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Abstract

The advent of two-photon calcium imaging in vivo has presented

a new arena to detect neuronal action potentials and identify neu-

ron types based on their fluorescence signatures. However, despite the

growing popularity, reconstructing spike patterns from the fluorescence

traces still remains a major challenge. Also, not much is usually said

about how the calcium waveforms corresponding to a spike (calcium

kernel) should be estimated. In this thesis, we present a novel approach

for calcium kernel estimation from slopes of a fluorescence trace by

combining the Savitzky-Golay filter with an iterative algorithm for fit-

ting a nonlinear model (Levenberg-Marquardt). We also present a new

method for spike detection, which employs deconvolution and greedy

optimization. First we test these methods on synthesized calcium sig-

nals, and then we apply them to experimental traces from wild-type

and transgenic mice expressing human α- synuclein (model of Parkin-

son’s disease). We show longer calcium response in the somatosensory

cortex neurons of the transgenic mice, read-out both spontaneous and

evoked activities as well as follow the hierarchy in fluorescence transient

elevation arrivals when mice whiskers were stimulated electrically.
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1 INTRODUCTION







Part I

1 Introduction

In recent years, there have been significant progresses in understanding the
molecular pathway and synaptic pathology of Parkinson’s disease, a progres-
sive neurological disorder involving the basal ganglia [24].

However, translation of these results into clinically effective treatments re-
main a major challenge. Limited understanding of the key molecular events
that evoke neurodegeneration is the main obstacle stopping scientists from
developing neuroprotective therapies [6]. On a molecular level, it is now
well established to consider a protein known as α-synuclein (α–syn) as a key
component of the disease [26].

We have had an interest to investigate if α-syn perturbs Ca2+ homeostasis in
neurons (section 2.4) [9]. For this purpose, in vivo two-photon calcium imag-
ing is performed on neurons of wild-type (control) and transgenic (expressing
human α−syn) mice (section 3.2).

Two-photon calcium imaging in vivo is gaining recognition in the scientific
community. This state-of-the-art imaging technique is favored due to the
enormous possibilities it provides to image deeper (0.5-1 mm) in the brain
with good sub-micron visibility [16], high spatial (up to 1 µm) and temporal
(10 -104 Hz) resolution [21, 18]. In addition, the technique allows simulta-
neous and prolonged imaging for a population of neurons [16].

Calcium imaging signals are often used to detect firing of action potentials.
However, reconstructing a spiking pattern from the fluorescence calcium sig-
natures is not yet well resolved. Since the second half of the last decade, a
number of algorithms have been proposed to sort out spikes from the fluctu-
ating fluorescence traces [44, 35, 42, 14, 20]. Some of these algorithms have
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1 INTRODUCTION

addressed the problem from image processing point of view [42], others have
approached the problem with methods used for machine learning [35], while
some groups have tackled the problem from signal processing point of view
or combined the image and signal approaches [44, 12]. In this thesis, we
address the problem from a signal processing point of view.

As it is described in more detail in section 4, most of the groups which have
worked with the problem have put forward different forms for deconvolution
as a spike detecting algorithm: For instance, Yaksi and Friedrich proposed
temporal deconvolution [44], Holekamp et al. considered optimal linear de-
convolution [20], whereas Vogelstein et al. have suggested non-negative de-
convolution [42]. In addition, some of the groups have supplemented decon-
volution with data filtering (for instance, Wiener [20], Butterworth low-pass
[44]) as a pre-processing procedure, as well as with data on measured activ-
ity by techniques other than multiphoton imaging (for instance, loose-patch
clamp recordings [35]).

Deconvolution is favored under the assumption that each AP evokes a uni-
tary, usually exponentially decaying, Ca2+ transient [12, 44]. As a result,
the time-varying fluorescence trace can be approximated by a convolution
of a time series of instantaneous events of AP with a kernel expressing the
Ca2+ transient plus noise [44] (see section 4.1).

Nevertheless, none of these deconvolution algorithms have clearly shown how
the calcium transient kernel should be constructed and how its parameters
should be estimated (see section 4.3).

In this thesis we attempt to develop and test algorithms that can estimate
calcium clearance time constant, sort out the activity pattern (evoked and
spontaneous) from the traces and make a suggestion for the feasiblity of
identifying neuronal cell types based on their unique fluorescence signatures.

A novel algorithm for kernel parameter estimation from slopes of a given
calcium trace will be presented in this thesis. We will develop this algorithm
by combining the Savitzky-Golay filter with an iterative algorithm for fitting
a nonlinear model (Levenberg - Marquardt).

Once the kernel is estimated, APs can be deterministically sorted out from
a trace with deconvolution. An alternative approach than the conventional
Fourier domain method will be presented for this deconvolution.

13



1 INTRODUCTION

We improve the AP estimations of deconvolution with an optimization algo-
rithm in the greedy approach.

We model a family of calcium signals mimicking experimental data.

The modeled signals will play crucial roles to understand the dynamics of
calcium signals. Designed algorithms will be fine-tuned on the modeled
signals.

In additon, the modeled signals will be used as a test data for comparing
algorithms as well as fit for parameters that we require for later use in the
experimental data application and analyses.

The fine-tuned algorithms on the modeled data will be applied on selected
two-photon calcium imaging signals in vivo at the end of the text.

The theme of this thesis is motivated by an ongoing research on Parkinson’s
disease (see section 2.3) at the laboratory of Dr. A. Devor at the University
of California in San Diego.

14



1.1 Organization of the thesis 1 INTRODUCTION

1.1 Organization of the thesis

This thesis is organized in such a way that: In part I, section 2 starts by
giving the necessary biological background, in section 3 we briefly present
two-photon microscopy, our experimental methods as well as how the data
is processed. In section 4, we do the mathematical modeling and survey
existing algorithms in the field. Section 5 addresses the procedures for Ca2+
signal modeling and algorithms design. In section 6, we use the modeled
signals to test and fine-tune algorithms as well as compare results. In section
6, algorithms will be applied on selected two-photon Ca2+ imaging signals in
vivo. Section 8, will summarize, discuss and conclude on the major results
of the thesis. Part II is dedicated to Appendix, where in section 9 and
10 the most important abbreviations and symbols of parameters are listed
respectively. In section 11A to E, we have presented the major MATLAB
scripts used for the modeling process in this thesis.

Parts (red), sections (red), Table of contents (red), Figures (red), Equations
(red), footnotes (red), citation-forward (green) and citation-backward (red)
are all cross-referenced throughout the text. In addition, hyperlinks are
available in the electronic version of the text.
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2 Biological Background

2.1 Neurons

Neurons are cells in the central nervous system that are connected to each
other in an intricate pattern [11]. Neurons are specialized in integrating, pro-
cessing and transmitting information [4]. For instance, these cells configure
muscle movements as well as brain activities, such as learning and speech.
These tasks of high coordination are possible due to the neuronal capability
to conduct electrical impulses at high speed and over long distances.

There are about 1011 neurons in a human brain [23]. Morphologically, a
neuron is divided into three distinct parts (Figure 2.1) : A cell body or
soma, dendrites and an axon. In the soma, nucleus and the majority of
cytosolic organelles are contained [19], serving as a central processing unit
[11]. Dendrites are branchy in structure and emanate from the soma [19].
These structures are specialized in bringing signals from other neurons to the
soma. Their branchy structure enlarges the receptive volume for increased
connection to other neurons [4]. Typically, a neuron can receive inputs from
more than 10, 000 other neurons via its dendritic synapses [23]. An electrical
input signal that is above a certain threshold will be taken away from the
soma by an axon, a tubular process extended towards target cells [4, 11].

Due to the presence of a barrier in the form of cell membrane, ions cannot
freely wander between the intracellular and the extracellular medium of a
neuron. Na+, K+, Ca2+ and Cl−are the four predominant ion types involved
in trans-membrane electric potential transaction [7]. However, these ions can
cross the barrier in response to electrical stimulation.

16



2.2 Action potentials 2 BIOLOGICAL BACKGROUND

2.2 Action potentials

The active electrical response of a neuronal membrane to a stimulus is called
an action potential, also called a spike [4]. Action Potentials (APs) are the
prime means of communication between neurons [7].

The process of transmitting information from one neuron to the next is called
AP firing. When a neuron is at rest, its potential inside the membrane is
about −65 to −70 mV [11] relative to the medium outside of the membrane.
Neurons fire when incoming current from other neurons become large enough
to depolarize the membrane potential above a certain threshold of resting
potential [23, 4].

In general one AP can differ from the other in its width, amplitude and shape;
nevertheless, they are stereotypically treated as being similar. In neuronal
encoding, when information conveyed by APs studied, one is interested in the
number and the timing of spikes, the form is usually irrelevant [7]. Typically,
the potential density of an AP can reach about 100 mV and remain high for
about 1− 2 ms.

Figure 2.1: A. Ramón y Cajal’s drawing of a single neuron showing a soma,
an axon and dendrites. In the inset, a typical action potential of amplitude
100 mV and duration about 2 ms is displayed. B. A presynaptic neuron j
transfering a signal to a postsynaptic neuron i through the synapse (marked
by the dashed circle). Adopted from Gerstner and Kistler, 2002.

When a chain of APs is released by a single neuron, the sequence at (regular
or irregular) intervals is called a spike train [11].

17



2.3 Parkinson’s disease 2 BIOLOGICAL BACKGROUND

2.3 Parkinson’s disease

According to a London based PD research group VIARTIS, more than 6
million people were diagnosed with PD in 2009, worldwide [41]. Other sta-
tistical data have indicated that nearly 2% of the aging population (≥ 65
years) suffers from movement impairments due to PD [4]. In most cases,
early (30-40s years of age) PD-onset is associated with heredity, whereas
onset after 60 is considered as sporadic [26].

The four main symptoms of PD are tremor, slowness of movement (bradyki-
nesia), rigidity, and postural instability [4]. Other clinical symptoms of the
disease include fixed facial expression, changes in speech and handwriting,
excessive sweating, psychological problems such as depression, and in late
stages dementia [34]. The motor impairments are primarily due to degen-
erating dopaminergic neurons in the substantia nigra and the loss of their
dopaminergic projections to the striatum [6]. The non-motor symptoms of
Parkinson disease are gaining much more attention than before since they
contribute greatly to disability as the disease progresses. In addition, non-
motor impairments do not respond to dopaminergic drugs as motor impair-
ments do [4]. So far there is no definitive agent known to slow down disease
progression at the cellular level in Parkinson disease [3].

It is argued that the basic pathology of PD is the death of dopaminergic
neurons in the pars compacta of substantia nigra, part of the brain that sends
dopaminergic projections to the basal ganglia [6]. In the midbrain substantia
nigra covers a large area darkly pigmented with melanin, a metabolic by
product of dopamine breakdown [15].

Recently, it has been speculated that the development of PD to have a pos-
itive link with the rate at which α-syn, a small acidic synaptic terminal
protein of 140 amino acids, forms aggregates [6]. It is also indicated that
inability to regulate membrane permeability for Ca2+ as one feature of neu-
rodegenrative diseases [22].

2.4 Ca2+ dynamics in neurons

The electrical activity of neurons is sustained via ionic currents that propa-
gate through neuronal membranes [7, 23]. Calcium ions are one of the ionic
species involved in this transmembrane current transaction [23].
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In general, there are two isolated calcium storages in the brain: The ex-
tracellular environment and the intracellular regions. The former stores a
large amount of calcium supply, whereas the endoplasmic reticulum (ER),
mitochondria and the lysosome of the intracellular regions also serve as Ca2+
reservoir [31, 2].

The storage capacity of the intracellular region is affected by Ca2+ buffering
proteins, such as the α-syn nucline, however, the entire dynamics of this is
not yet well resolved [2].

Mainly, two phenomena cause the cytosolic calcium level to fluctuate: Each
AP increases the membrane Ca2+ conductance [23] leading to a brief Ca2+
influx (typically lasting for 1 ms) through membrane channels [27, 5]. The
brief influx causes transient elevation, usually denoted by [∆Ca2+], in in-
tracellular calcium concentration [5, 12]. The excess intracellular calcium is
typically cleared out from a cell in an exponentially decaying manner [12].
Secondly, Ca2+ can emerge from the intracellular stores via channels oper-
ated by special receptors [39]. For instance, mitochondria takes up Ca2+
during cytosolic surplus and releases Ca2+ during cytosolic deficiency [2]. In
this thesis we consider only APs as the causes of predominant intracellular
calcium elevations.

In the case of PD, it is assumed that, cells might be able to adjust to Ca2+
irregularities in early stages of the disease by clearing excess calcium into
intracellular stores and out of the cell. The ongoing research at the labo-
ratory of Dr. A. Devor at UCSD, which motivated this thesis, focuses on
how α-syn oligomers perturb neuronal calcium homeostasis in vivo. The ob-
jective of the study is detecting differences in Ca2+ dynamics in neurons of
wild-type and transgenic (α-syn) mice. For this purpose, we have employed
two-photon calcium imaging in vivo. In this thesis, we attempt to estimate
exponential calcium kernel parameters and reconstruct the spike trains of
the two-photon imaging signals.
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3 Experimental Background

3.1 Two-photon microscopy

Two-photon microscopy is a relatively new imaging technique that employs
laser beams [16]. The physics behind the technique is exciting a fluorescent
target molecule by two lower energy photons [28]. However, to achieve the
necessary amount of exitation, the two photons should be absorbed almost
simultaneously (typically within 1 fs) by the target [16]. In this case, the
energy increase achieved by the target molecule is equivalent to the sum
of the individual photon energies [30]. During relaxation, an exited target
molecule emits fluorescence and the traces of the fluorescence are recorded
as an image signal.

Biological tissues scatter ultraviolet (UV) and visible light radiations, which
is the operating wavelength range for single-photon (confocal) microscopes
[28]. On the other hand, tissues are transparent to near-infrared (n-IR)
radiation, ranging from 700 nm to 1000 nm [30]. Two-photon microscopes
operate in the n-IR region; therefore, they are more suitable for in-depth
brain imaging in vivo. In ideal situation, 500 µm up to 1 mm penetration
depth can be reached with two-photon laser scanning in the cortex [17]. In
addition, since n-IR stores lower energy, the technique is less phototoxic to
a tissue [28].

A spatial resolution as high as 1 µm as well as a 10 Hz to 10 kHz temporal
resolution can be reached with two-photon imaging [21]. In Figure 3.1, we
have illustrated a spatiotemporal resolution (in logarithmic scale) of vari-
ous imaging techniques available in neuroscience. In this case, two-photon
calcium imaging is categorized under optical imaging.
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Fig. 1.2. Comparison of spatiotemporal resolutions of current methods used in neuroscience.

this type of cross comparison across methods since then, up-
to-date results were compiled from in vivo dynamic imaging
studies of primarily small animals. Unfortunately, these crite-
ria excluded two dominant techniques in functional brain imag-
ing: 14C-deoxy-glucose (14C-DG) autoradiography and positron
emission tomography (PET).

14C-DG, a glucose analog, measures glucose consumption
by the amount of metabolically trapped 14C-DG-6-phosphate
throughout the brain (64). However, about an hour is required
for radioactivity to build up in the tissue. 14C-DG autoradiogra-
phy provides superior spatial resolution (50–100 µm) but it is a
terminal experiment and therefore used only in animals.

PET, fashioned after the 14C-DG method but designed for
application to humans (65), has several methods for functional
imaging. Glucose consumption measurement is analogous to
the 14C-DG method except that 18F-fluoro-deoxy-glucose (18F-
FDG) is the glucose analog for PET. 15O-water is used to measure
blood flow. This is done by injecting 15O-water into the blood
stream and then detecting the rate of appearance of 15O-water in
the brain tissue. Carbon monoxide with 11C or 15O, which mim-
ics binding of oxygen to hemoglobin in red blood cells, is used
to measure blood volume. The principle is that carbon monoxide
is blood borne and, therefore, the detected radioactivity is only
representative of the vascular compartment. The blood flow and
blood volume methods in combination with inhaled 15O-oxygen
can be used to measure oxygen consumption by detecting the rate
of metabolized 15O-water in brain tissue. In all of these studies,

Figure 3.1: Comparison of spatiotemporal resolutions of various imaging
techniques available in neuroscience. In this case, two-photon calcium imag-
ing can be classified under the Optical imaging in the illustration. Adopted
from F. Hyder, 2009

3.2 Experimental methods

The experiment is designed to investigate the role of Ca2+ in PD neurode-
generation in vivo. For this purpose, traces of emitted fluorescence in the
primary somatosensory cortex (SI) are recorded through two-photon micro-
scope for a group of 12-month old transgenic mice expressing human α-syn
under the mThy-1 promoter, and their age-matched wild-type littermates
(Controls) under a similar condition. The transgenic mice used for the study
have fully developed PD. Actual imaging is made in the barell cortex across
the depth down to 300 µm. The barrel cortex is chosen for this purpose
due to the well-resolved mechanism between each barrel and its functional
connection to a single whisker [4].

