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Abstract

We aim to obtain stability when using ECG recordings, the bidomain model
and lab measurements to locate an ischemic region in the heart. Historically,
this has proven to be a difficult task when using a general geometry, so our
approach is to assume a priori that we can approximate the ischemic region
as a ball.

The approximation has been viewed from both a theoretical stand as well
as more practically with numerical simulations. First, the theoretical conti-
nuity properties of the system with the simplified geometry were explored,
followed by several numerical simulations to illuminate the practical behav-
ior with this geometry.

We did find a theoretical stability, as well as promising numerical results.
From a small compact domain of the heart, we have proved a continuous
inverse. In addition, we found a necessary demand for uniqueness of the
inverse solution throughout the entire heart – which then also guarantee
continuity. Numerically, we were able to retrieve the ischemic region with-
out noise as well as with a proper amount of noise on our synthetic forward
data.

These findings are interesting to pursuit further. Since we worked on syn-
thetic data in this thesis, it will be of great importance to further work with
true patient data to see how well we can approximate the ischemic region in
a real case. Also, the key point of this thesis was to gain more stability. In
theory we found this to be stable, but we do not know how stable it is when
it comes to numerical simulations. It might therefore be interesting to try
to determine how sensitive the numerics can be to noise.

iii





Contents

Preface vii

1 Introduction 1
1.1 The cardiovascular system . . . . . . . . . . . . . . . . . . . . 2
1.2 Physical interpretation of the bidomain model . . . . . . . . . 5
1.3 Mathematical derivation of the PDE . . . . . . . . . . . . . . 6
1.4 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . 8
1.5 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Highlighting important topics . . . . . . . . . . . . . . . . . . 15

2 Continuity properties of the system 17
2.1 Continuity of the forward operator . . . . . . . . . . . . . . . 17
2.2 How to obtain continuous inverse and continuous least-squares 27

3 Uniqueness of ischemic region 33
3.1 Injectiveness of parameterization operator . . . . . . . . . . . 33
3.2 Nullspace of the forward operator . . . . . . . . . . . . . . . . 34
3.3 Overdetermined Poisson operator . . . . . . . . . . . . . . . . 36
3.4 Green’s function for inhomogeneous Poisson’s equation . . . . 37
3.5 Sufficient uniqueness property . . . . . . . . . . . . . . . . . . 39

4 Numerical solution of forward problem 41
4.1 General framework for finite element method . . . . . . . . . 41
4.2 Finite element formulation of forward problem . . . . . . . . 42
4.3 General implementation and forward solutions . . . . . . . . 45
4.4 Visualization of cost-functional . . . . . . . . . . . . . . . . . 47

5 Inverse solution of electrocardiography 49
5.1 Numerical methods for optimization . . . . . . . . . . . . . . 49
5.2 From wrong to right uniqueness property for the inverse solver 52
5.3 Inverse solution for BSPM in the image of the forward operator 53
5.4 Ischemic region as a square . . . . . . . . . . . . . . . . . . . 55
5.5 Adding noise to our synthetic data . . . . . . . . . . . . . . . 59
5.6 Reducing the number of electrodes . . . . . . . . . . . . . . . 61

6 Conclusions and future perspective 65

A Small proofs left out in the text 73

v





Preface

This thesis marks the end of my master degree at the Norwegian University
of Life Sciences. When starting this voyage, around five years ago, I did not
know that applied mathematics would be my destination. As a freshman, I
did in fact start out as an engineering student. However, during the basic
courses, my interest for mathematics grew, and the final push to pursuit
this path was given to me during an exchange period at the University of
British Columbia, where I truly learned to appreciate this field. The system-
atic way to explore the world is what I find so appealing about mathematics.

Along the way there have been many people to thank for helping me, both
directly and indirectly.

Of course, a great thanks goes to my supervisor Bjørn Fredrik Nielsen, for
always having the time to discuss problems I have encountered during my
thesis, as well as having challenged me to reach a higher level of mathe-
matical understanding during my work. Also, the rest of the mathematical
section at the institute have my gratitude for always having their doors open
to my questions during all my years at the university, both as their student
and as their teaching assistant.

The great environment in the reading room is also to be thanked. The
people in this room has been the source of many interesting and funny dis-
cussions as well as many welcoming coffee breaks.

A somewhat special thanks should be given to my brother - the medicine
student - for bringing his 10kg physiology book home to my parents on hol-
idays so I could read myself up on the field over the summer.

Finally I would like to thank my family for giving me love and support
during all these years, and my girlfriend for being so understanding and
supportive during my work.

Ole Løseth Elvetun Ås, Norway.
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1 Introduction

A problem in mathematical biology that’s been under heavily inspection the
last decades, is the inverse problem of electrocardiography. Namely, can we
locate a region in the heart experiencing an early phase of a heart attack – an
ischemic region – from a recorded electrocardiogram? In 1988 the findings
were summarized in the articles [16, 17, 18, 19, 20]. At this stage, however,
the results were very unreliable, in the sense that they were highly unstable.
The problem was partially dealt with using some form of regularization, like
Tikhonov regularization. This only gave some success, so much effort has
been put into the field since, to achieve better results. In the summarizing
article [21], the authors describe the two main paths to handle this: Either
to reduce the error sources of the problem or try to incorporate more a priori
information about the problem.

Even though these methods have given some results, it is still hard to over-
come the instability. One reason for this is due to that people have heavily
focused on the mathematically side of the problem, trying to solve this for
a general geometry of the ischemic region. In the end, however, the user
of the information mathematicians can retrieve from the electrocardiogram,
will be cardiologists. They want to decide where the blocking in one of
the coronary arteries is located.1 When mathematicians try to model this
with a general geometry, they have to use a regularization, even after all the
initial assumptions made when deriving the model. Therefore, we suggest
another approach. Instead of trying to find a very sophisticated geometry
for the ischemic region with the help of regularization, we assume a simple
geometry a priori. Then we use this geometry, e.g. a ball, when we try to
retrieve an ischemic region from the electrocardiogram.

Figure 1: A traditional ECG reading of a 26 year old male, using 12 elec-
trodes. Picture taken from Wikipedia.

1A coronary artery is an artery providing blood to the heart itself.
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1 INTRODUCTION

This first chapter will give a quick introduction to the entire problem. First,
we will introduce those not very familiar to the cardiovascular system to this
field, before showing the reader how we physically can justify the bidomain
model, and then further how mathematical theory combined with lab results
from medicine can be used to modify the bidomain model to get the a single
partial differential equation useful for computing the extracellular potential
in the body. It is then natural to discuss the existence and uniqueness of
this PDE, before we give a brief illumination of what we are going to do
throughout the main part of this thesis; how to find the ischemic region
from the recorded electrocardiogram, whether a least-squares solution ex-
ists, if it is unique and if it depends continuously on the data, and what
additional requirements we might have to impose to get these properties.

1.1 The cardiovascular system

Located in the chest cavity, the heart is a pump running the human circu-
lation. In fact, is consists of two pumps – the left-sided and the right-sided
heart. The right-side is running the pulmonary circulation, which is pump-
ing oxygen depleted blood to the lung. Returning blood enters the systemic
circulation, sending blood through the rest of the body through the aorta.
These two main circuits is called the vascular system. Both pumps consist
of an atrium and a ventricle, where the atria are the chambers receiving
blood and the ventricles are discharging blood [23].

Figure 2: The human heart. Picture is from Wikipedia, by Ties van Brussel
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1.1 The cardiovascular system

As a full phase, the blood enters the right atrium through the superior vena
cava, before being pumped through the tricuspid valve into the right ven-
tricle. From here, is goes through the pulmonary value into the pulmonary
arteries. After running though the lungs, the blood comes back through the
pulmonary veins into the left atrium, before it enters the left ventricle after
being pumped through the mitral valve. Then it leaves through the aortic
value to the aorta before entering the systemic circulation [22].

But for this fine system to work there must be something triggering the
pump. In fact, all cardiac cells are electrically active, originating from a
group of cells in the right atrium depolarizing simultaneously. From here,
the electrical signal spreads like a wave through the entire heart making the
heart contract. The timing must be perfect for optimizing the blood flow.

As mentioned, this starts from a group of cells in the right atrium. More
precisely the sinoatrial(SA) node. Roughly 100 ms after firing, the potential
reaches the atrioventricular(AV) node. Because of the atrioventricular ring,
the impulse does not go directly from the atria to the ventricles, but instead
have to take the way to the His-Purkinje fiber system. This is a network
of specialized conductive cells carrying the signal to the muscles of both
ventricles [23].

In total there are five phases in what is called the cardiac action potential[3],
describing how the electrical potential of a cell in the heart changes. De-
pending on location in the heart, the initialization, shape and duration of
this action potential differs, because of different channels and anatomy of
different myocytes – muscle cells.

Despite these differences, we have strong similarities, and thus we can as
mentioned speak of five phases, although the SA and AV node only have
three of these present.

Phase four, which is the resting phase, corresponding to the dias-
tolic(filling) phase of the heart, is the natural state, and a cell will remain
in this state until it receives an external stimulus from adjacent cells.

Phase zero follows – the rapid depolarization phase, when a cell opens
the Na+ and Ca2+-channels, and the potential rapidly rises due to rapidly
flow of such ions into the cell. However, in the SA and AV-node we will only
have Ca2+-channels, leading to a slower upstroke, since these channels are
slower. These nodes will not experience the two next phases either.

Phase one is the rapid repolarization, where the Na+-channels gets
mostly inactivated together with the activation of a outward K+-current.

Phase two is the plateau phase, where there is a balance between the
inward Na+-channel and the outward K+-channel, leading to basically no
net flow.
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1 INTRODUCTION

Figure 3: The action potential for the myocardium. Picture is from cvphys-
iology.com, by R. E. Klabunde, Ph.D.

Phase three follows. This is known as the repolarization phase, when
the outward channels remains open, but the Ca2+-channels close, and hence
we get a decrease in potential.

Having described the steps of the process, we have yet to explain how to
get back to the resting phase. The answer to this is the pacemaker current,
also known as the funny current, present in the SA node, the AV node as
well as in the Purkjine fibers of the heart. This current is routed along
a cation channel called HCN(hyperpolarization activated, cyclic nucleotide
gated). At the end of phase three, the channel is activated by hyperpolar-
ization. This happens as the membrane potential gets below the threshold
for the HCN channel, starting a slow depolarizing current. Then, the Ca2+-
channels gets activated by the beginning depolarization as a result from the
funny current [23].

We know the geometry of the heart and how it beats by now. For the
heart to be able to beat, of course the heart muscle – the myocardium
– needs blood itself. The arteries for this job is called coronary arteries.
These arteries, named the left and right coronary artery, originates from
the root of aorta, before splitting into smaller branches later. When one of
the coronary arteries narrows due to atherosclerosis, which is a condition
where cholesterol and other materials extends the artery wall, the patient
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1.2 Physical interpretation of the bidomain model

has what is known as ischemic heart disease [2]. In the early stages this is a
reversible condition, but if however it evolves and results in a full blockade
of the artery, the affected part of the heart dies as the patient experiences a
heart attack.

To determine whether a patient has ischemic heart disease, it is common
to inject a radioactive isotope into the blood system and expose the patient
for physical stress, and then measure possible accumulation of the injected
isotope in the ischemic region. This is, however, an expensive and time-
consuming method, so the goal by the inverse ECG is to diagnose this by
simple ECG measurements and mathematical methods.

1.2 Physical interpretation of the bidomain model

The bidomain model was first introduced in 1969 [27] before it was math-
ematically formulated in 1978 [28], and it is used to model the electrical
activity of the heart.

In the bidomain model, the space inside the cells is called the intracellular
domain, and the space between the cells is called the extracellular domain,
separated by a membrane. This applies only inside the heart. Outside the
heart, i.e in the torso, we have only a single domain, corresponding to the
extracellular domain in the myocardium. This is due to the fact that in-
side the heart we are interested in the active cells, in contrast to the torso,
which we only consider as a passive conductor [1]. By defining the potential
difference across the cell membrane as v = ui − ue, where ui and ue are
the intracellular and extracellular potentials, the bidomain model can be
derived. Ohm’s law states that

J =
1

R
E, (1.1)

where J is the current density, E is the electric field strength, and R is
the resistivity. From electrostatic, the electric field can be expressed as the
negative gradient of the potential, and the conductivity, M, is defined as the
reciprocal of the resistivity. Hence we get

Ji = −Mi∇ui, and (1.2)

Je = −Me∇ue. (1.3)

The electric fields in the heart is not stationary. However, the changes are
relatively slow, so making this assumption is fair enough. If the heart is
considered in isolation, it follows that current leaving one of the domains
must enter the other, since we assume no accumulation of charge. Hence, the
change in current density must be equal in magnitude and opposite in sign.
Also, we assume no current flow from the intracellular region to the torso,
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1 INTRODUCTION

and all flow from the extracellular region to the torso are govern by some
specific boundary conditions which we will return to in the next section.
Mathematically, we now have

−∇ · Ji = ∇ · Je, (1.4)

which we can combine with (1.2) and (1.3) to obtain

∇ · (Mi∇ui) = −∇ · (Me∇ue). (1.5)

Furthermore, by subtracting ∇ · (Mi∇ue) from both sides, we get

∇ · (Mi∇ui)−∇ · (Mi∇ue) = −∇ · (Me∇ue)−∇ · (Mi∇ue). (1.6)

At last, remember the definition of the potential difference across the cell
membrane. By applying this, the bidomain equation becomes

∇ · (Mi∇v) = −∇ · ((Mi +Me)∇ue). (1.7)

Actually, the bidomain model consists of one more PDE along with a system
of ODEs, modeling the ionic channels, to get a closed system. Since these
are of no interest in this thesis, we will not state them here.

1.3 Mathematical derivation of the PDE

As we have explained earlier, there are five phases in the cardiac action po-
tential. Even though that was at the cell level, there will be points in time
when all cells are at the resting phase and at the plateau phase simultane-
ously. This fact will be of utter importance to the mathematical model we
are going to derive. But first, let us just rewrite the bidomain model and
define all the involved parameters.

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0 in H, (1.8)

where

• Mi and Me are the intracellular and extracellular conductivities,

• H is the domain of the heart (We will later introduce T for torso and
B for body),

• v is the transmembrane potential,

• ue is the extracellular potential.

As mentioned, there are two phases during a heart beat for which the entire
heart is in the same state, the plateau and the resting phase, denoted by t1
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1.3 Mathematical derivation of the PDE

and t2 respectively. Lab measurements have provided data for the potentials
during these states [2],

v(x, t1) ≈

{
20mV, x in healthy tissue,

−20mV, x in ischemic tissue,
(1.9)

and

v(x, t2) ≈

{
−80mV, x in healthy tissue,

−70mV, x in ischemic tissue.
(1.10)

Now, we can define a new variable h by

h(x) = v(x, t1)− v(x, t2) ≈

{
100mV, x in healthy tissue,

50mV, x in ischemic tissue.
(1.11)

This is called the shift in the transmembrane potential, and likewise we will
define the shift in the extracellular potential as

r(x) = ue(x, t1)− ue(x, t2). (1.12)

The equation (1.8) must hold for any t, so clearly it holds for t1 and t2, thus
subtracting the equation at time t2 from the equation at time t1, gives

∇ · ((Mi +Me)∇r) = −∇ · (Mi∇h) in H. (1.13)

In the torso, the cells are relatively non-active. So in this model, we assume
that these cells do not change their electric properties, allowing the modeling
error regarding active cells in the torso. For instance, muscle cells contracts
due to change in electrical potential. However, we can now model the torso as
a passive conductor. Mathematically, this can be described by the following
homogeneous elliptic PDE:

∇ · (Mo∇r) = 0 in T. (1.14)

Furthermore, it is assumed that the body is insulated. Mathematically, this
means that there is no flux over the boundary of the body, which can be
expressed as follows with a formula from basic calculus

(Mo∇r) · nb = 0, x ∈ ∂B, (1.15)

where B is defined by B =H̄ ∪ T . In addition, conditions at the interface
between H and T are required [24]:

rH = rT on ∂H,

(Me∇rH) · nH = −(Mo∇rT ) · nT on ∂H,

(Mi∇h+Mi∇rH) · nH = 0 on ∂H. (1.16)
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Moving on from the assumptions, we can now derive the weak formulation
of the PDE, so first we will multiply the left-hand side of equation (1.13) by
ψ ∈ C∞(B), and integrate by parts over H to derive∫

H
ψ∇ · ((Mi +Me)∇r)dx

= −
∫
H
∇ψ · ((Mi +Me)∇r)dx+

∫
∂H

ψ((Mi +Me)∇r) · nHdS, (1.17)

by applying Gauss-Green’s theorem. Likewise, we can do the same for the
right-hand side, and get

−
∫
H
ψ∇ · (Mi∇h)dx =

∫
H
∇ψ · (Mi∇h)dx−

∫
∂H

ψ(Mi∇r) · nHdS. (1.18)

By following the same strategy, we get an expression from equation (1.14)
which reads:∫

T
ψ∇ · (Mo∇r) = −

∫
T
∇ψ · (Mo∇r) +

∫
∂H

ψ(Mo∇r) · nTdS. (1.19)

Note that the integral over the boundary only includes the boundary at
the heart, since from equation (1.14), we get that the rest of the integral is
equal to zero. Now, by combining (1.17)-(1.19), and imposing the conditions
(1.16), given at the interface between H and T, we get∫

B
∇ψ · (M∇r)dx = −

∫
H
∇ψ · (Mi∇h)dx, (1.20)

where

M =

{
Mi +Me for x ∈ H,
Mo for x ∈ T.

