively.

Results obtained in case 1 are summarized in Figure 5.7. The coefficients are shown in so-
called SC-format, where the right part of the triangle are the ∆C̄nm coefficients, starting
at ∆C̄00, and the left part of the triangle are the S̄nm coefficients, starting at S̄11. With
noise-free observations, this is an ideal case, where the exact true field is re-obtained when
computing it with the estimated potential coefficients. The residuals are very small, as is
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Figure 5.5: Synthetic observation data, disturbing potential TSHS at height h = 300 km.
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Figure 5.6: Synthetic observation data, disturbing potential TSHS at height h = 20000 km.

the condition number of the normal matrix, summarized for the different cases in Table
5.1. No regularization was applied in this case, i.e., α = 0. Consequently, solely the
observed data contribute to the solution, which is observed in the resolution matrix Ry.
The weights of the regularization matrix K−1 corresponding to the low-degree coefficients
∆C̄00, ∆C̄10, ∆C̄11 and S̄11 were set to zero, thus never allowing prior information to
have an influence on the estimation of these coefficients. The degree variance curve of the
estimated coefficients completely overlaps the curve of the true EGM2008 coefficients,
and their error degree variances are small.

Regarding case 2, a solution free of regularization was determined first, summarized in
Figure 5.8. Interestingly, the condition number of the normal matrix is still relatively
low, cf. Table 5.1. The residuals (observation errors), however, are high, since the data
is relatively noisy. This means that the higher degrees cannot be determined. In the
degree variances plot it is evident that estimating coefficients above roughly degree 15 is
troublesome. The error degree variances curve supersedes the signal curve. This means
that we pass the point where the signal-to-noise ratio is one, and it is not possible to
separate signal from noise. Since we are in the unique position to see the “true” signal
degree variances curve, we see that the estimated coefficients do not mirror reality well
above degree 15. There, the solution is unstable.

By introducing a priori information on the unknown coefficients — here they are additional
zero observations assumed to vary according to the signal degree variances of EGM2008—
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Figure 5.7: Spherical harmonic analysis. Results from case 1, noise-free observations at h = 0.
No regularization, α = 0.
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Figure 5.8: Spherical harmonic analysis. Results from case 2, σ = 20 m2s−2 and at h = 300 km.
No regularization, α = 0.
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the solution can be stabilized. The L-curve is computed for a range of α-values. To
determine this range, some trial-and-erroring with regularization parameter values was
done. A final αlarge value was chosen such that it was not deemed meaningful with any
values above αlarge. In case 2, a regularization parameter αlarge = 100 was chosen, based
on the results in Figure 5.9.

As expected, the regularized system gives a lower normal matrix condition number than
in the previous case, cf. Table 5.1. This is a first indicator that the system is more stable.
As mentioned earlier, the solution is stabilized through additional observations (that are
zero and with accuracies according to the signal degree variances) for the corresponding
degrees.

An important observation in Figure 5.9 is that this solution is too regularized. Looking at
resolution matrices Rx and Ry, regularization influences the solution already at degree 7,
with a contribution of roughly 10 %. Already at degree 12, prior information contributes
to the solution by 50 %. In the previous case, with no regularization, it was observed
that the solution for the estimated coefficients up to roughly degree 15 was stable, and
therefore needs no regularization. Therefore, in this case, regularization corrupts the
well-conditioned part of the system.

The residuals are also of interest. Whilst trial-and-erroring with regularization parameters
even larger than 100, it became evident that the residuals gradually adapts to the signal,
and in extreme cases corresponds to the signal. This makes sense looking at the degree
variances plot, since that which adapts to the signal degree variances curve are the errors
of the solution. With a more correctly chosen value of α, the additional zero observations
have a weight representing an appreciable influence only on the unstable higher degrees,
as they adapt to the signal curve. In the case of Figure 5.9, also the stable degrees are
influenced.

However, it is important to note that, although an error the size of the signal gives a
better solution than a solution with unrealistically large errors, the obtained solution (for
the influenced degrees) is not necessarily correct ! It merely means that the errors do not
surpass the signal. Correct coefficients are not obtained, but the solution is more stable.

The solution, as evident in the solution plot and degree variances plot, tends towards zero.
It increasingly does so with increasing value of α. This is explained by the error degree
variances moving upwards with increasing regularization weight — that is, the overall
errors become larger. What has to approach zero are therefore the estimated coefficients,
and with extreme regularization, the error for every degree is as large as the signal. This
means that the solution itself approaches zero.

The extremities were underlined in case 3. The condition number of the normal matrix
is so high that no sensible solution can be computed at all, cf. Table 5.1 and Figure 5.10.
However, the observations are not particularly noisy at σ = 0.1 m2s−2, and a relatively
small regularization weight α was needed in order to see considerably different results.

