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Abstract

The retina of the eye receives visual information that is passed on by the lateral genicu-
late nucleus (LGN). LGN is the relay centre of the brain, and has two types of neurons:
interneurons (INs) and thalamocortical neurons (TCNs). INs form inhibitory synapses
on the TCNs, and have presynaptic terminals in the dendrites as well as the soma.
These various locations of sites make them special, and somatic IN activity may thus
be a result of either axonal or dendritic GABA release onto TCNs.

Dendritic sites of GABA release are most often located in the distal dendrites of the
INs, as part of triadic synapses elsewhere in the brain. In these triads, both presynaptic
and postsynaptic terminals of INs lie close to each other. If a terminal receives strong
enough visual input from retinal ganglion neurons (RGNs), GABA release can be locally
triggered at the very same site without somatic involvement. GABA release from these
dendritic sites may also be triggered by somatic activity of INs.

The function of having multiple release possibilities is not fully understood, and nei-
ther are the conditions for GABA release in these sites. In order to gain understanding
of this, more knowledge of the two-way communication between distal dendrites and
the soma is crucial.

T-type calcium channels (IT -channels) are important for achieving firing in thalamic
cells. The distribution of IT -channels on the somatodendritic membrane has been sug-
gested to be important for the cell functions [10]. In a modeling study of TCNs, it was
concluded that specific IT -channel distributions were optimal for the TCNs ability to
evoke bursts [18]. To my knowledge, no corresponding studies of IT -channel distribu-
tions in INs have been done. Compared to TCNs, INs have relatively long dendrites, and
due to their roles as both sender and receiver of signals, the distribution of IT -channels
will likely be important for the INs somatic firing properties, and perhaps more so for
the two-way signaling between the soma and the distal dednrites.

In this thesis, I explore what role the IT -channel distribution plays on the function
of INs, using a multicompartmental model of a IN in the LGN. My model is a simplified
version of one that was previously developed of a LGN IN, that included 7 ion channels
and was able to reproduce qualitative features of various firing properties of INs [9].
The simplified version includes only 3 of these ion channels, as they are most relevant
for the questions I wish to pose.

Four different distributions of IT -channels were tested: a linearly increasing distri-
bution ����, a uniform distribution ����, a distribution with all the IT -channels located in
the soma �����, and a stepwise distribution �Z��. Simulations were run for each case,
with the intention of exploring the propagation of a somatic signal to the distal den-
drites, and how synaptic input at distal dendritic sites gave rise to voltage and calcium
elevations in the soma.

I investigated how the IT -channel distribution affected:
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- Somatic voltage and calcium concentration levels in response to somatic input
- Synaptic strengths needed to evoke somatic action potential
- Somatic voltage and calcium concentration levels in response to synaptic input to the
distal dendrites
- Distal dendritic voltage and calcium concentration levels in response to somatic input

Finally, a conclusion could be reached that the IT -channel distribution is more im-
portant for the propagation of a signal across the dendrites than it is for somatic firing
properties: redistribution of IT -channels only gave rise to slight changes of the somatic
firing signal response to somatic input. However, for dendritic signaling, the responses
to both somatic and synaptic signal input varied largely for different distributions of
IT -channels.
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Chapter 1

Introduction

Many problems remain unsolved in the vast field of neuroscience. In computational
neuroscience, the nervous system is modeled at different structural scales in attempt to
better understand the information properties of neural signals [8]. Studies range from
large scale, typically addressing statistical properties of networks that consist of thou-
sands or millions of neurons, down to simulations on the scale of single ion channels
in a single neuron.

In this thesis, the focus is of rather small scale, aiming to investigate a specific
problem that is relevant for a specific cell type in a specific region of the brain.
Visual information is received by the retina of the eye, and is passed on by the brain’s
relay centre, the lateral geniculate nucleus (LGN). We want to explore interneurons,
one of two cell types in the LGN, and hope to gain a better understanding of how the
signaling between the soma and the distal dendrites of an interneuron depends on the
distribution of calcium ion channels.

The brain consists of many neuron types with properties that vary in similarity,
and several of these neurons have T-type calcium channels. This study focuses on the
importance of the distribution of T-type calcium channels in interneurons in the LGN.
Although the focus is specific, the results may shed light on the general function of the
distribution of T-type calcium channels.

Chapter two and three present the physiological and computational background for
this thesis. Based on previous literature, they build a basis for understanding this study.
In chapter four, the construction of the model, and the simulation setup is described, while
chapter five presents the results of simulation. Finally, chapter six offers a discussion
of the results.
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Chapter 2

Physiological background

2.1 The nervous system

The brain consists of many regions, all with different functions. Neural structures con-
tained in the somatic nervous system are responsible for the conveyance and processing
of information (touch, visual, etc... ) to the central nervous system which comprises the
brain and the spinal cord [4]. Important for this process is a large, egg-shaped mass
known as the thalamus, of which a brief introduction follows, with emphasis on the
thalamic nuclei LGN which is the focus of this study.

2.1.1 Thalamus

The thalamus is the gateway to the cerebral cortex, a relay centre through which most
messages that form a basis for what we know about the outside world and ourselves
pass [20].
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Figure 2.1: The thalamus (marked orange) is located near the centre of the brain. Image from
[7]

A small structure on each side of the brain’s midline, is assembled of several distinct
cell groups that transmit a distinctive type of signal to designated areas in the cerebral
cortex (mostly to the neocortex) [20].
The dominant afferents of some of the thalamic nuclei have been identified; ascending
pathways concerned with auditory stimuli go to the medial geniculate nucleus, so-
matosensory stimuli to the ventral posterior nucleus and visual stimuli to the lateral
geniculate nucleus. Thalamocortical neurons (TCNs) pass messages to the cortex, and
are therefore viewed as drivers (as opposed to modulators, which is what one calls affer-
ents that can modify (but are not responsible for) the qualitative nature of the messages
that are conveyed to the cortex) [20].

2.1.2 LGN
Most of the sensory information received by the brain is communicated through the
thalamus of mammals, and to the cerebral cortex. In turn, the cerebral cortex forms
feedback connections to the thalamus.

The lateral geniculate nucleus (LGN) in the thalamus receives visual input from reti-
nal ganglion cells (RGNs), processes this information and sends it to the visual cortex.
In this processing, receptive fields are refined and visual input is temporally decorre-
lated. The LGN has traditionally been viewed as the principle mediator between the
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retina and the cortex [20].

Only two types of neurons exist in the LGN. About 75% of the neurons are excitatory
thalamocortical neurons (TCNs), and the remaining 25% are inhibitory interneurons. In-
put from retinal ganglion cells (RGNs) is received by TCNs, then processed and passed
on to the cortex. This relay process is affected by several factors, including input from
INs located in the LGN, a modulatory process in which INs inhibit TCNs [20]. These
INs will be the main focus of this study.

2.2 Neurons
2.2.1 General neural functions
Unless otherwise specified, the following sections on neurons are based on the book
"The Human Nervous System - Structure and Function" by Charles R. Noback et al. [4].

Neurons - the basic units of nervous systems - consist of a soma (cell body) which
contains the nucleus (with DNA and other nuclear organelles ), and projects an axon, a
single nerve process that ends at presynaptic terminals. The soma also has branching
processes called dendrites. Dendrites receive neural signals for interneural communica-
tion while axons are channels for conducting messages (action potentials) to presynaptic
terminals at which the neuron is in synaptic contact with other neurons, making it a
part of the network that is the nervous system. The construction of a neuron enables it
to react to stimuli with an excitation that it rapidly transmits to other parts.

Figure 2.2: Diagram of a neuron, showing its principle parts: axons, . Image from [6]

Communication

A neuron at rest is a charged cell that does not conduct a nerve impulse. Electric charge
across the plasma membrane (boundary between extracellular and intracellular fluid)
is a result from a thin film of ions (N�

+
� C�

−
� K

+) that diffuse across the membrane
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along concentration gradients. Synaptic input is received and integrated by neurons.
The axons of a neuron carry information from the dendritic cell to synapses, junctions
across which impulses pass, enabling communication with other neurons.

Action potentials

Neurons communicate through electrical signals. These signals are generated through
the systematic (often voltage dependent) opening and closing of specific ion channels.
The stereotypical signaling unit is the action potential (AP). The AP is a fluctuation
in the membrane potential. An action potential lasts about 1 ms, and is a roughly 100
mV fluctuation caused by the neuron being depolarized enough to raise the membrane
potential above a threshold level, thus initiating a positive feedback process. [8]. It is
generated by the rapid opening and closing of N�

+ and K
+ channels. Typically, the

neuron will initiate generation of APs when the voltage crosses a certain threshold (this
will often be due to synaptic input).