By a density argument, the class of test functions can be extended, so the
above weak formulation of the PDE will hold for any ψ ∈ H1(B), where
H1(B) = {u ∈ L2(B) : ∇u ∈ L2(B)}. Note that the right-hand side of
(1.20) is known due to the lab results summarized in (1.11).

1.4 Existence and uniqueness

The PDE from (1.20) won’t provide a unique solution, since the function
itself is not a part of the PDE, but only it’s derivative, this also applying
to the boundary condition (1.15). If some function r ∈ H1(B) is a solution,
then r + c, where c is an arbitrary constant, will also be a solution. Hence,
we ought to search for a solution in a different space. Common practice in
Sobolev space theory is to search for a solution in the space

X =

{
u ∈ H1(B)

∣∣∣∣ ∫
B
u = 0

}
, (1.21)
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1.4 Existence and uniqueness

with the norm inherited from H1(B). Then, our problem reads: Find r ∈ X
such that∫

B
∇ψ · (M∇r)dx = −

∫
H
∇ψ · (Mi∇h)dx, ∀ψ ∈ X. (1.22)

To show existence, we will first consider the bilinear form associated with
this PDE, and prove that this is continuous. This bilinear form L̂(·, ·) :
X ×X 7−→ R is defined by

L̂(r, ψ) =

∫
B
∇ψ · (M∇r)dx. (1.23)

The objective of introducing this bilinear operator is to use it to prove ex-
istence and uniqueness, by showing that it is symmetric, continuous and
coercive, and therefore forms an equivalent inner product on X (Proof 4 -
Appendix A). If so, we can use Riesz’ representation theorem, which states
an important fact between a Hilbert space and its dual space; they are iso-
metrically isomorphic. More formally, this can be written as:

Riesz’ representation theorem - Let H be a Hilbert space with an
inner product (·, ·). For any linear functional f : H 7−→ R, there exists a
unique element u ∈ H such that

f(v) = fu(v) = (u, v), ∀v ∈ H. (1.24)

and
‖fu‖H∗ = ‖u‖H . (1.25)

The mapping u 7→ fu is a linear isomorphism of H onto H∗[4, 8]. Hence, the
Hilbert space is identified with its dual space in sense of the norm.

If we go back to (1.22), and define the linear functional Q̂h : X 7−→ R
as

Q̂h(ψ) = −
∫
H
∇ψ · (Mi∇h)dx, (1.26)

we can define our problem(1.22) on a more abstract form as: Find r ∈ X
such that

L̂(r, ψ) = Q̂h(ψ), ∀ψ ∈ X. (1.27)

Now, since Q̂h is a linear functional, we will have a unique element in X
identified with this linear functional, from Riesz’ representation theorem.
Thus, if we can show the attributes of L̂(·, ·) as mentioned above, we will have
a unique solution to the problem. But, we will first state the requirements on
the conductivities. They must be symmetric and strictly positive definite,
i.e

xTM(x)x ≥ Θ|x|2, ∀ x ∈ R3, Θ > 0, (1.28)
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where Θ is constant. From this, we can start to show our claims. Symmetry
follows from

L̂(r, ψ) =

∫
B
∇ψ · (M∇r)dx =

∫
B

(MT∇ψ) · ∇rdx

=

∫
B

(M∇ψ) · ∇rdx = L̂(ψ, r). (1.29)

The next step is to show continuity:

|L̂(r, ψ)| =
∣∣∣∣∫
B
∇ψ · (M∇r)dx

∣∣∣∣ ≤ ∫
B
|∇ψ · (M∇r)|dx

≤
∫
B
|M11rx1ψx1|+ |M12rx2ψx1|+ ...+ |M33rx3ψx3|dx

≤ sup |M11|‖rx1‖L2(B)‖ψx1‖L2(B) + ... ≤ C‖r‖X‖ψ‖X . (1.30)

by Hölder’s inequality. Thus, the bilinear form is continuous, since we have
equivalence between boundedness and continuity for linear operators [8]. To
show the last claim, coercivity, we need the inequality [4]:

Poincarè’s inequality - Let U ⊂ Rn be a bounded, connected, open
set. Then there exists a constant C, such that

‖u− ū‖L2(U) ≤ C‖∇u‖L2(U), ∀ u ∈ H1(U), (1.31)

where ū denotes the average of the function over the domain, i.e

ū =
1

|B|

∫
B
u dx. (1.32)

Note, however, that in our space, we have an average of zero. Hence, we can
use the inequality (1.31) to derive

‖r‖2H1(B) = ‖r‖2L2(B) + ‖∇r‖2L2(B) ≤ (C2 + 1)‖∇r‖2L2(B). (1.33)

Now, by using the fact that M(x) is positive definite, we can furthermore
show that

L̂(r, r) =

∫
B
∇r ·M∇r dx =

∫
B

(∇r)TM∇r dx

≥
∫
B
Θ|∇r|2 dx = Θ‖∇r‖2L2(B). (1.34)

Thus, it follows that

‖r‖2H1(B) ≤
C2 + 1

Θ
L̂(r, r), (1.35)
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1.5 The inverse problem

meaning that L̂(·, ·) is coercive, and together with the symmetry and conti-
nuity properties, the bilinear operator is an equivalent inner product on X.
Now, we use the Riesz representation theorem explained earlier. Then, we
know that there exists a unique g ∈ X such that

L̂(g, ψ) = Q̂h(ψ), ∀ψ ∈ X. (1.36)

We then obtain r = g.

By now, we have a solution in H1(B) when we know the shift in the ex-
tracellular potential (1.11). The electrocardiogram is only recorded on the
boundary of the body. Hence, we still need to be sure we are able to assign
“boundary values” to this function. Luckily, from Sobolev space theory[4]
we have

The trace theorem - For any bounded region U, with a C1-boundary,
there exists a bounded linear operator

T : H1(U)→ L2(∂U), (1.37)

such that
‖Tu‖L2(∂U) ≤ C‖u‖H1(U), ∀u ∈ H1(U). (1.38)

Note, however, that this does not imply that we can assign values in a point-
wise sense, since L2 does not provide us any information on sets of measure
zero. What this theorem merely says, is that we can think of the restriction
u|∂U of some function u ∈ H1 as a L2(∂U)-function.

To sum up, the forward problem consists of taking the shift h(1.11) in the
extracellular potential( and by that, the ischemic region), and find a solution
- r of (1.22) - in H1(B) before using the trace operator to find a function
defined on the surface of the body. More details of representing the ischemic
region will be discussed thoroughly in the next section.

1.5 The inverse problem

If we have strictly positive definite conductivities, and search in the right
space, we will have a unique solution of the forward problem. But as ex-
plained in the introduction, our goal is to find the inverse solution, that is,
to find the domain D in the heart which contains the ischemic tissue, i.e

D = {x ∈ H|h(x) ≈ 50mV }, (see (1.11)). (1.39)

The idea of how to do this, is to use the electrocardiogram, which is a
recording of the electrical activity of the heart - or in mathematical terms
a mapping from the surface of the body to the real numbers, along with
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1 INTRODUCTION

the assumption that we could use a sphere to approximately represent the
ischemic region. The electrocardiogram and our approximation assumption
turn our problem into finding the spherical coordinates (x0, y0 and z0) for
the center of the sphere and the radius (s), which in turn should represent
the ischemic region (1.39). By introducing the cost-functional J : R4 7−→ R
defined by

J(x0, y0, z0, s) =
1

2

∫
∂B

(r(x0, y0, z0, s)− d)2 dS, (1.40)

the problem reads:
min

x0,y0,z0,s
J(x0, y0, z0, s), (1.41)

subject to∫
B
∇ψ · (M∇r)dx = −

∫
H
∇ψ · (Mi∇h(D))dx ∀ ψ ∈ X. (1.42)

The solution to the forward problem is depending on the center and the
radius of the ischemic region in the sense that h, the shift in the transmem-
brane potential, takes different values regarding if we are inside or outside
the ischemic region (1.39).

Now, to find an expression for the ischemic domain, first remember that
the values the shift in the transmembrane potential takes in the ischemic
and the healthy region of the heart is known(1.11). By introducing the
Heavside function, which reads

G(x) =

{
1, x > 0,

0, x < 0,
(1.43)

we can express the shift, h, as the function

h(φ) = 50(1−G(φ)) + 100G(φ), (1.44)

where φ is a function which takes negative values inside the ischemic re-
gion, zero on the boundary and positive values in the rest of the heart,
and G is the Heavside function just introduced in (1.43). However, G is a
discontinuous function, but research suggests that the transition is smooth,
hence the use of an approximated Heavside function is common. We will
use an approximated Heavside function previously used by a research team
at Simula[2], which reads

Gτ (φ) =


0, if φ < −τ,
1, if φ > τ,

1

2

[
1 +

φ

τ
+

1

π
sin

(
πφ

τ

)]
, if |φ| ≤ τ.

(1.45)
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1.5 The inverse problem

Further, we need an expression for the φ-function. We have already men-
tioned the requirements; negative values inside the ischemic region and pos-
itive outside. In 2D, the function

φ(x, y) = (x− x0)2 + (y − y0)2 − s2, (1.46)

where (x0, y0) is the center of the ischemic region, and s is the radius, will
satisfy these requirements. This is an easy choice, and it can also easily be
extended to 3D or restricted to 1D by adding z or removing y, respectively.
In the bidomain model, clearly the gradient of h is zero if |φ| > τ , since Gτ
is constant in this region. So, the only area for which there is a gradient
different from zero, is in the transition zone, where |φ| ≤ τ . This gradient
can be calculated using the chain rule

∇h(φ(x)) = h′(φ)∇φ(x), (1.47)

which gives us the following expression for ∇h

∇h(φ(x)) =

{
50
τ

(
1 + cos

(
πφ
τ

))
(~i(x− x0) +~j(y − y0)) if |φ| < τ,

0 elsewhere.

Hence we have an expression for the gradient of the transmembrane poten-
tial. But it remains to show how this can be used to find the ischemic region.
To do so, let us first consider the bidomain model again(1.27).

L̂(r, ψ) = Q̂h(ψ). (1.48)

To work with this equation any further in this section will be cumbersome.
Hence, we will introduce the linear operators associated with this PDE. We
introduce L : X 7−→ X∗ and Q : X 7−→ X∗ by

〈Lr, ψ〉 = L̂(r, ψ) (1.49)

and
〈Qh,ψ〉 = Q̂h(ψ), (1.50)

where these right-hand sides are the expression from the PDE (1.27), and
〈·, ·〉 denotes the pairing between X∗ and X. From Riesz’ representation
theorem, we then have that for any Q̂ ∈ X∗, there exists a unique r ∈ X
such that

〈Lr, ψ〉 = L̂(r, ψ) = Q̂(ψ), ∀ψ ∈ X, (1.51)

and
‖Lr‖X∗ = ‖r‖X . (1.52)

In other words, the mapping L : X 7−→ X∗ is a isometric isomorphism of X
onto X∗. Hence, we know that L has an inverse. This means that we can
write our equation on the form

Lr = Qh(φ) (1.53)

13



1 INTRODUCTION

⇒ r = L−1Qh(φ). (1.54)

When we go back to look at the inverse problem, this new syntax is easier to
work with. Our goal was to minimize the cost-functional from eq (1.40), but
this was connected to the solution of the partial differential equation(1.42).
Hence, we need to introduce the Lagrangian, and we get

L(x0, y0, s, λ) = J(x0, y0, s)− λ(Lr −Qh(x0, y0, s)). (1.55)

Now, we can incorporate the first-order optimality condition, which states
that the gradient of the Lagrangian should equal zero. That is

∇L(x0, y0, s, λ) = ∇J(x0, y0, s)−∇λ(Lr −Qh(x0, y0, s)) = 0. (1.56)

where

∇ =

(
∂

∂x0
,
∂

∂y0
,
∂

∂s
,
∂

∂λ

)
. (1.57)

Note that when we set the derivative with respect to λ equal to zero, we get
back the constraint govern by the PDE in (1.53). We need to compute the
derivatives of the cost-functionals. To do so, let us start with the derivative
with respect to x0:

∂J

∂x0
=

∂

∂x0

∫
∂B

1

2
(TL−1Q{h(φ(x0, y0, s))} − d)2dS

=

∫
∂B

(
TL−1Q{h(φ(x0, y0, s))} − d

) ∂

∂x0

(
TL−1Q{h(φ(x0, y0, s))}

)
dS

= −2

∫
∂B

(TL−1Q{h(φ(x0, y0, s))} − d)

(TL−1Q{h′(φ(x0, y0, s))(x− x0)})dS. (1.58)

The expression for ∂J
∂y0

is similar, when we substitute x0 with y0, and at last,
the derivative with respect to s is

∂J

∂s
= −2

∫
∂B

(TL−1Q{h(φ(x0, y0, s))} − d)

(TL−1Q{h′(φ(x0, y0, s))s})dS. (1.59)

We now have shown how we can take the derivative with respect to all
the variables in the minimization problem. Note that since T, L and Q are
linear, the derivative does not affect any of these. The optimality system
reads:

∂

∂x0
J(x0, y0, s)−

∂

∂x0
λ(Lr −Qh(x0, y0, s)) = 0,

∂

∂y0
J(x0, y0, s)−

∂

∂y0
λ(Lr −Qh(x0, y0, s)) = 0,

∂

∂s
J(x0, y0, s)−

∂

∂s
λ(Lr −Qh(x0, y0, s)) = 0,

Lr −Qh(x0, y0, s) = 0. (1.60)
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1.6 Highlighting important topics

This problem might be solved with a “one-shot” method. However, this will
not be done here. Instead, we will try to solve this optimality system using
a numerical iteration method. The idea is to first guess a solution of the
ischemic region. We then solve the forward problem with this ischemic re-
gion. Then, taking this solution, we find the gradient of the cost-functional,
and use this to make a new guess for the ischemic region. For a more lucid
explanation, see the iteration procedure below.

Algorithm 1 Landweber iteration

1: Make an initial guess x̃0, on location and size of the ischemic region
2: repeat
3: Solve rk+1 = L−1Qh(φ(x̃k))
4: Update the guess by x̃k+1 = x̃k − β∇J(rk+1)
5: until ‖x̃x+1 − x̃k‖ < TOL

1.6 Highlighting important topics

Following this quick introduction to the problem we face, we would like to
give some more details around some of the important problems we will en-
counter throughout this thesis.

One of the main topics to investigate is the forward operator. This op-
erator takes the ischemic parameters and maps them to electrical potentials
recorded on the surface of the body. In the end, we would like to determine
if the inverse of this operator is stable, but we will first consider the stabil-
ity of the forward operator, as well as the cost-functional (1.40), since this
might help us to determine the stability of the inverse operator. Therefore,
we introduce a theorem:

Weierstrass’ theorem - If f is a continuous, real-valued function on a
non-empty compact set, then f will take a minimum value on this set.

Using this theorem, we know that the cost-functional has a minimum when-
ever the forward operator is continuous, since the cost-functional is contin-
uous when the forward operator is (Proof 5 - Appendix A). We only require
that the set of ischemic parameters is compact.

The next question that arises is whether we can find the inverse solution.
Since we want to take a recorded electrocardiogram and go backwards, try-
ing to find the ischemic region, we need to apply the inverse operator, and
therefore the question concerning existence of an inverse operator is very
important. Also, we would like for this inverse operator to be continuous,
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1 INTRODUCTION

since we want small differences in measured potential to give small changes
in the ischemic region. That is, to make it robust for noise or other anoma-
lies.