The results of the regularized solution of case 3, with αlarge = 1, is presented in Figure
5.11. The situation is that at degree 7, a 70 % contribution to the solution comes from
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Figure 5.9: Spherical harmonic analysis. Results from case 2, σ = 20 m2s−2 and at h = 300 km.
Regularization with αlarge = 100.
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Figure 5.10: Spherical harmonic analysis. Results from case 3, σ = 0.1 m2s−2 and at h =
20000 km. No regularization, α = 0.
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prior knowledge. A small amount of coefficients is estimable at all, evident in the solution
plot and degree variances plot — the solution tends towards zero fast. The observation
error is taking the form of the signal, cf. Figure 5.6, and the error degree variance curve
corresponds to the signal curve above degree 7. The condition number is considerably
reduced, cf. Table 5.1, and the solution stabilized and computable, but evidently not
correct for the higher degrees. The observed signal is very smooth, cf. Figure 5.6. How-
ever, the residuals in Figure 5.11 presents more short-wavelength features, and the error
degree variances curve is relatively small for degrees < 5, so the solution seems meaningful
there.

cond(N + αK−1)
Case 1 Case 2 Case 3

α = 0 52 206 3 · 1038

αlarge − 25 3 · 107

αL-curve − 37 −

Table 5.1: Spherical harmonic analysis. Condition numbers for the regularized normal matrix
N + αK−1 for cases 1, 2 and 3.

An attempt to find the best regularization parameter in case 2 using the L-curve ap-
proach was made. As mentioned in the above, the range of α was determined from trial
regularizations with different α values. The curvature approach for choosing alpha was
chosen, where a polygon was fitted to the point values, and the subsequent maximum
analytical curvature computed from the polygon. The L-curve is shown in Figure 5.12.
A regularization parameter αL-curve = 15.6 was determined using this approach, and the
results of regularization with this parameter are found in Figure 5.13.

The results using the regularization parameter αL-curve are quite good. Up to degree
7, the contribution from actual observations is at 100 %, and stays at 80-90 % up to
roughly degree 16. The stable degrees are left practically “untouched”. Above degree 20,
regularization contributes more than the observations, and the solution there consequently
is less correct.

One could argue that, since case 2 is not extremely ill-conditioned and is quite solvable
without regularization, it is important not to regularize too much. For comparison with
the regularization parameter chosen from the L-curve, case 2 was solved also with α = 10
and α = 20. Their degree variances plots are shown in Figure 5.14.

With α = 10, contribution from regularization is notable from degree 11 and upwards,
and the solution does not tend to zero as quickly as the cases of αL-curve = 15.6 and
α = 20. The error degree variances curve, however, surpasses the signal degree variances
curve for the higher degrees.

As for α = 20, contribution from regularization is notable from degree 7. The error degree
variances curve practically never reaches the signal degree variances curve. The case of
αL-curve = 15.6 is a compromise between these two. Most importantly, the two latter
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Figure 5.11: Spherical harmonic analysis. Results from case 3, σ = 0.1 m2s−2 and at h =
20000 km. Regularization with αlarge = 1.
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Figure 5.13: Spherical harmonic analysis. Results from case 2, σ = 20 m2s−2 and at h =
300 km. Regularization with αL-curve = 15.6.
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Figure 5.14: Spherical harmonic analysis. Results from case 2, σ = 20 m2s−2 and at h =
300 km. Regularization with α = 10 and α = 20.

choices of alpha also give relatively good results (and are in the vicinity of the L-curve
corner).

5.4 Agreement check of the different geoid modeling
approaches with synthetic data

Theoretical comparisons between spherical harmonics and other gravity field approaches
were conducted in section 3.5, and in this section the goal is to make numerical compar-
isons using a synthetic gravity field.

If both synthetic observations (e.g., in the form of gravity anomalies) are created and
a geoid computed from the same GGM, the gravity anomalies and the geoid will be
self-consistent, allowing closed-loop testing of the other geoid determination approaches
presented in this thesis. To a great extent, the geoids obtained by the other approaches
(using the gravity anomalies as observations) should agree with the synthetic geoid com-
puted from the GGM.

One disadvantage of using a GGM for synthetic data construction is that the synthetic
data thus is band-limited, which does not mirror reality. However, with a high-resolution
model such as EGM2008, the regional gravity field is covered relatively well. Advantages
are for instance that the comparison data is in no way affected by noise and we do not
have to consider any effects of topography and alike.
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5.4.1 Creation of synthetic data sets

With aid of degree variance models, the RMS (Root-Mean-Square, square root of the vari-
ance, cf. section 2.5) value of the the omission (or truncation) error (N3) can be quantified.
Assuming the general practical evaluation approach combining long-wavelength data from
a GGM with short-wavelength terrestrial observations, we can adjust the size of the near
zone σ0 (i.e., alter ψ0 such that the omission error becomes negligible (or allow further
minimization by kernel modifications)). In other words, we can get an impression of how
large our observation data area has to be in order to obtain a negligible N3 term.