In addition to the typical AP-generating N�
+ and K

+ channels, other channels
exist which determine other aspects of neural signaling. The most important one for
this study is the T-type C�

2+ channel. Here, a slower depolarization may be generated
by a transient C�

2+ conductance. This depolarization is called a calcium spike, and
causes the firing of a burst of action potentials in the neuron. These action potentials
are sodium spikes that ride on a slower calcium spike [8].

2.2.2 Interneurons in LGN

Nerve cells of the thalamus are distinguished by their position, connection and mor-
phology. Often, the cells’ position in the thalamic nucleus is related to their connections
(inputs and outputs, knowledge of which is key to understanding the functional pathway
that the cell is a part of), while their morphology is related to their specific functional
role (electrical properties and distribution of afferents on cell surface) within the relay
pathway [20].

One classification of cells in the dorsal thalamus distinguishes between TCNs that
have projection axons, from INs that have locally branching axons.
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Figure 2.3: Representative cells of the cat LGN. Shown are relay X and Y cells (TCNs) and an
interneuron. Insets for the X cell show appendages near proximal branch points, and for the IN
shows the numerous swellings that are the presynaptic terminals. Image from [19]

The signaling process of TCNs is affected by inhibition from INs [19]. This inhibition
occurs when presynaptic terminals release the neurotransmitter GABA into the synaptic
cleft, which then binds to the postsynaptic site of the receiving neuron (which in this
case is the TCN). GABA tends to lead to a lowering of membrane potential, making the
neuron less likely to fire action potentials.

Two aspects of the IN make it special: firstly, the dendrites have both post- and
presynaptic terminals, whereas most neurons only receive input through their dendrites,
and transmit it through their axon. Thus, IN inhibition of TCNs can occur through both
dendritic and axonal outputs [19].
Secondly, the dendritic synapses that INs form on TCNs often occur in triads at the
distal sites of the INs where, both presynaptic and postsynaptic terminals of INs lie
close to each other. When a terminal receives a visual input signal that is strong enough
form RGNs, GABA release is locally triggered. This triggering occurs at the same sight
of the input. Release may also be triggered by somatic IN activity [19].
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Figure 2.4: Triadic synapses between INs and TCNs. . Image made by Geir Halnes.

The conditions that are required for these sites to release GABA are unclear, and
we are far from having a complete understanding of the function of INs. However, an
understanding of the propagation of somatic input to the distal dendrites, and of synaptic
input to the soma, seems to be an important part of understanding the INs. The focus of
this thesis is on one mechanism that may play a role for this propagation: the T-type
calcium channels.

2.2.3 T-type calcium channels in INs

INs can like most neurons fire stereotypical APs. Under certain conditions, INs can be
found to fire bursts of APs [12]. In several studies, the conclusion is reached that there
are additional mechanisms behind these bursts [12], [9].
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Distribution of T-type calcium channels in INs

The distribution of IT -channels on the somatodendritic membrane is believed to be
greatly important for neuronal functioning [10]. As an example, Zomorrodi et al. [18]
found in their modeling studies that of TCNs that certain distributions were optimal for
the ability of TCNs to generate bursts dependent on IT -channel.

Contradictory experimental conclusions have been reached about the distribution
of IT -channels in the IN’s somatodendritic membrane. In example, Parajuli et al. [15]
carried through studies based on genetic markers, finding an indication of the density
of IT -channels to be linearly increasing from soma, while the physiological studies of
Munsch et al. [21] indicated IT -channels to be uniformly distributed.

The modeling study of Halnes et al. showed that similar firing patterns could be
obtained by both a uniform and a linearly increasing distributions. In this thesis, I would
like to investigate whether the IT -channel distribution is likely to strongly influence the
propagation of electrical signals between the soma and the distal dendrites and the
local calcium levels at specific dendritic sites.
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Chapter 3

Computational Background

3.1 Cable modeling
Unless otherwise stated, everything in this chapter is based on theory from the book
"Methods in Neuronal Modeling - From Ions to Networks" by Christof Koch and Idan
Segev [14].

In the late 1950s a necessity arose for interpreting neuronal experimental data,
causing for the application of cable theory to dendritic neurons.
Cable analysis relates for the most part to passive dendrites, where the membrane pa-
rameters are time and voltage independent. While dendrites in reality don’t have this
feature, cable theory is still immensely helpful in understanding excitable dendrites and
their integrative mechanisms.

Neuronal axons and dendrites can be idealized as cylinders as they are made up
of thin tubes of nerve membrane:

Figure 3.1: Diagram of a core cylinder, illustrating the internal current flow along core resistance,
with focus on the length increment ∆� and the corresponding increment in intracellular voltage.
Image redrawn from [14]

Consider a length increment, ∆� , of the cylinder and ∆V , the corresponding incre-
ment in intracellular voltage. Internal current flow is taken to be positive when flowing
from left to right, which here also is defined as the positive x direction. Assume that
the cylinder’s length is several times its diameter, and that it has uniform capacitance,
resistivity and electromotive force (uniform membrane properties) and also a uniform
intracellular resistance per unit length, r. Viewing the cylinder as a core conductor, we
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can use Ohm’s law to express ∆V in terms of intracellular resistance and intracellular
current

∆V = −��∆� (3.1)

Taking the limit of ∆V /∆� as ∆� approaches zero gives

∂V

∂�
= −�� (3.2)

the intracellular potential gradient. Since � is constant and independent of � , the
equation above can be differentiated to obtain

∂
2
V

∂�2 = −�
∂�

∂�
(3.3)

View the cylinder segment as a node where �� is the current flowing into the node, and
�� and ��∆� are the currents with outward flow.

Figure 3.2: Diagram of a core cylinder, illustrating the relation of membrane current density to
change in core current. Image redrawn from [14]

Since the net current flow through the node must equal zero (Kirchhoff’s current
law), the membrane current can be expressed

��∆� = �� − �� = −∆� (3.4)

An expression for the membrane current density per unit length of cylinder can thus be
obtained by dividing by ∆� and taking the limit of ∆�/∆� as ∆� goes to zero

�� = ∂�

∂�
(3.5)

Combining 3.3 and 3.5, and multiplying both sides by ��, the membrane resistance,
gives

��

�

∂
2
V

∂�2 = ���� (3.6)
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Note that V in the equations above is the internal potential. Instead let V = V�−V�,
where V� is the internal potential and V� the extracellular potential. V� is assumed to
be independent of � and � and will be zero terms when differentiating V .
View the cylinder as an equivalent circuit where the membrane conductance lies in
series with a battery (the resting potential).

Figure 3.3: A circuit diagram showing the equivalent electric circuit for a membrane. Image
redrawn from [14]

Since the membrane cylinder is passive, it has a membrane capacitance per unit
length that can be expressed �� = C�π� (F/��). In parallel with this membrane
capacitance is a membrane conductance per unit length, �� = G�π� (S/��). Thus, the
membrane resistance is the reciprocal �� = 1/�� = R�/π� (Ω��).
We can write �� as a sum of conductive and capacitive currents

�� = ��

∂V

∂�
+ V

��

(3.7)

and with V = V� − V�, we get

�� = ��

∂(V� − V�)
∂�

+ V� − V�

��

(3.8)

Letting V = V� gives
�� = ��

∂(V�)
∂�

+ V�

��

(3.9)

3.2 Ion channels
Unless otherwise stated, everything in this chapter is based on theory from the book
"Dynamical Systems in Neuroscience - The Geometry of Excitability and Bursting" by
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Eugene M. Izhikevich [11].

In the previous chapter, the membrane current �� was derived for a passive membrane.
�� consists of a capacitive current ��

∂V

∂�
and a conductive current V�−V�

��

. These properties
are passive, and neuronal membranes contain additional features like several different
species of ion channels. These ion channels play an important role when it comes to
the firing properties of the neuron. As they open or close in a manner dependent on
the activity of the neuron, they are called active mechanisms. To include the active
mechanisms, the membrane current can be expressed

�� = ��

∂(V�)
∂�

+ V�

��

+ active currents (3.10)

An important physiological feature of neurons is the assortment of ion channels that
span the membrane. Voltage changes and both internal and external signals cause the
ion channels to open and close, allowing ions, mainly potassium (K +), calcium (C�

2+),
chloride (C�

−) and sodium (N�
+), to travel into and out of the cell. These ionic currents

are what sustain and propagate electrical neuronal activity.