In addition, the uniqueness of the least-squares solution is of major inter-
est. When the true ischemic region has the shape of a sphere, we can use
the inverse of the forward operator, but the true ischemic region will most
likely have a shape different from a perfect sphere. Therefore, we will have
to find the minimum of the cost-functional (the least-squares solution), and
the continuity of this operation is important.

Numerically, we want to work with a convex set. As we will see in Chapter
2, there might be a problem with continuity of the least-squares solution
when the set is non-convex. We mentioned above that we could choose a
convex domain, but in the end of Chapter 2, it will be apparent that we need
linearity to preserve convexity in the image. We will see shortly that our
forward operator is non-linear, so the non-convexity will play a major part
during the remaining part of this thesis. To see why the forward operator is
non-linear, let us first discuss the mapping from the ischemic region to the
approximated Heavside-function(1.45). Combined with eq (1.44), this gives
us

h(φ) =


50, if φ < −τ,
100, if φ > τ,

50 + 25

[
1 +

φ

τ
+

1

π
sin

(
πφ

τ

)]
, if |φ| ≤ τ.

(1.61)

To make this more stringent we will introduce an operator describing this
mapping. Let S : R4 7−→ H1(H) be defined by

S(x0, y0, z0, s) = h(x;x0, y0, z0, s). (1.62)

What we see, is that we take a element from R4 and send it to the operator
S, and get out a H1(H)-function, as the one defined in (1.61). Now, we
observe that this is a non-linear operator.

When we now describe the full forward problem, it can be defined by the
operator

F = TL−1QS : R4 7−→ L2(∂B), (1.63)

where the operators on the right-hand side is from (1.37), (1.49), (1.50) and
(1.62). This will then be a non-linear operator because of the operator S.
Hence, we might hope to gain more stability by approximating the ischemic
region as a ball, but we do lose linearity. Nevertheless, all these topics will
be discussed either theoretically or numerically in this thesis.
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2 Continuity properties of the system

This section will be spent looking at the mapping from input parameters to
the electrocardiogram, and decide whether this mapping is continuous. If so,
Weierstrass’ theorem will imply that on a compact domain the operator will
have a minimum. Hence, if this forward mapping is continuous, we know
that there exists an ischemic region in the heart providing a minimum for
the cost-functional, J(1.40).

2.1 Continuity of the forward operator

In the introduction, some of the operators were just quickly defined, so we
will look more closely at them now, and then be able to analyze the conti-
nuity properties of each of the operators. But first, we will just give a short
written review of the problem we face.

Initially, we assumed a ball-shaped geometry for the ischemic region. We
need four parameters to represent this shape(three for the center and one
for the radius). After mapping these parameters to a H1(H)-function(1.61),
we are able to solve the PDE (1.22). The solution to this PDE is a H1(B)-
function describing the extracellular potential throughout the body. By the
use of the trace theorem, we can also map this to a L2-function defined on
the boundary of the body. This, however, is a theoretical function, without
much practical use, since we need point-values at the electrodes. Therefore,
we must use some kind of average of the function around each electrode, to
take care of the fact that a L2-function is undefined for a set of measure zero.

Now, we would like to show that all these operations are continuous, but let
us first state the definition of a continuous operator, as well as of a Lipschitz
continuous operator:

Definition - Continuity Let X and Y be normed spaces. An opera-
tor f : X −→ Y is continuous at x0 ∈ X if for every ε > 0, there exists a
δ > 0 such that

‖f(x)− f(x0)‖Y < ε

whenever
‖x− x0‖X < δ.

Definition - Lipschitz continuity An operator f : X −→ Y is Lipschitz
continuous if there exists a M ∈ R such that

‖f(x)− f(x0)‖Y < M‖x− x0‖X , ∀x, x0 ∈ X.

We did discuss the trace operator T (1.37) in the section about existence and

17



2 CONTINUITY PROPERTIES OF THE SYSTEM

uniqueness, and we did introduce the two operators L and Q associated with
the PDE in eq (1.49) and (1.50). Finally, in the last section of the previous
chapter, we did introduce the mapping S from the ischemic domain to the
shift in the transmembrane potential(1.62). Of these operators, we know
that T, L−1 and Q are linear, so if these turns out to be continuous, it fol-
lows automatically that they are Lipschitz continuous (Proof 1 - Appendix
A). This is a much stronger type of continuity, so we’ll as far as possible try
to show Lipschitz continuity of the different operators. The reason for doing
so, is due to our goal of increasing the stability. Lipschitz continuity implies
a globally stability in our forward operator, and however not certain, but it
might indicate a stronger stability of the inverse operator, if such is present.

If now the operator S is Lipschitz continuous as well, we know that F also
will be a Lipschitz continuous operator, since the composition of (Lipschitz)
continuous operators are (Lipschitz) continuous (Proof 2 - Appendix A).
But before using the definitions of continuity and these two small proofs to
show continuity of the forward operator, we need one more theorem first.

Bounded inverse theorem Let X and Y be Banach spaces. Let f :
X 7−→ Y be a bounded, linear and bijective operator. Then it follows that
f−1 is bounded as well.

A proof of this theorem can be found in a standard textbook in functional
analysis (see e.g [25]). Now however, we can move on to the continuity theo-
rem. Just note that we now use the standard symbol for H1(B) and not the
subspace X as we introduced earlier(1.21). This is done to make the proof
easier to follow. Even though S,Q,L−1 and T operates on subspaces of the
commonly known spaces below, we are about to prove several inequalities,
so it does not make any practical differences, since the norms of the sub-
spaces are inherited from the spaces themselves. The theorem is stated as:

THEOREM 1 - Continuity of forward operator Given the partial
differential equation

Lr = QS{x0, y0, z0, s}, (2.1)

from (1.22, 1.27 and 1.53), along with the mapping from (1.62). Then the
mapping F (1.63), denoted by the composition of operators given as

R4 S−→ H1(H)
Q−→ H1(B)∗

L−1

−→ (H1(B))
T−→ L2(∂B),

is Lipschitz continuous.

Proof: The trace theorem has already shown that T is continuous, so it
remains to see if the remaining operators are continuous.
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2.1 Continuity of the forward operator

Step 1 (The L−1-operator): To consider L−1, we remember the bilinear
form

L̂(r, ψ) =

∫
B
∇ψ · (M∇r)dx, r, ψ ∈ H1(B). (2.2)

From this, the previously introduced L : X → X∗ was defined as

〈Lr, ψ〉 = L̂(r, ψ), (2.3)

where X is from eq (1.21). We have to use this subspace right now, and not
H1(B), since this operator is not a bijection from H1(B) to H1(B)∗. Nev-
ertheless, the goal is to prove that L is a continuous and bijective operator,
for if so, it follows from the bounded inverse theorem that the inverse exists
and that this is bounded as well. With use of Riesz representation theorem,
we have already shown that L is an isometric isomorphism. So, it follows
that L is continuous, and hence that L−1 is bounded, and equivalently con-
tinuous.

Step 2 (The Q-operator): Similarly, the operator Q : H1(H)→ (H1(B))∗

was defined by

〈Qh,ψ〉 = −
∫
H
∇ψ · (Mi∇h) dx, h, ψ ∈ H1(B), (2.4)

so, by using the definition of the norm on the dual space, we get

‖Qh‖(H1(B))∗ = sup
‖ψ‖H1(B)≤ 1

∣∣∣∣∫
H
∇ψ · (Mi∇h)

∣∣∣∣ dx
≤ sup
‖ψ‖H1(B)≤ 1

∫
H
|∇ψ · (Mi∇h)|dx

≤ C sup
‖ψ‖H1(B)≤1

‖ψ‖H1(B)‖h‖H1(B) ≤ C‖h‖H1(B). (2.5)

Hence, this mapping is also continuous. It now remains to show that the
S-operator(1.62) is Lipschitz continuous. However, we deduced in the end
of the last chapter that S was non-linear, and hence the equivalence between
boundedness and continuity is no longer present. So, it must be shown ex-
plicitly that a small change in the ischemic region will provide a small change
in the H1-function generated by S.

Step 3 (Show that h ∈ H1(H)): The operator S is a mapping to H1(H).
This means that a small change in the ischemic region must give a corre-
sponding small change in both the function itself as well as its weak deriva-
tive under the L2-norm. But before calculating these norms, we must prove
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2 CONTINUITY PROPERTIES OF THE SYSTEM

that that h (1.61) actually is an element in H1(H). Writing out h(φ(x; x̃)),
where x̃ = (x0, y0, z0, s), it reads

h(φ(x; x̃)) =


50 if φ < −τ,
100 if φ > τ,

50 + 25
[
1 + φ

τ + 1
π sin

(
πφ
τ

)]
if |φ| ≤ τ.

Note that, since φ (1.46) is a smooth function, we can see from the expression
above that h(φ) also is a continuous function, i.e, h(φ) ∈ C(H). Further,
the derivative is

∇h(φ(x; x̂)) =

{
0 if |φ| > τ,

50
[

1
τ + 1

τ cos
(
πφ
τ

)]
∇φ(x; x̃) if |φ| ≤ τ.

which is also a continuous function since in fact φ ∈ C∞(H) (it suffices that
φ ∈ C1(H)). Hence h(φ) is a function in C1(H), and then also in H1(H)
since the domain in bounded.

Step 4 (The S-operator): If we can show that the mappings S1 : R4 7−→
H1(H) defined by

S1(x̃) = φ(x; x̃), (2.6)

and S2 : H1(H) 7−→ H1(H) defined by

S2(φ) = h(φ), (2.7)

are Lipschitz continuous, it follows that S is Lipschitz continuous, since
S = S2 ◦ S1. Here φ is the function from eq (1.46) and h is from eq (1.61).

When considering the mapping S1, we start by looking at the H1-norm.
That is, we must measure the distance between both the functions them-
selves, as well as their derivative in the L2-sense. We first note, however,
that we need to label several variables now, so in the next few calculations,
we will use boldface for the vector-valued variables, and normal letters for
variables and parameters in R. This is not done elsewhere in the text, due
to the fact that it should be clear from the setting which is meant. We now
start to consider the mapping by looking at the distance between the two
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2.1 Continuity of the forward operator

functions in L2-norm:

‖φ(x; x̃)− φ(x; x̃0)‖2L2(H) =

∫
H
|(x− x0)2 + (y − y0)2 + (z − z0)2 − s2

− ((x− x̃0)2 − (y − ỹ0)2 − (z − z̃0)2 − s̃2)|2dx

=

∫
H
|[x2

0 − x̃2
0 + y2

0 − ỹ2
0 + z2

0 − z̃2
0 + (s̃2 − s2)]

+ 2x(x̃0 − x0) + 2y(ỹ0 − y0) + 2z(z̃0 − z0)|2dx
Minkowski′s
≤ (‖x2

0 − x̃2
0 + y2

0 − ỹ2
0 + z2

0 − z̃2
0 + (s̃2 − s2)‖L2(H)

+ ‖2x(x̃0 − x0) + 2y(ỹ0 − y0) + 2z(z̃0 − z0)‖L2(H))
2. (2.8)

Now, we must evaluate both of these terms to find a bound. Starting with
the first, we can rewrite this as

‖x2
0 − x̃2

0 + y2
0 − ỹ2

0 + z2
0 − z̃2

0 + (s̃2 − s2)‖L2(H)

= ‖(x0−x̃0)(x0+x̃0)+(y0−ỹ0)(y0+ỹ0)+(z0−z̃0)(z0+z̃0)+(s̃−s)(s̃+s)‖L2(H)

Minkowski′s
≤ |x0 + x̃0|‖x− x̃0‖L2(H) + |y0 + ỹ0|‖y − ỹ0‖L2(H)

+ |z0 + z̃0|‖z − z̃0‖L2(H) + |s+ s̃|‖s̃− s‖L2(H) ≤ C‖x̃− x̃0‖R4 . (2.9)

Note that since every parameter above is constant with respect to the
Lebesgue measure, it is easy to pull expressions out of the norm. When
moving on the second, we remark that the variables are bounded, since we
are inside the heart. Therefore, we get

‖2x(x̃0 − x0) + 2y(ỹ0 − y0) + 2z(z̃0 − z0)‖L2(H)

≤ 2M‖(x̃0 − x0)‖L2(H) + 2M‖(ỹ0 − y0)‖L2(H)

+ 2M‖(z̃0 − z0)‖L2(H) ≤ C‖x̃− x̃0‖R4 . (2.10)

Hence, we have a bound for the entire expression, so S1 is a Lipschitz con-
tinuous mapping from R4 to L2, but in addition, this must also hold for the
derivative, which reads

‖∇φ(x; x̃)−∇φ(x; x̃0)‖2L2(H)

=

∫
H
|2(x−x0)−2(x− x̃0)+2(y−y0)−2(y− ỹ0)+2(z−z0)−2(z− z̃0)|2dx

=

∫
H
|2(x0 − x̃0) + 2(y0 − ỹ0) + 2(z0 − z̃0)|2dx ≤ C‖x̃− x̃0‖2R4 . (2.11)

Thus, S1 is a Lipschitz continuous operator from R4 to H1(H). Now, we will
consider the mapping S2. But note that our choice of φ ∈ C1(H) was very
specific. Thus, we are really limited in our choice of function to be used in
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2 CONTINUITY PROPERTIES OF THE SYSTEM

the Heavside approximation(1.45). If we want to approximate the ischemic
region as a square or a rectangle for instance, we need some other function to
describe when we are inside and outside the ischemic region. In fact, we can
actually take this into account now. We have already proved that the map-
ping x̃ 7−→ φ(x; x̃) is Lipschitz continuous. Therefore, we can now neglect
the shape of this function, and instead turn the attention to any function in
the space W 1,∞(H) = {u ∈ L∞(H) : ∇u ∈ L∞(H)}. Clearly, the function
φ we already mentioned (1.46), is in this space. Hence, if we can prove that
the mapping η 7−→ h(η) is Lipschitz continuous for any η ∈ W 1,∞(H), the
theorem will follow. Then it will merely be a question about showing that a
mapping x̃ 7−→ η(x; x̃) is Lipschitz continuous to obtain a Lipschitz contin-
uous forward operator when working with different shapes for the ischemic
region, represented by the η-function.

This expansion, however, requires us to show that h(η) ∈ H1(H) when
η ∈W 1,∞(H), which is true due to

‖h(η(x; x̃))‖2L2(B)

=

∫
η<−τ

502dx+

∫
η>τ

1002dx+

∫
|η|≤τ

∣∣∣∣50 + 25

[
1 +

η

τ
+

1

π
sin
(πη
τ

)]∣∣∣∣2 dx
≤ 1002

∫
H
dx <∞, (2.12)

for the function itself, and for the derivative we get the estimate

‖∇h(η(x; x̃))‖2L2(B) =

∫
|η|≤τ

∣∣∣∣50

[
1

τ
+

1

τ
cos
(πη
τ

)]
∇η
∣∣∣∣2 dx

≤
(

100

τ

)2 ∫
|η|≤τ

|∇η|2dx ≤
(

100

τ

)2(
sup
x∈H
|∇η|

)2 ∫
|η|≤τ

dx <∞. (2.13)

Hence, we can return to the mapping S2, which is quite technical, so we will
start by writing out

h(η)− h(η0) =



0 if η, η0 < −τ,
−25[1 + η0

τ + 1
π sin(πη0τ )] if η < −τ, |η0| ≤ τ,

50 if η < −τ, η0 > τ,
25[1 + η

τ + 1
π sin(πητ )] if |η| ≤ τ, η0 < −τ,

25[η−η0τ + 1
π (sin(πητ )− sin(πη0τ ))] if |η|, |η0| ≤ τ,

25[1 + η
τ + 1

π sin(πητ )]− 50 if |η| ≤ τ, η0 > τ,
50 if η > τ, η0 < −τ,
50− 25[1 + η0

τ + 1
π sin(πη0τ )] if η > τ, |η0| ≤ τ,

0 if η, η0 > τ.

