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ABSTRACT 

Plastic products are widely used in our modern life, and unbound chemicals such as bisphenol 

A (BPA) and phthalates can leak out into the surrounding environment. Special attention has 

been directed toward these chemicals due to high production volume, widespread use, and 

endocrine disrupting effects. Both BPA and phthalates are detected in urine and serum 

samples from the majority of the investigated populations. Increased exposure to 

environmental chemicals has been linked to the increasing incidence of type 2 diabetes (T2D), 

while possible associations between such chemicals and type 1 diabetes (T1D) has received 

less attention. However, experimental studies have indicated that these chemicals may affect 

the immune system and promote autoimmunity and autoimmune diseases like T1D. 

 

The main objective of this study was to investigate whether BPA, and three phthalate 

metabolites (Mono-iso-butyl phthalate (MiBP), Mono-n-butyl phthalate (MnBP) and Mono(2-

ethylhexyl) phthalate (MEHP)) alone or in combination could affect the β-cell viability, 

susceptibility to cytokine-induced apoptosis, or insulin secretion. These endpoints were 

chosen since they may be linked to an accelerated development of T1D and T2D. In addition, 

additive, synergistic or inhibitory effects of combined exposures were examined. The 

pancreatic rat β-cell line INS-1E cells was used as a model system, and concentrations of 

BPA, MiBP, MnBP and MEHP relevant for environmental exposures were included (1, 10, 

50, 100, 500 nM), as well as higher concentrations (5, 50, 500 μM).  

 

For the chemical concentrations relevant for environmental exposures (1-500 nM), no reduced 

β-cell viability, increased sensitivity to cytokine induced apoptosis or increased insulin 

secretion was detected. However, decreased viability was observed at 50 and/or 500 μM BPA, 

MEHP and the combinatory chemical exposures. BPA seemed to be the most potent of the 

chemicals. Moreover, the combination of the phthalates and the combination of phthalates and 

BPA appeared to result in additive effects. 

  

The INS-1E cells are commonly used in mechanistic studies of cytokine-induced apoptosis as 

well as insulin secretion in response to glucose. However, in the present study, the cell line 

appears to be insensitive to the environmental chemicals tested. This suggests that INS-1E 

cells may not be a suitable model system for evaluation of environmental chemicals, since 

BPA has previously been reported to affect both viability and insulin secretion in primary 

islets and cell lines. 
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SAMMENDRAG 

Plast produkter er mye brukt i vår moderne verden, og ubundne kjemikalier som bisfenol A 

(BPA) og ftalater kan lekke ut i omgivelsene. Spesiell oppmerksomhet har blitt rettet mot 

disse kjemikaliene på grunn av høyt produksjonsvolum, utbredt bruk, og hormonforstyrrende 

effekter. Både BPA og ftalater er funnet i urin og blodprøver fra hovedandelen av undersøkte 

populasjoner. Økt eksponering for miljøkjemikalier er nært knyttet til den økende 

forekomsten av type 2-diabetes (T2D), mens mulige sammenhenger mellom slike 

miljøkjemikalier og type 1 diabetes (T1D) har fått mindre oppmerksomhet. Imidlertid har 

eksperimentelle studier vist at disse kjemikaliene kan påvirke immunforsvaret og fremme 

autoimmunitet og autoimmune sykdommer som T1D. 

 

Hovedmålet med denne studien var å undersøke om BPA, og de tre ftalat metabolittene 

Mono-iso-butyl ftalat (MiBP), Mono-n-butyl ftalat (MnBP) og Mono (2-ethylhexyl) ftalat 

(MEHP) alene eller i kombinasjon kunne påvirke β -celleviabilitet, sensitiviteten for cytokin-

indusert apoptose, eller insulinutskillelse. Disse endepunktene ble valgt fordi de kan være 

knyttet til en fremskyndet utvikling av T1D og T2D. I tillegg ble additive, synergistiske eller 

antagonistiske effekter av kombinasjonseksponeringene undersøkt. Bukspyttkjertel β-

cellelinjen INS-1E fra rotte ble brukt som modell system og konsentrasjoner for BPA, MiBP, 

MnBP og MEHP relevante for miljøeksponering ble inkludert (1, 10, 50, 100, 500 nM), i 

tillegg til høyere konsentrasjoner (5,50,500 μM). 

 

Kjemikaliekonsentrasjoner som var relevante for miljøeksponering (1-500 nM) førte ikke til 

redusert β-celle viabilitet, økt følsomhet for cytokinindusert apoptose eller økt 

insulinsekresjon. Redusert viabilitet ble imidlertid observert ved 50 og/eller 500 μM av BPA, 

MEHP og kombinasjonseksponeringene, men BPA var det mest potente av kjemikaliene i 

vårt modellsystem. Videre, så det ut til at kombinasjonen av de tre ftalatene og 

kombinasjonen av ftalater og BPA resulterte i additive effekter. 

 

INS-1E celler har ofte blitt brukt i mekanistiske studier av cytokin indusert apoptose, og 

insulin sekresjon etter glukosestimulering. I denne studien viste cellelinjen seg imidlertid å 

være ufølsom for de undersøkte miljøkjemikaliene. Dette kan tyde på at INS-1E cellene ikke 

er et passende modell system for å studere effekter av miljøkjemikalier, siden tidligere studier 

har vist at BPA kan påvirke både viabilitet og insulinsekresjon i primære øyer og cellelinjer.  
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1 INTRODUCTION 

The use of plastics products is widespread in our modern world, and involves simultaneous 

exposure to many chemicals that may leak from the plastics (Alonso-Magdalena et al. 2006; 

Howard & Lee 2012). The daily exposure of various types of chemicals from plastics involves 

ingestion via contaminated food and beverage, absorption through skin contact, or inhalation 

(Kamrin 2009; Rubin 2011). Two major classes of chemicals leaching from plastics are 

phthalates, used as plasticizers in polyvinylchloride products, and bisphenol A (BPA), used in 

polycarbonate plastic. These chemicals are produced in several million tons per year (Grün & 

Blumberg 2007; Koch & Calafat 2009), and have also been detected in blood and urine 

samples from the majority of the population (Koch & Calafat 2009). In recent years, there has 

been a growing concern about these environmental chemicals and their adverse health effects, 

based on knowledge gained from animal studies (Alonso-Magdalena et al. 2012; Heudorf et 

al. 2007; Kang et al. 2006; Meeker et al. 2009; Rubin 2011). Therefore, regulations have been 

introduced in Norway and the EU on product content and production of phthalates and BPA, 

but they still occur in many consumer products that we are in daily contact with 

(Environment.no 2012a; Environment.no 2012b; Wormuth et al. 2006). 

 

Interestingly, exposure to BPA and phthalates has been linked to several metabolic effects in 

both epidemiological and experimental studies, including diabetes (Alonso-Magdalena et al. 

2011; Alonso-Magdalena et al. 2012; Bodin et al. 2013; Lang et al. 2008; Lin et al. 2011; 

Nadal et al. 2009; Shankar & Teppala 2011; Svensson et al. 2011). Diabetes is a common 

metabolic disorder worldwide, but the reason for its increasing incidence the last 30 years is 

still unknown (Vehik & Dabelea 2011). The increase has been suggested in part to be a result 

of unhealthy lifestyle changes associated with industrialization and rapid economic 

development, but it also coincides with a dramatic increase in exposure to synthetic chemicals 

(Makaji et al. 2011) including endocrine disruptors (Bodin et al. 2013). 

 

The substantial economic and social costs associated with the increasing incidence of diabetes 

represents a major public health issue (The World Health Organization 2012b). Even though 

several environmental chemicals have been associated with type 2 diabetes (T2D), their 

potential role in the development of the autoimmune disease type 1 diabetes (T1D), has not 

received much attention. However, these environmental chemicals are thought to act as 

endocrine disruptors and may affect the immune system which further can promote 

autoimmunity (Howard & Lee 2012).  



7 

 

 

The aim of this study was to investigate whether  two ubiquitous environmental contaminants; 

BPA and phthalates,  may affect pancreatic β-cells in vitro, a cell type that has a central role 

in the development of diabetes (Song et al. 2012).   

 

1.1  Diabetes prevalence and health consequences 

The World Health Organization estimated that more than 346 million people worldwide were 

diagnosed with diabetes in 2012 (The World Health Organization 2012a). Additionally, many 

people are undiagnosed, and unaware that they are living with diabetes. There are several 

variations of diabetes, and this thesis focuses on the two main forms, type 1 and type 2 

diabetes. For T1D, that usually occurs in the early childhood or in the young adult years, the 

prevalence has increased the recent years (The International Diabetes Federation 2011; Vehik 

& Dabelea 2011). The reason for this rapid increase in the very young is still unknown, but a 

contribution from both genetic background and environmental risk factors has been suggested 

(Vehik & Dabelea 2011). If this trend continues the number of new T1D cases may be 

doubled between 2005 and 2020 (Patterson et al. 2009). The Nordic countries have the 

world’s highest average incidence rate of this disease, including Norway with an incidence 

rate of 27.9 per 100.000 in 20013 (Iacobucci 2013). Thus, although the increase in T2D 

incidence has received most attention, the rise of T1D in the very young should not be 

overseen (Patterson et al. 2009). 

 

In contrast to T1D, T2D usually develops in the adult age and among the elderly, and is 

considered to account for more than 90% of all cases of diabetes (The World Health 

Organization 2012b). The accurate incidence of T2D in Norway is not known, as many 

patients do not use medications or may be undiagnosed. However, in 2011 103.000 

Norwegians used medications for T2D, which is an increase from 71.000 in 2006 (Midthjell 

2011).  

 

Diabetes has severe impact on life quality and requires a careful daily diet control. If not 

controlled, it may result in acute and/or severe complications later in life. The delayed effects  

include macrovascular and microvascular changes that may lead to kidney failure, blindness, 

and amputations and enhanced risk of heart disease and stroke (Triplitt 2012).  The World 

health organization (WHO) estimated that 3.4 million people died from complications due to 
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T2D in 2004 on world basis (The World Health Organization 2012b). Thus, the economic and 

social costs associated with T2D represent a major public health issue. Globally, the direct 

cost of diabetes ranges from 2.5 to 15% of the annual health care budgets, depending on local 

incidence and the treatment available (The World Health Organization 2012b). 

 

The rising incidence in children is also a concern because these young individuals may 

experience several complications later in life, as well as early mortality (Triplitt 2012). It is 

therefore of importance to improve the understanding of the determinants in the disease 

development, such knowledge may help provide both individual and societal benefits through 

a more efficient prevention. 

 

1.2  Mechanisms and Pathogenesis of Diabetes 

 

Insulin and blood glucose regulation 

Diabetes is characterized by a relative or absolute deficiency in the secretion or function of 

insulin. Insulin is a hormone contributing to the transport of glucose into the cells, thereby 

reducing blood glucose levels (Lin & Sun 2010). The insulin biosynthesis is controlled by 

glucose, but is also influenced by other signalling molecules including hormones (Nadal et al. 

2009). Insulin is produced and secreted by β-cells, which is the dominating cell type found 

within the pancreatic islets of Langerhans (Triplitt 2012). Factors resulting in β-cell 

dysfunction may therefore disrupt glucose homeostasis and in this way contribute to the 

development of diabetes. 

 

 

1.2.1 Diabetes type 1 

T1D is an autoimmune disease characterized by an extensive loss of β-cells, causing total 

insulin deficiency. Thus, the patients depend on artificial insulin supply (Wyller 2005). The 

disease is only partly due to a genetic predisposition, as illustrated by studies on identical 

twins, where the risk of developing T1D is only approximately 50% even if one twin has 

already developed the disease (Howard & Lee 2012; Hyttinen et al. 2003). This implies that 

environmental factors like viral infections, diet, stress and toxins might accelerate this 

autoimmune disease when they occur together with genetically predisposed factors (Bresson 
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& von Herrath 2004). The etiology of T1D still remains incompletely understood, but is 

considered to result from an autoimmune process where the immune system attacks and 

destroys the insulin producing β-cells (Bresson & von Herrath 2004). The inflammatory 

process, insulitis, which is suggested to contribute to T1D can be divided into three phases 

(Figure1); (i) induction, (ii) amplification, and (iii) maintenance or resolution (Eizirik et al. 

2009). 

 

 
Figure 1: The autoimmune attack on the β-cells and the three stages of development of T1D. 

Induction; The antigen presenting cells (APC) recruit and activate helper T-cells via presentation of β-cells auto antigens 
(aAgs) and secretion of chemokines. Amplification; Helper T-cells secrete cytokines which further stimulates the APC to 
secrete other cytokines. The stippled lines show that APC and helper T-cells contribute to recruitment and activation of 
cytotoxic T-cells indirectly via cytokine secretion. The cytokines and cytotoxic T-cells binds to the β-cells surface receptors 
and induce apoptosis via intracellular signalling. Maintenance or resolution; The maintenance is characterized by persistent 
infiltration of immune cells causing β-cell death and finally overt diabetes. On the other hand, a proliferation of β-cells and 
resolution of  the inflammation may lead to normal islet function. The figure is based on figures from; Bresson and von 
Herrath (2004); Eizirik et al. (2009); Pirot et al. (2008). 
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Induction 

The earliest sign of autoimmunity against β-cells is the circulation of autoantibodies (aAbs); 

proteins that recognize some of the β-cells own proteins (autoantigens, aAgs). Such aAbs 

might accelerate the disease by presenting aAgs to macrophages and T-cells (immune cells) 

(Pirot et al. 2008). However, many antibody positive individuals never develop insulitis or 

diabetes, which indicates that additional environmental triggers like viral infections, 

vaccination or toxins, may be required for the activation of autoreactive T-cells. T-cells might 

be activated through a molecular mimicry between viral proteins and β-cell antigens (Pirot et 

al. 2008). Several hypotheses have been proposed for the initial phase of T1D, but the exact 

mechanisms are not known. The attraction of immune cells to the pancreas by a local 

production of chemokines by antigen presenting cells, is however considered to play an 

important role in this process (Pirot et al. 2008).   

 

Amplification  

The progression of insulitis in the pancreatic islets is a characteristic feature of the 

amplification phase. This inflammatory state is characterized by infiltration of the pancreatic 

islet by immune cells, where macrophages are among the first immune cells to immigrate the 

pancreatic islets. An interaction between β-cells and immune cells is considered to occur 

during the course of insulitis, where activated macrophages and T-cells secrete cytokines such 

as tumor necrosis factor α (TNF-α), interferon-γ (INF-γ) and interleukin -1β (IL-1β) (Eizirik 

et al. 2009). The combinatory effect of these cytokines is suggested to promote the migration 

of cytotoxic T-cells into the islets and stimulate the β-cell release of cytokines and 

chemokines which further promotes the insulitis (Pirot et al. 2008).  