Mice were anesthetized with isoflourane and ventilated with a mixture of
air and oxygen during a surgical procedure prior to imaging. Mice heart
rate, blood pressure, expired CO2 and body temperature were continuously
monitored throughout the experiment. Respiration was aimed to maintain
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pCO2 between 35 and 45 mmHg. During the surgery cannulas were inserted
in the femoral artery and vein, Isofluorane was discontinued and anesthesia
was maintained.

An area of the skull overlying SI was exposed, the skull and dura mater were
removed, and the space between the exposed brain surface and the cover
glass was filled with agarose (Sigma), for further detail on the the practical
procedures refer to Devor et al., 2008 [8].
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Figure 3.2: Top: An Ultima two-photon laser microscope system set-up from
Prairie Technologies. The microscope uses a titanium (Ti) sapphire laser of
800 nm. PMT is a short form for photomultiplier tubes (vacuum), NA ab-
breviates object side numerical aperture (opening). A Dichroic mirror shows
different colors when viewed from different directions due to different absorp-
tion coefficients for light polarized in different directions. SI refers to the
primary somatosensory cortex. Bottom: Experimental flow. blue arros de-
note individual stimulus, in total 15. Stimulation is given through whiskers,
either as a single electric shock in 100 ms (bottom left blue rectangle) or as a
train of 3-pulsess (three assembled rectangles at bottom right). Adopted from
Dr. Devor’s Lab ( L. Reznichenko) Sfn 2010 poster.
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The center of neuronal response was mapped with a silver ball electrode prior
to the two-photon imaging. This is done by measuring the surface potential
recording of the so-called multi unit activity (MUA). After mapping the
neuronal response using surface potentials, calcium indicator Oregon Green
BAPTA-1 AM (OGB1) and glial marker SR101 were micro-co-injected in
the center of the responsive area about 300 µm below the cortical surface.
In addition to exposing the skull, two minor surgeries are performed. The
first one for catheterizing femoral artery for blood pressure monitoring and
applying anesthesia, and the second one is tracheotomy surgery for planting
supportive breathing apparatus. All surgeries are performed according to the
US National Institutes of Health (NIH) guidelines for the care and safety of
laboratory animals. In addition, all experimental procedures were approved
by the University of California at San Diego Institutional Animal Care and
Use Committee.

Images were obtained using 4-channel Ultima 2-photon microscopy system
from Prairie Technologies, microscope details are shown in Figure 3.2 or can
be accessed at Prairie-technologies website [1].

For practical reasons, calcium activities are imaged at three separate cortical
layer frames: i) Cortical layer I, about 100 µm below the surface ii) cortical
layer II, about 150 µm below the surface; and iii) cortical border layer II-III,
about 250 µm below the surface. In each layer, on average about 10 neuronal
cell bodies are imaged within approximately 50X 100 µm field of view (FOV)
at acquisition rate of 10 Hz. Whiskers are electrically stimulated with 0.3 mA
to 1 mA, in a single pulse during 100 ms or in a 3 Hz train of pulses during
1 s. There are 15 stimulus trials for each FOV with an interstimulus interval
(ISI) of 15 s, details for the flow of the experiment are shown in Figure 3.2. In
addition, for each FOV both (1Hz and 3 Hz pulses) the stimulus conditions
are presented. Besides stimulated trials, some stimulus free (blank) trials are
collected for the sake of estimating spontaneous occurrence and duration.

3.3 Experimental data

3.3.1 Data processing

Raw experimental data is processed and transformed into easily accessible
and manipulable formats with MATLAB. Regions occupied by neurons, as-
trocytes and vessels in a raw image are identified and masked as regions of
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interest (ROI). A typical example of experimental image with masked ROIs
is shown in Figure 3.3.

Figure 3.3: Regions of neurons, astrocytes and neuropiles will be identified
from the two-photon imaging data and masked as shown in the figure.

In Figure 3.3: (a) Due to high calcium concentration, some spots look
brighter. The brighter spots can represent either neuronal calcium as marked
by OGB1 or astrosytic calcium marked by both OGB1 and SR101. On the
other hand, the dark spots represent locations of vessels. These locations
look darker because they lack of calcium, therefore, unmarked neither by
OGB1 nor by SR101. (b) Astrosytic spots are sorted out from the brighter
spots of (a) due to their unique SR101 content. (c) Black spots denote neu-
ron masks, i.e. the brighter spots in (a) minus the astrosytic spots of (b).
(d) Black spots denote astrosytic locations. (e) Black region denote a neu-
ropile, i.e. the entire ROI minus vessels, neurons and astrocytes. Or, in
other words, a neuropile is the unmarked ROI as neurons, astrocytes and
vessels.

3.3.2 Fluorescence traces of calcium imaging

Change in calcium level can be read out from the fluorescence emission made
by a stained cell

∆[Ca] α
∆F

F
(3.1)

where ∆[Ca] implies the change in calcium concentration, α implies propor-
tionality and ∆F

F implies the fractional fluorescence change [12]. ∆F
F is the
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change in the amount of emitted light intensity by a cell, an astrocyte or
a neuropile [16]. ∆F

F increases with increasing calcium concentration in the
presence of (unsaturated) calcium dye [4].

3.3.3 Experimental data examples

Pixels of the masked regions serve as a basis to construct calcium imaging
fluoresence traces. In Figure 3.4, fluorescence traces of a neuropile, astrocytes
and neurons are illustrated in blue, red and green respectively. Each trace
lasts for 285 s as indicated in section 3.2. The first and the last 20 second
intervals of a given experimental run are blank (non-stimulated), therefore,
dominant elevations observed in these intervals must have been caused by
spontaneous activities.

Figure 3.4: Fluorescence traces of a full two-photon Ca2+ imaging exper-
imental run for a transgenic (α-syn) mouse: Neurons (green), astrocytes
(red) and a neuropil (blue). Examples of evoked and spontaneous events are
indicated with arrows. Stimulus arrives to the region of interest (neurons,
astrosytes and neuropil) about 5 s after the gray vertical bars, therefore, el-
evations in that vicinity are evoked activities. A small sized masked region
is more likely to give noisier signal due to lower picture element inclusion.
This is one of the reasons why the neuropil trace (blue) seems less noisier
than the green (neuron) traces.

In Figure 3.5, we have illustrated a full run fluorescence trace (∆F
F ) for a

single neuron as a function of time. In this thesis, we will attempt to model
such a trace. Later on we exploit the models as a test data to develop
algorithms that can be used to estimate some parameters and reconstruct
spike trains of the real data.
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Figure 3.5: Experimental trace for a transgenic trace.
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4 Mathematical Background

Detecting the level of intracellular calcium concentration by means of a
fluorescence trace from two-photon imaging is gaining popularity in neu-
roscience. Excited fluorophore, used to stain neurons and astrocytes as a
calcium indicator, emits light while relaxing to a lower energy state. The
amount of emitted fluorescence, however, depends on cells activity. In cal-
cium imaging, one records the trend of fluorescence fluctuation caused by a
changingcalcium level. Fluctuation in calcium in turn is a result of increased
membrane Ca2+ conductance in course of action potential positive feedback
effect.

Nowadays, two-photon calcium imaging serves as an alternative and a com-
plimentary technique to neuronal electrical recordings. In fact, two-photon
imaging is sometimes preferred due to its convincing results in intact brain
studies in vivo [44].

Reconstructing spiking patterns from a fluorescent trace, however, is not a
straightforward process. This is mostly due to various measurement errors
and artifacts. In recent years, various spike-train-inferring algorithm for
calcium imaging fluorescence traces have been proposed. Nevertheless, non
of the existing algorithms has managed to fully resolve the quest for spike
inference from fluorescent traces.

4.1 A mathematical model of Ca2+ signals

In this text we deal with three signal types: i) A spike output made by a
neuron, ii) A broadening signal, and iii) A wave-like calcium response. Type
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i is the one that we detect as an input signal in our system, we simply refer
to it as a spike (pl. spike train). Type ii will be referred as a broadening
(calcium) kernel, whereas, type iii will be recognized as a calcium output
signal.

Suppose any spike output made by a neuron gives a characteristic wave-like
calcium response. Therefore, a calcium output signal is composed of many
repetitions of the same wave-like calcium response. Mathematically this is
convolution. Roughly speaking, convolution is a sort of signal blending. In
signal processing, convolution is perhaps one of the most important algo-
rithms in terms of relating three signals of interest [38]: Such as a spike, a
broadening kernel and a calcium output signal mentioned above.

In mathematical terms, convolution is written in the form of

(κ ∗ η)(t) = ψ(t) (4.1)

where κ(t), η(t) and ψ(t) represent a broadening kernel, a spike train, and
an output signal respectively, whereas ∗ denotes the convolution operator.
In addition, the output signal ψ(t) is explicitly defined as

ψ(t) =
∞�

t�=0

κ[t�] · η[t− t�] (4.2)

The above expression is useful when convolution is applied on discrete input
signals. Note that, convolution can also be performed on continuous impulse
signals. However, the mathematical justification of the procedure is a bit
more complicated. One of the reasons for that is, the mathematical abstrac-
tion of the continuous delta function used to approximate continous impulse
signals [38]. The spike train we are going to be looking at in this thesis is
discrete, hence, extending the discussion of convolution to contiuous signals
will not be necessary here.

The calcium kernel κ(t) used in the convolution will have an exponentially
decaying form. This is due to neuronal excess somatic calcium clearing
mechanism discussed in section 2.4.
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4.2 Formulation of the problem

In section 4.1 we have surveyed how to construct output signals from two
known signals, namely a spike train and a kernel. In this subsection we will
briefly present a strategy to invert the convolution in order to estimate spike
trains.

Basically, the core of this thesis is making an attempt to estimate input
signals (spikes and kernels) from calcium output signals as accurately as
possible.

We attempt to reverse the convolution that brought forth calcium output sig-
nals with deconvolution. We perform the deconvolution deterministically
in a sense that we acknowledge the exponential form of the unknown broad-
ening kernel. Deconvolution is commonly performed in the Fourier domain
[38]. However, in this thesis, we will develop an alternative approach to the
conventional method of deconvolution. This issue will be revisited in section
5.
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4.3 Existing algorithms

Several computational techniques have been proposed to infer spike trains
for a population of neurons from a noisy multiphoton calcium imaging sig-
nals. Some of these techniques are worked out through direct analysis of
images generated by the multiphoton fluorescence microscopes, while others
(including us) have analyzed the 1D time-series fluorescence transient traces
constructed based on the images. However, in both approaches dominant
elevations observed in fluorescence transient signals are accounted for action
potential firings [12, 35, 42, 44].

In the following paragraphs, we will briefly survey some of the proposed
algorithms for the purpose of reconstructing spike trains for a population of
neurons.

One of the earliest works in this field has suggested extracting event onset
time from the first derivative of fluorescence traces with imposed threshold
on the fractional fluorescence change ∆F

F [33, 36, 42].

While studying a hippocampal slice, Sasaki et al. have introduced a spike
detection algorithm by combining principal-component analysis (PCA) and
support vector machine (SVM) [35]. Sasaki et al. have argued that their
machine learning based PCA-SVM algorithm to be better suited to recon-
structing spike trains than earlier semi-manual calcium transient threshold
procedures. However, their algorithm is heavily reliant on the existence of
high signal quality, in addition to requiring hundreds of data examples (both
image and physiological) to train the algorithm on how fluorescence react to
AP [42].

Yaksi and Rainer [44] have suggested a technique that makes use of temporal
deconvolution, while studying odor-response pattern in populations of zebra
fish olfactory bulb neurons. They have argued that due to cells ionic content,
AP opens voltage-gated Ca2+ channels causing a unitary Ca2+ transients
with a fast rise followed by exponential tailing. One of the challenges this
study has raised is that during trains of APs individual transients summate
causing a complex temporal variation in Ca2+ concentration. Furthermore,
this study have proposed the possibility of supplementing cell type identifica-
tion through spectral separation of Ca2+ transients and genetically encoded
cell-type markers.
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Another suggestion for spike detection in a fluorescence trace comes from the
work of Göbel and Helmchen [12]. In their study, Göbel and Helmchen have
approximated each fluorescence trace by the convolution of a spike train with
a single AP evoked calcium transient plus some additive noise. However, the
main focus of this study was attempting to precisely estimate and improve
signal quality based on dye saturation analysis.

Greenberg and his colleagues [14] have employed template-matching algo-
rithm to study firing rates and identify individual spikes for populations of
neurons in the visual cortex of awake rat.

Holekamp and colleagues [20] employed optimal linear deconvolution, a signal
processing approach that involves Wiener filtering the fluorescence image
data [42].

Recently, Vogelstein et al. [42] have proposed a non-negative deconvolution
algorithm for spike inference from fluorescence calcium imaging data. This
algorithm involves filtering the image data to enhance the image quality and
infers the approximately most likely spike train.

In addition to multiphoton fluorescence data, most of the groups mentioned
above have employed other activity measurements such as the patch clamp
recordings [35] as a supportive procedure in their spike reconstruction algo-
rithm.

Even though most of the proposed algorithm in the literature employ de-
convolution with an inverted kernels as a spike detection algorithm, non of
them have clearly specified how these kernels should be constructed from the
fluorescence transient signals.

In this thesis we model a family of calcium signals.

Based on the modeled signals, we develop and test a novel algorithm that
enables to estimate calcium kernels from slopes of a calcium transient.

The estimated kernels will be used to develop a new optimized deconvolution
algorithm in the greedy approach for detecting spikes.
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5 Methods: Modeling

In this section we present the modeling and data analysis process in more
detail, and show how models are implemented and visualized in MATLAB.

The section is organized as follows: In section 5.1 some assumptions regard-
ing action potentials will be presented. Thereafter, based on assumptions on
experimental data set; spike trains, kernels and model signals will be gen-
erated. In section 5.2, we present how we can estimate kernels from noisy
modeled calcium signals. Our prime spike estimation algorithm will be in-
troduced in section 5.3. Section 5.4 addresses techniques that can improve
the spike estimation algorithm discussed in section 5.3.

All computational task is performed with MATLAB 7.9.0 (R2009b) on Mac
OS X, 2.26 GHz intel core 2 Duo processor.

5.1 Generating calcium signals

5.1.1 Spike generation

Assume that a typical neuron is capable of firing a number of spikes (action
potentials) during a trial duration spanning over several seconds.

All spike occurrences during the trial will be detected and the arrival timings
will be listed as follows:

F =
�
t(1), ..., t(i)

�
, i = 1, 2, 3... (5.1)
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Where F is a set containing all spike arrival times and t(i) denotes the ith

action potential fired. Thus we can express the resulting spike train as

η(t) =
N�

i=1

ηi(t),
i = 1, 2, 3...

N ≤ +∞ (5.2)

Where ηi(t) is the ith spike occurance, η(t) a representation of a spike train
as a time series and N is the number of spike occurrences during the trial.

We assume that a spike and the one preceding are statistically independent.
Furthermore, Similar to Vogelstein’s and his associates’ method [42], our
model considers merely positive spikes. For this reason, spikes are generated
stochastically with a Poissonian generator. Such a generator provides with
discretely distributed nonnegative integer spikes. The practical generation
of spikes will be made in MATLAB1.

ηi(t) = {Z
+,

0,

t = t(i)

otherwise
(5.3)

Where Z+ denotes positive integers.

The firing rate r(t) is another parameter that needs to be assumed before
setting up the spike generation process. Throughout this thesis, based on
experimental data, we assume a fixed firing rate r held constant at 0.3 Hz.

Since experimental data is recorded with 10 Hz temporal resolution, the
sampling time step dt in our model is also held at 0.1 s.

Trial duration for signal generation is limited to 200 s (Experimental traces
are a bit longer than 220 s, for instance the trace in Figure 3.5).

