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"You could not even think without electricity, though I realize that even with electricity 

some of you may have a problem with that" 

Walter Lewin, MIT 
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Summary  

This thesis examines a policy proposal presented by former Deputy Director-General for 

Safeguards in the International Atomic Energy Agency, Olli Heinonen, as a means to get Iran 

back to the negotiation table over its nuclear program [1]. He proposes modifying the 

Iranian heavy water research reactor IR-40, so that it uses low enriched uranium instead of 

natural uranium as fuel, thereby making the reactor less suitable for weapons-grade 

plutonium production, and more suitable for useful radioisotope production. 

This thesis concretizes Heinonen’s proposal, suggesting a conversion of the IR-40 reactor 

from using natural uranium to using low enriched uranium fuel. The original reactor, as well 

as the proposed modified reactor is modeled using SCALE 6.1, a reactor simulation program 

developed by Oak Ridge National, to determine if this conversion is feasible, and to estimate 

the potential for plutonium and radioisotope production in both configurations. Various 

methods are used to estimate the current design of the reactor and use the parameters 

deduced for that reactor as a basis for a converted reactor. A proposal is also made to cap 

Iran’s enrichment capacity to a level where Iran can replace the yearly demand for the 

converted IR-40 reactor with enriched uranium. This could ease tensions regarding Iran’s 

enrichment program and the focus of diplomacy could shift to confidence building between 

Iran and the IAEA.   
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Samandrag  

Denne masteroppgåva vil ta utgangspunkt i eit innspel frå tidligare direktør for beskytelse i 

det internasjonale atomenergibyrået Olli Heinonen, for å få Iran tilbake til 

forhandlingsbordet vedrørande atomprogrammet deira. Olli Heinonen foreslår å modifisera 

den Iranske forskingsreaktoren IR-40 til å ta i bruk låganrika uran framfor naturlig uran, 

dermed gjera reaktoren mindre eigna til plutoniumsproduksjon av våpenkvalitet og meir 

eigna til radioisotopproduksjon.  

Denne oppgåva vil konkretisera Heinonens forslag og foreslår ein konvertering av IR-40 til å 

ta i bruk låganrika uranbrensel. Den originale og konverterte reaktoren blir modellert i 

SCALE 6.1, eit reaktor simuleringsprogram utvikla av Oak Ridge National, for å finna ut om 

konverteringa er mogleg, og estimera potensialet for plutoniumsproduksjon og 

radioisotopproduksjon i begge konfigurasjonane. Det blir også foreslått å putta eit tak på 

Irans anrikingsmoglegheiter slik at dei dekke det årlige behovet til den konverterte IR-40 

reaktoren med anrika uran. Dette kan løysa opp spenning angåande Irans anrikingsprogram 

og diplomatiet kan skifta fokus til betre samarbeid mellom IAEA og Iran.  
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1 Introduction 

1.1 Challenges facing Iran 

Iran is strategically located between the Arab peninsula and Central Asia as shown in Figure 

1-1. Iran shares borders with regional powers such as Iraq, Turkey, Afghanistan and 

Pakistan. This is an unstable part of the world. Pakistan is struggling with internal problems 

such as sectarian violence, and the regime is stockpiling nuclear weapons [2]. Iraq is 

rebuilding after the coalition invasion led by the United States in 2003, and the chaos that 

followed.  Iran also fought a bitter war with Iraq from 1980-1988 [3]. After ten years of 

NATO-led military operations, Afghanistan is still an unstable state and it is uncertain what 

will happen when NATO forces pull out.  

Iran’s political landscape is also unstable. In 1953 the democratically elected, nationalistic 

prime minister Mohammed Mosaddeq was toppled by the US-backed Shah. The Shah, a 

monarch, ruled Iran from 1953 to 1979. In a revolution in 1979, the Shah was toppled. The 

revolution turned into an Islamic one, as Ayatollah Ruhollah Khomeini emerged as the 

spiritual and de facto, strong-handed leader of the new Islamic Republic of Iran. Today there 

is an elected government, which is currently led by Mahmoud Ahmadinejad, who is 

responsible for the political, economical and day-to-day running of the country, but the 

current spiritual leader, Ayatollah Khamenei, has the last word in important matters. After 

the presidential election in 2009, there was widespread turmoil over the election results 

which the reform movement claimed was fraudulent, but the protests were ultimately 

violently struck down by the sitting regime [3].     

Economically Iran is very dependent on its petroleum industry. The petroleum industry 

accounts for 85% of Iran’s total income. However, the export of petroleum products is being 

limited as a large share is used internally due to a long history of large subsidies on gasoline 

and dependence on gas-fired power plants for electricity production [4]. This is illustrated 

by the fact that Iran has the second largest known gas reserves in the world, but is only the 

27th biggest gas exporter. In addition, the demand for both electricity and gasoline is 

increasing in Iran due to a rapidly growing population [5].  

The large domestic use of petroleum products has been used by Iranian authorities as an 

argument for pursuing nuclear power and thereby freeing up valuable petroleum products 

for export. Iran’s pursuit of nuclear technology has sparked major international concern 

because it could be misused for military applications [6].  Repeated attempts of concealing 

nuclear facilities in Iran have not alleviated these concerns [5].  

http://en.wikipedia.org/wiki/Mohammed_Mosaddeq
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Figure 1-1.  A map of Iran. The 40 MW heavy water reactor built in Arak, 240 km south west 

from Tehran [7]. 

1.2 Iran’s nuclear program  

Iran’s nuclear program was initiated in 1957 when Iran and the United States (US) signed 

an agreement on corporation on civilian nuclear power as a part of the US-led Atoms for 

Peace Program [5].  

The US built Iran’s first nuclear reactor, the Teheran Research Reactor (TRR). TRR is a 

5 mega watt thermal (MWth) reactor which went into operation in 1967 and is still in use 

[5]. Iran also has a small 30 kilo watt thermal (kWth) light water reactor (LWR) which has 

been in operation since the mid 1990s and functions as a neutron source for scientific 

experiments. Iran also operates a small 100 Wth heavy water reactor (HWR), a critical 

assembly and two subcritical assemblies which have all been built by China [8;9]. 

Following the 1973-74 oil crisis, the Shah launched ambitious plans for building a total of 

23 gigawatt electric (GWe) nuclear power capacity. Only one project was started in Bushehr 

in 1975 by German Kraftwerk Union (KWU). The original plan was to build two 1200 MWe 

pressurized water reactors (PWRs). After the revolution, payment to KWU halted and 
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construction stopped, leaving one plant nearly completed and the other plant half finished. 

During the Iran – Iraq war, the plant was repeatedly damaged by Iraqi air strikes and 

construction efforts were neglected [10]. In 1994, Russia and Iran came to an agreement for 

completing the reactors at Bushehr as Russian PWRs, called VVER-1000 reactors [11]. One 

reactor has been completed and delivered electricity to the grid in 2011 and is planned to 

reach full capacity in February 2012 [12;13].  

According to the stated plans for the expansion of nuclear power, Iran envisages a total 

capacity of 7 GWe by 2020 and 20 GWe by 2030 [5]. Iran pursues self-sufficiency in its 

nuclear fuel production, although Russia has agreed to provide fuel for the Bushehr reactor 

during its first 20 years of operation [5]. 

The International Atomic Energy Agency (IAEA) and the Nuclear Non-Proliferation 

Treaty (NPT) 

The IAEA was established in 1957 with an objective to promote safe, secure and peaceful 

use of nuclear energy. The creation of IAEA was attributed to US president Dwight 

Eisenhower, who promoted an organization to oversee the Atoms for Peace Program [14]. 

The NPT is an international treaty whose objective is to prevent the spread of nuclear 

weapons (NW) and weapons technology, to promote cooperation on peaceful use of nuclear 

energy, and achieving NW disarmament. The NPT went into effect in 1970. Through the 

NPT, IAEA is given the mandate to monitor all non-nuclear weapons member states’ 

compliance to the non-proliferation provisions of the treaty. Article III commits the non-

nuclear weapons states to negotiate and implement a safeguards agreement with the IAEA, 

to enable inspections of all nuclear activities and materials in the respective state. Iran 

concluded its Comprehensive Safeguards Agreement (CSA) with the IAEA in 1974 [15].  

1.2.1 Iran’s secret nuclear program 

In 2002, National Council of Resistance of Iran, a rebel faction in Iran, unveiled evidence 

that Iran was building a nuclear facility in Natanz and a heavy water production plant 

(HWPP) near the city of Arak. The facility in Natanz was later identified as a uranium 

enrichment1 plant. The initial allegations were supported up by commercial satellite images 

showing large-scale building activities at these locations [5]. 

                                                             

1 Naturally occurring uranium largely consists of two different isotopes of uranium.  About 

0.7 % of the uranium is in the form of the isotope uranium-235 and the rest is uranium-238. 
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In February 2003, half a year after the disclosure of these facilities, the Iranian authorities 

sent a letter to the IAEA (see Fact Box) stating their intentions to build the HWPP. Iran 

claimed no wrong-doing in not declaring these facilities at an earlier stage, because 

according to the original subsidiary arrangements to the CSA, Iran was only obliged to 

report new facilities 180 days prior to introducing nuclear materials to the facility [15;16]. 

Under a more updated and stricter interpretation of these obligations, (the so-called 

modified code 3.1 to the subsidiary arrangements of the CSA), new facilities would have to 

be declared as soon as a construction order, or permission to construct, was given. Iran 

voluntarily agreed to the modified code in a letter to IAEA in 2003, but went back on their 

promises in 2007, and now cling to the old phrasing [17]. IAEA frequently points out that 

Iran is the only country with significant nuclear activities that insists on this outdated 

interpretation of its declaratory commitments [18]. 

Iran stated that the purpose of the enrichment plant was to acquire a complete nuclear fuel 

cycle to provide fuel to its future fleet of reactors [5]. Many Western countries are worried 

that the enrichment program could be part of a covert nuclear weapons program, where 

Iran could enrich uranium to weapons-grade quality (typically around 90 % uranium-235, 

in contrast to 3 – 5 % in commercial power reactor fuel). This concern has lead to four 

United Nations Security Council (UNSC) sanction resolutions prompting Iran to halt the 

enrichment [19]. Iran argues that its enrichment program is entirely legal under the NPT 

Article IV (see Fact Box) on the right to develop civilian nuclear applications, and maintains 

that Iran does not want to depend on foreign countries for supplies of enriched uranium 

fuel.  

Iran was confronted by the IAEA in 2003 with questions about the origin and nature of its 

enrichment technology, whereby Iran admitted to having received enrichment technology 

from foreign sources [16]. In 2004, Abdul Qadeer Khan, also known as the father of the 

nuclear bomb in Pakistan admitted to having sold enrichment technology to several 

countries, including Iran [5]. 

In a safeguards report released by the IAEA November 2011, the IAEA has serious concerns 

regarding possible military dimensions of the Iranian nuclear program. The IAEA finds it 

overall credible that Iran performed research on NWs technology up until 2003, and that 

some parts of these activities continued after 2003 [18].  

                                                                                                                                                                                      

Uranium enrichment is a process whereby the weight fraction of uranium-235 is increased 

relative to the fraction of uranium-238.  
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1.2.2 The IR-40 heavy water research reactor 

In May 2003 Iran sent another letter stating their intentions to also build a HWR named IR-

40 near the city of Arak [16].  

Iran claims that the proposed IR-40 reactor is a necessary and suitable replacement for its 

aging TRR [20]. The purpose of the IR-40 reactor is allegedly to produce radioisotopes for 

medical and industrial applications, train nuclear personnel and obtaining technological and 

scientific experience in design and construction of nuclear reactors using local experts [21]. 

Iran attempted to acquire a research reactor from abroad without success. In 1996, Iran 

received proposals from China and Russia on three different research reactors, but no 

agreement was made [20]. Iran concluded that the only option was to build an indigenous 

heavy water reactor, and use domestically produced natural uranium (NU) oxide fuel with 

Zircaloy encapsulation [16].  

As of July 2011, the construction of the IR-40 reactor is reported by the Atomic Energy 

Organization of Iran (AEOI) to be 82% completed [21]. Iran has reported that the reactor 

will commence operations by the end of 2013 [22]. The facility is not under IAEA safeguards 

yet because of Iran’s refusal to comply with the modified code 3.1, as discussed above. Iran 

has nevertheless let IAEA inspect the plant on several occasions, the last visits being twice 

in 2011 and once in 2010 and 2009 [22-25].  

HWRs fueled with NU are very well suited for producing plutonium of a quality suitable for 

nuclear weapons [26]. Iran could extract up to 8-10 kg of weapons-grade plutonium 

(WGPu)2 each year from fuel irradiated in the IR-40 reactor. That amount of WGPu is 

sufficient material for the construction of one to two nuclear weapons per year, depending 

on the weapon design. Because of the proliferation risks connected to the IR-40 reactor, the 

IAEA’s Board of Governors has called upon Iran to halt all its heavy-water related projects in 

several resolutions [8;23]. This has also been demanded by the UNSC in several resolutions. 

To this date, Iran has ignored all such demands [25].  

1.2.3 A new proposal 

In January 2011 former Deputy Director-General for Safeguards in the International Atomic 

Energy Agency Olli Heinonen wrote an article in Foreign Policy where he proposed 

modifying the IR-40 reactor deign to accommodate a new research reactor using low-

enriched uranium [1].  

                                                             

2 WGPu is defined as plutonium containing at least 93 % of the isotope plutonium–239.  

Detailed information regarding plutonium quality is given in Chapter 6. 
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This would result in a substantial part of Iran’s current stock of low-enriched uranium to be 

redirected for the research reactor as fuel and not be available for further enrichment to 

nuclear weapons quality.  

1.2.4 Thesis outline 

This thesis outlines a proposal for Iran to choose a different design for the IR-40 reactor 

that limits the reactor’s capacity for producing WGPu compared to the current design, while 

enhancing its ability to function as a research reactor. The current design characteristics of 

the IR-40 reactor are not known. To estimate the characteristics of the reactor, various 

methods are employed, such as comparing it with other research reactors, gathering 

information from Iranian scientific articles and IAEA reports, and employing nuclear 

engineering principles. A likely reactor design is then deduced. This reactor is simulated 

using SCALE 6.1, a nuclear reactor simulation program, estimating the reactor’s effective 

multiplication factor as well as the potential plutonium and radioisotope production. A 

modified reactor design is then proposed.  

Chapter 2 and 3 describe the basic theory of nuclear reactors. Chapter 2 introduces the 

fundamental concepts in nuclear physics and radioactivity. It describes the fission process 

and different neutron interactions. Chapter 3 describes the neutron life cycle and neutron 

transport in a reactor. The concept of material and geometric buckling is introduced as a 

mean of estimating the minimum size of a nuclear core.  Different nuclear reactor designs 

and their characteristics are presented in Chapter 4. It describes how the nuclear chain 

reaction is maintained at a stable level during operation.  

In Chapter 5, the basic physics of nuclear weapons and nuclear weapons material is 

described. The two basic nuclear weapons designs, gun-type and implosion-type are 

presented. The production of plutonium and radioisotopes is described in Chapters 6 and 7. 

Chapter 6 describes the different compositions of plutonium isotopes and what qualifies 

some compositions as weapons-grade.  

Chapter 8 describes possible IR-40 reactor design characteristics, using available sources as 

well as deductions and estimates based on reactor physics. In Chapter 9, a computer 

simulation program called SCALE, developed by Oak Ridge National Laboratory in 

Tennessee USA, is employed to test the reactor geometries estimated in Chapter 8 and 

calculate an effective multiplication factor for the reactor, the core inventory as well as 

potential plutonium and radioisotope production. Finally, the results are discussed and 

summarized in chapter 10.  
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2 Nuclear physics 

2.1 Nuclear energy 

2.1.1 Atomic structure 

The periodic table consists of 118 known elements, where each element consists of atoms of 

a particular composition. The atom is constituted of a core surrounded by a cloud of 

electrons. The core, also known as the nucleus, is very small compared to the size of the 

atom [27].  

The nucleus is populated by two different particles of almost identical mass: protons and 

neutrons. The protons are positively charged while the neutrons are electrically neutral. A 

specific atom (also called nuclide) is often denoted   
 , where X is the chemical symbol of 

the element, Z is the number of protons in the nucleus and A is the sum of the protons and 

neutrons in the nucleus. A is known as the mass number [27].  

2.1.2 Isotopes 

Atoms containing a fixed number of protons but different numbers of neutrons are called 

isotopes. Isotopes of different elements can exhibit very different nuclear properties, 

although chemically they are practically identical. This is because the chemical properties 

are governed by the electron configuration which remains the same for isotopes of the same 

atom [27].  

One example is uranium where the most abundant isotope    
    is not usable in nuclear 

weapons, but the lighter isotope    
    is [27]. 

2.1.3 Nuclear forces  

Inside the nucleus there exists an attractive force called the strong nuclear force. The strong 

nuclear force operates on short ranges only acting on the nucleons inside the nucleus, in 

contrast to the electromagnetic Coulomb force which operates on a much longer range. 

Inside the nucleus the strong nuclear force overcomes the repellent Coulomb force if the 

nucleus is populated by more than one proton [27]. 

As the number of protons in the nucleus increases, the repellent Coulomb force increases. 

To counter the increasing Coulomb force, nuclei with many protons have a set of extra 

neutrons which up to a certain extent leads to a more stable nucleus because of the 

increased attractive nuclear force [27].  

Another nuclear force operating on an even smaller scale than the nucleus is the weak 

nuclear force. It is called weak because it is 10-12 times weaker than the strong nuclear force. 

Weak nuclear force plays an important role in radioactive decay because it enables unstable 
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nuclei to change protons into neutrons or neutrons into protons which leads to a lower 

energy state and the emission of particles from the nucleus [28].  

2.1.4 Radioactivity 

A nucleus becomes unstable if it has too much internal energy. In order to achieve stability 

the nucleus gets rid of this excess energy through radioactive decay. Radioactive decay is 

divided into three main types of radiation [27].  

Heavy elements such as uranium often have too many protons in their nucleus to stay 

stable. To reach a lower energy level, a heavy element emits an alpha particle made up of 

two protons and two neutrons, so-called alpha decay [27]. The alpha particle is denoted α 

and is identical to a helium nucleus. 

If a nucleus contains too many neutrons, it can transform one of its neutrons into a proton, 

or if it has too many protons convert a proton to a neutron. These changes involve a process 

whereby the nucleus emits an electron or a positron3 and an anti-neutrino or a neutrino4. 