 

Another consequence of increased cytokine levels is β-cell death, where apoptosis, the cells 

“autocrine suicide”, has been suggested to be the main form of β-cell death (Bresson & von 

Herrath 2004; Pirot et al. 2008). Activated cytotoxic T-cells and pathogenic cytokine 

production can result in specific destruction of the pancreatic β-cell (Atkinson et al. 2011). 

The cytokines bind to receptors on the β-cell surface and cause activation of different 

complex intracellular pathways that leads to β-cell apoptosis (Pirot et al. 2008). Exposure to 

the cytokines in combination is suggested to trigger endoplasmic reticulum (ER) stress. The 

ER is the organelle responsible for the synthesis and folding of proteins in the cell, a process 

required for insulin secretion. Alterations of the normal ER function may contribute to 

impaired β-cell function and increased β-cell death (Makaji et al. 2011; Pirot et al. 2008). 
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Maintenance or resolution 

The last phase can develop in two different directions. Most commonly, the inflammation is 

maintained with further suppression of β-cell function resulting in β-cell death, and eventually 

overt T1D. This sustained inflammatory process has also been hypothesised to cause insulin 

resistance (Pirot et al. 2008). Alternatively, an active resolution of the inflammation may 

occur in parallel with a stimulation of β-cell proliferation, but the mechanism behind this 

resolution process is still unknown (Pirot et al. 2008).  

 

 

1.2.2  Diabetes type 2 

Unlike T1D, patients with T2D almost never have a total lack of insulin, but their insulin 

stimulation is not sufficient to regulate the blood glucose levels adequately (Ashcroft & 

Rorsman 2012). Patients with this disease therefore have abnormally high blood and plasma 

glucose levels (Lin & Sun 2010), and fasting plasma concentration of glucose above 7.0 

mmol / l indicates T2D (Wyller 2005). Development of T2D is influenced by different 

lifestyle factors like diet, pregnancy, obesity and lack of activity, but genetic components are 

also thought to have a strong impact. The disease is irreversible at an early stage, but can 

often be controlled by an active lifestyle and diet regulations (Ashcroft & Rorsman 2012). 

The pathophysiology of T2D is very complex and varies within different tissues and organs 

(Triplitt 2012). However, the two central defects include (i) insulin resistance in peripheral 

tissues (i.e. diminished tissue response to insulin, predominantly in muscle, fat and liver) and 

(ii) islet β-cell dysfunction causing reduced insulin secretion (Aston-Mourney et al. 2008).  

 

Insulin resistance 

There are a large number of different insulin signalling pathways. The phenotype of insulin 

resistance will depend on the exact components affected and the exact tissues in which they 

are affected (Biddinger & Kahn 2006). Insulin resistance in the liver may cause increased 

hepatic glucose production, resulting in hyperglycemia, which itself is damaging to the β-cell 

function. High levels of circulating free fatty acids (FFA), due to decreased uptake of FFA in 

adipose tissue, may exacerbate insulin resistance through accumulation of lipid inside the 

muscle, liver and the β-cells (Hilsted et al. 2011). 
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β-cell dysfunction 

The exact mechanisms involved in β-cell dysfunction remain somewhat unclear, but the 

proposed mechanisms are summarized in Figure 2. High blood glucose levels and FFA 

concentrations are thought to induce hypersecretion of cytokines from the β-cell, causing an 

inflammation, with β-cell dysfunction and increased apoptosis as possible consequences 

(Westermark et al. 2011). When insulin resistance has developed, the β-cells hypersecrete 

insulin to maintain normal blood glucose levels thus causing hyperinsulinemia (Nadal et al. 

2009). Hyperinsulinemia is hypothesised to exacerbate the state of insulin resistance (Ueno et 

al. 2005), but also to deteriorate β-cell function due to a prolonged insulin demand. This may 

cause β-cell exhaustion, or promote stress responses that could cause apoptotic cell death 

(Figure 2) (Aston-Mourney et al. 2008). Paradoxically, hyperinsulinemia may therefore be an 

important mechanism contributing to T2D, a disease characterized by insufficient insulin 

levels. Whether insulin resistance precedes hyperinsulinemia or hyperinsulinemia precedes 

insulin resistance in the T2D development remains controversial, but they seem to walk hand 

in hand (Ropero et al. 2008). 

 

 
Figure 2: β-cell dysfunction in T2D. 
High levels of blood glucose, circulating free fatty acids (FFA) and insulin resistance in different tissues, stimulate 
hypersecretion of cytokines and insulin from the β-cells. Cytokines may lead to an inflammation and further β-cell 
dysfunction and apoptosis. Hyperinsulinemia may lead to β-cell stress or exhaustion that can cause apoptosis. This eventually 
leads to reduced β-cell mass and insufficient insulin release. 
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1.3 Environmental chemicals 

1.3.1 Bisphenol A 

BPA is a monomer used in the production of polycarbonate plastics, and is present in many 

consumer products that we are in daily contact with, like food containers, drinking bottles, 

receipts and resins lining the inside of metal cans (Rubin 2011). The chemical structural 

formula is shown in Table 1 together with chemical name and the acronym.  

 

 

Table 1: BPA. Chemical structural formula, chemical name and the acronym of BPA, the formula is applied from Kang et al. 
(2006). 

Chemical structural formula Chemical name Acronym 

  
 

Bisphenol A 

 
 

BPA 

 

 

BPA is one of the chemicals produced in the highest volume worldwide, with more than 8 

billion pounds annually (Rubin 2011). It is not produced in Norway, but is imported for the 

manufacture of products (mostly plastic), or in finished products. The consumption of BPA in 

Norway in 2009 is estimated to be approximately 29 tons, but these estimations do not include 

imported products. Therefore, the actual amount of BPA in products sold in Norway is 

assumed to be significantly larger (Environment.no 2012). In Europe, consumption of BPA 

increased from 0.7 million tons in 1996/1999 to 1.2 million tons in 2005/2006. Recent 

information suggests that the consumption in Europe will continue to grow in the following 

years. This may also lead to increased consumption in Norway as a result of import of 

manufactured products from Europe (Environment.no 2012). The extent of BPA exposure is 

emphasized by Calafat et al. (2008), who estimated that BPA was present in urine samples of 

92,6% of the U.S population. Interestingly, results from the Norwegian Mother and Child 

Cohort Study (MoBa) showed that BPA levels in urine samples from pregnant women in 

Norway was higher compared to urine samples from the Generation R-study in the 

Netherlands as well as the National Health and Nutrition Examination Survey (NHANES) in 

the United States (Ye et al. 2009). 
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BPA is not chemically bound to the plastic, and can leach out into for instance food or 

beverages. Ingestion is considered to be the major route of BPA exposure, although exposure 

through inhalation and absorption through the skin also occurs (Rubin 2011). Ingested BPA is 

rapidly conjugated with glucuronic acid in the liver, a process that is very important for the 

removal and detoxification of BPA (Kang et al. 2006), thus the biological half-life of BPA is 

short, around four hours (Chapin et al. 2008). BPA has been detected in human body fluids 

like blood and urine. The concentrations of free BPA in serum after ingestion are usually very 

low, in the 0.4 – 3 nM range (Völkel et al. 2002). However a bio-monitoring study has 

detected serum levels of BPA above 100 nM, in some highly exposed subjects (Olsén et al. 

2012). BPA glucuronide is the major metabolite present, which implies that only a small part 

of the actual body burden of BPA is measured (Völkel et al. 2002). Additionally, a fraction of 

absorbed unmetabolized BPA is hypothesised to allocate into adipose tissue, resulting in a 

slow leaking of BPA into the bloodstream (Koch & Calafat 2009). 

 

The daily intake of BPA for humans has been estimated to be less than 1 µg per kg body 

weight per day. Based on epidemiological data it has been suggested that BPA may have 

adverse endocrine disruptive effects at concentrations as low as 0.025 – 0.2 µg per kg body 

weight per day (Kang et al. 2006). Moreover, the highest levels were found in children, which 

may show increased vulnerability to BPA exposure during development (Rubin 2011). 

Accordingly, BPA has been associated with several health outcomes, such as cardiovascular 

disease, asthma, allergy, diabetes and increased numbers of premature deliveries and 

miscarriages (Donohue et al. 2013; Lang et al. 2008; Rubin 2011). Furthermore, diabetic 

patients have higher levels of BPA in urine compared to the non-diabetic population (Shankar 

& Teppala 2011). The growing concern about adverse health effects from BPA has 

contributed to regulations of BPA in Norway, and the use of BPA in baby bottles was banned 

in 2011 (Environment.no 2012).  

 

A possible mechanism for the suggested BPA effects may be via binding to estrogen receptors  

in the plasma membrane (Alonso-Magdalena et al. 2006). Interestingly, overstimulation of 

estrogen reseptor α by an environmental such as BPA, has been reported to induce 

hyperinsulinemia, insulin resistance, and β-cell exhaustion in mice (Nadal et al. 2009). This 

pathway is thought to be related to the development of T2D (Makaji et al. 2011).  
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1.3.2 Phthalates 

Phthalates constitute a large group of industrial compounds that share basic chemical 

similarities. They are used as plasticizers in the production of soft polyvinyl chloride and 

other plastics in numerous consumer items, such as plastic gloves, paint, toys, and several 

personal care products (Kamrin 2009; Wormuth et al. 2006). Similar to BPA, phthalates are 

not chemically bound to the plastic, and may leak into the environment. Different phthalates 

have been found in a wide range of food items such as milk, meat, fish, seafood and 

vegetables (Kappenstein et al. 2012), but there is little documentation concerning phthalate 

levels in food sold in Norway. EU legislation on phthalates in materials with food entered into 

force in 2008 (Petersen & Jensen 2010). Thus, phthalate occurrence is probably mostly 

associated with imported products, contamination in production or cooking at home (NOU 

2010). In addition, consumer products such as shampoos, cosmetics and skin creams contain 

various phthalates (Koch & Calafat 2009; Wormuth et al. 2006). 

 

Ingestion is suggested to be the major exposure route, but inhalation and skin contact with 

clothing, toys or other products containing phthalates can also result in absorption through the 

skin (Kamrin 2009; Wormuth et al. 2006). In recent years, infants and toddlers mouthing of 

plastic objects have received particular attention. The infants are constantly in contact with 

plastic products directly through the mouth or through slipping on fingers after contact with 

the products (Wormuth et al. 2006). Children are particularly vulnerable to exposure because 

they are in their development phase (The Norwegian Institute of Public Health 2008; 

Wittassek & Angerer 2008). The use of phthalates in toys for children under 3 years, was 

therefore prohibited in the EU in 1999 (Wormuth et al. 2006). Structural formula of three of 

the major phthalate metabolites due to oral exposure are represented in Table 2 (Koch & 

Calafat 2009; Wormuth et al. 2006). 
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Table 2: Phthalat metabolites. Chemical structural formulas, chemical name and the acronym of the three phthalate 
metabolites included in this study. The formulas are applied from Koch and Calafat (2009). 

Chemical structural formula Chemical name Acronym 

   

 

 
Mono(2-ethylhexyl) phthalate 
 
 
 
 
 
Mono-iso-butyl phthalate 
 
 

 
 
Mono-n-butyl phthalate 

 
MEHP 

 
 
 
 
 

MiBP 
 
 
 
 

MnBP 

 

 

Metabolism and elimination of phthalates is complex. In general, phthalates are diesters 

which are cleaved into their respective hydrolytic monoesters which can be further modified 

by different oxidation reactions. Secondly, both the hydrolytic monoesters and the oxidized 

metabolites conjugate with glucuronic acid, and are finally secreted through the urine. The 

biological half-life and the metabolite concentrations in urine differ between the various 

phthalates and their metabolites due to differences in phthalate structure and chain length. For 

instance, while approximately 70% of di-n-butyl phthalate (DnBP) is excreted as the primary 

metabolite mono-n-butyl phthalate (MnBP) (Koch & Calafat 2009), only 7% of di (2-

ethylhexyl) phthalate (DEHP) is excreted as the primary metabolite MEHP (Wittassek & 

Angerer 2008). Individual phthalates are used in different products, thus exposure route and 

burden differs between the various phthalates, and between age and gender groups (Koch & 

Calafat 2009). The highest phthalate exposure through ingestion is seen for DnBP, diisobutyl 

phthalate (DiBP), benzyl butyl phthalate (BBzP), and DEHP (Wormuth et al. 2006). The 

concentrations of phthalate  metabolites in serum vary between the different metabolites and 

between individuals (Frederiksen et al. 2010; Hogberg et al. 2008; Lind et al. 2012a; Olsén et 

al. 2012), reflecting differences in exposure within the population. Some phthalate 

metabolites, such as Mono-iso-butyl phthalate (MiBP), and Mono(2-ethylhexyl) phthalate 

(MEHP), may be detected in almost all subjects (Lind et al. 2012a; Olsén et al. 2012). 

Phthalates have also been detected in urine (Frederiksen et al. 2010) and breast milk (Meeker 

et al. 2009). 
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In rodents, exposure to phthalates has been associated with adverse effects in liver and kidney 

as well as the reproductive system (Heudorf et al. 2007), but the induced effects differ 

between the phthalates (Kamrin 2009). In epidemiological studies, several conditions like 

obesity, diabetes, and asthma have been associated with increased levels of phthalate 

metabolites in urine (Bornehag & Nanberg 2010; Grün & Blumberg 2007; Svensson et al. 

2011). Phthalate metabolites may activate the peroxisome proliferator-activated receptor 

family of nuclear receptors (PPAR`s) (Koch & Calafat 2009), which play a major role in the 

regulation of insulin sensitivity, lipid storage and inflammation (Yessoufou & Wahli 2010), 

thus PPAR’s are often suggested as a mechanism for phthalate-induced effects. 

 

 

1.3.3  Serum levels of environmental chemicals  

BPA and phthalate metabolites have been detected in human serum samples in a number of 

studies, providing mean, median and minimum and maximum values, as summarised in Table 

3 (Cobellis et al. 2009; Dirtu et al. 2008; Frederiksen et al. 2010; He et al. 2009; Hogberg et 

al. 2008; Kandaraki et al. 2011; Lind et al. 2012a; Olsén et al. 2012). The reported values are 

expressed in both mg/ml and nM, which illustrates that application of concentrations in nM 

ranges in in vitro studies are relevant for human environmental exposure. For a more detailed 

table see Appendix 1.  