Now, what must be proven is Lipschitz continuity of S2 from W 1,∞ to H1.
To do so, we will first consider each of the nine parts of the above expression,
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2.1 Continuity of the forward operator

and try do find a bound on them in L2-sense. Also, we will denote each of
these domains from D1 to D9, starting from the top, to make the integral
symbols cleaner. The first and the last domain of the integral, however, will
not contribute to the integral. So, we start of with the second part, but first
note the similarity between the second and forth expression. In fact, these
will have the same bound in L2-sense, so if suffices to consider one of them.
So, by looking at the second part, we get

‖h(η)− h(η0)‖2L2(D2) =

∫
D2

∣∣∣∣−25

[
1 +

η0

τ
+

1

π
sin
(πη0

τ

)]∣∣∣∣2 dx
= 252

∫
D2

∣∣∣∣1 +
η0

τ
+

1

π
sin
(πη0

τ

)∣∣∣∣2 dx
Minkowski′s
≤ 252

(∥∥∥1 +
η0

τ

∥∥∥
L2(D2)

+

∥∥∥∥ 1

π
sin
(πη0

τ

)∥∥∥∥
L2(D2)

)2

. (2.14)

These two new terms much be considered, and starting out with the first,
we get∥∥∥η0

τ
+ 1
∥∥∥2

L2(D2)
=

∫
D2

∣∣∣η0

τ
+ 1
∣∣∣2 dx

=

∫
D2

∣∣∣η0

τ
+
τ

τ

∣∣∣2 dx ≤ ∫
D2

∣∣∣η0

τ
− η

τ

∣∣∣2 dx ≤ C‖η − η0‖2L2(H), (2.15)

due to the fact that in this domain, η < −τ , which we used to obtain the
inequality. Furthermore, the other term can be bounded as∥∥∥∥ 1

π
sin
(πη0

τ

)∥∥∥∥2

L2(D2)

=

∫
D2

∣∣∣∣ 1π sin
(πη0

τ

)∣∣∣∣2 dx
=

∫
D2

∣∣∣∣ 1π sin
(πη0

τ
+
πτ

τ

)∣∣∣∣2 dx ≤ ∫
D2

∣∣∣∣ 1π (πη0

τ
+
πτ

τ

)∣∣∣∣2 dx
≤
∫
D2

∣∣∣∣η0 − η
τ

∣∣∣∣2 dx ≤ C‖η − η0‖2L2(H), (2.16)

by the same argument as above. Hence, this first expression holds. Next,
we consider the third and seventh part, which is given by∫

D3∪D7

502dx ≤ 502

4τ2

∫
D3∪D7

|η − η0|2dx ≤
502

4τ2
‖η − η0‖2L2(H), (2.17)

since the distance |η − η0| is larger than 2τ in this part of the integral.

Hence, six of the nine parts are under control. Furthermore, we can ob-
serve that the sixth and the eight part of the mapping, is also similar in the
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2 CONTINUITY PROPERTIES OF THE SYSTEM

sense of the L2-norm, so we can once more consider only one of them.∫
D6

∣∣∣∣25

[
−1 +

η

τ
+

1

π
sin
(πη
τ

)]∣∣∣∣2 dx
= 252

∫
D6

∣∣∣∣−1 +
η

τ
+

1

π
sin
(πη
τ

)∣∣∣∣2 dx
Minkowski′s
≤ 252

(∥∥∥−1 +
η

τ

∥∥∥
L2(D6)

+

∥∥∥∥ 1

π
sin
(πη
τ

)∥∥∥∥
L2(D6)

)2

. (2.18)

We can observe that the second term in this last expression is equal to
the second term in the inequality in expression (2.14), and thus if suffices to
evaluate the first term. However, we can apply the argument that |−1+ η

τ | ≤
|η−η0τ | in this domain as well, and the same bound as in (2.15) holds. Hence,
the only domain it remains to consider is the fifth, given by∫

D5

∣∣∣∣25

[
η − η0

τ
+

1

π

(
sin
(πη
τ

)
− sin

(πη0

τ

))]∣∣∣∣2 dx
Minkowski′s
≤ 252

(
1

τ
‖η − η0‖L2(H) +

1

π

∥∥∥sin
(πη
τ

)
− sin

(πη0

τ

)∥∥∥
L2(D5)

)2

.

(2.19)

Now, let’s consider the second part of this, since the first is already on
the desired form. To do so, we will use the trigonometric relation sin(A)−
sin(B) = 2cos((A+B)/2)sin((A−B)/2), and hence, the expression becomes∥∥∥sin

(πη
τ

)
− sin

(πη0

τ

)∥∥∥
L2(D5)

=

∥∥∥∥2 cos

(
π(η + η0)

2τ

)
sin

(
π(η − η0)

2τ

)∥∥∥∥
L2(D5)

≤ 2

∥∥∥∥sin

(
π(η − η0)

2τ

)∥∥∥∥
L2(D5)

≤ 2

∥∥∥∥(π(η − η0)

2τ

)∥∥∥∥
L2(D5)

≤ C‖η − η0‖L2(H). (2.20)

Thus, we have shown that the mapping is Lipschitz continuous fromW 1,∞(H)
to L2(H). To prove further, that S2 is a Lipschitz continuous mapping from
W 1,∞(H) to H1(H), we must now consider the derivatives. So, first we will
state the expression

∇(h(η)− h(η0))

=


0 if |η|, |η0| > τ,
25
τ [1 + cos(πητ )]∇η if |η| ≤ τ, |η0| > τ,
25
τ [1 + cos(πη0τ )]∇η0 if |η| > τ, |η0| ≤ τ,
25
τ

(
[1 + cos(πητ )]∇η − [1 + cos(πη0τ )]∇η0

)
if |η|, |η0| ≤ τ.
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2.1 Continuity of the forward operator

Hence, there are four domains to consider, denoted from D1 to D4. The
first domain, however, will clearly not contribute. So, we move on to the
second, and also the third, since these will have an equal bound. Applying
some trigonometric relations, we get the inequalities

‖∇h(η)−∇h(η0)‖2L2(D2) =

∫
D2

∣∣∣∣25

τ

[
1 + cos

(πη
τ

)]
∇η
∣∣∣∣2 dx

=

(
25

τ

)2 ∫
D2

∣∣∣(cos
(πη
τ

)
− cos

(πτ
τ

))
∇η
∣∣∣2 dx

=

(
25

τ

)2 ∫
D2

∣∣∣∣2 sin

(
πη + πτ

τ

)
sin

(
πη − πτ

τ

)
∇η
∣∣∣∣2 dx

≤
(

50

τ

)2

‖∇η‖2L∞
∫
D2∩{η0>τ}

∣∣∣∣sin(πη − πττ

)∣∣∣∣2 dx
+

(
50

τ

)2

‖∇η‖2L∞
∫
D2∩{η0<−τ}

∣∣∣∣sin(πη + πτ

τ

)∣∣∣∣2 dx
≤
(

50

τ

)2

‖∇η‖2L∞
∫
D2∩{η0>τ}

∣∣∣∣πη − πη0

τ

∣∣∣∣2 dx
+

(
50

τ

)2

‖∇η‖2L∞
∫
D2∩{η0<−τ}

∣∣∣∣πη − πη0

τ

∣∣∣∣2 dx ≤ C‖η − η0‖2L2(H). (2.21)

Note that we had to split the integral in two parts, and then use different
sine-expression on each part, and bound the other simply by |sin(x) ≤ 1|.
The last part to consider now, is the expression in the fourth domain, given
by

‖∇h(η)−∇h(η0)‖L2(D4)

=
∥∥∥∇η +∇η cos

(πη
τ

)
−∇η0 −∇η0 cos

(πη0

τ

)∥∥∥
L2(D4)

≤ ‖∇η −∇η0‖L2(D4) +
∥∥∥∇η cos

(πη
τ

)
−∇η0 cos

(πη0

τ

)∥∥∥
L2(D4)

= ‖∇η−∇η0‖L2(D4)+
∥∥∥(∇η −∇η0 +∇η0) cos

(πη
τ

)
−∇η0 cos

(πη0

τ

)∥∥∥
L2(D4)

≤ C|η − η0‖H1(D4) +
∥∥∥∇η0

(
cos
(πη
τ

)
− cos

(πη0

τ

))∥∥∥
L2(D4)

≤ C|η − η0‖H1(D4) + ‖∇η0‖L∞
∥∥∥π
τ

(η − η0)
∥∥∥
L2(D4)

≤ C|η − η0‖H1(H).

(2.22)

Hence, the theorem follows.

Now, we have proved that the mapping F (1.63) is Lipschitz continuous.
But before discussing this any further, we will just show a corollary to ex-
pand the class of level-set functions.

25



2 CONTINUITY PROPERTIES OF THE SYSTEM

Corollary 1 For any η(x;x0, y0, z0, s) ∈ W 1,∞(H) for which the mapping
(x0, y0, z0, s) 7−→ η(x;x0, y0, z0, s) is Lipschitz continuous, then

F = TL−1Q{h(η(x0, y0, z0, s))} is Lipschitz continuous.

Proof: This follows directly from the proof of Theorem 1.

As mention in the beginning of this section, the mapping to the bound-
ary is actually an L2-function, but in real life, we only have a finite set of
electrodes. To get an evaluation at these point, we want to average the
L2-function around each of these, to get

1

|∂B(xi, ε)|

∫
∂B(xi,ε)

u(x)dS, (2.23)

where B(xi, ε) is a ball with center in xi and radius of ε, for some predefined
ε > 0. Now, we want to show that this is also a continuous operation. Let
A : L2(∂B) 7−→ Rn be defined by

Au =
1

|∂B(xi, ε)|

∫
∂B(xi,ε)

u(x)dS, (2.24)

so by letting u, v ∈ L2(∂B), α, β ∈ R we get

A(αu+ βv) =
1

|∂B(xi, ε)|

∫
∂B(xi,ε)

αu(x) + βv(x)dS

= α
1

|∂B(xi, ε)|

∫
∂B(xi,ε)

u(x)dS + β
1

|∂B(xi, ε)|

∫
∂B(xi,ε)

v(x)dS

= αAu+ βAv. (2.25)

Hence, this is linear, and by Hölder’s inequality, we get

1

|∂B(xi, ε)|

∫
∂B(xi,ε)

1 ∗ u(x)dS

≤ 1

|∂B(xi, ε)|
‖1‖L2(∂B)

1

|∂B(xi, ε)|
‖u‖L2(∂B) ≤ C‖u‖L2(∂B). (2.26)

Hence, since this operator A is bounded and linear, we get that this mapping
is Lipschitz continuous as well, and therefore all the piecewise mappings is
continuous. From Appendix A, we then also have that the cost-functional
J (1.40) is continuous. Thus, for a given BSPM(Body Surface Potential
Mapping), there does in fact, from Weierstrass’ theorem, exist a ischemic
region providing a minimum for the cost-functional, provided that the set
of ischemic parameters is chosen to be compact. However, we need to show
if we can find the ischemic region when we have a recorded BSPM, and
whether this ischemic region depends continuously on the BSPM.
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2.2 How to obtain continuous inverse and continuous least-squares

2.2 How to obtain continuous inverse and continuous least-
squares

When considering the forward operator, we looked at F : R4 7−→ Rn, where
n is the number of electrodes attached to the body. We found this operator to
be continuous, and thus the cost-functional is continuous as well. Our main
objective, however, is to use the BSPM to determine the localization and size
of the ischemic region, in the sense of minimizing the cost-functional(1.40).

It will not automatically follow that this least-squares solution will exist
for all BSPM assuming F (1.63) is invertible, but we claim for this to be a
necessary requirement for such a minimum solution to exist. To show this,
we assume d ∈ R(F ), where R(F ) denotes the image of the operator F.
This implies the existence of x such that F (x) = d. In this case, we need
to invert F to find x, which will be our solution to the minimization of the
cost-functional (since J(x) = 0 in this case). Hence, to find back to the
ischemic region assuming the BSPM is in the image of the forward operator,
we need for F to be invertible. When the BSPM lies outside the image, we
need more requirements to obtain a continuous least-squares solution, but
this will be discussed later.

But in addition to F having an inverse, we want this to be continuous, since
a small change in the BSPM should provide a small change in the ischemic
region. So, assuming that the inverse exists, what can we say about the con-
tinuity property? Since we are in finite dimensions, it might be reasonable
to assume this being the case regardless of domains, but the following 1D
example shows us that this is not the case:

Example: Let f : [0, 1) ∪ [2, 3] 7−→ [0, 2] be defined by

f(x) =

{
x in [0, 1)

x− 1 in [2, 3].

Then, clearly, f is continuous, one-to-one and onto. That is, continuous and
bijective. Nevertheless, as shown in Figure 4, the inverse is discontinuous,
which shows that a finite dimensional domain is not sufficient to obtain a
continuous inverse. A natural question is what happens if you include the
point {1} in the domain, but then two elements in the domain maps to the
same element in the range, and the function is no longer injective.
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2 CONTINUITY PROPERTIES OF THE SYSTEM

Figure 4: Discontinuous inverse

It might also be reasonable to believe it to be the fact that the domain is
disconnected that gets us into trouble, but the function f(x) = (cos x, sin x)
from [0, 2π) to the unit circle in R2 will also give us a discontinuous inverse.
Hence, we must strengthen the requirements of the domain, and assume it
to be compact. For a closed and bounded domain, i.e, a compact domain,
where F is a bijection, we have a continuous inverse from a theorem in topol-
ogy [5, 6], which says that:

Theorem 2 - Continuity of the inverse operator

Let X be compact and Y be a normed space. Further, assume T : X 7−→ Y
is continuous and bijective. Then the mapping T is a homeomorphism.

The proof can be found in both these books, but we choose to add a proof
here, to highlight some concepts in topology not discussed anywhere else in
this thesis.

Proof: Let B ⊂ X be open. Then X \ B is closed, and hence compact.
Further, since T is continuous, a mapping from a compact set gives a com-
pact image, thus T (X \ B) is compact in Y, and hence closed. Further,
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2.2 How to obtain continuous inverse and continuous least-squares

we get that T (X \ B) = T (X) \ T (B) since T is a bijection. Hence, T (B)
is open. From this, we conclude that every open B ⊂ X for the mapping
T−1 : Y 7−→ X the preimage T (B) is open, and hence is T−1 continuous.

Here we used a more general definition on continuity. In a general topol-
ogy, we do define continuity by open preimages. That is, for a mapping
f : X 7−→ Y , then f is continuous if for every open M ⊂ Y , then the preim-
age f−1[M ] = {x ∈ X : f(x) ∈ M} is open. So, when we use a norm as
topology, this relates to “open balls” around a point, for which the points
mapped through the function must lie inside another ball in the image.

Also, we claimed that a closed subset of a compact space is compact. This is
easy to prove by the fact that every sequence in the subset is also a sequence
in the space itself, and thus has a convergent subsequence. But, since the
subset is closed, this limit point must lie inside the subset, and thus every
sequence in the subset has a convergent subsequence, and it follows that the
subset is compact as well.

We have shown that if we choose a small compact domain inside the heart
for which F is a bijection, we will have a continuous inverse. It is not likely,
however, that the BSPM will be in the range of F. Then, will the least-
squares solution be unique? We know that the range, R(F ), of F will be
closed, since it is compact. If we in addition, could assume that R(F ) is
convex, we will have a unique least-squares solution, from a result in func-
tional analysis [7, 8]:

Lemma - Unique least-squares solution

Given a non-empty, closed, convex subset D of a Hilbert space H, there
exists a unique point p ∈ D closest to a given point x ∈ H.

We do not, however, have any guarantee that the range R(F ) of F is con-
vex. We ended Chapter 1 with a discussion around the fact that F (1.63)
is non-linear. If it had been linear, such a guarantee would be available, as
proven in the following lemma:

Lemma - Linearity preserves convexity Assume T : X 7−→ Y is
linear, and X is convex. Then the range R(T ) of T is convex.

Proof: Let x, y ∈ X, t ∈ [0, 1]. Then

tT (x) + (1− t)T (y) = T (tx) + T ((1− t)y) = T (tx+ (1− t)y) ∈ R(T )

because tx+ (1− t)y ∈ X since X is convex. Hence R(T ) is convex.
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2 CONTINUITY PROPERTIES OF THE SYSTEM

Now, since F is non-linear, we will probably not have convexity, and there-
fore we will not necessarily obtain a unique point in the image F (D) of F
closest to an arbitrary BSPM in Rn. Much work has been done trying to
determine how far outside the image you can go and still obtain a continu-
ous least-squares solution (see [14]). Unfortunately, although the theory is
solid, it is really hard to use for problems like (1.41) - (1.42). Therefore,
this will not be attempted, so we will instead speak more general about the
demands for obtaining a continuous least-squares solution, and then after-
wards present a drawing trying to visualize the point about how far outside
the image you still can guarantee a continuous least-squares solution.