This is known as beta radiation and is  symbolized by    or    [29]. 

A nucleus may return to its ground energy state by emitting gamma radiation, consists of 

high energy photons, denoted   [27].  

2.2 Neutron reactions 

The neutron is an important particle in nuclear physics. Due to its electrical neutrality, it is 

not affected by the Coulomb force.  Neutrons are normally located inside nuclei, but they 

can also exist for a short time outside the nucleus and interact with other nuclei. These 

interactions are sorted into three categories; scattering, capture and fission [27].  

2.2.1 Scattering 

A free moving neutron may bump into a nucleus and give away some of its kinetic energy 

while changing direction (scattering). The scattering can be either elastic or inelastic.  

In an inelastic scattering, the neutron is absorbed in the target nucleus which transforms to 

a compound nucleus before a neutron of lower kinetic energy is released. The energy 

difference is converted to excitation energy in the target nucleus. In an elastic scattering, the 

total kinetic energy of the neutron and the scattered nucleus is unchanged after the 

collision.  

                                                             

3 A positron is a positively charged electron. 

4 A neutrino is particle without charge and very small mass. It hardly interacts with matter.  
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2.2.2 Capture 

In contrast to positively charged particles that would be stopped by the repulsive Coulomb 

force, the neutron is able to come near and inside the nucleus. The process whereby a 

neutron is absorbed into a nucleus is called a capture reaction. 

For a neutron with little kinetic energy, there are four possible outcomes following neutron 

capture. The most common one is the emission of gamma radiation (n, γ) from the nucleus. 

The other three are emission of an alpha particle (n, α) or proton (n, p) from the nucleus, or 

a fission process (n, f). 

For a high energetic neutron, (n, α) and (n, p) reactions are more probable than (n, γ). 

Because of the higher kinetic energy carried by a fast-moving neutron, reactions such as (n, 

2n) and (n, np) are also possible.  

2.2.3 Fission 

Following absorption of a neutron the nuclei may become so unstable that it breaks apart in 

a fission process. The fission process releases a huge amount of energy. The energy released 

is given by the mass difference between the initial nucleus and the resulting fission 

fragments, and is given by Einstein’s formula 

          (1) 

where  m is the mass defect and c is the speed of light. The average energy release caused 

by fission of a heavy nucleus is about 200 megaelectronvolts (MeV) [27]. 

The fission process may be illustrated by the nuclear liquid drop model [28]. In the liquid 

drop model, the nucleus is regarded as an electrically charged drop. In Figure 2-1 a neutron 

is absorbed in a fissile core in situation A and makes the nucleus exited. The nucleus starts 

to oscillate in B until it resembles a dumbbell in C. The Coulomb force is then able to 

overcome the strong, short-range nuclear force and the nucleus splits apart in D.  

 

Figure 2-1.  The fission process. 
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The fission process usually divides the nucleus into two fission fragments and two to three 

free neutrons, accompanied by gamma radiation. If at least one of these free neutrons 

initiates another fission, we may have the start of a nuclear chain reaction where the fission 

process is self-sustaining [29]. Figure 2-2 illustrates the principle of a chain reaction, where 

one fission sets in motion many subsequent fissions.  

 

Figure 2-2.  An illustration of a chain reaction, where one neutron initiates fission in a nucleus, 

which leads to three new neutrons which can then initiate fission in three new 

nuclei [30] (illustration used with permission from Wiley).  

A possible fission reaction is 

    
      

         
        

     
     

          (2) 

Fission in equation (2) is initiated by a neutron being absorbed in a    
    nucleus which 

goes into a temporary excited state of   
  

   . The unstable   
  

    breaks down to the fission 

fragments     
    and     

  , two free neutrons and 200 MeV of energy. The majority of the 

energy is released is constituted by kinetic energy in the two fission fragments.  

Many fission reactions are possible, resulting in different fission fragments with mass 

numbers in the range ~ 70 – 160. The resulting fission fragments are lumped into two 

regions shown in Figure 2-3 according to their yield. The two peaks are centered around the 

mass numbers 96 and 135, indicating that fragments with these mass number are the most 



 

  

  

 

 24 

 

probable [28]. As the y axis in Figure 2-3 is logarithmic, symmetric fissions are therefore 

rare events compared to asymmetric fissions.  

 

Figure 2-3.  Fission yield for thermal neutrons [31] (modified by the author). 

Nuclides that that undergo fission by neutrons of any energy are called fissile, (for example 

   
   ), while those that only fission at high neutron energies are called fissionable (for 

example    
   ). Nuclides that become fissile after first absorbing a neutron, are called fertile 

(i.e.    
     may absorb a neutron and become fissile     

   ) [29].  

2.3 Neutron physics 

The neutron plays a dual role as both “glue” to hold the nucleus together and initiator of 

many nuclear reactions. The following section describes important parameters used to 

characterize neutron interactions. 

2.3.1 Microscopic cross section 

The different interactions between neutrons and nuclei can be described by the concept of 

cross sections [28]. The cross section for a given neutron - nucleus reaction is a 

measurement of the probability of that particular interaction. The cross section is a 

property of the target nucleus and the energy of the incoming neutron [27].  

The cross section for a neutron – nucleus interaction is called the microscopic cross section 

and is denoted σ. The microscopic cross section is measured in   . As the cross section of a 

single nucleus is very small, about the cross section area of the actual nucleus, a derived unit 

called barn (b) is commonly used, where 1 b          .  
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2.3.2 Macroscopic cross section 

A slab of material usually consists of more than a single nucleus. Taking into account many 

nuclei, we obtain the macroscopic cross section Σ [28]. A slab composed of N nuclei per     

multiplied by the microscopic cross section σ yields  

       (3) 

The dimension of   is    . 

2.3.3 Varying cross section with neutron energy 

The probability of an interaction   between a neutron and a nucleus is very dependent on 

the energy of the incoming neutron. In general, a slow moving neutron has a much higher 

probability of interacting with a nucleus than a fast moving neutron [27]. This is illustrated 

in the upper half of Figure 2-4 where the isotope usually used in nuclear reactors,    
   , has 

a significant higher fission cross section at low neutron energies than high energies. The 

lower half of Figure 2-4 illustrates the fissile nature of    
    which only fissions at high 

neutron energies over 1 MeV (i.e. by fast neutrons).  

 

Figure 2-4.  Varying cross sections for    in    
    (a) and    

    (b) at different neutron 

energies [28]. 

   ,   ,    in Figure 2-4 represent the total, scattering and fission cross sections, 

respectively.  

The different neutron cross sections are classified into three broad regions depending on 

their energy. The three regions are called thermal, epithermal and fast. Neutrons released by 
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fission have energies between 0.1 MeV and 10 MeV and are called fast. Neutrons having 

energies of 0.001 eV to 1 eV are said to be thermal. The neutrons having an energy between 

1 eV to 0.1 MeV are called epithermal [32].  

2.3.4 Reaction rate 

In a nuclear reactor, the neutron density is n neutrons per unit volume. Neutrons travel with 

a speed v and their interactions are described by  . The number of interactions per unit 

volume and time is given by 

         (4) 

where R is the reaction rate [28]. The product     is an important quantity in reactor 

physics and is also written as 

      (5) 

where   is the neutron flux.   is usually given as neutrons/cm2 ∙ s. The reaction rate is 

proportional to the neutron flux, and the higher the neutron flux the more reactions will 

take place.  
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3 Reactor physics 

The previous chapter showed the basic nuclear physics for initiating a nuclear chain 

reaction. This chapter will briefly explain how to achieve and sustain a nuclear chain 

reaction in a nuclear reactor. 

3.1 Neutron moderation 

The probability that a neutron will cause fission in fissile materials increases with 

decreasing neutron energy (Figure 2-4 top). It is therefore beneficial to slow down 

neutrons. The process of slowing them down is called moderation. Moderation is achieved 

by exposing a neutron to a series of scattering reactions, in which the neutron loses some of 

its kinetic energy in each collision. After a number of collisions the kinetic energy of the 

neutron is reduced to the average kinetic energy of the atoms in the scattering medium. The 

neutron is then in thermal equilibrium with the scattering medium, and is thus called a 

thermal neutron (i.e. the neutron is thermalized) [27].  

Neutrons lose their energy most efficiently when colliding with light elements such as 

hydrogen, beryllium and carbon [28]. Common moderating materials are thus water, heavy 

water and graphite. Water and heavy water are the most popular moderators because they 

also function as coolant [29].  

3.2 Neutron life cycle 

In nuclear reactors, free neutrons are born in fission events and may go through a series of 

processes before they contribute to the chain reaction or do not contribute. These processes 

can be illustrated by looking at the neutron’s life cycle in a uranium fuel reactor. 

3.2.1 Four factor formula 

The fates of neutrons released by fission are determined by the physical factors of the 

nuclear material and geometry of the nuclear reactor. The set of possible outcomes is 

described by the so-called four factor formula [28]. 

3.2.1.1 Reproduction factor   

The reproduction factor   is the number of neutrons released after a fission event.   is 

specific for each fissile isotope, and is determined by the fission to absorption ratio. The 

higher the uranium enrichment, the higher the average   will be. Values for   range from 

1.328 for natural uranium with 0.7%    
    to 2.06 for pure    

   . 
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3.2.1.2 Fast fission factor ε 

If there is a fraction of    
    in the fuel, there is a chance that high energy neutrons may 

immediately undergo a fission reaction after being absorbed in    
   . This causes extra 

neutrons to be added to the chain reactions. This property is called the fast fission factor ε. 

Common values for ε are in the range of 1.02-1.08 [29].  

3.2.1.3 Resonance escape probability p  

When neutrons are moderated, there is a possibility that they are absorbed and removed 

from the chain reaction in the epithermal region in    
    shown in the lower half of Figure 

2-4. The resonance escape probability p is the probability that the neutrons escape 

absorption in    
   . Typical values for p range from 0.8 to 0.9 [33]. 

3.2.1.4 Thermal utilization factor f 

Neutrons may be absorbed in the moderator or other material located in the reactor before 

they reach the fuel. The fraction that makes it to the fuel is called thermal utilization factor f. 

Typical values for f are 0.94-0.98 [32]. 

3.2.1.5 Criticality 

Multiplying the four terms together, we obtain a factor indicating if the neutron population 

has increased, decreased or is in a steady state [28]. For a core of infinite size with no loss of 

neutrons the four factor formula yields 

         (6) 

where    is the infinite multiplication factor.  

All practical reactors are of finite size, so there is a possibility that fast and thermal neutrons 

will escape the reactor without interacting with the fuel. Accounting for this loss of 

neutrons, P is added to the four factor formula and represents the fraction of neutron that 

stay in the reactor 

            (7) 

where keff is the effective multiplication factor. In normal reactor operations keff is equal to 1 

and the reactor is said to be critical. When the reactor is critical there are created as many 

neutrons as are absorbed or escaped. If keff is less than one the chain reaction dies out and 

the reactor is sub-critical. If keff is higher than one the neutron population will grow and the 

reactor is called super-critical [27].  

To minimize the loss of neutrons from the reactor, it is common to use a neutron reflector. A 

neutron reflector is a layer of scattering material surrounding the core where the fuel is 
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located, and is often made of the same material as the moderator. The reflector reflects 

some of the neutrons back into the core and reduces the amount of fuel and volume needed 

to make a reactor go critical [29;32].  

3.3 Neutron transport 

The key design criterion of a nuclear reactor is accounting for the production, transport and 

absorption of neutrons in the reactor. To keep track of the neutrons, neutron transport 

equations which express the distribution of neutrons in space, energy and time have been 

developed [27].   

3.3.1 One-group diffusion theory 

One of the simplest approximations of transport theory is called diffusion theory 

approximation. It assumes that neutrons diffuse from areas of high to areas of low neutron 

concentrations [28].   

For a steady state, one-group situation where we assume that all neutrons have the same 

energy ( i.e. one energy group), the diffusion equation (derived from Fick’s laws) is given as 

                 (8) 

The first term in equation (8) is the neutron leakage term, the second term is neutron 

absorption and the last is the neutron production term. D is a constant of proportionality 

called the diffusion coefficient and has dimensions of length,   is the neutron flux,   is the 

total macroscopic absorption cross section, v is the number of new neutrons from fission 

and   is the total macroscopic fission cross section [34].   

The source term      can also be given as      , yielding 

                  (9) 

or by rearranging 

      
        

 
     (10) 

Using the relation        
 , where    is the thermal diffusion length and is the distance 

traveled by neutrons while at thermal energies, we obtain 

     
      

  
         

     (11) 

where   
  is called material buckling and is a property of the material in the reactor and is 

given by  
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  (12) 

This leads to the critically criterion 

   

    
   

    (13) 

For a critical reactor with keff = 1,   
  may be calculated and set equal to the geometrical 

buckling factor   
  [27].   

  is a function of the geometry of the reactor. Using the 

relationship   
    

 , it is possible to determine the critical radius and height of a reactor 

as a function of   . 

For a bare5 cylindrical core   
  is given as 

 
  

   
     

 
 
 

  
 

 
 
 

 
(14) 

where R is the radius of the cylinder and H is the height.  

3.3.2 Two-group theory 

A better approximation than the one-group theory is the two-group theory, where there are 

two energy groups, one for fast neutrons and the other for thermal neutrons. Equation (13) 

is modified to 

   

     
   

       
   

  
   (15) 

where    is the slowing-down length traveled as the neutrons slow down from fast to 

thermal energies in the moderator [28].   
  and   

  are normally given for pure moderators 

[29].  

If there is little leakage in the system, equation (15) becomes 

   

    
    

    
  

   (16) 

Equation (16) may also be written as  

   

    
   

   (17) 

where    is called the migration area and given as      
    

 . 

                                                             

5 A bare core is a core without a neutron reflector. 
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Accounting for the “pollution” made by the fuel in the moderator, a new value for the 

thermal diffusion length is introduced 

           
  (18) 

where f is the thermal utilization factor [27]. Equation (16) is modified to 

   

    
    

     
   (19) 

3.3.3 Reflector savings 

If a neutron reflector is present the critical size of the core is reduce. For a reflector several 

diffusion lengths thick, which is the case for almost all reactors, the critical height and 

radius of the core may be reduced by an amount called reflector savings which is given by 

   
   

   

    (20) 

where   c and   r is the diffusion coefficient for the core and the reflector, and     is the 

thermal diffusion length of the reflector [29].  

3.4 Reactor power 

One fission releases 200 MeV or 3.2∙10-11 J of recoverable energy. To produce 1 W requires 

fission of           nuclei per second [27]. 

By multiplying the average reaction rate with the reactor core volume and dividing by the 

number of fissions per W second, we can determine the total power produced by the 

reactor: 

 
    

        

         
  

(21) 

where P is the thermal output in Watts,    is the average thermal neutron flux in 

neutrons/cm2   s,     is the average macroscopic cross section in      and V is the core 

volume given in     [27]. 

V and     are fixed parameters for a given reactor. The power of the reactor is thus 

proportional to the average neutron flux   , or vice versa.  
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4 Nuclear reactors 

A variety of nuclear reactor designs have emerged since Enrico Fermi constructed the first 

man made nuclear reactor in December 1942 [29]. Nuclear reactors are used to produce 

heat for electricity production, plutonium for nuclear weapons, radioisotopes for medicine 

or use neutrons for scientific research [28]. A comprehensive description of various nuclear 

reactor designs can be found in [27;29;32]. 

4.1 Nuclear core 

Most nuclear reactors are thermal reactors, i.e. reactors with a thermal neutron energy 

spectrum, with a heterogeneous core [29]. A heterogeneous core is a reactor where the fuel 

is lumped together, rather than being evenly distributed in the core. The fuel is normally 

made up of small pellets of uranium dioxide (UO2) approximately 1 cm high and 1 cm in 

diameter. The pellets are stacked on top of each and encapsulated in a thin-walled tube. 

This constitutes a fuel rod. The walls of the fuel rod are made of a material that does not 

readily absorb neutrons, and is called cladding. The most common cladding material is 

Zircaloy, which is a common name for alloys consisting mostly of zirconium. Fuel rods are 

arranged in bundles to create a fuel assembly illustrated in Figure 4-1. A reactor consists of 

many fuel assemblies arranged in a geometry that enables the reactor to go critical [29]. The 

distance from the centre one fuel assembly to the centre of the next fuel assembly is called 

the lattice pitch.  

 

Figure 4-1.  A fuel pellet, a stack of fuel pellets and a 9 x 9 PWR fuel assembly. The figure was 

created in KENO3D. The 9 x 9 assembly consists of 72 pink UO2 rods encapsulated 

in cyan Zircaloy. The nine gray rods are made of the burnable poison rods made 

out of boron carbide.  
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An illustration of a pressure vessel containing the reactor core is shown in Figure 4-2. The 

core is located below the inlet and outlet for the coolant in case there should be a leak in the 

cooling circuit.  

 

Figure 4-2.  An illustration of a Russian VVER reactor. 1 – Control rods; 2 – reactor cover; 3 – 

pressure vessel; 4 – inlet and outlet nozzles; 5 – reactor vessel; 6 – active reactor 

zone; 7 – fuel rods [35].  

 

For thermal, heterogeneous reactors there are three main classes of reactors, distinguished 

by what type of moderating material they employ.  

4.2 Light water reactors (LWRs)  

The light water reactor is the most common reactor for electricity production [29]. It is 

moderated and cooled by ordinary water, but to distinguish it from a heavy water reactor it 

is called a light water reactor.  
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Because of neutron absorption in light water, LWRs must be fueled by enriched uranium 

[29]. Commercial power reactors are fueled with 3-5 % enriched uranium (LEU, see Fact 

Box), while smaller research reactors are sometimes fueled with more than 90 % enriched 

uranium (HEU, see Fact Box).  

For commercial LWRs, there are two principal designs, pressurized water reactors (PWRs) 

and boiling water reactors (BWRs) [29]. In a PWR the pressure in the reactor is kept at 150 

bars to keep the water from boiling, whereas in a BWR, the water is allowed to boil and the 

pressure is 70-80 bars. A typical LWR has a thermal output of around 3000 MWth, with an 

electric power capacity around 1000 MWe [27]. The reactors are normally operated for 

about 1 to 2 years before refueling. After that period, the reactor is shut down for several 

weeks to replace about 20-30 % of the core with fresh fuel [32].  