 

Note that the study reporting the highest mean phthalate levels did not report the maximum 

values (Lind et al. 2012a). Further, the standard deviations are large, reflecting large 

variations in serum levels of BPA and phthalate metabolites. The BPA values are from 

European studies (reviewed in Olsén et al. (2012)), but a number of studies from Asia report 

greater values, up to 9 ng/ml which corresponds to approximately 40 nM (Olsén et al. 2012). 

This also supports that there are large variations in exposure between individuals and that 

there are differences between the different bio-monitoring studies. 
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Table 3: Phthalate and BPA concentrations in serum samples, based on values from; (Cobellis et al. 2009; Dirtu et al. 
2008; Frederiksen et al. 2010; He et al. 2009; Hogberg et al. 2008; Kandaraki et al. 2011; Lind et al. 2012a; Olsén et al. 
2012), as specified in Appendix 1. Serum concentrations in ng/ml are represented as the range of mean, median and 
maximum values reported in the studies. Corresponding values nM are listed in the second part of the table to show the 
relevance to the concentrations used in this study.  

 
Serum concentrations of phthalates and BPA in ng/ml 

Chemical Range Mean Range Median Range Maximum 

MEHP 
Mono-2-ethylhexyl phthalate 

0.77-20.3 0.49-7.88 0.47-514 

MiBP 
Mono-isobutyl phthalate  

0.72-44.6 0.50-13.5 0.50-1820 

MnBP 
Mono-n-butyl phthalate 

0.43-1.8 <LOD-0.54 0.54-20  

BPA 
Bisphenol A 

0.16-4.94 3.6-3.89 0.79-27.3 

 

Serum concentrations of phthalates and BPA in nM 

Chemical Range Mean Range Median Range Maximum 

MEHP 
Mono-2-ethylhexyl phthalate 

2.6-68.1 1.6-26.4 1.6-1724 

MiBP 
Mono-isobutyl phthalate  

3.2-200.7 2.2-60.7 2.2-8189.3 

MnBP 
Mono-n-butyl phthalate 

1.9-8.1 <LOD-2.4 2.4-90 

BPA 
Bisphenol A 

0.7-21.6 15.8-17 3.5-119.6 

*LOD = Limit of detection 
 

 
 
 

1.4 Chemical toxicity 

Toxicity is usually defined as any harmful effect induced in a cell and/or organ (Yassi et al. 

2001). Some toxicants may exert their effects on specific cells/organs and may there alter the 

DNA or other cellular molecules by interfering with their normal functions (Yassi et al. 

2001). Whether a cell survives or dies in the presence of chemical exposure often depends on 

its capacity to respond to the stress, to maintain enzyme activity and to induce proteins that 

may promote or inhibit cell death. Exposure of chemicals does not always induce overt tissue 

injury, but may nevertheless affect cell functions and increase the sensitivity to other 

stressors. Therefore, some compounds may not have observable acute effects, but they might 

show long term consequences (Orrenius et al. 2011). Various toxicants may induce different 
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types of cell death, and low doses often results in apoptosis, whereas higher doses might 

induce necrosis (Orrenius et al. 2011). 

 

As part of the normal development of an organism, apoptosis results from induction of an 

active processes within the cell and is then often described as a programmed cell death or 

“cellular suicide” (Orrenius et al. 2011). Typical, morphological changes include 

condensation and margination of cellular volume, cytoplasmic shrinkage, nuclear 

fragmentation and plasma membrane blebbing (Kroemer et al. 2009; Orrenius et al. 2011). In 

contrast, necrotic cell death is often considered as an accidental uncontrolled type of cell 

death, characterized by increased cell volume, swelling of organelles and rupture of the 

plasma membrane with subsequently loss of intracellular content (Kroemer et al. 2009). 

However, recent research suggest that some type of necrosis may also be regulated by signal 

pathways and mechanisms (Festjens et al. 2006; Golstein & Kroemer 2007). 

 
 

1.5  Prior knowledge 

The precise mechanisms underlying T1D and T2D, as well as the environmental factors 

contributing to their development, are not fully characterised. Urinary BPA levels have been 

associated with T2D in NHANES participants (Lang et al. 2008; Silver et al. 2011), and other 

epidemiological studies also report associations with alterations in hormonal and 

physiological processes such as energy balance, thyroid levels, metabolism as well as obesity 

which may play a role in the development of T2D (Carwile & Michels 2011; Hatch et al. 

2010; Meeker & Ferguson 2011; Melzer et al. 2010). Several experimental studies have 

examined whether BPA exposure affects the pancreatic β-cells, and suggested associations 

between BPA exposure and T2D (Makaji et al. 2011; Nadal et al. 2009; Ropero et al. 2008). 

Recently, BPA exposure was also found to increase plasma insulin and simultaneously 

decrease plasma glucose in mice. Furthermore, BPA increased β-cell insulin content, 

hyperinsulinemia and resulted in insulin resistance (Ropero et al. 2008). Similarly, a study on 

islets from BPA exposed mice reported an increased glucose-induced insulin secretion, and a 

further increased insulin resistance (Alonso-Magdalena et al. 2006). A recent in vitro study 

(Song et al. 2012) on isolated pancreatic islets, reported increased insulin secretion at low 

BPA concentrations, but declining secretion with increasing concentrations. Interestingly, the 

BPA induced increase in insulin secretion was greater in a high glucose environment (16.7 

mM). The increased insulin secretion at concentrations as low as 0.4 nM, implies that BPA 
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concentrations relevant for environmental exposures might affect insulin secretion. Recently, 

BPA was also reported to impair cell viability at relatively low concentrations, both in vivo 

and in vitro (Lin et al. 2013; Song et al. 2012).  

 

While there is emerging evidence suggesting that BPA may influence the development of 

T2D, a possible impact on T1D has so far not received much attention. Some, associations 

between certain environmental chemicals and T1D have been suggested (Howard & Lee 

2012). Furthermore, endocrine-disrupting compounds such as BPA have been associated with 

adverse effects on human immune function (Clayton et al. 2011), which is interesting as T1D 

is an autoimmune disease. In the non-obese diabetic (NOD) mouse model, BPA exposure 

resulted in increased infiltration of immune cells and increased apoptosis in the pancreatic 

islets accompanied by a tendency towards accelerated T1D development (Bodin et al. 2013).   

 

Phthalates have received less attention both in relation to T1D and T2D, but have been linked 

to several other adverse health effects (Heudorf et al. 2007). However, epidemiological 

studies have reported associations between urinary levels of phthalate metabolites and 

diabetes, but also associations with poor insulin secretion (Svensson et al. 2011) (Lind et al. 

2012b) (James-Todd et al. 2012). In addition, some phthalates have been suggested to 

increase the risk of obesity, which may be linked to T2D development (Grün & Blumberg 

2007). Urinary concentrations of  MEHP have also been associated with increased waist 

circumference, while MnBP was linked to increased insulin resistance (Stahlhut et al. 2007). 

Moreover, in vitro studies indicate associations between the phthalate metabolite MEHP and 

adipocyte differentiation, which might provide an additional link to obesity (Campioli et al. 

2011; Feige et al. 2007). Recently developmental exposure of DEHP has been shown to 

impair b-cell function and glucose homeostasis in rats (Lin et al. 2011), but limited acute 

effects of DEHP on insulin secretion were detected in β-cells in vitro (Hectors et al. 2013).   

Thus, further investigations are necessary on the relationship between exposure to phthalates 

and b-cell function. 

 

Mixture effects due to combined exposure to different toxicants, also known as “cocktail 

effects”, are recognized as an important aspect of toxicology (Backhaus & Faust 2012; Feron 

& Groten 2002). Experimental evidence suggests that chemicals in combination can produce 

additive or synergistic effects at concentrations that are not associated with an individual dose 

response (Hass et al. 2007; Howdeshell et al. 2008). The knowledge of biological effects due 
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to combined exposure to BPA and phthalates is however sparse. One study reported that a 

mixture of phthalates and BPA in combination with other chemicals induced adverse health 

effects on male sexual development (Christiansen et al. 2012). However, to our knowledge, 

no previous studies have examined the effects of combined exposure to BPA and phthalates 

on β-cell function. 

 

 

1.6 Aim of the study 

The main objective of this study was to investigate whether BPA and a selection of phthalate 

metabolites alone or in combination could influence cellular functions of pancreatic β-cells 

that may be linked to an accelerated development of diabetes type 1- and type 2.  

 

Our main hypotheses were: 

 

1. Long-term exposure to BPA and phthalate metabolites may induce decreased β-cell 

viability. 

2. Exposure to BPA and phthalate metabolites may increase the β-cell susceptibility to 

cytokine-induced apoptosis. 

3. BPA and phthalate metabolite exposure entails increased glucose-induced insulin 

secretion. 

4. The combinatory exposure of the chemicals may induce additive, synergistic or 

inhibitory effects.  

 

This approach allows for assessment of both the direct effect of each individual chemical on 

the β-cells, as well as a possible combinatory effect. The findings of this study may help to 

gain better knowledge and understanding of the associations between environmental 

chemicals and the increasing incidence of both T1D and T2D, which have been suggested 

based on epidemiological studies (Lang et al. 2008; Svensson et al. 2011) 
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2 MATERIALS AND METHODS  

In this in vitro study, three model-systems were chosen to study possible effects of bisphenol 

A (BPA) and phthalate metabolites on the viability of the β-cells, as well as cytokine-induced 

apoptosis and glucose-induced insulin secretion.  

 

 

2.1 Cell culturing conditions 

Reliable β-cell models are essential for diabetes research. It is preferable to use primary cells, 

but this requires large quantities of isolated pancreatic islets, which are work intensive, 

expensive and represent a mixed population of cells. However, rodent β-cell lines have shown 

to be useful in mechanistic research (Mergelen et al., 2004). We chose the INS-1E β-cell line 

because it has proven its usefulness both in studies of insulin secretion in response to glucose 

(Mergelen et al., 2004) and with respect to cytokine-induced apoptosis (Hanzelka et al., 

2012). INS-1E cells is a rodent β-cell line which was provided by Prof. C.B. Wollheim of the 

University of Geneva, Switzerland. INS-1E cells were cultured in a humidified atmosphere at 

37°C and 5% CO2 in complete medium composed of Roswell Park Memorial Institute 

(RPMI) 1640 medium supplemented with 5% heat-inactivated fetal calf serum, 1 mM sodium 

pyruvate, 50 μM 2-mercaptoethanol, 2 mM glutamine, 10 mM HEPES, 100 U/ml penicillin, 

and 100 μg/ml streptomycin, as described in Merglen et al. (2004).   

 

For environmental chemical exposure, the cells were seeded in Falcon 24 well plates, with a 

density of 120.000 to 140.000 cells/well in 1 ml medium. Seeding of cells was performed on 

Friday, with medium shift at Monday, and then exposure for environmental chemicals 

Monday or Tuesday with harvesting of cells at Thursday or Friday, respectively. The density 

were based on our pilot tests to determine appropriate cell number for 72 h chemical exposure 

and to ensure that there was a linear growth phase without  limitations  due to high cell 

density (Appendix 2). Pilot studies showed that the cells growth appeared to level off at 

200.000 cell/well while 50.000 cells/well appeared to be too sparse (Figure A1, Appendix 2). 

Based on these pilots, cell densities between 100.000 and 150.000 cells/well were chosen.  
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2.2 Exposure to environmental chemicals 

The cells were exposed to either BPA (TCI Europe nv, Zwijndrecht, Belgium) or the 

phthalate metabolites Mono-iso-butyl phthalate (MiBP), Mono-n-butyl phthalate (MnBP) and 

Mono(2-ethylhexyl) phthalate (MEHP) (Orchid Cellmark, New Westminister, BC Canada), 

either alone or in combination. MnBP, MiBP and MEHP are the primary metabolites of Di-n-

butyl phthalate (DnBP), Di-isobutyl phthalate (DiBP) and di (2-ethylhexyl) phthalate 

(DEHP), respectively (Koch & Calafat 2009). MnBP is also a metabolite of Benzyl butyl 

phthalate (BBzP), but the main metabolite of the latter is Monobenzyl phthalate (MBzP), 

which was not included in this study. The three phthalate metabolites were selected since they 

have been shown to be the major metabolites due to oral exposure (ingestion of food and 

beverages), which is the major environmental exposure route (Koch & Calafat 2009; 

Wormuth et al. 2006).  

 

The applied concentrations were chosen based on concentrations detected in human blood and 

serum samples (Frederiksen et al. 2010; Hogberg et al. 2008; Olsén et al. 2012), as described 

in section 1.3.3 where Table 3 shows reported serum concentrations in the nM range. 

However, we also used concentrations that where 100 to 200 times higher than the lowest 

relevant concentrations for some of the applied chemicals. For each chemical, five different 

concentrations were included in the low dose experiments; 1 nM, 10 nM, 50 nM 100 nM and 

500 nM. Cellular exposure was performed by means of stock solutions of environmental 

chemicals in Dimethyl sulfidoxide (DMSO; Sigma-aldrich, Spruce Street, St.Luis, USA). 

Cells exposed to DMSO only were used as controls.  

 

To investigate possible mixture effects of these chemicals, two scenarios for combinatory 

exposure were applied; (i) the combination of all the chemicals in the five different 

concentrations, and (ii) the combination of the three phthalate metabolites in the five different 

concentration. For investigating the mixture effects we combined the lowest individual 

concentrations of the chemicals, the second lowest individual concentrations, and so on. 

These mixed exposures can be considered to have relevance for individuals with different 

levels of chemical exposure ranging from low to highly exposed individuals. Since low dose 

exposure did not affect any endpoints, we also chose to examine higher concentrations of the 

environmental chemicals in high dose experiments, using concentrations between 5 - 500 μM, 

to test the sensitivity of the INS-1E cells as well. 
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2.3  Model systems  

Three different exposure scenarios were used to study the effects of the chemicals alone (non-

diabetic model), or their effects on the cytokine-induced apoptosis (T1D-model) and glucose-

induced insulin release (T2D-model), and are referred to as model-systems throughout the 

text. In all three model-systems, INS-1E cells were exposed to environmental chemicals for 

72 h at the concentrations and combinations described above. A schematic figure of these 

three model systems and the measured endpoints are included in Figure 3a-c.  

 

 

I. Non-diabetic model-system 

This model system reflects a normal non-diabetic situation, and is used to study if the 

chemicals can affect the β-cells viability, independently of other factors characterizing T1D 

and T2D.  After 72 s exposure to environmental chemicals the β-cell viability was measured 

by the Methyl Thiazylol Tetraolium (MTT) assay. Then, if the treatments showed alterations 

in viability, this was further examined to determine if this was due to altered proliferation or 

apoptosis/necrosis (Figure 3a). 