An open ion channel is permeable for specific ion types, and the opening and
closing of an ion may be determined by many different signals. Most commonly, these
mechanisms are voltage dependent. The focus of this thesis will be on three types of ion
channels: a sodium channel, a potassium channel and a calcium channel. The theory
needed to model these three channels is introduced in the sections below.

3.2.1 Hodgkin Huxley formalism
In the 1950s, Alan Lloyd Hodgkin and Andrew Huxley developed a model describing
the underlying mechanisms of how action potentials are generated in neuron. Their
model was based on experiments on giant axons of squid, and found three types of
currents describes as the voltage-gated transient N�

+ current IN�, the voltage-gated
persistent K

+ current IK and IL, the Ohmic leak current (composed mostly of Cl-ions).
These currents can be described

IN� = �̄N��
3
�(V� − EN�) (3.11)

IK = �̄K �
4(V� − EK ) (3.12)

IL = �L(V� − EL) (3.13)
where �N�, �K and �L are the maximum conductances for the channels when they are
fully open. The gating variables �, � and � (� is the K

+ activation variable, � is the
N�

+ activation variable and � is the N�
+ inactivation variable) determine the proba-

bility of a channel being in the open state (for a many channels, the variables tell the
fractions of channels that are open). EN�, EK and EL are the reversal potentials for
each specific ion type.

The Hodgkin-Huxley model was developed specifically for the giant squid axon, but
many of the other ion channels in the brain can be modeled using this formalism which
has come to be known as the Hodgkin-Huxley formalism.
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Equilibrium potential

Concentration and electric potential gradients are the main forces that drive ions across
the membrane channel. Ions will diffuse down the concentration gradient (i.e. from
higher concentration outside cell to lower concentration inside), causing charge to ac-
cumulate on opposite sides of the membrane surface. This creates a potential gradient
across the membrane (transmembrane potential), which in turn leads to slowing down of
the diffusion. Eventually equilibrium potential is reached, where the electrical potential
gradient and the concentration gradient counterbalance each other by exerting equal
and opposite forces, resulting in zero net current across the membrane. Equilibrium
potential can be expressed by the Nernst equation

E��� = RT

�F
ln [I��]���

[I��]��
(3.14)

where R is the universal gas constant, T is temperature given in degrees Kelvin, � is
the valence of the ion and F is Faraday’s constant. [I��]��� and [I��]�� denote the ionic
concentrations outside and inside the cell.

When the membrane potential doesn’t equal the equilibrium potential, there will be
a net ionic current, I���, that is proportional to the difference between the potentials.

Voltage gates

Each ion channel has gates that control their electrical conductance by switching the
state of the channel between open and closed states. For an individual channel, the
alteration between open and closed states will be of stochastic nature, but for a large
enough population of identical channels the net current generated can be written as

I = �̄�(V − E ) (3.15)

where �̄ is the population’s maximal conductance and � is the proportion of channels
that are in the open state (in average).
The gates may act in response to neurotransmitters and neuromodulators (e.g NMDA,
AMPA, or GABA receptors), they may be influenced by second messengers (e.g. C�

2+-
gated K

+ channels), or they may be sensitve to membrane potential (e.g. voltage-gated
K

+ and N�
+ channels). Voltage gates are either active or inactive - they either open

or close channels. In a large population, the proportion of open channels can be written

� = �
�
�

� (3.16)

where � is the probability of an activation gate being in open state, � is the number of
activation gates per channel, � is the probability of an inactivation gate being in open
stat and � is the number of inactivation gates per channel. The channels are partially

activated if 0 < � < 1, completely activated if � = 1, deactivated (not activated) if
� = 0, inactivated if � = 0 and deinactivated (not inactivated) if � = 1. A channel with
inactivation gates has transient currents, while if the channel doesn’t have inactivation
gates, the current through the channel will be persistent and � = �

�.
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A first-order differential equation can describe the dynamics of �, the activation variable

�̇ = (�∞(V ) − �)/τ(V ) (3.17)

Here �∞(V ) is the steady-state activation function, and τ(V ) is the time constant. Both
can be measured experimentally.
Similarly, the dynamics of the inactivation variable � can be described

�̇ = (�∞(V ) − �)/τ(V ) (3.18)

where �∞(V ) is the steady-state inactivation function.

The activation and inactivation variables from equations 3.11 to 3.13 have opening
and closing dynamics that can be described by the following equations

�̇ = (�∞(V ) − �)/τ�(V )
�̇ = (�∞(V ) − �)/τ�(V ) (3.19)
�̇ = (�∞(V ) − �)/τ�(V )

�∞(V ), �∞(V ) and �∞(V ) are the steady-state activation functions, and τ�(V ), τ�(V and
τ�(V ) are the voltage-dependent time constants. These are typically found in empirical
studies, and vary between ion channels. They also vary between different neurons.

The following figure shows examples of the dynamics of the above functions. Note
the normalization of the y-axis such that 1 denotes all channels being open.

Figure 3.4: a) Dynamics of the steady-state activation and inactivation functions b) Dynamics
of the voltage-dependent time constants.

3.2.2 GHK formalism
Another formalism for describing the dynamics of gated ion channels is the Goldman-
Hodgkin-Katz (GHK) formalism. It is related to the Hodgkin Huxley formalism, and
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does not have a constant reversal potential.

The intracellular calcium concentration for a neuron at rest is very low, and an
incoming flux of C�

2+ ions will likely significantly alter the concentration. One can
therefor not assume the reversal potential to be approximately constant, and the GHK
formalism therefore comes in handy.

The calcium current can be expressed [3]:

IT = P̄C��
2
�G(V � C��� C��) (3.20)

where P̄C� is the membranes maximum permeability of C�
2+ ions (cm/s), and C�� and

C�� represent the intracellular and extracellular calcium concentrations. G(V � C��� C��)
is a nonlinear function expressing the voltage and ionic concentrations:

G(V � C��� C��) = Z
2
F

2
V /RT

C�� − C��exp(−ZFV /RT )
1 − exp(−ZFV /RT ) (3.21)

Here Z is the valence of calcium ions (Z=2), F is Faraday’s constant, R is the gas
constant and T is the temperature in Kelvins.

The function for the voltage and ionic concentrations has dimension �C/��
3, and

must therefore be multiplied with a permeability (��/�) to obtain the units �A/��
2 for

the IT current. This is equivalent with the multiplication of conductance in the Hodgkin-
Huxley formalism. The permeability is proportional to the conductance, and both are
related to the ion channel density.

The gating variables � and � (see equation 3.19) are modeled as they are in the
Hodgkin Huxley formalism.

3.2.3 Intracellular calcium concentration

A model that accounts for the variations in intracellular calcium concentration must
include an algorithm for computing the concentration changes as a function of time. An
extrusion mechanism of the following form is the most simple model [9]:

�[C�]
��

= −α · IC� −
[C�] − [C�]����

τC�

(3.22)

[C�] is the intracellular calcium concentration, [C�]���� is the calcium concentration
at rest, and the calcium current IC� may consist of a current through several calcium
channels.
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3.3 Compartmental neural models

3.3.1 Principles of compartmental neuron models
Detailed information about interactions between synaptic input, morphology and phys-
iological properties is necessary in order to properly understand how information is
processed in each neuron. A good approach to exploration of deviations in voltage, flow
of current and the effect of and relations between different input and output is to create
a formal, compartmental model, that encompasses these features. In this model one
assumes that small neuronal segments can be treated as having uniform potential, such
that one can approximate the continuos structure of the neuron as a series of discrete
linked elements. Doing this will make the mathematics simpler, and also allow for an
individual compartment to have nonuniform properties.
In this chapter a description of compartmental modeling will be given, based on theory
from the book "Methods in Neuronal Modeling - From Ions to Networks" by Christof
Koch and Idan Segev [14]. This theory is incorporated when one builds compartmental
neural models.

Recall equation 3.9:
�� = ��

∂V�

∂�
+ V�

��

Multiplying both sides by �� and collecting terms leads us to

���� − ����

∂V�

∂�
− V� = 0 (3.23)

Recall equation 3.6:

��

�

∂
2
V

∂�2 = ����

Inserting this equation gives

��

�

∂
2
V�

∂�2 − ����

∂V�

∂�
− V� = 0 (3.24)

a partial differential equation in a form used in one-dimensional cable theory to de-
scribe the flow of current in a continuous passive dendritic tree.

For transient current inputs in an idealized class of unbranched dendritic tree, these
equations have simple analytical solutions. However, too many constraints are made in
achieving this idealization, and the model far from resembles a real dendritic tree.