We now introduce some operators just for this brief section: Let D ⊂ Rm
be convex and compact. Further, let K be a continuous, linear and injective
operator from D to Rn. From the lemma above, we know that the image
K(D) is convex since K is linear. In addition, let x ∈ Rn be arbitrary. From
the lemma about unique least-squares solution and the fact that K(D) is
closed and convex, we know that there will exists a unique point y ∈ K(D)
which is closest in norm to x ∈ Rn.

Define the operator U : Rn 7−→ K(D) by

Ux = y. (2.27)

In other words, we define the operator U to be the operator which takes
an arbitrary element in Rn and map it to the closest element in the image
K(D) of K. Thus, when we define the least-squares solution as

min
z∈D
‖K(z)− x‖Rm ,

we will get the equality

arg min ‖K(z)− x‖Rm = K−1Ux,

since the right-hand side sends the element x to the closest solution in the
image K(D) of K, and then we use the inverse (which can be done since K is
a bijection between D and K(D)) to retrieve the element in D corresponding
to the element in the image. This operation is illustrated in Figure 5.
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x
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x

𝓓 K(𝓓)
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22
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y

y

z

z

K
U

Figure 5: The least-squares solution of two different points. The first op-
erator, U, takes two points in Rn and maps them to the image K(D) of
K. Then, we use the inverse of K to obtain the least-squares solution in D.
We have shown that under given assumptions, this operation is continuous,
which we try to illustrate here (by letting the solutions lie close to each other
for two points close in Rn.

Now, we make use of a lemma in functional analysis (rewritten to fit our
operators above), which states that the operator U we defined is continuous[7]:

Lemma - Continuity of minimizer Assume that the image K(D) of
K to be a compact subset of Rn, and for every point x ∈ Rn, there exists a
unique closest point y = Ux ∈ K(D). Then U is a continuous operator.

By assumption, this holds for (2.27). Therefore, we have that K−1U is
a continuous operator, and thus we have a continuous least-squares solution.

To sum this up, we needed D ⊂ Rm to be convex and compact. Hence,
when we go back to our specific problem, we can just choose parameteri-
zation values from such a convex and compact subset D ⊂ R4. However,
we had to assume the operator K to be continuous, injective and linear to
obtain a closed and compact image, which in turn guaranteed a continuous
least-squares solution. Again, referring to our specific problem, the operator
F (1.63) is only certain to satisfy the first of these three requirements, and
although it might satisfy the second (which will be discussed in Chapter
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2 CONTINUITY PROPERTIES OF THE SYSTEM

3), we have already shown that it do not satisfy the linearity requirement.
Hence, we fail to obtain a certain stability outside the image F (D) of the
forward operator F. It does not, however, mean that such a stability can
not be obtained close to the image of the forward operator. How far away
from the image we can go, depend on how non-convex it is. This is being
visualized in Figure 6.

R(F)

Least squares
region

?

Figure 6: The area inside the solid drawing is the image of the forward
operator, which is non-convex. The dotted drawing is trying to illustrate
the area where we will have a continuous least-squares solution. The small
black circle is trying to illustrate the point about discontinuity.
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3 Uniqueness of ischemic region

As described in the previous section, we need a linear operator to guarantee
a convex image. Unfortunately, we already know that this is not the case
with the parameterization we made(1.46 and 1.61). On the other hand, we
know that F is continuous (Theorem 1 - Chapter 2), and assuming that the
forward operator F is a bijection, we will have a continuous inverse as long
as we choose our ischemic parameters from a compact domain (Theorem 2
- Chapter 2).

But, although we do not have a convex set, we do not know how non-convex
it is, in the sense that we might still obtain a continuous least-squares so-
lution when we are close enough to the image of the forward operator, as
illustrated in Figure 6.

However, we have yet to answer if we in fact have a one-to-one forward
operator. That is, if two different ischemic regions always will produce two
different BSPMs. To answer this, we will first consider the mapping S : D ⊂
R4 7−→ H1(H) (1.62), and then the mapping TL−1Q : H1(H) 7−→ L2(∂B),
and raise the question if both of these are one-to-one. Remember that the
composition of these operators in total makes up the forward operator. D
was the subset of R4 consisting of the ischemic parameters.

3.1 Injectiveness of parameterization operator

We want to consider the uniqueness by first looking at the mapping S :
D 7−→ H1(H). Let x1, x2 ∈ D,x1 6= x2 be arbitrary. We denote

S(x1) = h(φ(x;x1)) = h1 (3.1)

S(x2) = h(φ(x;x2)) = h2. (3.2)

Then, if we can show that

∫
H
|h1 − h2|2dx ≥ Θ > 0, (3.3)

it follows that h1 6= h2. Hence, for any two arbitrary x1, x2 ∈ D,x1 6= x2 ⇒
S(x1) 6= S(x2). Then S is injective by definition.

In the previous chapter we thought of S as the composition of the map-
pings x̃ 7−→ φ(x; x̃) and φ 7−→ h(φ). Hence, we can again make use of this
by considering the mappings separately. First, however, let us write the
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3 UNIQUENESS OF ISCHEMIC REGION

expression for h2 − h1:

h2 − h1 =



0 if φ2, φ1 < −τ,
−25[1 + φ1

τ + 1
π sin(πφ1τ )] if φ2 < −τ, |φ1| ≤ τ,

50 if φ2 < −τ, φ1 > τ,

25[1 + φ2
τ + 1

π sin(πφ2τ )] if |φ2| ≤ τ, φ1 < −τ,
25[φ2−φ1τ + 1

π (sin(πφ2τ )− sin(πφ1τ ))] if |φ2|, |φ1| ≤ τ,
25[1 + φ2

τ + 1
π sin(πφ2τ )]− 50 if |φ2| ≤ τ, φ1 > τ,

50 if φ2 > τ, φ1 < −τ,
50− 25[1 + φ1

τ + 1
π sin(πφ1τ )] if φ2 > τ, |φ1| ≤ τ,

0 if φ2, φ1 > τ.

Starting with the mapping x̃ 7−→ φ(x; x̃) from R4 to H1(H), we first hold
the radius fixed, and only change one of the spherical parameters, say x̃,
such that x̃− x̃0 = ε1. Then we obtain∫

H
|φ(x; x̃2)− φ(x; x̃1)|2dx =

∫
H
|(x− x̃2)2 − (x− x̃1)2|2 dx

=

∫
H
|(x̃2−x̃1)(x̃2+x̃1)+2x(x̃1−x̃2)|2dx = ε21

∫
H
|(x̃2+x̃1)+2x|2dx = ε22 > 0.

(3.4)

Similarly, when we hold the center fixed, and instead change the radius, we
obtain ∫

H
|φ(x; x̃2)− φ(x; x̃1)|2dx = ε21|H| > 0. (3.5)

This will still hold when all the parameters are allowed to be changed simul-
taneously. The calculations becomes more messy, so we will not do so here,
but geometrically, we can visualize two parabolas with different center and
radius. It then becomes rather clear that these can not be equal at all sets
larger than zero. Hence, we obtain that φ2 − φ1 is different from zero. Fur-
ther, from the expression of h2 − h1, it then follows rather straightforward
that there exists a domain of measure larger than zero where h2 6= h1, and
then clearly these are different in L2-norm. Hence, we have in total that the
operator S is one-to-one.

3.2 Nullspace of the forward operator

We have a one-to-one mapping from the subset D to the image S(D) of
the operator S. Hence, we must now prove that the mapping from S(D),
which is a subset of H1(H), onto the boundary of the body is one-to-one as
well. This mapping was denoted above by a composition of three operators,
namely TL−1Q.

Let us assume that we have h1, h2 ∈ S(D), h1 6= h2, where S(D) is the
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3.2 Nullspace of the forward operator

image of the operator S, such that TL−1Q(h1) = d = TL−1Q(h2). This
will imply that h1 − h2 ∈ N (TL−1Q) since TL−1Q is linear. But can this
be true? Can we find two such elements in S(D) such that the difference
between them is in the nullspace of TL−1Q. To answer this, we must find a
way to describe this nullspace. However, this has already been done in [9].

Before we can use this nullspace we need to do some slight modifications
to our forward operator. Initially, we did not have a unique solution to the
problem (1.20), so we had to search for a solution in the subspace X (1.21).
Then, our solution became unique. However, in [9], another uniqueness
property is used, namely ∫

∂B
r dS =

∫
∂B
d dS. (3.6)

In [9], the authors argue that this provides the correct condition to optimize
the least-squares solution. Hence, we will use this when implementing the
inverse solver in the numerical section. But, to discuss this further now,
we need to introduce some new operators. Let K1 : H1(H) 7−→ L2(∂B) be
the same operator as the composition TL−1Q with the slight adjustment
of uniqueness property. This operator is harder to use when discussing the
nullspace, since this uniqueness property makes the mapping non-linear (the
subset X̃ = {u ∈ H1(B) :

∫
∂B u = c 6= 0} is not a true linear subspace of

H1(B)). Therefore, we also define the operator K2 : H1(H) 7−→ L2(∂B) as
a solver of the same PDE, but with the uniqueness property

∫
∂B r dS = 0.

Hence, we get K1(h) = K2(h) + c. Then, from [9], the nullspace of K2 is
described as

N (K2) = {h(Θ) : Θ ∈ H1
0 (H) and h is a weak solution of (3.7-3.8)}

∇ · (Mi∇h) = −∇ · (M∇Θ), (3.7)

(Mi∇h) · nH = −(M∇Θ) · nH. (3.8)

But one justification remains. If K1(h1) = d = K1(h2), does it imply that
h1 − h2 ∈ N (K2). Yes, this will be true since

K1(h1) = K1(h2)⇒ K2(h1) + c = K2(h2) + c⇒ K2(h1 − h2) = 0. (3.9)

So, what we must consider, is whether the overdetermined boundary value
problem (3.10) has a weak solution.

−∇ · (M∇Θ) = ∇ · (Mi∇(h1 − h2)), in H.

Θ = 0 on ∂H (3.10)

−M∇Θ · nH = Mi∇(h1 − h2)nH on ∂H,
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3 UNIQUENESS OF ISCHEMIC REGION

where h1 6= h2 and h1, h2 ∈ S(D).

Now, since the conductivities are assumed to be uniformly elliptic, (3.10)
would have a unique solution if we were given only the first boundary con-
dition, but with the second as well, this is not very likely. The only way this
could happen is if our solution happens to naturally have a gradient which
coincide with the imposed one. We will try to describe whether this might
be the case, and if we can find any requirements for our system to satisfy
to avoid ending up in the nullspace. However, the next two subsections
will discuss more general problems first, to illustrate how to deal with such
problems.

3.3 Overdetermined Poisson operator

The problem we have reached now is in general hard to solve. Firstly, we
have conductivities in the Poisson equation, and furthermore the right hand
side is not non-negative nor non-positive over the domain, which makes this
problem harder. But to highlight some of the techniques used to solve this
for simpler overdetermined boundary value problems, we start of with

Lu = f, x ∈ Ω

u = 0, x ∈ ∂Ω

∂u

∂n
= 0, x ∈ ∂Ω,

where L is a second-order elliptic operator. In addition, assume that f(x) ≤
0, ∀ x ∈ Ω, and f is smooth, such that we have a solution u ∈ C2(Ω)∩C(Ω̄).
In this case, given Ω is connected, open and bounded, and Lu ≤ 0, the
strong maximum principle implies that if u attains its maximum over Ω̄ at
an interior point, then u is constant within Ω. If not, however, this implies
that u(x) < 0, ∀x ∈ Ω, from the Dirichlet condition. This again, is the same
as saying that there exists a point x0 ∈ ∂Ω, such that u(x0) > u(x), ∀x ∈ Ω,
and thus we can apply Hopf’s lemma [4], which then claims that ∂u

∂n(x0) > 0,
and hence there is no solution to the overdetermined B.V.P.

In fact, from the article [10], there is a much more general existence prop-
erty of elliptic partial differential equations. Given the PDE Qu + f = 0,
such that u > 0 in Ω, where Q is a regular uniformly elliptic operator, along
with the same boundary conditions as above, we can only have a classical
solution to the problem if the domain Ω is a ball. Unfortunately, in our
context, there is no guarantee that the solution will be positive throughout
the domain, and must likely it will not, so we must find another approach
to this problem.
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3.4 Green’s function for inhomogeneous Poisson’s equation

3.4 Green’s function for inhomogeneous Poisson’s equation

We will try to get a better idea of the problem (3.10) by using Green’s
function. First, assume that we have the standard Poisson’s equation{

−∆u = f, x ∈ Ω
u = 0, x ∈ ∂Ω.

This can be solved using the representation formula for Poisson’s equation[4],
which reads

u(x) =

∫
Ω
G(x, x′)f(x′) dx′, (3.11)

where G(x, x′) is the Green’s function for the Poisson’s equation. When
facing a slightly harder problem, with −∇ · (c∇u) = f instead, where we
assume that c : R3 7−→ R, we can write −∇ · (c∇u) = −∇c · ∇u − c∆u.
Thus, by rearranging, as done in [11], we get the following problem:

−∆u =
f

c
+
∇c
c
· ∇u =

f

c
+∇ ln(c) · ∇u. (3.12)

Hence, we can write the solution as

u(x) =

∫
Ω
G(x, x′)

[
f(x′)

c(x′)
+∇ ln(c(x′)) · ∇u(x′)

]
dx′. (3.13)

Of course, this is a hard problem to solve, since the solution is inside the
integral. However, if we had an overdetermined Poisson’s equation with an
additional homogeneous Neumann condition, we would only want to know
if the derivative is equal to zero on the boundary, and since this variable is
independent of the integral, we get

∂u

∂n
=

∫
Ω

∂G

∂nx
(x, x′)

[
f(x′)

c(x′)
+∇ ln(c(x′)) · ∇u(x′)

]
dx′. (3.14)

If we could derive Green’s function, we might have been able to tell some-
thing about the criteria for having a normal derivative equal to zero. Unfor-
tunately, to find a Green’s function is far from trivial, at least for complex
geometries. So, we will try to determine the fundamental solution of−φ′′ = δ
in R to get a better picture of what the solution of a simple overdetermined
problem might look like.

To do so, we find the antiderivative twice and we get

−φ′′ = δ

⇒ −φ′ = H + C

⇒ −φ = x+ + Cx+D. (3.15)
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3 UNIQUENESS OF ISCHEMIC REGION

where

x+ =

{
x, x ≥ 0
0, x < 0.

In addition, we want to make the solution symmetric and homogeneous.
Hence, we get

−|x|(C + 1) = C|x| −D ⇒ 2C = −1, (3.16)

and D = 0. Thus, the solution reads

φ(x) = −|x|
2
. (3.17)

From this, we can find the Green’s function for the interval (0,1). The
Green’s function for Laplace’s equation is defined by[4] G(x, x′) = φ(x′ −
x)−φx(x′), (x, x′ ∈ Ω, x 6= y). Here φx is a corrector function, which should
satisfy {

d2

dx′2φ
x = 0, x′ ∈ (0, 1)

φx = φ(x′ − x), x′ = 0, x′ = 1.

This last condition implies that

φx(0) = φ(−x) = −x
2

φx(1) = φ(1− x) = −1− x
2

. (3.18)

Further, since we have that d2

dx′2φ
x = 0, then clearly φx(x′) = Cx′ +D, and

the boundary values implies that D = −x
2 and C = x − 1

2 . From this, we
get that

φx(x′) = x′
(
x− 1

2

)
− x

2
, (3.19)

and the Green’s function will, by some calculations, become

G(x, x′) =

{
x′(1− x), x > x′

x(1− x′), x ≤ x′.

Then, we now want to use this Green’s function to solve the equation −∇ ·
(c∇u) = f , using homogeneous Dirichlet conditions, which in 1D reads
−(cu′)′ = −cu′′ − c′u′ = f . Thus, we have the following problem:{

−u′′ = f
c + c′

c u
′

u(0) = 0 = u(1).

Now, we can use the general result from above, and we get that

u(x) =

∫ 1

0
G(x, y)

(
f

c
+ ln(c)′u′

)
dy

= (1− x)

∫ x

0
y

(
f

c
+ ln(c)′u′

)
dy + x

∫ 1

x
(1− y)

(
f

c
+ ln(c)′u′

)
dy.