1MATLAB scripts are included in the Appendix.
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Now, we space the duration for signal generation (200 s) by the sampling
rate (0.1 s). Doing so gives us a time vector that contains 2001 elements.
We call this vector [0 : dt : 200] as a time vector of a full signal generation.

In Figure 5.1 a typical Poissonian spike train generated in MATLAB is pre-
sented. According to the figure, it is less likely to detect more than one spike
occurrences at a time.

Figure 5.1: A typical Poissonian train. This train will be later on used to
generate the entire model calcium data.

5.1.2 Kernel generation

Earlier groups who have worked with calcium imaging signals have indicated
the capability of an action potential to produce a unitary calcium transient
with a sharp rise followed by an exponential tailing [44, 35]. Today, the fact
that excess intracellular calcium (resulting from an action potential firing)
being cleared out from a neuron in an exponential manner is well established
in the scientific community [12, 42]. In the coming paragraphs, we present
how we model and generate exponentially decaying calcium kernels that
mimic these phenomena.

In mathematical terms we model the mechanism by the following formula:
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κ(t) = h0[exp(
−t

τc0
)] (5.4)

Where κ is a fixed (known) kernel, τc0 is a fixed intracellular calcium clear-
ance time constant, and h0 denotes a fixed kernel amplitude.

Through assumption made based on experimental data set τc0 and h0 are
held fixed at 0.5 s and 0.044 respectively. In fact, 0.5 s is in accordance with
previous studies made in the field, for instance, Göbel and Helmchen have
observed τc = 0.5− 1 s while studying a neuronal somata [12].

We also assume that a typical neuron uses three seconds to clear out all the
excess somatic calcium ion that has resulted from an action potential firing.
In our model, 3 s means 6τc0 . Subsequently, the kernel will be truncated to
31 sampling time steps.

5.1.3 Output signal generation

In our model it is assumed that the level of calcium shots upwards at an
instant a spike is detected. To model the phenomena, we combining the
signals we have worked on in section 5.1.1 and 5.1.2

Customarily, convolution is performed as a polynomial multiplication in
Fourier domain [25]. This method of multiplying in the frequency domain
and inverse transforming the result back to the time domain arises from the
convolution theorem. Nevertheless, the standard method of convolution is
less convenient for our purpose. This is because later on when we start to
vary kernel shapes, this method will not provide the flexibility that we may
require. Rather, we develop a method that performs convolution by scaling
and injecting a kernel at an instant of spike detection. Thus the convolution
for a fixed kernel due to the ith spike can be written as

ψi(t) = (κ ∗ ηi)(t) (5.5)
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where ψi(t) is the convolved calcium output signal due to the ith spike, κ
denotes a fixed kernel with τc0 and h0, whereas ηi represents the ith spike.

As an example, we look at the convolution occurring due to the second spike
η2(t)

ψ2(t) = (κ ∗ η2)(t) =
∞�

t�=0

κ(t�)η2(t− t�) (5.6)

where t − t� = t(2), i.e. the arrival time of the second spike. The above
equation can also simply rewritten in terms of the second spike

ψ2(t) = η2(t)[κ(t− t(2))] (5.7)

where η2(t) is the argument of the second spike.

Typically, a neuron will fire several action potentials in a trial duration (200
s). Thus we extend the convolution made for the second spike in Equation
5.6 to include all incoming spikes in the trial duration.

N�

i=1

ψi(t) =
N�

i=1

∞�

t�=0

(κ[t�]ηi[t− t�]) (5.8)

Where N is number of detected spikes in a trial and the left side of the
equality sign is the output signal. Furthermore, when it is appropriate,
Equation 5.8 can be simplified in terms of the unitary spike

N�

i=1

ψi(t) =
N�

i=1

[ci(κi[t− t(i)])] (5.9)
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where ci is the ith scaling constant or simply the ith spike argument. The
way the output signal is expressed in Equation 5.8 and 5.9 is cumbersome.
Thus for simplicity we drop the summation sign and index i

ψ(t) =
N�

i=1

ψi(t) (5.10)

where ψ(t) is the calcium output signal constructed based on contributions
from all detected spikes (ηi(t)) in a given trial.

So far the output trace ψ(t) has been modeled only for a fixed kernel ampli-
tude and constant clearance time constant. Now, we consider the fixed τc0
and h0 as the mean parameters of the known kernel. Thereafter, we extend
the fixed mean values to include other parameter values around them. We
denote the new parameter extensions by τc and h. Making such an extension
will enable us to produce different combinations of output signals made-up
of varying hs and τcs with common family mean parameters (h0 and τc0).

Extensions are made as small increments to the left and the right of the mean
values. We denote the increments with ∆h and ∆τc to the mean amplitude
and the mean clearance time constant respectively. Thus we obtain a range
of values where we can choose out candidate parameters from.

h = h0 +∆h where |∆h| ≤ dh

τc = τc0 +∆τc where |∆τc| ≤ dτc
(5.11)

Where h0 and τc0 are 0.044 and 0.5s respectively as indicated earlier and
where

dh = {0, 0.010, 0.015, 0.020}
dτc = {0, 0.10, 0.20}

38



5.1 Generating calcium signals
5 METHODS: MODELING

⇓ dh = 0

[−dh, +dτc] [+dh, +dτc]
� �

dτc = 0 ⇒ h, τc
� �

[−dh, −dτc] [+dh, −dτc]

Table 5.1: Possible parameter combinations for calcium signal generation
(before noise introduction).

Note that a zero increment is another way of saying a kernel parameter is
just the one given by the mean.

The candidate parameters (h and τc) are uniformly distributed within a given
interval (Equation 5.11). Therefore, it is equally likely for any value to be
chosen by the parameter selection algorithm as long as it is within a specific
interval. Therefore, when the parameter selection algorithm loops through
the different intervals (demonstrated in Table 5.1), it will have the freedom
to make various combinations of h and τc by selecting them out randomly
from the interval at disposal.

As we will show later on , calcium output traces generated in this fashion
(with unknown kernel parameters within a known interval range) will play
a crucial role when we investigate the effectiveness of our spike and kernel
estimation algorithms.

In MATLAB, we inject a kernel when we detect any incoming spike. As
an example, a segment of a typical output calcium signal generated with
varying kernels is illustrated Figure 5.2.

5.1.4 Adding Noise

The following paragraphs present how the final model signal of calcium imag-
ing data is prepared from ψ(t).

We prepare the model calcium output signals by corrupting ψ(t) with uncorrelated
additive noise. Uncorrelated in a sense that knowing one noise sample does
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Figure 5.2: A segment of a typical output signal (without noise).

not help to predict other noise samples [37]. We do so, by adding a white
Gaussian noise of unit variance and zero mean, which we simply denote
by �. MATLAB has integrated functions that can generate white noise (for
instance randn and awgn).

However, the amount of noise encountered in experimental data set is not
well known. In fact, the imaging instrument employed for experiment does
not specify the signal to noise ratio (SNR) of the recorded signals. Therefore,
it is plausible to have a varying degree of SNR in our models. For this reason,
we corrupt ψ(t) with varying amount of noise

ξ = {1, 2, 3, 4, 8, 16, 32} (5.12)

where ξ denotes the SNR. In this way, values chosen from ξ will decide the
amount of noise corrupting ψ(t). In general, choosing ξ = 1 means a signal
is corrupted by very powerful noise whereas the power of corrupting noise is
minimal when the chosen ξ = 32.

In most cases, what is considered as a noise in experimental data has dis-
played slow drift. Similarly, we prepare additive noise with varying drift
level. For this reason, additive noise will be low-pass filtered by the Moving
Average Smoothing (MAS). Smoothing is done through replacing each noise
data point with average of the neighboring noise data, within a certain span
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or filter width [40]. This way, the MAS will smooth out short-term fluc-
tuations with a moving window while preserving long-term trends. Hence,
an array of raw additive noise signal � data [�(t1), �(t2), . . . , �(tN )] will be
transformed to a new smoothed �s array

�s(tj) = (2s− 1)−1[�(tj + s) + �(tj + s− 1) + ...�(tj − s)] (5.13)

where �s(tj) is the smoothed noise signal for the jth data point, s is the
number of neighboring noise data points on either side of �s(tj), and ω =
2s+ 1 is the filter window.

ω = {1, 2, 3, 4, 5, 7, 9, 11} (5.14)

Where ω contains candidate numbers of neighboring data points for MAS
application. For simplicity, we denote the smoothed additive noise simply
by �s.

Now, we corrupt the output signal ψ(t) with a family of smoothed and scaled
version of additive noise.

�ψs(t) = ψ(t) +
h

ξ
�s (5.15)

where �ψs(t) is corrupted output signal, the smoothing index s is chosen from
the ω, h is kernel amplitude and ξ is the chosen SNR value. In the rest of
this text, we will refer to the corrupted output signal �ψs(t) as the modeled
calcium signal.

In Figure 5.3, we have illustrated a segment of a typical calcium signal (vary-
ing kernel) with added noise.

Finally, we will generate a total of 672 model signals by selecting out parame-
ters from h, τc, ξ and ω ranges in different sequential steps and combinations.
Each of the 672 model signals will be stored labeledwith their respective h,
τc, ξ and ω parameters.
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Figure 5.3: A segment of a noisy typical Ca2+ signal generated with varying
kernels.

5.2 Estimating kernels from data

5.2.1 Kernel amplitude

In this subsection we show how kernel amplitudes are estimated from a
calcium signal �ψs(t), which can be either model or experimental signal.

We employ a peak detection strategy to estimate kernel amplitudes. Peak
occurrences, in both experimental and model signals, are sporadic. In most
signals variable peak shapes have been encountered. In fact, plateaued-peaks
are not uncommon to encounter.

We start out the algorithm by differentiating the model data with respect to
time, which we simply denote by �ψ�

s(t). This is simply done by calculating
differences between adjacent data points of �ψs(t).

�ψ�
s(t) = [( �ψs(t2)− �ψs(t1)), ( �ψs(t3)− �ψs(t2)), ..., ( �ψs(tN )− �ψs(tN−1))] (5.16)

Where N is the number of data points in the model signal.

When incoming spikes arrive almost simultaneously, their individual ker-
nel response summates revealing wider and taller peaks. These phenomena
lead to complex temporal variation with higher elevations than normally
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expected. We have employed the differentiated signal for kernel height es-
timation in order to resolve this potential bias. In a differentiated model
signal superimposed elevations are distinguished and attenuated. In other
words, peak height in a differentiated signal has been observed as being
inversely proportional with peak width in the non-differentiated (original)
model singal.

Figure 5.4: Differentiating reveals the underlying situations of a signal .Blue:
A typical modeled signal. Red: Blue signal when differentiated.

Next, we apply Savitzky-Golay filter (S-Gf) on �ψ�
s(t). The S-Gf least

square fits the differentiated model data segment by segment to a polynomial.
Thereafter, central points of the fitted polynomial will be calculated and used
to smooth the model data [10].

[ �ψ�
s(tj)]sg =

n�

k=−n

Ak
�ψ�
s(tj+k)

n�

k=−n

Ak

, k = 5, 7, 9, 11, 13... (5.17)

Where [ �ψ�
s(tj)]sg is the S-Gf �ψ�

s(t), Ak is the weighting coefficient, and the
odd number k defines the smoothing window size. In this case, the smooth-
ness of �ψ�

s(tj) can be adjusted by varying the parameter k.

We use the maximum of [ �ψ�
s(tj)]sg to threshold the differentiated model data

�ψ�
s(t).
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[ �ψ�
s(t)]th = [ �ψ�

s(t)−max([ �ψ�
s(tj)]sg)] (5.18)

Where [ �ψ�
s(t)]th is the threshold amplitude of the differentiated calcium sig-

nal.

Next, we compute the average of the differentiated data that lie above the
amplitude threshold ( �ψ�

s(t) >[ �ψ�
s(t)]th). The calculated average will be de-

noted by he and represent the estimated height of a kernel.

5.2.2 Kernel clearance time constant

This subsection shows how the kernel time constant τc is estimated from the
model data �ψs(t).

For a given �ψs(t), parts of the signal containing exponentially decaying tails
specified by a minimum peak height and peak separation (kernel width) will
be selected. Specification of threshold peak height is made based on the
kernel amplitude estimation made in section 5.2.1.

[he]th = αhe (5.19)

Where [he]th is the threshold kernel amplitude, he estimated average kernel
height in a given trace and α is threshold scaling factor (held fixed at 0.6). In
this case, only elevations that are above the threshold height are associated
with spike incident. When such a peak is detected, we follow its exponential
tail up to 6τc0 sample steps (3 s). In the mean time, if another elevation sat-
isfying the amplitude requirement is detected, the exponential kernel under
investigation will be discarded. We list all the exponential kernels satisfying
the two requirements and compute their average

κ̄(t) =
1

N

N�

k=1

[κk(t)] (5.20)
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where κ̄(t) is kernel average of a given model data and κk(t) is given by
Equation 5.4. Next, we iteratively curve fit the non-linear (slope) data in
κ̄(t). The time constant τc will be extracted from an exponential function
that will be fitted to the averaged data of the decaying slopes.

Figure 5.5: Decay slopes of a typical modeled signal. The average is shown
in thick blue.

As a starting point we transform the non-linear κ̄(t) to a linear model. We
perform the linear transformation through modifying Eqution 5.4 and taking
its logarithms on both sides.

log(κ̄) = log(he)−
tj
τc

(5.21)

Where κ̄ is the time dependent data to be fitted, he is the estimated kernel
height and τc is unknown by assumption. In the log domain, we search for
the best fit to which the above log model converges. Thus if we assume
log(kj) as the best fit
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S =
n�

j=1

[log(κj)− (log(he)−
1

τc
tj)]

2 (5.22)

where S is the summed square of the residuals between data points and the
fitted model. To find the coefficient that minimizes S, we differentiate the
above equation with respect to the unknown parameter τc.

∂S

∂τ c
= 2

n�

j=1

tj
τ2c

[log(κj)− (log(he)−
1

τc
tj)] = 0 (5.23)

If we solve the equation for τc and represent the solution by τce

1

τce
=

�n
j=1[tjlog(κj)]−

�n
j=1[tjlog(he]

n�

j=1

t2j

(5.24)

where τce is the best estimate for τc.

In practice, the fitting is done in MATLAB by writing a function that trans-
forms the decay slopes (nonlinear) system into a linear (logarithmic) model
and superimposing a fit on the data.

However, as pointed out in MATLAB documentation (Pitfalls in Fitting
Nonlinear Models by Transforming to Linearity), linear curve fitting may be
susceptible to extreme outliers in the data [40]. Therefore, we perform an
iterative non-linear curve fitting of the averaged kernel in the least square
sense (Levenberg - Marquardt). Unlike the linear curve fitting, it is difficult
to give an explicit expression for the parameter to be estimated through
the non-linear model [43]. We employ the MATLAB built-in function called
nlinfit to do the fitting in the time domain. Basically, in our algorithm,
non-linear model iteratively refines the parameters that are estimated by
the linear model.
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5.3 Estimating spike trains

In this subsection we discuss our starting algorithm to estimate input spikes
from a smoothed model signal �ψs(t).

We start by developing a spike estimation algorithm for a known broadening
kernel. For this purpose, we employ the kernel with amplitude h0 and time
constant τc0 (discussed in section 5.2). The algorithm will be designed to
estimate one unknown input parameter (spike count) based on two known
parameters (kernel and �ψs(t)).

Per definition the length of a kernel is six times the clearance time constant.
Therefore, the fixed kernel employed for the algorithm will have 31 sampling
time steps or 6τc0 . Whereas, the sparse spike η and the model signal �ψs have
each the length of the time vector T (2001 sampling time steps). Basically,
we would like to construct a linear system of the three parameters of interest
(unknown spike, known kernel and known model signal). Once a linear
system is constructed, it can be solved with the MATALB back -slash (\)
operator in the least square sense. In practice, the back-slash operator has a
dimensional compatibility requirement. The operator will be forced to seek
for approximate solutions as long as the two matrices under operation are of
the same number of rows, whereas, if one of the matrices is square having the
same number as the rows of the second matrix, the operator will be forced
to seek for exact solutions [40].