When considering arbitrary branching passive dendritic trees, the solutions to the
cable equations (3.24) become more complex, and if, additionally, the neuron’s membrane
properties are voltage dependent, one cannot implement the analytical model. The linear
cable theory is no longer valid, and compartmental models must be used to deal with
these more complex cases.

In compartmental models, the neuron is divided into segments each assumed to be
isopotential, and the continuous neuron can thus be approximated as discrete elements
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linked together. The continuous differential equations of the analytical model are re-
placed by a set of ordinary differential equations, with an error that will be negligible
if the neuron is divided into sufficiently small segments. An equivalent circuit is used
to represent the neuron segments if one assumes the membrane to be passive. Each
membrane channel can be represented as a resistor (�̂��

) connected in parallel with a
capacitor (�̂��

), and series resistances (�� ) representing the cytoplasm connect neigh-
boring compartments. The extracellular environment is taken as reference potential
(ground). Figure 3.5 illustrates the representation of neuron segments as an equivalent
circuit.

Figure 3.5: Equivalent circuit for a compartmental model of a chain of three successive small
cylindrical segments of passive dendritic membrane. Image redrawn from [14].

An advantage of the above approach is that each compartment is not restricted
and may assume either somatic, axonal or dendritic membrane properties. Another
advantage is that compartmental models allow for different levels of resolution- neurons
can soundly, as is the case with this thesis, be represented with a few compartments,
each comprised of complex structures.

3.3.2 A mathematical representation
Kirchhoff’s current law states that the net current flow through a node in an electrical
circuit will be zero. Each equation in the system of ordinary differential equations
used to describe compartmental models is derived from Kirchhoff’s law, so in each com-
partment, j, the difference between the current entering (��−1�� ), and the current leaving
(����+1) will equal the net current through the membrane (̂���

) which in an unbranched
section can be expressed

�̂��
= ��−1�� − ����+1 (3.25)

Analogy to the equivalent circuit allows us to represent the membrane current as a
sum of a current due to various ion channels (I���) and a current due to the membranes
capacitative properties

�̂��
= �̂��

�V�

��
+ I

���

�
(3.26)

where V� is the membrane potential. An additional term (I����) must be added to account
for stimulation that the compartment may receive from an external source, or as synaptic
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input from other neurons. Expressing ��−1�� and ����+1 as the voltage gradient between
compartments divided by the axial resistance between them gives

V�−1 − V�

��−1��

+ V� − V�+1

��+1��

= �̂��

�V�

��
+ I

���

�
+ I

����

�
(3.27)

or
(V�−1 − V� )��−1�� − (V� − V�+1)����+1 = �̂��

�V�

��
+ I

���

�
+ I

����

�
(3.28)

where the axial resistance is expressed in terms of conductance.

3.4 NEURON simulator
NEURON is a simulation program developed by John W. Moore and Michael Hines
at the Department of Neurobiology at Duke University. It provides an environment for
modeling and simulating neuronal networks, and enables us to tackle problems that
are closely linked to experimental data. Complex models are built by connecting one-
dimensional sections together to form arbitrary neuron morphologies in which we can
insert membrane properties (i.e. ion channels, capacitance, synapses) [17].

The default graphic interface (GUI) of NEURON is designed to hide the numerical
methods used in simulation, thus providing an intuitive environment where users can
combine the GUI and hoc programming to generate results. By offering a syntax where
model properties can be specified in familiar idioms, users are allowed to focus on
addressing biological questions without being distracted by low-level mathematical or
computational issues (i.e. introducing the notion of a section as an analogy to an
unbranched neurite so that users can work with the anatomy of neurons without having
to deal with the cable equation) [17].

An extendable library of biophysical mechanisms is available, through which user-
defined mechanisms (i.e. diffusion, voltage-gated channels) can be added by writing
model descriptions in the programming language NMODL that has syntax with which
kinetic schemes and sets of simultaneous equations can be expressed [17].

3.4.1 Creating the compartmental model using the NEURON simu-
lator

Following is a short overview of the principles surrounding the creation of a compart-
mental model.

On the onset of creating a compartmental model, the structure of real neurons are
mapped by reconstructing them into series of linked, discrete geometric segments. The
dimension of each segment is measured, and it’s physical location in space is repre-
sented in this reconstruction that may be carried out using methods like light microscopy
[14].

Neurolucida is a software system for brain mapping that produces 3D reconstruc-
tions of neurons [16]. These mappings can be read by NEURON. Neurolucida files are
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often used when dealing with realistic morphologies, and the compartmentalization of
these morphologies is handled automatically by NEURON algorithms.

Available online are NMODL-based files that describe the kinetics of ion channels,
and of the intracellular calcium concentration. These files are often adapted to experi-
mental recordings made for the given ion channel in a specific cell.

A HOC-file then needs to be set up, specifying how many segments the model is
to be divided into, the passive membrane properties of the model neuron and the set of
ion channels to be inserted into each segment of the model.
To validate the model, the responses of simulations are compared to experimental record-
ings of the same type of cell, and adaptation of experimental data can be carried through
by varying unknown parameters. As the ion channel densities may vary in reality, the
parameters one is free to vary are often the different ion channel conductances, and
the ion channel distribution over the membrane. The ion channel kinetics is typically
known, and thus usually remains unvaried.
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Chapter 4

Methods

In the compartmental model of the LGN interneuron, the following values and proper-
ties need were specified: a morphology, passive membrane properties, kinetics that are
included in the model, an algorithm for computing the intracellular concentrations of a
given ion, and the distribution of ion channels throughout the membrane of the soma
and dendrites.

In my simulations, a simplified version of a previous model for dLGN interneurons
was used [9]. In this previous model created by Halnes et al. a morphological re-
construction of interneurons was used to create a compartmental model that is able to
reproduce and account for key features of experimental recordings. The same morphol-
ogy was used here.
Of the two parameterizations in the Halnes et al. model, I use the one called P2.
As this study focused on the effects of various distributions of T-type calcium channels,
I only included the following 3 channels to the simplified model: the Hodgkin-Huxley
sodium channel (N�) and the delayed-rectifier potassium channel (K��) that are respon-
sible for generation of action potential, and low-threshold, T-type calcium channels (IT ),
that underlie bursts and T-type calcium spikes [13], [9] .

For the simplified model, the morphology, passive membrane properties (with one
adjustment, see chapter 4.1.2), ion channel kinetics, and algorithm for the intracellular
calcium pool are taken from the Halnes et al. model. These shared properties are
described in chapter 4.1.
Variations were only made to the densities and distributions of the included ion chan-
nels, and to the reversal potential for the passive currents, properties that will be
described in chapter 4.2. Finally, chapter 4.4 gives a description of the simulation
setup.

4.1 The reduced Halnes et al. model

4.1.1 Morphology
In the model used by Halnes et al., a 3D reconstruction of mouse interneurons was
created based on the morphology shown in the figure below
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Figure 4.1: The dLGN interneuron morhpology that was used in all simulations.

This shows an image of an interneuron drawn using Neurolucida neuron reconstruc-
tion software following experiments on brain slices containing dLGN of knock-in-mice.
The interneuron model consists of a soma and 104 dendritic sections split into 330 seg-
ments, and has the following parameters: total surface area = 9864 µ�

2, total length
of dendrites = 5771 µ� (with longest dendrite = 673 µ�), mean somatodendritic di-
ameter 0�5 µ� (approximately). The model does not contain any axons as they in LGN
interneurons tend to be very thin and difficult to identify in the morphology data. This
omission of axons is not crucial as they, due to small surface area, do not have a sig-
nificant effect on somatic input- and output-data.