A covariance function could be created from analyzing the regional input data. Alter-
natively, the RMS value of the omission error can be formulated with aid of spherical
harmonic degree variances as follows (Gerlach, 2009):

RMS{N3} =

√√√√5000∑
n∆

cnλ2
n (5.14)

where cn are the dimensionless degree variances, computed from a GGM or a degree
variance model, and λn are the spectral eigenvalues. 5000 is an arbitrary high figure, to
make sure all significant parts of the signal are included.

Attention may further be turned to equation (3.16), relating spherical harmonic degree
to the spatial resolution. It may be rewritten as follows:

n∆ =
20000 km

∆
(5.15)

where ∆ is the extent of the area for which the geoid is to be determined. Then the value
n∆ states the largest resolvable wavelength (or smallest frequency) in that area. For in-
stance, the different regions considered in this thesis range between approximately 150 km
to 450 km, yielding the approximate spectral range 40 ≤ n∆ ≤ 130. Thus, theoretically,
a synthetic observation data set created from a GGM could be based on the spherical
harmonic spectral window [n∆ , Nmax].

In the synthetic investigations in this thesis, the observation data are gravity anomalies
created from the GGM EGM2008, with Nmax = 2190. Further, we say that the long
wavelengths are best determinable not from terrestrial gravity measurements, but from
a GGM such as GOCO03s, covering spherical harmonic degrees up to Nmax = 250. The
synthetic observation data could therefore be created with n∆ = 251. This would further
comply with a real-life situation, since, within near future, the combined GOCO models
will be superior with regard to representing the long wavelength part of the gravity field
accurately.

When computing equation (5.14), the exact spectral range 251 ≤ n ≤ 2190 of the input
data could be used (since it is known). However, included in EGM2008 is the effect
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of topography. If we assume that topographic reductions have been performed, Flury ’s
model is valid for degrees n > 400, cf. equation (2.52) (Gerlach and Pettersen, 2010).

Also, combinations of degree variance models could be used. In Figure 5.15, the signal de-
gree variances of EGM2008 as well as the models Flury, Tscherning/Rapp (cf. equation
(2.51)), and Kaula (cf. equation (2.50)) is plotted. A combination of, e.g., Tschern-
ing/Rapp (251 ≤ n ≤ 399) and Flury (400 ≤ n ≤ 5000) could be made, cf. Figure 5.15,
with the argument that Flury ’s model fits the higher frequencies of the gravity field better
and implicitly assumes topographic reductions have been carried out. Also observable in
Figure 5.15 is that the signal degree variances of EGM2008 are lower than those of Flury
for approximately n < 700. Thus, a combination of EGM2008 (251 ≤ n ≤ 699) and Flury
(700 ≤ n ≤ 5000) could also be appropriate.

The RMS values could be useful when creating synthetic observations. In tables 5.3 and
5.4 different computational (target) areas are defined, and the synthetic observations are
given for somewhat larger areas, theoretically defined by considering the above equation
(i.e., how large must the observation data set be to get a small omission error). In Table
5.2 RMS values of N3 for different near zone caps defined by ψ0 are computed.

RMS{N3} (cm)
ψ0 (◦) E251−2190 E251−699 + F700−5000 T/R251−399 + F400−5000

1 6.0 6.0 7.8
2 4.3 4.3 5.6
3 3.4 3.4 4.5
4 3.4 3.4 4.4
5 2.8 2.8 3.7
10 2.0 2.0 2.6
15 1.5 1.5 2.0
20 1.1 1.1 1.5
30 0.5 0.5 0.6

Table 5.2: Omission error for various spherical caps σ0. E is EGM2008, F Flury’s model and
T/R Tscherning/Rapp’s model.

From Table 5.2 it is clear that, theoretically, to preserve a small omission error, our
observation area must be relatively large. For practical computation reasons an inner zone
with ψ0 = 1◦ is chosen, and an awareness of the theoretical omission error of approximately
6 cm is kept. The absolute accuracy of the geoid computed in this configuration would
consequently not be on sub-centimeter level, but this is irrelevant for the goal of the
numerical investigations in this thesis, which is to compare different computation methods.
The omission error is equal for all methods, so we rather look at the accuracy between the
different methods.

Also, for computational reasons, a general regional observation data resolution of 3′ is
used.
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Since the observation data are gravity anomalies created from the GGM EGM2008, the
geoid and gravity anomalies are created from spherical harmonic synthesis, cf. Table 3.1,
in the spectral range 251 ≤ n ≤ 2190:

∆gSHS =
GM

r2

2190∑
n=251

λupw
n (n− 1)

n∑
m=0

P̄nm(cos θ)
[
∆C̄EGM2008

nm cosmλ+ S̄EGM2008
nm sinmλ

]
(5.16)

NSHS =
GM

rγ0

2190∑
n=251

λupw
n

n∑
m=0

P̄nm(cos θ)
[
∆C̄EGM2008

nm cosmλ+ S̄EGM2008
nm sinmλ

]
(5.17)

Further, we can confirm the computed RMS{N3}-values in Table 5.2. The geoid was
computed from equation (5.17), once with ψ0 = 180◦ and once with ψ0 = 1◦. The
difference between these two geoids yields the omission (or truncation) error, i.e., the part
of the geoid outside the spherical cap with radius ψ0. The RMS value of this difference
was computed as follows:

RMS{NSHS(ψ0 = 180◦)−NSHS(ψ0 = 1◦)} ≈ 6.1 cm (5.18)

Results of the synthetic gravity anomaly and geoid computations are summarized in tables
5.3 and 5.4 as well as figures 5.16 and 5.17.