To construct a kernel matrix, we replicate the kernel by flipping it several
times. Thereafter, we construct a square matrix that is sparse and diagonal
by placing the replication along the diagonal. We denote this matrix by κ.2

Now, we express the linear system we have mentioned above in terms of the
matrix κ

κ · η = �ψs (5.25)

2Bold faces in this text represent vectors and matrices.
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where κ and �ψs are the known diagonal kernel matrix and model signal
respectively, whereas η is the unknown spike coefficients that we would like
to estimate and · denotes the dot product.

We estimate the unknown spike coefficients in the least square sense by
solving the linear system with the back-slash operator

ηe = κ\ �ψs (5.26)

where \ denotes the MATLAB back -slash operator and ηe denotes the spike
estimate. The spike estimate ηe gets the same number of columns and rows
as �ψs and κ respectively. This means, ηe will have exactly the size of the spike
we have generated and employed for the convolution in section 5.2. Strictly
speaking, the spike estimation algorithm developed here can be seen as an
alternative method for the standard deconvolution in the Fourier domain.

Figure 5.6: A reconstructed spike train

The spike argument values reported by the estimator (ηe) can be non-integer
as well as negative. This is inconsistent with the spike assumption made in
section 5.1.2. Therefore, all the estimation below zero will be excluded. The
remaining elements of ηe will be rounded to the nearest integer.

η̄e = round(ηe ≥ 0) (5.27)
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Where η̄e (= 0, 1, 2...) is the rounded spike estimation. In practice, the round-
ing can be easily performed in MATLAB. A typical example of estimated
and rounded spikes are demonstrated in Figure 5.7.

Figure 5.7: The estimated spike train where its counts are rounded to the
nearest poitive integer.
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5.4 How to supplement deconvolution

Theoretically, deconvolution is a noise sensitive algorithm [38, 40]. That
means, noise might be reported as spikes by the spike estimation algorithm
developed in section 5.3.

In the coming subsections we present techniques that can contribute to en-
hance the accuracy of the deconvolution algorithm.

5.4.1 Median Filtering

One possible way to improve the accuracy of the spike estimation algorithm
is to enhance the quality of the model trace �ψs(t).

We employ median filter to remove some of the noise characteristics in the
model signal. The technique replaces center value with a median value of all
points within a given window [32]. MATLAB’s built-in function medfilt1
can do the task by applying a sliding window to a sequence of model data
points [40].

Figure 5.8: Curve shapes are preserved by the median-filter.

The median filter is employed as a pre-processing to deconvolution. The filter
attenuates and flattens out sharp peaks observed in �ψs(t) without distorting
the characteristic sharp rises in model signals. Due to model signal attenua-
tion, kernels also need some adjustment before deconvolution. To mimic the
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level of attenuation in �ψs(t), we adjust (truncate) kernels with median filter
of the same window length as that of the one used for the model signal. A
segment of a median filtered model signal is demonstrated in Figure 5.8 as
an example.

5.4.2 Optimizing in the greedy approach

As an alternative to the median filter, we develop an optimization algorithm
in this subsection.

The optimization algorithm starts by convolving the estimated and rounded
spikes with kernel in matrix form (discussed in section 5.3).

�ψe(t) = η̄e · κ (5.28)

Where �ψe(t) is the estimated calcium trace, κ is the kernel in matrix form
, η̄e is the estimated integer spike and · denotes the dot product. Next, the
algorithm quantifies the residual between �ψs(t) (the the original signal we
started with) and �ψe(t)

γi = �ψs(t = i)− �ψe(t = i) (5.29)

where γi denotes the ith (residual) error. The mean square error (MSE) will
be calculated.

E[γ] =
1

N

N�

i=1

γ2i (5.30)

Where the MSE is denoted by E[γ], the expected (mean) value of γ2. The
MSE will serve as a learning rule to determine whether there is a need to
make a correction or not. Correction is made in the form of adding a missing
spike or removing unwanted spike. In this case, if the MSE is zero, then the
calcium traces coincide exactly.

We set a criterion for possibly missing or unwanted spikes, which the algo-
rithm employ while investigating the MSE locally for individual data points.

γi > θ (5.31)
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Where γi is the norm of the ith data point MSE and θ is a threshold criterion.
When the ith MSE norm is larger than θ, the algorithm makes a locally
optimal decision either to remove or add a spike depending on the sign of γi.
Such an error minimization algorithm by making a locally optimal decision at
the immediate iteration step is called greedy optimization algorithm (GOA)
[13]. Upon completion of iteration for the ith error, the GOA performs
convolution and measures the MSE norm once again. Then it will continue
performing minimization for the (i+ 1)th error if it is available.

The amount of correction that can be made by the GOA is defined by the
number of allowed maximum iteration steps denoted by I . For instance,
if I = 50, then it is possible to add or remove up to 50 spikes. In the
GOA I is determined by the total number of estimated spikes (sum(η̄e))
( the η̄e estimated in section 5.3). Doing so enables to double-check each
spike estimated by the deconvolution algorithm for its accuracy. However,
the GOA may converge before reaching its maximum iteration step if opti-
mal value (convergence) is arrived. The GOA assumes that convergence is
achieved when it is no longer possible to lower the MSE. Finally, we denote
the optimized calcium model signal by [ �ψe(t)]opt.
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6 Results: Modeled data

In this section, we apply the algorithms designed in section 5 to model cal-
cium imaging data and analyze results.

As test data, we have generated a family of 672 model signals through the
procedures discussed in section 5.1. All model traces will be generated from
a single known Poissonian spike train that is constructed with different h, τc,
ω and ξ parameters. The different combinations of the four parameters will
serve as indexes of model signals when we present analyses of the modeled
data. In this case, the true (Poissonian) spike train as well as h0 and τc0
(see Equation 5.11) will serve as controls when the accuracy of algorithms
to estimate kernels as well as reconstruct spike trains and firing rates is
measured.

In section 6.1 the efficiency of kernel estimation algorithms will be tested on
the modeled data. While doing so, we fit for some threshold parameters that
are necessary to know when the procedure is applied on experimental data
later in section 7.3.

Based on the estimated kernels, algorithms will be asked in section 6.2 to
reconstruct spike trains and fit for firing rates. There, the different algo-
rithms designed for spike train reconstruction in section 5.3 and 5.4 will be
compared and contrasted.

6.1 How well can we estimate a kernel?

As it is pointed out in section 5.2, we would like to estimate both the average
amplitude and the clearance time constant for kernels of a calcium signal.
First we investigate how well we can estimate the kernel amplitude he in
section 6.1.1. In section 6.1.3, clearance time constant τce will be extracted
from a fitted curve through a linear transformation as well as an iterative
nonlinear least square model.
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6.1.1 he and its error term when threshold is imposed based on
data

To recapitulate, we have estimated kernel amplitudes by differentiating the
model signal and imposing a threshold condition on the differentiated signal.
As a starting point, we assume the threshold based on experimental data.
This means, the threshold will be held constant for the entire 672 model
signals that we have generated. Later on, the threshold will be defined via
the maximum S-Gf of the differentiated signal (see Equation 5.17). Conse-
quently, the average amplitude threshold will be potentially variable from
one model data signal to another.

We start out by assuming a threshold [ �ψ�
s(t)]th to be 0.01 based on exper-

imental data. Results of amplitude estimations with this threshold for the
entire model data set is illustrated in Figure 6.1.

Figure 6.1 displays the underlying four parameters (h, τc, ω and ξ) of a given
model trace together with the respective amplitude estimation. In total, 4 x
3 panels are presented in the figure. Each panel row represents the interval
from which h is selected out, as shown in Equation 5.11. In that case, the
first row denotes h = h0, since |∆h| ≤ dh(= 0), whereas for the 4th row
|h| ≤ (h0 + 0.020). This means, the spread from h0 increases when moving
downwards from the 1st to the 4th panel row. In the same way, moving from
the 1st to the 3rd panel column-wise will increase the spread in τc from τc0 ,
as shown in equation 5.11.

In addition, each of the 12 panels contains 8 x 7 pixels. Each pixel represents
one signal. The SNR ξ (see Equation 5.12) is constant within panel columns
with smallest (ξ = 1) and largest (ξ = 32) signal qualities represented by the
1st and the 7th column respectively. On the other hand, the MAS window
size ω (see Equation 5.14) is constant within panel rows. In this case, the
largest (ω = 1) and smallest (ω = 11) noise frequency components given at
the top and bottom row respectively.

The correct value of he (= 0.044) corresponds to yellow color in Figure
6.1. Smaller amplitudes are estimated in the blue/green pixels, where the
smallest he among them being 0.019. Larger amplitudes are estimated in the
red pixels, among them the marked pixel in Figure 6.1 has given the largest
he (= 0.069). The signal for this largest estimated he is illustrated in Figure
6.2. Almost all of the large he are estimated in the two top-left pixels. In
those pixels both the ξ and the ω are at their lowest.
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Figure 6.1: Estimated average amplitudes for the entire model signals (=
672), where the imposed threshold is set to 0.01 based on data. In the figure,
there are 4 x 3 panels, row- and column-wise increase denote spread from h0
and τc0 respectively (see Equation 5.11). Each panel contains 8 x 7 pixels,
rows and colums denote ω (MAS window as in Equation 5.14) and ξ (SNR
as in Equation 5.12). According to our model, yellow pixels indicate good
estimations (about h0 = 0.044), whereas red and blue denote over and under
estimated amplitudes respectively. The largest he in this case is 0.069, on
the other hand, he = 0.0436 is among the best estimates. The signals behind
these good and over estimation are presented in Figure 6.2 as an example.
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Figure 6.2: Examples of a well- and an over-estimated average amplitude in
Figure 6.1’s illustration. he is marked by the red line. (a) Well estimated
according to expectaion (h0). he = 0.0436. In Figure 6.1, the signal is
represented by ω = 3 and ξ = 8 pixel in the 1st row and 1st column panel.
(b) Over estimated he (=0.069). Representation in Figure 6.1: ω = 2 and
ξ = 1 pixel in the 3rd row and 1st column panel.

(a)

(b)

To illustrate the deviation of estimated kernel amplitudes from the true
height h0, we calculate the absolute value of difference between estimated
and true kernel height

δh = |he − h0| (6.1)

wehere δh represents the absolute kernel amplitude estimation error, in this
case, when 0.01 is imposed as a threshold.

δh for the entire family of model data is illustrated in Figure 6.3.
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Figure 6.3: Absolute average amplitude estimation error δh for the 672 model
signals. Larger δh (non blue pixels) are obtained for the smaller amplitude
estimations (blue/green pixels in Figure 6.1). The largest δh= 0.025.

As demonstrated in Figure 6.3, higher errors are registered for the region
with the smaller estimated kernel amplitudes (blue/green pixels in Figure
6.1). The largest δh obtained is 0.025, which means its he is about 56%
below the true kernel amplitude h0. The pixels with largest δh (red/yellow)
are observed almost in all of the 12 panels stretching diagonally from lower
bottom to middle top. Signals underlying the pixels with high δh are of
either very low SNR (the outer left pixel columns) or their AWGN contains
high frequency (the top pixel rows).

In Figure 6.4 underlying signals for two pixels with large δh that are selected
out from the panel with h0 and τc0 are demonstrated. The signal in Figure
6.4a has very low SNR (ξ = 1) but it is well filtered with MAS (ω = 9),
whereas in Figure 6.4b, the signal has relatively higher signal quality (ξ = 8),
nevertheless, there is a high drift in the AWGN of the signal (ω = 1). The
two signals have comparable δh (δh = 0.022 and δh = 0.024 for Figure 6.4a
and b respectively) in spite of the sufficiently large difference in their ξ and
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Figure 6.4: Examples for signals behind large δh. Signals are selected from
two pixels in the 1st row and 1st column panel of Figure 6.3. (a) Low SNR
(ξ = 1) but well smoothed AWGN (ω = 9). (b) Relatively good SNR (ξ = 8)
but high frequency AWGN (ω = 1).

(a)

(b)

ω.

If the imposed amplitude threshold [ �ψ�
s(t)]th is increased from 0.01 to 0.025,

δh will be much smaller the non-blue pixels of Figure 6.3. δh for the new
imposed threshold (0.025) are displayed in Figure 6.5. In this case, the
signals illustrated in Figure 6.4a and b get δh about 2 · 10−5 and 7 · 10−4

respectively. In addition, the maximum δh(= 0.025) in Figure 6.3 is reduced
by an order of magnitude to δh = 0.004 in Figure 6.5.
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Figure 6.5: δh when imposed amplitude threshold is increased to
[ �ψ�

s(t)]th=0.025. Most of the non-blue pixels (large estimation errors) in
Figure 6.3 are replaced with blue (small δh) pixels in this Figure.

6.1.2 Imposed threshold via the S-Gf algorithm

Now we employ the S-Gf of the differentiated signal to decide on the kernel
amplitude threshold to be imposed. In this case, it is potentially possible
that each of the 672 model signals get a distinct threshold condition.

Figure 6.6 displays he obtained through imposing the maximum of [ �ψ�
s(tj)]sg

as a threshold condintion ( see Equation 5.17).

Figure 6.6 has similar properties as that of Figure 6.1 (when 0.01 was imposed
as amp threshold). The yellow pixels are still the better estimates with
respect to the true kernel amplitude h0. In fact, some of the blue/green
pixels in Figure 6.1 are replaced by yellow pixels in Figure 6.6. This means
some smaller amplitude estimates in Figure 6.1 have been adjusted to more
correct values with respect to expectation (h0).
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Figure 6.6: he obtained when the imposed threshold is the maximum of the
S-Gf differentiated signal, [ �ψ�

s(tj)]sg. Yellow pixels denote well estimated
amplitudes. Some of the green/blue ( under estimated amplitudes) pixels of
Figure 6.1 are replaced by yellow pixels in this figure.

δh (Equation 6.1) for the entire data when threshold is imposed through the
S-Gf procedure are displayed in Figure 6.7. In the figure, the red/yellow
pixels contain the largest estimation errors than the rest. In comparison to
the errors seen in Figure 6.3, imposing the S-Gf threshold condition has in
particular enabled to decrease δh for bottom left pixels. In these pixels, the
underlying signals contain very low signal quality (ξ = 1, 2), even though the
AWGN is well smoothed (ω = 7, 9, 11) . In addition, most of the red pixels
seen in Figure 6.3 are replaced either by blue or yellow pixels in Figure 6.7.
For instance, the percentage error of the he which led to the largest δh in
Figure 6.3 is reduced by 5% in Figure 6.7. This pixel is placed in the 4th row
1st column panel with the pixel parameters of ξ = 1 and ω = 1 in the figure.

In Figure 6.7 the estimation errors for the signals illustrated in Figure 6.4a
and b are about 1 · 10−2 and 2 · 10−2 respectively. As already mentioned
above, the δh of these signals were about 2 · 10−2 and 2.4 · 10−2 respectively
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when the threshold was set to 0.01.

Figure 6.7: δh when amplitude threshold is imposed through the maximum
S-Gf procedure (Equation 5.17). Red/yellow pixels denote large estimation
errors. δh has decreased in the bottom left pixels compared to Figure 6.3.

As a conclusion to this subsection, we present a typical signal whose am-
plitude is estimated with a 5% error by our S-Gf based algorithm in Figure
6.8. In Figure 6.7, this signal is represented by a pixel in the 3rd row/ 2nd

column panel with the pixel parameters of ξ = 4 and ω = 3.

6.1.3 Kernel time constant

As pointed out in section 5.2.2, from a given calcium signal only parts that
satisfy a minimum peak height and peak separation (kernel width) criteria
are selected. The selected slopes will be averaged and an exponential curve
will be fitted to the data. Finally, the calcium clearance time constant τce
will be extracted from the fitted curve.
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Figure 6.8: A typical model signal whose amplitude is estimated with 5%
error. The signal contains a relatively low signal quality and a high frequency
AWGN. This signal is taken from a pixel with ξ = 4 and ω = 3 in the 3rd

row/2nd column panel of Figure 6.7

The minimum peak height selection criterion makes use of the estimated av-
erage kernel amplitude, he. As a kernel amplitude estimator we employ the
S-Gf based algorithm (see section 5.2.1). According to Equation 5.19, the
minimum peak height criterion for calcium clearance time constant estima-
tion is specified by equation 5.19 as

[he]th = αhe

where [he]th is the minimum peak height requirement for exponential decay
selection, he is the estimated kernel amplitude and α is the threshold scalar.

Per definition, the minimum kernel width is 6τc0 as discussed in section 5.1.2.

