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Abstract

The aim of this thesis is to compare different numerical methods for solving
the cable equation for electrical signal propagation along dendrites with di-
ameter varying in space.

We solve the model with four different methods: a finite difference scheme,
finite element method, separation of variables combined with a finite differ-
ence scheme and separation of variables combined with the finite element
method. The different methods gives quite different solution even if the so-
lutions main properties are the same. Separation of variables combined with
the finite element method offers a solution of much lower value than the
other methods. This can be a result of an overestimate of the eigenvalue
of the problem. The finite element method and the method of separation
of variables combined with a finite difference scheme gives almost the exact
same solutions, a fact that was to expect during the derivations. The finite
difference scheme is the easiest method to use even if it is important for the
schemes consistency how the derivatives was replaced by finite differences.
Finite difference method is the method that give the less complicated pro-
gramming in Matlab as well.

The solutions for different diameter geometry are as expected from the
mathematical analysis done in advance. The solutions stays symmetric about
the mid point in space if the diameter and the initial condition have the same
symmetry. The peak of the solutions for non-symmetric diameters move to-
wards increasing space variable for a decreasing diameter and towards de-
creasing space variable for an increasing diameter.
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Introduction

Electricity transfer and electric activity in the human body has been a topic
of investigation for centuries. An understanding of the brain, not only physi-
cally but mathematically as well, is an important aspect of the understanding
of the human body. It is the brain that controls and make the different parts
of the body and mind interact properly with each other. The understanding
of the brain involves how the neurons communicate with each other, and how
a neuron respond to an incoming signal.

William Thomas (later Lord Kelvin) started in the early 1850s to work
on a mathematical theory describing the signal decay of a underwater cable
across the Atlantic ocean [1]. His finished work was called the telegrapher’s
equation and is the origin of the cable equation.

The cable equation in neuroscience describes how the membrane potential
of a neuron vary in both time and space along a given length of a dendrite or
axon with a given diameter. The diameter can be modelled by any geometric
shape, but a constant diameter or a linear variable diameter are the most
common used. For that reason the focus of this paper is the modelling of
the membrane potential in a part of a dendrite with a sigmoidal decaying
diameter profile.

The cable equation with a linear variable diameter has been solved ana-
lytically in [2]. If a sigmoidal diameter profile is assumed, the cable equation,
which is a linear partial differential equation, cannot be solved analytically. A
numerical method has to be applied in order to find a solution. The purpose
of this thesis will therefore be to give an overview of some numerical methods
for solving partial differential equations, discuss which solution method is the
best if both the accuracy and amount of work is taken into consideration.
An other interesting aspect of the model is how we could expect the solution
to behave for different diameter geometries.

This paper is organized in the following manner: Chapter 1 gives a short
introduction to relevant theory in neuroscience. In chapter 2 the cable equa-
tion is derived, and chapter 3 completes the model by including initial and
boundary conditions and specifying the diameter function. Chapter 3 also
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includes a scaling of the model. Chapter 4 discusses some properties of the
model, followed by chapter 5 where several numerical solutions methods are
introduced and applied. An error analysis of the numerical methods are given
in chapter 6. The numerical results are presented in chapter 7. Chapter 8
contains the concluding remark. In the appendix details about the scaling,
derivation of the numerical methods, error analysis and proof of result 1, 2
and 3 from section 5.3.1 can be found. Some theory about Sturm-Liouville
problems is included, as well as the Matlab programs used to solve the model.
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Chapter 1

Neurophysical background

1.1 Structure of the brain

The human brain [3] is basically a lump of tissue. It can be divided into
three main parts, rhombencephalo (hindbrain), which is connected to the
spinal cord, mesencephalo (midbrain) and prosencephalo (forebrain).

The forebrain includes what is called the cerebrum. Cerebrum is a major
part of the brain and is divided into two almost identically hemispheres, con-
nected to each other by corpus callosum (white matter). Each hemisphere
is fully equipped with areas for motor and sensory control. The right hemi-
sphere controls the left part of the body and the left hemisphere controls the
right part of the body.

Surrounding the cerebrum we find cortex cerebri. Cortex can be divided
into different motor and sensory areas. Signal transport in these areas are of
great interest.

1.2 Neurons

The brain tissue is mainly made of two types of brain cells, neurogli(glia)
and nerve cells (neurons). Glia and neurons have different important roles.
While glia play an important role in the development of the brain, make
myelin sheeths around axons of neurons and regulates the ionic composition
of the extracellular space among other tasks, the neurons take care of the
information storing and processing in the brain. For this reason, it is the
neurons that are of interest in this paper.

A neuron consists of a cell body, see figure 1.1, usually with one axon
and several dendrites emerging from it. The cell body usually emits signals
down the axon and receive input from other cells through the dendrites.
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2 CHAPTER 1. NEUROPHYSICAL BACKGROUND

Figure 1.1: Schematic overview of a neuron

Axon, dendrites and the cell body as well have a membrane which acts as
an insulator. This membrane makes signals able to travel along the entire
length of a dendrite or axon. But the membrane is what can be called semi
permeable, which means that it lets selected ions pass through it.

1.3 Communication between neurons

Electrical signals in a neuron are composed of different ion compositions
which give rise to a potential difference across the cell membrane. The inside
of a cell is dominated by the ions K+ and A−, and the outside by Na+

and Cl−. In a resting state the membrane potential, called the resting or
equilibrium potential has a value of about −70mV .

Neurons are connected to each other via synapses. A neuron can initiate
an action potential, and then send this signal down an axon, via a synapse
to another neuron. At the initiation of an action potential, ion channels in
the semi permeable membrane opens in order for K+ and Na+ ions to travel
in and out of the cell, which give an almost instantaneously large increase in
the membrane potential.

A neuron can either be excitatory or inhibitory. An excitatory neuron
tends to increase the possibility for other neighbour neurons to initiate an
action potential, while an inhibitory neuron tends to decrease this possibility.



Chapter 2

The cable equation

Compartmental modelling is a common used approach when modelling the
potential in a network of dendrites. The upcoming derivation is taken from
the book of Ermentrout and Terman [4].

Compartmental modelling divides the dendrite into compartments shown
in figure 2.1. Assume that the cable is divided unto n equal compartments,
which takes on the form of a cylinder, has diameter di, length l, and potential
Vi relative to the outside. The potential stays constant through each part
of a compartment. In addition, the compartments have the same specific
membrane capacitance cM , the same specific membrane resistance rM and
the same longitudinal resistivity rL. In this paper we look at a dendrite of
finite length L which does not branch out or have any synaptic connections.
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Figure 2.1: Dendrite which branches out modelled by compartmental modelling.

For each compartment there are three currents to consider. First there is
a capacitive current per unit area icap,i. The membrane acts as an capacitor,
which make ions accumulate at the inside and outside of the surface. But the
membrane is what is called semi permeable, which means that it lets selected
ions pass through it. This give rise to an ionic current per unit area iion,i. The
last current to consider is the longitudinal current per unit area ilong,i, which
is made by ions passing through the compartments in an axial direction.

3



4 CHAPTER 2. THE CABLE EQUATION

i-1 i i+1

Figure 2.2: Compartment i can only be connected to compartment i− 1 and i+ 1.

Often a test current, called an electrode current gets injected, but for this
paper that current is neglected. The different currents have to balance each
other according to the preservation of current principle (Kirchoff’s 1.law) [5]

icap,i + iion,i = ilong,i (2.1)

From the definition of capacitance, ions accumulating on each side of an
insulating surface give rise to a current which can be expressed as

icap,i = cM
dVi
dt

iion,i can be computed by means of Ohms law

iion,i =
Vi
rM

if the resting potential of the neuron is assumed to be 0mV .
Then we have the longitudinal current. This is the part of the equation

that couples two compartments together. In order to find an expression for
this current, we first need to find the total resistance between the centres of
two nearby compartments. The resistance [5] in a conductor can be found by
multiplying the longitudinal resistivity by the length of the conductor and
then divide by the cross section area of the conductor. The total resistance
between the two centres then become the sum of half the resistance of two
nearby compartments. In this derivation the diameter of the highest order
compartment (dj if j > i) has been used such that

Rij =
4rLl

πd2
j

, for j > i

As figure 2.2 describe, compartment i can only be connected to compartment
i − 1 and compartment i + 1. By using Ohms law, the total longitudinal
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current per unit area of membrane passing through compartment i therefore
become

iilong =
1

4rLdil

(d2
i+1(Vi+1 − Vi)

l
+
d2
i (Vi−1 − Vi)

l

)
All the currents have now been specified and equation (2.1) become

cM
dVi
dt

= − Vi
rM

+
1

4rLdil

(d2
i+1(Vi+1 − Vi)

l
− d2

i (Vi − Vi−1)

l

)
The length l of each compartment is assumed to be much smaller than the
length of the entire cable. Then assume that

l

L
→ 0

such that the membrane potential can vary smooth over the entire length
of the cable and the cable equation that describes the membrane potential
becomes

∂V

∂t
= − V

τM
+

1

4rLcMd(x)

∂

∂x

(
d(x)2∂V

∂x

)
(2.2)

where τM = rMcM is a quantity often called the membrane time constant. It
usually falls in the range of 10ms − 100ms and give a measure of the time
scale for changes in the membrane potential. The membrane time constant
is independent of the geometry of the cable.
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Chapter 3

The model

3.1 Initial and boundary conditions

There are different types of boundary and initial conditions [6]. First, we
have what is called Dirichlet boundary conditions. Such types of boundary
conditions define the potential to be constant or equal to zero at the end
points,

u(0, t) = a u(L, t) = b Dirichlet boundary condition

The next types of boundary conditions called Neumann boundary condi-
tions define the rate of change in potential in space to be constant or equal
to zero at the end points,

ux(0, t) = a ux(L, t) = b Neumann boundary condition

In order for equation (2.2) to have a unique solution, initial and boundary
conditions have to be defined. Appropriate choice of boundary conditions can
be

V (0, t) = V (L, t) = 0, t > 0

which means that the potential vanishes at the ends of the cable. The initial
condition model the potential along the entire dendrite at the time t = 0.
This could be an electrode current injected somewhere along the length of
the cable. A suitable choice of initial condition could then be to inject a
current which make the membrane potential at the point x = L

2
equal to

50mV .