 

 

II. T1D model-system  

This exposure scenario reflects the amplification phase in T1D development, as described in 

section 1.2.1. Cytokine-induced apoptosis is one of the early events in the development of 

T1D (Pirot et al. 2008), and a mixture of cytokines (IL-1β, IFNγ and TNFα) has previously 

been shown to induce β-cell apoptosis (Pirot et al. 2008). Based on pilot studies (Figure A2-

A4, Appendix 2) , the cells were exposed to a mixture of cytokines (5 ng/ml IL-1β, 25 ng/ml 

IFNγ and 25 ng/ml TNFα) in combination with environmental chemical exposure the last 24 

or 48 h of the exposure. The cytokines were purchased from PromoKine, Heidelberg, 

Germany. At the end of exposure, the viability was determined by MTT. As for the non-

diabetic model, significant changes in viability were further examined with respect to 

proliferation and apoptosis/necrosis (Figure 3b). 

 

 

III. T2D model-system 

It is hypothesised that enhanced glucose-induced secretion of insulin, may contribute to the 

development of T2D through β-cell exhaustion (Aston-Mourney et al. 2008) or exacerbated 
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insulin resistance (Biddinger & Kahn 2006) as described in section 1.2.2. Therefore, the effect 

of the environmental chemicals on glucose-induced insulin release was examined. Pilots were 

performed to determine cell numbers appropriate for measurement of insulin secretion, and 

based on these results, seeding of 120.000 cell/ml were used (Figure A4, Appendix 2) After 

nearly 72 h environmental chemical exposure, the cells were incubated for 1 h in glucose-free 

Krebs-Ringer bicarbonate HEPES buffer (KRBH), as described by Merglen et al. (2004). 

Furthermore, the cells were stimulated for 30 min with two different glucose concentrations 

(6.7 and 16.7 mM) in KRBH buffer, before determination of insulin release (Figure 3c). Two 

different glucose concentrations were included to study whether the glucose environment 

affected the cellular response. In mouse models, random blood glucose levels at 13,9 mM are 

used,  independent of fasting levels, as diagnosis of diabetes (Rajagopalan et al. 2003). In in 

vitro studies concentrations between 5-7 mM and 15-17 mM are commonly used to measure  

glucose induced insulin secretion (Alonso-Magdalena et al. 2006; Merglen et al. 2004). In this 

study, the high glucose concentration (16.7 mM) will reflect the abnormal high plasma 

glucose levels in T2D patients, and the lowest concentration (6.7 mM) is a more normal 

plasma glucose concentration, as described in section 1.2.2. 
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Figure 3a-c: Model-systems. The figure represents the difference between the three model systems in a schematic drawing, 
where exposure intervals and measure methods are illustrated. In non diabetic model system, cells are exposed to different 
concentrations of environmental chemicals only, while in the T1D model system cells are exposed to either 24 cytokines or 
48 h cytokines in combination with either low or high concentrations of environmental chemicals, respectively. In the T2D 
model system the cells will be incubated with glucose after the environmental chemical exposure. 
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2.4  Description of analytical methods 

After exposure, the medium was collected and centrifuged for 10 min to remove cells (300 x 

g). These cells combined with cells detached by trypsination were further analysed for 

changes in cell number and necrosis/apoptosis. In the non-diabetic and T1D model-systems, 

β-cell viability, cell number and necrosis/apoptosis were measured, as indicated in Figure 3a-c 

whereas glucose-induced insulin secretion was measured in the T2D model-system. The 

applied methods are described below. 

 

 

Cell toxicity 

MTT assay. The cellular “viability” was first measured using the MTT assay, which predicted 

the relative amount of “living” cells compared to controls. MTT produces a yellowish 

solution that is converted to dark blue, formazan crystals by living cells with active 

mitochondria. At the end of exposure, MTT was added to each well to a final concentration of  

0.5 mg/ml. The cells were then incubated at 37° C for 30 min before the cell culture medium 

was removed and 300 μl DMSO was added to each well to solubilise the cells and the 

formazan crystals. Finally, absorbance was measured at 570 nm, using a Fluostar Optima 

plate reader (BMG-labtech, Offenburg, Germany)/Galaxy instrument (Nerliens Meszansky 

AS, Oslo, Norway). The MTT data are presented as relative cell viability, which was obtained 

by dividing the absorbance levels by the mean value of the controls in the same experiment, 

before multiplication with 100. For the low dose experiments all treatments were performed 

in duplicates for the MTT tests, while only singlets were used for the high dose experiments. 

 

Trypan blue test. To further investigate whether the environmental chemicals affect the total 

cell number and/or the fraction of viable versus necrotic cells, the cells were stained 1:1 with 

40% trypan blue Bio Rad and counted in an automated cell counter. The toxicity is presented 

as the number of trypan blue positive cells relative to the total cell number, while the number 

of viable cells is presented as the number of trypan blue negative cells per ml. Changes in 

these parameters will reflect increased cytotoxicity and/or modified proliferation rate. 

 

Propidium iodide/Hoechst staining. To determine the relative amount of living cells versus 

necrotic and apoptotic cells, the beta-cells were stained with propidium iodide (PI; 10 μl/ml) 

and Hoechst 33342 (5 μl/ml), both commonly used nuclear fluorescent dyes which bind to 

DNA. Hoechst 33342 is a cell-permeant nuclear marker which provides information about 
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nuclear morphology of  all cells, while propidium iodide (PI) is a cell-impermeant nuclear dye 

which marks cells with disrupted plasma membranes (Hubbard et al. 2012). These nuclear 

dyes colours the cell nucleus in different colours and the condition of each individual cell can 

be visualized; uniform blue fluorescence indicates living cells, red indicates necrotic cells, 

and cells with a condensed and/or fragmented luminous nucleus indicates apoptotic cells.  

After staining with PI (10 μg/ml) and Hoechst 33342 (5 μg/ml) the cells were smeared on 

glass slides and dried quickly with a hairdryer. The fractions of cells in the different groups 

were determined using fluorescence microscopy, counting a minimum of 300 cells per slide. 

The percentage of apoptotic and necrotic cells are presented as a fraction of the total number 

of counted cells.  

 

 

Glucose-induced insulin secretion 

After 30 min glucose stimulation, cells were kept on ice while harvesting, and the cell 

medium in each well was transferred to 96 well plates and centrifuged at 750 rpm for 10 min 

to remove cells. The supernatant was then transferred to new 96 well plates, diluted 20:1 with 

KRBH and stored at -70° C. The insulin release was measured with a commercially available 

enzyme linked immunosorbent assay (ELISA) according to the manufacturer`s manual. The 

increase in colour intensity was measured and quantified using a plate reader (TECAN 

Sunrise, Phoenix Research Products, CA, USA) with software (Magellan V 1.10). As for the 

MTT data, the insulin levels were normalised by dividing obtained data on the mean value of 

the insulin levels in the controls in the same experiment, before multiplication with 100. 

 

 

2.5 Data processing and statistical analysis 

To examine if combined exposure to the chemicals resulted in additive, synergistic or 

antagonistic effects on the cell viability, the effect induced by the combined exposure to the 

three phthalates (MnBP, MiBP and MEHP) and the combination of all four chemicals 

(MnBP, MiBP, MEHP and BPA) were compared to the calculated sum of the effects induced 

by exposure to the individual chemicals. This was achieved by calculating the relative 

reduction in viability for each chemical exposure (1- relative viability), then adding the 

relative viability reduction induced by each chemical exposure alone, before calculating the 

corresponding relative viability reduction (1- sum of the relative reduction of the individual 
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chemicals). These calculations allowed for statistical comparison of the calculated cell 

viability due to exposure of the individual chemicals and the response induced by the 

combined environmental chemical exposures. This was meant as an initial investigation of 

combinatory effects, rather than a characterizing of the chemicals concentration-effect curve 

to investigate whether they act through the same mechanisms (Christen et al. 2012).  

 

The statistical analysis was performed in GraphPad Prism (GraphPad Software, CA, USA). 

Two-way analysis of variance (ANOVA) was used to analyse the data sets, with Bonferroni 

post-tests to compare different treatment groups. ANOVA allows for a statistical comparison 

of different groups or treatments, and the study design of our in vitro experiments are suitable 

for a two factor design with the different environmental chemicals and the varying 

concentrations as the two factors (Quinn 2002). ANOVA was used both to look at effects of 

treatments compared to control, and to compare the different treatments. Data were obtained 

from 3-4 independent experiments. Bars in columns are presented as mean ± SEM and and p 

values < 0.05 are generally considered as significant. ANOVA also assumes that any 

differences between SDs are due to random sampling. We therefore tested that the mean and 

the SDs were randomly distributed prior to two-way ANOVA. 

 

 

2.6  Ethical considerations 

Since the study only used a rat cell-line, there were no ethical precautions, and an application 

to Regional ethics committee (REC) was not necessary. Practical training required for the 

laboratory experiments and handling of toxic chemicals was completed at the Norwegian 

Institute of Public Health prior to the study. 
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3 RESULTS 

 

3.1 Low dose exposure 

3.1.1 Non-diabetic model 

To investigate a possible effect of the environmental chemicals on β-cell viability, the cell 

viability was initially measured using the MTT assay, comparing exposed wells with DMSO 

treated controls. After 72 h exposure to low concentrations of chemicals (1 - 500 nM), the 

INS-1E cells did not exhibit any significant change in cell viability in the non-diabetic model 

system (Figure 4).  

 

 
Figure 4: Non-diabetic model system: cell viability determined by MTT. INS-1E cells were seeded at 120 000 cells/ml, 
with medium shift on day 3, before 72 h exposure to environmental chemicals, as indicated. In the combinatory exposures the 
given concentrations were added of each chemical and do not indicate the total dose of all chemicals. The relative cell 
viability was measured by the MTT assay as described in materials and methods (2.5). Cells exposed to DMSO only were 
used as controls. Data were obtained from duplicates in 4 independent experiments, and were normalized for each 
experiment, i.e. the mean of the duplicates were divided by the mean of all the controls in that experiment. The bars represent 
mean ± SEM. Two-way ANOVA with Bonferroni post-test showed no significant differences. 

 

 

3.1.2T1D model 

To examine if environmental chemicals increased the β-cell susceptibility to cytokine-induced 

apoptosis, cell viability was measured by MTT after exposure to INF-γ, TNF-α and IL-1β the 

last 48 h of the chemical exposure. The β-cell viability did not differ between cells treated 

with any of the chemicals at 1-500 nM compared to cytokine exposure alone in response to 



31 

 

the 48 h cytokine exposure (Figure 5). Thus, the chemicals did not appear to increase the β-

cell susceptibility to cytokine-induced apoptosis.  

 

 
Figure 5: T1D model system: cell viability determined by MTT. INS-1E cells were seeded at 140.000 cells/ml, with 
medium shift on day 3, before 72 h exposure to environmental chemicals, as indicated. The last 48 h of this exposure, the 
cells were co- exposed to the pro-inflammatory cytokines IL-1β, TNFα and INF γ at 5 + 25 + 25 ng/ml, respectively. Cells 

only exposed to the cytokines and DMSO were used as controls. Relative cell viability was then measured by MTT assay, as 
described in materials and methods (2.5). The data represent duplicates from 4 independent experiments, and were 
normalized for each experiment, i.e. the mean of the duplicates were divided by the mean of all the controls in that 
experiment, and expressed as mean ± SEM. Two-way ANOVA with Bonferroni post-test showed no significant differences. 

 

 

The results from non-diabetic model (Figure 4) and T1D model (Figure 5) are presented 

relative to controls in each model system, and do not show  the difference between the model 

systems. The effect of cytokine exposure in the T1D model system is illustrated in Figure 6a, 

showing that the 48 h cytokine exposure in INS-1E cells decreased the relative cell viability 

with approximately 65% compared to the no-cytokine group (Figure 6a). The relative viability 

decreased with increasing exposure time for the cytokines (24 h and 48 h).  

 

In addition to MTT, we also used other techniques to characterize cell death (Figure 6b-c), but 

since there was no altered viability due to the chemical exposures, only the highest 

concentration of the combined exposure of all four chemicals (500 nM of BPA, MnBP, MiBP 

and MEHP) was analysed using staining with Trypan blue and Hoechst/PI. Cells stained with 

Hoechst/PI showed no significant increase in the number of apoptotic and necrotic cells after 

chemical exposure relative to DMSO treated controls (Figure 6b). Note that the bars in Figure 

6b reflect the sum of necrotic and apoptotic cells, since very few apoptotic cells were detected 
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as illustrated in Figure A6 (Appendix 3) where only necrotic cell death are depicted due to the 

low proportion of apoptotic cell death. The results from Hoechst/PI coincide with the  

 

 

 

Figure 6a-d: Comparison of non-diabetic and T1D model systems for different viability measures. To illustrate the 
effect of cytokine exposure in the T1D model system, experiments were performed to compare the model systems on the 
same plate. INS-1E cells were seeded at 140.000 cell/ml, with a medium shift onday 3. ‘No cytokine’ corresponds to the non-
diabetic model system, while ‘24h cyt.’ and ‘48h cyt.’ correspond to T1D model systems.  As in Figure 5 the cytokine 
exposure (5 ng/ml IL-1β, 25 ng/ml IFNγ and 25 ng/ml TNFα) was done in combination with environmental chemical 
exposure the last 24 or 48 h of the exposure. Bars represent mean ± SEM for 3 independent experiments. (a) Relative cell 
viability was measured by the MTT assay. Data were normalized for each experiment, i.e. divided by the mean of the non-

diabetic controls in that experiment. (b) The fractions of necrotic and apoptotic cells were determined by Hoechst/PI 
staining. Bars represent the relative numbers of the sum of necrotic and apoptotic cells, but very few apoptotic cells were 
detected. (c) Toxicity was expressed as the fraction of trypan blue positive cells relative to total cell count. (d) Number of 
viable cells, corresponding to fraction of trypan blue negative cells. Two-way ANOVA with Bonferroni post-test showed no 
significant differences. 

 

 

cytokine-induced effects on viability detected by MTT, in that the number of dead cells 

(necrotic and apoptotic) increases with time after cytokine addition, but the environmental 

chemical exposure caused no further increase in cytotoxicity. The Trypan blue test (Figure 
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6c), also showed similar results as Hoechst/PI and MTT, with no significant increased toxicity 

induced by the chemical treatment, compared to DMSO treated controls. The cell number, 

determined by counting trypan blue negative cells, was not affected by chemical exposure, but 

was decreased by the cytokine exposures (Figure 6d), reflecting the decreased viability in 

Figure 6a-c. Overall, the results presented in Figure 6a-d confirmed the toxic effect of the 

cytokines, which was also reflected in the cell morphology observed in the light microscope 

(Figure A7, Appendix 3).   