Computation (target) area 53◦ ≤ ϕ ≤ 54◦ and 6.5◦ ≤ λ ≤ 8.5◦

∆g observation (data) area 52◦ ≤ ϕ ≤ 55◦ and 5.5◦ ≤ λ ≤ 9.5◦

max. min. mean RMS
NSHS 0.073 -0.084 0.021 0.043
∆gSHS 11.733 -6.904 0.433 3.308

Table 5.3: East Frisia, target and data area, 3′ resolution. Statistics of the synthetic gravity
anomalies (mGal) and geoid (m).

5.4.2 Agreement of Stokes numerical integration with spherical
harmonic synthesis

The geoid was computed from the synthetic gravity fields of the different regions by means
of 1D-FFT, cf. section 4.2.7. The results are summarized in tables 5.5 and 5.6 as well as
figures 5.18 and 5.19.
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Computation (target) area 47◦ ≤ ϕ ≤ 48◦ and 9◦ ≤ λ ≤ 12◦

∆g observation (data) area 46◦ ≤ ϕ ≤ 49◦ and 8◦ ≤ λ ≤ 13◦

max. min. mean RMS
NSHS 0.410 -0.355 -0.016 0.141
∆gSHS 47.755 -63.217 0.218 12.110

Table 5.4: Alpine region, target and data area, 3′ resolution. Statistics of the synthetic gravity
anomalies (mGal) and geoid (m).

max. min. mean RMS
NStokes 0.071 -0.107 0.018 0.044

Data area NSHS −NStokes 0.144 -0.072 0.014 0.037
Target area NSHS −NStokes 0.027 -0.015 0.002 0.007

Table 5.5: East Frisia. Statistics of the geoid computed from Stokes’s formula and the difference
between the geoids (m).

max. min. mean RMS
NStokes 0.405 -0.353 -0.013 0.140

Data area NSHS −NStokes 0.446 -0.371 0.023 0.085
Target area NSHS −NStokes 0.010 -0.090 -0.003 0.010

Table 5.6: Alpine region. Statistics of the geoid computed from Stokes’s formula and the differ-
ence between the geoids (m).
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Figure 5.16: East Frisia. Synthetic gravity anomalies and geoid computed from spherical har-
monic synthesis.
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Figure 5.17: Alpine region. Synthetic gravity anomalies and geoid computed from spherical
harmonic synthesis.
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Figure 5.19: Stokes integration by 1D-FFT. Results from geoid computation and comparison,
Alpine region.
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Extending the data area

Observing figures 5.18 and 5.19 it is clear that, with the above choice of data area, there is,
to some extent, a negative influence on the accuracies due to edge effects. Extending the
data area to remove these edge effects should yield an accuracy improvement. Since it is
computationally more demanding, the numerical investigation of accuracy improvement
by extending the data area with 1◦ in all directions is restricted to the case of Stokes
integration versus spherical harmonic synthesis. The improved accuracies are presented
in table 5.7 and the extended data areas may be seen in Figure 5.20.

East Frisia Alpine region
Data area Target area Data area Target area

51◦ ≤ ϕ ≤ 56◦ 53◦ ≤ ϕ ≤ 54◦ 45◦ ≤ ϕ ≤ 50◦ 47◦ ≤ ϕ ≤ 48◦

4.5◦ ≤ λ ≤ 10.5◦ 6.5◦ ≤ λ ≤ 8.5◦ 7◦ ≤ λ ≤ 14◦ 9◦ ≤ λ ≤ 12◦

RMS{NSHS −NStokes} (m) 0.0162 0.0005 0.0664 0.0031

Table 5.7: East Frisia and Alpine region. Accuracy improvement by extending the data area
with 1◦ in all directions.

5.4.3 Agreement of least-squares collocation with Stokes
integration and spherical harmonic synthesis

The geoid was computed from the synthetic gravity fields of the different regions by means
of least-squares collocation, cf. sections 3.3.2 and 3.5.1.

To underline the importance of modifying the covariance function as suggested by de Min
(1995), the geoids for East Frisia and the Alpine region are computed with the original
covariance function and then computed with the modified covariance function. The geoids
computed with collocation are then compared with the East Frisian and Alpine region
geoids computed from spherical harmonic synthesis, i.e., NSHS(ψ0 = 1◦). This corresponds
to Stokes integration in a spherical cap with radius ψ0 = 1◦. The unmodified covariance
function corresponds to global Stokes integration (with extrapolation). Note that CN∆g =
CNL∆g(ψ0 = 180◦). The modified covariance function should also correspond to Stokes
integration in a spherical cap with radius ψ0 = 1◦.