7



8 CHAPTER 3. THE MODEL

V (x, 0) = f(x) =

{
V0 x = L

2

0 otherwise

where V0 = 50mV

3.2 The diameter function

A constant diameter profile is the most common used in modelling of a
dendrite. In [2] modelling with a linear non-constant diameter has been
preformed. For this reason it is interesting to model the diameter by a non-
linear function. In the present work we assume that the diameter function is
modelled by means of a sigmoidal function

d(x) =
d−∞

1 + e
x

Λd

(3.1)

where

lim
x→−∞

d(x) = d−∞

and Λd is a constant that describes the length of significant changes in the
diameter. If Λd is small, then the significant change in d(x) will occur on a
small distance.

Figure 3.1 shows a plot of a diameter function given by a sigmoidal func-
tion.

To summarize, the derivations done in the previous sections, the model
for describing the potential across the membrane in a dendrite of variable
diameter can be presented by

∂V

∂t
= − V

τM
+

1

4rLcMd(x)

∂

∂x

(
d(x)2∂V

∂x

)
for x ∈ (0, L), t > 0

V (0, t) = V (L, t) = 0, τ > 0 d(x) =
d−∞

1 + e
x

Λd

(3.2)

V (x, 0) =

{
V0 x = L

2

0 otherwise
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Figure 3.1: Plot of a sigmoidal function

3.3 Scaling

The purpose of scaling is to reduce the number of parameters involved and
to transform the actual problem into an equivalent dimensionless problem.
In (3.2) the potential V can be expressed as V (x, t; cM , rM , rL, L). If we scale
the problem, the number of parameters to assign a value reduces.

Let us introduce the new variables

ξ =
x

L
τ =

t

T
D(ξ) =

d(x)

d0

(3.3)

V (x, t) = u(ξ, τ)V0e
− t
τM , τM = cMrM

We insert (3.3) into the PDE in problem (3.2) and get

∂u(ξ, τ)

∂τ
=

α

D(ξ)

∂

∂ξ

(
D(ξ)2∂u(ξ, τ)

∂ξ

)
, α =

Td0

4rLcML2
(3.4)

u(0, τ) = u(1, τ) = 0 , τ > 0

u(ξ, 0) = g(ξ) , ξ ∈ [0, 1]
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See appendix A for details
Now we can see that V , which has the dimension mV , has been trans-

formed from V (x, t; cM , rM , rL, L) to a dimensionless variable u(ξ, τ ;α). The
new variables transforms the interval x ∈ (0, L) into a new dimensionless
interval ξ ∈ (0, 1). For simplicity, d0 can be chosen to be equal to 1.

In equation (3.4) several constants have been combined in a single con-
stant α. For simplicity, and without any loss of generality, α can be chosen
to be equal to 1. This makes the characteristic time T equal to

T = 4rLcML
2

In table 3.1 values for the different parameters used are specified, as well
as the value of τM , T and suitable values for the diameter at the endpoints
of the cable.

rM 50kΩcm2

cM 1µF/cm2

rL 0, 1kΩcm
L 0, 04cm
d(0) 0, 00037cm
d(L) 0, 00006cm
T 0, 00064ms
τM 50ms

Table 3.1: Values of different parameters used in model (3.2)

The scaled version of problem (3.2) can then be given by

∂u(ξ, τ)

∂τ
=

1

D(ξ)

∂

∂ξ

(
D(ξ)2∂u(ξ, τ)

∂ξ

)
, for ξ ∈ (0, 1), τ > 0

u(0, τ) = u(1, τ) = 0 , τ > 0 D(ξ) =
d−∞

1 + e
ξL
Λd

(3.5)

u(ξ, 0) = g(ξ) =

{
1 ξ = 1

2

0 otherwise



Chapter 4

Stationary states and
symmetry of the solution

4.1 Stationary states

A stationary state of a differential equation arises when the derivative in time
is equal to zero. This means that the solution is independent of time and
V (x, t) reduces to V (x).

In the stationary state, equation (3.2) reduces to

d

dx

(
d2(x)

dV (x)

dx

)
= V (x)

4rLd(x)

rM

Multiply each side by V (x) and integrate over x ∈ (0, L). By means of inte-
gration by parts and because of the boundary condition introduced earlier,
the left side becomes

∫ L

0

V (x)
d

dx

(
d2(x)

dV (x)

dx

)
dx = −

∫ L

0

(dV (x)

dx

)
d2(x)dx

At the end we are left with

∫ L

0

V 2(x)
4rLd(x)

rM
+
(dV (x)

dx

)2
d2(x)dx = 0 (4.1)

We now prove that V (x) = 0 for all 0 ≤ x ≤ L
The integrand cannot be negative because all the constants, the diameter

function and the squared terms are all greater than or equal to zero. Let us

11



12CHAPTER 4. STATIONARY STATES AND SYMMETRYOF THE SOLUTION

then assume that the integrand is strictly positive at some point x0 ∈ (0, L).
Because both V (x) and its derivative are continuous on the interval x ∈
(0, L), then so is the entire integrand. By the definition of continuity [8], and
the assumption that the integrand is strictly positive at x0, the integrand has
to be positive in a small interval about x = x0.This means that the integral
has to be greater than zero, which contradicts (4.1). Then the only option
left is for the integrand to be equal to zero. This only occur when V (x) is
equal to zero as well. V (x) = 0 will therefore be the only possible solution
in the case where the potential is assumed to be constant in time and when
the potential is assumed to vanish at the end points.

4.2 Symmetry of the solution

An interesting aspect regarding the model is how the diameter affects the
solution. Figures describing the solutions for different diameter geometry
can be found in section 7.2. The figures show a symmetry of the solution
about ξ = 1

2
when the diameter is symmetric. It is therefore interesting to

investigate this further from a mathematical point of view.
Consider the problem found in (3.5). Introduce the new variable

η ∈ (−1

2
,
1

2
)

We then want to show that

u(
1

2
+ η, τ) = u(

1

2
− η, τ)

if we require symmetry of the initial condition and the diameter function as
below

u(
1

2
+ η, 0) = u(

1

2
− η, 0), −1

2
≤ η ≤ 1

2

D(
1

2
+ η) = D(

1

2
− η), −1

2
≤ η ≤ 1

2

First assume that there are functions v(η, τ) and D̃(η) such that

v(η, τ) = u(
1

2
+ η, τ) D̃(η) = D(

1

2
+ η)



4.2. SYMMETRY OF THE SOLUTION 13

Notice that ∂η
∂ξ

= 1 and insert the above relations into equation (3.5). We
are then left with the following partial differential problem

∂

∂τ
v(η, τ) =

1

D̃(η)

∂

∂η

(
D̃2(η)

∂

∂η
v(η, τ)

)
v(η, 0) = u(

1

2
+ η, 0) = u(

1

2
− η, 0) = v(−η, 0) (4.2)

v(−1

2
, τ) = u(0, τ) = 0

v(
1

2
, τ) = u(1, τ) = 0

Now the original model has been moved 1
2

units to the left on the spatial
axis, and we want to prove that

v(η, τ) = v(−η, τ)

The next step is then to introduce the function

w(η, τ) = v(−η, τ)

This relation can then be inserted into equation (4.2), take notice of the fact
that ∂η

∂ξ
= −1, and the partial differential problem governing w(η, τ) become

∂

∂τ
w(η, τ) =

1

D̃(−η)

∂

∂η

(
D̃2(−η)

∂

∂η
w(η, τ)

)
V (η, 0) = v(−η, 0) = v(η, 0) (4.3)

V (−1

2
, τ) = v(

1

2
, τ) = 0

V (
1

2
, τ) = v(−1

2
, τ) = 0

Hence w and v are solutions of the same initial value problem. The energy
method [9] now implies uniqueness of solution to this problem. Therefore
w(η, τ) = v(η, τ) from which it follows that we have spatially symmetry of
the solution u(1

2
− η, τ) = u(1

2
+ η, τ).
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Chapter 5

Solution methods

5.1 Method 1: Finite difference scheme

Complicated differential equations can usually not be solved analytically. To
be able to construct solutions to such problems, numerical methods have to
be applied.

The finite difference method is a numerical method that enables us to
find an approximated solution to a differential equation. The method re-
places the derivatives of the equation by finite differences, and the solutions
get approximated at discrete points, also called grid points.

The first step when approximating a solution by means of the finite dif-
ference method is to discretize the problem. For this paper, the solution is
dependent of a temporal and a spatial variable.

Let us define ξ at discrete points called ξi for i = 0, 1, 2, . . . , N . The
distance between two spatial points, called the step size in space, become
∆ξ = ξN−ξ0

N
, and ξi gets defined as ξi = i∆ξ.

Define ∆τ as the step size in the time domain. τ then gets defined at
discrete points τj = j∆τ , for j ≥ 0. The set of all points (ξ, τ) and the set
of all grid points (interior and boundary points) are defined as below

Definition 1

R =
{

(ξ, τ) ∈ R2 | 0 < ξ < 1, 0 < τ
}

C = C1 ∪ C2 ∪ C3

C1 =
{

(ξ, τ) ∈ R2 | ξ = 0, τ > 0
}

C2 =
{

(ξ, τ) ∈ R2 | ξ = 1, τ > 0
}

C3 =
{

(ξ, τ) ∈ R2 | τ = 0, 1 ≤ ξ ≤ 1
}

15



16 CHAPTER 5. SOLUTION METHODS

Definition 2

R∆ =
{

(ξi, τj) ∈ R2 | i = 1, 2, ..., N − 1, j = 1, 2, ...
}

C∆ = C∆1 ∪ C∆2 ∪ C∆3

C∆1 =
{

(ξi, τj) ∈ R2 | ξ0, j = 1, 2, . . .
}

C∆2 =
{

(ξi, τj) ∈ R2 | ξN , j = 1, 2, . . .
}

C∆1 =
{

(ξi, τj) ∈ R2 | τ0, i = 0, 1, 2, . . . , N
}

We can now introduce U j
i , which represents the approximated value of the

solution u at the point (ξi, τj) on R∆ ∪ C∆. Our goal is to approximate this
solution by means of finite differences.

