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Abstract  

 

In this study I investigated the effect of land fragmentation (LF) in Northern Ethiopia on 1) farm 

productivity, 2) efficiency and 3) crop diversity using stochastic production frontier (SPF) 

analysis and farm household model (FHHM) with factor market imperfections. The analysis is 

carried out at plot level mainly in a plot-panel framework using a cross-sectional sample data of 

421 households and their corresponding 1918 plots. Along with "plot size" and "farm size", I 

used three other land fragmentation indicators that are widely used in the literature: "number of 

operated plots", "distance to plots" and "SI-index" (where larger index means highly 

fragmented). 

Applying different econometric specifications, on 1) the dominant-crop model, 2) two-main-

crops model and 3) aggregated-output models, I found no evidence to the conventional claim that 

land fragmentation could be detrimental to productivity or efficiency; in fact, the results indicate 

to the opposite. A non-trivial positive and significant association is observed between 1) number 

of plots and productivity, technical efficiency and crop diversity and 2) between SI-Index and 

crop diversity. A negative association is observed between farms size and productivity, technical 

efficiency and crop diversity. These signs of positive implications of fragmentation on 

productivity and efficiency can be explained by its indirect effect through diversification than by 

diseconomies of scale. 

Signs of negative implication of land fragmentation are observed only in the dominant crop 

model that ignores diversification and farm integration. However, such analysis is 

methodologically inconsistent when farm production involves diversification, since higher 

fragmentation can counterbalance the negative impact through diversification.  
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1. INTRODUCTION  

Land is the major source of wealth and livelihood in rural Ethiopia and land policy is often 

regarded as part of welfare and food security policy (Haile et al., 2005). Population growth and 

the growing number of landless people have been the major challenges to policy makers of the 

country (Ghebru and Holden, 2008, Haile et al., 2005, Holden and Yohannes, 2002). In the past, 

policy makers have reacted to these challenges through frequent land reforms that focused 

mainly on egalitarian land redistribution to protect people and enhance food self-sufficiency, 

using land distribution as a safety net (Holden and Yohannes, 2002). Consequently, the per 

capita land holding, particularly, in the highlands of Ethiopia has considerably contracted 

(Deininger et al., 2006, Haile et al., 2005, Holden and Yohannes, 2002). Whether this contraction 

resulted in declining productivity per unit area is linked to the long-standing inverse-productivity 

debate (Cotula, 2009).  

 Recently, however, the Government of Ethiopia (GOE) emphasized on introducing large scale 

farms in parts of the country not only because it is believed to promote economic growth but also 

because it is perceived as an apt to structural transformation of the economy.
1
 Clearly, the 

government favors transforming the small scale “traditional” agriculture by opening investment 

doors to the emerging economies to get the most out of their technologies (Cotula, 2009, 

MoFED, 2010). This favoring of the GOE seems to be in line with the recent argument made by 

Collier (2008) who brought the debate on scale farming back to stage. Collier (2008) argued for 

introducing large scale farming in Africa as a way to create development. While small farmers 

are believed by many as “poor but efficient” (Schultz, 1964), technology is believed to change 

this relationship. So seems the motive for the GOE to embark on large scale investment on 

“green infrastructures” with the vision to transform the agricultural sector as well as the 

fundamental structure of the economy (MoFED, 2010).   

But the question remains, what led the GOE to radically switch its policy from emphasizing on 

small scale agriculture, for nearly two decades, to promoting large scale farming? Are there 

economies of scale in the agricultural sector in Ethiopia? Are small farmers who are operating on 

fragmented plots performing poorly? Could this be the reason for opening up the large scale, 

                                                             
1The Key Note addressed by the late PM. Meles Zenawi (2011) at the opening of the 6th African Economic 

Conference on “Green Economy and Structural Transformation in Africa” made it explicit that the only way to 

sustain structural transformation in Africa is through “Green Economy”.  Online resource, accessed 10.05.2013.   

http://www.africaneconomicconference.org/2011/updates/Speech%20by%20HE%20Meles%20Zenawi.pdf  

http://www.africaneconomicconference.org/2011/updates/Speech%20by%20HE%20Meles%20Zenawi.pdf
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nearly, land sales market?
2
 Since the strength of land as a safety net is eroding with the rapidly 

growing population, perhaps the GOE is seeking to provide alternative employment 

opportunities to the young (landless) population. Yet, the issue of economies of scale must be 

implicit to this view as well, since large scale farming is favored over entitling the young to land.  

With Constant Returns to Scale and proper functioning of the factor markets, land fragmentation, 

I would argue, should not create any inefficiency. In this study, I investigated the performance of 

small scale farmers operating on fragmented plots, in the Ethiopian Highlands, specifically in 

Tigray region. Tigray is a typical region characterized by traditional small scale farming that has 

persisted for centuries. That makes it conducive for investigating productivity and technical 

efficiency of small farmers and to assess whether there economies of scale in the sector.  

The average land holding in this region is among the lowest in the country, roughly estimated to 

be around 1 ha per household (Ghebru and Holden, 2008, Holden et al., 2011, Segers et al., 

2010). According to the statistics from Tigray Regional Plan and Finance Bureau (2011), more 

than 80 % of the regional population, relies on cultivating 1.23 million ha of arable land most of 

which are highly degraded and fragmented. Growing at 2.5% (CSA 2007), the increase in 

population size in this region further escalates the demand for more land despite the very little 

scope to increase the supply of land. Land, as a state property, has been periodically redistributed 

by the government in order to equitably accommodate the landless population (Ghebru and 

Holden, 2008, Holden et al., 2011). Consequently, farm households possess small and 

fragmented plots with varying degrees of fertility, size, and distance from homestead (Beyene et 

al., 2006); and presumably farm productivity might be constrained by the pronounced degree of 

land fragmentation (Rahman and Rahman, 2009) or possibly has been improved, if land 

fragmentation can serve as a safety net (Blarel et al., 1992). 

So what is land fragmentation? Land fragmentation is defined as the practice of farming a 

number of spatially isolated small plots of owned or rented land by the same famer (McPherson, 

1982). It can be caused by external factors, such as population pressure and land policy, or by 

farmers‟ own choice as a rational decision to maximize benefits and/or minimize risks (Blarel et 

al., 1992). Conventionally, land fragmentation was regarded as a detrimental factor to both 

farmers and the economy. Owing to this, policies that encourage land consolidation were top 

policy priorities among policy makers (Bentley, 1987). But recent studies, among others, by 

                                                             
2
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Bentley (1987) and Blarel et al. (1992) challenged this view for it can also be beneficial both to 

the farmers and the economy.  

While there are evidences across the world on negative aspects of farm fragmentation, such as 

constraining technological adoptions and investment on land (Niroula and Thapa, 2005), there 

are also positive aspects of it in terms of reducing price and production risks, smoothing labor 

supply, diversifying crop production, and matching soil types with the necessary food crops 

(Blarel et al., 1992, Di Falco et al., 2010, Hung et al., 2007). 

In Tigray, where the rural people depends mainly on rain fed agriculture, farming is a risky 

venture. Farmers who rely on subsistence farming, like those in Tigray, are likely to be risk-

averse. A fundamental behavior of a risk-averse farmer is making decisions that emphasize the 

objective of minimizing variations in total production (income) than maximizing total production 

(income). Crop choice and agricultural diversification decisions are the most common and key 

decisions often made by farmers in Tigray. This indicates that if land fragmentation, as claimed 

by Bentley (1987) and Blarel et al. (1992), can be beneficial in minimizing production and price 

risks as well as in promoting crop and agricultural diversity, then it is possible to have demand-

driven land fragmentation in Tigray, besides to the supply driven fragmentation. Thus, 

understanding the actual cause and effect of land fragmentation will be of crucial for appropriate 

policy recommendation.    

Two compelling motives are behind this study: local and global. The first motive is owing to the 

fact that the effect of land fragmentation on productivity and technical efficiency in Tigray is not 

well investigated. Despite being an important feature of the agrarian system, land fragmentation 

in Tigray did not get adequate scholarly attention as it should deserve. Mostly, it appeared only 

as an auxiliary to some other main objectives; even then, it is only one aspect of it, namely 

distance, which appeared commonly; see for instance, Holden et al. (2009) Holden et al. (2011) 

and Pender and Gebremedhin (2006).  

While the 1990‟s land reform and regional land policies emphasized on plot diversification to 

protect people and enhance food self-sufficiency using land distribution as a safety net, some 

studies revealed that land fragmentation, defined in terms of distance to plot, has constrained 

traditional soil fertility management practices (Corbeels et al., 2000), farming operations 

(Beyene et al., 2006) and investment on land (Holden et al., 2009). However, no study, to the 
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best of my knowledge, attempted to investigate its effect on productivity and efficiency in the 

Ethiopian highlands. Given the claim, elsewhere, that land fragmentation, if induced by 

egalitarian land redistribution, may improve food security and equity among farm households 

(Bentley, 1987, Blarel et al., 1992), its effect on productivity and efficiency in Tigray begs for 

thorough investigation; thus, the intention to contribute towards this gap.  

The second motive emanates from the fact that the discourse on the economics of land 

fragmentation is yet to resolve; and hence, my attempt toward contributing to the ongoing 

discourse. Several studies that are conducted across the world show mixed result vis-à-vis the 

effect of land fragmentation on productivity. Some found unambiguously negative effect of land 

fragmentation on production and recommended for land consolidation, for example, in 

Bangladesh (Rahman and Rahman, 2009), Pakistan (Parikh and Shah, 1994), Jordan (Jabarin and 

Epplin, 1994) and Rwanda (Bizimana et al., 2004). Others found ambiguous or insignificant 

effect of fragmentation on production and efficiency and demanded policy makers to be cautious 

in promoting land consolidation programs such as in Bulgaria (Di Falco et al., 2010), Vietnam 

(Hung et al., 2007), as well as Ghana and Rwanda (Blarel et al., 1992). In China alone the result 

is mixed. Nguyen et al., (1996) found land fragmentation to have significant economic cost while 

Tan et al., (2008) found ambiguous results.  

These mixed results might have emerged from variations in socio-cultural, political, economic, 

and environmental features of the study areas; as well as, I would argue, due to methodological 

reasons.
3
 For instance, for the Chinese case, Nguyen et al., (1996) derived their conclusion 

relying only on one indicator of land fragmentation while Tan et al., (2008) used three indicators 

and found mixed results for each indicator. Moreover, some of the earlier works concentrate 

mainly on cross-sectional analyses using simple linear regression models that have obvious 

limitations as to account for unobserved plot and household heterogeneity.
4
   

                                                             
3 Numerous factors can be listed within each features: a) Socio-cultural characteristics: including demography and 

resource endowment; b) Economic characteristics: including factor and product market functioning; access to credit, 

infrastructure and insurance; c) Political factors: including land policy and other policy priorities that reduce 

pressure on land; d) Environmental features: including agro-ecological settings, uncertainties and agricultural 

systems; all are likely to explain the mixed results.  
4 Not least recent studies reach conclusion using single (few) econometric model(s); posing a question about the 

robustness of the results. Thus, I intended to launch my analysis to rely on more than one indicator and several 

econometric specifications as a test for robustness of results. Detailed explanation on the type of indicators I used 

and methodological approach I followed in this study is provided in Chapter 5 and 6, respectively. 
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Moreover, the debate on the relationship between landholding size and productivity has not yet 

been resolved (Niroula and Thapa, 2005). Despite the conventional view of economies of scale, 

Schultz (1964) found inverse relationship between farm size and productivity in developing 

countries. Yet, others argued that this inverse relationship could be due to unobserved land 

quality and labor market imperfections (Benjamin, 1995, Bhalla, 1988, Bhalla and Roy, 1988, 

Udry, 1996) or due to bias in plot/farm size measurement (Holden et al., 2001) than due to 

diseconomies of scale (Niroula and Thapa, 2005). In fact, recently, Collier (2008) argued for 

large scale commercial agriculture for their production efficiency, cost advantage and facilitating 

innovation. This study also attempts to contribute toward this debate. 

The overall purpose of the study is, however, to investigate the current situation of land 

fragmentation in Tigray, Northern Ethiopia, and to examine its relationship to and effect on 

productivity, technical efficiency and crop diversity. To this end, comparative static analysis, 

based on the farm household model, is used to examine the relationships between land 

fragmentation and productivity. Empirical analysis is also carried out based on the theoretical 

framework of the farm household model to investigate its effect. The following three research 

problems (R1, R2, and R3) are then set to be empirically tested:  

R1. Whether land fragmentation reduces farm productivity.  

R2.  Whether land fragmentation could be correlated with soil quality variation that partly is      

unobservable and that can affect crop choice. 

R3. Whether land fragmentation causes technical inefficiency.  