Kernel time constants estimated from a curve fitted to data through a lin-
ear (logarithmic) model are displayed in Figure 6.9. In this case, α is held
constant at 0.6. This implies that a peak is selected only if it is tall enough
to reach the top 40% of he. According to the figure, the τce of signals un-
derlying the yellow pixels are estimated with good precision, while signals
underlying brown and blue pixels are over and underestimated respectively.
Typically, the panels are dominated by brown or red pixels, implying signals
with overestimated time constants.

The deviation of τce from the expected clearance time constant τc0 can be
expressed with the following formula

δτc = |τce − τc0 | (6.2)
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Figure 6.9: Calcium kernel time constants estimated from a curve fitted to
data through a linear (logarithmic) model, where the threshold scalar α is set
to 0.6. Yellow pixels represent well estimated signals according to expectation
(τc0). The colorbar is scaled in time steps (for instance, 6 mean 0.6 seconds).
The calcium time constants of signals underlying the yellow pixels are well
estimated.

where δτc denotes the absolute calcium clearance time constant estimation
error.

δτc obtained from the linear curve fitting model ,where α = 0.6, are displayed
in Figure 6.9.

Blue pixels in Figure 6.10 indicate lower estimation error, whereas brown
pixels imply relatively larger estimation error. According to the figure, most
of the pixels with small δτc are concentrated in the three right most columns
of each panel, where ξ is large. However, unlike the δh patterns shown in
Figure 6.7, the appearance of large δτc are a bit more scattered or with less
pattern in Figure 6.10.

Now we trace back a typical signal underlying a pixel in 1st row/ 1st column
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Figure 6.10: Calcium clreance time constant estimation error (δτc), when
the parameter is extracted from a curve fitted to data through a linear model
and α = 0.6. Blue pixels denote small errors while browns represent large
δτc . In the high noise (ξ = 1, 2, 3) pixel columns, the top rows (ω = 1, 2) are
estimated with less errors. This is the opposite of what was seen for δh in
Figure 6.7.

panel with the parameters of ξ = 8 and ω = 3. This signal is displayed in
Figure 6.11. According to Figure 6.10, the signal’s time constant is estimated
with δτc=0.11 s.
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Figure 6.11: A typical signal selected from 1strow/ 1st column panel with pixel
parameters ξ = 8 and ω = 3. According to Figure 6.10, the signal’s calcium
time constant is estimated with δτc = 0.11s from an exponential curve fitted
to its data through the linear model.

Figure 6.12: Comparison of how the linear and the iterative nonlinear models
have fitted an exponential to the averaged slope data of the signal in Figure
6.11. (a) Selected signal slopes with their average (thick blue) . (b) Averaged
data (blue dots), linear fit (green), nonlinear fit (red).

(a) (b)
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Figure 6.13: Curves fitted to the slope average (Figure 6.12b) of the typical
signal (Figure 6.11) through the linear (green) and nonlinear (red) model
plotted together in logarithmic scale. The distance between data point outliers
is magnified here than in Figure 6.12b.

When a curve is fitted to the data through the linear transformation method,
the signal’s (Figure 6.11) τce = 0.612s, which is 22% off (above) the expected
time constant (τc0). Let us now investigate how well the time constant of
the signal could have been estimated if iterative nonlinear least square model
was employed to fit a curve to signal’s data instead.

First we illustrate the slopes of the signal with their average in Figure 6.12a,
and in Figure 6.12b, we superimpose the linear and nonlinear fit on the
averaged data and plot them together.

The linear fit model (green curve) shown in Figure 6.12b fails to follow the
trend of the averaged data, but the nonlinear fit model (red curve) does
follow the trend. For instance, the peak of the linear fit model is nearly 0.2
units lower than the peak averaged data point in the figure.

In order to see how data point outliers are treated by the logarithmic trans-
formation, the linear and the nonlinear fits of the averaged slope data in
Figure 6.12a are plotted together in the logarithmic scale in Figure 6.13.

The logarithmic scale plot exhibits some extreme outliers. This means the

66



6.1 How well can we estimate a kernel? 6 RESULTS: MODELED DATA

logarithmic transformation has significantly magnified the small distances
between data points that were closer to zero in the original scale [40].

In Figure 6.14, calcium kernel time constants extracted from a curve fitted
to data iteratively through the nonlinear model when α = 0.6 are presented.

Figure 6.14: Estimated time constants through the nonlinear model when
α = 0.6.Yellow pixels denote good estimates with respect to expectation (τc0).
Colorbar is coded in time steps (6 means 0.6 seconds). Compared to the
linear estimation in Figure 6.9 are replaced by blue pixels here, implying
underestimation but closer to expectation.

Figure 6.14 is the nonlinear counterpart of the linear model estimates demon-
strated in Figure 6.9. Some of the brown pixels (estimated time constants
larger than τc0) seen in Figure 6.9 are replaced by blue pixels (smaller esti-
mates than τc0) in Figure 6.14. Calculating the absolute estimation difference
between Figure 6.9 and 6.14 will clarify how the two curve fitting models have
impacted the clearance time constant estimation.

δfit = |(τce)lin − (τce)nlin| (6.3)
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Where δfit is the absolute estimation difference between a linear and non-
linear fit models, whereas (τce)lin and (τce)nlin are estimated time constants
through the linear and the nonlinear method respectively. In Figure 6.15,
δfit when α = 0.6 are illustrated.

Figure 6.15: Absolute difference showing how time constants are estimated
by the linear and the nonlinear algorithms. In this case, the linear and the
nonlinear models have estimated different time constants for signals under-
lying the non blue pixels. The largest δfit are represented by brown pixels
where ξ = 1, 2, 3, 4 and 8.

Figure 6.15 shows that the time constants in the non-blue pixels are esti-
mated differently by the linear and the nonlinear model. In fact, for the
brown pixels the ratio of δfit to τc0 is more than 20%. This large ratio (20%)
in those pixels coincides with our earlier observation, i.e. more yellow pixels
(good estimates) in Figure 6.14 for those pixels than we saw in Figure 6.9
with the linear model for the brown pixel regions of Figure 6.16.

We investigate what δfit imply, by plotting δτc of the nonlinear model in
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Figure 6.16.

Figure 6.16: δτc for clearance time constants estimated through the nonlinear
model. The panels are dominated by blue pixels, implying a 20% or less
deviation from expectation.

Clearly, Figure 6.16 is dominated by blue pixels, implying estimation errors
that are much less than 0.1 s (1 time step on the colorbar), or less than 20%
of the expected time constant τc0 . For instance, the time constant of the
typical signal we illustrated in Figure 6.11 is estimated with 1.6% error from
τc0 through the nonlinear model, compared to a 22% error obtained through
the linear model.

Next, we investigate how the minimum peak criterion impact time constant
estimation. For this purpose, we estimate the time constant through the
nonlinear model with different amplitude threshold scalars, α. In Figure
6.17, τce when α = 0.4 are presented. Comparison of Figure 6.17 with
Figure 6.14 (α = 0.6) shows that, some of the blue and green pixels seen in
the 1st panel column of Figure 6.14 being replaced by yellow (good τce) pixels
in Figure 6.17, when α is reduced from 0.6 to 0.4. However, the converse
phenomenon is seen in the 3rd panel columns of Figure 6.14 and Figure 6.17.
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One reason for this contrary phenomenon can be the way underlying signals
are generated. In that case, signals of the 1st panel column are generated
with zero spread from the mean clearance time constant as it is explained
by Equation 5.11 and in the 3rd paragraph of section 6.1.1.

Figure 6.17: Calcium kernel time constants estimated through the nonlinear
model when α = 0.4. . Yellow pixels are well estimated. More yellow pixels
are seen in the first panel column due to the reason described by Equation
5.11.

We investigate the impact of α on time constant estimation by calculating
the absolute error for different α as follows

δατ
= [ | (τce)α1

− τce |− | (τce)α2
− τce | ] (6.4)

where δατ
is the absolute time constant estimation difference arising from

unequal minimum peak criterion scalar α, whereas α1 and α2 are the first
and the second threshold scalars respectively.
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δατ
computed when α1 and α2 are 0.6 and 0.4 respectively are displayed in

Figure 6.18.

Figure 6.18: The impact of the minimum peak criterion scalar, α, on time
constant estimation, as measured by Equation 6.4. In this case, α1 and α2

are 0.6 and 0.4 respectively. All the panels display similar features. Two
pixels of the 1st column (where ξ = 1 and ω = 3, 11) in each panel have
shown the largest δατ (= 0.38 s) due to the use of different α. In the blue
pixels, δατ is either zero or below 0.2 seconds (i.e, about 40% of the the true
time constant, τc0).

The display in Figure 6.18 tells us that using different α may or may not
affect the calcium clearance time constant estimation. The figure has also
illustrated that the effect of α is larger for signals with low quality (ξ = 1),
despite the AWGN frequency.
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6.2 How well can we reconstruct spikes?

In this subsection, spike train reconstruction algorithms (GOA, MF and
GOA), designed in section 5.3 and 5.4, will be applied on model data.

In section 6.2.1, kernels that are estimated from data will be employed. For
clarity, we denote estimated kernels by κe

κe = he[exp(
−t

τce
)] (6.5)

where he and τce are the average kernel amplitude and calcium clearance
time constant that are estimated in section 6.1 respectively. Furthermore,
κe will be written in its matrix form and denoted by κe.

Employing estimated kernels could be a source of error. In order to inves-
tigate the effect of kernel estimation errors more closer, algorithms will be
tested with a fixed kernel κ in section 6.2.4.

6.2.1 Spike train reconstruction with estimated kernels: DDA

The entire test data is generated from a single Poissonian spike train, which
we have defined in Equation 5.2 in the form of

η(t) =
N�

i=1

ηi(t),
i = 1, 2, 3...

N ≤ +∞ (6.6)

where ηi(t) is the ith spike occurrence, N is the number of spike occurrences
during a trial duration and η represents the Poissonian spike train which
have generated the entire test data. The goal of the spike reconstruction
algorithms is to recover the original spike train from noisy calcium traces.

To control how well we have estimated spikes, we sum up the estimated and
rounded spikes overtime and compare it with the number of original spikes
that have generated the model data
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δrecon =
N�

i=1

ηi(t)−
M�

j=k

ηe(tk) (6.7)

where δrecon is the spike train reconstruction error, ηe is the rounded spike
estimate (see Equation 5.27) and tk denotes the timing for kth estimated
spike arrival. In this case, what we check by δrecon is how the total number
of spikes in the original and estimated spike train coincides. In other words,
the equation does not control the spike arrival timings between the two
spike trains. However, results (for instance, the illustration in Figure 6.21)
will show that, when δrecon is small or zero, the timings between original and
estimated spikes coincide well with each other . On the other hand, if δrecon
is negative, algorithms have overestimated the number of spikes present in
the model trace and vice versa for positive δrecon.

In Figure 6.19, we have illustrated the spike estimation error δrecon arising
from the DDA for the entire family (672) of test data.

In the figure, the DDA has wrongly estimated number of spikes in the upper
left (blue) pixels of each panel. The underlying signals of these badly esti-
mated pixels contain low SNR (ξ = 1, 2, 3, 4, 8) and high frequency AWGN
(ω = 1, 2, 3, 4, 5, 7). On the other hand, δrecon is either very low or zero in
the red pixel regions.

Another main feature of Figure 6.19 is sharp jump from the blue (large
negative δrecon) to the red pixels where δrecon is zero. In many cases, these
jumps take place in hundreds of spikes. For instance, δrecon is −94 in the
blue pixel of the 2nd row/ 1st column panel with the parameters ξ = 8 and
ω = 2, whereas the δrecon of the neighboring red pixel with equal SNR as
the blue but with lower frequency AWGN (ω = 3) is zero.

We will visualize this characteristic sharp jump in the DDAs spike recon-
struction error with background signals of two pixels chosen from the blue
and red pixel regions of the 1st row/ 1st column panel in Figure 6.20 and
6.21.

In Figure 6.20, the black trace on the top is a model calcium trace with
ξ = 4 and ω = 1 that we are attempting to fit with the DDA. In the second
plot, the original spike train (η) that has generated the trace is shown in
black, whereas the DDA reconstructed spike train (ηe) is printed in magenta.
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Figure 6.19: δrecon for the entire test data. Non-red pixels denote model
signals whose spike numbers are overestimated by the DDA. There is a sharp
jump in spike estimation error between the blue and the red pixels. The
largest number of spike estimation errors are seen in the pixels with ξ = 1
and 2, where the DDA has overestimated spike trains by about 600.

Deconvolution has overestimated both the number and size of the spikes
present in the black trace. As a result, the deconvolution spike train contains
482 (δrecon = −482) false spikes. The third plot (magenta) in the figure
illustrates the deconvolution fitted trace. This trace is noisier and present
features that do not exist in the original trace.

Now, we may ask why do deconvolution estimate so many false spikes? The
answer for this question is given in Figure 6.21.

In Figure 6.21, the original calcium trace and its deconvolution fit are shown
in blue and magenta in the first and last plots of the figure respectively.
The second plot of the figure illustrates the original spike train (blue) and
the spike train reconstructed by deconvolution. Spikes in the two trains
coincide entirely both in time and size, as it was also verified by the red
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pixel (δrecon = 0) in Figure 6.19. In addition, the pattern, sizes and shapes
of the peaks in the fitted trace (last plot of Figure 6.21) and those in the
original trace match very well.

The only difference between the model traces in Figure 6.20 and Figure 6.21 is
their signal quality. The SNR (ξ) of the former is 4, while the later had SNR
= 16. This can mean, low SNR (for instance, 4) is not good enough for the
DDA to extract spikes from a trace accurately. In such cases, deconvolution
will interpret peaks in the noise factor as if they are initiated by APs and
will report them. In fact, this finding demonstrates what is written about
deconvolution in the literature, its extreme sensitivity to high noise [40, 38].

75



6.2 How well can we reconstruct spikes?6 RESULTS: MODELED DATA

Figure 6.20: A calcium model signal (top plot) for which the DDA has es-
timated 482 false spikes (magenta middle plot). The signal has the SNR of
4.
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Figure 6.21: A model signal that its spike train is fitted thoroughly by the
DDA. The SNR of the signal (top plot) is 16.
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6.2.2 Median-filtering when kenel is estimated

As an attempt to improve the precision of deconvolution’s spike train es-
timation, we apply the median-filter (MF) on the original test data �ψs as
a pre-processing to deconvolution (section 5.4). With the MF, we espe-
cially aim to reduce the estimation errors of deconvolution in the blue pixels
(ξ = 1, 2, 3, 4, 8) of Figure 6.19.

We test the MF with varying sliding windows on the model data. For clarity,
we denote the size of the sliding window with β. Consequently, we denote
the spike reconstruction errors of MF enhanced deconvolution by (δrecon)β .

In Figure 6.22, we have presented (δrecon)β=11 for the entire test data. Com-
parison between Figure 6.19 and this figure shows that the MF enhancement
has enabled to replace some of the dark blue pixels of low SNR in the former
with light blue or other colors. This means, according to the colorbar, spike
trains of signals underlying those pixels are reconstructed with lesser errors.
However, there is no such a clear pattern on which of the dark blue pixels in
Figure 6.19 are transformed to other colors due to the MF enhancement.

On the other hand, the red pixels with little or zero δrecon in Figure 6.19 are
transformed into brown pixels in Figure 6.22 due to the MF enhancement.
According to the color bar and Equation 6.7, brown pixels imply at the
minimum 10 missing spikes from the estimation. For instance, the δrecon
of the background signal illustrated in Figure 6.21 was zero before the MF
enhancement, however, when the signal (top plot in the figure) is median-
filtered, deconvolution has lost 10 of its spikes.

The sliding window used for the MF smoothing so far was large in size
(β = 11). In order to investigate if the size of the slide window has to do
with the large errors seen, we apply MF on �ψs with smaller window (β =5) .

The spike reconstruction errors of MF enhanced deconvolution when β = 5
are presented in Figure 6.23.