Now that we have discretized the ξτ -plane, it is time to replace the deriva-
tives with finite differences. By means of Taylor series expansion [10], the
derivative in time can be approximated by

∂u

∂τ
(ξ, τ) ≈ U j+1

i − U j
i

∆τ
(forward difference approximation) (5.1)

The term involving the derivatives in space gets a bit more complicated. The
outer derivative cannot simply be calculated by means of the product rule,
because the derivative (the steepness) of the diameter function may have an
impact on the consistency of the problem. The steepness can be hard to
detect if the step size ∆ξ is not small enough. In order to avoid this problem
the derivatives have to be replaced by finite differences in a manner that
preserves the properties of the problem. As a result of this we get

∂

∂ξ

(
D(ξi)

2∂u(ξi, τj)

∂ξ

)
≈
D2
i+ 1

2

Uji+1−U
j
i

∆ξ
−D2

i− 1
2

Uji −U
j
i−1

∆ξ

∆ξ

See C.1 for details. Now we can replace the derivatives of equation (3.5) by
the finite differences above, and the explicit scheme for the interior points of
the domain become

U j+1
i = U j

i+1

(
s
D2
i+ 1

2

Di

)
+ U j

i

(
1− s

D2
i+ 1

2

Di

− s
D2
i− 1

2

Di

)
+ U j

i−1

(
s
D2
i− 1

2

Di

)
(5.2)

on R∆ where s = ∆τ
∆ξ2
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ξ0 ξ1 ξ2
. . . ξN

τ0

τ1

τ2

...

t
t t t
U j+1
i

U j
i−1 U j

i U j
i+1

Figure 5.1: Discretization of the ξτ -plane

Figure 5.1 gives a description of the explicit scheme. To find an approximated
value of the solution at the next time step, the approximated value of the
solution at the present time step at the previous, present and next space step
have to be evaluated.

A formula for the interior grid points has now been defined and we need
to specify the properties of the initial and boundary points of the scheme.
The discretized form of the boundary conditions become

u(0, τ) = 0 ⇒ U j
0 = 0, u(1, τ) = 0 ⇒ U j

N = 0, j > 0

and the discretized form of the initial condition becomes

U0
i =

{
1 ξi = 1

2

0 otherwise
, 0 ≥ i ≥ N

To summarize, the finite explicit scheme corresponding to problem (3.5) is
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U j+1
i = U j

i+1

(
s
D2
i+ 1

2

Di

)
+ U j

i

(
1− s

D2
i+ 1

2

Di

− s
D2
i− 1

2

Di

)
+ U j

i−1

(
s
D2
i− 1

2

Di

)

on R∆, s =
∆τ

∆ξ2 (5.3)

U j
0 = U j

N = 0, j > 0

U0
i =

{
1 ξi = 1

2

0 otherwise
, 0 ≥ i ≥ N

5.2 Method 2: Finite element method

Another numerical method for solving a differential equation is the finite
element method [11].

The method begins with deriving a variational formulation. Introduce
the space V0 defined in the following way:

Definition 3

V0 = H1
0 (I) = {v(ξ) | v(ξ), v′(ξ) ∈ L2(I), v(ξ)|∂I = 0}

L2(I) = {v(ξ) |
∫
I

|v(ξ)|2dx <∞}

I = (0, 1)

Multiply each side of the differential equation in (3.5) by the test function
v(ξ) ∈ V0 and integrate with respect to ξ over I. By means of integration by
parts the variational formulation becomes

Find u(ξ, τ) ∈ V0 such that∫ 1

0

D(ξ)
∂u(ξ, τ)

∂τ
v(ξ)dξ = −

∫ 1

0

D2(ξ)
∂u(ξ, τ)

∂ξ

dv(ξ)

dξ
dξ, v ∈ V0

The problem regarding the continuous variational formulation is that the
space V0 are of infinite dimension. We therefore have to discretize the interval
for the space variable into N subintervals, where Vh become the space of all
continuous piecewise linear functions corresponding to the discretization. In



5.2. METHOD 2: FINITE ELEMENT METHOD 19

6

-

S
S
S
S

�
�
�
�

S
S
S
S

�
�
�
�

S
S
S
S

�
�
�
�

ξi−1 ξi ξi+1
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ξ

f(ξ)

1

Figure 5.2: The graph of φi(ξ), also called a hat-function

this paper N equal subintervals have been used and the distance between
two neighbour points are denoted by ∆ξ.

Define φi(ξ) like

φi(ξ) =


ξ−ξi−1

∆ξ
if ξi−1 ≤ ξ ≤ ξi

ξi+1−ξ
∆ξ

if ξi ≤ ξ ≤ ξi+1

0 otherwise

(5.4)

Figure 5.2 visualize the function. Introduce Vh,0, a subspace of Vh, where the
boundary conditions as in V0 has been included

Definition 4

Vh,0 = {v(ξ) ∈ Vh, v(ξ)|∂I = 0} (5.5)

which means that

Vh,0 = span{φ1, · · · , φN−1}

After making this change of space, the variational formulation for the finite
element approximation uh(ξ, τ) become

Find uh(ξ, τ) ∈ Vh,0 such that∫ 1

0

D(ξ)
∂uh(ξ, τ)

∂τ
v(ξ)dξ = −

∫ 1

0

D2(ξ)
∂uh(ξ, τ)

∂ξ

dv(ξ)

dξ
dξ, v ∈ V0

v(ξ) can be replaces by φi(ξ) because the set of φi(ξ) for i = 1, . . . , N − 1
represents a basis for Vh,0. Because the finite element approximation uh(ξ, τ)
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is a part of the same space it can be expressed as a linear combination of the
basis functions

uh(ξ, τ) =
N−1∑
j=1

µj(τ)φj(ξ)

The variational formulation now reads

N−1∑
j=1

dµj(τ)

dτ

∫ 1

0

D(ξ)φj(ξ)φi(ξ)dξ = −
N−1∑
j=1

µj(τ)

∫ 1

0

D(ξ)2dφj(ξ)

dξ

dφj(ξ)

dξ
dξ

If we define the matrices A and B and the vector ~µj(τ) like

A = [Aij]⇒ Aij =

∫ 1

0

D(ξ)2φ′i(ξ)φ
′
j(ξ)dξ

B = [Bij]⇒ Bij =

∫ 1

0

D(ξ)φi(ξ)φj(ξ)dξ

~µ(τ) =


µ1(τ)
µ2(τ)
µ3(τ)

...
µN−1(τ)


the following system of ordinary differentials equation for µj(τ) appears

B
d~µ(τ)

dτ
+ A~µ(τ) = ~0 (5.6)

A =



b1 −c1 0 · · · · · · · · · 0

−a2 b2 −c2 0
...

0 −a3 b3 −c3
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . −cN−2

0 · · · · · · · · · 0 −aN−1 bN−1


(5.7)
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with

ai = D2
i− 1

2

bi = ai + ci

ci = D2
i+ 1

2

B = ∆ξ2



D1 0 . . . . . . 0

0 D2 0
...

... 0
. . . . . .

...
...

. . . . . . 0
... . . . . . . 0 DN−1


(5.8)

In the process of deriving (5.7) and (5.8) we have exploited the properties
of the basis functions φi(ξ): For | i − j |≤ 1, we have Aij and Bij differ-
ent from zero. The coefficients ai, bi and ci are approximated by means of
the mid point rule and the trapezoidal rule. The next step is then to solve
the differential equation (5.6). This is done by means of a finite difference
scheme. First we discretize the temporal variable by introducing the time
step ∆τ = 1

M
, where M is an integer. ~µl then get defined as the approxi-

mated solution for ~µ(τl) evaluated at the time τl for l = 0, 1, 2, . . . ,M .
Then replace the derivative by the following forward difference approxi-

mation

d~µ(τ)

dτ
≈ ~µl+1 − ~µl

∆τ

The finite explicit difference scheme corresponding to the differential equation
(5.6) then become

~µl+1 =
(
1−∆τ

A

B

)
~µl

In order to complete the difference scheme, an initial condition has to be
defined. When τ = 0, the solution of u(ξ, τ) take on the form of the initial
condition g(ξ). This means that

N−1∑
j=1

µ0
jφj(ξ) = g(ξ)
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Now assume that we only evaluate the solution at the points ξi in space.
Because φj(ξi) is equal to 1 for all j = i and zero otherwise, the initial
condition (when the solution only get evaluated at the points ξi) takes on
the values of the initial vector ~g, meaning that µ0

j = g(ξj).

5.3 Separation of variables

In this section we have used the separation of variable technique [12] on the
problem (3.5). We proceed as follows: Let us assume that the solution u(ξ, τ)
can be presented as the product of two functions, one function only depen-
dent on ξ, and the other on τ as below

u(ξ, τ) = X(ξ)T (τ) (5.9)

If we in equation (3.5) replace u(ξ, τ) by (5.9), see appendix C.3 for details,
then we are left with two ordinary differential equations

dT (τ)

dτ

1

T (τ)
= −λ, 1

D(ξ)

1

X(ξ)

d

dξ

(
D(ξ)2dX(ξ)

dξ

)
= −λ (5.10)

X(0) = X(1) = 0

The ODE involving the spatial variable can be recognized as a regular Sturm-
Liouville problem with eigenvalues λ and eigenfunctionsX(ξ). Sturm-Liouville
theory are presented in appendix B. We have the following result regarding
λ:

Result 1 The eigenvalues of the spatial differential equation have to be strictly
positive, e.i. λ > 0

See appendix D.1 for the detailed proof. In addition we notice the following
property of the eigenfunctions corresponding to different eigenvalues

Result 2 Two eigenfunction Xi and Xj are orthogonal with respect to the

inner product (Xi, Xj)D =
∫ 1

0
XiXjD(ξ)dξ , i.e (Xi, Xj)D = 0 for λi 6= λj.

See appendix D.3 for details.
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5.3.1 Method 3a: Separation of variables and finite
difference scheme

In order to solve the spatial differential equation in (5.10) a numerical code
based on a finite difference scheme is designed. By means of this scheme we
get a generalized eigenvalue problem

A~v = λ̃B~v (5.11)

where ~v denote the eigenvectors and λ̃ the eigenvalues. The matrices A
and B are defined as matrix (5.7) and matrix (5.8) in section 5.2, and the
eigenvector as

~v =


X1

X2

X3
...

XN−1


It is important that the eigenvalue problem made by means of the finite
difference scheme preserves the properties of the continuous ODE. Therefore
we have the following result proved in appendix D.2

Result 3 The approximated value of λ has to be strictly positive, e.i. λ̃ > 0

The proof that the eigenvectors of equation (5.11) are mutually orthogonal
can be found in appendix D.3. Result 3 and the fact that the eigenvectors
are mutually orthogonal implies that the finite difference scheme (5.11) has
the same properties as the spatial differential equation in (5.10).

After solving the above eigenvalue problem we are left with N − 1 eigen-
values λ̃k and N − 1 eigenvectors ~vk.