Enriched uranium containing up to 20 %    
    is classified as low-enriched uranium, or LEU 

[36].  

Enriched uranium containing more than 20 %    
    is classified as highly enriched uranium, 

or HEU [36] .  

Enriched uranium containing more than 90 %    
    is classified as weapons-grade uranium, 

or WGU [36]. 

4.3 Heavy water reactors (HWRs) 

HWRs employ heavy water, which is often shorted as D2O, as a moderator and normally as 

coolant as well [28]. For commercial power plants the most common design is the CANada 

Deuterium Uranium (CANDU) reactor [29].  

In CANDU reactors, the fuel is located in many individual pressure tubes with D2O. The 

pressure tubes run through a big tank called the calandria filled with D2O [27]. Because of 

D2O’s smaller scattering cross section compared to light water, the lattice pitch for HWRs is 

larger than for LWRs in order to scatter the neutrons down to thermal energies [29]. This 

makes the HWR reactor larger than a LWR reactor of the same thermal output.  

As D2O has a low absorption cross section, it is possible to run HWR on natural uranium. In 

CANDU reactors, fuel can be replaced while the reactor is running, so-called online refueling 

and long shut downs like in LWRs can be avoided [29].  
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4.4 Graphite reactors 

Graphite reactors employ graphite as moderating material. The cooling medium is either 

gas or light water. Since graphite has a smaller scattering cross section than D2O, graphite 

reactors have bigger cores than LWRs and HWRs for the same thermal output [32].  

The most common light water cooled graphite reactor is the Russian reaktor bolshoy 

moshchnosti kanalniy (RBMK) reactor [32]. RBMK reactors do not employ a pressure vessel 

around the core, but like CANDU use pressure tubes for each fuel assembly. RMBK reactors 

became infamous after the Chernobyl disaster in 1986. The pressure tube design allows 

RBMKs to be refueled online like the CANDU reactors [29].   

Another type of graphite reactor is the Magnox reactor. This is a CO2 cooled reactor which 

employs natural uranium metal fuel clad in magnesium alloy [29]. This reactor was 

developed by the UK and France [37].  

4.5 Fuel consumption 

The total energy released by fission by a nuclear reactor is called burnup, and is measured in 

megawatt days (MWd). As a rule of thumb, it takes 1.23 grams of    
    to produce 1 MWd of 

energy [29]. 

The energy released per unit mass of fuel is called specific burnup, and is given by megawatt 

days per metric ton of heavy metal in the original fuel. As the heavy metal is mostly 

uranium, the specific burnup is also given by MWd/tU [29].  

4.6 Criticality control 

In order to maintain a stable power level and conduct safe reactor operation, the neutron 

population needs to be held constant, except at start up and shut down. To describe the 

deviation from a constant neutron population, it is normal to use the term reactivity which 

is given as  

     
      

    
  (22) 

If the neutron population is stable, keff is equal to 1 and ρ is zero [32]. A keff higher than 1 

means there is positive reactivity, while keff lower than 1 means there is negative reactivity. 

Different physical phenomenon and control mechanisms play an important role in the 

stability of the neutron population. Some of the most important ones are discussed below.  
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4.6.1 Prompt neutrons 

Neutrons released by fission are either prompt or delayed. The prompt neutrons are 

released immediately after fission and account for about 99.3 % of the neutron population. 

The delayed neutrons come from the decay of fission products (0.65 % of the neutron 

population for    
   ), and play a vital role in keeping the reactivity in check.  

The time between emission of a neutron and absorption in fuel is called the prompt neutron 

lifetime [32]. If the prompt neutron lifetime is 0.1 ms6 , a small reactivity change of 0.001 

would lead to an increase in the neutron population of 22000 times in one second and a 

massive heat development. When accounting for the delayed neutrons, a doubling of the 

neutron population takes 58 seconds. This is more than enough time for reactor operators 

to provide counter-measures and lower the reactivity [29].  

4.6.2 Doppler broadening 

Neutrons moving through the epithermal region in    
    illustrated in Figure 2-4 (bottom), 

can be absorbed in the resonances and removed from the neutron population. If the 

temperature of the fuel in a reactor increases as a result of positive reactivity, the vibration 

energy of the     
    nuclei increases. This causes the resonance peaks of    

    to spread out 

over a larger energy range. This is called Doppler broadening. The Doppler broadening 

results in a higher probability of neutron absorption in    
   . This reduces the neutron 

population and subsequently the power of the reactor [27].  

4.6.3 Reactor poisoning 

In an operating, reactor the concentration of certain fission products (notably xenon and 

samarium) with high neutron-capture cross sections builds up. These fission products are 

called reactor poisons because they cause the keff to decrease.     
    capture cross section is 

2.75 ∙ 106 b [28].  

4.6.4 Control rods  

An operating reactor needs to start operations with an excess reactivity in order to still be 

critical as the fuel is consumed and reactor poisons build up [27].    for a fresh core may 

vary between 1.12 for a CANDU to 1.41 for a PWR [32].  

To ensure stable operations as reactor poisons build up and fuel is consumed, rods made 

out of highly neutron absorbing material called control rods are inserted into the reactor 

core. Control rods are divided in three categories. Shim rods are used to remove large excess 

                                                             

6 0.1 ms is an approximate value for a LWR. CANDU reactors have a prompt neutron lifetime 

of about 1 ms [38].  
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reactivity at the start of operation, regulator rods are used for fine adjusting the power 

distribution in the core and safety rods are kept outside the core in normal operation and 

can be inserted into the core in case of an emergency. 

At the start of operations, the regulator rods may be fully inserted, as fuel is consumed and 

reactor poisons build up, the rods are gradually withdrawn [29]. The 9x9 assembly in 

Figure 4-1 has nine neutron absorbing rods. In Figure 4-2 the control rods are inserted 

through the top of the reactor into the core.  

It is also possible to add neutron absorbing material to the coolant/moderator. This is called 

a chemical shim and is usually done by adding boric acid. Burnable neutron poisons may also 

be blended directly into the fuel pins themselves [29].  
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5 Nuclear weapons 

The previous chapters illustrate how the energy stored inside nuclei can be extracted 

without the reactor going supercritical. In a nuclear weapon (NW), on the other hand, one 

tries to release as much nuclear energy as fast as possible. The utilization of nuclear energy 

in NWs makes their energy output up to 10 million times more powerful than regular high 

explosives bombs and level whole cities [37;39].   

5.1 Nuclear weapons material 

The critical factor in all NWs is the fissile material which gives rise to the nuclear chain 

reaction. The fissile material used in NWs is either in the form of HEU or plutonium7 [37].  

For uranium it is possible, but not practical, to use LEU. The higher the level of enrichment, 

the smaller the size and mass is required for a uranium based NW. Modern uranium 

weapons employ WGU and may have a mass as low as 10 kg [29;37].  

Plutonium in NW consists of a mix of different isotopes, where the most abundant isotope is 

    
   . More detailed information on the composition of plutonium isotopes is given in Table 

6-1. About 5 kg of plutonium is required for a NW. If the NW manufacturer has high level of 

skill, a low yield NW may employ as little as 1 kg of plutonium [37]. 

5.2 Basic nuclear weapons design 

A NW is designed to fission as many fissile nuclei as possible before the weapon 

disintegrates and the chain reaction stops. The chain reaction is maintained by fast neutrons 

and no moderator is present. It is important to avoid initiating the chain reaction before 

optimal conditions have been reached, otherwise there is a risk of predetonation and a 

lower explosive yield. To ensure a high explosive yield and avoid predetonation, two 

principle NW designs are employed.  

5.2.1 Gun-type design 

The gun-type design is the simplest NW design. It consists of two subcritical masses of 

fissile material placed at the opposite ends of a barrel which by themselves cannot initiate a 

chain reaction. To start the chain reaction one of the subcritical masses is accelerated 

towards the other by the means of high explosives. It is propelled like a bullet down a gun 

barrel, as illustrated in Figure 5-1, hence the name gun-type. The two masses merge and 

become a supercritical mass which rapidly undergoes many fissions and release its energy 

in an exponential manner [37]. 

                                                             

7 It is in theory possible to use artificially produced heavy nuclides, but that is impractical.  
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Figure 5-1.  A gun barrel design [40]. 

The gun-type design only works with uranium as the fissile material. Plutonium has too 

many spontaneous fissions8 events, and if used would predetonate and achieve a 

significantly reduced explosive yield (a so-called fizzle) [37]. 

The bomb dropped over Hiroshima in 1945 – Little Boy - was a crude gun-type design with 

two parts of 80 % enriched uranium with a combined mass of 64 kg [41;42]. 

5.2.2 Implosion design  

An implosion-type NW consists of one subcritical spherical mass of fissile material, the 

so-called pit. The pit is brought to supercritical density by a spherical compression driven 

by high explosives, as illustrated in Figure 5-2.  

In order to use plutonium in a NW, an implosion design must be employed. The NW 

dropped over Nagasaki – Fat Man - in August 1945 was of implosion design with plutonium 

as fissile material. Fat Man employed as little as 6 kg of plutonium, but right under 2 tons of 

high explosives [42].  

 

                                                             

8 A heavy nucleus may undergo fission spontaneously and release free neutrons [28].  
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Figure 5-2.  A sketch of an implosion design NW [43]. 

In the latest IAEA safeguards report from November 2011, IAEA suspected Iran to have 

been conducting research on implosion weapon design [18]. This has been strongly denied 

by Iranian authorities [44].   
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6 Plutonium production 

Plutonium is only found in trace amounts in nature. To generate enough plutonium for a 

NW, a nuclear reactor is required. When the IR-40 reactor is put into operation, it will be 

able to produce up to 10 kg weapons-grade plutonium per year [17].  

6.1 Plutonium production 

Plutonium is produced in all nuclear reactors containing    
    through nuclear 

transmutation. The process begins with a    
    nucleus absorbing a free neutron and 

undergoing two successive beta decays before it ends up as     
   . The reaction can be 

written as 

    
      

            
  

      
               

  

      
   

  
     (23) 

where the times are the half-lives of the different isotopes. The half-life of     
    is 24000 

years [28]. In addition to     
    other plutonium isotopes are produced by successive 

neutron capture, (n,2n) reactions or beta decays as illustrated in Figure 6-1. The most 

abundant isotopes are     
   ,     

   ,     
    and     

   . The abundance of plutonium isotopes 

other than     
    increases with the reactor specific burnup [45].  

 

Figure 6-1.  The buildup of various plutonium isotopes [46].  

Plutonium production in a nuclear reactor is given by 

 MPlutonium = Pthermal ∙ x days ∙ F (24) 

where          is the thermal output of the reactor, x is the number of days the reactor has 

been operating at full power, and F is a conversion factor given by the specific burnup. For a 

HWR running on natural uranium at low burnup, the conversion factor is 0.9 g/MWth-day 

[26].  
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If we assume that Iran operates the IR-40 reactor for 300 days each year, leaving 60 days 

for fuel swapping and down time, we obtain a mass of plutonium of 

MPlutonium                                    

As a rule of thumb, we can assume that a HWR of 1 MW will produce 1 gram of plutonium 

per day [37].  

6.2 Plutonium quality 

Plutonium used in nuclear weapons is classified according to its different isotopic 

compositions shown in Table 6-1. The different qualities are arranged according to the 

percentage of     
    in the composition. If the composition has less than 6-7% of     

   , the 

plutonium is considered weapons-grade. A plutonium composition containing significant 

amounts of     
    will be problematic for use in NWs because it has a high rate of 

spontaneous fission events. This can trigger a premature detonation shortly after 

supercriticality is achieved, but before maximum criticality is reached [37]. This is also the 

case for     
    and     

   . In addition,     
    and     

    produce a lot of decay heat due to 

their short half-lives of 87 and 14 years, respectively [47]. T The decay heat can deteriorate 

and deform the high explosives surrounding the pit [48].  

The different qualities are determined by how long the fuel has been irradiated [26;49]. 

Super- and weapons-grade plutonium correspond to short irradiation times. Such 

plutonium qualities emerge from spent fuel with a specific burn up of less than 

1200 MWd/tU. In commercial, power-producing reactors, one would want to irradiate the 

fuel as long as possible for economical purposes, thus achieving much higher burn ups and 

poorer plutonium quality from a weapons-perspective [37].   

Grade of 
plutonium 

Isotope   
    

        
        

        
   9     

    SF10 [per g-s] Decay heat [W/kg] 

Super-grade - 0.98 0.02 - - 20 2.0 
Weapons-grade 0.00012 0.938 0.058 0.0035 0.00022 66 2.3 
Reactor-grade11 0.013 0.603 0.243 0.091 0.050 360 10.5 

Table 6-1.  Approximate isotopic composition of  various grades of plutonium  [45;48] 

(modified by the author). 

                                                             

9 Pu-241 + Am-241.  

10 Spontaneous fission events.  

11 Plutonium recovered from low-enriched LWR with a 33 GWd/tU burnup after being 

stored for 10 years before reprocessing.  



 

  

  

 

 43   

 

Even though plutonium is categorized by various qualities, the common isotopes are all 

capable of forming a critical mass and sustaining a chain reaction. Thus, virtually any 

combination of plutonium isotopes can be used in nuclear weapons [50]. But     
    is the 

preferred isotope for bomb makers because of its low heat generation, low spontaneous 

fission (compared to the other isotopes) and less specific radioactivity [45]. 

The use of plutonium in NW has some advantages over uranium. Plutonium has a higher 

fission cross section at higher neutron energies and a higher neutron yield per fission [37]. 

These two factors make the critical mass of plutonium smaller than the critical mass of 

WGU, thus enabling smaller weapons of the same explosive yield. Drawbacks with 

plutonium are that it is highly toxic and radioactive, which makes it harder to work with. 

Plutonium is also a pyrophoric material, and thus has to be handled in an inert atmosphere 

in order not to self-combust [51].  

6.3 Plutonium production in HWRs 

There are four advantages that make HWRs such as the IR-40 reactor more suitable for 

plutonium production than LWRs. As a HWR can run on natural uranium, relative more 

   
    is available for neutron capture compared to LEU fuel. The second advantage is D2O’s 

smaller scattering cross section, which results in more collisions required for neutrons to 

reach thermal energies [48]. This in turn results in more neutrons getting caught in the    
    

resonance absorption region, see Figure 2-4. The third advantage is that less neutrons are 

absorbed in the D2O moderator compared to light water. The fourth advantage is the 

possibility of changing fuel while the reactor is still running, thus saving time by not having 

to replace larger parts of the core which is a time consuming operation [52]. 

6.4 Reprocessing 

In order to use plutonium in a NW, it has to be separated from the irradiated fuel. This 

requires a reprocessing facility [53]. Plutonium is extracted using the so-called PUREX12 

process in which uranium and plutonium is extracted from irradiated fuel [29]. Plutonium is 

then separated from uranium and cast into metal spheres. 

Reprocessing has been used in the civilian sector to re-use uranium and to separate 

plutonium from spent fuel and recycling it back into the fuel cycle as mixed oxide fuel (MOX) 

[37].  

                                                             

12 PUREX is short for Plutonium URanium EXtraction. Irradiated fuel is dissolved in nitric 

acid, and a series of chemical extraction processes are employed to isolate plutonium and 

uranium. 
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To this date there are no indications that Iran is building any reprocessing facilities in 

connection with the IR-40 reactor. Iran also denies that is has any plans to build a 

reprocessing facility in the future [17]. If Iran does decides to build a reprocessing facility, 

the technology is widely known, but it requires special equipment that can be hard to come 

by. Iran conducted small scale reprocessing experiments on used fuel irradiated in the TRR 

between 1988 and 1992 [53]. 
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7 Isotope production 

Iran has stated that one of the main tasks of the IR-40 reactor is isotope production for 

medical and industrial use. In a letter sent in 2003 to the IAEA, Iran made references to the 

production of the isotopes of molybdenum, iodine, xenon, cobalt and iridium in the IR-40 

reactor. Iran provided a sketch for a hot cell13 facility next to the IR-40 reactor with a 

capability of handling radioactivities from 100 to 10000 curies, corresponding to 3.7 TBq to 

370 TBq [8].  

7.1 Radioisotopes 

Radioactive isotopes are often called radioisotopes. The decay rate and type of decay (α,   

or γ) determines the usefulness of the radioisotope. Radioisotopes can be used in various 

fields such as medicine, industry and agricultural applications. Some of the most commonly 

used radioisotopes are Cs-137, Co-60, I-131, Ir-192, Mo-99 and Y-90 [54].  

7.2 Radioisotope production 

Radioisotopes are produced in reactors as fission products (see Figure 2-3) or through 

neutron capture. Fission of uranium results in 80 different fission products, predominantly 

radioisotopes, while neutron capture results in one specific radioisotope [27].   

The production rate of radioisotopes is governed by the neutron flux and the amount of 

target material. The higher the neutron flux and the more target material, the faster and 

higher the activity of the desired radioisotopes will be produced [55]. The Australian OPAL 

reactor irradiates its target in a flux of up to 9 ∙ 1013 neutrons/cm2 ∙s, while the South 

African SAFARI-1 can irradiate targets in a thermal flux of 1.5 ∙ 1014 neutrons/cm2 ∙s  

[56;57]. 

7.2.1 Activity 

Radioisotopes are classified by their activity. The activity is measured as the number of 

disintegrations per second, where 1 Bq is one disintegration per second [28]. For 

radioisotopes, however, it is common to use the quantity curie, Ci, where 1 curie is equal to 

37 GBq. 

Activities of radioisotopes may also be represented by six days curie. As radioisotope 

naturally disintegrate, short-lived isotopes are labeled with a “guaranteed” activity six days 

after they leave the producer [55]. 

                                                             

13 A hot cell is a shielded facility where it is safe to handle highly radioactive material. 
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7.2.2 Targets 

In a nuclear reactor, radioisotopes are produced by exposing a small target of uranium or 

other elements to the neutron flux produced by the reactor core. The uranium targets are 

normally made of LEU or HEU [55]. 

The targets can be fabricated as cylinders or plates and are encased in a material that does 

not absorb neutrons readily such as aluminum [55;58;59].  

7.2.3 Logistics 

After reaching the desired activity, the target is extracted from the reactor and put to cool in 

a water pool for a short time period. In this time most of the short-lived isotopes will have 

disintegrated, making it less radioactive and easier to work with [55].  

After being cooled, the target is dismantled and the desired radioisotopes are isolated and 

purified. For short-lived isotopes this process needs to be quick in order to minimize the 

loss of activity.  