(δrecon)β=5 ≥ (δrecon)β=11 where SNR is very low (ξ = 1, 2, 3, 4, 8) and vice
versa whereξ = 16, 32; according to Figure 6.22 and Figure 6.23. For ex-
ample, the spike train of the signal we illustrated in Figure 6.22 was recon-
structed precisely by the DDA (δrecon = 0), with 10 missing spikes by 11
sliding windows MF ((δrecon)β=11 = 10) and now 3 spikes are missed out
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Figure 6.22: Spike train estimation errors of MF enhanced deconvolution
with 11 sliding windows. β = 11 MF enhancement has transformed some
of the dark blue pixels seen in Figure 6.19 into other pixel colors of lesser
δrecon. However, the good deconvolution estimations in the red pixels of the
same Figure 6.19 are deteriorated by the MF enhancement.

by the 5 sliding windows MF enhanced deconvolution. This means, we can
reduce the additional errors arising due to the MF enhancement when we
decrease β, nevertheless, MF still add more errors to the already existing
good deconvolution spike train estimates.
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Figure 6.23: Spike train estimation errors of MF enhanced deconvolution
with 5 sliding windows.Compared to the display for β = 11 in Figure 6.22,
β = 5 MF enhancement misses fewer spikes in the brown pixel regions. Nev-
ertheless, β = 5 also still adds errors to the good spike train reconstructions
that are already made by DDA (Figure 6.19).
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6.2.3 Optimizing the DDA when kernel is estimated

In the following paragraphs, we will investigate the possiblity to enhance
deconvolution’s estimation without deteriorating the already existing good
estimations (red pixels of Figure 6.19). For this purpose we apply the GOA.

As it is described by Equation 5.31, the GOA makes the optimal decision
either to add or remove a spike locally based on a comparizon made between
ith mean square error (MSE) and the threshold criterion θ

γi > θ

where γi is the norm of the ith data point MSE and where θ is defined via
the estimated kernel amplitude

θ = ϑhe (6.8)

where ϑ is the amplitude threshold scalar and he is the estimated average
kernel amplitude. In addition, the maximum allowed iteration steps I for
the GOA is defined from the number of spikes estimated by the DDA. For
clarity, we denote the spike reconstruction errors committed by the optimized
deconvolution by (δrecon)ϑ .

In Figure 6.24, we have presented the spike reconstruction errors of (δrecon)ϑ=0.2 .
In comparizon to the non optimized deconvolution in Figure 6.19, several
dark blue pixels are transformed into light blue or other colors of lesser spike
estimation error. This means, optimizing has enabled to remove tens of
wrongly estimated spikes from the pixels where ξ = 1, 2, 3, 4 and 8. On the
other hand, optimizing with ϑ = 0.2 has missed some few spikes from the
red pixels of Figure 6.19, where the DDA by itself had managed to estimate
the spike numbers precisely.

In addition, the GOA has impaired the good estimations of deconvolution in
the ξ = 1, ω = 9 and 11 pixels of Figure 6.19 panels. This can mean, GOA
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Figure 6.24: The spike reconstruction errors of (δrecon)ϑ=0.2 .

with ϑ = 0.2 is not well suited for a signal with very low SNR containing a
slow drift AWGN. In the next paragraphs, we will investigate whether using
other ϑ value can avoid the shortcomings of the GOA.

In Figure 6.25, we have presented (δrecon)ϑ=0.5 for the entire family of model
data. It can be seen from the figure that the false spikes observed in figure
6.24, in the low SNR (ξ = 1, 2, 3, 4 and 8), as well as very low SNR and
slow drift AWGN (ξ = 1 and ω = 9, 11) pixels are reduced by about ten
spikes. However, for the high frequency AWGN regions (the dark blue pixels
of Figure 6.25), employing ϑ = 0.2 is found to be the better alternative in
removing more false spikes, as indicated by the brightness of the red pixels
in Figure 6.24. This means, decreasing the amplitude threshold scalar, ϑ,
will enable to remove more false spikes from our spike train estimation when
it comes to noisy signals of ξ = 1, 2, 3, 4,8 containing high drift AWGN of
ω = 1, 2, 3, 4, 5 and 7.
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Figure 6.25: (δrecon)ϑ=0.5 for the entire family of model data.
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6.2.4 How better can we reconstruct spikes if the kernel is known
exactly?

In this subsection, we present how well spike trains could have been recon-
structed if the kernel estimation bias was avoided from the procedure. For
this purpose, we employ the fixed kernel given in Equation 5.4 in its matrix
form. We denote this kernel by κ. In this case, the kernel will have h0 and
τc0 as its parameters.

In section 6.2.3 we have seen that the combination of DDA and GOA as being
the best alternative among the different algorithms tested for the purpose of
spike reconstruction. Consequently, in this subsection we only discuss what
happens when deconvolution’s estimation is optimized.

We start out by reconstructing spike trains with the deterministic deconvo-
lution. δrecon when kernel is fixed are presented in Figure 6.26. Primarily,
this figure is compared with Figure 6.19 since the two are similar except for
the nature of their kernels. The amount of observed red pixels is significantly
higher here, compared to Figure 6.19. This means we can reconstruct spikes
better when we know the kernel. In addition, if the SNR of a signal is known,
then one can predict how well the spike trains will be reconstructed with the
DDA.

In the same way as for the κe DDA spike train reconstruction, the blue pixels
in Figure 6.26 denote pixels that contain tens of false spikes. However, unlike
those in Figure 6.19, the pixels follow a characteristic pattern here. In fact,
they are limited to the upper left corner of each panel, covering either the
lowest SNR (ξ = 1) with less filtered AWGN (ω = 1, 2, 3, 4) or the lower SNR
(ξ = 2, 3, 4) with unfiltered AWGN (ω = 1, 2). This means the false spikes
in the first row and first column of panels arise from deconvolution, not from
kernel estimation bias. In other words, deconvolution requires the SNR> 8
in order to reconstruct spike trains well, when the AWGN is unfiltered.

Let us now investigate if optimization can further improve the spike train
estimation of the DDA, when kernel is known.

(δrecon)ϑ=0.2 when kernel is known are displayed in Figure 6.27. The amount
of pixels with many false spike estimates is notably reduced in this figure
in comparison to Figure 6.26for the non optimized DDA. In fact, only two
pixels contain many (≈ 100 ) false spikes in each panel. In both pixels of
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Figure 6.26: δrecon of DDA when kernel is fixed

these types, the SNR (ξ) is one. This means, the GOA corrects the errors
of the DDA by removing hundreds of spikes. For instance, about 857 false
spikes are removed from the DDA’s spike train estimation by the GOA for
the noisiest signal with ξ = 1 and ω = 1.
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Figure 6.27: (δrecon)ϑ=0.2 when kernel is known.
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7 Application

7.1 Threshold parameters and the error term

7.1.1 Three threshold parameters

In our algorithms, there are three parameters (denoted by k, α and ϑ) that
need careful thought.

The S-Gf smoothing window size k The algorithm for kernel ampli-
tude estimation is developed in section 5.2.1 and tested in section 6.1. The
sequence of the algorithm is as follows: First differentiate a calcium trace,
filter the differentiated trace with Savitsky-Golay smoothing filter and de-
note the filtered signal by S-Gf, compute the maximum of the S-Gf signal
(see Equation 5.17), and finally consider the average of the data above the
S-Gf maximum as the average calcium kernel amplitude he.

The parameter k in Equation 5.17 is critical for the kernel amplitude esti-
mation algorithm. For the test data in section 6.1.1, employing k = 11 was
the best alternative. However, we need to investigate if it is reasonable to
use k = 11 the two-photon imaging data.

The minimum peak height scalar α: In the kernel time constant esti-
mation algorithm, modeled and tested in section 5.2.2 and 5.2.2 respectively,
we use a threshold value defined as

[he]th = αhe (7.1)

where he is the estimated kernel amplitude, the threshold [he]th is a minimum
height requirement imposed on a calcium trace to be considered as being
instigated by an action potential.
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α is a critical parameter when we estimate a kernel time constant τce . For
the test data in section 6.1.3, we have demonstrated α = 0.6 as the best
alternative. For the two-photon data, we need to investigate if this α value
is reasonable.

The optimization threshold scalar ϑ ϑ is the third critical parameter
that relates he and the optimization threshold θ (see Equation 6.8 and 5.31).
In section 6.2.1, we found out ϑ = 0.2 being the best alternative for calcium
traces with different signal quality.

7.1.2 Error term

The kernel time constant is extracted from an exponential function fitted
through an iterative nonlinear fitting algorithm as shown in section 5.2.2.

We employ the standard deviation of τce as an error estimate, which we
denote by στ . We compute στ from the diagonal covariance matrix esti-
mated in the process of fitting the exponential function. . The MATLAB
implementation of this procedure is included in the Appendix (Section 11C).
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7.2 Traces of two-photon calcium imaging in vivo

7.2.1 Selected examples

Algorithms are applied on four selected two-photon calcium imaging fluo-
rescence transient signals in vivo. Images are taken from different cortical
depths in the barrel cortex.

Mouse type and (Id. nr.) Whisker stimulation Cortical depth
wild-type (0723R2ne2) 1-pulse 150µm

transgenic (0728R15ne4) 1-pulse 100µm
wild-type (0723R4ne10) 3-pulses 235µm
transgenic (0728R8ne8) 3-pulses 250µm

Table 7.1: Experimental calcium traces selected for algorithm application.
Stimulations are given through whiskers. Mice were imaged at the Laboratory
of Dr. A. Devor, University of California at San Diego.

The traces are illustrated in Figure 7.1. The first two examples illustrated in
Figure 7.1a and 7.1b are taken from 1 and 3-pulses wild-type (healthy) mouse
respectively, whereas those presented in Figure 7.1c and 7.1d are taken from
1 and 3-pulses transgenic (Parkinson’s) mouse respectively. The details of
the animal models are summarized in Table 7.1.
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Figure 7.1: Typical two-photon calcium imaging traces in vivo, selected for
algorithm application. (a) 1-pulse wild-type (b) 3-pulses wild-type (c) 1-pulse
transgenic (d) 3-pulses transgenic

(a)

(b)

(c)

(d)
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7.2.2 How do 1- and 3-pulses traces differ?

In general 1-pulse traces contain isolated elevations, whereas a train of three
consecutive elevations characterizes most 3-pulses traces. In Figure 7.2, we
have illustrated these characteristic differences. Figure 7.2a and 7.2c show
typical trace responses of the wild-type and the transgenic neuron for 1-pulse
stimulation respectively. Figure 7.2b and 7.2d display how the peaks of a
wild-type and a transgenic neuron have responded to 3-pulses stimulation in
a decreasing and an increasing order respectively.

(a) (b)

(c) (d)

Figure 7.2: Zoomed in traces for a closer look on characteristic differences
between wild-type and transgenic neuron response to the nature of stimula-
tion. (a) 1-pulse wild-type (b) 3-pulses wild-type. Peaks in decreasing order
(c) 1-pulse transgenic (d) 3-pulses transgenic. Peaks in increasing manner.
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7.3 Estimating calcium kernels

7.3.1 1-pulse wild-type trace: Parameters as for model data

As a starting point, we attempt to fit for he using the parameter value k = 11.
In Figure 7.3, he fitting made for the 1-pulse wild-type trace is illustrated.
This fitting has reported he = 0.082. In order to investigate the goodness
of this estimate, we perform the iterative nonlinear fit using α = 0.6 and
compute στ .

Figure 7.3: Fitting for he with the best test data k (=11) threshold parameter
value. Trace type: 1-pulse wild-type (0723R2ne2). The green trace is the S-
Gf of the differentiated black trace. The blue line marks the roof of the S-Gf
trace. The red line marks the estimated average calcium kernel amplitude,
he = 0.082.

From the 1-pulse wild-type example, only one calcium slope has fulfilled
the minimum criteria to be included in the time constant estimation slopes
category (illustrated in Figure 7.4). An exponential function is fitted to the
data points through an iterative nonlinear least square method (red in Figure
7.4).

92



7.3 Estimating calcium kernels 7 APPLICATION

From the fitted exponential, we have obtained τce = 0.272s, with large un-
certainty (στ = 0.137s). This means, we need different values of k and α for
experimental data.

Figure 7.4: (a) 1-pulse wild-type trace slopes. Only one slope has fulfilled
the minimum criteria to be considered as action potential initiated, when
model data threshold parameters (k = 11 and α = 0.6) are applied. b)
Fitted exponential (red) gave τce = 0.272s. The covariance matrix gave στ =
0.137s.

7.3.2 1-pulse wild-type: k = 5, 7, 9, 11 and α = 1

The kernel amplitude fits for the different k are illustrated in Figure 7.5.
In the figure, black denotes the differentiated experimental trace, green the
S-Gf of the black trace, blue the roof of the the green trace and red marks
he.
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Figure 7.5: he fitted with different k when α = 1 for 1-pulse wild-type trace.
The blue line marks the roof of the S-Gf trace. The red line marks he. (a)
k = 5: he = 0.1577 (b) k = 7: he = 0.1419 (c) k = 7: he = 0.116 (d)
k = 11: he = 0.0817

(a) (b)

(c) (d)
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According to Figure 7.5, decreasing k increases the amplitude and the thick-
ness of the S-Gf trace. This pushes the amplitude threshold (max S-Gf) up-
wards. Consequently, the smallest k (= 5) has given the largest he (= 0.158).
Conversely, the smallest he (= 0.082) is obtained when k = 11.

In Figure 7.6, trace slopes that have satisfied the inclusion criteria (see sec-
tion 5.2.2 and Equation 7.1) when α = 1 are presented.

Figure 7.6: 1pulse wilde type trace slopes that have satisfied the minimum
inclusion criteria. Slope averages are marked by thick blue. (a) k = 5 (b)
k =7 (c) k = 9 (d) k = 11.

(a) (b)

(c) (d)

We fit exponential functions to the slope averages (marked in thick blue in
Figure 7.6). The exponential fits are presented in red in Figure 7.7.

95



7.3 Estimating calcium kernels 7 APPLICATION

From the fitted exponentials in Figure 7.7, we have extracted τce =0.619s,
0.565s, 0.516s and 0.496s when k = 5, 7, 9 and 11 respectively. Like for he,
the smallest k (= 5) has given the largest time constant estimate.

In Table 7.2 the fitted kernel parameters for the 1-pulse wild-type trace are
summarized.

k he τce [s] στ [s]
5 0.158 0.619 0.0093
7 0.142 0.565 0.0094
9 0.116 0.516 0.0128
11 0.082 0.496 0.0167

Table 7.2: Fitted kernel parameters and error terms for the 1-pulse wild-type
trace (0723R2ne2) when α = 1

According to Table 7.2, both k = 5 and k = 7 (when α = 1) are well suited
when the kernel parameters of this particular trace are fitted.

7.3.3 Fitting functions to calcium slopes when k is large

To check whether we can use large k, we consider k = 13 and k = 19. The
trace decays and the fitted exponential functions for these k are illustrated
in Figure 7.8

In Figure 7.8, when k is large, fewer slopes are selected than when k was
small in Figure 7.6. In addition, the fitted exponentials have flat bottom
and contain several data point outliers. This means, increasing k too much
affects the quality of fitted kernel parameters negatively, in a similar way as
scaling with α = 0.6 did in Figure 7.4. The large error terms (στ listed in
Table 7.3) are also indicative of bad estimates due to increased k.
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Figure 7.7: Exponential functions fitted to the calcium trace slope averages
(the thick blue curves in Figure 7.6) . The Y-label ∆F

F is normalized. (a)
k = 5: τce =0.619 and στ =0.0093 (b) k = 7: τce=0.565 and στ = 0.0094 (c)
k = 9, τce =0.516 and στ =0.0128 (d) k = 11: τce =0.496 and στ =0.0167

(a) (b)

(c) (d)
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(a) (b)

(c) (d)

Figure 7.8: Exponential functions fitted to the 1-pulse wild-type calcium trace
slope averages , when k is large. (a) k = 13: Slopes (b) k = 13: Fitted
exponential (c) k = 19. (d) k = 19
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k he τce [s] στ [s]
13 0.062 0.394 0.0302
19 0.044 0.268 0.0820

Table 7.3: Summary of fitted parameters and their error term for k=13 and
k=19. Large k has resulted in large uncertainty.

7.3.4 1-pulse transgenic

The parameters of the kernel fit and their uncertainty for the 1-pulse trans-
genic trace obtained when k = 5, 7, 9 and 11 are summarized in Table 7.4.

k he τce [s] σ of τce [s]
5 0.156 0.759 0.0078
7 0.127 0.768 0.0089
9 0.080 0.683 0.0188
11 0.063 0.099 0.5853

Table 7.4: Fitted kernel parameters and their error terms for 1-pulse trans-
genic trace (0728R15ne4). .