The next step on our way to find an approximated solution for u(ξ, τ) is
then to combine the spatial and temporal solution. The analytical solution
of the temporal differential equation is given as

T (τ) = Ce−λτ (5.12)

where C is a constant. To construct the approximated solution U we have
to multiply each eigenvector by the corresponding temporal part, i.e
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~Uk(τ) = cke
−λ̃kτ~vk, k = 1, 2, ..., N − 1

where ck are constants. The superposition principle yields

~U(τ) =
N−1∑
k=1

cke
−λ̃kτ~vk

as approximated solution to the original problem.
The constant ck have been computed in appendix C.5 by means of the

initial vector

~g =


g(ξ1)
g(ξ2)
g(ξ3)

...
gξN−1


and the expression for the approximated solution becomes

~U(τ) =
N−1∑
k=1

~vtkB~g

~vtkB~vk
e−λ̃kτ~vk, τ > 0 (5.13)

5.3.2 Method 3b: Separation of variables and finite
element method

The spatial differential equation in (5.10) can also be solved by means of the
finite element method. In order to do this, we first have to derive a varia-
tional formulation. Let V0 be the space defined in definition 3 in section 5.2.
Now multiply each side of the differential equation by v(ξ) and integrate
over the entire interval for ξ. By means of integration by parts and the fact
that v(ξ) vanishes at the endpoints, we are left with the following continuous
variational formulation

Find X(ξ) ∈ V0 such that∫ 1

0

D(ξ)2X ′(ξ)v′(ξ)dξ = λ

∫ 1

0

D(ξ)X(ξ)v(ξ)dξ ∀v ∈ V0
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In order for X(ξ) to be in a space of finite dimension a change of space from
V0 to Vh,0 like in section 5.2 is made. The variational formulation for the
finite element approximation Xh(ξ) then become

Find Xh(ξ) ∈ Vh,0 such that∫ 1

0

D(ξ)2X ′h(ξ)v
′(ξ)dξ = λ̃

∫ 1

0

D(ξ)Xh(ξ)v(ξ)dξ ∀v ∈ Vh,0 (5.14)

where λ̃ represent the approximated value of λ.
For the same reasons as in section 5.2, v(ξ) can be replaced by φi(ξ) and

the finite element approximation Xh(ξ) can be expressed as

Xh(ξ) =
N−1∑
j=1

µjφj(ξ)

where µj are constants. In order to find the finite element approximation we
need to determine these constants. Equation (5.14) becomes equivalent to

N−1∑
j=1

µj

∫ 1

0

D(ξ)2φ′j(ξ)φ
′
i(ξ)dξ = λ̃

N−1∑
j=1

µj

∫ 1

0

D(ξ)φj(ξ)φi(ξ)dξ, i = 1, 2, . . . , N − 1

This system of equations can be seen as an eigenvalue problem

A~µ = λ̃B~µ

where matrix A and B are defined as in (5.7) and (5.8) in section 5.2, and
the vector ~µ by

~µ =


µ1

µ2

µ3
...

µN−1


The above eigenvalue problem is exactly the same as the one derived in sec-
tion 5.3.1

The next step it then to combine the spatial and temporal solution. The
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analytical solution of the temporal differential equation is given by equa-
tion (5.12). Combining the temporal and spatial solution, using the super-
position principle, the approximated solution for u(ξ, τ) becomes

uh(ξ, τ) =
N−1∑
k=1

N−1∑
j=1

cke
−λ̃kτµ

(k)
j φj(ξ) (5.15)

where λ̃k represents the approximated value for the eigenvalue λ and µ
(k)
j de-

note the j’th component of the k’th eigenvector. An equation for calculating
the constants ck has been derived in the appendix C.6.



Chapter 6

Error analysis

6.1 Truncation error for the finite difference

scheme

In order to measure the error that arises when the derivatives in a partial dif-
ferential equation are replaced by finite differences, the truncation error can
be used. Because ∆ defines the set of all grid points (ξi, τj), the truncation
error Φ is defined as

Φj
i = L(u)− L∆(u)

where L, a differential operator, and L∆, a finite difference operator associ-
ated with L, are given by

L(u) =
∂u(ξi, τj)

∂τ
− 1

D(ξi)

∂

∂ξ

(
D(ξi)

2∂u(ξi, τj)

∂ξ

)
(6.1)

L∆(u) =
uj+1
i − uji

∆τ
− 1

Di

(D2
i+ 1

2

(uji+1 − u
j
i )−D2

i− 1
2

(uji − u
j
i−1)

∆ξ2

)
By replacing the derivatives in L(u) with expressions found by means of
Taylor series expansion the truncation error reduces to

Φj
i = C∆τ +G∆ξ +H∆ξ2

where C, G and H are given as.

27
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C = −1

2

∂2u(ξi, τ̄j)

∂τ 2

G =
1

Di

1

3!8

(
D2
i+ 1

2

(∂3u( ¯̄ξi+ 1
2
, τj)

∂ξ3
+
∂3u(ξ̄i+ 1

2
, τj)

∂ξ3

)
−D2

i− 1
2

(∂3u( ¯̄ξi− 1
2
, τj)

∂ξ3
+
∂3u(ξ̄i− 1

2
, τj)

∂ξ3

))
H =

1

Di

1

3!8

(∂3γ( ¯̄ξi, τj)

∂ξ3
+
∂3γ(ξ̄i, τj)

∂ξ3

)
Details regarding the derivation can be found in appendix E.1. Now it is
evident that the truncation error goes to zero as ∆τ and ∆ξ goes to 0.

If we in the derivation of the explicit difference scheme use the product rule
on the term involving the derivative in space like below

1

D(ξ)

∂

∂ξ
(D(ξ)2∂u(ξ, τ)

∂ξ
) = 2D′(ξ)

∂u(ξ, τ)

∂ξ
+D(ξ)

∂2u(ξ, τ)

∂ξ2
(6.2)

the finite difference operator associated with L would be

L∆(u) =
uj+1
i − uji

∆τ
−
(

2D′i
(uji+1 − u

j
i )

∆ξ
+Di

(uji+1 − 2uji + uji−1)

∆ξ2

)
(6.3)

If we assume L(u) to be as in equation (6.1) and L∆(u) as in (6.3), the
truncation error becomes

Φj
i = C∆τ +G∆ξ −H∆ξ2 + 2D′(ξ)

(uji+1 − u
j
i )

∆ξ

+Di

(uji+1 − 2uji + uji−1)

∆ξ2
− 1

Di

(D2
i+ 1

2

(uji+1 − u
j
i )−D2

i− 1
2

(uji − u
j
i−1)

∆ξ2

)
where C, G and H are defined above. No matter how we rearrange this equa-
tion, the truncation error will not go to zero as ∆ξ and ∆τ go to zero. An
explicit scheme based on the assumption that the relation in equation (6.2)
is true will therefore not be consistent with the partial differential equation
in problem (3.5).

As stated in the derivation of the finite difference scheme, the steepness
of the diameter function can give some problems. Assume the differential
operator L to be defined by
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L =
∂u(ξi, τj)

∂τ
−
(

2D′(ξi)
∂u(ξi, τj)

∂ξ
+D(ξi)

∂2u(ξi, τj)

∂ξ2

)
and L∆ like in (6.3). The truncation error for this case then become

Φj
i = D′i

∂2u

∂ξ2
(ξ̄i, τj)∆ξ −

1

2

∂2u

∂τ 2
(ξi, τ̄j)∆τ −Di

1

12

∂4u

∂ξ4
( ¯̄ξi, τj)∆ξ

2

The two last terms will in this case tend to zero as ∆ξ and ∆τ goes to zero.
The first term on the other hand may grow large because of the steepness of
the diameter function, even if ∆ξ goes to zero.

In section 5.3.1 we have introduced the eigenvalue λ. If the difference scheme
given in equation (6.3), which is based on the wrong assumption in equa-
tion (6.2), is assumed to be correct, then spurious eigenvalues occur. In ta-
ble 6.1 corresponding correct and spurious values of the approximated eigen-
values λ̃k have been listed. The absolute values of the eigenvalues of both
set form a decreasing sequence, but in the set of spurious eigenvalues some
negative values occasionally occur. This contradicts result 3 in section 5.3.1,
which mean that the scheme corresponding to the spurious eigenvalues is not
consistent with the partial differential equation (3.5).

Right scheme Wrong scheme
0,0999 6,1478
0,0709 4,2410
0,0522 -1,8556
0,0390 2,9916
0,0292 2,0852
0,0205 1,2648
0,0126 -0,9489
0,0019 0,4371
0,0061 -0,3107

Table 6.1: Eigenvalues corresponding to the correct finite difference scheme and to a
finite difference scheme based on the wrong calculation of the derivative in space. N has
been set equal to 10 in both cases.
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6.2 Convergence and stability of the finite

difference scheme

The truncation error describes how well a finite difference scheme approx-
imates the corresponding differential equation. It does not say anything
about how well U j

i approximate the exact solution u(ξ, τ). In order to find
out whether or not U j

i is a good approximation for u(ξ, τ), we have to find
out if the approximated solution converges [13] against the exact solution.
This means that

lim
∆ξ→0,∆τ→0

uji − U
j
i = 0 on R∆ ∪ C∆

First, define the error as the difference between the exact and the approxi-
mated solution

eji = uji − U
j
i

The truncation error given by equation (E.1) can be written as

uj+1
i = uji+1(s

D2
i+ 1

2

Di

) + uji (1− s
D2
i+ 1

2

Di

− s
D2
i− 1

2

Di

) + uji−1(s
D2
i− 1

2

Di

)− Φj
i∆τ (6.4)

where s = ∆τ
∆ξ2 . Now subtract the difference equation (5.2) from (6.4), and

we get the following difference equation for the error

ej+1
i = eji+1(s

D2
i+ 1

2

Di

) + eji (1− s
D2
i+ 1

2

Di

− s
D2
i− 1

2

Di

) + eji−1(s
D2
i− 1

2

Di

)− Φj
i∆τ

If we assume

0 < s ≤ Di

D2
i+ 1

2

+D2
i− 1

2

then the triangle inequality can be used and we get the following equation
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| ej+1
i | ≤ | eji+1 | (s

D2
i+ 1

2

Di

)

+ | eji | (1− s
D2
i+ 1

2

Di

− s
D2
i− 1

2

Di

)

+ | eji−1 | (s
D2
i− 1

2

Di

)+ | Φj
i | ∆τ (6.5)

Define

Ej = maxi | eji | Φ̂ = max | Φj
i |

Take the maximum over 0 ≤ i ≤ N , and equation (6.5) reduces to

Ej+1 ≤ Ej + ∆τ Φ̂

After applying the above inequality repeatedly, and by using the fact that
E0 = 0 and j∆τ ≤ K, the inequality reduces to

Ej ≤ KΦ̂

When ∆ξ and ∆τ goes to zero, so does the truncation error, and hence Φ̂.
This means that Ej goes to zero as well. Because Ej is defined as the maxi-
mum of the error, the difference between the exact and approximated solution
has to go to zero as ∆ξ and ∆τ goes to zero. This means we have convergence.