(3.20)
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3.5 Sufficient uniqueness property

Note that we have used x′ = y to avoid confusion with the derivative signs.
Also note that this will satisfy the homogeneous Dirichlet boundary con-
ditions. If we add homogeneous Neumann conditions as well, to get an
overdetermined system, the question whether a solution can still be ob-
tained arises. Let us start our answer by taking the derivative of (3.20), to
get

u′(x) = −
∫ x

0
y

(
f

c
+ ln(c)′u′

)
dy + (1− x)x

(
f

c
+ ln(c)′u′

)
+

∫ 1

x
(1− y)

(
f

c
+ ln(c)′u′

)
dy − x(1− x)

(
f

c
+ ln(c)′u′

)
=

∫ 1

x
(1− y)

(
f

c
+ ln(c)′u′

)
dy −

∫ x

0
y

(
f

c
+ ln(c)′u′

)
dy. (3.21)

This implies that

u′(0) =

∫ 1

0
(1− y)

(
f

c
+ ln(c)′u′

)
dy, and

u′(1) = −
∫ 1

0
y

(
f

c
+ ln(c)′u′

)
dy. (3.22)

For u′(0) = 0 = u′(1) to occur, then clearly we must have that∫ 1

0
(1− y)

(
f

c
+ ln(c)′u′

)
dy = 0 =

∫ 1

0
y

(
f

c
+ ln(c)′u′

)
dy. (3.23)

In other words, both ∫ 1

0
y

(
f

c
+ ln(c)′u′

)
dy = 0, (3.24)

and ∫ 1

0

(
f

c
+ ln(c)′u′

)
dy = 0, (3.25)

must be satisfied for this to be true. Hence, we observe that this will depend
on the conductivity c. We might be unlucky enough to we have a conductiv-
ity where this is fulfilled. Nevertheless, this simple 1D example tells us how
difficult it might be to solve such overdetermined problems. Therefore, we
need to split the problem when we try to solve our original problem (3.10).

3.5 Sufficient uniqueness property

When we go back to the original overdetermined problem (3.10), we can
describe this, using only the first boundary condition, as: Find Θ ∈ H1

0 (H)
such that∫

H
∇φ · (M∇Θ)dx = −

∫
H
∇φ · (Mi∇(h1 − h2))dx, ∀φ ∈ H1

0 (H). (3.26)
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3 UNIQUENESS OF ISCHEMIC REGION

This has a unique solution in H1
0 (H) from Riesz’ representation theorem.

Clearly, for (3.10) to be satisfied, this must hold. However, this solution Θ,
must in addition be such that

−M∇Θ · nH = Mi∇(h1 − h2) · nH. (3.27)

Although it might be possible to describe a uniqueness demand in a more
efficient manner than done here, we can at least conclude in the following
theorem a sufficient condition for uniqueness:

Theorem - Uniqueness of forward operator. Let F be the forward
operator from eq (1.63). If we have Θ(h1, h2) as solution of (3.26) such that

−M∇Θ · nH 6= Mi∇(h1 − h2) · nH, (3.28)

∀h1, h2 ∈ S(D), where h1 6= h2, we will have a unique BSPM for each is-
chemic region.

Here as well, this seems to depend on the conductivities. If we can conclude
that given this theorem holds, we will in fact have a continuous inverse
throughout the entire parameter space D ⊂ R4, and thus the theoretical
stability will hold for all BSPMs as well. From this, we leave the theoretical
section, and move on to numerical work.
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4 Numerical solution of forward problem

Going into this numerical section, we have some theoretical findings which
might help us with the numerical work. We do know that a continuous for-
ward operator exists, and we have a requirement for uniqueness. Thus, it
might be an idea to implement a numerical solver which checks whether the
requirement (3.28) is fulfilled or not. However, this will be quite some work,
and it is not the main issue with this thesis, so we will not try to implement
this here.

We know that we do not necessarily have a convex set, from the non-linearity
of the forward operator, which might cause problems for the stability. This
will be investigated in the inverse section. In addition, we changed the
uniqueness property slightly when discussing the one-to-one mapping. From
[9], eq (3.6) is argued to be the correct condition. Hence, we must take this
into account when implementing our numerical solver. However, this new
uniqueness property requires for the BSPM to already be known, and is
therefore not very useful when creating a forward solver. Hence, we will
first create the forward solver as discussed in section two, and instead find
a way to incorporate the new uniqueness property when implementing the
inverse solver.

4.1 General framework for finite element method

Before actually solving (1.27), we do need some framework for numerical
solutions of partial differential equations: the finite element method. In ab-
stract form, we might write a general elliptic PDE as: Let V be a Hilbert
space. Let a(·, ·) be the weak form of a second-order elliptical partial differ-
ential equation, and l ∈ V ∗. Find u ∈ V such that

a(u, v) = l(v), ∀v ∈ V. (4.1)

For Poisson’s equation with homogeneous Dirichlet conditions over the do-
main Ω, this would read: Find u ∈ V such that∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx, ∀v ∈ H1

0 (Ω). (4.2)

In the finite element method, we create a finite dimensional subspace of V ,
called Vh, and search for a solution here instead. By making the ansatz that
u can be approximated by uh =

∑N
j=1 ujφj , where {φj}Nj=1 is a basis for Vh,

it turns our problem into finding uh ∈ Vh such that

a(uh, v) = l(v), ∀v ∈ Vh. (4.3)

And now, since we have made the ansatz, and of course only have to test
against the basis functions, and not all v in Vh, since these in any case is
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4 NUMERICAL SOLUTION OF FORWARD PROBLEM

just a linear combination of the basis functions, we get the following system:∑
j

uja(φj , φi) = l(φi), (4.4)

which might be interpreted as a linear system Au = b, where Aij = a(φj , φi),
and bi = l(φi). Furthermore, since for a scalar u, we normally choose a
space consisting of piecewise linear/quadratic/cubic etc functions(Lagrange
elements), these only have support on a small part of the domain. Hence, we
split the domain into small intervals/triangles/tetrahedrons, in 1D/2D/3D,
and evaluate at each of these elements, and then map the solution into the
global system. This is referred to as the local to global mapping. To do this,
we assume that a(u, v) =

∑
T∈T aT (u, v), where T is some triangularization

of the domain. So, when we define the local matrix as

ATij = aT (φTj , φ
T
i ), (4.5)

we only need the mapping to get from the local to global node. This map-
ping, however, will depend on the choice of basis function and triangular-
ization.

Figure 7: The triangular finite element with end point evaluation in 1D, 2D
and 3D

Figure 7 gives us a geometric view of a triangle, and as said, the entire heart
will be made up of such small elements.

4.2 Finite element formulation of forward problem

This powerful tool enables us to implement a solver, which takes the ischemic
region as an input, and computes the recorded electrocardiogram. However,
since we were facing a pure Neumann problem(1.20), we had to add a unique-
ness property, which now requires us to do some modifications before we are
able to incorporate the numerical finite element solution. On variational

42



4.2 Finite element formulation of forward problem

form (1.27), our problem reads: Find u ∈ X = {u ∈ H1(B) :
∫
B u = 0} such

that

L̂(r, ψ) = Q̂h(ψ), ∀ψ ∈ X. (4.6)

But, since L̂(·, ·) is symmetric and positive definite, this is equivalent to

min
ψ∈X

{
1

2
L̂(ψ,ψ)− Q̂h(ψ)

}
= min

ψ∈X
Ĵ(ψ). (4.7)

(See Proof 3 - Appendix A) This, however, can be redefined as

min
ψ∈H1(B)

Ĵ(ψ), such that

∫
B
ψ = 0. (4.8)

Hence, we can use the Lagrange multiplier, and get the optimality condition.
However, to do so, we need a more general concept of a derivative:

Definition - Frechet derivative Let X and Y be Banach spaces. A con-
tinuous linear operator P : X 7−→ Y is said to be the Frechet derivative of
f : X 7−→ Y at the point x ∈ X if

f(x+ h) = f(x) + Ph+O(h) as h→ 0, (4.9)

or, equivalently

lim
h→0

‖f(x+ h)− f(x)− Ph‖Y
‖h‖X

= 0. (4.10)

Hence, we see that for a linear functional, the derivative equals itself, since
f(x+ h) = f(x) + f(h). So, we have the Lagrange conditions given by

Ĵ ′(ψ) = γ

(∫
B
ψ dx

)′
(4.11)∫

B
ψ = 0. (4.12)

We have already shown that the Frechet derivative of a linear operator is
linear, so the derivative of the integral equals the integral, because this is a
linear operator. So, we only have to consider Ĵ ′(ψ). We start with

Ĵ(r + ψ) =
1

2
L̂(r + ψ, r + ψ)− Q̂h(r + ψ)

=
1

2
L̂(r, r + ψ) +

1

2
L̂(ψ, r + ψ)− Q̂h(r + ψ)

=
1

2
L̂(r, r) + L̂(r, ψ) +

1

2
L̂(ψ,ψ)− Q̂h(r)− Q̂h(ψ)

= Ĵ(r) + L̂(r, ψ)− Q̂h(ψ) +O(ψ), (4.13)
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4 NUMERICAL SOLUTION OF FORWARD PROBLEM

where O(ψ) = 1
2 L̂(ψ,ψ) Hence, Ĵ ′(r) = L̂(r, ψ)− Q̂h(ψ), since

0 ≤ lim
ψ→0

|Ĵ(r + ψ)− Ĵ(r)− 1
2 L̂(ψ,ψ)|

‖ψ‖H1(B)

= lim
ψ→0

1

2

|L̂(ψ,ψ)|
‖ψ‖H1(B)

≤ C lim
ψ→0

‖ψ‖2H1

‖ψ‖H1(B)
= 0. (4.14)

Hence, we get the system: Find (r, γ) ∈ H1(B)× R such that

a(r, ψ) + γ

∫
B
ψ = L̂(ψ), ∀ψ ∈ H1(B) (4.15)

σ

∫
B
r = 0, ∀σ ∈ R. (4.16)

From this, we are able to implement the solver. Now, since we are working
in 2D, we will assume a really simple shape of the body and heart. With a
geometry given as the unit circle, the innermost part will be the cavity of
the heart, followed by the heart and then the torso. We will also use simple
fiber structures for the conductivities. The extracellular conductivity in the
heart will have a structure as shown in the figure below. The intracellular
conductivities, along with the conductivities in the cavity and torso is as-
sumed to be isotropic.

Heart

Cavity

Torso

Figure 8: The shape of the fiber structures for the extracellular domain. In
all other parts of the body, we assume simple isotropic conductivities.

We now have a formulation of our problem which can be implemented in
numerical software, which will be done in the next subsection.
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4.3 General implementation and forward solutions

4.3 General implementation and forward solutions

To implement our solver, we have used a module in Python called DOLFIN.
This is a part of the FEniCS Project, which is a collection of free software,
designed for automated solutions of partial differential equations. Without
this project, we would have to implement everything from scratch, which
is fully doable, but would require much more work. However, before pre-
senting a figure of some solutions of the forward solver, we will show how
to implement the Poisson’s equation with homogeneous Dirichlet conditions
on the unit square (eg. 4.2) in the FEniCS framework.

#Import a l l f unc t i on s from the module
from d o l f i n import ∗

#Create a mesh o f s i z e 50x50
mesh = UnitSquare (50 ,50)

#Define the func t i on space o f Lagrange−e lements
#The number ”1” means p i e c ew i s e l i n e a r .
V = FunctionSpace (mesh , ’ Lagrange ’ , 1)

#Define the t e s t− and t r i a l f unc t i on s
v = TestFunction (V)
u = Tria lFunct ion (V)

#Define the r i g h t−hand−s i d e func t i on
#x [ 0 ] means the ”x−v a r i a b l e ” , and
#x [ 1 ] the ”y−v a r i a b l e ” .
f = Express ion ( ’ cos ( x [0 ] )+x [ 1 ] ’ )

#Define boundary func t i on
u bc = Constant (0 )

#Check whether the po in t x i s on the boundary
#I f so , the on boundary i s True , so we might re turn
#t h i s . I f not , i t i s Fa l se .
def u boundary (x , on boundary ) :

return on boundary

#This i s the boundary cond i t i on . We send the
#u boundary in , to see which po in t s r e tu rns t rue
#regard ing i f they are on the boundary .
bc = Dir ichletBC (V, u bc , u boundary )

#Compute the v a r i a t i o n a l form of Poisson ’ s eq .
a = inner ( grad (u ) , grad (v ) )∗ dx
L = f ∗v∗dx

#Compute the s o l u t i o n . a == L i s the l i n e a r system
#to be so l v e d . The s o l u t i o n vec t o r i s sen t to u .
u = Function (V)
s o l v e ( a == L , u , bc )
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4 NUMERICAL SOLUTION OF FORWARD PROBLEM

This module makes our forward problem rather straightforward to im-
plement. The right-hand side of (1.27), however, is rather messy, so we drop
to add any more code. Instead, we present some solutions graphically in the
figure below.

Heart

Cavity

Torso

Heart

Cavity

Torso

Heart

Cavity

Torso

Heart

Cavity

Torso

Figure 9: Evolving of a ischemic region and how it affects the extracellular
potential

46



4.4 Visualization of cost-functional

This forward solver is our starting point when we now turn to the inverse
solver, since it will be used in the iteration process of trying to retrieve the
ischemic region.

4.4 Visualization of cost-functional

Before we look at the inverse solver, we should try to get some idea of what
the cost-functional looks like. If we fix the radius at the true value, and then
make a 3D-plot of how the cost-functional looks with various coordinates
for the center, we might get an idea about the possibility of retrieving the
ischemic region from the recorded electrocardiogram.

Heart

Cavity

Torso

Figure 10: Looking at the cost-functional with a frozen radius. The rectangle
in the left picture indicates the area where we computed the size of the cost-
functional. The right picture is a 3D plot of these values. Observe that the
cost-functional is not convex over this entire area, although it seems to be
convex around the point (−0.18, 0.087), which is the center of the ischemic
region we used to compute the synthetic BSPM.

Now, we see that close to the center of the synthetic ischemic region, given
as the point (−0.18, 0.087), we have a steep descent, and will relatively easy
manage to find this area using numerics. Unfortunately, we can see that
farther away, this is not the case. On a larger domain, we do not have a
convex cost-functional, not even when we freeze the radius, and only let the
coordinates for the center be free, as done here. This will make our numerics
harder, since we might end up in the wrong “dump” when searching for a
minimizer of the cost-functional. Hence, we must find a way to deal with
this, which will be discussed in the next section.
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5 Inverse solution of electrocardiography

We have implemented a forward solver for the problem. Now, we want to
make use of this forward solver to retrieve the ischemic region of a already
known BSPM. This is in general a much harder task than solving the forward
problem, and hence we must invoke some numerical iteration method to be
able to do so. Therefore, we begin by explaining some useful algorithms for
finding a minimum of a function.

5.1 Numerical methods for optimization

In the field of mathematical optimization, there is a vast number of tech-
niques to use. In this text however, we will only introduce two popular
methods, which we will use to solve the inverse problem. The first is a gra-
dient descent method combined with a line search method, and the second
is a penalty method, which also takes constraints into consideration. We
might need this because we know from medicine that the ischemic heart
disease starts at the endocardium.2 Hence, it might be interesting to see
what happens when we require the center of the ischemic region to be at the
endocardium.

Method of steepest descent - This method is build around the fact
that a function, F : Rn 7−→ R, has its steepest descent in the direction of
the negative gradient, i.e −∇F . If we take a step of appropriate length in
this direction, we will get closer to the local minimum, which, for a convex
function will be the same as a global minimum [26]. Thus, if we guess a
solution x0, we can make a algorithm as follows

Algorithm 2 The method of steepest descent

1: Guess some x0

2: repeat
3: xk+1 = xk − γk∇F (xk)
4: until ‖xx+1 − xk‖ < TOL

This seems rather straightforward, but unfortunately, the way to choose γk
is not trivial. If we make the steps to small, we will have a very poor conver-
gence rate, and on the other hand, if we make the steps to large, we might
“overshoot” the step, and get out of the interesting area. One remedy for
this, is to check the Wolfe conditions [12], which is given by two inequalities:

2Endocardium is the innermost tissue, lining the chambers of the heart.
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5 INVERSE SOLUTION OF ELECTROCARDIOGRAPHY

The Wolfe conditions:

F (xk + γkpk) ≤ F (xk) + c1γk∇F (xk)
T pk (5.1)

∇F (xk + γkpk)
T pk ≥ c2∇F (xk)

T pk, (5.2)

where pk = −B−1
k ∇F (xk) for some positive definite B−1

k . Then pk turns
out to be a descent direction since ∇F (xk)

T pk < 0. If we set B−1
k = I, we

obtain the steepest descent.