4.1.2 Passive properties

The following passive properties are the same as used by Halnes et al. (see table 4.1
for an overview): axial resistivity R� = 113 Ω��, membrane capacitance C� = 1�1
µF/��

2, membrane resistance R� = 45 �Ω��
2, leakage current ���� = 1/R�. In order

to obtain a qualitative fit of responses to current injections in the soma, with the excep-
tion of R�, they manually estimated these properties for the neuron through a trial and
error process.
The reversal potential was initially set to the same value as Halnes et al. (E��� = −71�6
�V ), but slightly altered to −71 �V after a series of adjustments were made to the ion
channel conductances, in order to recover a resting potential of ∼ −69 �V , which was
the resting potential of the neuron P2 in Halnes et al. The resulting resting potential
was V���� = −69�4 �V .
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Table 4.1: Passive parameters

Parameter Description Value
V���� Resting potential −69�4 �V

R� Membrane resistance 45000 Ω��
2

C� Membrane capacitance 1�1 µF/��
2

R� Axial resisitivty 113 Ω��

E��� Reversal potential 71 �V

4.1.3 Ion channel kinetics

IT

Halnes et al. adapted the kinetics of the low-threshold T-type calcium channel (IT )
from interneuron voltage clamp data. The IT -channel kinetics was taken from Halnes
et al., where it had been adapted to voltage clamp and current clamp data from INs. A
Goldman-Hodgkin-Katz formulation can be used to describe the IT current (see section
3.2.2)

IT = P̄C��
2
�G(V � C��� C��) (4.1)

N� and K��

The N� and K�� channels were also taken directly from Halnes et al., who found that
these were appropriate for modeling the APs of INs. A Hodgkin-Huxley formulation as
described in chapter 3.2.1 can be used for N� and K�� channels, and the currents can
be described

IN� = � · �
3

· � · (V − EN�) (4.2)

and

IK = � · �
4

· (V − EK ) (4.3)

The image below shows the kinetics of the ion channels described above
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Figure 4.2: The steady state values of activation/inactivation variables (purple/yellow full lines),
along with the activation/inactivation time constants (dotted lines) plotted as a function of voltage
for the N�, K�� and C� ion channels. Image from Halnes et al. [9]

4.1.4 Calcium pool
When modeling the intracellular calcium levels, I used the model of a leaky integrator,
expressing the calcium concentration as

�[C�]
��

= −α · (IT ) −
[C�] − [C�]����

τC�

(4.4)

Increase in calcium concentration when the calcium channels are open was modeled
by the first term on the right hand side, where the factor α = 0�0155 ����/(�� · C )
converts the IT current into a concentration increase. The second term helped describe
buffering and extrusion mechanisms, with the values [C�]���� = 50�M and τC� = 50 ��.
The calcium extrusion mechanism and all parameters were taken directly from Halnes
et al.

4.2 Model parameters that were varied
The following model parameters were changed with respect to the Halnes et al. model:
E���, �N�, �K��

and �T . These parameters were specified so that the IN model re-
sponded in a realistic way to selected inputs (see results). In all simulations, the values
E��� = 71�V , �N� = 0�08S/��

2 and �K��
= 0�3S/��

2 were used, with the same
distribution of �N� and �K��

as in Halnes et al., that were assumed to be uniform across
the dendrite, and not equal to the distribution in the soma.

4.2.1 T-cannel distributions
Simulations were carried through using four different ion channel distributions that are
described below.
When varying the ion channel distributions, the total number of IT -channels was kept
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constant. The values of ����� are therefore individual for each distribution.
A functional form is used to express the channel distribution, where ����� is the reference
point. In this way ����� is entirely specified by ����� and the chosen distribution.

Linearly increasing distribution

The first distribution, �T���
is the same as that used by Halnes et al. where the den-

dritic density ����� increases linearly with distance � (µ�) from soma by the formula
�����(�) = ����� · (1 + 0�04�).

Uniform distribution

In the second distribution, �T���
, the dendritic density is uniform and equal to the dis-

tribution in soma: �����(�) = �����.

Zero distribution

The third distribution used is one where all the IT channels were located in the soma,
and ����� = 0. This distribution is denoted �T����

.

Zomorrodi distribution

The stepwise form of the fourth distribution, �TZ��
, is based on the experiments of

Zomoroddi et al. [18] in which they investigated different patterns of IT -channel distri-
butions in thalamocortical cells.

I chose one of these was chosen as a starting point for the experiments in this thesis.

Figure 4.3: Her skal det vaere bilde av Zomorrodifordelningen

The image above shows the permeability (�104
��/�) of the IT -channel distribution.

First, I determined the length of the specific dendritic pathway of which the prop-
agating signal was to be studied (this needed to be done for each new pathway) and
divided into three segments. The length of these segments was determined by the rela-
tive lengths in the Zomorrodi 3-compartment-model. Due to the proportionality between
the conductance and permeability, these segments could be assigned with the densities
�

1
����

= ����� · 1�7, �
2
����

= ����� · 7�81 and �
3
����

= ����� · 0�17.
�

1
����

was defined as all segments between soma (distance = 0 µ�) and 201 µ�, �
2
����

the segments with distance 202 µ� to 303 µ� and �
3
����

the segments with distance
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304 µ� to 672 µ� (the tip of the dendrite). These values were set globally for the
entire neuron, which didn’t matter as the focus was only on the chosen pathway.

4.2.2 Normalization of gT

The total number of IT channels was held equal through all experiments. This was
in order to enable comparison of documented differences in the signals resulting from
inputs �-�� . To assure the constancy of the number of channels, ����� was varied for
each distribution of IT -channels such that the sum (A���� · �����) + (

�
�
A� · ������

(�))
remained constant. Here A� is the cross section area of dendritic segment �, and �����

for each distribution is given by the formulas in section 4.2.1.

Gathered in the table below are the values of the various conductances.

Table 4.2: Maximum conductances

Parameter Description Value
�N� Maximum N�-conductance in soma 0�08 S/��

2

�K�� Maximum K��-conductance in soma 0�3S/��
2

��������
Maximum IT -conductance in soma (lin. incr. dist.) 9 · 10−6

S/��
2

��������
Maximum IT -conductance in soma (unifrom dist.) 8�53 · 10−5

S/��
2

���������
Maximum IT -conductance in soma (zero dist.) 1�66 · 10−3

S/��
2

�����Z��������
Maximum IT -conductance in soma (Zomorrodi dist.) 5�008 · 10−5

S/��
2

4.3 Modeling a synapse

Excitatory post synaptic currents (EPSCs) can be evoked by the activation of AMPA
synapses. These have been measured in interneurons [5]. i modeled the AMPA current
in a standard way, as a sum of two exponentials. This function is incorporated in the
NEURON library. The EPSC that is evoked by the activation of a single synapse has
a time course that resembles that of TCNs (this can be seen in comparing the top trace
if figure 4B in Acuna-Goycolea et al [5] with the bottom trace in figure 1B in Blitz &
Regehr [1]). We approximated by assuming the AMPA synapse to be similar in INs and
TCNs. For the reversal potentia (E��� = 10�V ), the rise and decay times were chosen
to be, ����� = 0�5�� and ���� = 2��, values based on data in Blitz & Regehr for AMPA
synapses in TCNs. The conductance was determined in our simulation (see results).
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4.4 Inputs to the model

Figure 4.4: The dLGN interneuron, illustrating where inputs were made.

The model’s response to the following 4 different inputs was simulated:
i: short (10 ms), strong amplitude ( 0.2 nA < amp < 0.25 nA)
ii: short (10 ms), strong amplitude (as i) + blocked N�-channels
iii: long (900 ms), low amplitude (0.03 nA < amp < 0.04 nA)
iv: synaptic input to the distal dendrites

When changing between the distributions and the values of �����, I found that the
strength of the input signal needed to be adjusted in order for the signal to resemble
those described as responses to inputs i - iv.

I varied the amplitudes of inputs i to iii, and tested different synaptic strengths. A
further description is provided in the following chapter.

29



30



Chapter 5

Results

5.1 Model calibration
I wanted to see how the distributions of IT -channels affected the model’s response to
the four different classes of inputs (i-v specified below). From experiments by Acuna-
Goycolea et al.[5], we know that a short and strong (high amplitude) current injection
to the soma will typically evoke a burst of action potentials in interneurons. We also
know that a relatively long and weak somatic current injection typically evokes an ini-
tial burst that is followed by regular action potential firing [9].

Using the linear IT -channel distribution �T���
, I set the stimulation amplitude to

0�25�A with duration 10��. At this level the response signal response was somewhat
close to the wanted shape.
The values of �N�, �K��

, �N� and �T were then adjusted such that the shape better
resembled that of Acuna-Goycolea (mentioned above, see figure 5.1 a) ). These values
were held constant for the remainder of the simulations.
The response of setting �N� = 0 was checked, showing a calcium spike. The simulation
duration was then set to 900��, and the amplitude adjusted until a similar response as
Halnes et al. was reached.

These inputs are summarized below, with the values for the linear IT -channel dis-
tribution �T���

Input signal i A short (10 ��) and relatively strong somatic current injection was
tested, varying the amplitude of the imput signal until the response signal resembled that
of the signal in experiments by Acuna-Goycolea et al. [5] (where whole-cell recordings
were carried out on interneurons, finding that 10�� current injections to the soma
evoked a burst of spikes riding on a calcium spike). I found that an amplitude of 0�25
�A was suitable. The shape of this signal can be seen in figure 5.1a).

Input signal ii When setting the the sodium conductance �N� to zero, input signal
i still lead to a response, a "bumb" indicating the existence of an underlying calcium
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spike. Figure 5.1b) illustrates this signal.