Above we have assumed

0 < s ≤ si

where

si =
Di

D2
i+ 1

2

+D2
i− 1

2

(6.6)

In order to have convergence at every point, s has to be less than or equal to
the minimum value of si. Because s = ∆τ

∆ξ2 , this give us a stability condition
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for the finite difference scheme, which means that the scheme is stable under
the condition

∆τ

∆ξ2
≤ min

[ Di

D2
i+ 1

2

+D2
i− 1

2

]
Stability can also be proved by means of Lax equivalence theorem [14]

Theorem 6.2.1 (Lax Equivalence Theorem) Let U j
i be a consistent ap-

proximation to a well-posed linear initial-value problem. U j
i is then conver-

gent if and only if it is stable.

6.3 Error estimate for λ̃

Theorem 6.3.1 (Convergence of λ̃) Let λi be an eigenvalue and Xi(ξ)
the eigenfunction of the Sturm-Liouville problem

d

dξ

(
D(ξ)2dXi(ξ)

dξ

)
= λiD(ξ)Xi(ξ) (6.7)

Xi(0) = Xi(1) = 0

and let λ̃i be the eigenvalue of the generalized eigenvalue problem

A~µi = λ̃iB~µi

obtained by discretization of the problem (6.7). We then get that

| λi − λ̃i |→ 0 as ∆ξ → 0 (6.8)

In order to prove Theorem 6.3.1 we derive the Rayleigh coefficient [15]

λi =

∫ 1

0

(dXi(ξ)
dξ

)2
D(ξ)2dξ∫ 1

0
Xi(ξ)2D(ξ)dξ

(6.9)

from equation (6.7) by multiplying by the eigenfunction Xi(ξ) and integrate
over the interval ξ ∈ (0, 1). Next we derive the Rayleigh coefficient of the
corresponding discretized problem, which can be give by

λ̃i =
~µtiA~µi
~µtiB~µi

(6.10)
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The integrals of the numerator and denominator in equation (6.9) can be
approximated by

∫ 1

0

(dXi(ξ)

dξ

)2
D(ξ)2dξ =

∫ 1

0

π
((dXi(ξ)

dξ

)2
D(ξ)2

)
dξ +O((∆ξ)2)∫ 1

0

Xi(ξ)
2D(ξ)dξ =

∫ 1

0

π
(
Xi(ξ)

2D(ξ)
)
dξ +O((∆ξ)2)

where π(f) denotes the linear interpolant of f : C2, ξ ∈ [0, 1] given by the
mid-point rule and the trapezoidal rule [16]. Further we can proceed as
follows

∫ 1

0

π
((dXi(ξ)

dξ

)2
D(ξ)2

)
dξ

=

∫ 1

0

π
(
D(ξ)2

N−1∑
j=1

µij
dφj(ξ)

dξ

N−1∑
k=1

µik
dφk(ξ)

dξ

)
dξ (6.11)

=
N−1∑
j=1

N−1∑
k=1

µijµ
i
k

∫ 1

0

π
(
D(ξ)2dφj(ξ)

dξ

dφk(ξ)

dξ

)
dξ

and

∫ 1

0

π
(
Xi(ξ)

2D(ξ)
)
dξ

=

∫ 1

0

π
(
D(ξ)

N−1∑
j=1

µijφj(ξ)
N−1∑
k=1

µikφk(ξ)
)
dξ (6.12)

=
N−1∑
j=1

N−1∑
k=1

µijµ
i
k

∫ 1

0

π
(
D(ξ)φj(ξ)φk(ξ)

)
dξ

The last integrals of equation (6.11) and (6.12) can be approximated as in
appendix C.2, which means that

∫ 1

0

(dXi(ξ)

dξ

)2
D(ξ)2dξ = ~µtiA~µi +O((∆ξ)2)∫ 1

0

X2
iD(ξ)dξ = ~µtiB~µi +O((∆ξ)2)

Hence we get λi = λ̃i + O((∆ξ)2) from which it follows thatλ̃i → λi as ∆ξ
goes to zero.
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Chapter 7

Numerical results

7.1 Comparison of solutions

Figure 7.1: Snapshot of the numerical solutions of the model (3.5) for the time τ = 5.
Purple line: initial potential. Red line: finite difference scheme. Green line: Finite element
method. Blue line: Separation of variables combined with finite difference scheme. Black
line: Separation of variables combined with finite element method.

Figure 7.1, 7.2 and 7.3 show snapshots of the approximated solutions of
model (3.5) for three different times: τ = 5, τ = 50 and τ = 100 respectively.
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Figure 7.2: Snapshot of the numerical solutions of the model (3.5)for the time τ = 50.
The coloured lines represent the same solutions as in figure 7.1

By means of the relation

τ =
t

T

in section 3.3 this gives the following times: τ = 5 ⇒ t = 0, 0032ms, τ =
50 ⇒ t = 0, 032ms and τ = 100 ⇒ t = 0, 064ms. Figure 7.4, 7.5 and 7.6
take a closer look at the points where the difference between the solutions
are most significant.

The initial data used are the function

g(ξ) =

{
1 ξ = 1

2

0 otherwise

and the input data are τ = 0, 01 and N = 100 which gives ∆ξ = 0, 01.
One can see that the solutions tends to 0 as the time increases. This

property is expected because as the time increases the membrane potential
will always approach the resting potential. The peak of the solutions move
toward increasing ξ as the time increases.

The solution of the finite element method (uFEM(ξ, τ), green line, located
behind the blue line) given in section 5.2 and the solution of the finite differ-
ence method combined with separation of variables (usep.FDS(ξ, τ), blue line)
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Figure 7.3: Snapshot of the numerical solutions of the model (3.5) for the time τ = 100.
The coloured lines represent the same solutions as in figure 7.1.

given by (5.13) gives almost exactly the same solutions

uFEM(ξ, τ) ≈ usep.FDS(ξ, τ) for all ξ and τ

The solution of the finite element method combined with separation of vari-
ables (usep.FEM black line) given by (5.15) has in general a much lower value,
about 6%, which seems to increase with time, lower than uFEM and usep.FDS.
The finite difference solutions (uFDS, red line) given by (5.3) also has a lower
value, but is located closer to the first two solutions.

7.2 Solutions for different diameter geometry

Different diameter geometry can model different parts of a dendrite and the
change in geometry affects the signal. In figure 7.7, figure 7.8 and figure 7.9
solutions for different diameter geometry have been plotted for different
times. The red line and the blue line represents constant diameter. Red
line represents the thinnest diameter and the blue line represents the thick-
est diameter. All the other solutions where variable diameter have been used
are located between these two solutions.
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Figure 7.4: Magnified plot of the numerical solutions for the time τ = 5. The coloured
lines represents the same solutions as in figure 7.1.

One can see that as the time increases, the solutions modelled by a con-
stant diameter (and therefore a symmetric diameter) tends to decrease and
stay symmetric about ξ = 1

2
consistent with the symmetry analysis done in

section 4.2.
In the case of a diameter function modelled by means of the sigmoidal

function (3.1) a spatial asymmetry is developed: If the diameter increases
with increasing space variable, then the peak of the solutions moves to the left
as the time increases. One can also show that if the diameter is a decreasing
function of space, the peak of the solution moves to the right.
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Figure 7.5: Magnified plot of the numerical solutions for the time τ = 50. The coloured
lines represents the same solutions as in figure 7.1.

Figure 7.6: Magnified plot of the numerical solutions for the time τ = 100. The coloured
lines represents the same solutions as in figure 7.1.
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Figure 7.7: Finite difference solution for different diameter geometry for the time τ = 5.
Red line: D(ξ) = 0, 00037. Blue line: D(ξ) = 0, 00006. Green line: D(ξ) = 0,00074

1+e2,43ξ
. Black

line: D(ξ) = 0, 00037− 0, 00031ξ. Light blue line: D(ξ) = 0, 00006 + 0, 00031ξ.

Figure 7.8: Finite difference solution for different diameter geometry for the time τ = 50.
The coloured lines represent the same diameters as in figure 7.7
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Figure 7.9: Finite difference solution for different diameter geometry for the time τ =
100. The coloured lines represent the same diameters as in figure 7.7
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Chapter 8

Conclusion

In the present thesis we have investigated different numerical methods for
solving the linear cable equation where the cable diameter is assumed to be
modelled by means of a sigmoidal functions. The equation models the prop-
agation of voltage distributed along one single dendrite in a neuron.

The model has been solved in four different ways. The first two meth-
ods used were a finite difference scheme and the finite element method. For
the last two methods, separation of variables transformed the model into
two ordinary differential equations, and then the spatial equation was solved
numerically by means of a finite difference scheme and the finite element
method.

In the derivation of the finite difference method for both the cable equa-
tion and the Sturm-Liouville problem obtained by means of separation of
variables technique one has to use a symmetric center difference approxima-
tion to obtain consistent schemes.

The derivation of the finite difference scheme certainly needed less work
and the programming in Matlab for this method was the easiest one. The
other methods had to be done with much more work.

The finite element method and the separation of variables combined with
a finite difference scheme offered almost exact similar solutions. From the
derivations done in section 5.2 and section 5.3.1 one can see that the two
methods both end up with the same coefficient matrices A and B for the
discretized problem. The method of separation of variables combined with
the finite element method involved the same matrix A and B, but the method
gave in general a significant lower value of the solution. The difference was
about 6% and seemed to increase with time. It is the eigenvalue of the prob-
lem that controls the decay of the solution and it is therefore reasonable to
assume that the eigenvalue approximated for this method, which has an ap-
proximation error of order ∆ξ2, may be overestimated. The solution derived
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from separation of variables combined with a finite difference scheme lies
somewhere in between the other solutions.

All the different solutions revealed qualitatively the same properties. As
the time increased, the signal decreased. This is a property that would be
expected because the membrane potential will always approach the resting
potential, 0mV for this model. For the decaying sigmoidal diameter used,
the peak of the signal moved towards increasing space variable as the time
increased.

The analysis of the stationary state of the model gave a result that was
to expect from a neurophysical point of view. If the membrane potential is
assumed to be clamped to zero at the ends of the cable and do not change
in time, then the potential stay the same.

If we used the finite difference scheme and changed the diameter, then the
results showed that the solution, under the assumption that the initial con-
dition were symmetric, would stay symmetric about the mid point in space
if the diameter was symmetric about the same point. This result agrees with
the analysis done in section 4.