The cross-covariance functions can be seen in Figure 5.21, and the differences NSHS(ψ0 =
1◦) − NLSC(ψ0 = 180◦) and NSHS(ψ0 = 1◦) − NLSC(ψ0 = 1◦) for East Frisia in Figure
5.22 and the Alpine region in Figure 5.23. The RMS values of the differences are listed in
Table 5.8. The results of the geoid computations are summarized in tables 5.9 and 5.10
as well as figures 5.24 and 5.25.
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Figure 5.20: East Frisia and Alpine region. Extended data area with 1◦ in all directions.
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RMS (m)
East Frisia Alpine region

Unmodified covariance function
NSHS(ψ0 = 1◦)−NLSC(ψ0 = 180◦) 0.028 0.061
Modified covariance function
NSHS(ψ0 = 1◦)−NLSC(ψ0 = 1◦) 0.015 0.014

Table 5.8: East Frisia and Alpine region. Comparison of unmodified and modified covariance
function with Stokes integration in a spherical cap with radius ψ0 = 1◦

max. min. mean RMS
NStokes 0.073 -0.100 0.018 0.043

Data area NSHS −NLSC 0.034 -0.069 -0.001 0.015
Target area NSHS −NLSC 0.018 -0.000 0.003 0.005

Table 5.9: East Frisia. Statistics of the geoid computed by least-squares collocation and the
difference between the geoids (m).

max. min. mean RMS
NStokes 0.410 -0.355 -0.016 0.141

Data area NSHS −NLSC 0.054 -0.059 0.000 0.014
Target area NSHS −NLSC 0.032 -0.035 0.000 0.006

Table 5.10: Alpine region. Statistics of the geoid computed by least-squares collocation and the
difference between the geoids (m).
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geoid computation.
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Figure 5.22: East Frisia, data area. Comparison of unmodified and modified covariance function
with Stokes integration in a spherical cap with radius ψ0 = 1◦. Note that NLSC(ψ0 = 180◦)
corresponds to the original unmodified covariance function.
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Figure 5.23: Alpine region, data area. Comparison of unmodified and modified covariance
function with Stokes integration in a spherical cap with radius ψ0 = 1◦. Note that NLSC(ψ0 =
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Figure 5.24: Least-squares collocation. Results from geoid computation and comparison, East
Frisia.
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Figure 5.25: Least-squares collocation. Results from geoid computation and comparison, Alpine
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5.4.4 Agreement of RBFs with spherical harmonic synthesis

Global comparison of spherical harmonics with Shannon RBF

In section 3.5.3 it was concluded that, in the global case using Shannon RBF, gravity
field modeling by spherical harmonic synthesis and radial basis functions are equivalent
methods. This was also verified in practical computations. The global geoid was computed
on a 5◦ latitude-longitude grid with spherical harmonic synthesis up to degree 31 (∼
650 km resolution). Further, the spherical harmonic coefficients were transferred to RBF
coefficients according to equation (3.125), and the global geoid synthesized with Shannon
low-pass RBFs (equation (3.78) with N = 31), placed on the same latitude-longitude grid.
Results are summarized in table 5.11 and Figure 5.26.

max. min. mean RMS
NSHS 79.002 -102.978 -0.849 28.767
NRBF 79.002 -102.978 -0.849 28.767
NRBF −NSHS 1.14 · 10−12 −1.75 · 10−12 −2.49 · 10−14 2.56 · 10−13

Table 5.11: Global comparison. Statistics of the geoid computed by spherical harmonic synthe-
sis, radial basis functions and the difference between the geoids (m).

5.5 Global RBF analysis and synthesis with Shannon
RBF, applying regularization

As opposed to the above case, where the spherical harmonic coefficients were directly
transferred to RBF coefficients and subsequently synthesized with Shannon RBF, a syn-
thetic disturbing potential field is both analyzed and synthesized with Shannon low-pass
RBF (N = 31) in this case, cf. section 3.4.3 on RBF analysis by least-squares adjust-
ment.

Case 1a assumes both observations and RBFs on the Earth surface (i.e., h = 0), with
noise-free observations. The observations are given on a 5◦ latitude-longitude grid, and
the RBFs are placed on a Reuter grid with γ = Nmax = 31. In case 1b, both observations
and RBFs are placed on the Reuter grid.

Cases 2a-b exhibit similar properties as cases 1a-b, only the observation accuracy is set
to σ = 10 m2s−2.

Cases 3a-b explore the effect of upward continuation, where the observations are given at
typical satellite altitude h = 300 km, and otherwise similar to cases 2a-b.
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Again, the observations are created with spherical harmonic synthesis up to degree 31,
using EGM2008. The observed potential at altitude h = 0, on a 5◦ latitude-longitude
grid and Reuter grid with γ = Nmax = 31, is shown in Figure 5.27.