According to Table 7.4, the algorithm has estimated the time constant to
0.76 s (for k = 5 and 7) with a standard error 0.008 s. In this case, the
ratio of στ to τce is about 1%. he is oppositely related to increasing k but
not necessarily τce .
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7.3.5 3-pulses transgenic

For the 3-pulses transgenic trace, the kernel fitting procedure when k = 7
are illustrated in Figure 7.9. In this case, he = 0.226. A time constant of
0.536 s with 0.0081 s standard error is extracted from the fitted exponential
function to the slope average of the trace.

In Table 7.5, we have extended k ’s range up to 17 and listed the fitted
kernel parameters. The table shows an interesting relationship between he
and τce . When the signal quality is good, as it is the case for this particular
trace, a stable time constant can be estimated by the algorithm regardless
of changing he and k. In other words, τce does not always decrease due to
increasing k like he. In addition, the stablity of τce , together with the small
standard errors (στ ), in the interval 5 ≤ k ≤ 15 indicates the likelihood of
the fitted time constant to be the most probable estimate.

k he τce [s] σ of τce [s]
5 0.248 0.536 0.0081
7 0.226 0.536 0.0081
9 0.215 0.539 0.0079
11 0.199 0.539 0.0079
13 0.191 0.539 0.0079
15 0.173 0.540 0.0080
17 0.146 0.474 0.0120

Table 7.5: Fitted kernel parameters and error terms for 3-pulses transgenic
trace. Stable τce(= 0.54) with small standard error (= 0.008) is estimated
for the interval 5 ≤ k ≤ 15, regardless of decreasing he due to increasing k.
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Figure 7.9: Calcium kernel fitting procedure for 3-pulses transgenic trace,
when k = 7. (a) Black: Differentiated trace. Green: S-Gf of the black trace.
Blue: The roof of the green trace. Red: he = 0.226. (b) Calcium slopes
satisfying the minimum inclusion criteria. Thick blue: Slope average. (c)
Red: Fitted exponential function slope average data points. τce = 0.536 s and
στ = 0.0081 s.

(a) (b)

(c)
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7.3.6 3-pulses wild-type

In Table 7.6, fitted kernel parameters and uncertainties for the 3-pulses wild-
type trace are listed.

k he τce [s] στ of τce [s]
5 0.142 0.476 0.0152
7 0.117 0.417 0.0184
9 0.103 0.425 0.0203
11 0.100 0.401 0.0233

Table 7.6: Fitted kernel parameters and error terms for the 3-pulses wild-type
trace .

According to Table 7.6, the standard deviation to time constant ratio (στ
: τce) for k =5 and 7 are smaller than for other k (about 3% and 4.5%
respectively). This implies, k = 5 or k = 7, as for the other trace types
studied, being the well suited S-Gf threshold parameters for this particular
trace.
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7.4 Summarizing kernel parameter estimation

We conclude the section about calcium kernel parameters by giving a brief
summary of the main results in Table 7.7.

k Stimulus Mouse Cortical he τce [s] στ [s] στ : τce [%]
in pulses type depth

5 1 wild-type
transgenic

150µm
100µm

0.158
0.156

0.619
0.759

0.0093
0.0078

1.5
1

7 1 wild-type
transgenic

150µm
100µm

0.142
0.127

0.565
0.768

0.0094
0.0089

1.7
1.2

5 3 wild-type
transgenic

235µm
250µm

0.142
0.248

0.476
0.536

0.0152
0.0081

3.2
1.5

7 3 wild-type
transgenic

235µm
250µm

0.117
0.226

0.417
0.536

0.0184
0.0081

4.4
1.5

Table 7.7: Summary of calcium kernel fitting for the four experimental traces
(Figure 7.1). k=5 and k=7 (when α = 1) are well suited as S-Gf smooth-
ing threshold parameters in the algorithm. Except for the 3-pulses wild-type
trace (the noisiest among the four), time constants are estimated with <2%
normalized error ( στ

τce
). Larger time constants are estimated for transgenic

traces both for in 1 and 3-pulses stimulation cases. he has decreased with
increasing k for all cases. Among traces, the largest amplitude is estimated
for the 3-pulses transgenic. The he of the 3-pulses transgenic is twice as
large as its 3-pulses wild-type. In the case of transgenic traces, he is larger
for larger cortical depth and vice versa for τce .
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7.5 Spike train reconstruction and calcium trace fit

We can summarize the spike train reconstruction algorithms as follows: A
spike train will be reconstructed with deconvolution deterministically with
the estimated kernel (see section 5.3 and 6.2 for its design and testing respec-
tively). Then we calculate the calcium trace corresponding the reconstructed
spike train. We optimize the positions of spikes by comparing the fitted cal-
cium trace with experimental trace.

The entire procedure will be applied on the four traces (Figure 7.1). In this
subsection, experimental traces of the 1-pulse and 3-pulses will be denoted
by blue and red respectively. For DDA calcium trace fits we use magenta
and green will denote the optimized trace fits. For the sake of comparison,
the corresponding spike train for each (DDA and GOA) calcium trace fit will
be shown by dots underneath.

The parameters k = 5 and ϑ = 0.5 will be employed for the illustrations and
discussion in this subsection.

7.5.1 1-pulse wild-type

The kernel employed for 1-pulse wild-type trace is shown in Figure 7.7b.

In Figure 7.10, the experimental Ca 2+ trace, the DDA Ca2+ trace fit with its
underlying spike train and the optimized Ca2+ trace fit with its underlying
spike train are illustrated in (a), (b) and (c) respectively.

In this case, the calcium trace is fitted very well both with and without
optimization, as it can be seen from the illustrations. Dominant elevations
in the experimental trace have coincided with the optimized calcium trace
fit both in time and size. However, some dominant elevations seen in the
experimental trace are missing when it comes to the DDA trace fit.

Both the DDA and the optimized spike trains have indicated only individual
spike arrivals. For instance in Figure 7.10b and c, the two blue dots on top
of each other at about 100 s on the spike train indicate that the two spikes
have arrived close to each other . In this case, the first spike has arrived at
about 99.3 s, whereas the second spike (the one on the top) has arrived at
about 99.4 s.
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In total, 33 and 34 spikes are estimated by the DDA and the GOA respec-
tively. However, by comparing the blue spike dots in Figure 7.10b and c,
one can see some removed ’false’ spikes, for instance at about 45 s and 205 s
on the time axis. In addition, some spikes are also added to the spike train
when deconvolution is greedy optimized, for instance, the spike at about 280
s in Figure 7.10c.
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(a)

(b)

(c)

Figure 7.10: Reconstructed spike trains for the 1-pulse wilde-type trace. The
blue dots underneath the trace fits in (a) and (b) represent the corresponding
spike trains for the DDA and the GOA respectively. In both spike trains
spikes have arrived individually, but sometimes very close to one another
(for instance, at about 100 s). Some spike are removed and some added to
the train by when the deconvolution spike train is optimized.
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7.5.2 1-pulse transgenic

In this subsection, we will demonstrated the impact of the parameter k and
ϑ on spike reconstruction. In Table 7.8, we have summarized the number
of estimated spikes (

�N
i=1ηi, where the ith spike is denoted by ηi as in

Equation 6.6 ) through deconvolution (with different k) and optimization
(with different k and ϑ).

DDA has estimated 54 spikes for the 1-pulse transgenic trace, when k = 7,
where as only 31 spike detection were made when k = 5. The larger number
of spikes are detected when k = 7 because deconvolution has detected 2
spikes arriving at same time in total 6 times. Non of these 2 spike arrival at
the same time is detected when k = 5. This means, spike detection can be
determined by the size of k. And k is oppositely related with estimated he
(see Table 7.7).

We have illustrated the spike trains and the Ca2+ trace fits of the 1-pulse
transgenic-type trace in Figure 7.11. There are only individual spike arrivals
in the deconvolved and optimized spike trains.

Estimated number of spikes =
�N

i=1ηi
k DDA ϑ = 0.2 ϑ = 0.5 ϑ = 0.8 ϑ = 0.9

5 31 21 24 40 48
7 54 21 20 20 20

Table 7.8: The table illustrates the impact of the parameter k and ϑ on
spike train reconstruction. For k = 7, DDA has detected multiple (6) times
when two spikes arrive at the same time, therefore, 54 spike detections. This
means k (oppositely related with he Table 7.7) can increase the number of
spikes detected by the DDA. Optimization is influenced to a lesser degree by
k, as long as ϑ is kept at about 0.5.
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(a)

(b)

(c)

Figure 7.11: Spike train and Ca2+ fit for the 1-pulse transgenic-type trace.
Here k = 5 and ϑ = 0.5. In total deconvolution has estimated 31 spikes.
Optimization has removed 11 of the 31 DDA spikes. Spikes have arrived
individually in both the DDA and GOA spike trains.
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7.5.3 3-pulses wild-type

In Figure 7.12, the reconstructed spike trains and the calcium trace fits for
the 3-pulses wilde-type trace are illustrated. DDA has reported 2 spikes
arriving together three times, whereas only single spike arrivals are reported
when the deconvolution is optimized.

For this experimental trace, 60 spikes are estimated by the DDA, optimiza-
tion has removed 15 of those spikes.

We investigate the plots a bit more closer, we zoom into the segment of
Figure 7.12 (between 6 and 25 seconds) in Figure 7.13. The zoomed exper-
imental Ca2+ trace is shown in (a). As it is illustrated in Figure 3.2 and
3.4 (experimental flow), no stimulation is given to the mouse during the first
20 seconds of the experiment (or the first stimulus arrives at about 25 s)
. Therefore, the fluorescence elevations (Figure 7.13a) at about 10 s (spike
assembly) and 20 s must have occured due to spontaneous activities. For the
spike assembly at ∼ 10 s, DDA has detected 3 spontaneous events; only 2 of
these have remained after optimization. The GOA considers the last arriving
event in the assembly as a sub-threshold activity. On the other hand, the
spontaneous event at ∼ 20 is neglected by the DDA but detected and added
to the spike train by the GOA as shown in Figure 7.13c.
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(a)

(b)

(c)

Figure 7.12: Reconstructed spike trains and their corresponding Ca2+ trace
fits. DDA and GOA have detected 60 and 45 spikes for the 3-pulse wilde-type
trace respectively. The Ca2+ fits have larger amplitudes than those in Figure
7.10 and 7.11 due to dense spike arrivals resulting from the 3-pulse whisker
stimulation. DDA has detected 2 spikes arriving together 3 times, non of
these are detected when the train is optimized.
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(a) (b)

(c)

Figure 7.13: Figure 7.12 zoomed in. The spontaneous fluorescence elevations
(see Figure 3.2 and 3.4) at ∼ 10 s and ∼ 20 s in (a) are detected by the
optimized deconvolution as illustrated by (c).At ∼ 10 s, DDA has reported
three spontaneous events; however, the 3rd event in the assembly is considered
as arising from sub-threshold activity and removed during optimization. The
spontaneous event at ∼ 20 is neglected by deconvolution as illustrated in (b).
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7.5.4 3-pulse transgenic

The reconstructed spike trains and the fitted Ca2+ traces for the 3-pulse
transgenic-type trace are shown in Figure 7.14.

In total, deconvolution and optimization have detected 58 and 54 spikes in
the experimental trace respectively. In this case, the GOA has reported 2
spikes arriving together at ∼ 102 s, no such case is reported by the DDA.

In Figure 7.15, we have zoomed into a segment (between ∼ 130 and ∼ 155
s) of Figure 7.14.

As it is explained in section 3.2 and illustrated in Figure 3.2 and 3.4, whiskers
are given a train of 3 electrical stimulations in 15 seconds interval, the first
one arriving to the neuron at ∼ 25 second after the experiment run is started.
This means the hierarchically assembled fluorescence elevations at ∼ 132 and
∼ 147 s in Figure 7.15a must have been due to evoked APs, whereas the
elevation coming after the 1st assembly at ∼ 135 s should be due to a spon-
taneous event. The spontaneous elevation is recognized both by the DDA
and the GOA. Deconvolution has detected 4 underlying spikes for the 2nd

spike assembly at ∼ 147 s. One of these four spikes is removed when decon-
volution’s spike train is optimized. If we compare the hierarchy of the 2nd

elevation assembly in (a) and (b) with (c), we acknowledge the optimized fit
as being more coinciding with experimental fluorescence transient elevation
hierarchy.
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(a)

(b)

(c)

Figure 7.14: Reconstructed spike trains and Ca2+ trace fits for the 3-pulse
transgenic-type trace. 58 and 54 spikes are detected in the trace by the DDA
and the GOA in the trace respectively. Dense spike arrivals are observed in
∼15 seconds intervals, reflecting stimulus (in 3-pulses) onsets (see Figure
3.2). Optimization has reported one situation (∼ 102 s) where two spikes
have arrived together. No such a situation is reported by the GOA.
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(a) (b)

(c)

Figure 7.15: A segment (∼ 130 s to ∼ 155 s) of Figure 7.14 zoomed in. The
assembled fluorescence transient elevations at ∼ 132 s and ∼ 147 s in the
experimental trace in (a) are evoked (see Figure 3.2 and 3.4). Optimization
(c) has managed to follow both the fluorescence transient elevations hierarchy
(for the evoked case) as well as the spontaneous event at ∼135 s .
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8 Discussion

We have modeled a family of calcium imaging fluorescence signals.

A novel algorithm is developed to estimate a calcium kernel from a given
fluorescence trace. We have designed the algorithm by combining differen-
tiation, Savitzky-Golay filter with and an iterative algorithm for fitting a
nonlinear model (Levenberg - Marquardt).

For spike detection we have developed a deconvolution algorithm that em-
ploys greedy optimization.

The modeled signals have played significant roles in fine-tuning the designed
algorithms.

In vivo two-photon calcium imaging signals are analyzed with these algo-
rithms.

8.1 Modeled Ca2+ signals

We have employed an alternative algorithm for convolution than the standard
MATLAB function conv.m for the purpose of varying kernel types when we
modeled the calcium signals.

8.1.1 Kernel amplitude

The average amplitude of a signal with low SNR (ξ≤ 8) is estimated with
the largest error (δh), as demonstrated in Figure 6.1, 6.3 and 6.7.

However, estimation errors were significantly reduced when the AGWN of
a poor quality signal is filtered with MAS, as in shown by the δh in Figure
6.4a and b. This means, the algorithm is sensitive for high frequency noise
component.
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Our method is effective in taking the inherent noise level in a signal into
consideration when setting the amplitude threshold criteria. For instance,
as illustrated in Figure 6.9, it was possible to estimate the average amplitude
of the typical noisy signal with 5% error from expectation (h0).

Estimating the kernel amplitude from the differentiated signal rather than
from the original signal is advantageous. Wider (plateaued) calcium tran-
sients, for instance due to closely arriving spikes, will be attenuated without
losing the underlying information.

Employing the S-Gf algorithm to exclude peaks associated with the noise
component is appropriate. For instance, unlike MAS, peaks that are narrow
compared to the filter width (k) will not be damaged when the filter passes
through the peaks [10]. In addition, S-Gf is optimal, in a sense that it
minimizes the least-squares error in fitting a polynomial to each frame of the
noisy calcium trace. This makes the S-Gf a better choice than other finite
impulse response (FIR) filtering methods for our purpose. In most cases,
FIR tends to filter out a significant portion of the signal’s high frequency
content along with the noise [29].

8.1.2 Kernel time constant

Combining αhe (Equation 5.19) and the kernel width 6τc0(section 5.1.2) as
a calcium slope selection criteria has worked on all the 672 modeled signals.
For the modeled data α = 0.6 has shown good results. If necessary, the
threshold scalar α can be tuned for any signal.

Varying α had, especially, an implication for signals with ξ < 4, as shown in
Figure 6.18. Therefore, one needs to be cautious in choosing its value.

Time constant is extracted from an exponential function fitted to a slope
average. Fitting through linear transformation gave larger errors particularly
for signals with poor quality (ξ = 1, 2, 3, 4) as in Figure 6.11.

Fitting exponential functions to calcium slopes through the iterative nonlin-
ear model is advantageous over the linear model.