As a future work it would be interesting to give a more exact analysis
of the error of each solution method in order to determine the method that
gives most realistic solution. It would also be interesting to compare the
results from this thesis with the results from the program Neuron. Neuron
is based on a finite difference scheme, the Crank Nicolson scheme.



Appendix A

Scaling

We consider the new variables introduced in Chapter 3.3. The derivatives in
time and space become

∂V (x, t)

∂t
=

∂

∂τ

(
V0u(ξ, τ)e

− τT
τM

)dτ
dt

= V0e
− τT
τM

( 1

T

∂u(ξ, τ)

∂τ
− 1

τM
u(ξ, τ)

)
∂V (x, t)

∂x
=

∂

∂ξ

(
V0u(ξ, τ)e

− τT
τM

)∂ξ
∂x

= V0e
− τT
τM
∂u(ξ, τ)

∂ξ

1

L

We insert the derivatives and the new variables into equation (3.5) and get

cMV0e
− τT
τM

( 1

T

∂u(ξ, τ)

∂τ
− 1

τM
u(ξ, τ)

)
= −V0u(ξ, τ)e

− t
τM

rM
+

1

4rLd0D(ξ)

∂

∂ξ

(
d2

0D(ξ)2V0e
− τT
τM
∂u(ξ, τ)

∂ξ

1

L

)dξ
dx

With some rearrangements the equation becomes
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V0e
− τT
τM

( 1

T

∂u(ξ, τ)

∂τ
− u(ξ, τ)

τM

)
= V0e

− τT
τM

(
− u(ξ, τ)

τM
+

d0

4rLcML2D(ξ)

∂

∂ξ
(D(ξ)2∂u(ξ, τ)

∂ξ
)
)

and at the end the equation assumes the form

∂u(ξ, τ)

∂τ
=

α

D(ξ)

∂

∂ξ

(
D(ξ)2∂u(ξ, τ)

∂ξ

)
, α =

Td0

4rLcML2

In order to complete the scaling, boundary and initial conditions have to be
scaled as well. The two boundary conditions become

V (0, t) = 0 ⇒ u(0, τ)V0e
− τT
τM = 0 ⇒ u(0, τ) = 0

V (L, t) = 0 ⇒ u(1, τ)V0e
− τT
τM = 0 ⇒ u(1, τ) = 0

and the initial condition can be scaled in the following way

V (ξ, 0) = f(x) ⇒ u(ξ, 0)V0e
− 0T
τM = f(x)

⇒ u(ξ, 0) =
f(x)

V0

= g(ξ) (A.1)



Appendix B

Sturm Liouville theory

After preforming the method of separation of variable, the ODE depending
on the variable ξ become a regular Sturm-Liouville problem.

A Sturm-Liouville problem [12] is an ODE of the form

[p(x)y′(x)]′ + [q(x) + λr(x)]y(x) = 0, a < x < b (B.1)

with the boundary conditions

c1y(a) + c2y
′(a) = 0, d1y(b) + d2y

′(b) = 0 (B.2)

where either c1 or c2 has to be different from zero, and either d1 or d2 has to
be different from zero.

A Sturm-Liouville problem can either be regular or singular. For the
regularity conditions we have that p(x), p′(x), q(x) and r(x) have to be con-
tinuous on the interval a ≤ x ≤ b. In addition p(x) and r(x) have to be
greater than zero on the same interval.

In order for a Sturm-Liouville problem to be singular, the ODE can either
be defined on an infinite interval, or defined on a finite interval where one or
more of the regularity properties fails.

A non-trivial solution of (B.1) with boundary conditions (B.2) is called
an eigenfunction, while the corresponding value λ is called an eigenvalue.

Theorem B.0.1 The eigenvalues of a regular Sturm-Liouville problem are
all real and form an increasing sequence λ1 < λ2 < λ3 < · · · where λ → ∞
as j →∞
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To each eigenvalue of a regular Sturm-Liouville problem there exists only one
linear independent eigenfunction, and the eigenfunctions are orthogonal with
respect to the weight function r(x). The last part of the statement above can
be true for a singular problem as well, assumed that the following condition
is fulfilled

lim
x→b

[p(x)(y1(x)y′2(x)− y2(x)y′1(x))]− lim
x→a

[p(x)(y1(x)y′2(x)− y2(x)y′1(x))] = 0

where y1 and y2 are eigenvalues corresponding to the distinct eigenvalues λ1

and λ2 respectively.
The statements above can be summarized in theorem B.0.2 found in [12]

Theorem B.0.2

1. Each eigenvalue of a regular Sturm-Liouville problem has just one lin-
early independent eigenfunction corresponding to it.

2. Eigenfunctions corresponding to different eigenvalues of a regular Sturm-
Liouville problem are orthogonal with respect to the weight function
r(x).

The Sturm-Liouville problem for this paper become

d

dξ

(
D(ξ)2dX(ξ)

dξ

)
+ λX(ξ)D(ξ) = 0 (B.3)

with the boundary conditions X(0) = X(1) = 0.
The problem is regular since D(ξ) is strictly positive and smooth.



Appendix C

Derivation of numerical
solutions

C.1 Derivation of the finite difference scheme

Let us introduce the variable

γ(ξi, τj) = D2(ξi)
∂u(ξi, τj)

∂ξ

By means of a centred difference approximation, the derivative of γ with
respect to ξ around the point ξi can be approximated by

∂γ

∂ξ
≈
γj
i+ 1

2

− γj
i− 1

2

∆ξ

where γji present the approximated value of γ(ξi, τj). Then we have to ap-
proximate the quantities γj

i+ 1
2

and γj
i− 1

2

. This is done again by using a centred

difference approximation, but this time around the points ξi+ 1
2

and ξi− 1
2
. The

quantities become

γj
i+ 1

2

= D2
i+ 1

2

U j
i+1 − U

j
i

∆ξ
γi− 1

2
= D2

i− 1
2

U j
i − U

j
i−1

∆ξ

This means that ∂γ
∂ξ

can be approximated by

∂γ

∂ξ
≈
D2
i+ 1

2

Uji+1−U
j
i

∆ξ
−D2

i− 1
2

Uji −U
j
i−1

∆ξ

∆ξ
(C.1)
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C.2 Approximation of the integrals in matrix

A and B section 5.2

The mid-point rule [11] has been used to approximate the integrals in matrix
A. The rule states that

∫ b

a

f(x)dx ≈ f(m)(b− a), m =
a+ b

2
a ≤ x ≤ b

Aij is zero for | i− j |> 1, and therefore we only need to approximate Ai,i−1,
Ai,i+1 and Ai,i. The derivative of φi(ξ) become

φ′i(ξ) =


1

∆ξ
if ξi−1 ≤ ξ ≤ ξi

− 1
∆ξ

if ξi ≤ ξ ≤ ξi+1

0 otherwise

(C.2)

Because φi(ξ) and φi−1(ξ) only overlap at the interval ξ ∈ [ξi−1, ξi], Ai,i−1

become

Ai,i−1 =

∫ 1

0

D2(ξ)φ′i(ξ)φ
′
i−1(ξ)dξ

=

∫ ξi

ξi−1

−D2(ξ)
1

∆ξ2
dξ

≈ − 1

∆ξ
D2(ξi− 1

2
), (m = ξi− 1

2
, ξi − ξi−1 = ∆ξ)

φi(ξ) and φi+1(ξ) overlap only at the interval ξ ∈ [ξi, ξi+1], and Ai,i+1 become

Ai,i+1 =

∫ 1

0

D2(ξ)φ′i(ξ)φ
′
i+1(ξ)dξ

=

∫ ξi+1

ξi

−D2(ξ)
1

∆ξ2
dξ

≈ − 1

∆ξ
D2(ξi+ 1

2
), (m = ξi+ 1

2
, ξi+1 − ξi = ∆ξ)

For Ai,i we got that (φ′i(ξ))
2 = 1

∆ξ2 for ξ ∈ [ξi−1, ξi+1], and the integral can
be approximated in the following way
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Ai,i =

∫ 1

0

D2(ξ)(φ′i(ξ))
2dξ

=

∫ ξi

ξi−1

D2(ξ)
1

∆ξ2
+

∫ ξi+1

ξi

D2(ξ)
1

∆ξ2

≈ 1

∆ξ

(
D2(ξi− 1

2
) +D2(ξi+ 1

2
)
)

When approximating the integral in matrix B the trapezoidal rule have been
used [11]. The rule states that

∫ b

a

f(x)dx ≈ f(a) + f(b)

2
(b− a), a ≤ x ≤ b

We do only need to look at Bi,i−1, Bi,i+1 and Bi,i. Taking into consideration
that the basis functions overlap at the same place described above, Bi,i−1

and Bi,i+1 reduces to zero as below

Bi,i−1 =

∫ 1

0

D(ξ)φi(ξ)φi−1(ξ)dξ

=

∫ ξi

ξi−1

D(ξ)
(ξi − ξ)(ξ − ξi−1)

∆ξ2
dξ

≈ D(ξi)(ξi − ξi)(ξi − ξi−1) +D(ξi−1)(ξi − ξi−1)(ξi−1 − ξi−1)

2∆ξ2

= 0

Bi,i+1 =

∫ 1

0

D(ξ)φi(ξ)φi+1(ξ)dξ

=

∫ ξi+1

ξi

D(ξ)
(ξi+1 − ξ)(ξ − ξi)

∆ξ2
dξ

≈ D(ξi+1)(ξi+1 − ξi+1)(ξi+1 − ξi) +D(ξi)(ξi+1 − ξi)(ξi − ξi)
2∆ξ2

= 0

For Bi,i we get the following
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Bi,i =

∫ 1

0

D(ξ)φi(ξ)
2dξ

=

∫ ξi

ξi−1

D(ξ)
(ξ − ξi−1)2

∆ξ2
dξ +

∫ ξi+1

ξi

D(ξ)
(ξi+1 − ξ)2

∆ξ2

≈
(D(ξi)(ξi − ξi−1)2 +D(ξi−1)(ξi−1 − ξi−1)2

2∆ξ2

)
(ξi − ξi−1)

+
(D(ξi+1)(ξi+1 − ξi+1)2 +D(ξi)(ξi+1 − ξi)2

2∆ξ2

)
(ξi+1 − ξi)

= D(ξi)∆ξ

C.3 The method of separation of variables

For the method of separation of variables assume

u(ξ, τ) = X(ξ)T (τ)

The derivatives become

∂u(ξ, τ)

∂τ
= X(ξ)

dT (τ)

dτ
,

∂u(ξ, τ)

∂ξ
= T (τ)

dX(ξ)

dξ
(C.3)

This can then be put into equation (3.5)

X(ξ)
dT (τ)

dτ
=

1

D(ξ)

∂

∂ξ

(
D(ξ)2T (ξ)

dX(ξ)

dξ

)

Divide each side by X(ξ)T (τ) and we get two equations we can assume to
be equal to a constant denoted by −λ, because the two equation does not
depend on the same variable. The two equations that remains to solve are
then
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dT (τ)

dτ

1

T (τ)
= −λ, 1

D(ξ)

1

X(ξ)

d

dξ

(
D(ξ)2dX(ξ)

dξ

)
= −λ

C.4 Derivation of the spatial eigenvalue prob-

lem in section 5.3.1

In order to design a numerical code for the Sturm-Liouville problem based
on a finite difference scheme we proceed as follows:

We assume that the spatial variable can be defined only at discrete points
ξi, where i = 0, 1, 2, . . . , N . Then the step size get defined as ∆ξ = 1

N
and

the approximation of X at the point ξi can be denoted by Xi.
Because of the same reason explained in section C.1, the derivative cannot

simply be calculated by means of the product rule. In order to solve this
problem, the same approach as i section C.1 has been used.