Further, c1 ∈ (0, 1) and c2 ∈ (c1, 1). The first Wolfe condition (5.1) is
often referred to as Armijo condition, which makes sure that the decrease if
sufficient. In other words, since ∇F Tk pk < 0, inequality (5.1) requires the de-
crease to be larger than some scaling c1 of the decrease direction and length.

The second condition (5.2), known as the curvature condition, stops us from
making the steps to small: By defining mk : R 7−→ R by

mk(γ) = F (xk + γpk), (5.3)

we get m′k(γ) = ∇F (xk + γpk)
T pk from the chain rule. Hence, m′k(0) =

∇F (xk)
T pk, which is equal to the right-hand side of inequality (5.2) when

we disregard c2. The curvature condition tells us in fact that the decrease
of mk(γ) at yk should be less negative than some scaling c2 of the decrease
m′k(0). In other words, the second criterion states that if the slope at γk is
very negative, we should take a bigger step in the direction of pk.

Having explained these conditions roughly, we will now post a theorem from
[26], which provides us with some convergence property of a sequence satis-
fying Wolfe conditions:

Theorem - Convergence with Wolfe conditions Let some iteration
process be given by xk+1 = xk + γkpk, where pk is the descent direction
and γk satisfies the Wolfe conditions above. Suppose that F is bounded
below in Rn and that F ∈ C1(N ), where N is a open set containing
L = {x | f(x) ≤ f(x0)}, where x0 is the initial guess. In addition, as-
sume that the gradient ∇F is Lipschitz continuous on N . Then∑

k≥0

cos2(θk)‖∇Fk‖2 ≤ ∞, (5.4)

where cos(θk) is defined as

cos(θk) =
−∇F Tk pk
‖∇Fk‖‖pk‖

. (5.5)
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When pk is equal to the steepest descent, clearly cos(θk) = 1. Hence, it
follows from (5.4) that

lim
k 7−→∞

‖∇Fk‖ = 0. (5.6)

In other words, we can be sure to converge to some stationary point. We
can not, however, be sure that this is a minimizer.

To check these two criteria making up the Wolfe conditions (5.1-5,2), we
must once more find a numerical algorithm. One remedy is to implement
the backtracking line search[13]. The idea is to start with a large enough
step size to make sure that the curvature condition is met, and then we
make the decrease sufficient by the following

Algorithm 3 Backtracking line search

1: Choose some α > 0, τ, c ∈ (0, 1)
2: repeat
3: α← τα
4: until F (xk + αpk) ≤ F (xk) + cα∇F (xk)

T pk
5: End with γk = α

This method does often work, but as mentioned earlier, it does not take
constraints into consideration. Hence, we will now introduce the penalty
method. What we do then, is to define a penalty function, which basically
“punishes” the objective function by increasing the value if we get outside
the set of valid inputs, and thus sends us back into this set.

Penalty method - Hence, the idea is to add a extra term on the func-
tion we want to minimize, and increase the value of this function as we
get farther away from our given set of input parameters. For example, if
we want to minimize a function f : Rn 7−→ R together with a constraint
c : Rn 7−→ R, given by

min
x

f(x)

such that c(x) = 0,

we must find a way to take this constraint into account. This can be done
by introducing the penalty method

φ(x;µ) = f(x) +
1

2µ
c2(x), (5.7)

for some µ ∈ R+, and then try to find minx φ using a unconstrained mini-
mization method, like steepest descent. Before we can implement the algo-
rithm, however, we must figure out how to deal with the newly introduced
µ. From (5.7), we see that when we reduce this number, the penalty term
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5 INVERSE SOLUTION OF ELECTROCARDIOGRAPHY

gets a bigger influence on the total sum. Therefore, it makes sense to make
a decreasing positive sequence {µk}, and find the optimal x∗i for µi, and use
this as a start guess for µi+1, where µi+1 < µi. Doing so, the algorithm
becomes:

Algorithm 4 Penalty method

1: Choose some µ0 > 0, a decreasing sequence {τk} converging to zero, and
an initial point xi0 ∈ Rn

2: for k = 0, 1, 2, ... do
3: Solve minφ(x;µk), starting at xlk with the convergence criterion

‖∇xφ(x;µk)‖ ≤ τk. Denote this solution by xk.
4: if the outer convergence test is satisfied then
5: stop with the approximate solution xk.
6: end if
7: Choose new penalty parameter µk+1 < µk.
8: Choose new starting point xik+1.
9: end for

We see that by combining these methods, we can make a inverse solver for
our system. However, before we do so, we must remember that our forward
solver used the wrong uniqueness property, and hence we will now argue
how we can modify this condition when trying to solve the inverse problem.

5.2 From wrong to right uniqueness property for the inverse
solver

In the last chapter, we made a solver to the problem: Find r ∈ H1(B) such
that ∫

B
∇v · (M∇r)dx = −

∫
H
∇v · (Mi∇h)dx, ∀v ∈ H1(B),∫

B
r dx = 0. (5.8)

But, from the last theorem of Chapter 3 (3.28), we needed a different unique-
ness property (3.6). Hence, we need to find a way to take this into account.
Let r̄ ∈ H1(B) be the solution to the PDE (1.27) with the new uniqueness
property. However, since the PDE with a homogeneous Neumann conditions
is unique up to a constant, it follows that

r̄ = r + c, (5.9)
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where c is a constant and r is the solution of (5.8). This implies that∫
∂B
r̄ dS =

∫
∂B
r dS +

∫
∂B
c dS

⇒ c =

∫
∂B d dS −

∫
∂B r dS

|∂B|
. (5.10)

The idea with the inverse solver is to solve the optimality system (1.60).
Thus, we need the gradient of J(x0, y0, z0, s) from (1.40). We computed this
for ∂J

∂x0
and ∂J

∂s in (1.58)-(1.59), and more generally it reads

∇̃J =

∫
∂B

(r̄ − d)∇̃r̄. (5.11)

Thus, when we combine this with (5.9-5.10), we get

∇̃J =

∫
∂B

(r̄ − d)∇̃r̄ =

∫
∂B

(r + c− d)∇̃r̄. (5.12)

One question remains, and that is how to compute ∇̃r̄. We have that r̄ =
r+c, but remember that this c is a constant with respect to the vector-valued
variable representing the position in the heart, and not with respect to the
set of parameter variables (and it is this gradient we compute). Hence, we
have

∇̃r̄ = ∇̃(r + c) = ∇̃r + ∇̃c = ∇̃r − 1

|∂B|

∫
∂B
∇̃r dS, (5.13)

where the last equality follows from (5.10). Hence, we do not have to solve
more equations numerically. Instead, we only have to compute the value for
the constant c, and do this small trick to the cost-functional, which should
not cause any problems.

5.3 Inverse solution for BSPM in the image of the forward
operator

With this correct uniqueness property, we can try to solve the inverse prob-
lem. We did find, however, that since the forward operator F is non-linear,
we will probably not have a convex image, which can cause problems with
the continuity of the least-squares solution. Furthermore, we saw from Fig-
ure 10 that the cost-functional is in fact not a convex function either. When
doing optimization with non-convex functions, we might run into problems.
That is, if we start in the wrong “dump”, we will not find the global, but
only a local minimum. One remedy is to start our initial guess at several
different locations in the heart, and then run the forward solver with the
solutions found from the inverse solver, to find which produces the forward
solution closest in norm to the BSPM. Also, we might make use of the fact
that ischemic heart disease evolves from the endocardium, and thus add a
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5 INVERSE SOLUTION OF ELECTROCARDIOGRAPHY

constraint which takes this into account. Mathematically, such a constraint
would read

c(x, y, z) = (x− x0)2 + (y − y0)2 + (z − z0)2 − r2
0 = 0, (5.14)

where r0 is the radius of the cavity from Figure 8. In our computations,
r0 = 0.2. If we add this constraint, and use the penalty method to solve
the problem, we might converge to the optimal solution with a worse initial
guess than would be applicable to the unconstrained solver.

However, let us first try to solve the inverse problem with the simplest -
the unconstrained - method. In the previous chapter, we made some for-
ward solutions (see Figure 9), and we will now use one of these synthetic
BSPMs to run the inverse solver. The third simulation in Figure 9 has an
ischemic region represented by the center (−0.18, 0.087) and radius 0.14. In
all the following simulations, we make use of 42 electrodes on the surface of
the body. Also, the findings will be presented in tables and figures. The first
table shows the iteration process of retrieving the ischemic region mentioned
above.

Table 1: Iteration with good initial guess

# x0 y0 s

0 -0.20000 0.20000 0.10000
1 -0.15879 0.15617 0.11164
2 -0.17218 0.12149 0.17448
3 -0.18717 0.12800 0.16748
4 -0.16535 0.10295 0.14144
5 -0.18434 0.07169 0.14115
10 -0.18315 0.08521 0.13871
15 -0.18207 0.08741 0.13935
19 -0.18182 0.08739 0.13987

In the table above, we can observe that the inverse solver terminates close
to the true ischemic region given by (−0.18, 0.087, 0.14). In this first run,
however, we “guessed” an initial starting point for the iteration relatively
close to the true ischemic region. Because of the non-convex cost-functional,
we might expect trouble when we use a worse initial guess.

The table on the next page does confirm our suspicion: When starting
farther off, we were not able to converge to the true solution. Due to the
non-convexity, we did end up in the wrong “dump”. Therefore, it is natural
as a next step to incorporate the inverse solver with the penalty method
with the extra term c2(x, y, z), where c is from eq (5.14), to check whether
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this method provides better results. We can in this case observe from Table
2 that we were able to solve the inverse problem. Hence, it seems like our
penalty solver might be more robust. Note that “n/a” in Table 2 merely
means that we have reached the converge criterion.

Table 2: Iteration with worse initial guess - two methods

without constraint with constraint (5.14)

# x0 y0 s x0 y0 s

0 -0.20000 -0.20000 0.10000 -0.20000 -0.20000 0.10000
1 -0.16131 -0.16588 0.09635 -0.13258 -0.14052 0.09368
2 -0.15346 -0.13938 0.06802 -0.15088 -0.08624 0.04565
3 -0.14939 -0.11619 0.08612 -0.18807 -0.09169 0.12493
4 -0.14954 -0.10959 0.08616 -0.19947 -0.07736 0.05490
5 -0.14929 -0.10363 0.08694 -0.15422 -0.54166 0.12932
10 -0.14933 -0.10059 0.08759 -0.15559 -0.05416 0.09845
15 -0.14934 -0.10048 0.08762 -0.16564 0.02337 0.12705
20 n/a n/a n/a -0.17005 0.07671 0.13539
30 n/a n/a n/a -0.17156 0.08300 0.13870
40 n/a n/a n/a -0.17592 0.08490 0.13857
50 n/a n/a n/a -0.17730 0.08571 0.13929
88 n/a n/a n/a -0.17928 0.08667 0.13995

In Table 1, when we started close to the true ischemic region, we found an
inverse solution close to this true ischemic region, using the unconstrained
solver. As Table 2 shows, however, this was not the case when we started
farther off. We did suggest a remedy for the non-convexity earlier; start
at several locations, and insert the inverse solutions as parameters in the
forward solver, before taking the norm between these generated forward so-
lutions and the BSPM. Finally, choose the inverse solution providing the
smallest distance from the BSPM.

Entering the two regions we obtained from the unconstrained inverse solver
(Table 1 and left part of Table 2) into the forward solver gave us distances
from the BSPM of 0.0017 and 120.3082 respectively when applying the R42-
norm. From the strategy we suggested in the beginning of this subchapter,
we then pick the solution from Table 1.

5.4 Ischemic region as a square

Moving on from the trivial case of a circle-shaped ischemic region, we will
now step outside the image of the forward operator, by representing the
true ischemic region with a different geometry. We will solve the forward
problem with the ischemic region represented as a square. However, to do
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5 INVERSE SOLUTION OF ELECTROCARDIOGRAPHY

so, we need to make some modifications to the mapping from the center and
radius into the Heavside-function(1.45).

We still want a function which takes negative values inside the ischemic
region, and positive outside. However, with a square-shaped region, we
need a different function. We know that using the infinity norm in R2, the
“unit-ball” is shaped like a square. Using this as a start, we suggest the
function

φ = max(|x− x0|, |y − y0|)− s, (5.15)

which takes positive values outside the square in Figure 11, and negative val-
ues inside. However, it is not quite straightforward to compute the derivative
of this function, since this will depend strongly on the part of the domain
we are in. To sort this out, we make use of the figure.

1

2

3

4
(x , y )00

ϕ = (y-y ) - s0

ϕ = (x-x ) - s

ϕ = (y -y) - s

ϕ = (x -x) - s0

0

0

y = y  + (x - x )

y = y  - (x - x )

0

00

0

Figure 11: The ischemic mapping as a square

With this visualization, it is quite trivial to solve the derivative:

∂φ

∂x0
=


0, x in region 1 and 3
1, x in region 2
−1, x in region 4,

and similarly,

∂φ

∂y0
=


0, x in region 2 and 4
1, x in region 1
−1, x in region 3.
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5.4 Ischemic region as a square

Now, we can implement this in the forward solver, and produce a synthetic
“true” BSPM. When starting the inverse process, we will then hopefully
converge to a circle which approximates the square quite well. We create
two different square-shaped regions, as shown in Figure 12. The left part
has a center in (-0.17, -0.105) with a “radius” of 0.12.

Cavity

Heart

Torso

CavityCavity Cavity

Heart

Torso

CavityCavity

Figure 12: Two different square-shaped ischemic regions

We see from Table 3 below that we needed many more iterations. This is
probably due to the fact that we have moved outside the image of the forward
operator. Hence, the steepest descent, which is a rather simple method, has
problem with convergence (the convergence rate of steepest descent is only
linear[26]). However, what we observe from the solution, is that the solution
is approximating the square quite well. It might be hard to see this from
the numbers, when the radius is not directly comparable between the circle
and the square, but Figure 13 provides a much better visualization of the
solution. Therefore, we will not include more iteration tables, but instead
focus on the figures, since these provide a better visualization when using
ischemic regions with other shapes than circles.

Table 3: First attempt to approximate a square with a circle

# x0 y0 s

0 -0.20000 -0.20000 0.10000
1 -0.14453 -0.14646 0.10069
2 -0.13980 -0.13495 0.12869
3 -0.14297 -0.13396 0.10604
4 -0.14201 -0.12895 0.12490
5 -0.14453 -0.12881 0.10926
10 -0.14630 -0.12324 0.11794
20 -0.14991 -0.12157 0.11695
40 -0.15418 -0.12130 0.11638
60 -0.15580 -0.12127 0.11573
80 -0.15643 -0.12128 0.11560
100 -0.15665 -0.12140 0.11523
255 -0.15664 -0.12129 0.11567
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As mentioned, the circle provides a good approximation to the square, as
seen in Figure 13. Note that we have zoomed in on the body here, and only
focus on the left-side of the heart. So, we only see the ischemic regions and
the cavity wall of the heart.

Caity wall

Cavity wall

Figure 13: The circle from the inverse solution of square-shaped region
together with the true region

Since we have the forward solver for both of the regions in Figure 13, we
might run them once more in the forward solver, and then plot them to see
how they compare.

Figure 14: The forward solution of square and circle corresponding to the
ischemic region of the previous figure.

We can see that these two are quite similar on a large scale, with the excep-
tion of the peak formed as a square and a circle, respectively. The values
they take at the boundary, however, is not clear from Figure 14. But when
measuring the relative distance

δ =
‖BSPMsquare − BSPMcircle‖

‖BSPMsquare‖
, (5.16)
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this takes the value 0.0155. In other words, we have a relatively good ap-
proximation.

The second square-shaped ischemic region had a placement of (−0.06, 0.19),
and a radius 0.12 (see right panel in Figure 12). From Figure 15, we see
that the inverse solution is close in this case as well. However, the inverse
solutions in both Figure 13 and Figure 15 requires us to start in the right
quadrant, in the same way as with the circle-shaped ischemic region. Hence,
we must follow the same recipe as before, and start iterating with several
initial guesses. When doing so, however, we seem to get good approxima-
tions.

Cavity wall

Figure 15: The solution of the inverse solver together with the second square-
shaped ischemic region.

Creating square-shaped ischemic regions was one possible way of checking
the robustness of our inverse solver. A more common path is to add noise
to the synthetic data we produced from the forward solver. That is, we use
the forward solver, and apply some algorithm to add noise to the output we
get. This will be done in the next subsection.