Time constant estimation error is significantly reduced for the noisiest signals
with respect to expectation (τc0) with the nonlinear model, as shown in
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Figure 6.16 and 6.17. For instance, the time constant of the signal in Figure
6.12 was off only by 1.6% from expectation when estimated by the nonlinear
model compared to a 22% error of the linear model.

8.1.3 AP reconstruction

DDA: Deconvolution has estimated spike trains precisely for signals of
good quality (ξ > 8), even when the AWGN is unfiltered (for all ω) as shown
in Figure 6.19 and 6.21.

For signals of low quality (ξ ≤ 8), estimation quality is determined by the
size of ω, as shown in Figure 6.20.

We have noticed a sharp jump in estimation quality (from hundreds of false
spikes to zero) with increasing ξ and ω, as shown in by the blue and red
pixels of panels in Figure 6.19.

The spike inference quality for the DDA is significantly reduced due to to
kernel estimation bias, as demonstrated in Figure 6.19 and Figure 6.26. Ac-
cording to the later, deconvolution is inadequate only if ξ ≤ 4 and the drift
in the AWGN is high (ω = 1 and 2 ).

MF: Smoothing a signal by MF as a pre-processing to the DDA, impaired
the performance of the DDA for some signals of good quality (ξ > 8), as in
Figure 6.23.

On the other hand, MF has removed wrongly estimated spikes by deconvo-
lution for poor quality signals. However this issue needs more invesitgation,
since our model could not identify pattern for the improvement.

GOA: Optimizing the DDA has enabled to remove hundreds of false spikes
for signals with ξ ≤ 8.

ϑ = 0.2 (Equation 6.8) was more suited for signals of higher drift AWGN
(ω = 1, 2, 3, 4, 5, 7) and ξ = 1, 2, 3, 4, 8, as shown in Figure 6.24 and 6.25.

In general, an iterative optimization in the greedy approach was time con-
suming, taking up to 6 hours of CPU time for the entire family of model
data (672 signals each lasting for 200s).

118



8.2 Experimental signals 8 DISCUSSION

8.2 Experimental signals

We have found that, k = 5 and ϑ = 0.5 are the best suited parameters for
the purpose of application.

8.2.1 Amplitude and time constant

One of the main results from experimental data analyses is that, larger time
constants are estimated for the transgenic traces compared to their wild-type
counterparts for both 1- and 3-pulse stimulation cases, as listed in Table 7.7
.

Among the transgenic traces, we have obtained larger time constant (τce =
0.77) for the neuron imaged at cortical layer I (100 µm) and stimulated
with a single pulse. We have not encountered direct correlation between he
and τce , such as larger he leading to larger τce . Cortical depth may have
implication on this issue; therefore, it needs further investigation.

Nearly twice as large he is estimated for the transgenic trace stimulated with
3-pulses compared to its single pulse counterpart.

For the 1-pulse traces, nearly equal kernel amplitude is estimated for both
wild-type (cortical layer II) and transgenic traces (cortical layer I) traces.

he of the transgenic trace is twice as large as the wild-type’s he for the
3-pulses traces.

For all the traces investigated, estimation error (στ : τce ) was < 5%, where
στ is obtained from the covariance matrix of the nonlinear model fit.

8.2.2 AP

DDA can infer about the same number of spikes as the GOA, as seen from
the 1-pulse wild-type trace in Figure 7.10b and c. But this does not mean
there is the same spike pattern in the two.

More frequent spike arrivals are observed for the traces stimulated with 3-
pulses.
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Both spontaneous and evoked events are fitted by the GOA method as
demonstrated for the 3-pulses traces in Figure 7.13 and 7.15.

The hierarchical order of Ca2+ transient elevations of traces stimulated with
3-pulses (Figure 7.2b and 7.2d) is detected by the GOA calcium trace fit, as
shown in Figure 7.13 and 7.15.

Our greedy optimization approach is iterative, where another spike is added
or removed from the DDA spike train during each iteration. We believe that
the spike trains obtained after the optimization are the most likely one.

8.2.3 Conclusion

The major findings of the thesis can be summarized as follows:

• We have modeled a family of calcium imaging fluorescence signals, which
we have employed for algorithm design, test and analysis.

• Using a novel algorithm, we have shown slower calcium response in so-
matosensory neurons of α-syn transgenic mice.

• We could read-out both spontaneous and evoked activities of a transgenic
and wild-type mice neurons, as well as follow the hierarchy in fluorescence
transient arrivals when mouse is given a train of electric stimulations with
the new GOA (spike inference) algorithm.

We believe that our methods have the potential to identify neuronal types
based on their fluorescence signatures. This could be an extension of the
present work and would require analysis of a larger sample of experimental
data.
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Part II

Appendix

9 Abbreviations

AP Action potential

MAS Moving-average smoothing filter

S-Gf Savitzky-Golay smoothing filter

MF Median filter

AWGN Additive white Gaussian noise

SNR Signal to noise ratio

DDA Deterministic deconvolution algorithm

GOA Greedy optimization algorithm

PD Parkinson’s disease

MSE Mean square error
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10 Parameter Symbols

ξ SNR of model signals

ω Sliding-window size of the MAS filter

k Sliding-window size of the S-Gf

γi Difference between Ca2+ signals at t = i

α Calcium kernel amplitude threshold scalar

θ Threshold for MSE criterion

ϑ Amplitude threshold scalar for θ

δh Absolute kernel amplitude estimation error

δτc Absolute clearance time constant estimation error

δατ Absolute estimation difference due to different α

δrecon Spike train reconstruction error

στ Error term for estimated time constant
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11 MATLAB scripts

Variable names employed in the scripts coincide with the names in section
5, 6 and 7; therefore, they are cross-referenced accordingly, when there is a
need.

A. Model Ca2+ trace generator

Code name : Ca_model_signal .m

dh = [ 0 . 0 0 , 0 . 0 1 , 0 . 0 1 5 , 0 . 0 2 ] ; % Equation 5 .11
dtau_c = [ 0 . 0 0 , 0 . 1 0 , 0 . 2 0 ] ; % Equation 5 .11
x i = [ 1 , 2 , 3 , 4 , 8 , 1 6 , 3 2 ] ; % Equation 5 .12
omega = [ 1 , 2 , 3 , 4 , 5 , 7 , 9 ,11 ] ;% Equation 5 .14

h0 = 0 . 0 4 4 ; % expected amplitude
tau0 = 0 . 5 ; % expected time constant
f i r i n g_ra t e = 0 . 3 1 ; % f i r i n g ra t e
T = 200 ; % assumed t r i a l durat ion
dt = 0 . 1 ; % sampling time step
t_vec = [ 0 : dt :T ] ; % time vec to r

% Construct a Po i s son ian sp ike t r a i n

eta = random ( ’ po i s s ’ , f i r i n g_ra t e
∗dt , l ength ( t_vec ) ,1) ;% Equation 5 .3

% Generate a fami ly o f calc ium t r a c e s (672 in t o t a l )

f o r h = dh ;
f o r tau_c = dtau_c ;

f o r SNR = xi ;
f o r MAS = omega ;

Ca_trace = ze ro s ( ( l ength ( t_vec )+60) ,1 ) ;
f i r i ng_t imes = f i nd ( eta ~=0);
f o r t = f i r ing_t imes ’
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kappa_amp = (h0−h) + ( ( h0+h)
− (h0−h ) )
∗ rand ( 1 , 1 ) ;

kappa_tau = ( tau0−tau_c )
+ ( ( tau0+tau_c )
− ( tau0−tau_c ) )

∗ rand ( 1 , 1 ) ;

kappa_width = t_vec ( 1 :max( f i nd
( t_vec<=6∗kappa_tau ) ) ) ;

% Equation 5 .4 with vary ing parameters
kappa = kappa_amp∗exp(−kappa_width

/kappa_tau ) ’ ;

% Convolve calc ium ke rn e l s with the
Po i s son ian sp ike t r a i n

Ca_trace ( t : ( t+length ( kappa )−1)) =
Ca_trace ( t : ( t+length ( kappa )−1))
+ eta ( t )∗ kappa ; % Equation 5 .5

end

% raw band−l im i t ed white Gaussian no i s e
e p s i l o n = kappa_amp/SNR∗ randn ( s i z e ( t_vec ’ ) ) ;

eps i lon_s = smooth ( eps i l on ,MAS,
’moving ’ ) ; % Equation 5 .13

Ca_trace ( l ength ( eta )+1: end )= [ ] ;
Ca_trace = Ca_trace + eps i lon_s ;% Ca model s i g n a l

% To v i s u a l i z e t r a c e s whi l e cons t ruc ted
f i g u r e ( 1 ) ; c l f ; p l o t ( ( 0 : l ength ( Ca_trace )

−1) ,Ca_trace ) ;
end

end
end

end
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B. Ca2+ trace amplitude estimator

Code name : h_estimate .m

%load Ca_trace

% d i f f e r e n t i a t e d Ca_trace ( Equation 5 . 16 )
df_Ca_trace = d i f f ( Ca_trace ) ;

% k i s the smoothing window parameter in Equation 5 .18
% k=11 i s chosen f o r modeling & k=5 f o r app l i c a t i o n
% ( see s e c t i o n 7 and 8 f o r d e t a i l s on k )
SGf = smooth ( df_Ca_trace , k , ’ sgo lay ’ ) ; % Equation 5 .17

% Estimated average ke rne l amplitude
h_e = mean( df_Ca_trace ( df_Ca_trace>max(SGf ) ) ) ;
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C. Ca2+ clearance time constant estimator

Code name : estimate_tau_c .m

% load Ca_trace

h_estimate .m % c a l l the amplitude es t imator code

min_h_1 = alpha ∗h_e ; % alpha in Equation 5 .19
%We have used alpha =0.6 f o r the modeled data
%and alpha=1 f o r the exper imetna l data

min_h_2 = alpha ∗min_h_1 ;

a l l_ s l op e s = [ ] ; % A matrix to be f i l l e d by the t r a c e
%decay s l o p e s

% Find peak va lue s and l o ca t i on , 30 decay s l ope width
[ min_peak , peak_locs ] = f indpeaks ( Ca_trace ,

’ minpeakheight ’ , min_h_1 , ’ minpeakdistance ’ , 3 0 ) ;

f o r j = 1 : l ength (min_peak ) ;

i f peak_locs ( j ) < length ( Ca_trace ) − 30 ;

% f o l l ow the t r a c e 30 time s t ep s a f t e r l o c peak
t_vec_decay = peak_locs ( j )−1 : peak_locs ( j )+30;

% exc lude a l o c a l i z e d peaks i f the re i s another peak
% reach ing ( alph ^2)∗h_e with in the 30 time s t ep s

min_peak_filt = f indpeaks ( Ca_trace ( t_vec_decay ) ,
’ minpeakheight ’ ,min_h_2 ) ;

i f l ength ( min_peak_filt)==1
%plo t ( Ca_trace ( t_vec_decay )/min_peak ( j ) ) ;
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% matrix conta in ing a l l decay s l op s
a l l_ s l op e s = [ a l l_s l ope s , Ca_trace ( t_vec_decay )

/min_peak ( j ) ] ;

end
end

end

% s l op e s average
av_slopes = mean( a l l_ s l op e s ( 2 : end −1 , : ) , 2 ) ;
%f i g u r e ( 1 0 ) ; p l o t ( a l l_ s l op e s ( 2 : end −1 , : ) ) ;
hold ; p l o t ( av_slopes , ’ l inewidth ’ , 2 ) ; hold o f f ;
avs lope = av_slopes ;

% avo ids from cra sh ing avs lope i s empty
%(may happen f o r very ! no i sy s i g n a l s )

i f not ( isempty ( avs lope ) ) ;
x =( t_vec_decay ( 2 : end−1) − t_vec_decay ( 2 ) ) ’ ;

% F i t s exp . f unc t i on to avs lope through the l i n e a r model
modelFun = @(p , x ) p (1)∗ exp (p (2)∗ x ) ; % exp . decay func t i on
paramEstsLin = r e a l ( [ ones ( s i z e ( x ) ) , x ] \ l og ( avs lope ) ) ;
paramEstsLin (1)=exp ( paramEstsLin ( 1 ) ) ;
xx = l i n s p a c e (min (x ) , max(x ) ) ;
avslope_Lin = modelFun ( paramEstsLin , xx ) ;
%Ltau_e = (−1/paramEstsLin ( 2 ) ) ; % l i n e a r f i t e s t imate

% Improve l i n e a r f i t ( Levenberg − Marquardt )

paramEsts = n l i n f i t (x , avs lope , modelFun , paramEstsLin ) ;
avslope_NLin = modelFun ( paramEsts , xx ) ;
tau_e = (−1/paramEsts ( 2 ) ) ∗ 0 . 1 ;

% c a l c u l a t e e r r o r term
[ ParamEsts , r , J , COVNlfit , mse ] = n l i n f i t (x , avs lope ,

modelFun , paramEstsLin ) ;

% COVNlinfit i s the est imated covar iance matrix
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%fo r the f i t t e d c o e f f i c i e n t s
Sigma_tau = sq r t ( d iag (COVNlfit ( 2 , 2 ) ) ) ; % tau_e e r r o r term
end
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D. DDA spike trains

Code name : DDA_spiketrain .m

% Run Ca_model_signal .m f i r s t or
% add i t s v a r i a b l e s in Workspace

h_estimate % c a l l h_estimate .m
kappa_amp = h_e ;

estim_tau_c % c a l l estim_tau_c .m
tau_c = tau_e ;

% ke rne l in matrix form l i k e in Equation 5 .25
kappa_mat = spd iags ( repmat ( f l i p l r ( kappa ’ ) , [ l ength ( t_vec ) 1 ] ) ,

(− l ength ( kappa ’ )+1 : 0 ) , l ength ( t_vec ) ,
l ength ( t_vec ) ) ;

% DDA ( Equation 5 . 26 )
eta_dec=kappa_mat\Ca_trace ;

eta_decrnd = max(0 , round ( eta_dec ) ) ; % Equation 5 .27

delta_recon = sum( eta)−sum( eta_decrnd ) ; % Equation 6 .7
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E. GOA spike trains

Code name : GOA_spiketrain .m

% Either c a l l DDA_spiketrain .m or add va r i a b l e s in
% Workspace

vartheta ; % Equation 6 . 8 , we used
%f o r modeled data we used vartheta =0.2 and 0 .5
%f o r exper imenta l data
I = sum(eta_DDAr ) ; % Maximum number o f i t e r a t i o n s
%see a f t e r Equation 6 .8 or 5 .31

cost_vec = NaN( s i z e (eta_DDAr ) ) ;
deta_vec = ze ro s ( s i z e (eta_DDAr ) ) ;
f o r i t e r = 1 : I

Ca_traceDDA = kappa_mat∗eta_DDAr ; % Equation 5 .28

% Calcu la te r e s i du e e r r o r
Ca_trace_res = Ca_trace − Ca_traceDDA ;

% MSE
cost_best = mean ( ( Ca_trace_res ) . ^ 2 ) ; % Equation 5 .30
f p r i n t f ( 1 , ’ i t e r=%d : cost_best=%f \n ’ , i t e r , cost_best ) ;

% po t e n t i a l l y " miss ing " sp i k e s
deta_vec ( : ) = 0 ;
cost_vec ( : ) = NaN;
f o r i = 1 : l ength ( deta_vec )

% Equation 5 .31 and 6 .8
i f abs ( Ca_trace_res ( i ))> vartheta ∗ kappa_amp %

eta_GOA = eta_DDAr ;
% Correct mistakenly f o r go t t en sp ikes , Equation 5 .31

eta_GOA( i ) = max(0 ,eta_GOA( i )
+ 1∗ s i gn ( Ca_trace_res ( i ) ) ) ;

% Convolve the GOA sp ikes , Equation 5 .28
Ca_traceDDAop = kappa_mat∗eta_GOA;

% MSE a f t e r greedy opt imiza t i on
co s t = mean ( ( Ca_trace−Ca_traceGOA ) . ^ 2 ) ;
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cost_vec ( i ) = cos t ; %
deta_vec ( i ) = 1∗ s i gn ( Ca_trace_res ( i ) ) ;

end
end
[mv, mi ] = min ( cost_vec ) ;

% Convergence c r i t e r i a
i f ~ i s f i n i t e (mv) | | mv >= cost_best , break ;
end ;

% Correct DDA sp ike e s t imat i on
eta_DDAr(mi ) = eta_DDAr(mi ) + deta_vec (mi ) ;

end
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