The analysis relies on plot level primary data of cross-sectional structure. The data was collected 

during summer 2010 which constitutes plot level observations of 421 farm households operating 

on 1918 plots. Econometric analysis is carried out using farm household model (FHH), to 

analyze plot productivity and on-farm crop diversity, and using the stochastic frontier model (SF) 

to analyze technical efficiency. Different econometric specifications are used in order to check 

robustness of the results.  

The rest of the paper is organized as follows. Chapter 2 offers background information on land 

fragmentation, general back ground as well as specific to the study area. It discusses fundamental 

concepts of land fragmentation and provides a brief explanation of the evolution of land 



 
 

- 6 - 

fragmentation in Tigray. Chapter 3 reviews and summarizes the findings of various empirical 

researches that have been conducted across the world, early works as well as recent findings. 

Chapter 4 presents the theoretical approaches that are used to investigate the economic 

implications of land fragmentation. Chapter 5 briefly introduces the study area, sampling 

procedure and data type. It also offers detailed explanation of the variables used in the different 

model analyses along with their expected signs. Chapter 6 demonstrates the methodological 

approaches used to address the three research problems. Chapter 7 presents and discusses the 

findings with respect to each of the research problems. Chapter 8 concludes.  

The Appendix part offers additional result summary tables that complement my arguments in 

Chapter 7 while addressing the main research objective. The tables in Appendices B, C and D are 

intended mainly to illustrate robustness of the results corresponding to each of the research 

problems. 
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2. BACK GROUND  

2.1. Land Fragmentation: Definition and Overview 

2.2. Definition 

Land fragmentation is a common feature of agrarian economy. In earlier literatures, it is defined 

as the practice of farming a number of spatially separated plots of owned or rented land by the 

same farmer (McPherson, 1982); and as a type of land ownership pattern where “a single farm 

consists of numerous discrete parcels, often scattered over a wide area” (King and Burton, 1982).  

In this study, however, the first definition is used with slight modification where land 

fragmentation is perceived as the practice of farming distinct plots (not necessarily spatial 

separated parcels) of owned and/or rented land by the same farmer. The reason for this 

modification is that farmers, as a common practice in rural Ethiopia, may temporarily divide a 

homogenous unit of land into two or more plots on which multiple cropping is practiced in one 

season, and perhaps mono-cropping in the next season.  It is based on this definition and 

realization of plots that this study analyses the economics of land fragmentation.  

In earlier studies, land fragmentation was often considered as an obstacle for agricultural 

development (Bentley, 1987, Di Falco et al., 2010, Hung et al., 2007, Jabarin and Epplin, 1994). 

As a result, several countries have been encouraging land consolidation policies including 

Kenya, Tanzania and Rwanda (Blarel et al., 1992), China (Nguyen et al., 1996), Vietnam (Hung 

et al., 2007), and Bulgaria (Di Falco et al., 2010). However, some literature questioned this view 

and found that land fragmentation can be an adaptive strategy and under certain circumstances 

can have beneficial effects (Blarel et al., 1992, Tan et al., 2008).  For instance, it can facilitate 

risk management through crop diversification (Di Falco et al., 2010) and operating on scattered 

plots to reduce the risk of total loss from flood, drought, fire and other perils; it may enable 

households spread their own labor over the seasons, and, if induced by egalitarian land 

redistribution, it may improve food security and equity among farm households (Bentley, 1987, 

Blarel et al., 1992).  

On the other hand, land fragmentation may have some obvious problems.  It can cause difficulty 

in management and supervision of fragmented plots, although how significant remains an 

empirical issue to solve. It can also lead to increased travelling time between fields which may, 

in turn, induce loss of working hours as well as higher transport cost of inputs and outputs. 
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Negative externalities are likely to co-exist with fragmentation in terms of reducing the scope for 

irrigation, soil and water conservation (SWC) structures and adoption of other agricultural 

technologies. Furthermore, fragmentation may have greater potential for disputes between 

neighbors (Blarel et al., 1992).    

2.2.1. Causes of Land Fragmentation  

In line with the pros and cons of land fragmentation, two conventional explanations appeared in 

the literature with regard to the emergence and persistence of land fragmentation, namely the 

demand-side explanation and the supply-side explanation (Bentley, 1987, Blarel et al., 1992).  

While the demand-side explanation views land fragmentation as a choice variable for farmers, 

the supply-side explanation treats it as an exogenous imposition on farmers resulting from, for 

instance, population pressure, inheritance, and land scarcity. In what follows a brief overview of 

these explanations is presented. 

The demand-side explanation presumes free choice and views fragmentation as a rational 

response of farmers. In this case, the private benefits of land fragmentation might exceed its 

private cost (Blarel et al., 1992, Di Falco et al., 2010). For instance, it is argued that in the 

presence of heterogeneous land quality, farmers may prefer to operate on scattered plots as a 

safeguard. Where there is higher likelihood of production risk (such as localized hailstorm, 

thunderstorm, or flood) and lower risk spreading mechanism (such as insurance and credit), 

farmers may rationally operate on spatially dispersed plots to spread risk and reduce the variance 

of total output. Similarly in the absence of labor market, land fragmentation can facilitate 

smoothing labor supply across the scattered plots particularly during peak seasons (Blarel et al., 

1992). 

Likewise, in cases of commodity market failures, farmers may overcome the risk of household 

consumption by adopting several products on fragmented lands. Furthermore, whenever 

diseconomies of scale exist for a given crop production with respect to individual parcels, 

farmers may split the parcels into fragmented plots to optimize production by harvesting 

diversified crops. Such practices are very common in Northern Ethiopia, particularly in Tigray. 

Yet, whether these seemingly rational choices of farmers are supported by empirical evidence 

will be discussed in Chapter 3 and will be part of the analysis in this study.  
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The supply-side explanation focuses on rather involuntary land fragmentation imposed on 

farmers by various exogenous factors. The fact that land is scarce in most agrarian countries 

makes land fragmentation inescapable as long as there is population pressure and a 

corresponding egalitarian land distribution policy. With a growing population pressure not only 

the already arable lands but also communal properties might be turned into fragmented holdings. 

Similarly, land scarcity may lead to fragmented holdings as farmers in quest of additional land 

will tend to accept any available parcel of land within reasonable distance of hours (Tan et al., 

2006). Where labor is chip, as is the case in most African and Asian countries, crop production is 

mainly carried out by hand cultivation and animal traction which is suited to small scale and self- 

sufficient production. Under such circumstances fragmentation is likely to increase. Legal rights 

and customs for partible inheritance and farmers desire to provide each of several heirs with land 

of similar quality is another possible explanation for land fragmentation (Ibid). Moreover, the 

presence of imperfect land market, laws that restrict land transaction, and missing credit markets 

as well as limited off-farm employment opportunities are also among exogenous factors of land 

fragmentation (Blarel et al., 1992, Tan et al., 2006).  

For the Tigray case, land fragmentation might be explained mainly by population pressure and 

the land allocation process. Several authors argued that the egalitarian principle of land 

allocation with an attempt to accommodate the landless fairly, by emphasizing on plot 

diversification based on plot quality and location, has led to fragmented holdings (Beyene et al., 

2006, Holden and Yohannes, 2002, Segers et al., 2010). A recent land proclamation issued by the 

Tigray Regional State (TLP 2007)
5
 indicated that each men and women, above 18, who reside in 

rural Tigray, is entitled to a share of the village land, to at least 0.25 ha per household, on a 

usufruct basis. Moreover, the proclamation constitutes legal provision of partible inheritance that 

might play a role in further promoting land fragmentation in the region. Nonetheless, such 

arguments need to be supported empirically which is beyond the scope of the study; yet, it is 

recognized as a potential for future investigation.  

2.2.2. Measuring Land Fragmentation  

Since there is no standard measurement of land fragmentation (Bentley, 1987, Hung et al., 2007), 

it is difficult to determine whether a given farm household is „very fragmented‟ or „less 

                                                             
5 TLR (2007). A regulation to determine the Administration and Using of Rural Land. Tigray Regional State, 

Ethiopia. 
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fragmented‟ as compared to others. However, several authors make use of some potential 

indicators to measure land fragmentation. Among the potential indicators that appeared in the 

literature include: farm size, number of plots, (average) plot size, plot shape, (average) plot 

distance, spatial distribution, the size distribution of the fields, and/or the Simpson Index (SI). 

The most common ones are, however, number of plots, the Simpson Index, average plot 

distance, and average plot size. This study will make use of the later common indicators, except 

average plot size. Detailed explanation on each of the indicators employed in this study is 

provided in chapter 5.   

2.3. Overview of Land Fragmentation in Tigray 

Provided with a brief background on the definition, causes and implication of land 

fragmentation, one may wonder on how land fragmentation came into existence in the study 

area. While still a thorough empirical investigation is needed, in this session I attempt to provide 

a brief overview of land fragmentation processes and consolidation practices in Tigray based on 

reviewing speculations of some studies. 

2.3.1. The Evolution of Land Fragmentation 

Prior to 1975, it is argued, land tenure system in Ethiopia was characterized by great inequality, 

insecurity, eviction, and underutilization in which a vast majority of land was concentrated in the 

hands of few but powerful absentee landlords (Deininger et al., 2003). Only persons who could 

trace their paternal and maternal ancestry to the village founders held resti rights on the village 

farmland (Segers et al., 2010). Although, land was less fragmented during this period, it greatly 

lacks fairness in its distribution which ultimately brought the regime to its end.  

Following the overthrow of the imperial regime, land reform was initiated by the Marxist 

government (the Derg) when land was nationalized and declared as “public property” under 

proclamation 31, 1975. The government then provided user rights to the cultivators with highly 

restrictive transferability rights of any kind except inheritance to immediate family members 

(Deininger et al., 2006, Haile et al., 2005, Segers et al., 2010). During its reign, the Derg 

prohibited not only the transfer of land rights but also the hiring of labor putting the landless 

households in a more challenging situation (Ibid). Since the non-farm sector was underdeveloped 

and the scope for expansion of cultivated land was limited, the government had to redistribute 

land from the relatively land-rich to the relatively land-poor households (Holden and Yohannes, 
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2002). As a result, the Derg continued to frequently redistribute land in order to maintain its 

egalitarian principle of land allocation with each household receiving land proportional to family 

size (Ibid). Needless to say, this frequent land redistribution coupled with the (exceptional) land 

policy provision of partible inheritance and prohibition of land renting
6
 must have played 

significant role toward land fragmentation in the country.  

Following the collapse of the Derg regime, the current government overtook power in 1991 and 

withheld the major policies of the tenure system with few notable exceptions. Land remained 

public property and farmers were still granted lifetime user rights; however, regional 

governments were set autonomous over the land that resides within the region. Land rentals, as 

well as hiring of labors, have been officially permitted, and the frequency of land redistribution 

was to be reduced (Deininger et al., 2006, Haile et al., 2005, Holden and Yohannes, 2002, 

Holden et al., 2011, Segers et al., 2010). While the latter two points can be regarded as a move 

toward reversing land fragmentation, the ever growing population pressure and the existing law 

of partible inheritance are still decisive in furthering land fragmentation in the region in 

particular and in the country in general.      

In Tigray, the regional government had already declared an end to administrative land 

redistribution in the first half of the 1990s (Deininger et al., 2003, Segers et al., 2010). During its 

last redistribution, all arable land in each village was initially classified based on local 

knowledge into three classes: first on the basis of fertility, as Regwid (fertile), Machelay 

(intermediate) and Reqiq (less fertile) (Segers et al., 2010) and, next on the basis of vicinity to 

homestead as Gedena (adjoining the homestead), Dehri-bet (near the homestead), and Wofri (the 

farthest plot from the homestead) (Beyene et al., 2006). Then, each land from each class was 

randomly assigned to farmers using lottery system, except in the first case where Gedena were 

raffled among the owners of the houses (Beyene et al., 2006, Segers et al., 2010). In this way 

land of different quality and size was fairly distributed among farm households taking family 

size into consideration. As a result, large households received either more scattered plots, or 

relatively larger plots, compared to their counterparts.  

According Segers et al. (2010) and Haile et al. (2005) each adult farmer who was residing in the 

villages of Tigray during the redistribution was, in principle, entitled to a certain size of land, at 

                                                             
6 Some authors argued that land renting practices can consolidate land into the hands of households who rented in 
the land, eg., Tan et al. (2006).  
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least 0.5ha However, practically it was difficult to maintain this principle due to shortage of 

arable land and population pressure. Thus, some unfortunate farmers received below the 

minimum size. Moreover, with time, new born babies and landless people (such as immigrant 

farmers from other provinces) emerged, bringing new challenges to the local administers. To 

deal with these challenges, the local administrators had only two opportunities; i.e., lands of 

people who died without heirs and few converted communal lands. These lands, although small 

in magnitude, were allocated to the most senior landless and land-poor farmers (Segers et al., 

2010). Most youngsters, however, acquired land through inheritance from parents or 

grandparents, often involving division of land among several heirs. Consequently, not only the 

average land holding did persistently fall, but also the number of operational plots increased 

simultaneously over time (Ibid).   