Input signal iii A long (900 ��) and relatively strong somatic current injection was
tested, varying the amplitude of the imput signal until the response signal resembled
that of the signal in the experiments of Halnes et al. I found that an amplitude of 0�0379
�A was suitable, and the resulting signal is shown in figure 5.1c).

Figure 5.1: a) Response to a 10ms, 0.25nA current injection. b) Response to a 10ms 0.25nA
current injection, with �N� = 0. c) Response to a 900ms 0.0379nA current injection.

iv: synaptic inputs In addition to the input signals � - ���, I studied the effect of
synaptic inputs to distal dendrites. These inputs were meant to simulate the activation
of AMPA synapses leading to a brief current inflow to the neuron. See section 5.3.3
for a closer description
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Figure 5.2: Response to subthreshold synaptic input in a distal dendrite. The black line shows
the somatic response, while the purple line shows the respone in the distal denrite of which the
signal was activated.

Reasonable calcium levels As the model of this thesis does not include the calcium-
dependent mechanisms IAHP and ICAN , it was necessary to check that bursts and rapid
spiking still gave rise to reasonable increases in calcium concentration. Finding that
action potentials in the soma lead to concentration increases of about 75 �M in the
soma, and about 700 �M in the distal dendrites, which is within the ranges found by
Acuna-Goycolea et al. [5]

5.2 How the somatic response to somatic current injection
depends on IT -distributions

I also wanted to see how the somatic response to somatic current injections depended on
the distribution of IT -channels. For the remaining distributions �T���

, �T����
and �TZ��

, I
checked which signal amplitude (in inputs i-iii) that was required to reproduce a similar
response patterns to that in figure 5.1: for input i)- a burst with approximately the
same number of spikes, and for input iii)- a burst with approximately the same number of
spikes followed by approximately the same amount of regular AP firing. The following
values were found (recall that ����� is varied to keep the total number of IT -channels
constant):
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Table 5.1: Values of �����, and signal amplitudes for IT -channel distributions i-iii

�T���
�T���

�T����
�TZ��

����� (S/��
2) 9�00�10−6 8�53�10−5 1�66�10−3 5�28�10−5

input i & ii (�A) 0�25 0�247 0�21 0�245
input iii (�A) 0�0379 0�0373 0�037 0�0374

The variation in input signal i) and ii) is of ∼ 16%, while it is of ∼ 2% for input iii).
These values were kept for the remainder of the simulations.
(Note that as these input signal amplitudes only result in similar and not identical

responses, a comparison of the different IT -channel distributions with respect to these
amplitudes would not be useful. They were only found for the purpose of setting values
to be used in the following simulations.)

5.3 Signal propagation in the dendrite depends on IT -
distribution

An initial hypothesis was that the distribution of IT -channels may be more important
for signal propagation in the dendrites than for somatic responses to somatic current
injections. Therefore, I wanted to compare how the propagation of the following signals
(see figure 5.1) depended on the distribution of IT -channels:
i) A burst evoked in the soma
ii) A calcium spike evoked in the soma
iii) A single action potential evoked in the soma
I also wanted to investigate how
iv) An excitatory post synaptic potential (EPSP) propagated towards the soma when a
synaptic input was given to the distal dendrite (see figure 5.2).

Figure 5.3 illustrates how the signals propagated. It is plotted for the soma (black),
a midway location (� = 251µ� purple) and a distal location (� = 602µ�, brown).
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Figure 5.3: a) Propagation of a calcium spike (input ii) b) Propagation of an action potential
(input iii) c) Propagation of a a EPSP (input iv). The inlay shows a signal above threshold.

Investigations were carried out on the four different distributions of IT -channels, and
the results were compared.
When evoking the somatic responses i-iii, I used the input amplitudes in table 5.1.
These are dependent on the distribution of IT -channels and ensure a similar somatic
response in the four different distributions, hence making a good reference point for
comparison.

i For i) I selected the second last spike in the burst (see figure 5.1 a)), and followed
its propagation down the dendrite, recording the amplitude and width of this action
potential at different points in the dendrite. I also recorded the maximum amplitude of
the elevation in calcium levels resulting from the firing.
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ii In a similar fashion for ii), the amplitude of the calcium spike that resulted from
setting the conductance �N� to zero (see figure 5.1 b)) was recorded.

Figure 5.4: Dendritic signal respose to input ii. The arrows show that the amplitude was
recorded from base to top of the calcium spike, and the width was recorded at half amplitude.

iii For iii) the amplitude of the second last spike (see figure 5.1 c)), and the resulting
calcium elevation levels were recorded. The image below shows how recordings were
made this input

Figure 5.5: a) Somatic signal respose to input iii. The circle shows the action potential that was
studied. b) Close-up of the circled action potential. The arrows show that the amplitude was
recorded from base to top of the action potential, and the width was recorded at half amplitude.

iv For the synaptic input iv), I studied the response to a signal synapse placed at
the tip of a single dendrite (shown in figure 4.4). The synaptic weight was set to
0�0018 µS such that the signal was below the threshold for somatic action potential
firing for all distributions. All distributions were tested with the same weight such
that the results could be compared. Note that this experiment was only carried through
for three IT -channel distribution (�TZ��

was omitted from the recordings, see discussion).
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The results of the measurements for inputs i) - iii) are summarized in the figures
5.6, 5.8 and 5.7.

Figure 5.6: Input i : a) Amplitude of calcium elevation resulting from a selected spike in burst
b) Amplitude of a selected spike in a burst c) Width of a selected spike in burst

5.3.1 AP propagation did not depend strongly on IT -channel distri-
bution

I found that action potentials successfully invaded the distal dendrites regardless of
the IT -channel distribution (see figure 5.7 b ). Also, the shape of the action potential
broadened slightly as distance from soma grew. This can be seen in figure 5.7 c).
These features were not greatly effected by the IT -channel distribution.

The calcium increase that was evoked by the action potential propagation tended to
be highest at the points where the density of IT -channels was highest (see figure 5.7
a) ), and the voltage levels are independent of the IT -channel distributions.

Figure 5.7: Input iii : a) Amplitude calcium elevation of a selected AP b) Amplitude of a selected
AP c) Width of a selected AP

37



5.3.2 IT -distribution greatly affects propagation of calcium spikes and
EPSPs

When comparing how the propagation of a calcium spike depended on the distribution,
interesting results were found. Also in this case, the calcium amplitude followed the
IT -distribution a great deal (see figure 5.8 a).
Counter to the findings in the previous section, I found the voltage level in distal den-
drites to be strongly dependent on the distribution of IT -channels. In figure 5.8 b) we
can see that the voltage level follows the distribution, i.e., increases linearly for ����,
and is uniform for ���� and so on.

Figure 5.8: Input ii : a) Amplitude of calcium elevation resulting form a calcium spike b) Am-
plitude of a calcium spike c) Width of a calcium spike

Table 5.2 below shows an overview of the ratio between amplitudes of soma and
averaged amplitudes of distal dendrites for a calcium spike:

Table 5.2: Ratio of voltage amplitudes for ca-spike

Distribution AMP����

AMP��������
for ca-spike

���� 0�78

���� 1�00

����� 1�19

I can here see that the linearly increasing IT -channel distribution is optimal for
propagation of a somatic signal input. This is illustrated in figure 5.8 b), where we can
see that the distribution ���� leads to the highest amplitude in the distal dendrites.

5.3.3 Somatic and dendritic responses of synapses in distal dendrites
Synapses in the distal dendrites cause excitatory post synaptic potentials (EPSPs)
that propagate towards the soma. For a synapse placed at the tip of a distal dendrite
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(input iv, described in figure 5.9), I recorded the somatic and dendritic voltage amplitude.

The table below shows an overview of the ratios between between amplitudes of
distal dendrites and amplitudes of soma for a synaptic input.

Table 5.3: Ratio of voltage amplitudes for synapse

Distribution AMP��������

AMP����
for synapse

���� 11�6

���� 19�3

����� 19�6

�Z�� 19�5

The distribution ���� is clearly optimal for the somatic response to a synaptic input,
and thus is optimal for communication going in both directions between the soma and
the distal dendrites.

The results of the measurements for input iv) are summarized in figure 5.9. The top
figure shows measurements of voltage amplitude of the response signal to subthreshold
synaptic input, while the bottom figure shows the measurements of calcium elevations.
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Figure 5.9: Input iv : a) Amplitude of a voltage elevation resulting from synapse in distal dendrite
b) Close up of a) near soma c) Amplitude of calcium elevation. Note that signals are initiated
on the right hand side of the figure, and propagate towards the left. d) Close up of b) near soma
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Chapter 6

Discussion

A series of simulations have been run in this thesis, with an attempt to predict the
consequences varying IT -channel distributions have on somatic and dendritic calcium
and voltage levels. I now pose the question: which of these predictions are in most
agreement with experimental recordings?