 

3.1.3 T2D model 

To investigate if the environmental chemicals could increase glucose-induced insulin 

secretion, the cells were stimulated for 30 min with two different glucose concentrations (6.7 

and 16.7 mM) after 72 h chemical treatment, before determination of insulin release by 

ELISA. Generally, the high glucose concentration (16.7 mM) showed increased insulin 

secretion compared to the low glucose concentration (6.7 mM) (Figure A9, Appendix 4). 

However, the insulin secretion at 16.7 mM glucose showed a very high degree of variation in 

initial experiments but appeared to be unaffected by the chemicals. Thus, this high glucose 

concentration was not included in further experiments. The insulin secretion in response to 6.7 

mM glucose was not affected by any of the individual exposures to phthalate metabolites or 

the mixed chemical exposures (Figure 7). Exposure to BPA showed a tendency to a u-shaped 

effect on insulin secretion with a decrease at 1 -100 nM compared to controls, but these 

decreases were not significant. Overall, there were no significant effects of the environmental 

chemicals in the concentration range 1-500 nM on insulin secretion for either of the two 

glucose concentrations. 

 

 



34 

 

 
Figure 7: T2D model system: insulin secretion after 6.7 mM glucose stimulation. INS-1E cells were seeded at 120.000 
cells/ml, with medium shift on say 3, before 72 h environmental chemical exposure, as indicated. Cells exposed to DMSO 
alone were used as controls. After 72 h exposure, all wells were incubated in glucose free KRBH buffer for 1 h, before 30 
min incubation with 6.7 mM glucose in KRBH buffer. Insulin secretion in cell culture supernatants was determined by 
ELISA. Data were obtained from duplicates in 3 independent experiments, and were normalized for each experiment, i.e. the 
mean of duplicates were divided by the mean of all the controls in that experiment, and expressed as mean ± SEM. Two-way 
ANOVA with Bonferroni post-test showed no significant differences. 

 
 
 

3.2 High dose exposure 

3.2.1 Non-diabetic model 

Due to the lack of significant effects at the low concentrations of environmental chemicals, 

we chose to also include three higher concentrations; 5, 50 and 500 µM. The effects of 50 μM 

environmental chemical exposure on cell morphology are illustrated in Figure A8 (Appendix  

3). The cell viability measured by the MTT assay was significantly decreased for the highest 

concentration of all the applied chemical exposures (Figure 8a).  
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Figure 8a-b: Cell viability by MTT in non-diabetic. INS-1E cells were seeded at 120 000 cells/ml, with medium shift on 
day 3, before 72 h exposure to environmental chemicals, as indicated. In the combinatory exposures the given concentrations 
were added of each chemical and do not indicate the total dose of all chemicals. The relative cell viability was measured by 
the MTT assay as described in materials and methods (2.5). Cells exposed to DMSO only were used as controls. Figure b 
shows the difference in viability reduction in concentrations from 50- 500 μM between BPA and MEHP. Data were obtained 

from 3 independent experiments, and were normalized for each experiment, i.e. the mean of the duplicates were divided by 
the mean of all the controls in that experiment. The bars and the points represent mean ± SEM. * Indicates significant 
decrease compared to controls, # indicates a significant decrease compared to MnBP and MiBP (same concentration), ¤ 
indicates significant decrease compared to MEHP (same concentration), ~ indicates significant decrease compared to 
combinatory exposure of MnBP, MiBP and MEHP (same concentration), when analysed by two-way ANOVA with 
Bonferroni post-test.  

 
 
The most potent exposures were MEHP, the three phthalates, BPA and the combination of the 

four chemicals, where the 500 µM exposures caused reductions in viability of approximately 

65, 70, 85 and 90%, respectively. In contrast, only a 20-25% reduction in viability was 

detected for MnBP and MiBP. BPA and the combination of the four chemicals also showed a 

significant decrease in cell viability at 50 μM of approximately 30%.  Furthermore, the cell 

viability was also significantly attenuated for BPA compared to MEHP and the combination 

of the three phthalates for 50 μM (¤ or ~, Figure 8a).  Thus, BPA appeared to be the most 
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potent of the four environmental chemicals. Between the three phthalates, MEHP clearly 

showed the strongest effect on cell viability as it caused significantly lower viability than both 

MnBP and MiBP at 500 μM (#, Figure 8a). To further examine the difference in effect 

between the individual exposure to BPA and MEHP, four additional concentrations (32.3, 

62.5, 125 and 250 μM) were included for these two chemicals (Figure 8b). BPA showed a 

reduced viability already at 125 µM, while the concentration-effect curve for MEHP did not 

decline until 500 µM, which confirms that BPA is considerably more potent than MEHP in 

this model system. 

 

To explore possible additive, synergistic or antagonistic effects of the combinatory exposure 

we compared the combined exposures and the calculated sum of the individual exposures 

(Figure 9), as described in Materials and methods (section 2.5). The 500 μM exposures were 

not included in these analyses, since the reduction in viability for the individual exposures 

was so high that the calculated data would result in negative values, while the 5 μM exposures 

were excluded since they did not cause any significant reductions in viability. The cell 

viability after 50 μM combined exposure to the three phthalates showed a similar viability as 

the calculated sum of the individual exposure of 50 μM MnBP, MiBP and MEHP (6% 

difference), suggesting an additive effect of the chemicals. For combined exposure to all the 

four chemicals the viability was 23% higher than the calculated sum of the individual 

exposures. This difference was not statistically significant, but implies an antagonistic 

tendency during combined exposures to the chemicals. 
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Figure 9: Comparison of effects due to combined and calculated exposures. Data from Figure 8a were used to evaluate if 
combined exposures resulted in additive, synergistic or antagonistic effects in the non-diabetic model system. The effect of 
the combined exposure of  50 μM of the three phthalates (MnBP, MiBP and MEHP) and the combined exposure of the four 

environmental chemicals (MnBP, MiBP, MEHP and BPA) was compared to the calculated sum of the effects of the 
individual chemicals as described in materials and methods (section 2.6). Two-way ANOVA with Bonferroni post-test 
showed no significant differences. 

 

3.2.2 T1D model 

Exposure to environmental chemicals significantly decreased the cell viability in presence of 

24 h cytokine exposure (INF-γ, TNF-α and IL-1β) compared to the cytokine exposure alone 

(Figure 10). The response pattern was similar as in the non-diabetic model, with highest 

reductions at 500 μM exposure of MEHP, the three phthalates, BPA and the combination of 

the four chemicals, whereas the three phthalates, BPA and the combination of the four 

chemicals also showed a significantly decreased cell viability at 50 μM. Thus, there were 

more significant differences between the effects of chemical treatments in the T1D model 

system than the non-diabetic model (Figure 8a).  
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Figure 10: T1D model system: cell viability determined by MTT. INS-1E cells were seeded at 140.000 cells/ml, with 
medium shift on day 3, before 72 h exposure to environmental chemicals, as indicated. The last 48 h of this exposure, the 
cells were also exposed to the pro-inflammatory cytokines IL-1β, TNFα and INFγ in 5 + 25 + 25 ng/ml, respectively. Cells 

exposed to the cytokines and DMSO were used as controls. Relative cell viability was then measured by MTT assay, as 
described in materials and methods (2.5). The data represent duplicates from 3 independent experiments, and were 
normalized for each experiment, i.e. the mean of the duplicates were divided by the mean of all the controls in that 
experiment, and expressed as mean ± SEM. * Indicates significant decrease compared to controls, # indicates significant 
decrease compared to   MnBP (same concentration), ^ indicates significant decrease compared to MiBP (same 
concentration), ¤ indicates significant decrease compared to MEHP (same concentration), ~ indicates significant decrease 
compared to the combinatory exposure of MnBP, MiBP and MEHP (same concentration). 

 

 

The responses in the non-diabetic and the T1D model are compared in Figure 11, showing the 

effects of the chemicals relative to the respective controls. There were however no significant 

differences in the effects induced by the various chemicals in the two model systems, 

suggesting that the high concentrations of environmental chemicals did not affect the cellular 

sensitivity to cytokine-induced cell death.  

 

 

Figure 11: Comparison of sensitivity to environmental chemicals in the non-diabetic and T1D models. Data from non-
diabetic (Figure 8a) and T1D (Figure 10) for the two highest chemical concentrations (50 μM and 500 μM). As in Figure 8a 
and 10 the data are normalised with the controls in the respective model systems, which allows for a comparison of the 
environmental chemical sensitivity in the two model systems.  No significant differences were detected between 
environmental chemical exposures in the non -diabetic and T1D model systems when analysed by two-way ANOVA with 
Bonferroni post-test  
 



39 

 

 

As for the non-diabetic model, additive, synergistic or antagonistic effects were explored for 

50 μM exposures only, by comparisons between the measured effects due to combined 

exposure and the calculated sum of the individual exposures. There were no significant 

differences between the measured combined exposures and the calculated sum of the 

individual exposures, suggesting an additive effect (Figure 12). 

 

 

Figure 12: Comparison of effects due to combined and calculated exposures. Data from Figure 10 were used to evaluate 
if combined exposures resulted in additive, synergistic or antagonistic effects in the non-diabetic model system. The effect of 
the combined exposure of  50 μM of the three phthalates (MnBP, MiBP and MEHP) and the combined exposure of the four 

environmental chemicals (MnBP, MiBP, MEHP and BPA) was compared to the calculated sum of the effects of the 
individual chemicals as described in materials and methods (section 2.6). Two-way ANOVA with Bonferroni post-test 
showed no significant differences. 
 

 

The MTT test was compared with other toxicity measures for both the non-diabetic and the 

T1D model systems, for exposure to 50 μM of the three phthalates, BPA and all four 

chemicals (Figure 13a-d). In the same experiments, the effects of 24 and 48 h cytokine 

exposures were compared. Figure 13a displays the increasing reduction in cell viability at the 

two different cytokine incubation times (24 h and 48 h). Similar to low dose experiments 

(Figure 6a), the 24 h and 48 h cytokine exposure (INF-γ, TNF-α and IL-1β) decreased the 

viability of INS-1E cells with about 30 and 65% compared to untreated controls, respectively. 

Furthermore, BPA and the combinatory exposure of the four chemicals induced significant 

reductions in viability in the no-cytokine and the 24 h cytokine exposure group compared to 
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controls, while the viability was not affected by chemical exposure after 48 h cytokine 

exposure. Thus, 48 h cytokine exposure appeared to attenuate the effects of the environmental 

chemicals.  

 

 
Figure 13a-d: Comparison of non-diabetic and T1D model systems for different viability measures – high dose. To 
illustrate the effect of cytokine exposure in the T1D model system, experiments were performed to compare the model 
systems on the same plate. INS-1E cells were seeded at 140.000 cell/ml, with medium shift on day 3. ‘No cytokine’ 

corresponds to the non-diabetic model system, while ‘24h cyt.’ and ‘48h cyt.’ correspond to T1D model systems.  As in 

Figure 5 the cytokine exposure (5 ng/ml IL-1β, 25 ng/ml IFNγ and 25 ng/ml TNFα) was done in combination with 
environmental chemical exposure the last 24 or 48 h of the exposure. Bars represent mean ± SEM for 3 independent 
experiments. (a) Relative cell viability was measured by the MTT assay. Data were normalized for each experiment, i.e. 

divided by the mean of the non-diabetic controls in that experiment. (b) The fractions of necrotic and apoptotic cells were 
determined by Hoechst/PI staining. Bars represent the relative numbers of the sum of necrotic and apoptotic cells, but very 
few apoptotic cells were detected. (c) Toxicity expressed as the fraction of trypan blue positive cells relative to total cell 
count. (d) Number of viable cells, corresponding to fraction of trypan blue negative cells. * Indicates significant decrease 
compared to controls. 
 

The percentage of apoptotic and necrotic cells presented in Figure 13b were in accordance 

with the reduced viability observed by the MTT, in that the number of necrotic and apoptotic 

cells increased with all the chemical exposures in the non- cytokine and the 24 h cytokine 

exposure group. The increase was only significant for the combined exposure to all four 

chemicals in absence of cytokines, but these experiments were only performed three times. 

Similarly, the toxicity determined by percent of trypan blue positive cells increased after 
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exposure to chemicals and cytokines, but the increase was only significant for 50 μM BPA 

exposure together with the 48 h cytokine treatment (Figure 13c). Thus, overall the chemical-

induced toxicity detected by the MTT assay was reflected by the other toxicity assays. The 

cell numbers, measured by trypan blue exclusion, were not significantly affected by chemical 

exposures, although a slight tendency to decreased cell numbers after chemical exposure was 

observed.  

 

3.2.3 T2D model 

After 72 h treatment, MnBP and MiBP did not affect insulin secretion, while  MEHP, BPA 

and the two combinatory exposures caused a significant reduction in insulin secretion at 500 

μM compared to controls (Figure 14). The reduction in insulin secretion was more than 50% 

compared to control, and appeared to reflect the chemical-induced toxicity. BPA did however 

show a slight non-significant tendency to increase the insulin secretion at 5 and 50 μM. 

 

 

Figure 14: T2D model system: insulin secretion after 6.7 mM glucose stimulation. INS-1E cells were seeded at 120.000 
cells/ml, with medium shift on day 3, before 72 h environmental chemical exposure, as indicated. Cells exposed to DMSO 
alone were used as controls. After 72 h exposure, all wells were incubated in glucose free KRBH buffer for 1 h, before 30 
min incubation with 6.7 mM glucose in KRBH buffer. Insulin secretion in cell culture supernatants was determined by 
ELISA. Data were obtained from duplicates in 4 independent experiments, and were normalized for each experiment, i.e. the 
mean of duplicates were divided by the mean of all the controls in that experiment, and expressed as mean ± SEM. * 
Indicates significant decrease compared to controls. 
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4 DISCUSSION 

The use of BPA and phthalates in a large variety of consumer products has resulted in a 

widespread human exposure, and epidemiological studies have suggested a link between 

exposure  to these environmental chemicals and diabetes (Lang et al. 2008; Lind et al. 2012b; 

Shankar & Teppala 2011; Svensson et al. 2011). However, whether this association is causal 

remains highly controversial. BPA and phthalates, are possible candidates to exacerbate and 

accelerate the development of T2D. Several in vivo studies reports a variety of effects on β-

cell function after BPA exposure (Alonso-Magdalena et al. 2006; Makaji et al. 2011; Nadal et 

al. 2009; Ropero et al. 2008), whereas phthalates have received less attention in experimental 

studies. An association between endocrine disruptors and the autoimmune disease T1D has 

also been suggested (Howard & Lee 2012), and recently BPA was reported to show a 

tendency to accelerate development of T1D in NOD mice (Bodin et al. 2013).   