7.3 Radioisotope production in Iran 

Iran built a separation facility for handling radioisotopes at Tehran Nuclear Research Center 

in 2005. Iran has plans to synthesize up to 20 different radioisotopes [60]. But the facility 

has not been able to work satisfactorily since completion [61;62].  

The most suitable reactor for producing radioisotopes in Iran is TRR because it has the 

largest thermal neutron flux of Iran’s research reactors with a maximum thermal flux of 3 ∙ 

1013 neutrons/cm2 ∙s [63]. But currently TRR is operating at lower than design capacity 

because Iran is running short of LEU fuel [64].  Iran is currently enriching uranium with the 

intentions to produce LEU fuel for the TRR indigenously. Previously, fuel has been imported 

from the USA between 1967 and 1979 and from Argentina in the mid 1990s [65].  

7.3.1 Molybdenum-99 production 

One of the radioisotopes Iran wants to produce is molybdenum-99 or     . The decay 

product of     , technetium-99m14 or      , is the workhorse of radioisotopes for medical 

uses worldwide [66].  

                                                             

14 The “m” signifies that       is meta-stable. A meta-stable isotope is an excited state of an 

isotope, which rapidly decays by gamma emission to the ground state (so-called internal 

transition). In this case,       
     . 
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Because       has a half-life of only 6.6 hours, it is not practical to produce       and 

distribute it.      has a half-life of 66 hours, and is used to produce and transport      . 

When      has arrived at its destination of use, a device such as the one shown in Figure 

7-2 is used for separating       produced by decay of     . 

     is one of the most common fission products from a thermal reactor that uses    
    as 

fissile material. The cumulative yield of      from fission of    
     is 6.13 % [67]. The 

common production method of      is thus to expose a small target of uranium to the 

neutron flux in the reactor for a period of three to eight days, in which the target reaches 

50-85 % of its saturation activity (i.e. when the production rate is equal to the decay rate).  

[56;57;68].  

The activity of      per cm3 produced by fission in a uranium target is given by 

   
                  

    
     

   
    

       (25) 

where       is the fission yield of     ,    is the fission cross section,   is the enrichment, 

   is the density of uranium,    is the molar mass,    is Avogadro’s number,   is the 

thermal neutron flux, k is a conversion factor from Bq to Ci and trr is the number of days the 

target is being irradiated  [67;68].  

In an Iranian publication from 2002, the demand for      in Iran was stated to be about 

20 Ci per week, where only 12 Ci would be available due to decay [58]. The targets 

discussed in the article were natural pressed UO2 targets shaped in a cylindrical geometry 

and encased in aluminum. The cylinder was 19 cm high with a radius of 0.6 cm. The target 

had a density of 4.67 g/cm3 and a mass of 100 g [58]. 

The maximum thermal neutron flux at TRR is reported to be 3 ∙ 1013 neutrons/cm2 ∙s, which 

is lower than recommended for producing      without producing too much waste [69]. 

But the publication from 2002 operate with a maximum thermal neutron flux for the TRR 

core of 5.7 ∙ 1013 neutrons/cm2 ∙s, while it is calculated to be 4.0 ∙ 1013 neutrons/cm2 ∙s 

inside the target [58].  

Using equation (22) and the target intended for TRR, the activity after seven days at a flux of 

4.0 ∙ 1013 neutrons/cm2 ∙ s will reach 52 Ci. The activity is plotted in Figure 7-1. See 

Appendix B for calculations. This is somewhat higher than the Iranian estimate, where they 

receive 37.5 Ci after seven days of irradiation. This may be attributed to self-shielding, 

where the neutron flux drops towards the center of the target, which is not accounted for in 

equation (25) [29].  
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Figure 7-1.  The activity of      as a function of irradiation time.  

 

 

Figure 7-2.  An Iranian-produced technetium generator displayed by the AEOI during the 55th 

Annual Regular Session of the IAEA General Conference in Vienna 2011. (Photo: 

Halvor Kippe.) 

http://www.iaea.org/About/Policy/GC/GC55/index.html
http://www.iaea.org/About/Policy/GC/GC55/index.html
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7.3.2 Radioisotope production at the IR-40 reactor 

The IAEA has raised questions regarding the radioisotope production intended at the IR-40 

compound. When the IAEA received the initial drawings for the IR-40 reactor in 2003, there 

were no references to hot cells, which are an essential part of radioisotope production. Iran 

later explained that they did not have detailed information about the dimensions or the 

actual layout of the hot cells, because they did not know the characteristics of the 

manipulators15 and the lead shielded windows [16].  

In 2010, the IAEA conducted a design information verification16 (DIV) visit at the IR-40 

compound. Inspection of the radiochemistry building revealed that concrete structures for 

hot cells were now in place, but no hot cell windows or manipulators were present [24].  

Iran has trouble procuring equipment for handling radioactive materials from abroad due 

to export control restrictions. They are therefore considering producing such equipment 

domestically [23]. 

  

                                                             

15 Manipulators are remotely controlled robotic arms, enabling an operator to handle highly 

radioactive materials behind heavy shielding. 

16 Regular IAEA inspections are either DIVs or a so-called Physical Inventory Verification 

(PIV). The purpose of a DIV is to verify that a facility is constructed and/or operated as 

declared, while a PIV is a material accountancy undertaking, to ensure the non-diversion of 

declared nuclear materials.   
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8 The IR-40 heavy water research reactor  

Historically, several heavy water research reactors fueled with natural uranium have been 

used to produce plutonium for nuclear weapons [37]. 

If the IR-40 reactor could be converted to a more proliferation-resistant reactor, the 

concern of Iran being able to produce significant quantities of weapons-grade plutonium 

would be reduced.  

In this chapter, we compile available information on the IR-40 reactor. As this information is 

incomplete or contradictory, we estimate and deduce possible IR-40 reactor designs using 

reactor physics theory and information provided on other similar reactors.  

8.1 IR-40 specifications 

There is not much information about the IR-40 reactor in the public domain. Some official 

information on IR-40 is presented by the Iranian authorities, and some information is 

released by the IAEA following DIV visits to the reactor [53]. But only safeguards-relevant 

information is supposed to be reported by the IAEA in its reports, so most of the design 

characteristics of the reactor are not available to the public.  

The first official information provided by Iran on the IR-40 reactor was that in order to 

create a neutron flux sufficiently large for viable radioisotope production, the reactor 

should have a neutron flux of 1013-1014 neutrons/cm2 ∙ s, based on a power output of 30-

40 MWth. Iran later stated that the thermal output is aimed at 40 MWth. The fuel is reported 

to be natural uranium dioxide,     , and the cladding is to be indigenously produced 

Zircaloy [16]. 

In 2010, IAEA reported that the pressurizer for the reactor cooling system and heavy lifting 

crane were installed [23;25]. The existence of a pressurizer could mean that the moderator 

or coolant or both are going to be pressurized. This hypothesis was strengthened when the 

IAEA in 2011 reported on the installation of a separate cooling and moderating system [22]. 

This means that the coolant and moderator may be in different circuits, such as in CANDU 

and RBMK reactors.  

Figure 8-1 shows a satellite image of the IR-40 reactor and its surrounding support 

structures. The reactor will be located inside the concrete dome in the middle of the image.  
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Figure 8-1.  An overview of  the IR-40 complex with the reactor located under the concrete 

dome in the center, and mechanical draft cooling towers in the lower right hand 

corner [70] . 

8.2 Origin of the IR-40 design 

Iran has stated that the design of the IR-40 reactor is indigenous, but that they have 

consulted with foreign experts on some parts of the reactor design [16].  The following will 

substantiate the scope of foreign assistance. 

8.2.1 Russian origin 

In 2009, Iranian authorities displayed a fuel assembly reportedly intended for the IR-40 

reactor. The fuel assembly is shown Figure 8-2, and strongly resembles an RBMK fuel 

assembly. The Institute for Science and International Security, an independent 

non-governmental organization, received information that confirms that RBMK-type fuel is 

indeed intended for the IR-40 reactor. Iran allegedly received assistance from Russian firms 

in modifying the RBMK design to fit the IR-40 core [71;72]. 

If the IR-40 reactor is meant to be a pure D2O moderated and cooled reactor, the choice of 

an RBMK fuel assembly is odd. Up to this date, RBMK assemblies have been used exclusively 

in reactors moderated by graphite and cooled by light water [29]. But combined with the 

IAEA report of separate coolant and moderator heat exchangers, it supports the idea that 

that the IR-40 reactor will employ pressure tubes [22]. This would be a feasible solution for 
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Iran, because RBMK fuel has been used for over 40 years and is thus a proven pressure tube 

design, although it has never before been used in a HWR.  

 

Figure 8-2.  Left. President Mahmoud Ahmadinejad interviewed next to an RBMK–resembling 

fuel assembly in the spring of 2009 [73]. Right. A graphical representation of an 

RBMK fuel assembly. The fuel assembly is composed of two concentric circles of 

fuel rods and a central support rod [74]. 

In a brochure presenting the nuclear industry in Iran published by the AEOI in 2011, an 

RBMK-resembling fuel element is displayed, see Figure 8-3 [21]. The brochure informs that 

the Fuel Manufacturing Plant (FMP) in Esfahan will produce fuel for the IR-40 and Bushehr 

reactor, but the Bushehr reactor uses hexagonally shaped fuel assemblies, so the fuel 

assembly on display must be intended for the IR-40 reactor. Moreover, the Bushehr reactor 

will receive fuel from Russia in its first 20 years of operation [5]. By counting the fuel rods 

in Figure 8-3, it seems that the assembly contains 18 fuel rods such as the original RBMK 

assembly. The specifications for two different RMBK fuel assemblies are given in Table 8-1.  

A standard RBMK assembly is 10 meters long and consists of two vertical fuel regions [75]. 

If RBMK assemblies are intended for use in the IR-40 core, the modification assistance Iran 
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received from Russia would likely consist of modifying the fuel assembly so it only contains 

one of the two vertical fuel regions, because the reactor core of the IR-40 necessarily will be 

much smaller than the reactor core of a typical RBMK reactor. 

 

Figure 8-3.  An RBMK-resembling fuel assembly displayed in a brochure from the AEOI about 

the nuclear industry in Iran [21]. 

A possible reason for Iran to choose a design which employs pressure tubes, is because this 

would place fewer restrictions on the pressure vessel surrounding the reactor core, thus 

making the pressure vessel easier for Iran to manufacture indigenously. A pressure tube 

design would also provide valuable training and information if Iran decides to build CANDU- 

or RBMK-type reactors in the future. As Iran has limited indigenous uranium deposits [5], 

CANDU reactors could use these resources more efficiently than LWRs [76].  
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 RBMK – 1000  RBMK – 1500  
Fuel type 

Assembly geometry 

Number of rods per assembly 

Fueled 

Unfueled 

Overall assembly length (mm) 

Overall assembly width (mm) 

Rod length (mm) 

Active fuel length (mm) 

Rod outside diameter (mm) 

Pellet length (mm) 

Pellet outside diameter (mm) 

Pellet density (g/cm3) 

Average linear fuel rating (kW/m) 

Peak linear fuel rating (kW/m) 

Clad material 

Clad thickness (mm) 

Average discharge burnup (GWd/tU) 

Maximum assembly burnup (GWd/tU) 

Initial pressure of gases in the fresh fuel rod 

UO2 + Er17 (2.6% U-235) 

Circular array 

37 

36 

1 

10014 

79 

3640 

3410 

13.63 

12-15 

11.48 

10.4 – 10.7 

15.3 

35 

Zr1%Nb 

0.85 

25.8 

29.6 

0.5 MPa 

UO2 + Er (2.6% U-235) 

Circular array 

37 

36 

1 

10014 

79 

3640 

3410 

13.63 

12-15 

11.48 

10.4 – 10.7 

20.5 

42.5 

Zr1%Nb 

0.85 

26 

30 

0.5 MPa 

Table 8-1.   Specifications of RBMK-1000 and RBMK-1500 fuel assemblies [77;78].   

 

 

8.3 Estimating the dimensions of the IR-40 reactor 

Before discussing the feasibility of modifying the IR-40 reactor, we need to know more 

about the current reactor being constructed. Different approaches of estimating the 

dimensions of the IR-40 reactor have been employed. 

8.3.1 Energy density comparison 

One method of estimating the size of the IR-40’s core is by comparing the energy density of 

similar HWRs, and assuming the same energy density for the IR-40 core. Power per volume 

varies only slightly from reactor to reactor [79]. Table 8-2 shows the dimensions and energy 

densities of reactors thought to share some characteristics with the IR-40 reactor.  

                                                             

17 Erbium is added to the fuel as a burnable neutron poison.  
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Reactor  Dhruva  National Research Universal 
(NRU)  

Country India Canada 
Dimensions 3.72 m (D), 3.87 m (H)  = 

42.1 m3 
 

3.5 m (D), 3.7 m (H)       
= 35.6 m3 

Thermal output 100 MW 135 MW 
Energy density 

        
2.38 3.79 

Fuel type Natural metallic uranium 19 % LEU Al-U3Si  

Table 8-2.  Energy densities of selected HWRs [80],[81] [82;83]. 

If Iran utilizes natural uranium, such as the Dhruva reactor, the IR-40 reactor will have an 

energy density of about 2.38 MWth/m3. Using the energy density and the known thermal 

output of the IR-40 reactor, we can estimate the volume of the core: 

            
             

              
 

       

            
         

This is about half the volume of the NRU and Dhruva reactors, which have approximately 

three and two times the thermal output of IR-40, respectively.  

The NRU and Dhruva reactors are cylindrical reactors with a height-to-radius ratio of 1:2.1. 

If we assume the same ratio for a cylindrical IR-40 core, the reactor will have a core height 

of 2.87 meters and a core diameter of 2.73 meters.  

8.3.2 Similar reactors 

Information on four different heavy water research reactors has been collected in Table 8-3. 

It may be possible to deduce characteristics on the IR-40 reactor by examining similar 

reactors. 
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Reactor Dhruva  HWRR-2 El Salam  NRU  
Country India China Algeria Canada 
Thermal power 
(MW) 

100 15 15 135 

Fuel Natural 
uranium metal 

3% LEU 
Uranium 
dioxide 

3% LEU Ca 19% Al-U3Si 
LEU 

Weight of fuel (t) 6.35 - 0.9 - 
Core size (m) 3.72 (D) x 3.87 

(H) 
 

- - 3.5 (D) x 3.7 (H) 

Lattice pitch (cm) 18    19.7  
Lattice type Square lattice   Hexagonal array 
Fuel configuration 7 fuel rods per 

assembly 
 12 fuel rods 

per assembly 
12 fuel rods per 

assembly 
Fuel cladding Aluminum Zircaloy Zircaloy Aluminum alloy 
Fuel sites 127  72 90 
Active length of fuel 
rods (cm) 

   275 

Maximum thermal 
neutron flux 
(neutrons/cm2 · s) 

                                    

Moderator D2O D2O D2O D2O 

Coolant D2O D2O D2O D2O 

Reflector D2O D2O and 
graphite 

D2O and 
graphite 

D2O 

Table 8-3.  Data from heavy water research reactors [80;81] [84-86] [82;83;87-92] . 

 

8.3.3 RBMK dimensions 

If modified RBMK fuel assemblies are intended for the IR-40 reactor, the dimensions of the 

assembly would give an indication of the height of the reactor core. Information about 

RBMK fuel given in Table 8-1 states that the fuel rods have an active fuel height of 341 cm, 

and the total length of the fuel assembly is 364 cm. Assuming that the IR-40 core is 

cylindrical with a height-to-radius ratio of 1:2.1, the diameter of the core is 325 cm. This 

yields a core volume of 28.2 m3. This is 11 m3 larger than the volume found from the energy 

density comparison in 8.3.1. 

By looking at the lattice pitches for different reactors in Table 8-3, it is possible to determine 

how many fuel assemblies can fit inside the reactor core with the dimensions given by the 

RBMK assembly. One assembly occupies an area fanned out by the lattice pitch. The number 
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of fuel assemblies which can fit inside the core can be estimated by dividing the bottom area 

of the core with the area one assembly occupies.  

A hexagonal lattice pitch of 19.7 cm, such as in the NRU, results in 246 fuel assemblies, while 

a square lattice of 18 cm, such as in the Dhruva reactor, will result in 259 fuel assemblies. If 

each assembly consists of 18 fuel rods with an UO2 density of 10.4 g/cm3, this yields a core 

with a mass of 16 tons and 17 tons of UO2, respectively. See Appendix B for calculations. 

It should, however, be noted that this number of assemblies is 2.5 and 2 times higher than 

for NRU and Dhruva reactors. In order to get a value that closer resembles the number of 

assemblies in NRU and Dhruva, the lattice pitch for the IR-40 core would have to be larger 

than in NRU and Dhruva.  

8.3.4 Diffusion theory and buckling factor 

It is possible to estimate the minimum size of the IR-40 core by assuming that it is a 

homogenous reactor and employing the diffusion theory from Chapter 3. This methodology 

was employed when designing the first generation of nuclear reactors [34]. 

There will be an error in the size of the IR-40 core since it is assumed that the IR-40 is a 

homogenous reactor. Homogenous reactors which employ up to 7 % enriched uranium will 

have a lower keff than a corresponding heterogeneous reactor [28;93].  

By employing equations (17) and (19) we can insert data for a HWR fueled with NU and 

observe what fraction of heavy water and NU results in the smallest critical volume. Table 

8-4 lists different calculated configurations of homogenous cylindrical HWRs assuming a 

height-to-radius ratio of 1:2.1. It uses diffusion data for heavy water and for a CANDU 

reactor. The calculations are presented in Appendix A.  

Minimum size of IR-40 core based on diffusion theory 

 Bare HWR core Reflected HWR 
core 

Bare HWR core Reflected  HWR 
core 

Diffusion data Pure moderator Pure moderator CANDU CANDU 

Dimensions (m) D = 2.6, H = 2.73 D=0.62, H =0.75 D = 1.63, H = 1.71 D = 1.44, H = 1.33 

Volume (m3) 14 0.25 3.57 1.62 

Table 8-4.  Size of the IR-40 core estimated using diffusion theory. 