6.1 Main conclusions
The linearly increasing IT -channel distribution was found to optimal for a outward prop-
agating calcium spike initiated in the soma. This supports the experimental findings of
Parajuli et al. [15].

It has been suggested that the existence of synapses in distal dendrites enables
interneurons to modulate the activity of thalamocortical cells, helping balance the in-
formation relay to the cortex [19]. This linearly increasing distribution of IT -channels
was also found to be optimal for the propagation of a synaptic impulse towards the
soma. The increased channel density in distal dendrites may be a means of amplifying
somatic input, thus helping to increase the activation of synapses at distal locations.

6.2 Reducing the morophology
I initially considered doing simulations on a simplified morphology, basing the model
structure on the 3-compartment model of Zomorrodi et al. [18], and combining it with
parameters and properties from Halnes et al. [9]. However, most methods for simplifying
the morphology require the assumption of dendritic symmetry- that all dendrites have
approximately have the same length and branch in the same way. As they also imply a
simulational symmetry, these reduced models are good for either studying how somatic
signals are spread outwards in the dendrites, or how the soma responses to simulta-
neous activation of a large number of synapses that are assumed to be homogeneously
distributed across the dendrites.
The synapses to the INs that are studied in this paper are retinal synapses, and tend
to be quite strong, so activation of 1 - 4 synapses is sufficient for driving the soma
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to fire action potentials. As the goal was to study the the response of single synaptic
inputs, the problem to investigate is asymmetric. Thus, the methods for simplifying the
morphology were not applicable in this case.

6.3 Limitations of the study
Every model of a biological mechanism will be a simplification on some scale, where as-
sumptions and compromises on what aspects to include are made. Only 3 ion channels
are included in this model, as opposed to he original model’s 7, omitting ion channels
that play a key role for specific firing properties [9]. These simplifications were made
so that the role of the IT -channel could be studied in isolation, and I believe that the
results reveal relations that are qualitatively important. However, I am aware that the
effects that would occur if other channels were included are missing. The firing pat-
terns would differ if other channels were used, and the possibility of these changing the
results, can not be excluded.

Some simulation results are only shown for the distributions ����, ���� and �����.
This is due to an error in the coding for the �Z�� distribution that was discovered too
late in the process to embark on the simulations.

The scope of the study was also relatively small, as experiments were only carried
out on a single neuron morphology, and only investigating a few dendritic pathways.
Conclusions are hard to make with such a limited vantage point

6.4 Comparing results to experimental findings
Different conclusions regarding the IT -channel distribution have been reached in ex-
perimental studies. Munsch et al. [21] studied the intracellular calcium concentration
dynamics of interneurons in rat LGNs, and their findings reflected a uniform distribution
of IT -channels. On the other hand, Parajuli et al. [15] came to a different conclusion in
their studies on distribution of a subunit of IT -channels, finding the channel density to
be higher in proximal dendrites, and decrease towards the distal dendrites.

Some of the results in my simulations were in disagreement with experimental find-
ings:

· Although previous experimental results have indicated that synaptic induced action
potentials always originate in proximity to the soma [2], I found that sufficiently strong
synaptic stimuli could lead to a burst originating in the synaptic region (see figure 5.2).

· The linearly increasing IT -channel distribution predicted that an action potential
or calcium spike propagating outward from the soma would lead to an elevation in
calcium concentration in the dendrites (see figure 5.7 and 5.8). This is in contradiction
with experimental results that have indicated dendritic calcium levels to remain unvar-
ied with distance from soma. [5]
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The results of the uniform IT -channel distribution on the other hand gave rise to
results that were qualitatively similar to the findings of Acuna-Goycolea et al. This may
indicate that a uniform distribution of IT -channels is in best agreement with experiments
on dendritic signal propagation.

6.5 Future work
As the distribution �Z�� has been omitted from some of the simulations, these need to
be tested.

A natural continuation of this thesis, before expanding the project, would be to repeat
the simulations on different morphologies, and also several more dendritic pathways on
the same morphology. This would contribute to strengthening the conclusions of the
study.
It would also be interesting to repeat the simulations with slight variations in strengths
of the input signals, as to assure that the results are not specific to the signal strengths
used.

The passive properties (e.g. membrane resistance) and ion channel densities will
likely vary from cell to cell, they will even vary within the same cell type. The results
should be qualitatively reproduced for other parameterizations of the model. A param-
eter sensitivity analysis would also be an interesting focus for future work.

Further, studies should also be carried out including more ion channels. Here, the
most natural candidate to choose would be the L-type calcium channel IL, as this would
directly impact the dendritic calcium levels.
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Appendix A

HOC code for NEURON Simulations

A.1 it2.mod
TITLE Low threshold calcium current
:
: Ca++ current responsible for low threshold spikes (LTS)
:
: Written by Alain Destexhe, Salk Institute, Sept 18, 1992
: Modified by Geir Halnes, Norwegian University of Life Sciences, June 2011:
:
: - Kinetics adapted to LGN interneuron data from Broicher et al.: Mol Cell
: Neurosci 36: 132-145, 2007. using Q10 values of 3 and 1.5 for activation/
: inactivation.
: - Activation variable shifted 8mV to account for dLGN interneuron data in
: Halnes et al. 2011

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
SUFFIX it2
USEION Ca READ Cai, Cao WRITE iCa VALENCE 2
RANGE gcabar, g
GLOBAL m_inf, tau_m, h_inf, tau_h, shift2, sm, sh, phi_m, phi_h, hx, mx, shift1
}

UNITS {
(molar) = (1/liter)
(mV) = (millivolt)
(mA) = (milliamp)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
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PARAMETER {
v (mV)
celsius = 36 (degC)
gcabar = 8.5e-6 (mho/cm2)

hx = 1.5
mx = 3.0

Cai = 5e-5 (mM) : Initial Ca concentration
Cao = 2 (mM) : External Ca concentration

: GH, parameters fitted to Broicher et al. 07 - data
minf1 = 46.2
hinf1 = 69.7
taum1 = 5.4
taum2 = 125.7
taum3 = -19.7
taum4 = -0.54
taum5 = 13
tauh1 = 21
tauh2 = 22.2
tauh3 = 9.1
tauh4 = 362.9
tauh5 = 46.9

sm = 8.7
sh = 6.4

shift1 = -8 (mV) : Halnes et al. 2011
shift2 = 0 (mV) : Halnes et al. 2011

}

STATE {
m h
}

ASSIGNED {
iCa (mA/cm2)
g (mho/cm2)
carev (mV)
m_inf
tau_m (ms)
h_inf
tau_h (ms)
phi_m
phi_h
}
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BREAKPOINT {
SOLVE castate METHOD cnexp
g = gcabar * m*m*h
iCa = g * ghk(v, Cai, Cao)
}

DERIVATIVE castate {
evaluate_fct(v)
m’ = (m_inf - m) / tau_m
h’ = (h_inf - h) / tau_h
}

UNITSOFF
INITIAL {
VERBATIM
Cai = _ion_Cai;
Cao = _ion_Cao;
ENDVERBATIM
:
phi_m = mx ^ ((celsius-23.5)/10)
phi_h = hx ^ ((celsius-23.5)/10)

evaluate_fct(v)
m = m_inf
h = h_inf
}

PROCEDURE evaluate_fct(v(mV)) {
m_inf = 1.0 / ( 1 + exp(-(v+shift1+minf1)/sm) )
h_inf = 1.0 / ( 1 + exp((v+shift2+hinf1)/sh) )
tau_m = (taum1+1.0/(exp((v+shift1+taum2)/(taum3))+exp((v+shift1+taum4)/
taum5)))/ phi_m
tau_h = (tauh1+1/(exp((v+shift2+tauh2)/tauh3)+exp(-(v+shift2+tauh4)/tauh5)))/
phi_h
}

FUNCTION ghk(v(mV), Ci(mM), Co(mM)) (.001 coul/cm3) {
LOCAL z, eci, eco
z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
eco = Co*efun(z)
eci = Ci*efun(-z)
:high Cao charge moves inward
:negative potential charge moves inward
ghk = (.001)*2*FARADAY*(eci - eco)
}
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FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
UNITSON

A.2 loi04.hoc
: GH, August 2010
: Modified by JC, February 2012
: - Shift in it2.mod set to 0