Clearly, this indicates that the land allocation process forced by the population pressure could be 

the leading factor of aggravating land fragmentation in the region. In fact, similar experience was 

reported in China by Tan et al. (2006) who found implementation of such an egalitarian principle 

of land distribution to be the major factor of land fragmentation in China.   

2.3.2. Farm Dynamics and Operational Holdings in Tigray 

Comparing average land holding in Tigray over time, Beyene et al. (2006) argued that average 

land holding shrunk from 1.7 ha (varying from 0.37 to 3.5 ha) in 1964 down to 1.2 ha (ranging 

from 0.5 to 2.0 ha) in 1994, with over 60% of the households owning less than 1.0 ha. 

Furthermore, in 2001, the average holding is reported to be 0.5 ha, ranging from 0.1 to 1 ha, with 

2.46 plots per household, on average (Deininger et al., 2003, Segers et al., 2010).  

Table 1  Trends in per capita land holding in Tigray 

Year Land Per Capita (ha) Average no. 
of plots per 

HH 

Regional 
land Gini 

Coefficient 

Sources 

Mean Max Min 

1964 1.7 3.5 0.37   Beyene et al. (2006) 

1994 1.2 2 0.5   Beyene et al. (2006) 

2001 0.5 1 0.1 2.46  (Deininger et al., 2003) 

2005 0.25*    0.45 Segers et al. (2010) 

2009 0.2*     Holden et al. (2009) 

*The authors estimated average land holding per HH. Based on the data I have in this study, I assumed average family size to be 
around 5 to convert their estimation to per capita land holding. 
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In 2005, the regional land Gini-coefficient was estimated ~0.45 (Segers et al., 2010). Recently, 

following the 2007 regional Land Administration and Use Proclamation (LAUR 2007)
3
, Holden 

et al. (2009) and Holden et al. (2011) estimated the average land holding per household to be 

around 1ha. They have also reported improvements in land rental market mainly due to land 

certification. Summary of the trends observed in per capita land holding is presented in Table 1. 

2.3.3. Traditional Land Management Practices and Land Fragmentation  

Traditionally farmers in Tigray identify three types of plots based on plot quality and location 

from homestead, namely: Gedena, Dehri-Bet, and Wofri (Beyene et al., 2006). Gedena possess 

good quality and is located near the vicinity of the homestead and embodies significant cultural 

and social values; Dehri-Bet is located further from the homestead; and Wofri is the furthest of 

all. The cultural significance and location of the plot determines farm management practices and 

transactions of the land which, in turn, determines the productivity and technical efficiency of 

land. Beyene et al. (2006) argued that farmers tend to operate lands of the highest cultural 

significance – the Gedena – on their own and with better management and closer inspections 

instead of renting them out.  

As the distance to plots increases, farmers seem to attach less symbolic value and put lesser 

effort on their management. Corbeels et al. (2000) argued with land fragmentation, particularly 

distance, farmers have increasingly abandoned traditional soil fertility management practices 

(such as fallowing, manuring, terracing, and using crop residues). This can led to poor soil 

fertility and, perhaps, to decline in productivity. Moreover, the more distant plot from the 

homestead, the higher the likelihood to rent it out (Beyene et al., 2006). Elsewhere, significant 

productivity difference is reported between own operated and rented out plots (Kassie and 

Holden, 2007).  

One of my objectives is to test the validity of these arguments, i.e., whether a decline in 

productivity can be observed due to fragmentation (distance), whether directly or through poor 

soil fertility status or participation in rental market.        

2.3.4. Land Consolidation Practices in Tigray 

Some argued that proper functioning of land market can serve as a means of land consolidation 

(Nguyen et al., 1996, Niroula and Thapa, 2005, Tan et al., 2006). Therefore, one may expect the 
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existence of land rental market in Tigray to play a role in consolidating land. However, Beyene 

et al. (2006) claimed that physical factors such as plot proximity and land quality are less 

significant criterion during land transaction. Instead, farmers consider trustworthiness, evaluated 

based on social relationship, as the most decisive factor, which implies that plots are not moving 

to plots but rather to trustworthy tenants. On the other hand, Ghebru and Holden (2012) argued 

that land rental market in Tigray is mainly characterized by “‟Reverse-Share-Tenancy‟ where 

landlords are poor in non-land resources […] while tenants can be best described as non-land 

asset rich landowners”, which implies that plots are moving mainly to non-land assets, not 

necessarily to plots.  

Jointly, these arguments indicate that the land rental market may not necessarily consolidate 

land. Renting practice may consolidate land 1) in terms of increasing the size of total operational 

land holdings, if land moves from the relatively land-poor to the relatively land-rich; or, in the 

‟Reverse-Share-Tenancy‟ case, if the relatively land-rich landlord rent-out substantial size of 

her/his land so that the size of land operated by the tenant is greater than the size of the landlords 

land endowment; 2) in terms of scaling up plot size, if the tenant is lucky enough to rent-in plots 

adjacent to his own plot; or 3) in terms of reducing distance to plot, if the physical proximity of 

plots is closer to the tenants‟ residence than the landlords‟.  Yet, we have the limitation to 

explain the degree of fragmentation if both total operational land holding (farm size) and number 

of plots increase in the same direction.  

Despite this argument, however, there have been actual land consolidation practices by local 

farmers soon after the redistribution. Haile et al. (2005) and Segers et al. (2010) reported that 

farmers who have formal user rights on plots that are far from their own home but near other 

farmer‟s home have exchanged plots. Alternatively, exchanging parties did obtain plot(s) 

adjacent to field(s) for which they already have the use rights, thereby reducing the 

fragmentation of their landholding. Moreover, upon the death of a parent or grandparent, there 

exists a legal restriction concerning the division of landholdings among heirs to prevent land 

from further fragmentation. Landholding of a deceased person can be divided among heirs 

legally, only if no plots smaller than 0.25ha are created (Segers et al., 2010). Likewise, the 

practice of “joint ownership” of inherited land, where heirs decide to jointly own and manage 

their ancestral land, is another important land consolidation practice in the region.  
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3. LITERATURE REVIEW  

A number of studies have examined land fragmentation in different countries and regions 

covering a wide range of topics including: explanations of land fragmentation, cost estimates of 

fragmentation, effect of land fragmentation on agricultural production, and methods used to test 

the effects of land fragmentation on agricultural production. In most cases, there are plenty of 

unresolved issues often reflected by contrary findings. In what follows a brief review of literature 

on each of these points will be presented. Taking no side for the moment, exemplary arguments 

from both sides will be presented.  

3.1. Deriving Forces of Land Fragmentation  

Several studies examined causes of land fragmentation in different parts of the world. For 

instance, empirical analysis on factors of land fragmentation in China by Tan et al. (2006) 

reported the egalitarian land distribution policy of China, which aimed at equitable “asset 

distribution”, to be the major deriving force of land fragmentation. Cultivation of high value 

added crops, particularly in the suburban area, was also found to associate with higher land 

fragmentation. Furthermore, grain quota, off-farm employment opportunities, and proper 

functioning of land rental markets were found to associate with lower land fragmentation. 

Similarly, in South Asia Niroula and Thapa (2005) found higher dependency on agriculture as 

the main cause of land fragmentation. Other structural problems including the law of inheritance 

of paternal property, lack of progressive tax on inherited land, heterogeneous land quality, and an 

underdeveloped land market were identified as significant determinants of land fragmentation. 

3.2. Land Fragmentation, Productivity and Technical Efficiency   

Studies on the link between land fragmentation, farm productivity and efficiency are mixed and 

inconclusive. For example, in Bangladesh Wadud (2003) and Rahman and Rahman (2009) 

highlighted that land fragmentation has a significant detrimental effect both on productivity and 

efficiency. Similarly, Parikh and Shah (1994) reported that land fragmentation reduces efficiency 

in rice production in Pakistan. In Rwanda, too, Bizimana et al. (2004) found greater economic 

inefficiency in highly fragmented plots.  In contrast, Blarel et al. (1992) concluded that land 

fragmentation in Rwanda and Ghana “does not seem to have any adverse impact on the 

productivity of land.” Although, Di Falco et al. (2010) (Bulgaria) and Hung et al. (2007) 
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(Vietnam) reported a reduction in productivity due to land fragmentation, the net effect is 

inconclusive due to the positive impact revealed through enhancing agro-biodiversity and labor 

efficiency, respectively. Such contradiction is not limited to cross country results, rather it is also 

observed on studies within a given country. In China, for instance, while Wan and Cheng (2001) 

and Chen et al. (2009) reported significant detrimental effect of land fragmentation on 

productivity and efficiency, Wu et al. (2005) found no significant effect.  Similar trends are also 

observed with respect to the link between land fragmentation and production cost, for instance, 

Jabarin and Epplin (1994), Nguyen et al. (1996), and Tan et al. (2008). These mixed findings can 

be explained by variations in methodological approaches, unobserved plot heterogeneity, or 

variations in market, agro-ecological, demographic and cultural conditions.  

3.3. Land Fragmentation and Production Cost  

Land fragmentation as reflected in average plot size was reported to have significant economic 

cost in the production of Wheat in Jordan (Jabarin and Epplin, 1994) and in the production of 

Maize, Rice and Wheat (major grain crops) in China (Nguyen et al., 1996).  In contrast, captured 

by three indicators, the effect of land fragmentation on the cost of rice production in China was 

reported to be inconclusive for two reasons (Tan et al., 2008): First, although farm size and 

distance to plots were found to associate with production cost, number of plots and plot size 

distribution were not. Second, labor efficiency was significantly and positively correlated to 

fragmentation, specifically to the number of plots a household operated on. It is argued that this 

significant positive correlation can “counterbalance the negative impact of fragmentation” and 

hence the net effect is ambiguous (Tan et al., 2008). Despite such contradictions, however, most 

authors (Bentley, 1987, Blarel et al., 1992, Nguyen et al., 1996, Niroula and Thapa, 2005, Tan et 

al., 2008, Wan and Cheng, 2001) agreed that distance to plot have an economic cost in terms of 

time wasted travelling from plot to plot, with few exceptions (such as Ilbery (1984)). Moreover, 

the view that land fragmentation deters adoption of agricultural innovations is more or less 

undisputable (Bentley, 1987, Niroula and Thapa, 2005, Rahman and Rahman, 2009).         

3.4. Land Fragmentation and Labor Productivity and Efficiency 

With respect to impact on labor productivity and efficiency, authors such as Bentley (1987), 

Blarel et al. (1992), and Hung et al. (2007) found similar result as Tan et al. (2008) that land 

fragmentation facilitates labor smoothing activities, thereby elevating efficiency of labor 
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utilization. Contrarily, Jia and Petrick (2011) argued that “land fragmentation indeed leads to 

lower agricultural labor productivity" in China. Similarly, Corbeels et al. (2000) argued that land 

fragmentation in Tigray made soil fertility management increasingly labor intensive which led 

farmers to “abandon soil fertility management practices” that resulted in poor soil fertility status.   

3.5. Land Fragmentation and Risk Management 

With regard to the link between fragmentation and risk, there is a general consensus, supported 

by ample evidence, that in areas with higher production and market risks, farming fragmented 

plots can be a viable mitigation measure. Blarel et al. (1992) found that risk, measured by the 

variance of total farm income per hectare, declines linearly as the Simpson Index (a measure of 

land fragmentation) increases. They then concluded that “fragmentation increases the diversity of 

agro-climatic conditions available to farmers [that] leads to more diversified cropping pattern”. 

Likewise, Wu et al. (2005) found high share of land devoted to grain production in China as “a 

risk aversion strategy to ensure household self-sufficiency”. Consequently, Wu et al. (2005) 

cautioned policy makers‟ effort toward consolidating land. Consistent to this, Sikor et al. (2009) 

argued that land fragmentation in Albania “is not a rigid constraint on production but resulted 

from producers‟ strategic risk spreading”. As a result, Sikor et al. (2009) emphasized on “the 

need to support desirable adaptations initiated by local communities” instead of advocating for 

centrally initiated land consolidation programs. Moreover, it is even argued  that “high-risk areas 

should be left fragmented” (Bentley, 1987).  

3.6. Land Fragmentation and Integrated Farm Productivity 

The scope of most economic evaluation of land fragmentation is narrowly focused in the sense 

that efficiency analysis is often limited to one or few aspects of production. Clearly, such 

approaches are likely to underestimate (or overestimate) farm efficiency particularly in areas that 

are characterized by mixed farming; i.e., simultaneous production of crops, vegetable, and fruits 

as well as animal husbandry. To this end, Rosset (2000) demonstrated evidently that small farms, 

often characterized by farming fragmented plots, are more productive, more efficient, and able to 

contribute more to economic development than large farms if efficiency measurement involves 

total output than a single crop; namely, the output of all crops on a designated plots – including 

various grains, fruits, vegetables, fodder, animal production, and so on. Similarly, investigating 

the link between agro-biodiversity and land fragmentation at micro-scale, Di Falco et al. (2010) 
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concluded that farm fragmentation is positively correlated with the number of crops (farm-

biodiversity) which, in turn, is positively correlated with farm profitability. On the other hand, 

del Corral et al. (2011) identified that profit in the Spanish dairy farms increases in the range 

between 9.4 and 14% owing to land consolidation program.  