The data presented in Table 8-4 are the minimum sizes required for a bare and reflected 

reactor to go critical. For the reactor to operate over time, it needs excess reactivity. Excess 

reactivity can be achieved by increasing the enrichment of the fuel or increase the size of 

the core. Since the IR-40 reactor will employ natural uranium, the dimensions of the reactor 

will have to be larger than found in Table 8-4 [27].  
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8.3.5 Satellite images 

The satellite photograph in Figure 8-1 shows the IR-40 reactor and the surrounding support 

structures. It is possible to estimate the thermal output of the IR-40 reactor by looking at 

the outer dimensions of the heat dissipation system [94]. 

The heat dissipation system is located in the bottom right corner in Figure 8-1. It consists of 

four mechanical draft towers. An estimate for the heat dissipation capacity by mechanical 

draft towers is 0.093 – 0.116 MWth/m2 [94]. Judging from the satellite image, the combined 

area of the draft towers is about 11 m x 40 m. This gives a cooling capacity of 

              
              

                    

This is in accordance with the thermal output which Iran has declared for the reactor [16].  

Figure 8-1 also shows an opening in the concrete dome where the reactor is going to be 

located. The opening is probably used for bringing in large parts such as the pressure vessel. 

Using the measuring tool in Google Earth, the opening is estimated to be about 5-6 meters in 

diameter. The size of the opening puts an upper limit on the diameter of the pressure vessel 

to 5-6 meters, but it is difficult to estimate the dimensions of the reactor and its geometry 

just by this value alone [94].  

8.3.6 Scientific publications 

Iranian scientists have produced numerous articles on various subjects in nuclear physics 

and engineering [58;95-98]. Several articles describe an Iranian 40 MW HWR [95-97].  

One article was published in Reliability Engineering & System Safety on Sciences Direct in 

2007 [95]. The topic of the article is “Level-1 probability safety assessment of the Iranian 

heavy water reactor using SAPHIRE software” and is an evaluation of the safety of the Iranian 

Heavy Water Research Reactor (IHWRR). The article describes the IHWRR as a 40 MW HWR 

thermal tank-type reactor fueled with NU built for gaining experience and technical know-

how on design and construction of non-power reactors, and for utilizing the reactor for 

activation, irradiation and radioisotope production. 

The IHWRR is described to employ 150 fuel assemblies in a triangular lattice, with a lattice 

pitch of 265 mm. It is also equipped with eight vertical channels for radioisotope production 

and 27 control and protection channels. The control and protection channels include 3 

control rod channels, 12 shimming rod channels, 6 emergency rod channels, 6 emergency 

light water channels and 1 channel for a reference specimen [95].  

The IHWRR will make use of a two-circuit cooling system, operating at a temperature of 

70 ˚C and a pressure of about 0.28 MPa for the coolant and moderator. The coolant and the 

moderator will be in liquid phase and are not mixed [95].  

http://www.sciencedirect.com/science/journal/09518320
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A second article published in World Journal of Nuclear Science and Technology in 2011 

describes a scenario where a Iranian 40 MW HWR is being converted to utilize light water 

as coolant and moderator and LEU hydride fuel [96]. The title of the article is “Neutronic 

Analysis of Generic Heavy Water Research Reactor Core Parameters to Use Standard Hydride 

Fuel”. The article refers to two previous articles describing the IHWRR 40 MW HWR [95;97]. 

It describes a core employing 150 fuel assemblies, where each assembly consists of 18 fuel 

rods with an active fuel region of 343 cm. The article also provides an illustration of the core 

configuration shown in Figure 8-4. 

 

Figure 8-4.  Setup of a 40 MW HWR core with Standard Hydride Fuel [96]. The color code is, 

dark gray: black absorber, blue: reflector, light blue: fuel assemblies, cyan: light 

water [99]. The article does not describe what a black absorber is.  

By looking at Figure 8-4, the diameter of the core is found by counting the fuel positions in 

the core. There are 13 positions across the middle of the core. The diameter of one position 

is equal to the lattice pitch of 26.5 cm. This gives a core radius of 344 cm, but since the fuel 

assemblies are located in the middle of the hexagons in Figure 8-4, one lattice pitch length is 

removed to account for the edge of the core and the diameter becomes 318 cm. This gives a 

height-to-radius ratio of 2.16 and a core volume of 27.3 m3. This is similar to the data found 

if it was assumed that the IR-40 reactor employed RBMK type fuel, see Chapter 8.3.3. 

The specifications provided by the two articles [95;96] are combined in Table 8-5. 
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40 MW HWR 
Total thermal power (MW) 

Power absorbed by the coolant (MW) 

Power absorbed by the moderator (MW) 

Lattice pitch (cm) 

Temperature coolant (˚C) 

Temperature moderator (˚C) 

Number of fuel rods each per assembly 

Number of fuel assembly 

Pressure in coolant and moderator (MPa) 

Active fuel assembly length (cm) 

40 

37 

3 

26.5 

70 

70 

18 

150 

0.28 

343 

Table 8-5.  40 MW HWR specifications [95;96]. 

8.4 A possible IR-40 design 

Different methods have been used to estimate the characteristics and dimensions of the 

IR-40 reactor.  

The physical size of the core is estimated by diffusion theory to be a minimum of 0.25 m3, 

while the satellite photograph of the IR-40 compound gives a maximum diameter of 5-6 

meters for a pressure vessel which can fit into the opening of the IR-40 concrete dome. The 

energy density comparison with similar HWRs resulted in a core volume of 16.8 m3. From 

these estimates, 16.8 m3 is more in line with the volume of similar HWR research reactors 

listed in Table 8-3. Even though the energy density comparison estimate is a crude estimate, 

it is probably better because it has much fewer variables and sources for error than the 

diffusion theory estimate.  

The information released by the IAEA hints at a reactor design where the IR-40 reactor will 

employ separate cooling and moderating circuits. This information is strengthened by the 

fuel assembly displayed by Iranian authorities which closely resembles an RMBK-assembly, 

normally used in reactors with separate cooling and moderating circuits.   

If RBMK-type fuel with original specifications is used in the IR-40 reactor, the height of the 

core becomes 3.43 meter, while the diameter is 3.25 meter. This yields a core volume of 

28.3 m3.  

The two Iranian articles which an indigenous 40 MW HWR support the information 

released by the IAEA [96]. They describe a separate cooling and moderating system and 

present fuel assemblies with very similar dimensions of RBMK. It is therefore reasonable to 

assume that the reactor described in the two Iranian articles is in fact the IR-40 reactor.  
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9 Modeling and modification of the IR-40 reactor 

The information gathered on the IR-40 reactor in Chapter 8 outlines the main properties of 

the reactor and makes it feasible to construct a computer model of the reactor. The model 

can be used to determine if the information regarding the reactor is valid and to evaluate 

possible modifications of the reactor.  

To model the reactor, the software package, Standardized Computer Analyses for Licensing 

Evaluation version 6.1 (SCALE 6.1) from Oak Ridge National Laboratory, Tennessee, USA has 

been employed. SCALE is a Monte Carlo based computer code used for simulating different 

nuclear reactor cores, enabling important factors such as keff, decay heat, isotopic activity 

and core inventory to be computed [100]. SCALE is widely used and accepted around the 

world for criticality safety analysis [101].   

9.1 Monte Carlo methods 

Neutron transport through matter can be formulated as a stochastic process. There is a 

certain chance that a neutron will undergo a collision while traveling a certain distance. Any 

possible outcome of that collision has a certain probability, given by the respective cross 

sections. It will either scatter, be absorbed or initiate a fission.  

A class of methods for simulating neutron transport through stochastic means is the 

so-called Monte Carlo method [102]. Monte Carlo analysis involves two steps. The first step 

is to generate neutron case histories by computer simulation, and the second step is to sample 

those histories in a quasi-random manner (hence the reference to Monte Carlo) to obtain 

estimates of the neutron flux [103]. The Monte Carlo method was invented by scientists 

working on the Manhattan Project.  

9.2 SCALE 

To operate, SCALE receives information about the materials and geometries for the specific 

problem from the user. The input parameters are given through GeeWiz18 and/or Notepad.  

The input is used by SCALE to perform a problem-dependent cross-section processing to get 

the correct cross sections [104]. Data libraries containing extensive information on cross 

sections for nuclei at different neutron energies and temperatures are employed [105]. The 

cross section data is then used to solve the neutron transport equation.  

To get a stable keff, many neutron histories must be computed. In the two modules used, this 

is achieved by choosing many neutron generations and neutrons per generation. The default 

                                                             

18 Graphically Enhanced Editing Wizard. GeeWiz is a graphical user interface to make input 

and modeling easier in SCALE. 
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setting in SCALE is to compute 203 generations where the first 3 are skipped, where each 

generation consists of 1000 neutrons. This results in 200 000 neutron histories. For 

production calculation, SCALE routinely runs at least 1000 neutron histories with 10000 

neutrons per generation, resulting in 10 million neutron histories [106].  To save some 

computing time, the models of the IR-40 reactor were run with 0.5 – 1 million neutron 

histories, which was sufficient for achieving a stable keff. 

Two different modules in SCALE were used to model the IR-40 reactor.  

9.2.1 CSAS6 

Criticality Safety Analysis Sequence 6 (CSAS6) is a control module in SCALE that calculates 

the keff via KENO-VI. KENO-VI is a 3-D multi-group Monte Carlo method which solves the 

Boltzmann neutron transport equation [107].  

The flow chart of CSAS6 is illustrated in Figure 9-1. The input provided by the user, in form 

of geometry and composition, is used by CSAS6 to perform a problem-dependent multi-

group cross-section processing. The cross section data is sent to KENO-VI which solves the 

neutron transport equation and calculates a keff for the 3-D-system 

It is possible to visualize the input geometry in 3-D using KENO3D which is coupled to 

KENO-VI [101].  

 

Figure 9-1.  The flow chart of a CSAS6 sequence [101]. 
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9.2.2  TRITON 

Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion 

(TRITON) is a multipurpose SCALE control module for transport, depletion and sensitivity 

and uncertainty analysis [108]. The depletion calculations can be used to predict isotopic 

concentrations, source terms, and decay heat in spent fuel. 

In TRITON the input provided by the user is used to calculate multigroup cross sections for 

KENO-VI, which is coupled with ORGIEN-S for depletion calculations. ORGIEN-S or Oak 

Ridge Isotope Generation code explicitly simulates 1484 unique nuclides during depletion 

calculation [109]. 

TRITON may solve the transport equation for 2-D arbitrary configurations, or 3-D using 

KENO-VI. By using KENO-VI it is possible to visualize the input in KENO3D as in the CSAS6 

module.  

Figure 9-2 shows a flow chart of the TRITON sequence using KENO-VI.  

 

Figure 9-2.  The flow chart of a TRITON depletion sequence [109] .  
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9.3 IR-40 reactor fueled by natural uranium 

The input parameters for a model of the IR-40 fueled with NU are based on the calculations, 

assessments and available information on the IR-40 reactor obtained in Chapter 8.  

The model assumes that the IR-40 reactor is a pressurized heavy water reactor (PHWR) 

which employs RBMK fuel assemblies in a hexagonal lattice. Each fuel assembly is located in 

a pressure tube made out of Zircaloy. Both pressure tubes and the pressure vessel are filled 

by reactor-grade heavy water19. An approximation is made in modeling the fuel rods as long 

solid UO2 rods instead of many individual fuel pellets stacked on top of each other. The 

specifications for the entire model are listed in Table 9-1, and the input files for SCALE are 

located in Appendix C. 

The fuel assembly for the IR-40 model is illustrated in Figure 9-3. The core configuration 

and surrounding pressure vessel is illustrated in Figure 9-4 and Figure 9-5. 

 

Figure 9-3.  A model of the fuel assembly used in the IR-40 reactor, produced by KENO3D. The 

figure to the left shows the end plug of the fuel assembly. Yellow is D2O while cyan 

is Zircaloy. The figure to the right shows 18 fuel pins arranged inside an assembly. 

The four fuel rods in the front have had their cladding removed for illustrative 

purposes. Zircaloy is shown in cyan, helium in green, UO2 in red and nitrogen in 

blue. The central rod is a hollow Zircaloy rod filled with nitrogen.  

                                                             

19 Reactor-grade D2O contains at least 99.75 % D2O by weight, the rest being light water 

[38]. 
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Figure 9-4.  An overview of the GeeWiz model of the IR-40 core. Hexagons containing only D2O 

are shown in green, yellow hexagons contain empty pressure tubes filled and 

surrounded by D2O, red hexagons are fuel assemblies, and the purple hexagon is 

an aluminum rod surrounded by D2O for measuring the neutron flux.  

 

Figure 9-5.  The view of the reactor produced by KENO3D with D2O and the top of the pressure 

vessel removed for illustrative purposes. The blue are fuel assemblies, gray is the 

pressure vessel and the red are aluminum rods for flux measurement.  
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IR – 40 reactor fueled with naturally enriched UO2 

Thermal output (MW) 

Power absorbed by the coolant (MW) 

Power absorbed by the moderator (MW) 

Moderator / coolant 

Reflector 

Temperature coolant (˚C) 

Temperature moderator (˚C) 

D2O purity (%) 

Lattice pitch (cm) 

Lattice configuration 

Number of assemblies 

Pressure in reactor (MPa) 

Fuel type (0.72 % U-235) 

Fuel radius (cm) 

Clad radius (cm) 

Pellet density (g/cm3) 

Assembly geometry 

Number of rods per assembly 

Fueled 

Unfueled 

Overall assembly width (cm) 

Rod length (cm) 

Active fuel length (cm) 

Outer diameter of pressure tube (cm) 

Inner diameter of pressure tube (cm) 

40 

37 

3 

D2O  

D2O  

70 

70 

99.75 

26.5  

Hexagonal 

150 

0.28  

UO2  

0.574 

0.6815 

10.4 

Circular array 

19 

18 

1 

7.9 

350 

340 

4.4 

4.0 

Table 9-1.  Specifications for theIR-40 reactor based on estimates deduced in Chapter 8. 

Using the dimensions in Table 9-1 the reactor has an active core 3.4 meters high and 3.2 

meters in diameter. The core is placed in a 5 cm thick stainless steel vessel with a radius of 

225 cm and a height of 500 cm. The core is surrounded by 50 cm of D2O under the core, 60 

cm of D2O at the sides of the core and 110 cm over the core.  

The geometry and the density of the proposed fuel yield a core with a mass of 10 tons of 

UO2, or a mass of uranium of 8.7 tons.  

9.3.1 SCALE output 

The model was first run in the CSAS6 module with 1 million neutron histories to test the if 

the proposed design could go critical. KENO-VI estimated a keff of 1.06313 ± 0.00021 for a 

fresh core without control rods. A lattice pitch of 20 cm was also tested, to check if the 

lattice pitch discussed in the Iranian publications was sound. The reduced lattice pitch gave 

a keff of 1.036, and the lattice pitch of 26.5 cm was therefore retained. A reduction of the 
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purity of D2O to 99 % was also tested in the TRITON module, but this resulted in a keff of 

1.013 for a fresh core, and after 20 days of operation keff for the reactor fell under 1. This 

illustrates the importance of high purity of D2O for a NU fueled reactor. 

The neutron flux in the reactor was computed by the TRITON module. The average thermal 

flux20 in the fuel was estimated to 1.8 · 1013 neutrons/cm2 · s, while the maximum thermal 

neutron flux in the centre of the core was calculated to 1.3 · 1014 neutrons/cm2 · s. The 

maximum thermal flux is in the same order of magnitude as the HWRs listed in Table 8-3. 

TRITON calculates a heavy metal mass of 8.5 tons for the core. It is unknown what causes a 

discrepancy of 200 kg of uranium between TRITON and the mass estimated from the 

dimensions and density of the fuel in 9.3. 

9.3.2 Plutonium production 

The TRITON module is used to estimate the accumulation of plutonium in the fuel rods. 

From Chapter 6 it is expected that the IR-40 reactor will produce significant quantities of 

WGPu. The production of plutonium in the IR-40 reactor in Chapter 6 was estimated to be 

10.5 kg of WGPu after one year of operation with a capacity factor of 82 %. The TRITON 

simulation yields an annual production of 10 kg plutonium.  

Figure 9-6 illustrates the amount of plutonium produced as a function of the specific 

burnup, while Figure 9-7 illustrates the percentage of the different plutonium isotopes 

present in the fuel as a function of specific burnup.  

The graphs show that     
    is the most abundant plutonium isotope produced in the 

reactor, while     
    contribute to the mix gradually with increasing burnup. In order for 

the plutonium to be of super-grade (i.e. less than 2 % of     
    present), it should be 

extracted from the core after about three months of irradiation, corresponding to about 400 

MWd/tU. If a lower quality (in terms of NWs potential) is acceptable (i.e. up to 6 % of     
    

present) the core may produce plutonium for up till 270 days, corresponding to a burnup of 

1242 MWd/tU. 

If Iran can acquire an online fuel replacing mechanism, the pressure tube design allows 

them to extract irradiated fuel at any time. This would lead to a higher capacity factor and 

the option to extract fuel containing super-grade plutonium quality.  

                                                             

20 Thermal neutrons in TRITON are neutrons having energy lower than 0.675 eV. 
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Figure 9-6.  The mass of plutonium isotopes as a function of the specific burnup and operating 

time.  

 

 

Figure 9-7.  The mass of plutonium isotopes as a function of the specific burnup and operating 

time. 
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9.3.3 Radioisotope production 

The TRITON module was used to estimate the potential for radioisotope production in the 

IR-40 core. To measure the feasibility for radioisotope production, the activity of      was 

measured in small uranium targets placed in the middle of the core. A high      activity 

would also mean a high activity of other radioisotopes [58].  

The small uranium targets were place in the purple position in Figure 9-4, in the middle of 

the core and irradiated. However TRITON calculated a thermal neutron flux of only 1012 

neutrons/cm2 · s in the targets, and the resulting activity of      was much lower than 

expected.  

Another approach was employed, this time placing mock targets made out of aluminum in 

the same position. The resulting flux in the middle of the core is now measured to                 

1.0 - 1.4 · 1014 neutrons/cm2 · s, which is the same order of magnitude as is obtained in the 

OPAL and SAFARI reactors [56;57]. Because of cladding and self-shielding, the thermal 

neutron flux inside a uranium target used for radioisotope production will be lower than 

the flux measured in the aluminum rod [29].  

Instead of using TRITON to measure the activity, equation (25) was used. The targets were 

assumed to be the pressed UO2 targets described in [58]. Two targets were irradiated, one 

employing NU and a one 19.75 % LEU. The flux from TRR was provided as a reference, and 

compared to a thermal flux of 5 to 10 · 1013 neutrons/ cm2 · s. See Appendix C for 

calculations.  Figure 9-8 and Figure 9-9 shows the activity in a target as a function of time of 

irradiation and thermal neutron flux. The two y axes show the activity after end of 

bombardment (EOB), and after six days of decay.  