In every case, the spherical harmonic coefficients of EGM2008 were transferred to RBF
d-coefficients, for comparison with the estimated d-coefficients obtained in the RBF analy-
sis. Further, the difference between the “true” potential field and the synthesized potential
field with the estimated coefficient as argument was computed, i.e., Test. − TEGM08. Rel-
ative contributions from prior information and the observed data were computed. Also,
the estimated d-coefficients were transferred to spherical harmonic coefficients, and the
signal degree variances of the “true” EGM2008 disturbing potential coefficients plotted
together with the estimated disturbing potential coefficients, as well as the error degree
variances computed from their difference. As prior information for the d-coefficients, zero-
observations were added, with accuracies corresponding to a RMS-value computed from
the “true” d-coefficients.

The condition numbers of the different cases are found in Table 5.12.

cond(N + αK−1)
Case 1a Case 1b Case 2a Case 2b Case 3a Case 3b

α = 0 6 · 1018 − − − − −
αsmall 7 · 1014 4 · 1013 6 · 1012 4 · 1011 2 · 1012 9 · 1010

αlarge 1.1 − − 36 − 10
αL-curve − − − 1 · 103 − 599

Table 5.12: RBF analysis. Condition numbers for the regularized normal matrix N + αK−1

for cases 1a-b, 2a-b and 3a-b.

Figure 5.28 summarizes the results of case 1a without regularization. From Table 5.12 is
clear, that the problem is ill-conditioned. The contribution matrices Rx and Ry are both
computed by the regularized normal matrix inverse, and are therefore not meaningful
here. The reason why the relative contribution from prior information, Rx, still seems
sensible (no regularization should indeed give no contribution from prior information),
this is only since the ill-conditioned regularized normal matrix is multiplied with the
regularization parameter (which is zero). The sum of the contribution matrices does not
yield the identity matrix, which they should.

The true RBF d-coefficients, transferred from EGM2008 spherical harmonic coefficients,
do resemble the observed signal, which is expected. They can be said to be physically
meaningful. The estimated d-coefficients, however, do not present these traits. There-
fore, it is quite interesting to see the residuals, where the discrepancy between the true
disturbing potential and the disturbing potential computed with the seemingly wrong
d-coefficients is relatively small. Supporting the residuals is the degree variances plot,
revealing small differences between the true signal degree variances and the estimated
signal degree variances. It seems that a mathematically correct solution is computable,
although the d-coefficients are not physically meaningful. Therefore, it does not seem like
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Figure 5.27: Synthetic observation data, disturbing potential TSHS at height h = 0, on a 5◦

latitude-longitude grid (top) and Reuter grid with γ = Nmax = 31 (bottom). The black crosses
mark the Reuter grid points.
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Figure 5.28: RBF analysis. Results from case 1a, σ = 0 and at h = 0. No regularization.
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the residuals and the degree variances plot alone are reasonable criteria for estimation
quality description.

With a small degree of regularization, the d-coefficients change drastically, cf. Figure
5.29. Still, the problem is ill-conditioned, cf. Table 5.12, but stabilized enough to give a
physically meaningful estimate of the d-coefficients. Therefore, this small regularization
parameter was used also in the other cases.

In case 1b, summarized in Figure 5.30, the observations are also given on the Reuter
grid, where the only notable difference from case 1a is that the residuals are considerably
smaller, due to the fact that both noise-free observations and RBFs are placed on the
exact same positions.

Generally, similar traits as in the spherical harmonic analysis cases, cf. section 5.3, were
observed also in the radial basis function analysis cases. Results of an arbitrarily chosen
high degree of regularization in case 1a are summarized in 5.31. A dramatical stabilization
of the system is observed in the condition number, cf. Table 5.12. As in the spherical
harmonic analysis case with a large degree of regularization, the solution tends towards
zero, and the observation error is taking the form of the signal.

Case 2a is summarized in Figure 5.32. Noise has been added to the observations, and
consequently, the errors are larger. The estimated signal degree variances plot diverges
from the true signal degree variances plot above roughly degree 15. The results from
case 2b with same regularization parameter as case 2a are summarized in Figure 5.33.
These cases are relatively similar, although the errors seem to be somewhat larger and
the solution pattern somewhat more wrong in case 2b.

By trial-and-erroring, an upper limit for the regularization parameter was found in case
2b, for the subsequent L-curve computation. Case 2b results with this large regularization
parameter are found in Figure 5.34. The tendency of the solution towards zero can be
seen in the estimated d-coefficients plot. Prior information contributes to the solution
by roughly 20 %. The residuals begin to take the shape of the signal, and the error
degree variances curve moves upwards. The L-curve for case 2b is plotted in Figure
5.35, and the results from case 2b with αL-curve are found in Figure 5.36. The L-curve
solution seems good, with the estimated d-coefficients resembling the signal, the residuals
seemingly random and the estimated signal degree variances curve fits better to the true
signal degree variances curve.