3.7. Review of Policy Recommendations  

In their book titled “Modern Macroeconomics: its origins, development and current state”, 

Snowdon and Vane (2005:7) wrote “economists tend to disagree more over theoretical issues, 

empirical evidences, and the choice of policy instruments than they do over the ultimate 

objectives of policy.” Quite similar trend is observed in the literature on economics of land 

fragmentation. Despite the significant difference observed in their empirical findings, most 

authors tend to converge into almost tantamount policy prescriptions toward the same goal. 

Three dominant prescriptions are proposed by authors, regardless of their positive, negative or 

ambiguous evidences. The first policy prescription emphasizes on creating off-form and non-

farm employment opportunities. The rationale is that doing so will reduce pressure on land and 

retard further land fragmentation. Examples include: Blarel et al. (1992), Nguyen et al. (1996), 

Niroula and Thapa (2005), Rahman and Rahman (2009), Tan et al. (2006)  and Wu et al. (2005). 

The second prescription emphasizes on promoting rural markets particularly land, labor, food, 

and credit markets (Examples: Ibid; Tan et al. (2008); Di Falco et al. (2010)). Holden et al. 

(2012) demonstrated that promoting the non-land market alone could ensure production 

efficiency with out the need for land market. They argued that the standard neoclassical 

household model (Singh et al., 1986) can give efficient outcomes even without land market, 

given the non-land factor markets function appropriately. Thus, promoting not only the land 

market but also the non-land factor market alone can enhance productivity. Similarly, it is argued 

that the availability of such markets can enhance “the ability of farmers to adjust optimally the 

extent of fragmentation (or consolidation) of their holdings over time” (Blarel et al., 1992).  

The third dominant prescription is based on the belief that factor markets can correct the side-

effects of land fragmentation; and that it demands limited government intervention; Examples 

include: Nguyen et al. (1996) and Rahman and Rahman (2009), to whom land fragmentation is 

costly and detrimental to productivity, Niroula and Thapa (2005), to whom the implication of 

land consolidation is not clear, and Blarel et al. (1992) and Di Falco et al. (2010), to whom land 
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fragmentation is beneficial for risk management and crop diversity (Blarel et al., 1992, Di Falco 

et al., 2010). All ended up recommending less (modest) government intervention. The main 

rationales are the existence of mixed results elsewhere, the uncertainty on the overall effects of 

land fragmentation and the doubt that farmers may not perceive land fragmentation as a problem 

(Niroula and Thapa, 2005). Other recommendations include adoption of new technologies, 

expansion of extension system and infrastructure development (See Table 2 for summary).  

Table 2 Summary of Some of Land Fragmentation Literatures 
Author(s) Study 

Area 

Effect on Method Indica- 

tors  

Result Conclusion Recommendation 

Blarel et 
al., (1992) 

Ghana 
Rwanda 

Production Pooled OLS SI, N 
D, A 

  Yield 

  Cost 

Inconclusive 

LC is unlikely to 
increase 
productivity 
significantly  

Focus on reducing 
root causes of LF. 
Promote land & non-
land factor markets. 

Di Falco et 

al., (2009) 

Bulgaria Agro-

biodiversity; 
 
Farm Profit 

2SLS 

(Village 
fixed effect) 

N, D, A   Profit 

  Agro-

biodiversity 
(   Profit) 

Inconclusive 

Policy measure of 

LC must carefully 
maintain the net 
effect of LF 
between Agro-
biodiversity and 
profit. 

Instead of LC 

improve functioning 
of land, labor, credit 
and food markets, and 
access to improved 
technology and off 
farm employment.  

Hung et 
al., (2007) 

Vietnam  Labor 
Efficiency; 

Land 
Productivity 

Standard 
FHHM 

(Frontier 
Regression) 

N, 
 

N*labor 

  Production 

 
    Labor use 

 

Inconclusive 

Real benefits to 
FHHs from LC 

may not be 
apparent until the 
real opp.cost of 
farm labor begins 
to rise. 

Consolidate by 
creating new off-farm 

jobs and movement 
of agricultural labor 
force to other sectors 
of the economy.  

Jabrin and 
Epplin 
(1994) 

Jordan Production 
Cost; 
Efficiency 

GLS A   Cost 

  Production 

Efficiency  

LF is indeed an 
impediment to 
efficient wheat 

production. 

Consolidate by 
encouraging land 
market. 

Nguyen et 
al., (1996) 

China Production 
cost; 
Productivity 

Production 
Function 

A   Cost 

  
Productivity 

Inconclusive 

Outcome could 
be expensive in 
terms of output 
forgone.  

LC with less gov‟t 
intervention; improve 
land market, grain 
market and access to 
credit 

Tan et al., 

(2008) 

China Cost 

Efficiency  

FHHM A, D 

 
SI,  

  Cost 

 
  Cost 

Inconclusive 

The net impact on 

total production 
cost is not 
significant. 

LC can stimulate 

technological 
adoption, but also can 
reduce agricultural 
employment and 
increase the rural 
labor surplus.  

Rahman 
and 

Rahman 
(2008) 

Bangla 
desh 

Production 
Efficiency 

SPFA 
(MLE) 

N   
Productivity 
and 
efficiency 

 

Productivity and 
efficiency are 

adversely affected 
by land 
fragmentation in 
Bangladesh. 

Address the structural 
causes underlying the 

process of LF: law of 
inheritance and 
political economy of 
the agrarian sector. 

Parkikh 
and Shah 
(1994) 

Pakistan Production 
Efficiency  

SPFA 
(MLE) 

N Negative 
Relationship 
(no causality 
identified) 

LF can be result 
of technical 
inefficiency 
rather than a 

cause of it.  

Increased education 
and availability of 
credit along with land 
consolidation would 

improve efficiency.  

SI= Simpson Index; N= Number of Plots; D=Average plot distance; A=Average Plot size; FHHM= Farm Household Model 
(Production Approach); SPFA= Stochastic Production Frontier Analysis approach; MLE=Maximum Likelihood Estimate; LF= 
Land Fragmentation; LC= Land Consolidation; HH= Household; TC=Transaction Cost;   
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4. THEORETICAL FRAMEWORK 

Various theoretical frameworks appear in land fragmentation literatures in analyzing its 

economic implications. Stochastic production frontier models and farm household models are the 

common ones. As already argued in the introduction chapter, the observed mixed result in the 

literature of land fragmentation could be attributed, somehow, to methodological approaches. 

Thus far, authors tend not to include research methodology as explanatory factor. Following the 

methodological approach of Holden et al. (2001), more than one methodology is applied in this 

study in order to check the validity and robustness of the results. Thus, follows a brief 

explanation of analytical frameworks relevant to addressing the three research questions.  

4.1. Farm Household Model  

Most of the empirical works on economic analysis of land fragmentation tend to use the standard 

production function with various model specifications and functional forms. However, since 

such analyses are dealing with small farmers who operate on fragmented plots, often in an 

imperfect factor market settings, production function can be appropriate analyzed if it is built 

upon farm household models that take account of other farm decisions than mere production 

decision. In the absence of perfect market production and consumption decisions are intricate 

(Sadoulet and De Janvry, 1995). Some authors, like Hung et al. (2007), built their model on the 

standard farm household model that assumes farm households‟ production and consumption 

decisions to be separable. Since this assumption is mostly unrealistic, particularly with respect to 

the study area (Tigray), where factor markets are imperfect (Ghebru and Holden, 2008, Holden 

et al., 2011), productivity analysis has to be carried out based on farm household model with 

market imperfections as suggested by Sadoulet and De Janvry (1995) and Udry (1996). Similar 

approaches were used by Tan et al. (2006) and Holden et al. (2001) although with different 

objectives. The former‟s emphasis was on uncovering the effect of land fragmentation on cost 

efficiency (as opposed to production efficiency) in rural China and the latter‟s approach was a 

general analysis of land productivity with market imperfection in rural Ethiopia. This study is 

built on the approach by Holden et al. (2001) with land fragmentation indicators being the main 

variables of interest.  
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4.1.1. Productivity With-in a Farm Household Model Approach 

The theory of farm household deals with the decision making process of rural households that 

attempt to attain their goals and aspirations using their limited resources (such as land, labor, and 

oxen) and choosing among alternative productive activities (such as mono-cropping, multiple 

cropping, on-farm or off-farm activities) (Singh et al., 1986). The model accounts for 

interdependence of household production and consumption decisions. The following model 

illustration is due to Sadoulet and De Janvry (1995) and Holden et al. (2001).  

Suppose a household     with a given level of agricultural ability      and endowed with a fixed 

amount of land ( ̅ ), labor ( ̅ ), and capital ( ̅ ), where capital includes oxen (traction power), 

and other farm inputs ( ̅    has a utility maximization problem defined by:  

                   
 
   

    
           (4.1)  

where    is vector of consumption goods of household      which is a combination of goods that 

are produced (  
 )  market purchased    

   and home time (leisure)    
  ; and   is a set of 

household characteristics.  

Assuming perfect market and perfect information and that household     operates on   numbers 

of plots, plot level output (   ) can be defined as a function of the household specific 

agricultural ability        operating plot size (   ), labor (   ), capital (   ), and a vector of other 

inputs employed (   ) (such as seed, fertilizer, manure, herbicide, and pesticide):  

       (                 )       (4.2) 

where ∑              is the total operating area of household  ; ∑              is the total 

labor used in the production by household  ; ∑             is the total operating capital of 

household  ; ∑              is the total inputs used by household   and    is the farm (plot) 

characteristics which is assumed to include the degree of land fragmentation along with land 

quality, soil depth, soil type, slope, etc… as factors that affect farm productivity; 

Assuming production decision is made at household level, the farm level aggregated production 

function will have the form: 

                             (4.3) 
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which is subject to the following resource constraints: 

     ̅     
   

     ̅     
            (4.4) 

     ̅     
  

     ̅     
  

where   
  is the net land rented-in or rented-out, negative if rented-out;   

  is the net labor hired-in 

or hired-out, negative if hired-out;   
  is the net capital rented-in or rented-out, negative if rented-

out; and   
  the net other inputs bought or sold in the market, negative if sold. Alternatively, we 

can define the superscript   {     }, so that   denotes households (net) selling the factor,   

denotes self-sufficient households, and b denotes households (net) buying the factor. All other 

notations are as previously defined. 

The utility function is, therefore, subject to the following budget constraint:  

∑    
 
                            

      
       

        
    (4.5) 

where    is vector of prices of consumption goods that are produced (  ), market purchased (  ) 

and leisure   ;    , is vector of output prices;    is vector of input prices;          and    are 

prices of land, labor, and capital, respectively;      is the production function as previously 

defined.  

4.1.2. Productivity, the Farm Household Model and Market Imperfections 

Equation (4.5) assumes perfect market and perfect information to mean that households make 

decisions solely based on market prices and that production and consumption decisions are 

separable.  

However, farm households are often located in an environment highly characterized by a number 

of market failures for some of its products and factors. With market failures and institutional 

constraints households may encounter highest transaction cost and imperfect information that 

may cause non-separability of production and consumption decisions (Holden et al., 2001). 

Under such circumstances, farm households‟ decisions rely on shadow prices or price bands that 

can be markedly different from market prices (Sadoulet and De Janvry, 1995).  This can be 

demonstrated mathematically as follows. 
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Let the institutional constraints that govern participation in markets, access to credit, insurance 

and infrastructures are provided by: 

                         (4.6) 

where   is a vector of choice variables   
 
            and   ; and      is the vector of maximum 

value for the choice variables determined by household characteristics (  , farm/plot 

characteristics ( ), and institutional characteristics ( ).  