// GH, August 2010
load_file("nrngui.hoc")
cvode_active(1)
load_file("091008A2.hoc") // uses Heggelund morphoplogy
xopen("fixnseg.hoc")

//objref stim, syn, s, nc //vanlig (ikke-synapse) kode

nsyn=6
//nsyn=4 //synapsekode
objref stim, syn[nsyn], s[nsyn], nc[nsyn] //synapsekode

dt = 0.1
celsius = 36.0

// From fitting of passive properties:
rall = 113 //most people find something like this
cap = 1.1
Rm = 45000
Vrest = -69
Epas = -71.6

// Channel densities & shifts (for additional channels see May_dends.hoc)
gna = 0.09
nash = - 50.3
gkdr = 0.5
kdrsh = -48
gahp = 0//0.00013
gcat=8.5e-6
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gcal=0.0013
ghbar=0 //5e-6
catau = 50
gcanbar = 0// 1e-7

// Channel distribution (ratio: g_dend/g_soma)
hhdendfac = 0.1
ihdendfac = 1
ldendfac = 0.25
iahpdendfac = hhdendfac
itinc = 2.39/60
icaninc = itinc

// Insert channels:
forall {insert pas e_pas=Vrest g_pas=1/Rm Ra=rall cm=cap}
forall {
insert iar ghbar_iar=ghbar*ihdendfac // Ih-cation channel, slow, Zhu
insert Cad // Single calsium pool, Zhu et al.99
insert ical // L-type Ca-current, using pool in Cad
insert it2 // t-type Ca- current, using pool in Cad
insert iahp // potassium current, slow, Ca-dependent, Zhu et al.99
insert hh2 ena=50 ek=-90 //
insert ican // Zhu et al. 99a
}

// Initialize
proc init() {
access soma
forall {v=Vrest e_pas=Epas}

forall {insert pas e_pas=Epas g_pas=1/Rm Ra=rall cm=cap}

forall {
gnabar_hh2 = gna*hhdendfac vtraubNa_hh2 = nash

gkdrbar_hh2 = gkdr*hhdendfac vtraubK_hh2 = kdrsh
pcabar_ical = gcal*ldendfac
gkbar_iahp = gahp*iahpdendfac
ghbar_iar = ghbar*ihdendfac
gcabar_it2 = gcat*(1 + itinc*distance(1)) // 0// gcat*1 //
gbar_ican = gcanbar*(1 + itinc*distance(1)) // 0// gcanbar*1 //
}

soma {
gnabar_hh2 = gna vtraubNa_hh2 = nash
gkbar_hh2 = gkdr vtraubK_hh2 = kdrsh
gcabar_it2 = gcat
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pcabar_ical = gcal
gkbar_iahp = gahp
ghbar_iar = ghbar
gbar_ican = gcanbar
}

GCATOT = 0
soma {

gcabar_it2 = gcat
GCATOT = GCATOT + area(0.5)*gcabar_it2

}

for i = 0, 104 {
access dend[i]
segmentL = 1/nseg // lengde, relativt til totallengden av seksjon

for segmentNR = 1, nseg {
midten = segmentNR/nseg - segmentL/2 //
gcabar_it2(midten) =gcat*(1 + itinc*distance(midten)) // 0 // gcat*1
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
}

}

/*
NY For Zomorrodi
GCATOT = 0
soma {

gcabar_it2 = gcat*1.7
GCATOT = GCATOT + area(0.5)*gcabar_it2

}

for i = 0,9{
access dend[i]
segmentL = 1/nseg
for segmentNR = 1, nseg {
midten = segmentNR/nseg - segmentL/2
gcabar_it2(midten) = gcat*1.7
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
}
}

for i = 11,11{
access dend[i]
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segmentL = 1/nseg
for segmentNR = 1, 7 {
midten = segmentNR/nseg - segmentL/2
gcabar_it2(midten) = gcat*1.7
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
}
for segmentNR = 8, nseg {
midten = segmentNR/nseg - segmentL/2
gcabar_it2(midten) = gcat*7.81
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
}
}

for i = 12,14{
access dend[i]
segmentL = 1/nseg
for segmentNR = 1, nseg {
midten = segmentNR/nseg - segmentL/2
gcabar_it2(midten) = gcat*7.81
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
}
}

for i = 15,15{
access dend[i]
segmentL = 1/nseg
for segmentNR = 1, 2 {
midten = segmentNR/nseg - segmentL/2
gcabar_it2(midten) = gcat*7.81
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
}
for segmentNR = 3, nseg {
midten = segmentNR/nseg - segmentL/2
gcabar_it2(midten) = gcat*0.17
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
}
}

for i = 16,104{
access dend[i]
segmentL = 1/nseg
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for segmentNR = 1, nseg {
midten = segmentNR/nseg - segmentL/2
gcabar_it2(midten) = gcat*0.17
arealet = area(midten) // areal av segmentet
GCATOT = GCATOT + gcabar_it2(midten)*arealet
//print arealet
}
}
*/

finitialize(Vrest)
fcurrent()

// finitialize(Vrest)
forall {taur2_Cad = catau} // Calcium decay

cvode.re_init()
}

access soma
freq=50
geom_nseg()
tot=0
forall {tot=tot+nseg}
distance()
print "total # of segments (50Hz): ",tot

stim = new IClamp(.5)
stim.del =100
stim.dur =1000
stim.amp =0.025

/*
// SYNAPSES (AMPA)
synweight1 = 0.001 // In muS
synweight2 = 0.001 // Dette definerer styrken paa synapsen.

for z=0, nsyn-1 {
// En for-loop som lager de fire synapsene
s[z] = new NetStim(.5)
s[z].start=2500
// Jeg valgte aa starte etter 2500s, etter opprinnelig stimulus
// for aa sammenligne. Kjoer simulering til e.g. 4000 sek.
s[z].number=1
s[z].noise=0
syn[z] = new Exp2Syn(.5)
// Synapsestroem = sum av to eksponensialfunksjoner. Innebygd Neuronfunksjon.
syn[z].tau1=0.5 // Tidskonstant for foerste eksponensialfunksjon
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syn[z].tau2=2 // Tidskonstant for den andre.
syn[z].e=10 // Reverseringspot. for AMPASYNAPSE.
}

// UNDER PLASSERES DE FIRE SYNAPSENE PAA FIRE ULIKE STEDER
dend[99] {syn[0].loc(0.5)}
nc[0] = new NetCon(s[0], syn[0], 0,0, synweight1)
dend[17] {syn[1].loc(0.5)}
nc[1] = new NetCon(s[1], syn[1], 0,0, synweight2)
dend[55] {syn[2].loc(0.5)}
nc[2] = new NetCon(s[2], syn[2], 0,0, synweight2)
dend[37] {syn[3].loc(0.5)}
nc[3] = new NetCon(s[3], syn[3], 0,0, synweight2)
*/

//ALTERNATIV SYNAPSEKODE
synweight1 = 0.001 // In muS
synweight2 = 0.001 // Dette definerer styrken paa synapsen.

for z=0, nsyn-1 {
// En for-loop som lager de SEKS synapsene
s[z] = new NetStim(.5)
s[z].start=2500
// Jeg valgte aa starte etter 2500s, etter opprinnelig stimulus
// for aa sammenligne. Kjoer simulering til e.g. 4000 sek.
s[z].number=1
s[z].noise=0
syn[z] = new Exp2Syn(.5)
// Synapsestroem = sum av to eksponensialfunksjoner. Innebygd Neuronfunksjon.
syn[z].tau1=0.5 // Tidskonstant for foerste eksponensialfunksjon
syn[z].tau2=2 // Tidskonstant for den andre.
syn[z].e=10 // Reverseringspot. for AMPASYNAPSE.
}

// UNDER PLASSERES DE FIRE SYNAPSENE PAA FIRE ULIKE STEDER
dend[8] {syn[0].loc(0.5)}
nc[0] = new NetCon(s[0], syn[0], 0,0, synweight1)
dend[3] {syn[1].loc(0.5)}
nc[1] = new NetCon(s[0], syn[1], 0,0, synweight1)
dend[55] {syn[2].loc(0.5)}
nc[2] = new NetCon(s[2], syn[2], 0,0, synweight2)
dend[37] {syn[3].loc(0.5)}
nc[3] = new NetCon(s[3], syn[3], 0,0, synweight2)
dend[17] {syn[4].loc(0.5)}
nc[4] = new NetCon(s[1], syn[4], 0,0, synweight2)
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dend[99] {syn[5].loc(0.5)}
nc[5] = new NetCon(s[0], syn[5], 0,0, synweight1)

56


	Loi_forside
	Loi_Masteroppgave