Results from case 3a, with αsmall as in the other cases, are found in Figure 5.37. At typical
satellite altitude, the error degree variances curve supersedes the true signal degree vari-
ances curve at roughly degree 24. Results from case 3b, with αsmall and both observations
and RBFs on the Reuter grid, are found in Figure 5.38. The overall error is larger in
case 3b, which can be seen in the residuals plot. Crossing of the error degree variances
curve with the true signal degree variances happens at roughly degree 22. The estimated
d-coefficients in case 3b present a pattern that does not resemble the true d-coefficient
pattern as well as in case 3a.
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Figure 5.29: RBF analysis. Results from case 1a, σ = 0 and at h = 0. Regularization with
αsmall = 1 · 10−8.
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Figure 5.30: RBF analysis. Results from case 1b, σ = 0 and at h = 0. Regularization with
αsmall = 1 · 10−8.
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Figure 5.31: RBF analysis. Results from case 1a, σ = 0 and at h = 0. Regularization with
αlarge = 1 · 108.
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Figure 5.32: RBF analysis. Results from case 2a, σ = 10 m2s−2 and at h = 0. Regularization
with αsmall = 1 · 10−8.
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Figure 5.33: RBF analysis. Results from case 2b, σ = 10 m2s−2 and at h = 0. Regularization
with αsmall = 1 · 10−8.
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Figure 5.34: RBF analysis. Results from case 2b, σ = 10 m2s−2 and at h = 0. Regularization
with αlarge = 100.
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Figure 5.35: RBF analysis. L-curve for case 2b, corner found by the curvature approach.
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Figure 5.36: RBF analysis. Results from case 2b, σ = 10 m2s−2 and at h = 0. Regularization
with αL-curve = 3.2.
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Figure 5.37: RBF analysis. Results from case 3a, σ = 10 m2s−2 and at h = 300 km. Regular-
ization with αsmall = 1 · 10−8.
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Figure 5.38: RBF analysis. Results from case 3b, σ = 10 m2s−2 and at h = 300 km. Regular-
ization with αsmall = 1 · 10−8.
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Figure 5.39: RBF analysis. Results from case 3b, σ = 10 m2s−2 and at h = 300 km. Regular-
ization with αlarge = 100.



5.5 Global RBF analysis and synthesis with Shannon RBF, applying regularization 155

10
2.13

10
2.16

10
2.19

10
2.22

10
2.25

10
0

10
1

10
2

10
3

L−curve

so
lu

tio
n 

no
rm

 lo
g 

||x
||

residual norm log ||Ax−l||

Figure 5.40: RBF analysis. L-curve for case 3b, corner found by the curvature approach.
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Figure 5.41: RBF analysis. Results from case 3b, σ = 10 m2s−2 and at h = 300 km. Regular-
ization with αL-curve = 1.48.
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As in case 2b, case 3b was computed with an L-curve upper limit regularization parameter
αlarge, summarized in Figure 5.39, displaying recognizable traits of over-regularization.
The L-curve in case 3b is plotted in Figure 5.40, and the results of case 3b with αL-curve

are found in Figure 5.41. The L-curve solution is certainly an improvement to the solution
with αsmall. Mainly, the estimated d-coefficients now resemble the true signal and the
residuals still seem random. The normal matrix condition number suggests that the
solution is stable, but above roughly degree 17, the solution is increasingly incorrect, and
the errors large.

Solutions for all regularization parameters were not included in this thesis in all cases,
mainly for practical space-saving reasons, since the different cases show similar changes
from one regularization parameter to the next. The included cases show important differ-
ences, one being the difference between mathematically correct and physically meaningful
d-coefficients in case 1a. The small regularization parameter yielding physically meaning-
ful d-coefficients was kept for the computation of the other cases.

A rather arbitrarily chosen large regularization parameter was used in case 1a, to illustrate
the effect of over-regularization. Cases 2b and 3b, noisy observations on Earth’s surface
and at satellite altitude, respectively, were chosen as L-curve candidates. The L-curve
was not computed for all cases since its plotting is computationally intensive. The goal
was to show that the L-curve can be applied also in the radial basis function case.

When computing the L-curve, the largest regularization parameter should not be chosen
quite as arbitrarily as it was in case 1a. Therefore, for computational reasons, the large
regularization parameter is not as large in the L-curve cases 2b and 3b as in case 1a. In
cases 2b and 3b, the regularization parameter range was found by trial-and-erroring.
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Chapter 6

Final remarks and outlook

The goal of this thesis was to look at different gravity modeling approaches with focus
on regional geoid determination, and compare them. Two well-established models, Stokes
integration and least-squares collocation, as well as the more recent application of radial
basis functions were considered.

Theoretically, it was shown that, in the global case, the considered models are equal.
The theoretical comparisons were supported by numerical investigations with synthetic
data.

Numerical comparison of Stokes integration and least-squares collocation with spherical
harmonic synthesis was done regionally. Two regions were considered here; East Frisia
(where there is little variation in the geoid) and the Alpine region (where there is more
variation in the geoid).