 

Here, we hypothesised that exposure to BPA and three phthalate metabolites (MiBP, MnBP 

and MEHP) would directly decrease viability, increase the sensitivity to cytokine induced 

apoptosis and increase insulin secretion from the rat pancreatic INS-1E β-cells. In our model 

system, treatment with 1-500 nM BPA and phthalate metabolites did not have any effect on β-

cell viability, sensibility to cytokines or insulin secretion, but higher concentrations (50 and 

500 μM) reduced the viability of the INS-1E cells. BPA was however the most potent 

chemical and MEHP was the most potent between the three phthalate metabolites. Moreover, 

the combinatory exposures of the three phthalates and all four chemicals appeared to induce 

additive effects on β-cell viability at 50 μM. 

 

 

4.1 Non-diabetic 

Three different model systems were used to examine effects of BPA and the phthalate 

metabolites; MiBP, MnBP and MEHP after 72 h exposure, where the non-diabetic model 

system reflects a normal non-diabetic individual. The viability, as determined by MTT, was 

not reduced at concentrations of 1-500 nM of any of the environmental chemical treatments. 

Our negative results of BPA exposure were surprising since a recent study in a similar cell 

line (INS-1) showed decreased cell viability after BPA exposure as low as 200 nM for 12 h, 

with an accelerated rate of apoptosis in a dose dependent manner (Lin et al. 2013). In 

addition, mitochondrial morphology and mass was affected, suggesting that the BPA induced 
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apoptosis was associated with mitochondrial defects in the β-cells (Lin et al. 2013). Moreover, 

110 nM BPA exposure has also caused mitochondrial swelling in isolated rat islets (Song et 

al. 2012). In the TC-6 cell-line 400 nM BPA did not seem to affect mitochondrial activity 

(Makaji et al. 2011), but caused an ER stress response that may eventually lead to β-cell 

dysfunction and apoptosis (Aston-Mourney et al. 2008). These discrepancies could be 

explained by a number of experimental factors such as slight genetic differences between cell 

lines, or experimental setup (Spinnler et al. 2013). In addition,  it should be noted that cell 

lines often are less sensitive than primary cells or islets (Hohmeier et al. 2000). 

 

Since previous studies, in contrast to the present study, have shown effects of BPA exposure 

in the nM range, we also wanted to examine potential effects of higher concentrations in our 

model system, to test whether the INS-1E cells could respond to environmental chemicals. 

Three concentrations were chosen for these high-dose experiments; 5, 50 and 500 μM. These 

concentrations are higher than the serum concentrations reported in most biomonitoring 

studies, but for some of the phthalate metabolites there might be an overlap with the ranges 

reported for some populations, since the maximum concentrations for MiBP have been 

reported to be more than 8 μM (Appendix 1, table 3). The highest concentration reduced cell 

viability for all the environmental chemical treatments, but BPA appeared to be the most 

potent resulting in a significantly higher reduced viability also at 50 µM. A more detailed 

concentration-effect curve of BPA and MEHP also confirmed that BPA was the most potent 

chemical. Since BPA was more potent than MEHP in our model system, and MEHP was 

more potent than the other phthalate metabolites, it is tempting to suggest that phthalates 

might induce less effect on β-cells than BPA. However, further studies are necessary to clarify 

this assumption.  

 

Changes in absorbance in the MTT assay provide a relatively rough measure of viability, 

which may reflect both toxicity, altered proliferation or reduced mitochondrial activity 

(Werner et al. 2013). Overall, the Hoechst/PI and the trypan blue test confirmed the results 

from the MTT assay for both low and high concentrations. However, fewer significant effects 

were detected with the Hoechts/PI and trypan blue assays compared to the MTT test, which 

may be due to inclusion of only 3 experiments in the statistical analyses.  

 

Exposure to 50 μM BPA mainly increased the number of necrotic cells and with little changes 

with regard to apoptotic cells. This is in contrast to a recent study on BPA which found an 
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accelerated rate of apoptosis (Lin et al. 2013). The previous study (Lin et al. 2013) used a 

shorter exposure time of 48 h, as opposed to the 72 h exposure used in our study. A possible 

explanation for our result is that apoptotic cells might have been converted to necrotic cells 

during the last 24 h of exposure.  

 

 

4.2 T1D 

T1D is thought to be mediated by an insulitis, including infiltration of immune cells to the 

pancreas, and cellular secretion of cytokines. Due to the reported tendency of accelerated T1D 

development in non-obese (NOD) mice (Bodin et al. 2013) by BPA, we hypothesised that the 

environmental chemicals could increase the sensitivity to cytokine-induced cell death. 

 

In the T1D model, the cells were exposed to cytokines the last 24 or 48 h of the environmental 

chemical exposure, but there were no further changes in cell viability neither for low nor high 

concentrations of the environmental chemicals. These data suggest that the environmental 

chemicals did not increased the β-cells sensitivity to cytokine induced cell death. Overall, the 

toxicity data from the trypan blue positive cells and necrotic/apoptotic cells (Hoechst/PI) 

confirmed these conclusions based on the MTT data.  

 

Interestingly, the 48 h cytokine exposure seemed to level out the environmental chemical 

induced cell death in the MTT data, when compared to 24 h or no cytokine treatment. Even 

though this trend was not so clear in the Hoechst/PI and trypan blue test, it may suggests that 

24 h cytokine exposure would have been a better experimental design in the low dose 

experiments also, as applied in the high dose follow up experiments. However, the low dose 

chemical exposure did not appear to increase the sensitivity to the cytokine-induced cell death 

during the 24 h cytokine treatment either, when assessed for the combined exposure to all four 

chemicals for highest concentration (500 nM, Figure 6a-d)). 

 

The present reduction in viability after cytokine exposure, with approximately 30 and 65% 

after 24 and 48 h, respectively,  suggested a strong cytotoxic effect of the cytokines. 

Hoechst/PI analyses showed that this reduced viability was primarily dominated by necrosis 

with below 1% apoptosis, similar to the effects induced by the high concentration of the 

environmental chemicals. This is in contrast to our hypothesis of cytokine-induced apoptosis 
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and the relevance for T1D. However, whether apoptosis is a major cell death pathway during 

diabetes development is highly controversial. On the one hand, there is a general agreement 

that cytokines appear to have a direct role in inducing pancreatic β-cell death leading to a 

decrease in β-cell viability. However, whether the cell death induced by pro-inflammatory 

cytokines occurs by necrosis, apoptosis, or both is still debated (Delaney et al. 1997; Fehsel et 

al. 2003; Saldeen 2000).  Our data arguing for a cytokine induced β-cell death by necrosis 

differ from some prior studies that claim an important contribution from apoptosis (Jensen et 

al. 2005; Kutlu et al. 2003). On the other hand, some studies on INS-1 cells and isolated islets 

support our results that necrosis is the predominant type of cell death by cytokine-induced 

killing of β-cells (Collier et al. 2006; Collier et al. 2011; Saldeen 2000). A factor that might 

contribute to these conflicting results with respect to type of cell death could be differences in 

the applied cytokine concentrations, and it has been postulated that the dose of cytokines 

might determine which cell death pathway is preferentially activated (Grunnet et al. 2009). It 

is possible that the long-term exposure of cytokines (24-48 h) used in our study, may 

preferentially induce non-apoptotic β-cell killing, while β-cell apoptosis might be induced at 

lower exposure time. Since shorter exposure times were not investigated presently, we cannot 

exclude the possibility that this could explain the observed low rate of apoptosis.  

 

To our knowledge the present study is the first to examine if environmental chemicals could 

increase the β-cell sensitivity to cytokine induced cell death in vitro, with relevance for T1D. 

The cytokines reduced the cell viability and increased the toxicity, however, neither BPA nor 

phthalate exposure increased the sensitivity to this cytokine induced cell death. This may 

suggests that the accelerated T1D development by BPA exposure recently reported, may be 

due to an direct effect of the chemical, rather than increased sensitivity to cytokine induced 

cell death. However, the lack of effects may also be explained by insensitivity in our model 

system. Moreover, these results cannot rule out contributions from other possible mechanisms 

in accelerated T1D development, thus further studies should be performed, also in other cell 

types.  

 

 

4.3 T2D 

 In the present study, levels of MiBP, MnBP, MEHP and BPA relevant for human 

environmental exposures (1-500 nM) did not affect insulin secretion in INS-1E cells, neither 
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for exposures alone or in combination. Even high concentrations in the μM range did not 

increase the insulin secretion, and the only significant effect was decreased insulin secretion 

after exposure to 500 μM of MEHP, BPA and the combinatory exposures. This reduction was 

most likely due to the chemical- induced toxicity observed at these concentrations. The lack 

of effect of BPA on insulin secretion was surprising, given that approximately 0.4 - 4 nM 

BPA has been shown to increase insulin secretion in other β-cell lines as well as primary cells 

(Adachi et al. 2005; Lin et al. 2013; Makaji et al. 2011; Song et al. 2012; Soriano et al. 2012). 

Suggested mechanisms for the insulin hypersecretion in response to BPA include ER stress, 

and dysregulation in normal function of the ER and mitochondria have shown associations 

with impaired  β-cell function and increased β-cell death (Drews et al. 2010; Jitrapakdee et al. 

2010; Laybutt et al. 2007; Thomas et al. 2010). 

 

 BPA has previously been shown to induce increased insulin secretion at concentrations as 

low as 0,4 nM in primary cells (Adachi et al. 2005; Song et al. 2012). While higher 

concentrations of 400 nM and 4 μM BPA were necessary to increase insulin secretion in the 

TC-6 cell line. This might imply that there are differences in sensitivity between cell lines and 

primary cells, which is also in accordance with previous reports in that INS-1E cells cannot 

substitute primary β-cells (Hohmeier et al. 2000; Merglen et al. 2004; Spinnler et al. 2013). 

However, BPA recently increased insulin secretion in INS-1 cells at concentrations as low as 

20 nM (Lin et al. 2013). Even though INS-1 cells are rather similar to the INS-1E cells used 

presently, the INS-1E cells are further improved and more stable with respect to insulin 

secretion (Merglen et al. 2004). A recent study investigating the acute (2 h) effects of 1, 10 

and 100 nM BPA and DEHP on insulin secretion in an other INS-1 subclone cell line (INS-

1 832/13), also found limited effects of these chemicals, and concludes that the cell line 

appears to lack certain characteristics needed to respond appropriately to environmental 

chemicals (Hectors et al. 2013). This clone of the INS-1 cell line is also known for its stable 

insulin secretion, and a possible explanation is that in gaining stability with respect to insulin 

secretion, the sensitivity to environmental chemicals might be lost.  

 

The lack of effect in the present study may also be explained by application of different 

exposure conditions, since no previous studies have examined 72 h chemical exposure in β-

cell lines. Lin et al. (2011) reported effects after 48 h in the INS-1 cells, while Adachi et al. 

(2005) found effect in the primary cells after 24 h but no acute effects after 1 h BPA exposure. 

Interestingly the TC-6 cells showed increased insulin secretion after only 1 h exposure, but in 
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that study  the cells were exposed to glucose and BPA simultaneously (Makaji et al. 2011). It 

should also be noted that it would have been feasible to include an appropriate reference 

compound, i.e. positive and negative controls in our experiments, to verify whether general 

exposure conditions affects the function of our cell line (Hectors et al. 2013). Possible 

candidates for positive and negative controls for insulin secretion include diazoxide and 1-

methyl-3-isobuthylxanthine (Hectors et al. 2013). 

 

There have previously been some concerns that the plastic in the equipment used in cell 

culturing, exposure and harvesting may contain both BPA and phthalates, which may increase 

the exposure dose beyond the studied concentrations and might lead to variations in the data.  

However, the plastic in the equipment used presently was polysteren (Falcon cell culture 

flasks and plates) or polypropylene (pipette tips), both are plastic types that are free of BPA 

and phthalates. Another source of contamination could be the foetal calf serum used in the 

cell culture medium, but we did currently not have the possibility to investigate this. Phenol 

red, which is a standard ingredient in most cell culture medium has previously been reported 

to have a weak estrogenic activity (Glover et al. 1988) and effects on cell proliferation and 

growth in different cell cultures (Glover et al. 1988; Walsh-Reitz & Toback 1992; Wesierska-

Gadek et al. 2007). Since the increased insulin secretion reported by BPA exposure is 

suggested to be mediated through estrogen receptors (Adachi et al. 2005; Alonso-Magdalena 

et al. 2006; Alonso-Magdalena et al. 2012), one might suggest that this could have an impact 

on our results. However, whether phenol red has a particular impact in cell line models or not, 

is highly controversial (Hubert et al. 1986; Rajendran et al. 1987; Welshons et al. 1988). 

Results from a previous study using nine estrogen reseptor-positive cell lines have concluded 

that phenol red in culture medium is insufficient to cause estrogenic effects (Moreno-Cuevas 

& Sirbasku 2000). Additionally, the previous studies who found effect on insulin secretion 

from BPA (Lin et al. 2013; Makaji et al. 2011) also seemed to use phenol red containing 

medium, as application of phenol red-free medium was not indicated. Thus, even though we 

cannot exclude that the phenol red in the medium presently may have contributed to the large 

variability in our insulin secretion levels, it is not likely to explain the lack of effects on 

increased insulin secretion. 

 

Presently, the variations in the levels of insulin secretion at 6.7 mM glucose stimulation 

showed relatively large variability. The insulin release data was normalized for each 

experiment, in an attempt to remove some of the variations, but the variability in our model 
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system appeared to be larger than in previous studies. However in previous studies insulin 

secretion per protein or insulin content has most commonly been used previously rather than 

inulin levels in ng/ml or normalised to control levels (Lin et al. 2013; Makaji et al. 2011; 

Merglen et al. 2004). In Merglen et al. (2004) there were large variations in insulin content, 

while the insulin secretion expressed as relative to insulin content, showed less variation. This 

implies that the insulin content reflects the insulin secretion, and that this presentation form 

may remove some of the variability in the insulin measurements. Therefore, expressing 

insulin secretion relative to protein or insulin content rather than relative to control might be a 

more feasible method. Nevertheless, it might not be correct relating to insulin content or to 

cellular protein content when studying toxic components, since high toxicity may give a false 

increase in insulin secretion, as illustrated for data from one of our experiments in Figure 

A10, Appendix 5. 