 

Figure 9-8.  The activity as a function of time of irradiation and neutron flux.  
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Figure 9-9.  The activity as a function of time of irradiation and neutron flux. 

A higher activity is obtained for the NU target in the IR-40 reactor compared to the TRR as a 

result of a higher thermal flux. But a much higher activity is obtained by using LEU instead 

of NU targets.  

This illustrates that there is no need for Iran to produce HEU targets for production of     , 

as the activity provided by the NU exceeds Iran’s 2002 demand for      of 20 Ci/week, 

while the LEU targets far exceeds Iran’s      demand.  

9.4 Modified IR-40 reactor with LEU core 

Olli Heinonen proposed converting the IR-40 reactor to employ LEU, thus reducing the 

stockpile of LEU in Iran [1]. To test if such a modification is possible, the information 

gathered on the IR-40 NU core is used to model a modified core. Various levels of 

enrichment are modeled to attempt to minimize the production of WGPu, while keeping the 

enrichment level too low for use in NWs [36]. Iran is known to master the technology 

required to produce LEU up to 19.75 % [18].  

In order to make the modified core compatible with the current design parameters, as few 

changes as possible are made to the geometry of the reactor, the fuel assemblies and the 

pressure vessel. The pressure vessel is projected to be installed by 2011, and the fuel 

assemblies for the IR-40 reactor are being manufactured and tested. Therefore these 

parameters are assumed to be final [21;23].  
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The power output is held constant at the maximum of 40 MW, in order to maintain a high 

neutron flux. The use of enriched uranium enables a smaller and more compact core. The 

modified core is composed of 60 fuel assemblies and is illustrated in Figure 9-11. The 

specifications for the modified reactor are listed in Table 9-2. 

IR – 40 fueled with LEU 
Thermal output (MW) 

Power absorbed by the coolant (MW) 

Power absorbed by the moderator (MW) 

Moderator/coolant 

Reflector 

Temperature coolant (˚C) 

Temperature moderator (˚C) 

Heavy water purity (%) 

Lattice pitch (cm) 

Pressure in reactor (MPa) 

Lattice configuration 

Assembly geometry  

Fuel type (5-15 % U-235) 

Number of assemblies 

Number of rods per assembly 

Fueled 

Unfueled 

Overall assembly width (cm) 

Rod length (cm) 

Active fuel length (cm) 

Fuel radius (cm) 

Clad radius (cm) 

Pellet density (g/cm3)  

Burnable absorber rods 

Outer diameter of pressure tube (cm) 

Inner diameter of pressure tube (cm) 

40 

37 

3 

D2O 

D2O 

70 

70 

99.75 

26.5  

0.28  

Hexagonal 

Circular array 

UO2  

60 

19 

14 

5 

7.9 

364 

240 

0.574 

0.6815 

10.4 

Al2O3-B4C 

4.4 

4.0 

Table 9-2.  Specifications for a modified IR-40 reactor fueled with LEU. 

9.4.1 Fuel limitations 

The use of LEU enables a smaller core and alters the way the fuel is cooled. Whereas 37 MW 

of heat in the original configuration was divided between 150 fuel assemblies (the last 

3 MW being absorbed in the moderator), the same amount of heat is now divided between 

60 assemblies.   

From the information gathered on RMBK fuel in Table 8-1, the maximum power absorption 

for each fuel channel is 3 MW for an RBMK-1000 assembly and 4.25 MW for an RMBK-1500 
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assembly. Since the IR-40 reactor probably only employs half of an RBMK assembly (i.e. one 

fuel bundle instead of two in an assembly), it is assumed that maximum power absorption is 

also halved for each channel, and will therefore be in the range 1.5-2.12 MW [75]. Thus, 

each fuel channel should not be subjected to more than 1.5 MW. 

RBMK fuel rods are operated at an average linear heat generation rate of 205 W/cm, and 

can withstand a maximum linear heat generation rate of 425 W/cm [78]. Taking these 

limitations into consideration, the fuel length of the modified core becomes 240 cm where 

each assembly consists of 14 fuel rods.  

The modifications result in a core height-to-radius ratio of 1:2, an average linear heat rate of 

198 W/cm, and maximum power absorption per channel of 666 kW. The increased heat 

generation per channel will demand an increased flow of D2O. See Appendix B for 

calculations. The mass of the fuel becomes 2.17 tons of UO2 (1.9 tons of uranium).  

The use of RMBK assemblies puts a limit on the average discharge burnup to 20-30 GWd/tU 

[78]. This limits the amount of time the fuel can spend in the reactor. Dividing the reactor 

power of 40 MW with the uranium content gives us a specific power of 21 MW/tU. If 25 

GWd/tU is taken as an average, the modified fuel can stay in the core for 

                           
            

        
      

The fuel rods can be irradiated for 1200 days, or 3 years and 120 days.  

9.4.2 SCALE output 

The first SCALE calculation was run with 18 fuel rods enriched to 15 % without any 

reactivity-reducing counter measures. This resulted in a keff of over 1.5. To bring keff closer 

to unity, four fuel rods were replaced with rods made out of aluminum and boron carbide. 

The interior of the modified fuel assembly is illustrated in Figure 9-10. The whole reactor is 

illustrated in Figure 9-12.  
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Figure 9-10. The interior of the modified fuel assembly produced by KENO3D. The UO2 rods are 

shown in pink, the aluminum-boron carbide rods in yellow and the central 

nitrogen filled rod in cyan. 

 

 

Figure 9-11. An overview of the GeeWiz model for the modified IR-40 core. Hexagons 

containing only D2O are shown in green, yellow hexagons contain empty pressure 

tubes filled and surrounded by D2O, red hexagons are fuel assemblies, and white is 

an aluminum rod used for measuring the neutron flux.  
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Figure 9-12. An cut-out view of the modified IR-40 core generated by KENO3D. D2O and the top 

of the pressure vessel have been removed for illustrative purposes. The purple 

pressure tubes contain fuel, while the cyan pressure tubes are empty. 

9.4.3 Plutonium production 

The TRITON module was used to estimate the plutonium production in the modified core.  

The reduced mass of the core will reduce the amount of plutonium produced. To 

compensate for this loss, it is possible to produce significant amounts of WGPu by placing a 

blanket of natural or depleted uranium around the core. However, under IAEA safeguards 

this would be virtually impossible without relatively rapid detection [110].  

Different levels of enrichment were modeled to find out how much plutonium the reactor 

would produce, and what composition of plutonium isotopes this would give. The different 

plutonium compositions are shown in Table 9-3, while the amount of plutonium is shown in 

Table 9-4. The numbers are plotted in Figure 9-13 to Figure 9-18. 
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Enrichment 5 % 10 % 15 % 

Operation time (days) 360 720 1200 360 720 1200 360 720 1200 

U-235 burnup 18 % 35 % 57 % 9 % 19 % 30 % 6 % 13 % 21 % 

Pu-238 0.04 % 0.11 % 0.28 % 0.03 % 0.08 % 0.20 % 0.01 % 0.04 % 0.10 % 

Pu-239 92.32 % 84.02 % 72.43 % 96.03 % 91.84 % 85.84 % 99.12 % 96.45 % 92.72 % 

Pu-240 6.92 % 13.64 % 22.38 % 3.64 % 7.13 % 11.76 % 0.86 % 3.22 % 6.29 % 

Pu-241 0.69 % 2.03 % 4.08 % 0.30 % 0.91 % 2.05 % 0.02 % 0.28 % 0.85 % 

Pu-242 0.03 % 0.19 % 0.82 % 0.01 % 0.04 % 0.16 % 0.00 % 0.00 % 0.03 % 

Table 9-3. The different isotope compositions as a function of enrichment and burnup.  

 

Enrichment 5% 10% 15% 

Operation time (days) 360 720 1200 360 720 1200 360 720 1200 

U-235 burnup 18 % 35 % 57 % 9 % 19 % 30 % 6 %  13 % 21 % 

Pu-238 1 5 19 1 3 11 0 2 7 

Pu-239 2453 3892 4806 1818 3289 4706 1480 2799 4249 

Pu-240 184 632 1485 69 255 645 37 139 367 

Pu-241  18 94 271 6 33 113 2 18 56 

Pu-242  1 9 54 0 1 9 0 0 3 

total [g] 2657 4631 6636 1893 3581 5483 1521 2958 4681 

Table 9-4. The amounts of plutonium created as a function of enrichment and burnup.  

The tables show that an enrichment of 5% yields plutonium with the lowest amount of 

    
   , but produces more plutonium than higher levels of enrichment. Fuel enriched to 

15% produces 2 kg less plutonium than fuel enriched to 5% after 1200 days of operation, 

but nearly everything produced will be of weapons-grade quality.  

The reason for the low amount of     
    in 15 % LEU is a result of a reduced neutron flux in 

the fuel rods. As 15 % enriched fuel has more fissionable material than 5 % enriched fuel, 

the flux must be lower for the same number of fissions and the amount of heat generated. 

If the fuel rods could be irradiated for a longer period of time, the 15 % enriched fuel would 

end up with a less favorable mix of plutonium.  

The fuel could be extracted from the reactor before the quality of plutonium is reduced, but 

repeated extraction of fuel, long before it should be extracted would raise suspicion at the 

IAEA.  
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Figure 9-13. Plutonium production as a function of burnup and operation time at constant 

power.  

 

Figure 9-14. Plutonium production as a function of burnup and operation time at constant 

power. 
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Figure 9-15. Plutonium production as a function of burnup and operation time at constant 

power. 

 

Figure 9-16. Plutonium production as a function of burnup and operation time at constant 

power. 
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Figure 9-17. Plutonium production as a function of burnup and operation time at constant 

power. 

 

Figure 9-18. Plutonium production as a function of burnup and operation time at constant 

power. 
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9.4.4 Radioisotope production 

The modified core has 13 free positions indented for material research and radioisotope 

production, see Figure 9-11. TRITON estimates a thermal neutron flux of up to 

2 · 1014 neutrons/cm2 · s in the central core position, while the six vacant positions two 

rows further out, seen in Figure 9-11, receive a thermal neutron flux of up to 6 - 7 · 1013 

neutrons/cm2 · s and the position furthest out has a thermal neutron flux of 4 - 5 · 1013 

neutrons/cm2 · s.  

The neutron flux is on the same order as the original core, meaning that the activity in an 

irradiated target will be about the same for the NU core as shown in Figure 9-8 and Figure 

9-9. A modified core will be able produce more than enough      to satisfy Iran`s current 

and future demands.  

9.4.5 Fuel consumption 

The fuel requirements for the LEU core are more complicated since it now requires 5 to 

15 % enriched uranium. It is possible to estimate the average fuel consumption of the 

reactor to see if this matches what Iran is capable of producing in its enrichment program. 

The output from TRITON gives the amount of    
    in the fuel at startup and after each 

irradiation period.  

Uranium enrichment is measured in Separative Work Units (SWU), and is a measure of the 

separation work required to enrich uranium. The fuel consumption and the corresponding 

SWU need have also been calculated and are presented in Table 9-5. It is assumed that the 

fuel is enriched from natural uranium to the desired level of enrichment. The tails is taken 

to be 0.3 % of    
   . It is assumed that the reactor, after initial testing will operate with a 

yearly capacity factor of 50-100 %. See Appendix B for SWU calculations.  

Annual demand 5 % enriched 10 % enriched 15 % enriched 

Capacity factor LEU [kg] SWU LEU [kg] SWU LEU [kg] SWU 

100 % 573 4122 573 9899 573 15875 

90 % 515 3738 516 8904 515 14279 

80 % 458 3294 458 7909 458 12683 

70 % 401 2879 401 6914 401 11088 

60 % 344 2519 344 5918 344 9492 

50 % 286 2072 287 4950 286 7635 

Table 9-5.  The annual demand of LEU and the SWU needed for that amount as a function of 

fuel enrichment and capacity factor.  

The annual SWU capacity at Iran’s enrichment facility in Natanz is between 3500-4500 SWU 

[111]. In order to supply a core using 10 and 15 % enriched uranium it would thus need to 

expand the current enrichment capacity.  
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9.4.6 Advantages 

The calculations show that the plutonium production is significantly reduced compared to 

the NU reactor. If 5 % LEU is chosen and the fuel is irradiated for 1200 days, the plutonium 

produced will have a much poorer quality than in the NU fueled reactor. 

The large excess reactivity in the LEU reactor compared to the NU reactor enables the 

reactor to use light water as coolant. This makes it possible to conduct experiments where 

LWR conditions can be simulated. The excess reactivity also enables 13 free channels in the 

centre of the core for experimental rigs and radioisotope production for medical use.  
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10 Discussion 

The purpose of this thesis was to explore the feasibility and benefits of converting the IR-40 

reactor to a more proliferation-resistant reactor. A probable design of the IR-40 reactor has 

been presented and simulated in SCALE 6.1.  

Given the available information on the IR-40 reactor, it is believed that IR-40 will be a 

pressurized heavy water reactor employing 150 RBMK fuel assemblies placed in individual 

pressure tubes. Given Iran’s limited uranium resources, the building of a pressurized heavy 

water research reactor is a logical step if they want to pursue CANDU-type reactors in the 

future to make the most of out their uranium.  

Assuming the dimensions found for the IR-40 reactor are similar to the actual ones, it 

confirms the IR-40’s potential proliferation risk. Enough fuel would be irradiated annually 

to provide fissile material for up to two plutonium-based NWs. It should be emphasized that 

Iran has not yet built, or is planning to build a reprocessing facility for extracting plutonium 

from irradiated fuel. But the hot cell facility being built at the IR-40 compound for 

radioisotope production, could be used to separate plutonium, though it would not be able 

to process large quantities annually, and it will be unable to do so undetected under the 

current IAEA inspections regime.. Even though the current regime is not taking active steps 

to build a reprocessing plant, once plutonium has been produced, its half-life of 24000 years 

(plutonium-239) means that it will only slowly decay, and future regimes may think 

differently about this potential nuclear weapon material.  

The large production of WGPu is one of the main reasons for converting the IR-40 reactor to 

employ LEU fuel. The use of LEU results in a smaller core, and a 73 – 85 % reduction of 

annual plutonium production, depending on the level of enrichment of the LEU. The level of 

enrichment that gives the worst composition of plutonium, in the eyes of a weapons maker, 

is 5% LEU, while 15 % LEU produces the least amount of plutonium per irradiation time, 

but with a much better quality than 5 % enriched fuel.  

Given Iran’s current enrichment capacity (less than 6000 SWU per year), it is not possible 

for Iran to provide enough fuel to support 10 or 15 % LEU fuel in the reactor. The use of 

RMBK fuel rods limits the relative burn-up of uranium, because it can only operate for 1200 

days due to material constraints. This results in a lot of unburned uranium in the spent fuel 

rods for enrichments of 10 and 15 %.  

Combined, these factors lead to a conclusion that the use of 5 % enriched LEU for the 

modified reactor is the most proliferation-resistant enrichment level, has a high relative 

burnup and needs less annual enrichment capacity to sustain. It would still be possible to 

extracted WGPu by irradiating the fuel for a short time, but such behavior would be 

detected by the IAEA.  
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The proposed modification of the reactor leads to more free positions inside core, which 

could be used for everything from experiments to radioisotope production. The increased 

excess reactivity allows for the use of light water instead of D2O as coolant.  

Another positive aspect seen from a proliferation perspective is that a conversion will 

consume large parts of the LEU that Iran has produced and will produce in the future. 

Currently, Iran is producing LEU intended for near-future fuel production for the TRR, and it 

is producing more than the TRR consumes [112]. Even though, one of the arguments for 

building the IR-40 reactor in the first place was to shut down the over 40 year old TRR. The 

fuel already enriched for TRR could be blended down from 19.75 % to 5 %.  

Most of Iran’s current enrichment efforts, however, are directed at producing and 

stockpiling less than 5 % enriched uranium hexafluoride without turning it into fuel. 

Concerns prevail that Iran may someday reinsert enriched uranium hexafluoride to produce 

weapons-grade uranium. Further processing and consumption of enriched uranium would 

therefore alleviate some of these proliferation concerns. 

Iran has invested much money and prestige in its enrichment program and is very reluctant 

to abandon it [113]. By reducing the stockpiled LEU by turning it into fuel for the converted 

IR-40 reactor, negotiations with Iran can move a step forward. Focus could then switch 

from Iran having an enrichment program and accepting it to openness and implementation 

of more secure safeguards agreements.  

Iran has an undeniable right to pursue peaceful nuclear power, but in its quest for nuclear 

technology it should consider choosing technology that does not produce significant 

amounts of fissile material well suited for nuclear weapons.  

This thesis shows a probable design for the IR-40 reactor. It also shows that it is possible to 

convert the current reactor to employ LEU fuel and attain the same good properties for 

radioisotope production, while being less suited for plutonium production. The LEU needed 

for the reactor could serve as a natural cap on Iran’s uranium enrichment capacity until Iran 

and the IAEA have worked out their differences.  
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Symbols and Units 

Symbol Unit Description 
E 

P 

m 

n 

n 

  

   

   

γ 

p 

σ 

  

Bq 

Ci 

 

eV 

MeV 

GWd 

GWe 

MWe 

MWth 

keff 

[J] 

[J/s] 

[kg] 

[-] 

[m-3] 

[-] 

[-] 

[-] 

[-] 

[-] 

[m-2] 

[m-1] 

[s-1] 

[s-1] 

 

[J] 

[J] 

[J] 

[J] 

[W] 

[W] 

[-] 

Energy 

Power  

Mass 

Neutron 

Neutron density 

Alfa particle 

Beta particle (positron) 

Beta particle (electron) 

Gamma ray 

Proton 

Microscopic cross section 

Macroscopic cross section 

Disintegrations per second (activity) 

37 billion disintegrations per second 

(activity) 

Electronvolt  

Megaelectronvolt 

Gigawatt days 

Gigawatt electric 

Megawatt electric 

Megawatt thermal 

Effective multiplication factor 

Abbreviations 

AEOI  Atomic Energy Organization of Iran 

CANDU  CANada Deuterium Uranium  

CSA  Comprehensive Safeguards Agreement 

D2O  Deuterium oxide / heavy water 

GeeWiz  Graphically Enhanced Editing Wizard 

HEU  Highly enriched uranium 

HWPP  Heavy water production plant 

HWR  Heavy water reactor 

IAEA  International Atomic Energy Agency 

IHWRR  Iranian Heavy Water Research Reactor 
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IR-40  Iranian Nuclear Research Reactor 

LEU  Low enriched uranium 

LWR   Light water reactor 

NATO  North Atlantic Treaty Organization 

NPT  Non-Proliferation Treaty 

NU  Natural uranium 

NW  Nuclear weapon 

PHWR  Pressurized heavy water reactor 

PWR  Pressurized water reactor 

SCALE  Standardized Computer Analysis for Licensing Evaluation  

SWU  Separative work units 

TRITON  Transport Rigor Implemented with Time-dependent Operation for 
 Neutronic depletion  

TRR   Tehran Research Reactor 

UNSC  United Nations Security Council 

UO2  Uranium dioxide 

WGPu  Weapons-grade plutonium 

WGU  Weapons-grade uranium 
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Appendix A 

The minimum size of IR-40 core fueled with NU is estimated using diffusion theory (see 

Chapter 3). Equation 18 and 19 are used for the calculation of the smallest critical radius of 

the core. The equations consist of   ,   
 ,   , L,   

 . These factors must be calculated before 

the size is estimated.    ,    and L vary as a function of moderator-to-fuel ratio. The 

following equations show how the factors are calculated.  