East Frisia, with little signal variation, gave the lowest RMS values of the difference
between geoids computed by Stokes integration and collocation and the “true” geoid,
computed with spherical harmonic synthesis. In case of Stokes integration, the RMS of
the difference in geoid heights amounted to 7 mm in the target area. In case of collocation,
it amounted to 5 mm.

The Alpine region presents a stronger signal. In case of Stokes integration, the RMS of
the difference in geoid heights amounted to 1 cm in the target area. In case of collocation,
it amounted to 6 mm.

Although it seems that least-squares collocation yields somewhat better results than
Stokes integration, both methods are practically equal.

Remaining discrepancies could be owing to the fact that the synthetic observations are
point-values, which spherical harmonic synthesis and least-squares collocation expect.
However, Stokes integration, while applied point-wise, expects block mean values. Spher-
ical harmonic synthesis uses the exact observation grid values, while least-squares colloca-
tion interpolates and does not give exact values (at least not everywhere). Also, to some
extent, differences in the numerical model computations could have an effect.

The performance of Stokes integration improved drastically when the area of observations
was extended, and edge effects avoided. The RMS of the difference in geoid heights



160 Chapter 6 Final remarks and outlook

amounted to 0.5 mm in the East Frisian target area, and 3.1 mm in the Alpine region
target area.

The theoretical global comparison of the Shannon radial basis function with spherical
harmonics was confirmed numerically, as the differences between a globally determined
geoid using spherical harmonic synthesis and Shannon radial basis function synthesis was
in the order of 10−12.

Further, the topic of inverse and ill-posed problems was investigated. Numerical inves-
tigations included comparison of applied regularization on different cases of spherical
harmonic analysis by least-squares adjustment. Also, the L-curve was plotted, and an
optimal regularization parameter α sought.

An ideal case, with noise-free observations, allowed an exact reconstruction of the true
gravity field. No regularization was needed, as the normal matrix was well-conditioned.

In the case where observations were at typical satellite altitude and noise-ridden, the
normal matrix condition number increased, but stayed well below the level of singularity.
The higher degrees could not be determined in this case due to the noisy observations.
There, the solution was unstable. With a regularization parameter chosen too large, the
system was indeed stabilized, but too regularized, and the well-conditioned part of the
system corrupted. Thus, correct coefficients were not obtained, but the solution was more
stable. The results with the regularization parameter obtained by the L-curve approach
were quite good. The well-conditioned part was left practically “untouched”, while the
ill-conditioned part was stabilized. Other regularization parameters in the vicinity of the
L-curve corner also gave good results.

An extreme case, where observations were assumed to be at GPS satellite altitude, gave
a very ill-conditioned system. Without regularization, no sensible solution could be com-
puted at all. Introducing regularization in this case, gave a seemingly correct solution for
the low degrees, in accordance with the smoothness of the observations at h = 20000 km.

The above regularization problem was transferred directly to the case of Shannon radial
basis functions, to investigate regularization effects on radial basis function analysis.

Radial basis function analysis by least-squares adjustment proved to be an ill-conditioned
problem even in the ideal case, with noise-free observations and on the Earth surface.
In particular, it was observed that, if no regularization was applied, the estimated d-
coefficients did not resemble the true signal, like the “true” d-coefficients computed from
EGM2008. However, when these estimated d-coefficients were introduced into the syn-
thesis, the input signal was re-obtained.

With only a small degree of regularization, the estimated d-coefficients resembled the true
signal. Therefore, a distinction between a mathematically correct solution with apparently
strange d-coefficients, and a correct solution with physically meaningful coefficients was
made.

When the solution reflects the signal to a great extent, Bentel et al. (2013) consider
it meaningful. While a solution can represent the signal in a mathematical sense, well
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capable of representing the signal, only physically meaningful coefficients can be used for,
e.g., filtering or transformation between different gravity field functionals.

Otherwise, similar traits as in the spherical harmonic analysis cases were observed also in
the radial basis function analysis cases. Regularization with prior information is applicable
and gives good results also in the radial basis function analysis case. However, when
working with synthetic data, it is evident that the different results (condition numbers,
relative contributions, “true” and estimated gravity fields and coefficients, residuals and
degree variances plots) must be seen collectively to get a cohesive impression of the “state
of the system”.

Stokes integration and least-squares collocation may be considered as well-known and
extensively treated approaches to gravity field modeling.

A recommendation for further investigations within the topic of this thesis would therefore
be to look closer at gravity field modeling with radial basis functions, where an obvious
advancement would be to apply regularization in regional gravity field modeling. The
time frame of this thesis allowed only global gravity field modeling cases with Shannon
RBF, where disturbing potential observations were analyzed, and the disturbing potential
subsequently synthesized. A natural next step would be to look at radial basis functions in
terms of other gravity field functionals, e.g., to analyze gravity anomalies and subsequently
synthesize geoid heights with radial basis functions.

Other RBFs are deemed to be better suited for regional gravity field modeling than
Shannon RBF. Therefore, further investigations with varying kernels and network design
are also of interest.
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