 

To the best of our knowledge, no other in vivo or in vitro studies have investigated whether 

phthalate metabolites affect β-cell function. One recent study has however investigated the 

acute effect of DEHP, but only in order to get a first indication of the relevance of their model 

system (Hectors et al. 2013). They reported limited effect of acute exposure, but only three 

concentrations were included (Hectors et al. 2013). However, in rats exposed to DEHP in 

utero, the glucose homeostasis was disrupted, suggesting that this phthalate may induce a β-

cell dysfunction (Lin et al. 2011). Interestingly, DEHP reduced the pancreatic insulin content, 

and the authors suggested that defects in insulin action early in life could be compensated by 

higher insulin sensitivity in offspring. Then, β-cell failure may occur with age, as shown by 

both decreased pancreatic insulin content and reduced β-cell mass, because the production of 

new β-cells in adulthood is low (Lin et al. 2011). DEHP has also been reported to alter 

glucose tolerance in rats, due to abnormal glucose content in liver and skeletal muscle (Lin et 

al. 2011). These results suggest that MEHP, which is a metabolite of DEHP might be 

involved in altered glucose metabolism, and may impact on T2D development through other 

pathways than a direct effect on the insulin secretion from pancreatic β-cells. An 

epidemiological study has however reported associations between MiBP and other phthalate 

metabolites, such as Mono-methyl phthalate (MMP) and Mono-ethyl phthalate (MEP), and 

diabetes (Lind et al. 2012b). Even though our results showed no significant effects of the 

phthalate metabolites MiBP, MnBP and MEHP on insulin secretion, further studies should be 

performed in other cell lines or primary cells where BPA already has shown effects.  
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4.4  Combinatory exposure 

Humans are exposed to multiple phthalates and BPA and risk assessment of individual 

compounds may lead to an underestimation of the risk if the compounds have common action. 

It is therefore important to examine the activity of environmental chemicals as a mixture 

(Backhaus & Faust 2012). We have defined additive effects as an outcome of no interaction, 

where the observed toxicity of the mixture is the sum of each chemicals toxicity observed 

individually (Laetz et al. 2009). If the mixture effects causes a larger effect than the 

extrapolated effect from each chemical it is referred to as a synergistic effect, while a smaller 

effect is referred to as antagonistic (Laetz et al. 2009).  

 

In the INS-1E cells, a combinatory exposure to 50 μM of the different chemicals did not cause 

significant differences in response from the sum of the effects of the individual chemical, 

thereby implying additive effects. A possible explanation for the additive effects from the 

combined exposure to phthalates and BPA in our study is that these chemicals may interact 

with the same genes/proteins, and they have also been shown to induce similar effects in other 

tissues and are associated with similar adverse health outcomes (Singh & Li 2012). However, 

the concentrations we applied to study additive effects were relatively high and at sufficiently 

high concentrations most compounds can induce non-specific toxicity (Yassi et al. 2001). On 

the other hand, not all the applied substances induced effects, suggesting that the 

concentrations were within a non-toxic range. 

 

 Interestingly,  phthalates have previously shown to induce additive effects on fetal 

steroidogenesis in rats (Howdeshell et al. 2008), while mixed exposures to  phthalates and 

BPA has shown coinciding additive effects in animals, with a tendency to additive effects at 

low doses, and synergistic effects at higher doses (Christen et al. 2012). A possible 

consequence of additive or synergistic effects of the phthalates is that risk assessments should 

consider total phthalate exposure rather than exposure to individual phthalates (Christen et al. 

2012). The methods used to calculate the mixture effects in these previous studies differ from 

the method used presently. Christen et al. (2012) characterized the concentration-effect curve 

to each individual chemical, and subsequently estimated the mixture exposure by regression 

based on the equally potent levels of the chemicals, which is a more formalized method for 

examination of mixture effects, particularly to investigate whether the chemicals act through 

the same mechanisms. However, since we aimed to study whether low concentrations of the 
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combinatory exposure may induce greater effects than the individual chemical exposures, we 

did not characterize the concentration-effect curve for each individual chemical.  

 

The present study appears to be the first investigation of combinatory effects of phthalate 

metabolites and BPA on β-cell function. Since our model system seems to have low 

sensitivity to environmental chemicals, further studies in other model systems are necessary 

to investigate combinatory effects of these chemicals in other cell types and model systems 

where BPA has been shown to affect β-cell function. 

 

 

4.5 Methodological considerations 

 

Limitations of model systems 

Even though in vitro studies with cell lines are commonly used and readily performed, it 

involves several limitations. For instance, in vitro model systems only provide information 

about signalling molecules and viability which cannot predict the more complex biological 

responses, in humans. Furthermore, the altered characteristics and limited communication 

with other cells compared to cells in tissues is important to take into account. Thus, observed 

effects in in vitro studies need to be further investigated in in vivo model systems. 

Furthermore, one should also be aware that in vivo studies in rodents cannot be directly 

extrapolated to humans, as rodents and humans might differ from each other in both with 

regard to physiology and toxicokinetics (Kamrin 2009). Furthermore, the percentage of β-

cells is lower in human pancreatic islets than in rodent islets, while humans percentage of α-

cells is higher (Cabrera et al. 2006). This might influence on the interactions between the cell 

types and might be of more importance in humans than in rodents.  

 

 

Measures of insulin secretion 

Presently, the insulin secretion was expressed as relative to mean control in each experiments, 

rather than normalized to cellular protein or insulin content as done previously (Lin et al. 

2013; Makaji et al. 2011; Soriano et al. 2012). To compare these two methods for presenting 

insulin secretion, we measured the protein content in one high dose experiment. Then the 

insulin release (ng/ml) was normalized to the protein content (mg/ml) and expressed as 
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insulin per mg protein as in the previous studies (data shown in Appendix 5, Figure A10). The 

measured protein content (mg/ml) was in accordance with results from the MTT assay, in that 

it showed reduced protein content for the highest concentration of the environmental 

chemicals. Interestingly, when insulin secretion was normalized to cellular protein content, 

we also observed an increased insulin secretion, but only at the chemical levels inducing high 

toxicity simultaneously. This might suggests that although the viability was reduced, the 

insulin secretion per living cell was increased.  

 

However, Alonso-Magdalena et al. (2006) reported increased insulin content and secretion in 

in vivo expressed as plasma insulin normalized to control values, and not only per protein 

content. Their results still imply that BPA can increase both plasma insulin and β-cell insulin 

content, emphasising our suggestion that use of INS-1E cells are not suitable to examine 

insulin release mediated by chemical exposures.  

 

 

4.6 Further studies 

Due to lack of effects at concentrations relevant for environmental exposures in the present 

study, experiments with high concentrations were included. A more ideal approach would 

have been to examine effects of the low dose concentrations in a different cell line or in 

primary cells, but this was not possible due to time limitations. However, further experiments 

are currently conducted in the INS-1 cell line at NIPH, since BPA exposure was recently 

reported to accelerate apoptosis and induce increased insulin secretion in these cells (Lin et al. 

2013). In these additional experiments, the low environmentally relevant chemical 

concentrations will be tested in all the three model systems applied presently. Thus both cell 

viability and insulin secretion will be investigated in relevance to T1D and T2D development. 

Moreover, a positive control for insulin secretion will be included as well as shorter exposure 

times (1-48 h). , This will allow for investigation of the influence of incubation time on 

insulin release and fraction of necrotic vs apoptotic cells. Finally, use of primary cells as a 

follow-up study will be considered for selected chemicals and model systems.  

 

If a suitable model is established another interesting aspect would be the possible effects of 

other phthalate metabolites including more oxidised metabolites on pancreatic β-cell function. 

Even though the present study found no effect of the chemicals on sensitivity to cytokine 
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induced apoptosis, other mechanisms relevant for T1D should be further examined, including 

chemical-induced effects on macrophage function or the functionality of other immune cells. 

Further studies in  animal models is also important to characterize possible alterations in more 

complex biological responses with relevance for both T1D and T2D after exposure to both 

BPA and phthalates. 
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5 CONCLUSION 

Our main hypothesis, that exposure to BPA and the phthalate metabolites MiBP, MnBP and 

MEHP, either individually or in combination would affect β-cell function in environmentally 

relevant concentrations, was not supported by our results. Only high concentrations, not 

relevant for environmental exposure levels, reduced the cell viability, possibly due to direct 

toxic effect of the chemicals. However, the environmental chemicals did not affect the 

sensitivity to cytokine-induced cell death. Since our results are in conflict with other studies, 

they suggests that although INS-1E cells are commonly used in mechanistic studies of 

cytokine-induced apoptosis and insulin secretion, this cell line appears to be insensitive to 

environmental chemicals. 

 

In conclusion, the INS-1E cell line does not appear to be suitable for studies of metabolic 

effects of environmental chemicals, and the data obtained cannot be used to further 

characterize the effect of BPA and phthalates on β-cell function. However, experiments with 

INS-1 cells are now in progress, and obtained data will be submitted for peer-reviewed 

publication together with the data from the present study. 
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6 PUBLIC HEALTH PERSPECTIVES 

Presently BPA and phthalates showed no effects on pancreatic INS-1E β-cell function at 

concentrations relevant for human exposure, possibly due to a low chemical-sensitivity of the 

INS-1E cells. Thus, our results do not exclude the more general aspect of our hypothesis; that 

environmental chemicals used in plastic products may affect the pancreatic β-cell functions, 

and thereby contribute to development of diabetes type 1 or type 2.  

 

Accumulating evidence from in vitro and in vivo studies has shown that BPA exposure 

accelerated β-cell death, altered expression of key proteins in the cellular and ER stress 

response and disturbed insulin secretion (Adachi et al. 2005; Lin et al. 2013; Makaji et al. 

2011; Nadal et al. 2009; Ropero et al. 2008; Song et al. 2012). Unfortunately, there are few 

human studies on the association between BPA and diabetes, and available studies have 

reported conflicting results (Lang et al. 2008; Melzer et al. 2010). These previous human 

studies are often based on self-reported diagnoses of diabetes (Lang et al. 2008; Melzer et al. 

2010; Shankar & Teppala 2011), which may lead to a miss classification in that the patients 

who actually have diabetes are classified as non-diabetic which could lead to an 

underestimation of a possible association (Shankar & Teppala 2011).  

 

 Shankar and Teppala (2011) and Lang et al. (2008) both found positive associations between 

increased urinary BPA levels and T2D, based on different data from NHANES, but it is not 

clear whether this is due to cause or consequence. That is, whether the disease itself leads to 

alterations in normal functions which may impact on the chemical levels in urine and serum, 

or whether highly exposed individuals actually have higher risk of developing the disease. For 

instance, T2D may lead to changes in energy metabolism (Lin & Sun 2010) and the majority 

of diabetes patients are overweight or obese (Ameican Diabetes Assosiation 2008). It is 

therefore conceivable that they might also have different metabolism and excretion of 

environmental chemicals compared to normal-weight subjects. The associations between T2D 

and urinary BPA levels may therefore be a consequence of already having developed the 

disease rather than reflecting that the higher BPA levels cause higher risk of developing T2D. 

To address this question in future studies it would be necessary to do longitudinal rather than 

cross sectional studies.  

 

BPA exposure is suggested to play a role in weight gain and obesity development through 

several mechanisms (Ben-Jonathan et al. 2009; Masuno et al. 2005; Phrakonkham et al. 



55 

 

2008). An excessive insulin signalling produced by an overstimulation of β-cells by BPA 

exposure may provoke insulin resistance in liver and skeletal muscle (Nadal et al. 2009). 

Furthermore, it may induce alteration in liver and adipose tissues, resulting in dyslipidemia, 

obesity and glucose intolerance (Biddinger & Kahn 2006). As a consequence, blood glucose 

concentrations increase, further promoting hyperinsulinemia (Alonso-Magdalena et al. 2006) 

and thereby β-cell exhaustion, contributing to the development of T2D (Nadal et al. 2009). 

Thus, BPA could also contribute indirectly to the development of T2D through other 

mechanisms and tissues contributing to obesity, rather than exerting direct effects on β-cell 

function. 

 

BPA has also been reported to show a tendency to accelerate T1D development in mice 

(Bodin et al. 2013). The mechanisms involved are not fully determined, however, the 

acceleration is suggested to be due to an increased insulitis and β-cell death and reduced 

numbers of tissue resident macrophages in pancreatic islets (Bodin et al. 2013). Additionally, 

BPA may alter immune responses, and induce changes as altered T-cell subsets, β-cell 

functions, and dendritic cell and macrophage biology, through multiple actions like estrogen 

receptor and PPARs signalling  (Rogers et al. 2013). Since T1D is suggested to be mediated 

through autoimmunity and  alterations in the immune system, further examinations of a 

possible association between BPA and T1D would be feasible in both experimental and 

epidemiological studies. 

 

Although phthalate metabolite exposure did not affect β-cell viability or insulin secretion, and 

all the phthalate metabolites showed less potency compared to BPA, there are number of ways 

phthalates potentially could impact diabetes development. It is well known that some 

phthalate metabolites may  bind to PPARs, which is involved in regulation of lipid and 

glucose metabolism and may also alter immune cell functionality (Ferre 2004; Luquet et al. 

2005). By binding to PPARγ, it has been asserted that phthalates may influence adipogenic 

genes leading to increased obesity, which in turn can lead to insulin resistance, metabolic 

dysregulation and increased risk of T2D (Grün & Blumberg 2007). Another potential pathway 

is binding to PPARα which impact on lipid handling and regulate circulating glucose levels 

(Casals-Casas et al. 2008; Desvergne et al. 2009; Feige et al. 2007) and thereby may affect 

diabetes risk by altering β-cell insulin secretion. It is also well known that both obese 

individuals and individuals with higher levels of circulating glucose levels has higher risk of 

developing T2D (Lin & Sun 2010; Triplitt 2012).  Therefore, one might suggest that 
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phthalates could contribute to diabetes by other mechanisms than directly through β-cell 

dysfunction. One possible mechanism for phthalate-induced effects could be altered 

inflammatory responses, as reported for MEHP (Bolling et al. 2012; Jepsen et al. 2004; 

Vetrano et al. 2010), which could indirectly contribute to the development of autoimmune 

diseases like T1D.  

 

Presently, additive effects were shown from the exposure of both the combination of the three 

phthalate metabolites and the combination of the phthalate metabolites and BPA. But these 

additive effects were only shown at one of the highest concentrations, not relevant for human 

exposure. Nevertheless, humans are exposed to multiple phthalates in combination, 

simultaneously with other environmental chemicals that may produce adverse effects together 

(Stahlhut et al. 2007). Although individual phthalate exposures in humans are generally 

asserted to be below the no observed effect level (NOAL), the additive effects of various 

phthalates and in combination with BPA, as shown in previous studies (Christen et al. 2012; 

Howdeshell et al. 2008), should be implemented in risk characterisations.  