Assume

γ(ξi) = D(ξi)
2dX(ξi
dξ

)

By means of Taylor series expansion [10], the derivative of γ can be approx-
imated by the centered difference approximation around the point ξi

dγ

dξ
≈
γi+ 1

2
− γi− 1

2

∆ξ

The quantities γi+ 1
2

and γi− 1
2

can then be approximated by

γi+ 1
2

= D2
i+ 1

2

Xi+1 −Xi

∆ξ
γi− 1

2
= D2

i− 1
2

Xi −Xi−1

∆ξ

and dγ(ξi)
dξ

then become

dγ(ξi)

dξ
≈
D2
i+ 1

2

Xi+1−Xi
∆ξ

−D2
i− 1

2

Xi−Xi−1

∆ξ

∆ξ

The approximations of the derivatives can then be put into (B.3)
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D2
i+ 1

2

Xi+1−Xi
∆ξ

−D2
i− 1

2

Xi−Xi−1

∆ξ

∆ξ
+ λ̃XiDi = 0

By some rearrangements we get the following difference scheme

−Xi−1(D2
i− 1

2
) +Xi(D

2
i+ 1

2
+D2

i− 1
2
)−Xi+1(D2

i+ 1
2
) = λ̃XiDi∆ξ

2

for i = 1, 2, . . . , N−1, with the boundary conditions X0 = XN = 0. λ̃ denote
the approximation of the exact eigenvalue λ

This scheme can then be seen as an eigenvalue problem with N−1 eigen-
values λ̃i and N − 1 eigenvectors ~vi.

C.5 The constant ck in section 5.3.1

Define the initial vector as

~g =


g(ξ1)
g(ξ2)
g(ξ3)

...
g(ξN−1)

 (C.4)

If we now impose the initial condition for τ = 0 we get

N−1∑
k=1

ck~vk = ~g

Multiply each side by the product ~vtlB. As stated in result 2, two eigenvectors
of the Sturm-Liouville problem are orthogonal with respect to the weight B,
which means that the product ~vtlB~vk become zero for all k 6= l. We are then
left with

ck~v
t
kB~vk = ~vtkB~g

which give the following expression for the constant ck

ck =
~vtkB~g

~vtkB~vk
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C.6 The constant ck in section 5.3.2

Assume τ to be zero and g(ξ) to be the initial condition. We then get the
equation

N−1∑
k=1

ck

N−1∑
j=1

µ
(k)
j φj(ξ) = g(ξ)

Then evaluate the function φj(ξ) and g(ξ) only at the nodal points ξi. φj(ξi)
then take on the value 1 when j = i and zero otherwise. This means that
the above equation reduces to

g(ξi) =
N−1∑
k=1

ckµ
(k)
i

Because i goes from 1 to N − 1, we get a system of N − 1 equation which
can be written on compact matrix form as

~g = Ω~c

where ~g is define as in equation (C.4) and

Ω =
[
~µ(1) ~µ(2) · · · ~µ(N−1)

]
c =


c1

c2
...

cN−1
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Appendix D

Proof of result 1, 2 and 3

D.1 Result 1: λ > 0

From theorem B.0.1 we get that the eigenvalues of a Sturm-Liouville problem
forms an increasing sequence. Here we prove explicitly that the eigenvalues
λ corresponding to (B.3) are strictly positive.
Let us consider (B.3). First we multiply each term byX(ξ) and then integrate
over ξ ∈ (0, 1).

∫ 1

0

d

dξ

(
D(ξ)2dX(ξ)

dξ

)
X(ξ)dξ = −

∫ 1

0

λX(ξ)2D(ξ)dξ

By means of integration by part the equation can be written as

[
D(ξ)2dX(ξ)

dξ
X(ξ)

]1

0
−
∫ 1

0

(
dX(ξ)

dξ
)2D(ξ)2dξ = −λ

∫ 1

0

X(ξ)2D(ξ)dξ

Because of the boundary conditions X(0) = X(1) = 0, the first term on the
left side of the equation become zero, and we obtain the Rayleigh coefficient

λ =

∫ 1

0
(dX(ξ)

dξ
)2D(ξ)2dξ∫ 1

0
X(ξ)2D(ξ)dξ

(D.1)

D(ξ) is smooth and the eigenfunctions X(ξ) are non-trivial solutions of
the Sturm-Liouville problem (B.3), hence, by (D.1) we get λ > 0
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D.2 Result 2: λ̃ > 0

From calculations done in the previous section, we know that λ has to be
greater than zero. This property has to preserved for the finite difference
scheme as well. In (5.11), where ~v 6= 0, A is a symmetric diagonal matrix,
(ci = ai+1), and thus A = At. B is a symmetric diagonal matrix as well, and
the same relation applies for this matrix.

Let us consider (5.11). We want to find an expression for λ̃. First we
left-multiply by ~vt and then rearrange to get the Rayleigh coefficient

λ̃ =
~vtA~v

~vtB~v

In order for λ̃ to be greater than zero, the denominator has to be greater
than zero. Let βi be the eigenvalues of B, which are all real and strictly
positive, and let xi be the corresponding eigenvectors so that B~x = β~x.
From the spectral theorem [18] we have the following implication

Bt = B ⇒ ~v ∈ RN−1, ~v =
N−1∑
i=1

µi~xi

⇒ ~xi
t ~xj =

{
1, i = j
0, i 6= j

This leads to

~vtB~v =
(N−1∑
i=1

µi~xi
)t
B
(N−1∑
j=1

µj ~xj
)

=
N−1∑
i,j=1

µiµj~x
t
iB~xj

=
N−1∑
i,j=1

µiµj~x
t
iβj~xj

=
N−1∑
i=1

βiµ
2
i > 0

A similar proof has to be made for the numerator ~vtA~v. From the spectral
theorem we get the implication
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At = A ⇒ ~v ∈ RN−1, ~v =
N−1∑
i=1

γi~yi

⇒ ~yi
t~yj =

{
1, i = j
0, i 6= j

where ~yi denotes the eigenvector corresponding to the eigenvalue αi for
the eigenvalue problem, A~y = α~y. With the same calculations made for the
matrix B, the following relation is true:

~vtA~v =
N−1∑
i=1

αiγ
2
i

Since A is symmetric, α is real. Moreover A − αI for α < 0 is a strictly
diagonal dominant matrix. Hence, by Corollary 1 in [19], A − αI for α < 0
is invertible, from which it follows that all the eigenvalues of A are positive.

If αi = 0 is a root of the characteristic polynomial det(A− αI) of multi-
plicity less than or equal to N − 2, then ~vtA~v > 0.

D.3 Result 3: Orthogonal eigenvectors

Another way to verify that (5.11) has the same properties as the cor-
responding Sturm-Liouville problem is to check whether the eigenfunctions
are orthogonal with respect to the weight matrix B Assume λ 6= µ are two
eigenvalues with two corresponding eigenvectors ~v, ~w. We then get the two
equations

A~v = λB~v A~w = µB ~w

From this we get the identity

λ(B~v)t ~w = λ~vtBt ~w

= λ~vtB~w

= ~vtA~w

= µ~vtB~w = µ(B~v)t ~w

Since λ 6= µ, the inner product on each side has to be zero, which means
that any two eigenvectors have to be orthogonal with respect to the weight
matrix B.
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Appendix E

Truncation error

E.1 Finite difference scheme

The truncation error for the finite difference scheme is defined as

Φj
i =

[∂u(ξi, τj)

∂τ
− 1

D(ξi)

∂

∂ξ

(
D(ξi)

2∂u(ξi, τj)

∂ξ

)]
(E.1)

−
[uj+1

i − uji
∆τ

− 1

Di

(D2
i+ 1

2

(uji+1 − u
j
i )−D2

i− 1
2

(uji − u
j
i−1)

∆ξ2

)]
By means of Taylor series expansion [10] the derivative in time can be re-
placed by

∂u(ξi, τj)

∂τ
=
uj+1
i − uji

∆τ
− 1

2

∂2u(ξi, τ̄j)

∂τ 2
∆τ, τi < τ̄i < τi+1 (E.2)

For the derivative in space we define the variable

γ(ξi, τj) = D(ξi)
2∂u(ξi, τj)

∂ξ

We approximate the derivative of γ, as in section C.1, but this time the
truncation error of the Taylor series expansion is included. This gives us the
expression

∂γ

∂ξ
=
γj
i+ 1

2

− γj
i− 1

2

∆ξ
− 1

3!8

(∂3γ(ξ̄i, τj)

∂ξ3
+
∂3γ( ¯̄ξi, τj)

∂ξ3

)
(∆ξ)2
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where ξi < ξ̄i < ξi+ 1
2

and ξi− 1
2
< ¯̄ξi < ξi

Next, we need to find expressions for γj
i+ 1

2

and γj
i− 1

2

. This is also done in

the same way as in section C.1, but the truncation errors are included here
as well, i.e.