The four factor formula 

        

 

The different factors in   ,       and   are calculated using the following equations [28].  

  is given by 

      
         

                      
   

where x is the fraction (in %) of    
    in the fuel.   is number of neutrons released in a 

fission reaction (for    
    this is 2.42),    is the fission cross section of    

   ,    is the 

absorption cross section of    
    and    is the capture cross section of    

   . 

For a dilute reactor, the fast fission factor   only gives a small contribution to the chain 

reaction and is keep at unity [28].  

The resonance escape probability   is given by 

 
        

    

   
 
    

  
 
     

  
 

where      is the number of    
    atoms relative to moderator atoms,    is the total 

macroscopic scattering cross section and     is the mean logarithmic energy decrement for 

the moderator-fuel mixture. In a dilute reactor     is approximately the same as for a pure 

moderator. 

f  is given by 

   
     

     
 

     

             
 

       

                 
  

Where C, F, M and … refer to the core, fuel, moderator and other neutron absorbing 

materials in the core.  
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To find the radius and the height of the core by means of geometric buckling, the material 

buckling has to be calculated first.   
  is calculated by rearranging equation (19)  

     

  
       

   

   is a function of   
 .   

  is dependent on the temperature and density of the moderator 

[29].   
  for heavy water is found by 

  
          

         
  

 
 
 

 
 

  
 
     

 

where    is the pressure at 20 ˚C, and    is the temperature at 20 ˚C. 

The diffusion data for D2O at temperature T0 (20 ˚C) is found in [29]: 

 

 

The IR-40 reactor is believed to employ heavy water at a temperature of 70 ˚C and a 

pressure of 0.28 MPa bar [95]. The change in density in heavy water because of the 

increased pressure will negligible, and does not have to be calculated. Modifying    
  for a 

moderator temperature of 70 ˚C, results in a new   
  of 10351 cm2.  

Diffusion data for a CANDU reactor is found in [32]: 

 

 

 

The lower value for   
  for a CANDU-type reactor corresponds to the use of light water in the 

cooling circuit.  

Different   
  can now be calculated by varying the fuel-moderator ratio. When   

  has been 

calculated, it is set equal to   
  and the radius R is calculated. For a height-to-radius ratio of 

2.1, equation (14) is rearranged to yield R 

 
   

              

       
  

 

Density [g/cm3]   
  [cm2]   

  [cm2] 

1.1 9400 131 

Density [g/cm3]   
  [cm2]   

  [cm2] 

1.1 243 134 
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The height is given by multiplying the radius by 2.1. The volume of the a cylindrical core is 

found using 

         

For a reflected cylindrical reactor the critical radius is reduced by 

               

While the height is reduced by 

                 

 

A bare HWR core using D2O diffusion data yields these configurations by varying the ratio of 

moderator to fuel. 

NM / NF f p k∞ B2 [cm2] Radius [cm] Volume [m3] 

60 0,992 0,823 1,084 0,000398 141,9 18,86 

70 0,991 0,835 1,099 0,000441 134,9 16,20 

80 0,990 0,846 1,111 0,000466 131,2 14,91 

90 0,988 0,854 1,121 0,000479 129,4 14,28 

100 0,987 0,861 1,129 0,000485 128,6 14,02 

110 0,986 0,867 1,136 0,000486 128,4 13,98 

120 0,984 0,873 1,141 0,000484 128,8 14,10 

130 0,983 0,878 1,146 0,000478 129,5 14,32 

140 0,982 0,882 1,150 0,000472 130,4 14,63 

150 0,981 0,886 1,154 0,000464 131,5 15,01 

160 0,979 0,889 1,157 0,000455 132,8 15,43 

170 0,978 0,893 1,160 0,000446 134,1 15,91 
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A reflected HWR core using D2O diffusion data yields these configurations by varying the 

ratio of moderator to fuel.  

NM / NF f p k∞ B2 [cm2] 
Radius 
[cm] 

Radius with 
reflector [cm] 

Height 
[cm] 

Height with 
reflector [cm] 

Volume 
[m3] 

40 0,995 0,786 1,039 0,000208 196,3 99,4 412,32 218,41 6,78 

50 0,993 0,807 1,065 0,000327 156,6 59,6 328,83 134,92 1,51 

60 0,992 0,823 1,084 0,000398 141,9 45 298,09 104,19 0,66 

70 0,991 0,835 1,099 0,000441 134,9 38 283,31 89,4 0,4 

80 0,99 0,846 1,111 0,000466 131,2 34,3 275,6 81,69 0,3 

90 0,988 0,854 1,121 0,000479 129,4 32,4 271,66 77,76 0,26 

100 0,987 0,861 1,129 0,000485 128,6 31,6 269,98 76,07 0,24 

110 0,986 0,867 1,136 0,000486 128,4 31,5 269,74 75,83 0,24 

120 0,984 0,873 1,141 0,000484 128,8 31,8 270,49 76,58 0,24 

130 0,983 0,878 1,146 0,000478 129,5 32,5 271,92 78,02 0,26 

140 0,982 0,882 1,15 0,000472 130,4 33,5 273,86 79,96 0,28 

150 0,981 0,886 1,154 0,000464 131,5 34,6 276,18 82,27 0,31 

160 0,979 0,889 1,157 0,000455 132,8 35,8 278,79 84,88 0,34 

170 0,978 0,893 1,16 0,000446 134,1 37,1 281,61 87,71 0,38 
 

A bare HWR core using CANDU diffusion data yields these configurations by varying the 

ratio of moderator to fuel. 

 

NM / NF f p k∞ B2 [cm2] Radius [cm] Volume [m3] 

210 0,973 0,903 1,167 0,001179 82,5 3,70 

220 0,972 0,905 1,169 0,001186 82,2 3,67 

230 0,971 0,907 1,170 0,001191 82,1 3,65 

240 0,969 0,909 1,171 0,001195 81,9 3,63 

250 0,968 0,911 1,171 0,001198 81,8 3,61 

260 0,967 0,913 1,172 0,001200 81,8 3,61 

270 0,966 0,914 1,173 0,001201 81,7 3,60 

280 0,964 0,916 1,173 0,001202 81,7 3,60 

290 0,963 0,917 1,174 0,001202 81,7 3,60 

300 0,962 0,919 1,174 0,001201 81,7 3,60 

310 0,961 0,920 1,174 0,001199 81,8 3,61 

320 0,960 0,921 1,174 0,001197 81,9 3,62 
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A reflected HWR core using CANDU diffusion data yields these configurations by varying the 

ratio of moderator to fuel.  

 

NM / NF f p k∞ B2 [cm2] Radius [cm] 
Radius with 

reflector [cm] 
Height with 

reflector [cm] 
Volume 

[m3] 

220 0,972 0,905 1,169 0,001186 82,2 62,8 133,8 1,66 

230 0,971 0,907 1,170 0,001191 82,1 62,6 133,5 1,64 

240 0,969 0,909 1,171 0,001195 81,9 62,5 133,2 1,63 

250 0,968 0,911 1,171 0,001198 81,8 62,4 133,0 1,63 

260 0,967 0,913 1,172 0,001200 81,8 62,3 132,8 1,62 

270 0,966 0,914 1,173 0,001201 81,7 62,3 132,7 1,62 

280 0,964 0,916 1,173 0,001202 81,7 62,3 132,7 1,62 

290 0,963 0,917 1,174 0,001202 81,7 62,3 132,7 1,62 

300 0,962 0,919 1,174 0,001201 81,7 62,3 132,8 1,62 

310 0,961 0,920 1,174 0,001199 81,8 62,3 132,9 1,62 

320 0,960 0,921 1,174 0,001197 81,9 62,4 133,0 1,63 

330 0,958 0,922 1,174 0,001195 81,9 62,5 133,2 1,63 

340 0,957 0,924 1,174 0,001192 82,0 62,6 133,4 1,64 

350 0,956 0,925 1,174 0,001189 82,2 62,7 133,6 1,65 

360 0,955 0,926 1,174 0,001185 82,3 62,8 133,9 1,66 
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Appendix B 

RBMK dimensions 

The bottom area of a cylinder with a diameter of 325 cm is 

    
 

 
 
 

   
      

 
 
 

        

A square lattice pitch of 18 cm fans out an area of 0.032 m2, while a hexagonal lattice pitch 

fans out an area of 0.033 m2. The maximum number of assemblies is given by dividing the 

bottom area with the “lattice area” 

                     
      

        
     

for a square lattice and 

                     
      

        
     

for a hexagonal lattice. 

Cooling considerations for LEU fuel 

The data on RBMK fuel limits the fuel to an average linear heat rate of 205 W/cm and a 

maximum power per channel of 1.5-2.0 MW. At the same time, the fuel should maintain a 

height-to-radius of about 1:2.1. Because of excess reactivity, each assembly now consists of 

14 fuel rods.  

The core uses 60 fuel assemblies, where each fuel rod employs standard RBMK dimensions 

except that the active fuel region is only 240 cm long.  

Average linear heat rate (ALHR) is given as 

     
     

                                            
            

The power per channel (PPC) is given as 

    
     

                
                       

Corresponding enrichment requirements for the LEU core 

The process of enriching uranium involves three streams of material, the input called feed, 

the output called product, and the residue called tails. The enrichment requirement is 
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measured by a quantity called separative work units (SWU) and has the dimensions of mass 

[37]. The amount of separative work needed to enrich a quantity of uranium is calculated by 

looking at the different mass streams of feed, product and tails. 

Separation work is calculated by the means of mass ratios: 

  

  
 

       

       
 

and 

  

  
 

       

       
 

where   ,    and    are the masses and   ,    and       
    concentrations (by weight) of 

the feed, product and tails, respectively [37].  

The separative work needed for uranium enrichment is then given as 

                    

where V is a value function defined for each component P,T and F as 

           
   

 
  

An online calculator based on these formulae is able to calculate the separative work 

needed for enriching sufficient quantities of LEU for the modified IR-40 reactor [114].  

Mo-99 activity 

The activity for the Iranian target is given by equation (25).  

   
                  

    
     

   
    

        

The density of the natural pressed UO2 target is 4.67 g/cm3, while the uranium density is 

found by multiplying by the weight fraction of uranium in UO2 which is (238/270) = 0.882, 

yielding   = 4.12 g/cm3.  
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For a NU target the total EOB activity after 0 to 7 days is 

Flux / days 0 1 2 3 4 5 6 7 

4,00E+13 0 14 25 33 40 45 49 52 

5,00E+13 0 17,47 31,06 41,61 49,81 56,19 61,14 65 

6,00E+13 0 20,97 37,27 49,93 59,78 67,43 73,37 78 

7,00E+13 0 24 43 58 70 79 86 91 

8,00E+13 0 28 50 67 80 90 98 104 

9,00E+13 0 31 56 75 90 101 110 117 

1,00E+14 0 35 62 83 100 112 122 130 

 

For a LEU target the total EOB activity after 0 to 7 days is 

Flux / days 0 1 2 3 4 5 6 7 

4,00E+13 0 383 681 913 1093 1233 1342 1426 

5,00E+13 0 479 852 1141 1366 1541 1677 1783 

6,00E+13 0 575 1022 1370 1640 1850 2013 2139 

7,00E+13 0 671 1193 1598 1913 2158 2348 2496 

8,00E+13 0 767 1363 1826 2186 2466 2684 2853 

9,00E+13 0 863 1533 2055 2460 2774 3019 3209 

1,00E+14 0 959 1704 2283 2733 3083 3354 3566 
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Appendix C 

The input for the CSAS6 module for the IR-40 reactor fuel with natural uranium is given as 

'Input generated by GeeWiz SCALE 6.1 Compiled on Mon Jun  6 11:04:33 
2011 

=csas6 
ir-40 rbmk 
238groupndf5 
read composition 
 uo2         1 1 850   end 
 zirc2       3 1 700   end 
 helium      4 den=0.00089 1 500   end 
 d2o         5 0.9975 343   end 
 h2o         5 0.0025 343   end 
 aluminum    6 1 700   end 
 uo2         7 1 300   end 
 zirc2       11 1 343   end 
 helium      12 den=0.89 1 500   end 
 n           13 den=0.00125 1 500   end 
 ss304       14 1 343   end 
end composition 
read celldata 
  latticecell triangpitch fuelr=0.574 1 gapr=0.5965 4 cladr=0.6815 3 
hpitch=0.885 5 end 
end celldata 
read parameter 
 gen=510 
 nsk=10 
 res=1 
 flx=yes 
 htm=yes 
 wrs=35 
end parameter 
read geometry 
unit 1 
com="brenselpinne" 
 cylinder 1    0.574      340        0 
 cylinder 2   0.5956      343       -3 
 cylinder 3   0.6815      345       -5 
 media 1 1 1 
 media 4 1 2 -1 
 media 3 1 3 -2 
 boundary 3 
unit 2 
com="brenselelement" 
 hole 1   origin  x=-2.995 y=0.803 z=0 
 hole 1   origin  x=2.995 y=-0.803 z=0 
 hole 1   origin  x=2.995 y=0.803 z=0 
 hole 1   origin  x=-2.995 y=-0.803 z=0 
 hole 1   origin  x=2.193 y=2.193 z=0 
 hole 1   origin  x=-2.193 y=-2.193 z=0 
 hole 1   origin  x=-2.193 y=2.193 z=0 
 hole 1   origin  x=2.193 y=-2.193 z=0 
 hole 1   origin  x=0.803 y=1.39 z=0 
 hole 1   origin  x=-0.803 y=1.39 z=0 
 hole 1   origin  x=-0.803 y=-1.39 z=0 
 hole 1   origin  x=0.803 y=-1.39 z=0 
 hole 1   origin  x=1.605 y=0 z=0 
 hole 1   origin  x=-1.605 y=0 z=0 
 hole 1   origin  x=0.803 y=2.995 z=0 
 hole 1   origin  x=-0.803 y=2.995 z=0 
 hole 1   origin  x=0.803 y=-2.995 z=0 

Composition defines the material 

specifications for the model 

Parameter defines parameter 

specifications for output file prints 

and other code calculation bounds 

Geometry provides the KENO-VI 

model specification, as defined by 

units parameter specifications for 

output file prints and other code 

calculation bounds 
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 hole 1   origin  x=-0.803 y=-2.995 z=0 
 cylinder 2        4      345       -5 
 cylinder 3      4.4      345       -5 
 hexprism 4    13.25      350      -10 
 cylinder 5    0.625      345       -5 
 cylinder 6     0.75      345       -5 
 hole 8   origin  x=0 y=0 z=-5 
 media 11 1 3 -2 
 media 5 1 4 -3 
 media 5 1 2 -6 
 media 13 1 5 
 media 3 1 6 -5 
 boundary 4 
unit 3 
com="water" 
 hexprism 1    13.25      350      -10 
 media 5 1 1 
 boundary 1 
global unit 4 
com="global unit 4 references array 1" 
 cylinder 1      230      500     -100 
 cylinder 2      220      350      -10 
 array 1 2  place 16 17 1 0 0 0 
 cylinder 3      235      505     -105 
 media 5 1 1 -2 
 media 14 1 3 -1 
 boundary 3 
unit 8 
com="endestykke" 
 cone 1      4.3        0        2       -3 
 cone 2      3.3        0        1       -2 
 ecylinder 3      0.5        1        3        0   origin  x=0 y=3 z=-3 
 ecylinder 4      0.5        1        3        0   origin  x=0 y=-3 z=-
3 
 ecylinder 5        1      0.5        3        0   origin  x=3 y=0 z=-3 
 ecylinder 6        1      0.5        3        0   origin  x=-3 y=0 z=-
3 
 ecylinder 7        1      0.5        3        0   origin  x=2.1 y=2.1 
z=-3   rotate  a1=45 a2=0 a3=0 
 ecylinder 8        1      0.5        3        0   origin  x=2.1 y=-2.1 
z=-3   rotate  a1=-45 a2=0 a3=0 
 ecylinder 9        1      0.5        3        0   origin  x=-2.1 y=-
2.1 z=-3   rotate  a1=45 a2=0 a3=0 
 ecylinder 10        1      0.5        3        0   origin  x=-2.1 
y=2.1 z=-3   rotate  a1=-45 a2=0 a3=0 
 media 11 1 1 -2 -3 -4 -5 -6 -7 -8 -9 -10 
 media 5 1 2 -3 -4 -5 -6 -7 -8 -9 -10 
 media 5 1 3 
 media 5 1 4 
 media 5 1 5 
 media 5 1 6 
 media 5 1 7 
 media 5 1 8 
 media 5 1 9 
 media 5 1 10 
 boundary 1 
unit 9 
com="tube" 
 hexprism 1    13.25      350      -10 
 cylinder 2      4.4      345       -5 
 cylinder 3        4      345       -5 
 media 5 1 1 -2 
 media 3 1 2 -3 
 media 5 1 3 
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 boundary 1 
end geometry 
read array 
ara=1 nux=30 nuy=30 nuz=1 typ=shexagonal gbl=1 
 com='' 
 fill 