 

There is an ongoing debate concerning the determination of safe levels of BPA exposure 

based on the LOAEL (lowest-observed-adverse-effect-level) used up to now (50 mg/kg/day) 

and a new risk assessment by The European Committee of Food Safety (EFSA) is now in its 

final phase. The determination of safe levels are most often based on the NOAEL (No-

observed-effect-level), but since the NOAEL of BPA has not been detected, due to adverse 

responses even at the lowest dose administered, it is based on the LOAEL (Vandenberg et al. 

2009). Despite several studies reporting links between BPA and adverse health effects, 

several controversies on BPAs impact on humans has sprung up and continued through 

several years (Vandenberg et al. 2009). However, previously reported BPA effects at low 

concentrations, suggests that this should be further investigated (Adachi et al. 2005; Lin et al. 

2013; Song et al. 2012). Even though the present study did not show any increased risk of β-

cell dysfunction by BPA and phthalates at levels relevant for human exposure, studies on 

mice have indicated associations between BPA and insulin resistance at much lower doses 

than the LOAEL (Alonso-Magdalena et al. 2006). It is well known that findings in mice 

cannot be extrapolated directly to humans, due to differences in mechanisms and cell 

interactions (Brissova et al. 2005; Cabrera et al. 2006; Kamrin 2009). However, the increased 

insulin secretion of BPA described in mice has also been shown in human islets, but in a 

stronger manner compared to that in mice (Soriano et al. 2012). This may indicate that at least 
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some of the adverse effect of BPA on glucose homeostasis described in mice may be relevant 

for humans, and that further studies should be performed in this field. 

 

Results from the Norwegian mother and child Cohort Study (MoBa) (Ye et al. 2009) showed 

higher levels of both BPA and the phthalate metabolites MnBP and MiBP than the women 

participating in the NHANES in the United States, possibly due to consumption of canned 

food and use of personal care products. The estimated daily intakes in Norway were still 

below the estimated tolerable daily intake (TDI) (Ye et al. 2009). However, children often 

have higher concentrations of  BPA and phthlates than adults, while women have higher 

concentrations than men (Calafat et al. 2008; Wittassek & Angerer 2008). This may be a 

matter of concern, since children may be more vulnerable to exposure during development 

and exposure during pregnancy might enhance mothers insulin resistance and disrupts 

foetuses glucose homeostasis later in life (Alonso-Magdalena et al. 2010).   

 

This study failed to find any effect of BPA and phthalate metabolites with relevance for diabetes 

development, it is however highly likely that the applied cell line was chemical-insensitive and 

thus an inadequate model system to examine effects of environmental chemicals on β-cell 

function. Despite this, several population studies reports associations between these chemical 

exposures and T2D (James-Todd et al. 2012; Lang et al. 2008; Silver et al. 2011; Svensson et al. 

2011) and there is accumulating evidences that BPA induces effects on β-cell function (Makaji 

et al. 2011; Nadal et al. 2009; Ropero et al. 2008), in addition both BPA and phthalate exposure 

may induce other effects with relevance for diabetes development (Ben-Jonathan et al. 2009; 

Clayton et al. 2011; Feige et al. 2007; Lin et al. 2011). Furthermore, due to the economic and 

social costs associated with diabetes type 1 and type 2, and not to mention the severe 

implications for the affected individuals, the diseases represent a major public health issue. 

Thus, BPA and phthalate exposures deserve further investigations in both experimental and 

epidemiological study designs of type 1 and type 2 diabetes.  
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APPENDIX 1 

 

Table 3: Detailed overview of Phthalate and BPA concentrations in serum samples. Serum concentrations ng/ml are 
represented as mean, median and range with maximum values. The values are also shown converted to nM to show relevance 
to the concentrations used in this study. The grey fields represent the range of the reported values. 
 

Serum concentrations of phthalates and BPA ng/ml (nM) 

Chemical Mean Median Range/Maximum 

MEPH 
Mono-2-ethylhexyl phthalate 

0,77-20,3 
(2,6-68,1) 

0,49-7,88 
(1,6-26,4) 

0,47-514 
(1.6-1724) 

  
 

4,69a (15,7) 
 

0,47-514 
 (1.6-1724) 

  4,33aa(14,5) 
 

0,51-415  
(1,7-1391) 

 6.74 b (22,6) 
 

7.88 (26,4) 
 

<LOD-15.93 (<LOD-
53,4) 

 0,77 c (2,6) 
20,3 d (68,1) 
18,9 dd (63,4) 

0,49 (1,6) 
4,3 (13,4) 
4,7(15,8) 
 

0,49-4,5 (1,6-15,1) 

MiBP 
Mono-isobutyl phthalate  

0,72-44,6 
(3,2-200,7) 

0,50-13,5 
(2,2-60,7) 

0,50-1820 
(2,2-8189,3) 

  
 

13,4 a (60,3) 
 

3,22-1390 
 (14,5-6254) 

  13,5aa (60,7) 
 

2,7-1820 
 (12,1-8189,3) 

 0,72b (3,2) 
 

<LOD <LOD- 4,36 (<LOD-
19,6) 

 0,87 c (3,9) 0,50 (2,2) 0,50-11 (2,2-49,5) 
 53,6 d (241,1) 

44,6 dd (200,7) 
13,5 (60,7) 
13,4(60,3) 
 

 

MnBP 
Mono-n-butyl phthalate 

0,43-1,8 
(1,9-8,1) 

<LOD-0,54 
(<LOD-2,4) 

0,54-20  
(2,4-90) 

 0,43 b (1,9) <LOD 
 

<LOD-1,51 
(<LOD-6,8)   

 1,8 c (8,1) 0,54 (2,4) 0,54-20 (2,4-90) 

BPA 
Bisphenol A 

0,16-4,94 
(0,7-21,6) 

3,6-3,89 
(15,8-17) 

0,79-27,3 
(3,5-119,6) 

  3,6a (15,8) 
 

<LOD-27,3 
(<LOD-119,6) 

  3,89aa (17) 
 

<LOD-24 
(<LOD-105,1) 

 4,94 a2 (21,6)  <LOD-27,3(<LOD-
119,6) 
 

 0,20e (0,9) <LOD  

 0,16ee (0,7) >LOD  
 0,98f (4,3)   
 2,91g (12,8)  0,79-7,12 
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(3,5-31,2) 

 1,05 h (4,6)   

*LOD = Limit of detection 
aOlsèn et al., (2012): 502 Swedish male seniors 
aaOlsèn et al., (2012): 501 Swedish females seniors  
a2Olsèn et al., (2012): Swedish males and Females together 
bFredriksen et al., (2010):60 young Danish men 
cHögberg et al., (2008): 130 Swedish women 
dLind et al., (2012): 501Swedish males 
ddLind et al., (2012): 502 Swedish females 
eHe et al., (2009): 404 Chinese males 
eeHe et al., (2009): 482 Chinese females 
fDirtu et al., (2008):7 Belgium adults 
gCobellis et al., (2009):58 Italian women 
hKandaraki et al., (2011): 71 Greek women 
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APPENDIX 2 

 

 
Figure A1: Test of different cell numbers. INS-1E cells were seeded with a density of 50.000, 100.000 and 200.000 
cells/ml in parallel wells at Friday. Then the cells were harvested Thursday. Cell viability where measured using MTT. MTT 
values showed that seeding cells at 200.000/ml were no longer in a linear growth face. Visual inspection showed that 50.000 
cells/ml was a bit sparse. 
 
 
 
 

 
Figure A2: Test of different cytokine concentrations 

INS-1E cells were seeded with a density of 50.000 and 100.000 cells/ml in parallel wells. Then the cells were exposed to 
either no cytokines in control wells or cytokines in one of the following concentrations; Cytokines 1= 1 + 5 + 5, Cytokines 2= 
5 + 25 + 25, Cytokines 3= 10 + 50 + 50 ng/ml of IL-1β, TNFα and INFγ, respectively. Harvesting of cells was performed 

Friday. Furthermore, cell viability was measured by MTT. The MTT values for these cell densities showed that cytokine 
concentrations seem to have the same effect on cell viability. 
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Figure A3: Test of exposure time of cytokines 

INS-1E cells were seeded with a density of  150.000 cells/ml. The cells where then exposed to either no cytokines in control 
wells, or one of the following cytokine concentrations; Cytokines 1= 1 + 5 + 5, Cytokines 2= 5 + 25 + 25, Cytokines 3= 10 + 
50 + 50 ng/ml of IL-1β, TNFα and INFγ, respectively. The 48 h exposure was performed at Tuesday and the 24 h exposure at 

Wednesday. At Thursday, cells were harvested and necrotic and apoptotic cells were measured in % of total cell number, 
using Hoechst/PI test. Results from Hoechst/PI show no differences in apoptotic/necrotic cells after 24 h, compared to 
controls. While, 48 h cytokine concentration shows an increased cell death compared to controls. Based on this pilot we 
chose cytokine concentration 2 (5 ng/ml IL-1β + 25 ng/ml TNFα + 25 ng/ml INFγ) in our T1D model system, because it 

showed considerable cell death, but not too high. 
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Figure A4: Test of cytokine incubation time together with chemicals (BPA). 

The seeding of 120.000 cells/ml was performed at Friday. Exposure of cells with different BPA exposure was then performed 
Monday. Additionally, cells including controls were exposed to 24 and 48 h cytokines (20 mg/ml IL-1β+ 100 mg/ml TNFα+ 

100 ng/ml INFγ) at Tuesday and Wednesday, respectively. Eventually, Thursday cells were harvested and cell viability 
was measured using MTT. The MTT values shows that cell death after 48 h cytokine concentrations do not 
prevent any further cell death from exposure to chemicals. 
 
 
 
 

 
Figure A5: Test of appropriate cell number in relation to insulin secretion. 
Seeding of INS-1E cells was performed at Friday, with a density of 120.000 and 200.000 cells/ml in parallel wells. Thursday, 
cells were incubated in KRB buffer for 1 h, then 30 min with the two different glucose concentration; 7 mM or 16 mM 
glucose. Harvesting was then performed by transfer of the supernatant into ELISA plates in parallel wells. The double 
columns next to each other represent the two parallel wells of the 24 wells falcon plate (seeding plate), and compares the 
variability within the two identical cell wells. While the two lateral columns with different colour combination reflects the 
parallel wells of the ELISA plate, which compare variability of the two identical ELISA wells. The ELISA variability was 
less than the cell well variability, and therefore we chose to run the experiments with parallel wells in the cell plate and only 
single wells in the ELISA plate. Moreover, the insulin secretion had less variance at 120. 000 cells, therefore this cell density 
was chosen. 
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APPENDIX 3 

 

 

Figure A6: Amount of living and apoptotic/necrotic cells after low and high chemical concentrations and cytokines. 
INS-1E cells were seeded at 140.000 cells/ml, with medium shift on day 3, before 72 h exposure to environmental chemicals 
or cytokines. Cells exposed to DMSO only were used as controls. Cells were then harvested and stained with Hoechst/PI. The 
pictures illustrates the differences in effects by low and high dose chemical exposure and cytokine exposure at different time 
point. (a); control, (b); 500 nM of each of the chemicals MiBP, MnBP, MEHP and BPA,  (c); 50 μM of each of the chemicals 

MiBP, MnBP, MEHP and BPA, (d); 24 h cytokines, (e); 48 h cytokines.  
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Figure A7: Effect of cytokine and low dose of environmental chemicals on cell morphology. To illustrate the effect of 
cytokine exposure in the T1D model system, experiments were performed to compare the non-diabetic and T1D model 
system, in both one low and one high chemical concentration. INS-1E cells were seeded at 140.000 cell/ml, with a medium 
shift on day 3, before 72 h exposure to environmental chemicals. The last 48 or 24 h of this exposure, the cells were co- 
exposed to the pro-inflammatory cytokines IL-1β, TNFα and INF γ at 5 + 25 + 25 ng/ml, respectively. The pictures are taken 

from microscope at the end of the exposures, before harvesting. Picture a,c and d at the first column illustrates the effects of 
the cytokines at different time-points. (a); control cells only exposed to DMSO, (b); 500 nM of each of MiBP, MnBP, 
MEHP, and BPA, (c); cells exposed to DMSO and 24 h cytokines, (d); cells exposed to DMSO and 48 h cytokines, (e); cells 
exposed to 48 h cytokines in combination with 500 nM of each of MiBP, MnBP, MEHP,and BPA.   
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Figure A8: Effect of the high dose of environmental chemicals on cell morphology. INS-1E cells were seeded at 140.000 
cells/ml, with medium shift on day 3, before 72 h exposure to environmental chemicals. Cells exposed to DMSO only were 
used as controls. The pictures are taken from microscope the last day of exposure, before harvesting. (a); control, (b); cells 
exposed to 50 μM of each of MiBP, MnBP and MEHP,  (c); 50 μM BPA  (d); 50 μM  of each of MiBP, MnBP, MEHP and 
BPA. 
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APPENDIX 4 

 

 

Figure A9: T2D model system: insulin secretion after 6.7 mM and 16.7 mM glucose stimulation. INS-1E cells were 
seeded at 120.000 cells/ml, with medium shift on day 3, before 72 h environmental chemical exposure, as indicated. Cells 
exposed to DMSO alone were used as controls. After 72 h exposure, all wells were incubated in glucose free KRBH buffer 
for 1 h, before 30 min incubation with 6.7 mM or 16.7 mM glucose in KRBH buffer. Insulin secretion in cell culture 
supernatants was determined by ELISA. The bars illustrates data obtained from duplicates in 1 experiment only. Data are 
normalized, i.e. the mean of duplicates were divided by the mean of all the controls in that experiment, and expressed as 
mean ± SEM. Two-way ANOVA with Bonferroni post-test showed no significant differences. 
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APPENDIX 5 

 

Figure A10: Insulin secretion related to protein level. The figure illustrates the difference between insulin secretion 
expressed as ng/ml, and ng insulin per mg protein. INS-1E cells were seeded at 120.000 cells/ml, with a medium shift on day 
3, before 72 h environmental chemical exposure. Cells exposed to DMSO alone were used as controls. After 72 h exposure, 
all wells were incubated in glucose free KRBH buffer for 1 h, before 30 min incubation with 6.7 mM glucose in KRBH 
buffer. Data represents singlets from 1 experiment (a) Insulin secretion measured with ELISA. Data were normalized, i.e. the 
mean of duplicates were divided by the mean of all the controls in that experiment (b) Total protein content determined using 
a bio-rad dc protein assay according to the manufacturer`s instructions (Hercules, CA, USA). Data were normalized, i.e. 

divided by the mean of controls in that experiment. (c) Insulin release (ng/ml) was normalized to the protein content (mg/ml) 
and expressed as ng insulin per mg protein. 
 
 
 
 