γj
i+ 1

2

= D2
i+ 1

2

(uji+1 − u
j
i

∆ξ
− 1

3!8

(∂3u(ξ̄i+ 1
2
, τj)

∂ξ3
+
∂3u( ¯̄ξi+ 1

2
, τj)

∂ξ3

)
(∆ξ)2

)
γj
i− 1

2

= D2
i− 1

2

(uji − uji−1

∆ξ
− 1

3!8

(∂3u(ξ̄i− 1
2
, τj)

∂ξ3
+
∂3u( ¯̄ξi− 1

2
, τj)

∂ξ3

)
(∆ξ)2

)
where

ξi+ 1
2
< ξ̄i+ 1

2
< ξi+1, ξi <

¯̄ξi+ 1
2
< ξi+ 1

2

ξi− 1
2
< ξ̄i− 1

2
< ξi, ξi−1 <

¯̄ξi− 1
2
< ξi− 1

2

The expression for dγ
dξ

then become

∂γ

∂ξ
= D2

i+ 1
2

(uji+1 − u
j
i

∆ξ2
− 1

3!8

(∂3u(ξ̄i+ 1
2
, τj)

∂ξ3
+
∂3u( ¯̄ξi+ 1

2
, τj)

∂ξ3

)
∆ξ
)

− D2
i− 1

2

(uji − uji−1

∆ξ2
− 1

3!8

(∂3u(ξ̄i− 1
2
, τj)

∂ξ3
+
∂3u( ¯̄ξi− 1

2
, τj)

∂ξ3

)
∆ξ
)

− 1

3!8

(∂3γ(ξ̄i, τj)

∂ξ3
+
∂3γ( ¯̄ξi, τj)

∂ξ3

)
(∆ξ)2

When the derivatives in the truncation error Φj
i are replaced by the ex-

pressions found for the derivatives, the terms involving the finite differences
disappear, and we are left with the truncation error

Φj
i = C∆τ +G∆ξ +H∆ξ2 (E.3)

where C, G and H are defined as in section 6.1.



Appendix F

Matlab programs

Matlab script for solution method 1, finite difference scheme.

N = 100 ;
M = 100000;

d e l t a x i = 1/N;
de l ta tau = 0 . 0 1 ;

x i = 0 : d e l t a x i : 1 ;
x iha lv = d e l t a x i /2 : d e l t a x i :1− d e l t a x i /2 ;
tau = 0 : de l ta tau :M∗ de l ta tau ;

s = de l ta tau /( ( d e l t a x i ) ˆ 2 ) ;

D = 0.00074./(1+ exp ( 2 . 4 3 . ∗ x i ) ) ;
Dhalv = 0.00074./(1+ exp ( 2 . 4 3 . ∗ x iha lv ) ) ;

U = ze ro s (M+1,N+1);

U( : , 1 ) = 0 ;
U( : ,N+1) = 0 ;
U( 1 , (N/2)+1) = 1 ;

f o r j = 1 :M
f o r i = 2 :N

U( j +1, i ) = U( j , i +1).∗( s .∗D( i ) . ˆ 2 . /D( i ) )
+ U( j , i ).∗(1− s . ∗ (D( i ) . ˆ 2 . /D( i ) )
−s . ∗ (D( i −1) .ˆ2 ./D( i ) ) ) + U( j , i −1)
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. ∗ ( s .∗D( i −1) .ˆ2 ./D( i ) ) ;
end

end

f i g u r e (1 )
p l o t ( xi ,U( 5 0 1 , : ) , ’ r ’ )
hold on
x l a b e l ( ’\ xi ’ )
y l a b e l ( ’ Approximation o f u(\ xi ,\ tau ) ’ )
t i t l e ( ’\ tau = 5 ’ )
p l o t ( xi ,U( 1 , : ) , ’m’ )
g r i d on

f i g u r e (2 )
p l o t ( xi ,U( 5 0 0 1 , : ) , ’ r ’ )
hold on
x l a b e l ( ’\ xi ’ )
y l a b e l ( ’ Approximation o f u(\ xi ,\ tau ) ’ )
t i t l e ( ’\ tau = 50 ’ )
p l o t ( xi ,U( 1 , : ) , ’m’ )
g r i d on

f i g u r e (3 )
p l o t ( xi ,U( 1 0 0 0 1 , : ) , ’ r ’ )
hold on
x l a b e l ( ’\ xi ’ )
y l a b e l ( ’ Approximation o f u(\ xi ,\ tau ) ’ )
t i t l e ( ’\ tau = 100 ’ )
p l o t ( xi ,U( 1 , : ) , ’m’ )
g r i d on
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Matlab script for solution method 2, finite element method

N = 100 ;
M = 100000;

d e l t a x i = 1/N;
de l ta tau = 0 . 0 1 ;

tau = 0 : de l ta tau :M∗ de l ta tau ;

x i = 0 : d e l t a x i : 1 ;
x iha lv = d e l t a x i /2 : d e l t a x i :1− d e l t a x i /2 ;

my = ze ro s (M+1,N−1);

my( 1 , (N/2)) = 1 ;

D = 0.00074./(1+ exp ( 2 . 4 3 . ∗ x i ) ) ;
Dhalv = 0.00074./(1+ exp ( 2 . 4 3 . ∗ x iha lv ) ) ;

Dvec = D( 2 :N) ;
B = ( d e l t a x i . ˆ 2 ) . ∗ diag ( Dvec ) ;

ACvec = −(Dhalv ( 2 :N−1) ) . ˆ2 ;
Bvec = ( Dhalv ( 2 :N)) .ˆ2+( Dhalv ( 1 :N−1) ) . ˆ2 ;

A = diag (ACvec,−1)+ diag (ACvec ,1)+ diag ( Bvec ) ;

K = (B + de l ta tau .∗A)\B;

f o r l = 1 :M
my( l +1 , : ) = K∗(my( l , : ) ) ’ ;

end

Phi = eye (N−1);

U = ze ro s (M+1,N+1);

U( : , 1 ) = 0 ;
U( : ,N+1) = 0 ;
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U( 1 :M+1 ,2:N) = my;

f i g u r e (1 )
p l o t ( xi ,U( 5 0 1 , : ) , ’ g ’ )
hold on

f i g u r e (2 )
p l o t ( xi ,U( 5 0 0 1 , : ) , ’ g ’ )
hold on

f i g u r e (3 )
p l o t ( xi ,U( 1 0 0 0 1 , : ) , ’ g ’ )
hold on
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Matlab script for solution method 3a, separation of variables and finite dif-
ference scheme

N = 100 ;
M = 100000;

de l ta tau = 0 . 0 1 ;
d e l t a x i = 1/N;

tau = 0 : de l ta tau :M∗ de l ta tau ;

x i = 0 : d e l t a x i : 1 ;
x iha lv = d e l t a x i /2 : d e l t a x i :1− d e l t a x i /2 ;

D = 0.00074./(1+ exp ( 2 . 4 3 . ∗ x i ) ) ;
Dhalv = 0.00074./(1+ exp ( 2 . 4 3 . ∗ x iha lv ) ) ;

Dvec = D( 2 :N) ;
B = ( d e l t a x i . ˆ 2 ) . ∗ diag ( Dvec ) ;

ACvec = −(Dhalv ( 2 :N−1) ) . ˆ2 ;
Bvec = ( Dhalv ( 2 :N)) .ˆ2+( Dhalv ( 1 :N−1) ) . ˆ2 ;

A = diag (ACvec,−1)+ diag (ACvec ,1)+ diag ( Bvec ) ;

E = B\A;

[ e igvec , lambda ] = e i g (E) ;

lambdak = diag ( lambda ) ;

U = ze ro s (M+1,N+1);
U( : , 1 ) = 0 ;
U( : ,N+1) = 0 ;
U( 1 , (N/2)+1) = 1 ;
g = U( 1 , 2 :N) ;

f o r l = 2 :M+1
U( l , 2 :N) = ( ( e i gve c ( : , 1 ) ) ’ ∗B∗g ’ ) / ( ( e i gve c ( : , 1 ) ) ’
∗(B∗ e i gve c ( : , 1 ) ) ) ∗ exp(−lambdak ( 1 ) . ∗ tau ( l ) )



68 APPENDIX F. MATLAB PROGRAMS

.∗ e i gve c ( : , 1 ) ;
f o r k = 2 :N−1

U( l , 2 :N) =U( l , 2 :N) + ( ( g∗(B∗ e i gve c ( : , k ) ) ) /
( ( e i gve c ( : , k ) ) ’∗ (B∗ e i gve c ( : , k ) ) )
.∗ exp(−lambdak ( k ) . ∗ tau ( l ) )∗ e i gve c ( : , k ) ) ’ ;

end
end

f i g u r e (1 )
p l o t ( xi ,U( 5 0 1 , : ) )
hold on

f i g u r e (2 )
p l o t ( xi ,U( 5 0 0 1 , : ) )
hold on

f i g u r e (3 )
p l o t ( xi ,U( 1 0 0 0 1 , : ) )
hold on
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Matlab script for solution method 3b, separation of variables and finite ele-
ment method

N = 100 ;
M = 100000;

de l ta tau = 0 . 0 1 ;
d e l t a x i = 1/N;

x i = 0 : d e l t a x i : 1 ;
tau = 0 : de l ta tau :M∗ de l ta tau ;

D = 0.00074./(1+ exp ( 2 . 4 3 . ∗ x i ) ) ;

acvec = ( (D( 3 :N) . ˆ ( 2 ) ) + (D( 2 :N−1 ) . ˆ 2 ) ) . / 2 ;
bvec = (D( 3 :N+1).ˆ2)+(D( 1 :N−1) . ˆ2 ) ;

A = diag(−acvec ,−1)+ diag(−acvec ,1)+ diag ( bvec ) ;

dvec = D( 2 :N) ;
B = ( d e l t a x i ) . ˆ 2 . ∗ diag ( dvec ) ;

C = B\A;

[ e i gvec t , lambdat ] = e i g (C) ;

g = ze ro s (1 ,N−1);
g ( (N/2)+1) = 1 ;

Umat = [ e i g v e c t g ’ ] ;

radred = r r e f (Umat ) ;

ck = radred ( : ,N) ;

U = ze ro s (M+1,N+1);

U( 1 , (N/2)+1) = 1 ;
U( : , 1 ) = 0 ;
U( : ,N+1) = 0 ;
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Emat = ze ro s (M,N−1);

f o r i = 2 :M+1
f o r k = 1 :N−1

Emat( i , k ) = ck ( k ) . ∗ exp(−lambdat (k , k ) . ∗ tau ( i ) ) ;
end

end

f o r l = 2 :M+1
f o r j = 2 :N−1

U( l , j ) = sum(Emat( l , : ) . ∗ e i g v e c t ( j , : ) ) ;
end

end

f i g u r e (1 )
p l o t ( xi ,U( 5 0 1 , : ) , ’ k ’ )
hold on

f i g u r e (2 )
p l o t ( xi ,U( 5 0 0 1 , : ) , ’ k ’ )
hold on

f i g u r e (3 )
p l o t ( xi ,U( 1 0 0 0 1 , : ) , ’ k ’ )
hold on
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