   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   9   9   9   9   9   9   9   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   9   9   9   2   2   2   2   9   9   9   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   9   9   2   2   2   2   2   2   2   9   9   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   9   2   2   2   2   2   2   9   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   9   2   2   2   2   2   2   2   2   2   2   9   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   9   9   2   2   2   2   2   2   2   9   9   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   9   9   2   2   2   2   9   9   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   9   9   9   9   9   9   9   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3  end 
fill 
end array 
end data 
end 
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The input for the TRITON module for the IR-40 reactor fuel with natural uranium is given as 

 
'Input generated by GeeWiz SCALE 6.1 Compiled on Mon Jun  6 11:04:33 
2011 
'batch_args \-c 
=t6-depl parm=(orgnflux) 
ir-40 depletion natural uranium with real geometry 
v7-238 
read composition 
 uo2         1 den=10.4 1 900   end 
 zirc2       3 1 500   end 
 helium      4 den=0.00082 1 700   end 
 d2o         5 0.9975 343   end 
 h2o         5 0.0025 343   end 
 aluminum    6 1 343   end 
 h2o         8 1 350   end 
 uo2         9 den=10.5 1 700 
                                 92234 0.005407837 
                                 92235 19 
                                 92238 80.99459   end 
 n           10 den=0.00125 1 343   end 
 c-graphite  11 1 300   end 
 ss316s      12 1 343   end 
 ss304       13 1 343   end 
 aluminum    14 1 343   end 
 aluminum    15 1 343   end 
 zirc2       16 1 343   end 
end composition 
read celldata 
  latticecell triangpitch fuelr=0.574 1 gapr=0.5965 4 cladr=0.6815 3 
hpitch=0.885 5 end 
end celldata 
read depletion 
  -1  flux 6 14 15 
end depletion 
read burndata 
  power=4.6 burn=120 nlib=4 end 
  power=4.6 burn=120 nlib=4 end 
  power=4.6 burn=120 nlib=4 end 
  power=4.6 burn=120 nlib=4 end 
  power=4.6 burn=120 nlib=4 end 
  power=4.6 burn=120 nlib=4 end 
end burndata 
read keep 
  opus 
end keep 
read timetable 
end timetable 
read opus 
  title="pu" 
  symnuc=pu-238 pu-239 pu-240 pu-241 pu-242 u-234 u-235 u-236 u-238 end 
  units=grams 
  time=days 
  title="pu" 
  matl=1 end 
end opus 
read model 
read parameter 
 npg=500 
 flx=yes 
 htm=yes 
 plt=no 
 cfx=yes 

Composition defines the material 

specifications for the model 

Celldata defines lattice specifications 

for cross section processing 

Depletion specifies which materials to 

track changing isotopic 

Burndata defines the cycle length, 

specific power and number of cross 

sections updates (nlib) 
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end parameter 
read geometry 
unit 1 
com="fuel pin" 
 cylinder 1    0.574      340        0 
 cylinder 2   0.5956      343       -3 
 cylinder 3   0.6815      345       -5 
 media 1 1 1 
 media 4 1 2 -1 
 media 3 1 3 -2 
 boundary 3 
unit 2 
com="fuel assembly" 
 hole 1   origin  x=-2.995 y=0.803 z=0 
 hole 1   origin  x=2.995 y=-0.803 z=0 
 hole 1   origin  x=2.995 y=0.803 z=0 
 hole 1   origin  x=-2.995 y=-0.803 z=0 
 hole 1   origin  x=2.193 y=2.193 z=0 
 hole 1   origin  x=-2.193 y=-2.193 z=0 
 hole 1   origin  x=-2.193 y=2.193 z=0 
 hole 1   origin  x=2.193 y=-2.193 z=0 
 hole 1   origin  x=0.803 y=1.39 z=0 
 hole 1   origin  x=-0.803 y=1.39 z=0 
 hole 1   origin  x=-0.803 y=-1.39 z=0 
 hole 1   origin  x=0.803 y=-1.39 z=0 
 hole 1   origin  x=1.605 y=0 z=0 
 hole 1   origin  x=-1.605 y=0 z=0 
 hole 1   origin  x=0.803 y=2.995 z=0 
 hole 1   origin  x=-0.803 y=2.995 z=0 
 hole 1   origin  x=0.803 y=-2.995 z=0 
 hole 1   origin  x=-0.803 y=-2.995 z=0 
 cylinder 2        4      345       -5 
 cylinder 3      4.4      345       -5 
 hexprism 5    13.25      350      -10 
 cylinder 6    0.625      345       -5 
 cylinder 7     0.75      345       -5 
 hole 7   origin  x=0 y=0 z=-5 
 media 16 1 3 -2 
 media 5 1 2 -7 
 media 5 1 -3 5 
 media 10 1 6 
 media 16 1 7 -6 
 boundary 5 
unit 3 
com="d2o hexagons" 
 hexprism 1    13.25      350      -10 
 media 5 1 1 
 boundary 1 
global unit 4 
com="core" 
 cylinder 1      220      450      -50 
 cylinder 2      195      350      -10 
 array 1 2  place 10 10 1 0 0 0 
 cylinder 4      225      455      -55 
 media 5 1 1 -2 
 media 13 1 4 -1 
 boundary 4 
unit 7 
com="end plug" 
 cone 1      4.3        0        2       -3 
 cone 2      3.3        0        1       -2 
 ecylinder 3      0.5        1        3        0   origin  x=0 y=3 z=-3 
 ecylinder 4      0.5        1        3        0   origin  x=0 y=-3 z=-
3 

Geometry provides the KENO-VI 

model specification, as defined by 

units. 

The global unit specifies the outer 

boundary of the model.  



 

  

  

 

 106 

 

 ecylinder 5        1      0.5        3        0   origin  x=3 y=0 z=-3 
 ecylinder 6        1      0.5        3        0   origin  x=-3 y=0 z=-
3 
 ecylinder 7        1      0.5        3        0   origin  x=2.1 y=2.1 
z=-3   rotate  a1=45 a2=0 a3=0 
 ecylinder 8        1      0.5        3        0   origin  x=2.1 y=-2.1 
z=-3   rotate  a1=-45 a2=0 a3=0 
 ecylinder 9        1      0.5        3        0   origin  x=-2.1 y=-
2.1 z=-3   rotate  a1=45 a2=0 a3=0 
 ecylinder 10        1      0.5        3        0   origin  x=-2.1 
y=2.1 z=-3   rotate  a1=-45 a2=0 a3=0 
 media 3 1 1 -2 -3 -4 -5 -6 -7 -8 -9 -10 
 media 5 1 2 -3 -4 -5 -6 -7 -8 -9 -10 
 media 5 1 3 
 media 5 1 4 
 media 5 1 5 
 media 5 1 6 
 media 5 1 7 
 media 5 1 8 
 media 5 1 9 
 media 5 1 10 
 boundary 1 
unit 9 
com="experimental tubes" 
 cylinder 1      4.4      350      -10 
 cylinder 2        4      350      -10 
 hexprism 3    13.25      350      -10 
 media 16 1 1 -2 
 media 5 1 2 
 media 5 1 3 -1 
 boundary 3 
unit 10 
com="alurod1" 
 cylinder 4        3       30        0 
 media 6 1 4 
 boundary 4 
unit 11 
com="targethex" 
 hexprism 1    13.25      350      -10 
 hole 10   origin  x=0 y=0 z=165 
 hole 12   origin  x=0 y=0 z=235 
 hole 13   origin  x=0 y=0 z=200 
 media 5 1 1 
 boundary 1 
unit 12 
com="alurod 2" 
 cuboid 1      0.5     -0.5        4       -4       25        0 
 cylinder 2        3       30        0 
 media 14 1 2 
 boundary 2 
unit 13 
com="alurod 3" 
 cuboid 2      0.5     -0.5        4       -4       25        0 
 cylinder 3        3       30        0 
 media 15 1 3 
 boundary 3 
unit 14 
com="aluhex2" 
 hexprism 1    13.25      350      -10 
 hole 12   origin  x=0 y=0 z=200 
 media 5 1 1 
 boundary 1 
unit 15 
com="aluhex3" 
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 hexprism 1    13.25      350      -10 
 hole 13   origin  x=0 y=0 z=200 
 media 5 1 1 
 boundary 1 
end geometry 
read array 
ara=1 nux=20 nuy=20 nuz=1 typ=shexagonal gbl=1 
 com='' 
 fill 

    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3 
    3    3    3    3    3    3    3    9    9    9    9    9    3    3    3    3    3    3    3    3 
    3    3    3    3    3    3    9    9    2    2    2    2    9    9    3    3    3    3    3    3 
    3    3    3    3    9    9    2    2    2    2    2    2    2    9    9    3    3    3    3    3 
    3    3    3    3    9    2    2    2    2    2    2    2    2    2    2    9    3    3    3    3 
    3    3    3    9    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3    3 
    3    3    3    9    2    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3 
    3    3    9    2    2    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3 
    3    3    3    9    2    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3 
    3    3    9    2    2    2    2    2    2   11    2    2    2    2    2    2    9    3    3    3 
    3    3    3    9    2    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3 
    3    3    9    2    2    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3 
    3    3    3    9    2    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3 
    3    3    3    9    2    2    2    2    2    2    2    2    2    2    2    9    3    3    3    3 
    3    3    3    3    9    2    2    2    2    2    2    2    2    2    2    9    3    3    3    3 
    3    3    3    3    9    9    2    2    2    2    2    2    2    9    9    3    3    3    3    3 
    3    3    3    3    3    3    9    9    2    2    2    2    9    9    3    3    3    3    3    3 
    3    3    3    3    3    3    3    9    9    9    9    9    3    3    3    3    3    3    3    3 
    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3 
    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3  end fill 
end array 
end data 
end model 
end 
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The different TRITON inputs for different levels of enrichment are equal in everything but 

the level of enrichment, and the weight percentage of boron carbide. The configurations 

with lower level of enrichment have less boron carbide.  

The input for the TRITON module for the modified IR-40 reactor fuel with 15 % LEU is given 
as 

'Input generated by GeeWiz SCALE 6.1 Compiled on Mon Jun  6 11:04:33 
2011 
'batch_args \-c 
=t6-depl parm=(orgnflux) 
ir-40 depletion natural uranium with real geometry 
v5-44 
read composition 
 uo2         1 den=10.4 1 850 
                                 92234 0.005407837 
                                 92235 15 
                                 92238 84.99459   end 
 d2o         2 1 300   end 
 zirc2       3 1 500   end 
 helium      4 den=0.00082 1 500   end 
 d2o         5 0.9975 343   end 
 h2o         5 0.0025 343   end 
 al2o3       6 0.9 343   end 
 b4c         6 0.1 343   end 
 zirc2       7 1 500   end 
 d2o         8 0.9975 343   end 
 h2o         8 0.0025 343   end 
 aluminum    9 1 343   end 
 n           10 den=0.00125 1 500   end 
 ss316s      12 1 343   end 
end composition 
read celldata 
  latticecell triangpitch fuelr=0.574 1 gapr=0.5965 4 cladr=0.6815 3 
hpitch=0.885 5 end 
end celldata 
read depletion 
  -1  flux 6 
end depletion 
read burndata 
  power=21 burn=360 nlib=3 end 
  power=21 burn=360 nlib=3 end 
  power=21 burn=360 nlib=3 end 
  power=21 burn=120 end 
end burndata 
read keep 
  opus 
end keep 
read timetable 
end timetable 
read opus 
  title="pu" 
  symnuc=pu-238 pu-239 pu-240 pu-241 pu-242 pu-243 u-234 u-235 u-236 
u-238 end 
  units=grams 
  time=days 
  title="pu" 
  matl=1 end 
end opus 
read model 
read parameter 
 gen=210 
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 npg=500 
 nsk=10 
 flx=yes 
 htm=yes 
 plt=no 
 cfx=yes 
end parameter 
read geometry 
unit 1 
com="fuel pin" 
 cylinder 1    0.574      240        0   origin  x=0 y=0 z=50 
 cylinder 2   0.5956      343       -3 
 cylinder 3   0.6815      345       -5 
 media 1 1 1 
 media 4 1 2 -1 
 media 3 1 3 -2 
 boundary 3 
unit 2 
com="fuel assembly" 
 hole 1   origin  x=-2.995 y=0.803 z=0 
 hole 1   origin  x=2.995 y=-0.803 z=0 
 hole 1   origin  x=2.995 y=0.803 z=0 
 hole 1   origin  x=-2.995 y=-0.803 z=0 
 hole 27   origin  x=2.193 y=2.193 z=0 
 hole 27   origin  x=-2.193 y=-2.193 z=0 
 hole 27   origin  x=-2.193 y=2.193 z=0 
 hole 27   origin  x=2.193 y=-2.193 z=0 
 hole 1   origin  x=0.803 y=1.39 z=0 
 hole 1   origin  x=-0.803 y=1.39 z=0 
 hole 1   origin  x=-0.803 y=-1.39 z=0 
 hole 1   origin  x=0.803 y=-1.39 z=0 
 hole 1   origin  x=1.605 y=0 z=0 
 hole 1   origin  x=-1.605 y=0 z=0 
 hole 1   origin  x=0.803 y=2.995 z=0 
 hole 1   origin  x=-0.803 y=2.995 z=0 
 hole 1   origin  x=0.803 y=-2.995 z=0 
 hole 1   origin  x=-0.803 y=-2.995 z=0 
 cylinder 2        4      345       -5 
 cylinder 3      4.4      345       -5 
 hexprism 5    13.25      350      -10 
 cylinder 6    0.625      345       -5 
 cylinder 7     0.75      345       -5 
 hole 7   origin  x=0 y=0 z=-5 
 media 7 1 3 -2 
 media 5 1 2 -7 
 media 8 1 -3 5 
 media 10 1 6 
 media 7 1 7 -6 
 boundary 5 
unit 3 
com="water" 
 hexprism 1    13.25      350      -10 
 media 8 1 1 
 boundary 1 
global unit 4 
com="core" 
 cylinder 1      220      450      -50 
 cylinder 2      195      350      -10 
 array 1 2  place 11 11 1 0 0 0 
 cylinder 4      225      455      -55 
 media 5 1 1 -2 
 media 12 1 4 -1 
 boundary 4 
unit 7 



 

  

  

 

 110 

 

com="endestykke" 
 cone 1      4.3        0        2       -3 
 cone 2      3.3        0        1       -2 
 ecylinder 3      0.5        1        3        0   origin  x=0 y=3 z=-3 
 ecylinder 4      0.5        1        3        0   origin  x=0 y=-3 z=-
3 
 ecylinder 5        1      0.5        3        0   origin  x=3 y=0 z=-3 
 ecylinder 6        1      0.5        3        0   origin  x=-3 y=0 z=-
3 
 ecylinder 7        1      0.5        3        0   origin  x=2.1 y=2.1 
z=-3   rotate  a1=45 a2=0 a3=0 
 ecylinder 8        1      0.5        3        0   origin  x=2.1 y=-2.1 
z=-3   rotate  a1=-45 a2=0 a3=0 
 ecylinder 9        1      0.5        3        0   origin  x=-2.1 y=-
2.1 z=-3   rotate  a1=45 a2=0 a3=0 
 ecylinder 10        1      0.5        3        0   origin  x=-2.1 
y=2.1 z=-3   rotate  a1=-45 a2=0 a3=0 
 media 3 1 1 -2 -3 -4 -5 -6 -7 -8 -9 -10 
 media 5 1 2 -3 -4 -5 -6 -7 -8 -9 -10 
 media 5 1 3 
 media 5 1 4 
 media 5 1 5 
 media 5 1 6 
 media 5 1 7 
 media 5 1 8 
 media 5 1 9 
 media 5 1 10 
 boundary 1 
unit 9 
com="experimental tubes" 
 cylinder 1      4.3      350      -10 
 cylinder 2        4      350      -10 
 hexprism 3    13.25      350      -10 
 media 3 1 1 -2 
 media 5 1 2 
 media 5 1 3 -1 
 boundary 3 
unit 25 
com="target" 
 cylinder 1        3       15        0   origin  x=0 y=0 z=150 
 media 6 1 1 
 boundary 1 
unit 26 
com="mollytargets" 
 hole 25 
 hexprism 1    13.25      350      -10 
 media 5 1 1 
 boundary 1 
unit 27 
com="boronrod" 
 cylinder 2   0.5956      240        0   origin  x=0 y=0 z=50 
 cylinder 3      0.7      345       -5 
 media 6 1 2 
 media 7 1 3 -2 
 boundary 3 
end geometry 
read array 
ara=1 nux=20 nuy=20 nuz=1 typ=shexagonal gbl=1 
 com='' 
 fill 

    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3 
    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3 
    3    3    3    3    3    9    9    9    9    9    9    9    9    9    9    9    3    3    3    3 
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    3    3    3    3    9    9    9    9    9    9    9    9    9    9    9    9    3    3    3    3 
    3    3    3    3    9    9    9    9    9    9    9    9    9    9    9    9    9    3    3    3 
    3    3    3    9    9    9    9    9    9    2    2    9    9    9    9    9    9    3    3    3 
    3    3    3    9    9    9    9    9    2    2    9    2    2    9    9    9    9    9    3    3 
    3    3    9    9    9    9    2    2    2    2    2    2    2    2    9    9    9    9    3    3 
    3    3    3    9    9    9    2    9    2    9    2    9    2    9    2    9    9    9    3    3 
    3    3    9    9    9    9    2    2    2    2    2    2    2    2    9    9    9    9    3    3 
    3    3    3    9    9    9    2    2    9    2   26    2    9    2    2    9    9    9    3    3 
    3    3    9    9    9    9    2    2    2    2    2    2    2    2    9    9    9    9    3    3 
    3    3    3    9    9    9    2    9    2    9    2    9    2    9    2    9    9    9    3    3 
    3    3    3    9    9    9    2    2    2    2    2    2    2    2    9    9    9    9    3    3 
    3    3    3    9    9    9    9    9    2    2    9    2    2    9    9    9    9    9    3    3 
    3    3    3    9    9    9    9    9    9    2    2    9    9    9    9    9    9    3    3    3 
    3    3    3    3    9    9    9    9    9    9    9    9    9    9    9    9    9    3    3    3 
    3    3    3    3    9    9    9    9    9    9    9    9    9    9    9    9    3    3    3    3 
    3    3    3    3    3    3    9    9    9    9    9    9    9    9    9    3    3    3    3    3 
    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3    3  end fill 
end array 
end data 
end model 
end 
 