The Lagrangian associated with this constrained maximization problem can be formulated as:  

           [     
 
     

      
                            

      
      

      
  ]             

Where   is the Lagrange multiplier of the budget constraint and    is the multiplier related to the 

labor, land, capital, and other material inputs. This yields the following first order conditions for: 

Consumption goods:  
  

  
 
  

     

  
 
         where   {     }   (4.7A) 

Land factor:   
  

  
     

     

  
      

  

 
         

   (4.7B) 

Labor Factor:  
  

  
     

     

  
       

  

 
          

    (4.7C) 

Capital:  
  

  
     

     

  
      

  

 
          

    (4.7D) 

Agricultural inputs:  
  

  
     

     

  
      

  

 
         

     (4.7E) 

Where    s are the endogenous markups on the price of institutionally constrained factors of 

production;   
 s are the respective shadow prices of the factors of production; the superscript 

   {     }  where   denotes household selling the factor,   denotes self-sufficient household, 

and b denotes household buying the factor; attributed to the associated transaction costs we have 

that   
    

    
 . These prices vary not only among households but also between villages 

(Sadoulet and De Janvry, 1995). Thus, it is assumed that, in the absence of fully functioning 

factor markets, factor prices may be defined by village (  ) and household ( ) characteristics:   

                    (4.8) 

where    is a vector of shadow prices and   is a vector of village specific characteristics.  
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Since factor markets in Tigray area are assumed to be incomplete (Ghebru and Holden, 2008, 

Holden et al., 2011), price bands in which some households selling factors, some being self-

sufficient, and others buying them, are considered as a more realistic representation of the factor 

markets Holden et al. (2001). Assuming product market is complete, the budget constraint 

function will then have the form: 

∑    
 
                          

   
    

   
     

   
      

   
    (4.9) 

Nesting the resource constraint equations in (4.4) to (4.9) gives:  

    ∑    
 
         ̅     

   ̅     
   ̅     

           
   

    
   

     
   

      
   

   (4.10) 

The Lagrangian associated with the constrained maximization problem can be formulated as:  

           *∑ 
 
  
 
        ̅     

   ̅     
   ̅     

   ̅     
        

   
    

   
     

   
    

   
  + (4.11) 

and the FOCs for the factors of production can be summarized as (the FOCs for consumption 

goods, by assumption, are the same as (4.7A)):  

  

        
     

       
  ;         {     }       {           }7  

 (4.12)        

As previously illustrated   
    

    
    The implication of this is that marginal productivity of 

land for each household depends on whether the household is a net seller, self-sufficient or net-

buyer of the various factors of production (Holden et al., 2001). Consequently, solving the FOCs 

gives a set of reduced-form equations for the vector of optimal choice variables     

{  
 
            } 

     ̅         
    

    
    

                (4.13) 

where  ̅  is the set of household resource endowments, { ̅   ̅   ̅   ̅ };    is output price;    is 

vector of price of consumption goods;   
 s are shadow prices of land, labor, capital and other 

inputs, respectively;           are household, plot and village specific characteristics, 

respectively.  

                                                             
7
 Extended form of the FOCs is provided in Appendix A.   



 
 

- 25 - 

Equation (4.13) implies that the optimal choice of factor input in the production process is 

determined not only by its own shadow price but also by the shadow prices of other factor inputs 

(along with market prices of production and consumption goods). Dependence on the various 

shadow prices, in turn, implies that producers are facing different price ratios in the different 

factor markets:   
    

    
   If, as the law of demand forecasts, a higher price causes lower 

demand for resources, this would affect productivity at plot level. Holden et al. (2001) suggested 

an approach to test this hypothesis empirically: if land productivity at plot level is significantly 

determined by household factor endowments ( ̅   ̅   ̅   ̅ ), then it is a sign of factor market 

imperfection and significant transaction cost. 

Based on the above theory, productivity per unit area can be defined as a function of household 

choice variables, household resource endowments, prices, and farm and village characteristics. 

Combining equations (4.3), (4.8) and (4.13) yields such a reduced form of farm production: 

   (    ( ( ̅         
       )  ))     (4.14A) 

     ̅                    (4.14B) 

where    is a vector of outputs;    {           }  are the actual factor inputs employed in the 

production process;  ̅  { ̅   ̅   ̅   ̅ } is the set of household resource endowments;    is the 

household specific agricultural ability;     and   are household, farm/plot and village specific 

characteristics, respectively.  

Needless to say, if farm level production is determined by the variables in (4.14), then plot level 

production is also determined by the same variables. Similarly, plot level productivity is 

determined by the same variables. The later will be used as a dependent variable in the 

forthcoming analyses of effect of land fragmentation on productivity where land fragmentation is 

considered as component of farm characteristic (    

Implicit in (4.14) is the assumption that optimal decisions about production are made at 

household (farm) level as opposed to plot level. This also implies that plots do compete over 

resources and that the decisions are endogenous. This assumption will have fundamental 

implication in empirical analysis as it also implies violation of the assumption of independent 

distributions, which is often a common requirement in econometric models.  
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4.1.3. Functional Form specifications Within the Farm Household Model  

 The common functional form that dominates in the farm household production analysis is the 

Cobb-Douglas (full translog) production function and the semi-translog production function. 

Hung et al. (2007) argued that problem of multicollinearity occurs when using the full translog 

functional form. This may suggest that the semi-translog function can be a feasible alternative. 

While I rely mainly on the semi-trasnlog form, three functional forms are employed in this study 

as a method of testing robustness of the results. Detailed explanations on model and functional 

form specification are provided in Chapter 6.  

4.2. Cereal Crop diversity, the Farm Household Model and Market Imperfections 

Van Dusen (2000) and Benin et al. (2004) argued that farmer‟s decision about which and the 

extent of crop diversity and varieties to grow can be understood in the context of the theory of 

the farm household. This would then suggest that the conceptual framework of farm household 

model that developed so far can be used to analyze the on-farm crop diversity as well. In fact, 

practically, on-farm crop diversity is determined by farm physical characteristics, household 

characteristics, local market conditions and other similar factors that determine productivity. 

Thus, Equation (4.13) can provide the base for econometric estimation to examine the factors 

affecting crop diversity where the optimal choice is an outcome of choices made in constrained 

optimization problem rather than an explicit choice. Consequently, crop diversity, assumed to be 

measured by diversity richness (  ) which is defined as the total number of crops produced at 

household level, can be expressed in the same conceptual form as the reduced form of farm 

productivity in (4.14):      

       ̅                    (4.15) 

Similar expression is used by Benin et al. (2004), Van Dusen (2000) and Van Dusen and Taylor 

(2005) with Benin et al. (2004) added exogenous income into the model which is the sum of 

remittances, food aid, gifts and pension. Unfortunately, data on such income is missing, although 

it is an important type of income in the study area. Nonetheless, its omission may not be costly 

since Benin et al. (2004) found it to have insignificant effect on crop diversity, in Tigray.  
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4.3.    The Stochastic Production Frontier Model 

Stochastic production frontier model is widely used method of measuring technical efficiency in 

the farming sector. The model assumes the existence of technical inefficiency of the different 

farm households involved in production, such that for specific factor inputs the level of 

production is less than what would be the case if the farm households were fully technically 

efficient (Coelli, 1995).  

The model assumes competition among producers with some objective such as avoiding waste, 

by maximizing output from a given set of inputs or by minimizing input in producing a given 

level of output (Kumbhakar and Lovell, 2003). This notion of productive efficiency is commonly 

referred to as technical efficiency as opposed to economic efficiency in which the objective of 

producers is to maximize profit or income or minimize per unit cost of production (Ibid).  

Given the standard production function, technical efficiency analysis using the stochastic frontier 

model involves two stages: The first stage estimates the standard production function while the 

second stage estimates technical efficiency. In the first stage the standard production function 

(output per unit area) can be estimated using the set production factors such as land, labor, 

fertilizer and other inputs. The residuals from the first stage estimation are used in the second 

stage to estimate technical efficiency. The residuals are assumed to consist of two components, 

one to account for pure random effects and the other to account for technical inefficiency (TIE). 

Technical efficiency, in the second stage, is estimated using the second component of the error 

term. Once technical efficiency is computed, identifying determinants of this efficiency is 

straight forward. Detailed estimation procedure is presented in chapter 6.  
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5. SAMPLING, DATA AND VARIABLE DEFINITION   

5.1. The Study Area 

The study is conducted in one of Ethiopia‟s highly degraded and fragmented region, Tigray. 

Agriculture, in this region, is one of the significant economic activities on which more than 80% 

of the people rely for their livelihood (TRPFB, 2011). Of the total land, about 65% is under 

cultivation, farmed by smallholders, within mixed crop-livestock systems (Ibid). In the last few 

decades, farming in Tigray is characterized by a sharp decline in land holding and prevalence of 

fragmented holdings (See Table 1). The agricultural system in this region is characterized by 

heavy reliance on rainfall which is mostly mono-modal, extremely variable, erratic and strongly 

influenced by topography.  

Cereal crops provide the major means of livelihood in the mixed farming system. The main 

cereal crops are Teff (Eragrostis teff) (an endemic cereal crop), barley (Hordeum vulgare), and 

wheat (Triticum vulg). Along with cereal crops farmers also produce pulse crops which are also 

important part of crop rotation; the main pulse crops include: horse beans (Vicia faba), field peas 

(Pisum sativum), chickpeas (Cicer arietinum), lentils (Lens culinaris) and flax (Linum 

usitatissimum). Livestock raring particularly cattle, sheep and goats are also major component of 

the farming system. Crops and livestock are highly integrated where crop residues provide major 

share of livestock feed and livestock provide important source of manure and draught power.    

Influenced by topography and underlying geological formation, soil characteristics in the region 

is highly variable. More than 50% of the soils are shallow, very low in organic matter, and 

extremely deficient in both total nitrogen and available Phosphorus, but moderately sufficient in 

potassium (Beyene et al., 2006). Farming practices in the region are characterized by negative 

soil nutrient balances, thus reducing the fertility of the soils, eventually leading to lower yields of 

the major crops and declining land productivity (Corbeels et al., 2000, Tamene and Vlek, 2008). 

The heavy reliance on farm land with less appropriate management has facilitated the intensity of 

tillage erosion which contributes to sheet and rill erosion. Both sheet and rill erosion along with 

gully formation are considered as the most important degradation processes in the region 

(Nyssen et al., 2004, Tamene and Vlek, 2008). It seems that anthropogenic factor was dominant 

both in facilitating and curbing erosion processes in the region. Recently, through targeted 
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interventions and mass mobilizations, the rural society shows progress in controlling and 

reversing degradation process (Nyssen et al., 2004, Nyssen et al., 2007, Nyssen et al., 2008). For 

example, Nyssen et al. (2007) found that estimated soil loss due to sheet and rill erosion in 2006 

was only 68 % of its rate in 1975. Yet, the annual rate of soil loss is higher than the rate of soil 

formation (Tamene and Vlek, 2008).   

5.2. Sampling and Data 

The School of Economics and Resource Management (IØR) at the Norwegian University of Life 

Science (UMB) is running a NORAD-funded (NOMA) collaborative MSc-program in 

Development and Natural Resource Economics together with four African Universities – of 

which Mekelle University (MU) is amongst. In collaboration with MU, IØR carried out a survey 

in summer 2010 as part of a follow up survey to 500 households since 2006. The recent cross-

sectional data that was collected at plot level in 2010 is used for the purpose of this study. The 

data covers around 450 households and over 2000 plots.  It contains a wide range of variables 

including: output data (type and amount), input data (land, labor, seed, fertilizers, draft power 

and herbicide and pesticide usage) household characteristics (education, age and sex of the 

household head, household size and labor force …), plot characteristics (ownership, distance, 

size, soil quality, slope, depth...), data on market participation (credit, labor, land rental markets 

…) as well as on soil erosion, land degradation and conservation activities. Owing to missing 

important data, particularly data on the dependent variable, some households are dropped in 

making use of the data for this study; specifically, 421 households and their corresponding 1918 

plots are used. The exclusion criteria is in such a way that it does not follow systematic trend and 

that if there is a missing output observation of a single plot, the household is excluded entirely 

whether she/he has observed outputs for other plots or not. Of the numerous plot level 

observations, only relevant observations are extracted for the purpose of this study as illustrated 

in Table 3.   
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Table 3 Variable Definitions and Expected Signs 

Variable Descriptive Statistics  
Expected sign in 

analyzing 

List Type Definition Ob mean SD PR DIV TE 

Dependent Variables       

netput_v cont Net output value (birr/ha) 1859 4119 135 DV DV 
 

netput_w cont wheat equivalent net out put (Q/ha) 1888 8.58 0.25 DV DV 
 

cropdiv count Crop diversity (no. of crop cultivated at household level) 1918 3.51 0.03 
  