5.5 Adding noise to our synthetic data

As mentioned, adding noise to the synthetic data is a widely used method
to check the robustness of the inverse solver. Often, we use something called
Gaussian white noise. That is variables from the normal distribution with
zero mean and standard deviation, i.e (µ, σ) = (0, 1). We add a randomly
generated number from this distribution to each of the numbers in the elec-
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trocardiogram. But, before we do so, we will illustrate the white noise
process by an example.

Example 5.1 (Adding noise to a function) Let f : [0, 2π] 7−→ R
be a function defined by

f(x) = cos(x), (5.17)

and add 10% noise to this function.

To accomplish this, we use a Python function which draws random numbers
from the normal distribution, then scale it by 0.1(to get 10 % noise), and
add to the function. We then get the following plot:

0 1 2 3 4 5 6 71.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 16: Adding 10% noise to the function f(x) = cos(x).

Now, we can use the same method to add noise to the synthetic BSPMs. At
each of the electrodes we add a number randomly chosen by the standard
distribution. We start by 10%, as in the example, and then add more noise
later, to see how this affects the ischemic region computed with the inverse
solver.

As shown in the Figure 17, adding noise does not affect the ischemic re-
gion to a great extent. All four tested levels of noise is well dealt with by
the inverse solver. This speaks in favor of our theoretically proven stability
also being useful for numerical purposes. Of course, this is to early to say
something solid about after just a few test runs, but we will address this
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issue more in the last chapter.

In addition to obtaining good results when adding noise, the number of
iterations is not much affected either. With 10 and 20% noise, there is ac-
tually no difference in the number of iterations used, but it increases from
19 iterations without noise (Table 1) to 32 iterations when we add 50% noise.

It seems that our inverse solver is rather robust. When working in real
life, however, we will have a limited number of electrodes to measure the
BSPM. Hence, it might be interesting to see how the inverse solver behaves
when we reduce the number of electrodes. As mentioned in the beginning
of this chapter, we have up until now used 42 electrodes, but this will now
be reduced in the forthcoming subchapter.

Cavity wall Cavity wall

Cavity wall Cavity wall

Figure 17: The effect of adding noise. The black circle represent the true
ischemic region, and the red circles are the inverse solutions after adding 10,
20, 30 and 50 % noise respectively.

5.6 Reducing the number of electrodes

What we will do now, is to re-run some of the previous experiments with a
reduced number of electrodes, first to 21, then down to 10 electrodes before
testing with only 4 electrodes.

Before testing with noise, however, we will just run the simple case of having
a circle-shaped ischemic region. We will not show a figure of these results,
but only say that when using 21 electrodes, we got an inverse solution with
center (-0.1776, 0.0859) and a radius of 0.1396, when using 10 electrodes,
the center was (-0.1753, 0.0841) with a radius of 0.1394 and when using 4
electrodes the center was (-0.1846, 0.0892) with a radius of 0.1398. Hence,
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all three were close to the true ischemic region of center (-0.18, 0.087) and
a radius of 0.14. It seems that reducing the number of electrodes does not
greatly affect our ability to get close to the true solution when applying our
inverse algorithm.

In the last subchapter, we observed that the ischemic regions found from
the inverse solver were close to the real ischemic regions even when adding
noise. When reducing the amount of electrodes we might suspect inverse
solutions farther away from the true solution due to more sensitivity to the
noise with fewer electrodes.

When reducing the number of electrodes to 21, this does not seem to be
the case, looking at Figure 18. When adding 10 % noise, our inverse so-
lution is relatively close to the solution we had without any reduction in
electrodes. This also seems to be the case with 30% noise.

When reducing even further, to 10 electrodes, we can see that the first
solution is overestimating the size of the ischemic region to some extent.
There might be several reasons for this. The reduction of electrodes might
have caused greater sensitivity to noise, or the noise might not be random
enough with so few draws from the normal distribution. When increasing
the noise, however, we did not overestimate the size of the ischemic region,
which might suggest that it was just coincidence causing the overestimate
with 10 % noise.

Finally, when reducing down two 4 electrodes, we still obtain inverse solu-
tions close to the true ischemic region. This time, on the contrary to when
we had 10 electrodes, the best solution is obtained with 10% noise. With
30% noise, we see that the center is somewhat shifted away from the true
center, but still, we obtain fairly good results. This supports our stability.
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Cavity wall

(a) Inverse solution using 21 elec-
trodes and adding 10% noise.

Cavity wall

(b) Inverse solution using 21 elec-
trodes and adding 30% noise.

Cavity wall

(c) Inverse solution using 10 elec-
trodes and adding 10% noise.

Cavity wall

(d) Inverse solution using 10 elec-
trodes and adding 30% noise.

Cavity wall

(e) Inverse solution using 4 elec-
trodes and adding 10% noise.

Cavity wall

(f) Inverse solution using 4 elec-
trodes and adding 30% noise.

Figure 18: True ischemic regions are displayed with black circles, while
inverse solutions from the synthetic BSPMs are displayed with red circles.
The caption under each picture states the amount of noise and number of
electrodes used.
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6 Conclusions and future perspective

When we started this thesis, we highlighted some of the problems with the
inverse problem of electrocardiography. Even though some regularization
had shown some progress, it was still a big task to get the instability under
control. In the theory section of this thesis, we did prove a continuous
forward mapping, and also a continuous inverse as long as the last theorem
of Chapter 3 holds, i.e

−M∇Θ · nH 6= Mi∇(h1 − h2) · nH, ∀h1, h2 ∈ S(D), h1 6= h2. (6.1)

If this is true, will probably depend on the conductivities, and when mov-
ing to real-life applications, it might be beneficial to incorporate a quick
integrator which specifically checks if eq (6.1) is satisfied. However, we do
not know how strong the stability is. In fact, it might be only a theoretical
stability. To explain what we mean by that, we will consider the a linear
problem

Lu = f. (6.2)

When we discretize this into a linear algebra problem, it will read

Ax = d. (6.3)

Now, we would like to solve (6.3). In real life, however, we normally have
noise in our measurements. Referring to the problem discussed through-
out this thesis, we can relate d to the potential over the body, and x is
some parameterization of the ischemic region. Using the electrocardiogram,
however, implies that we get noise in our data, so the problem becomes

Ax∗ = d+ dnoise = dECG. (6.4)

But, even though we normally have some noise in our data, we might find
good solutions, depending on the matrix A. To understand this further, let
us look at the relative error

‖x∗−x‖
‖x‖

‖dnoise‖
‖d‖

=

‖∆x‖
‖x‖

‖dnoise‖
‖d‖

=

‖A−1dnoise‖
‖A−1d‖
‖dnoise‖
‖d‖

=
‖A−1dnoise‖
‖dnoise‖

‖d‖
‖A−1d‖

‖A−1dnoise‖
‖dnoise‖

‖Ax‖
‖x‖

≤ ‖A
−1‖‖dnoise‖
‖dnoise‖

‖A‖‖x‖
‖x‖

= ‖A‖‖A−1‖ = κ(A), (6.5)

where κ(A) = ‖A‖‖A−1‖ is the condition number of the matrix. Hence, the
condition number tells us how large the error is the solution can be in ratio
to the relative noise. Thus, if the matrix A has a small condition number,
the error in the solution will be relatively small. Unfortunately, we can
only find the condition number of a linear system, and since the operator F
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(1.63) is non-linear, it can not be represented as a linear system. For non-
linear systems, there is no general method for measuring the relative error.
One remedy might be to linearize the system, but that will not work well
for strongly non-linear systems. Therefore, we should try and classify the
non-linearity of the system, and then find an algorithm to determine how
large the relative error is, depending on the non-linearity. This task might
become rather difficult.

Even though we might have uniqueness of the forward operator, we do not
know what happens outside the forward image. Since we have reduced the
space of ischemic regions to only circles, we have also reduced the image
of the forward operator, and outside here, we do now know much about
continuity. The stability gained by reducing the ischemic space might only
apply inside the image of the forward operator. Hence, we might still have
instability outside the image of the forward operator. However, we did not
experience anything like this when adding noise, nor when we had a square-
shaped ischemic region. This might support that the stability found in the
theoretical section does apply in some of the area outside this image(see
Figure 6).

Another interesting fact about the continuity, was the relation between the
Lipschitz continuity and the size of the transition zone. During the proof
of continuity of the forward operator (Theorem 1 - Chapter 2), we saw that
most of the terms in the inequality was dependent on the reciprocal of the
size of the transition zone. Hence, it might be interesting to see whether
this parameter will have a real influence on the ability to handle noise well.

When we moved to the numerical section, we decided to work with a 2D
heart. This was mainly due to visualization simplifications. Obviously, in
the next phase, we should expand the work to 3D. Then, we should also
incorporate more real-life tensors for the heart. Of course, this must come
from research. Also, the work must be compared to data from real patients
to make us able to determine how well this will work in real life.

A somewhat surprising effect was the section on reduced number of elec-
trodes. Reducing the number of electrodes to half, did not seem to have
any practical impact on the inverse solution, even with adding noise. This
might suggest that we were still able to capture all the major attributes of
the BSPM. Also, when reducing the electrodes even more, we still managed
to get rather good solutions. This is promising, and might suggest that our
method does not require to many electrodes when trying to determine an
ischemic region. However, since we are working in 2D now, this might not
be the case when expanding the work to 3D. Hence, this should be tested
more thoroughly then. Nevertheless, we seem to get quite promising results
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regarding the stability of our solution.

We also did some some simulations with the penalty method. This made
the solver more robust since we got convergence to the true solution with
poor starting guesses, which did not succeed without the penalty method
(cf. Table 2). However, we did then operate in the image of the forward
operator. In real life, on the other hand, we might get ischemic regions
where it would make little sense to force the center of the ball to lie on the
endocardium (see Figure 19). Thus, we should be careful to implement this
in a real-life solver, even though it seems to give us more robustness. Be-
sides, even though we could be more sloppy with our start guess when using
the penalty solver, we have already mentioned one remedy for this: Start at
several locations and pick the solution giving the forward solution closest to
the BSPM. Another possibility might be to apply the penalty method to a
random initial guess, and using the solution from this method as a starting
point for the unrestricted method. Hopefully the penalty method then has
gotten us into the valid area for the unconstrained solver.

Figure 19: The true ischemic region in red, and a possible approximation
with a ball which is not centered at endocardium in green.

Hence, in total we found some promising results, but we have pointed out
some weaknesses which ought to be analyzed further. If these weaknesses
should work out, and we get promising results with real data, we might also
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6 CONCLUSIONS AND FUTURE PERSPECTIVE

want to look at a GUI (Graphical User Interface), and it might be useful
to move from Python to C++ to gain some speed in the iteration process.
Already, a lot of the methods in FeniCs are being swapped to C, but proba-
bly there might be possible to reduce the computing time because of all the
iterations in the inverse solver. In addition, we should incorporate a more
sophisticated inverse solver than the steepest descent, e.g, a trust-region
method, to acquire a quadratic convergence rate[26]. This to reduce the
number of iterations we needed in some of the cases (e.g, the square-shaped
region, cf. Table 3).
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A Small proofs left out in the text

1. Continuous linear operators are Lipschitz continuous - From
e.g [8], we have equivalence between continuity and boundedness for linear
operators. Hence, let X and Y we normed spaces, and let T : X 7−→ Y be
linear and bounded. Then L is Lipschitz.

Proof:

‖Tx− Ty‖ = ‖T (x− y)‖ ≤M‖x− y‖, ∀x, y ∈ X, (A.1)

where M is a constant.

2. Composition of Lipschitz continuous operators are Lipschitz
continuous - Let X, Y and Z be normed spaces. Let T1 : X 7−→ Y and
T2 : Y 7−→ Z be two linear, bounded operators. Then T2 ◦ T1 is Lipschitz
continuous.

Proof:

‖T2(T1x)− T2(T1y)‖Z = ‖T2(T1x− T1y)‖Z ≤M2‖T1x− T1y‖Y
= M2‖T1(x− y)‖Y ≤M1M2‖x− y‖X . (A.2)

Hence the composition is Lipschitz continuous.

3. Equivalence between bilinear form and minimization problem
Let V be a Hilbert space with inner product (·, ·)V and norm ‖·‖V . Suppose
that the bilinear form a is symmetric and positive semidefinite. Then the
abstract variational problem

a(u, v) = L(v), ∀v ∈ V, (A.3)

is equivalent to the minimization problem minv ∈ V = F (v) for

F (v) =
1

2
a(v, v)− L(v). (A.4)

Proof: ⇒) : Assume that a(u, v) = L(v), ∀v ∈ V . Further, let w ∈ V .
Then we have

0 = a(u, u− w)− L(u− w) = a(u, u)− a(u,w)− L(u,w). (A.5)
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Now, we claim that a(u,w) ≤ 1
2a(u, u) + 1

2a(w,w). This follows from

0 ≤ a(u− w, u− w) = a(u− w, u)− a(u− w,w)

= a(u, u)− a(w, u)− a(u,w) + a(w,w) = a(u, u)− 2a(u,w) + a(w,w).

Thus, the claim follows, and we get that

0 ≤ a(u, u)− 1

2
a(u, u)− 1

2
a(w,w)− L(u) + L(w). (A.6)

Hence,
1

2
a(w,w)− L(w) ≥ 1

2
a(u, u)− L(u), ∀w ∈ V. (A.7)

⇐) : Assume that u satisfies minv∈V F (v). Let v ∈ V and ε ∈ R. Define
g : R 7−→ R by

g(ε) =
1

2
a(u+ εv, u+ εv)− L(u+ εv). (A.8)

Since u is the minimizer, then clearly g(0) ≤ g(ε), so it follows that g′(0) = 0.
Hence, it follows by the chain rule that

g′(0) =
1

2
a(v, u) +

1

2
a(u, v)− L(v) = 0⇒ a(u, v)− L(v) = 0

⇒ a(u, v) = L(v). (A.9)

4. Equivalent inner product - Let H be a Hilbert space. Then will
a symmetric, continuous, coercive bilinear operator a(·, ·) : H × H 7−→ R
introduce a equivalent inner product on H.

Proof: Let x, y, z ∈ H and α, β ∈ R. A real inner product satisfy
the four following properties:

(i) (x, x) ≥ 0

(ii) (x, x) = 0 if and only if x = 0

(iii) (αx+ βy, z) = α(x, z) + β(y, z)

(iv) (x, y) = (y, x).

From the symmetry property, property (iv) is clearly satisfied. Also, from
the bilinearity, (iii) is satisfied. Further, let u ∈ H be arbitrary. The
coercivity property states that

‖u‖2H ≤ α a(u, u), (A.10)
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for some constant α > 0. Hence, a(u, u) > 0 for all u 6= 0. To show that
a(u, u) = 0 when u = 0, we use the continuity property, which says that

|a(u, v)| ≤ C‖u‖H‖v‖H , ∀u, v ∈ H. (A.11)

Hence,
|a(u, u)| ≤ C‖u‖2H , (A.12)

which concludes the proof.

5. Continuity of least-squares operator - Let F : Rn 7−→ L2(∂B)
be continuous, where B ⊂ Rm. Then the operator G : Rn 7−→ R defined by

G(x) =
1

2

∫
∂B

(F (x)− d)2 dS, (A.13)

is continuous as well.

Proof: Since F is continuous, we know that for an arbitrary x ∈ Rn,
there will for any ε > 0 exists a δ > 0 such that ‖F (x) − F (y)‖L2(∂B) <
ε whenever ‖x− y‖Rn < δ.

Hence, if we let let x, y ∈ Rn such that ‖F (x)− F (y)‖L2(∂B) < ε1, then

|G(x)−G(y)| = 1

2

∣∣∣∣∫
∂B

(F (x)− d)2 − (F (y)− d)2 dS

∣∣∣∣
=

1

2

∣∣∣∣∫
∂B
F 2(x)− 2dF (x)− F 2(y) + 2dF (y) dS

∣∣∣∣
≤ d

∫
∂B
|F (x)− F (y)| dS +

1

2

∫
∂B
|F 2(x)− F 2(y)| dS

= d

∫
∂B
|F (x)− F (y)| dS +

1

2

∫
∂B
|F (x)− F (y)||F (x) + F (y)| dS

≤ C
(∫

∂B
|F (x)− F (y)|2 dS

)1/2

= C‖F (x)− F (y)‖L2(∂B) < Cε1 = ε, (A.14)

whenever ‖x− y‖Rn < δ.
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