DV 

Factors of Production       

plotsize cont Plot size planted, ha 1905 0.24 0.01 + 
 

+ 

fam.labr Cont Farm labor engaged per ha 1902 137.7 4.11 + 
 

+ 

hirdlabor Cont Hired Labor per ha 1894 4.99 0.49 + 
 

+ 

ddap dum Dummy for dap fertilizer use, 1 if used  1891 5.68 0.25 + 
 

+ 

durea dum Dummy for urea  fertilizer use, 1 if used 1886 5.73 0.25 + 
 

+ 

dmanure dum Dummy for manure use, 1 if used 1843 232.9 24. 8 + 
 

+ 

dherbpest dum Dummy for herbicide & pesticide use, 1 if used 1918 0.1 0.01 +/- 
 

+/- 

oxen count Number of Oxen owned by the household per ha 1899 2.36 0.05 + +/- + 

Plot Characteristics       

distance Cont Distance from homestead to plot, minutes  1871 22.22 0.77 - +/- - 

no.of.plot count number of household operated plots 1918 5.61 0.06 +/- + +/- 

si-index index SI Index 1918 0.72 0 +/- + +/- 

sfarmsz cont Total farm size less operated plot size; ha 1905 1.04 0.03 +/- + +/- 

landqlty catg Land quality rank: 1=Poor, 2=Medium, 3=Good 1883 1.83 0.02 + +/- + 

slope catg 1= flat 2= moderate, 3= steep, 4= Very Steep 1883 1.34 0.02 - + - 

soiltype catg 1= Loam,  2= Clay, 3=Sand, 4=Silt 1879 2.55 0.03 +/- +/- +/- 

erosion dum 1=sever erosion, 4= less erosion  1913 3.2 0.03 + +/- + 

soildepth catg 1=deep, 2=medium, 3=shallow 1879 2.22 0.02 -/+ +/- -/+ 

Household Characteristics       

hh-size count Household size 1918 5.58 0.06 +/- + +/- 

hh-edu Cont Education level of household head, years 1918 1.58 0.03 +/- +/- +/- 

hh-age Cont Age of household head, years 1904 57.02 0.34 +/- +/- +/- 

hh-sex dum Sex of household head; 1 if male, 0 otherwise 1889 0.81 0.01 + + + 

fem.labor Cont Household female labor force per ha 1902 15.85 1.36 + + + 

malelabor Cont Household male labor force per ha 1902 15.18 0.74 + + + 

adulteqvt cont Household adult-equivalent labor force per ha 1902 46.2 2.99 + + + 

Other Control Variables        

village dum * Village Dummies  1918 10.75 0.13 
   

avgmedpr cont* Average Median Price 1911 6.49 0.04 
   

plotrent dum Dummy for participation in rental market; 1 if participating  1876 0.35 0.01 +/- +/- +/- 

totalvisit count Number of plot visits for farm operations 1918 42.6 0.98 + 
 

+ 

solevisit count Number of sole supervisions 1538 24.18 0.68 + 
 

+ 

lvaiable  Log of variable       

Legends- 2nd row: Ob = Number of Observations; PR= Productivity; DIV=Crop Diversity;TE= Technical Efficiency 
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5.3. Defining Variables and Expected Signs  

5.3.1.  Defining the Dependent Variable   

Analysis of land productivity is often considered as an indicator of production efficiency. The 

justification behind this approach is the belief that in subsistence farming there is no competition 

between farmers with variable land holding size. However, it is argued that since subsistence 

farmers produce not only for direct consumption but also for selling their products in order to 

purchase other goods and service from the market, their competence can be better evaluated if 

cost of production is also considered in the analysis (Niroula and Thapa, 2005). Hence, net 

financial gain per unit of land should be the criterion for evaluation of land use efficiency 

(Holden et al., 2001, Niroula and Thapa, 2005, Wattanutchariya and Jitsanguan, 1992). 

Owing to this argument, net output value, the income earned from less cost incurred on each unit 

land is used as a dependent variable in this study for two reasons. First, as opposed to the use of 

quantity of output as a dependent variable, this approach allows a consistent inter-plot 

comparison and efficiency evaluation where farming involves production of diversified crops. It 

is also a consistent way of aggregating farm output at household level for inter-household 

comparison and efficiency evaluations, although it may be sensitive to price variations.  

To handle price sensitivity, some authors tend to test robustness of results by running sensitivity 

analysis using major crop(s) only. However, application of such technique in a plot level analysis 

should be carried out with caution as it might lead to bias attributed to the likely loss of a 

significant number of observations.    

Second, since the data has limited information about cost of production (for example, with 

respect to cost of labor, draft power, fertilizer and pesticide) „net output value‟, which subtracts 

value of seed (purchased or own seed) from gross output value, is used instead of net-profit. 

Some authors treated „amount of seed‟ or „value of seed‟ as explanatory variable. However, the 

problem with such method is that it is susceptible to endogeneity bias since decision on quantity 

of seeds presupposes decision on seed selection which is also an endogenous feature of the 

dependent variable. Therefore, besides computing „net output value‟ in this way, the method has 

the advantage of minimizing potential endogeneity problem.  
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Net output value is computed as follows: 

                                    

                    

where          is expressed in local currency (Birr) per unit area 

    is output in kg of the     commodity harvested in a given plot  

   is the annual median price per kg of commodity    

   is seed in kg of commodity    

For the purpose of converting the values of output and seed cost, price data is used from the 

Central Statistical Agency of Ethiopia where for all types of commodities the annual median 

retail price has been gathered from markets in seven main towns in Tigray during the 2010/2011 

production year. For each crop type the annual median price is used. Strong assumption is made 

that for grain crops seasonal variation in price is not significant and hence seed value and output 

value are estimated at the median price. However, caution is needed with this assumption as the 

region was suffering from higher inflation during the specified production year. For vegetables 

and fruits, prices in the seed and output markets are usually not the same, as a result the 

respective prices are used. 

Alternative to the „net output value‟ approach, some authors use the “wheat-equivalent yield” 

approach to aggregate total farm output (measured in Kg/ha) and use as a dependent variable, for 

instance (Wu et al., 2005).  This alternative is also used in this study to test robustness of the 

result. While price information is still necessary to convert all outputs to wheat-equivalent yields, 

it involves, however, use of price ratio. The value can be considered as transformed output. 

Wheat-equivalent yield is computed as: 

           
  

  
⁄          

Where          is Wheat-Equivalent Net Output in kg per unit area;    is the annual median 

price of wheat. 
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5.3.2. Land Fragmentation Indicators   

The main explanatory variables on which this study is emphasizing are those indicators that can 

potentially capture land fragmentation. As explained in Chapter 3, there is no standard unit of 

measuring land fragmentation. It is difficult, especially, to compare two farmers in terms of 

degree of land fragmentation. Hence, the common consensus is to use potential indicators that 

can capture features of land fragmentations.  

In the absence of standard measurement of land fragmentation several indicators have been used 

in the literature. The most commonly used and arguably potential indicators that appeared in the 

literature include: the number of plots, average plot size, distance to plot, and the Simpson Index 

(Monchuk et al., 2010, Tan et al., 2006). Some studies involved use of only one of these 

indictors while others used all of them. However, both extremes are open to critique for the 

following two reasons:   

First, using only one indicator may not sufficiently capture the effect of land fragmentation since 

different aspects of land fragmentation (indicators) may show different results. For instance, 

recall the mixed result reported from China about economic cost of land fragmentation. Nguyen 

et al. (1996) reported significant economic cost of land fragmentation in China using average 

plot size as the only indicator of land fragmentation. On the other hand, Tan et al. (2008) uses 

three indicators and found mixed results. Specifically speaking, farm size and plot distance had 

significant effects on production cost while the number of plots and plot size distribution 

(captured by the SI) had no effect. Consequently, the effect of land fragmentation on production 

cost remains inconclusive. Similarly, using only one indicator, namely the number of plots, 

Rahman and Rahman (2009) found significant negative effect of fragmentation on productivity 

and efficiency. Nevertheless, it is argued that such method of quantifying land fragmentation is 

flawed as it ignores distance (Bentley, 1987).  

Second, use of all of the indicators may lead to multicollinearity problem due to the direct 

relationship between plot number, average plot size and farm size. Taking these two points into 

account, the following three indicators are selected for the purpose of this study, namely: the 

number of plots (N), distance to plot (D) and the Simpson Index (SI). While the data on all of the 

indicators is available, average plot size is excluded to avoid potential collinearity problem. 

In what follows a brief explanation of these indicators and their expected signs is presented.   
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Distance to plot (distance) – is the average distance from the homestead to the plots which is 

assumed to capture the spatial distribution of plots within a farm. Although inter-plot distance 

can have potential effect on productivity
8
, there is a gap in the data to handle this distance where 

only about 10% of the sample plots are documented with GPS coordinates. Hence, the analysis is 

limited to the average homestead-plot distance. The distance variable is determined in minutes of 

walk as opposed to in kilometers for this is a more realistic representation of distance given the 

steep and hilly terrain features of the study area. However, such definition of distance might also 

be susceptible to measurement error bias with respect to two reasons: First, the estimated 

minutes of walk between homesteads to plots by the respondents are solely on the basis of 

subjective guesstimates. Hence, there might be possible bias compared to actual measurement, 

for instance, using timer. Second, where there is nearly accurate estimates, there might still be 

bias attributed to age, sex, and health status of the respondent. In other words, the same distance 

might take different time to walk for different persons. This suggests that some correction 

measures or assumptions are needed in dealing with distance as one of the main explanatory 

variable. Once the measures or assumptions are taken, distance to plot is expected to have a 

negative relationship with productivity due to loss of time and its effect on management 

operations, such as supervision and manure application, if labor is scarce.   

The maximum distance to plot estimated by respondents is 210 minutes of walk with an average 

of 22.28 minutes. As illustrated in Figure 1C, the distribution is highly skewed to the left for both 

male and female households.  

Number of plots (no.of.plots) – the number of plots is determined following the definition of plot 

provided in Chapter 2. Recall that it is a common practice in Tigray to divide parcels into 

temporary plots for a given season. Thus, this variable is comprised of not only the spatially 

separated parcels but also the various plots within a parcel. This definition of plot is consistent to 

the demand-side explanation of land fragmentation. Moreover, with respect to methodological 

analysis, this definition of plot can be consistently estimated with cross-sectional data setting, for 

the number of plots per household may vary over years with cross-sectional time-series data.  

                                                             
8 Not only distance between homesteads and plots, but also inter-plot distance can have potential effect on 

productivity. If, for example, a farmer has two small plots situated at a closer distance to each other, s/he may not 

necessarily need to travel twice while it is possible to undertake farm operations in both plots simultaneously in just 

a single trip. Obviously, econometric models should take this into account. However, due to the limited data 

available, the effect of inter-plot distance on production is not included in this study. But it is recognized as a 

potential research gap for the future.        
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In other words, with this definition of plot, although more realistic, analysis of cross-sectional 

time-series data with panel data models would have been highly sensitive to attrition bias. This is 

because of the fact that, besides the likelihood of missing sample households over time, the 

number of plots per observed household may (endogenously) vary over years.  Such attrition 

bias, however, can be minimized using cross-sectional data of a single year within which plot-

panel analyses can be carried out using the standard panel data models to account for unobserved 

heterogeneity. Nonetheless, cautious treatment of endogeneity is required.
9
   

The number of plots operated per household ranges between 1 and 18 with an average of 5.8. 

The distribution, as illustrated in Figure 1B, is skewed to the left for both male and female 

households.  

The expected sign for this variable is ambiguous. On the one hand, a large number of plots may 

enable farmers benefit from variation in soil quality and local agro-climatic conditions as well as 

by smoothing their labor supply over the seasons. Moreover, at a given average plot size, 

acquiring more number of plots, for example through renting plots in, can be expected to have 

positive scale effects. On the other hand, for a given farm size, more number of plots implies that 

the farm is more fragmented that could make farming operation more difficult and could impede 

various technological adoptions. If the first effect exceeds the later, the overall impact of number 

of plots on productivity and efficiency will be positive; else it will be negative, and hence 

ambiguous. In fact these two results are also reflected commonly in the literature; see for 

instance Nguyen et al. (1996), Rahman and Rahman (2009) and Tan et al. (2010).  

The Simpson index (SI-index) - is determined by the number of plots, average plot size, and the 

plot size distribution. The index does not capture farm size and distance to the plots. 

Mathematically, the index is defined as:  

      ∑  
 

 

   

  ∑   

 

   

 

 

where   is the number of plots and    is the area of each plot.    is the index between zero and 

one, with a higher value of    indicating a larger degree of land fragmentation.  

                                                             
9 Recall that our definition of plots includes the subjective demand-side plot fragmentations. This implies that 

decision to operate on more (or less) number of plots is partly endogenous to the household‟s farm decision and 

partly exogenously determined by external factors, such as population pressure, land policy and inheritance customs. 

Previous studies have already demonstrated that crop selection decision is endogenous and affects production 

(productivity) (Blarel et al. p244). So is assumed here with respect to the partial decision of households on how 

many plots to operate for a given production season.   
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Figure 1 Kernel Distribution (KD) of the dependent variable and land fragmentation indicators 

for male- and female-headed households  

A)  KD of Net Output Value (netputv) B) KD of Number of Plots (no.of.plots) 

   

C) KD of Distance (distance)   D) KD of SI-Index (SI-index) 

 

E) KD of Plot Size (plotsize)   F) KD of Sub-Farm Size (sfarmsz) 

 

The expected sign for SI-index is also ambiguous. Higher index value (larger degree of 

fragmentation) can be positively associated with productivity through facilitating labor 
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smoothing and risk management. It may also reduce productivity through constraining 

technological adoption and making management operations difficult. 

The descriptive statistics on SI index shows that land fragmentation is highly pronounced in the 

study area. While the index ranges between 0 and 0.93, the average index value is 0.73 which is 

closer to 1 – the extreme index value of land fragmentation. Moreover, the distribution, as 

illustrated in Figure 1D is highly skewed to the right indicating that most of the observed 

households operate on highly fragmented plots. 

5.3.3. Other Plot Characteristics   

Operated plot size and sub-farm size: In analyzing the effect of land fragmentation on 

productivity, distinction is made between operated plot size and sub-farm size since both have 

important economic implications.
10

 The variable sub-farm size is the difference between the total 

operated farm size and the operated plot size.  

Earlier economic literatures suggested that large farms have cost advantage over small farms due 

to economies of scale; as a result small farms were believed to operate at subsistence (Ellis, 

1993). But this conventional view was questioned by Schultz (1964) who argued that farm 

families in developing countries are “efficient, but poor” and thus “there is comparatively little 

significant inefficiency in the allocation of the factors of production in traditional agriculture.” 

Nevertheless, with access to new technologies the “traditional agriculture” could change.  

Recently, Deininger and Byerlee (2011: 28-30) identified three critical factors determining 

whether there are economies of scale in farming: access to credit and insurance, lumpy inputs 

(such as machinery and skills) and the nonagricultural wage rate. First, since land is ideal 

collateral and cost of borrowing is a declining function of owned farm size, larger farm size will 

have a cost advantage due to economies of scale. Second, farms that rely on their own machinery 

could produce economies of scale and increase the optimum operational farm size. Third, large 

                                                             
10 In addition to operated plot size and farm size, owned plot and farm size are also recognized as potential for 

economic implication if there is significant difference between operated and owned plot size and farm size. A 

significant difference would suggest that significant size of land is left fallowed (or uncultivated for some reason), 

which, in turn, implies that there is significant endogenous decision on plot selection and operated farm size. This 

would cause selection bias and affect result of econometric models. However, the data does not support for 

significant difference between operated and owned plot size as well as farm size, for there are only few plots left 

fallowed. Hence, plot selection decision is treated synonymous to crop selection decision and is assumed to be 

explained by the factors included in the model.  
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scale farming can be profitable if wage rates go above a certain threshold level. For most of the 

20
th

 century, farm size and wage rate in the US moved closely in the same direction.  

Earlier studies argued that in areas where labor is abundant, there could be an inverse 

relationship between productivity and operated land size, at the cost of labor inefficiency. 

However, Bhalla (1988) and Bhalla and Roy (1988) argued that once the econometric model 

allows to control for unobserved land heterogeneity and labor market, which was missing in 

earlier works, the inverse productivity relationship has to vanish. In other words, the inverse 

productivity hypothesis can be explained only by unobservable land quality and labor market 

imperfection, if the theory of economies of scale is to be consistent.  Therefore, after controlling 

for land quality, plot size is expected to be positively and significantly correlated with 

productivity, if labor market is perfect and productivity of labor is efficient. A negative 

relationship would then manifest unobservable land qualities (Udry, 1996), labor market 

imperfection (Bhalla and Roy, 1988) or measurement bias (Holden et al., 2001).  

Productivity of a given plot can be adversely affected if the total operated farm size is large 

given limited factors of productions. The forth coming models will include a variable that 

subtracted operated plot size from the total operated farm size to capture effect of factor 

competition (or coordination) between the different plots on productivity.  

Land quality – is a dummy variable to control productivity differentials attributed to land 

heterogeneity. Farmers were allowed to rate their plots as “poor”, “medium” and “good” quality: 

657 plots were rated as poor quality, 789 plots were rated as medium quality, and 437 plots were 

rated as good quality. A positive relationship is expected between land quality and productivity.  

Slope, soil type and soil depth: In addition to rating land quality in general, farmers were also 

allowed to rate their plots in terms of slope, soil type and soil depth. As a result, 1459 plots were 

regarded as gentle or flat land, 299 plots as moderately inclined plots, and 116 plots as steep 

while 9 plots as very steep. In terms of soil type, 422 plots were categorized as loamy soil, 540 

plots as clay soil, 381 plots as sandy soil, and 536 plots as silt soils. Similarly, in terms of depth, 

the numbers of plots classified as deep, medium and shallow were 535, 499, and 845, 

respectively. Including these variables in the model is assumed to capture productivity/efficiency 

variations attributed to plot quality. A positive relationship is expected if plots tend to be gentle. 
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The expected sign of soil type and soil depth is ambiguous depending on the type of crop 

cultivated.  

5.3.4. Farm Inputs and Management Operations  

Labor data is available in two forms: the total farm household labor used during the entire farm 

operation and labor hired from the labor market. In labor intensive farming system, the effect of 

farm labor on productivity is tremendous. In both cases, positive and significant relationship with 

productivity is expected.  

Fertilizer: Some plots have used synthetic fertilizer (urea and/or dap), some have used organic 

fertilizer (manure) while others did not use at all. Of the total 1918 sample plots, the number of 

plots that used Urea, DAP, and manure fertilizers are 797, 784, and 536, respectively
11

. Given 

technically appropriate fertilizer application, the use of fertilizer, synthetic or organic, is 

normally expected to associate with productivity positively. However, it should also be noted 

that there may be a selection bias related to plots selected for fertilizer use which can make it 

impossible to get reliable estimates of the marginal effect of fertilizer on land productivity; hence 

dummy variables are used. Moreover, since the data on manure fertilizers posses mixed units of 

measurements and seemingly biased guesstimates, dummy variables are used.  

Herbicide and Pesticide: this is a dummy variable used to capture the effect of herbicide and 

pesticide on productivity. Of the total 1918 plots, 225 plots used herbicides and/or pesticides. In 

areas where labor is scarce, herbicides can substitute labor devoted to weeding, inspection, and 

land preparations; hence a positive and significant effect on productivity is expected if labor is 

scarce. Unless an outbreak occurs, the common pesticide in the study areas is rodenticide. A 

positive relationship is expected if rodent or other pest infestation is a problem. In both cases a 

positive relationship is expected given herbicides and pesticides are appropriately applied. 

Degree of management operations: there are two potential indicators of the degree of 

management in the data: the total number of plot visits during whole farm operations and the 

number of sole supervisions. The first captures the intensity of management operations, such as 

land preparation, weeding, etc. The second captures the degree of monitoring and supervision. 

Closer supervision and management is expected to associate with productivity positively.   

                                                             
11 Note that there are overlaps here. Some plots actually used all or two of these fertilizers. The number of plots 
that did not use any of these fertilizers at all is 721 plots.  
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5.3.5. Household Characteristics 

Age of household head (hh-age) – the effect of age on productivity is indeterminate depending 

on whether older farmers are more experienced and rich in farming knowledge or slower to 

accept new technology and relatively less energetic than their young counterparts. The average 

age of heads of households is around 56 years. 

Sex of household head (hh-sex) – for female headed household productivity is likely to be lower 

compared to their male counterparts due to the problem they face with respect to male labor and 

oxen which are usually insufficient. Most of the time female headed households rent out their 

land to overcome this problem. However, studies also show that the rented out plots are 

relatively inefficient due to “lower enforcement ability” and “tenure insecurity” by female 

households (Bezabih and Holden 2006; Holden and Bezabih 2008). Therefore, whether it is a 

rented-out plot or own-operated plot, productivity is expected to be lower for female household 

heads. Of the total 1918 plots, 385 plots belong to female headed households.   

Education of household head (hh-edu) – the effect of education on productivity can be positive 

or negative. It can be positive when a higher level of education leads to a better assessment of the 

importance and complexities of production decisions which, in turn, results in a better 

management of farming practice. It can be negative when farmers with higher education tend to 

pay more attention to the non-farm work. The years of education of household head ranges 

between 0 and 7 years of education with the average being 1.7 years. 

Household size per ha – a large household size usually implies more laborers that can be devoted 

to management operations or more children and older persons that can be devoted to 

supervisions. In this case, a positive relationship is expected to be observed with productivity. 

On the other hand, age proportion and working ability of household members may affect this 

relationship. If a significant proportion of the household members are infants and very old or 

disabled persons, then it implies that more adult labor force, particularly female labor force, may 

be required devoted to childrearing, caring for elders and disabled persons. In this case, a 

negative relationship is will be observed. Hence, the expected sign of household size and its 

effect on productivity is ambiguous. The average household size in the sample is 5.6 ranging 

between 1 and 11 heads.  
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Household adult-equivalent labor force per ha: Alternative to household size is the household 

adult-equivalent labor force which takes into account only to those who can contribute to farm 

labor, including child labor. A positive and significant relationship with productivity is expected 

if the labor market operates less efficiently. Yet, age proportion of the members in the labor force 

matters. Noting that two child labors are assumed to be equivalent to one adult labor, the effect 

of adult equivalent labor force on productivity can be weak if it mainly comprised of child labor.     

Adult labor force per ha: can be used as an alternative variable to adult-equivalent labor force. 

However, owing to the existence of a fairly strict gender division of labor in the study area, the 

household adult labor force is appropriately divided by gender between: household male labor 

force per ha and household female labor force per ha. Such cultural division of labor may reduce 

the substitutability of male and female labor. Consequently, the shortage of one type of labor 

may cause inefficiency if labor market does not function well. Moreover, one would need to 

control for off-farm activity to get the exact effect of male and female labor forces. In our case, 

data on off-farm and non-farm activity is not complete as result we are unable to control for it. 

But it is expected that if the labor market functions well, there will be no significant effect of 

male or female labor force on productivity. And if there is significant opportunity for off-farm 

and non-farm activities, a negative relationship between productivity and these labor forces can 

be observed. The average household adult, male and female labor forces per hectare in the 

sample are 29.1, 13.7 and 15.3, respectively.      

Oxen Ownership: If a farm household owns oxen, it can prepare land more timely and carefully 

and is expected to be more efficient. If the owning household participates in oxen-rental market, 

a trade-off between production efficiency and benefits gained from the rental activities can be 

observed. If markets for draft power work efficiently, productivity differences attributed to oxen 

ownership will not be observed, since those who can afford to rent-in oxen can be equally 

efficient as owners of the oxen. So, the expected sign is positive but it can be insignificant unless 

it is controlled for market participation and the level of household income. The average number 

of owned oxen is 2.35 ranging between 0 and 9 oxen.   

5.3.6. Other Control Variables   

Village or wereda (district) dummies – are alternative dummy variables to capture the effect of 

differences in price, agro-climatic variations, ecological diversities, topographic differences, and 
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differences in local land, labor, credit and food markets. The data consists of 17 villages and 11 

districts. In the forthcoming models, where it is relevant, the village dummy will be used to 

clustering errors while alternatively district will be used to show district specific effects. More 

details on the techniques will be provided later in the Chapter 6.  

Participation in Rental Market: is a dummy variable to control for the effect of participation in 

land rental market on productivity and efficiency. Economic theory suggests that Marshallian 

inefficiency is likely to be observed in share-tenancy arrangements causing lower input use and 

lower net output value on plots that are sharecropped (Kassie and Holden, 2007, Stiglitz, 1974). 

Since share-cropping is a common arrangement of land rental market in the study area, a 

negative sign is expected if Marshallian inefficiency is observed. However, the result might also 

be affected by selection bias which is an endogenous decision of renting in or out of selective 

plots (Kassie and Holden, 2007). So, care should be given in interpreting the results. Yet, like all 

the other endogenous variables in the model, we do not have suitable instrument(s) for this 

variable, however, all the possible factors that could affect renting in or out of plots are assumed 

to be incorporated in the model. Of the total 1918 plot observations, 785 plots are involved in 

land rental markets.  

5.4. Summary of Variables  

Dependent Variable:  

 net output value (netputv), net wheat equivalent yield gain (netputw), crop diversity 

Plot-varying explanatory variables  

 distance, soil type, slope, soil depth, land quality, total farm labor, hired labor, dap, urea, 

manure, operated plot size, operated farm size, plot renting, herbicide and pesticide 

usage, total visit, sole visit 

Plot-invariant explanatory variables  

 HH size, HH head‟s age, HH head‟s sex, HH head‟s education, SI index, number of plots, 

male labor force, female labor force, adult-equivalent labor force, owned oxen  
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6. ESTIMATION METHODS 

In the first chapter, three research questions were explicitly stated to which this study is intended 

to address. So far we are equipped with the relevant background information, theoretical models, 

empirical reviews, as well as explanations of the data, variables and their expected signs. In what 

follows the estimation procedures that are followed to address each of the research questions will 

be discussed.  

6.1. Productivity Analysis Using the Farm Household Model 

Productivity analysis using the FHH model is carried out based on equation (4.14) which is 

provided in Chapter 4:  

   (    ( ( ̅         
       )  ))     (4.14A) 

     ̅                    (4.14B) 

Where    is a vector of net output values as defined in Chapter 5.3.1;    {           }  are 

the actual factor inputs employed in the production process;  ̅  { ̅   ̅   ̅   ̅ } is the set of 

household resource endowments;    is the household specific agricultural ability which is 

unobservable;     and   are household, plot and village specific characteristics, respectively.  

Three functional forms are employed in analyzing the production function in (4.14):  

i. The full translog form 

           
               (6.1) 

ii. The semi translog form with some of the independent variables being in linear form  

           
  

 
    

  
 
            (6.2) 

iii. The Log-Lin form with all of the independent variables being in linear form  

         
                (6.3) 

where       is log of the dependent variable, for household i operating on plot p, defined in two 

ways – either in terms of net output value (netputv) expressed in birr/ha or wheat-equivalent net 
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output (netputw) expressed in quintal/ha;     is a vector of exogenous variables that are observed 

for household   on plot  , the vector includes both plot variant as well as invariant variables and 

dummy variables;    are the unobserved household specific effects;     are the idiosyncratic 

errors.  

Three additional models are also identified based on crop output considered in the analysis: (a) 

the aggregated output model where all outputs are converted in to monetary value or wheat-

equivalent yield as discussed in Chapter 5; (b) the dominant crop (teff) model where analysis is 

carried out only using net output (value) of the dominant crop; and (c) the two-main crop (teff-

wheat) model where analysis is carried out based on net output value and wheat equivalent yield 

of the two crops.  

 The intention is to evaluate the results whether they are robust to changing functional forms, 

econometric specifications and output types. The variables of interest being the land 

fragmentation indicators, various estimation methods are employed within the context of panel 

data model.  

The first estimation method employed is the Pooled OLS model; where for the full translog 

form, for example, can be demonstrated as: 

            
 
      where                 (6.4)  

The model assumes that all exogenous variables in the model are uncorrelated with the 

unobservable household specific characteristics as well as the idiosyncratic errors ( [     ]  

 [      ]   ). This method will not give consistent estimates if this assumption failed to hold. 

While strong assumption to maintain practically, the model is used as a reference and evaluate 

the alternative estimators and properties of the residuals.  

The second alternative model considered is the Random Effects (RE) model 

           
                (6.5) 

which requires the assumptions of strict exogeneity and orthogonality to obtain consistent 

estimates of    Strict exogeneity is the assumption that the idiosyncratic error term should not 

correlate with any of the regressors, observed or unobserved, in all 

plots  ( [               ]   ). Orthogonality is the assumption that the unobserved 
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heterogeneity, or random household specific effect, should not correlate with any of the observed 

regressors   [            ]   [  ]    . RE estimators are consistent only if these two 

assumptions hold. In the standard random effect analysis a further assumption of 

homoscedasticity and no serial correlation is required for statistical inference.  

Further, if normal distribution of the error terms can be assumed, more efficient random effects 

can be estimated by the maximum likelihood (ML) method. However, since plot level activities, 

for a given household, cannot be entirely independent and uncorrelated, the iid and normality 

assumptions may not hold. As a result the Random Effects Feasible Generalized Least Square 

(RE FGLS) estimator is proposed alternative to the standard and ML random effect estimators, 

since it is efficient under the first two assumptions regardless of heteroskedasticity and auto-

correlations. As for the first two assumptions of RE model, the Hausman test can be used.   

The third alternative is the Fixed Effects (FE) model 

           
               

            (6.6) 

which allows the observed regressors to correlate with household specific fixed effects, i.e., it 

does not require the orthogonality assumption. Under the strict exogeneity assumption the fixed 

effects within estimator *         ̅      (     ̅ )
 
        ̅  + can provide consistent estimates 

of   for plot-varying regressors, despite allowing weak endogeneity of regressors. For a short 

panel the household specific fixed effects may not be consistently estimated. For the standard 

within estimator a further assumption of homoscedasticity and no serial correlation is required 

for statistical inference and efficiency of estimates. Where the last two assumptions do not hold, 

a robust variance matrix can be computed by clustering standard errors at the village level.  

Practically, the RE model has an advantage over the FE model if its assumptions hold, for it 

provides more efficient estimates including for the household specific effects and the plot 

invariant regressors. But, the orthogonality assumption of RE is less likely to hold practically and 

thus FE estimator may be preferred at a cost of losing estimates of plot-invariant regressors. But 

since two of the three variables of our primary interest are plot invariant, namely the number of 

plots and the SI index, unfortunately, the fixed effect model will not give us the most required 

information. Thus, while still testing the two models is relevant using the Hausman test, other 

alternative models are also proposed in case the test rejected the orthogonality assumption of the 

RE model.   
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The Hausman-Taylor (HT) model is the fourth alternative model employed to address the first 

objective of this study. Unlike the two extremes (the RE model which assumes exogeneity of all 

regressors and the random household specific effect or the FE model which allows endogeneity 

of all the regressors and the household specific fixed effect), the HT model allows some of the 

regressors to be correlated with the household specific effect (Baltagi et al., 2002). The HT 

estimators are based upon an instrumental variable estimator which uses both the individual 

means of the strictly exogenous variables as instruments. The choice of strictly exogenous 

regressors is, therefore, of crucial importance that needs to be tested. Testing can be carried out 

using Hausman test that compares performance of the FE and HT estimators.  

6.2. Analysis of Crop Diversity  

Analysis of crop diversity is carried out using diversity richness as a dependent variable which is 

the total number of crops produced at household level. The variable is plot invariant and has the 

feature of count variables where its relationship with the exogenous variables may not be 

appropriately handled with linear regression models. Since OLS regression can predict negative 

or non-integer values, distinct methodology for limited dependent variables is generally 

recommended to deal with such data (Wooldridge, 2010). To this end, the Poisson and the 

negative binomial regression models within panel data framework are nominated to this analysis.  

Derived from the reduced farm household model of crop diversity in (4.15) the general structure 

of the regression equation for on-farm crop diversity analysis can be expressed in a plot-panel 

form as:   

      
                   (6.7) 

where    represents the diversity richness of the i
th

 household;     is a vector of exogenous 

variables that accounts for household, farm and village characteristics. Included in farm 

characteristics are the various plot characteristics that determine crop selection including the 

three land fragmentation indicators of our prime interest;    are the unobserved heterogeneity, 

and     are the idiosyncratic errors.   

The vector     consists of plot variant and invariant explanatory variables, summarized as 

follows along with their expected signs (also summarized in Table 3):  
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Plot-variant variables: Distance (+/-), soil type (+/-), slope (+), soil depth (+/-), land 

quality (+/-), operated farm size (+), plot renting (+/-)  

Plot-invariant variables: household size (+), age (+/-), sex (+), education (+/-), SI index 

(+), number of plots (+), owned  oxen (+/-), male labor force (+), female labor force (+), 

adult-equivalent labor force (+), operated farm size (+) 

Using the basic Poisson regression model, diversity richness (  ), the non-negative dependent 

(count) variable, is assumed to have a Poisson distribution that is completely determined by the 

conditional mean      having a density function of the form:   

        
      [    ] 

  
        (6.8) 

where        and       (      );    is the diversity richness for each household and     

is a vector of observed exogenous variables including dummy variables.  

The Poisson distributional assumption imposes restrictions on the conditional moments of   . 

Typical of such restriction is the equality of the conditional mean and variance of   :  

   (      )   (      )        (6.9) 

implying that the usual assumption of homoscedasticity is not appropriate for Poisson data. 

However, Wooldridge (2010) suggested that this restriction has often violated in applications. As 

a result, weaker assumptions are proposed to allow for any positive constant variance-mean 

ratio:    (      )     (      )  Empirically,   >1 (over-dispersion) is relevant when the 

variance is greater than the mean; and       (under-dispersion) is relevant when the variance 

is less than the mean (Ibid).  

In our case, the sample data is characterized by (under-dispersion), which is not common in 

empirical works (Wooldridge, 2010). Being under-dispersion (or over- dispersion) implies, 

however, that there is an extra heterogeneity across the Poisson mean which, in turn, may result 

in less efficient results. Consequently, two alternatives methods are considered to deal with it. 

The first method uses the Poison-normal model which keeps the above weaker assumption that 

allows under-dispersion and makes further assumption that the under-dispersion is normally 

distributed. Where the under-dispersion is not normally distributed, assuming it may be gamma 

distributed, the alternative negative binomial model is used which is also analogous to Poisson 
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gamma model. In short, the Negative binomial model is used in case the restriction on equality of 

mean and variance is not necessary. The following graph illustrates the distribution of D around 

its mean (3.47) with variance of (1.7). 

Figure 2 Distribution of Diversity Richness: 

The values of Diversity Richness ranges between 1 

and 8 with mean 3.47 and standard deviation of 1.3. 

While under-dispersed, the distribution seems normal, 

which is the rationale behind using the Poisson normal 

model.     

 

I used common mean function in applications, the exponential (the log-linear) parametric model:  

 (        )     (   
  )           ; Poisson Pooled Model  (6.10A) 

 (         )             ;     Random Effects (RE) Poisson Model (6.10B) 

Estimation of the parameters under the Poisson normal model is carried out using the 

Conditional Maximum Likelihood Estimators (CMLE) which is generally fully efficient for 

random samples under the assumptions of Poisson distribution (Wooldridge 2010).   

Once the parametric models of 6.10 are estimated using the Pooled Poisson and the RE Poisson 

regressions in STATA, the partial effect of a continuous variable    is interpreted as: 

          

   
    (   

  )         (6.11A) 

which also implies that the partial effects of    on           depend on  ;    is interpreted as:  

   
          

   
 

 

      
 

     [ (  |   )]

   
     (6.11B) 

implying that 100 ̂  is the semielasticity of           w.r.t.       

Furthermore, since using the parametric model in 6.10 is analogous to using          as a 

dependent variable in linear regression model (Wooldridge 2010), a log-linear regression model 

of this sort is also used as a starting point of analyzing the diversity richness. The model is 

adjusted for heteroskedasticity and autocorrelations using the robust variance-covariance matrix 
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by clustering error terms at the village level. For the limited dependent variable model 

bootstrapping method is applied by resampling households using 200 replications.   

In order to compare the Poisson estimates with the linear model estimates, average partial effect 

(APE) of the Poisson estimate is used which is roughly provided by   ̅ ̂  12  

6.3. Efficiency Analysis Using the Stochastic Frontier Model  

This model can be applied both with cross-sectional as well as panel data sets. As Coelli (1995) 

suggested in the presence of substantial measurement errors and weather-related random 

disturbances in analyzing plot level data, stochastic frontier production model can be applied to 

estimate the technical efficiency scores for different plots. Following this suggestion, I applied 

cross-sectional as well as panel data frontier models on the data to analyze effect of land 

fragmentation on technical efficiency of farm producers.
13

    

6.3.1. Cross-Sectional Stochastic Frontier Models 

Recall, from chapter 4, that the frontier model involves two stage analyses. In the first stage, 

estimation of the production function is carried out by assuming the production function to be 

explained by the standard Cobb-Douglas and/or semi-translog functional forms. I used these 

functional forms since they are the common forms in stochastic frontier models (Greene, 1990). 

It is argued that functional specification has a noticeable though rather a small impact on 

estimated efficiency (Wu et al., 2005).  

Consider a stochastic production function model over a cross-sectional observation expressed as:  

                     (6.12A) 

         
             (6.12B)  

Where    is the scalar output of plot               is a vector of N inputs used in plot  , 

        is the production frontier,   is a row vector of an unknown parameter to be estimated,   

is the intercept, and    is a stochastic error term consisting of two independent elements:    

                 (6.13) 

                                                             
12 I used the margin command in STATA to compute the APEs of all   s and evaluating the results. 
13

 The main reference for the econometric specifications in this session is based on Kumbhakar and Lovell (2003) 
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where    is the symmetrical component that accounts for random variation in output of the     

plot due to factors outside the farmer‟s control, such as weather and disease.    is conventionally 

assumed to be independently and identically distributed (iid) as       
  . (NB: This assumption 

will be maintained throughout the paper).    is the non-negative technical inefficiency 

component of the error term. It is non-negative because theoretically no farmer can exceed the 

ideal frontier of perfect efficiency (zero inefficiency).  

Four common distributional assumptions emerge in the literature w.r.t.   : half normal, 

exponential, Truncated Normal, and gamma distributions. Depending on the distributional 

assumptions of   , different models emerge (Kumbhakar and Lovell, 2003).
14

  

Assuming the half normal distribution of    and an independent distribution of     and     w.r.t. 

the regressors (  ) and to each other, the frontier of each plot is given by combining (6.12) and 

(6.13) as: 

                         (6.14) 

With a variance and standard deviation of   is given by  

      
     

     and         (6.15) 

      
     

  
 

 ⁄            (6.16) 

The ratio of the standard errors being   

   
  

  
⁄            (6.17) 

The measure of efficiency at individual plot level can be obtained from the error terms (   

     ) as a function of the expected value of    conditional on   : 

 [     ]   (
     

 
) *

      ⁄  

        ⁄  
 

   

 
+       (6.18) 

where      and      are the standard normal cumulative distribution and density functions 

evaluated at      ⁄  .  

                                                             
14 Kumbhakar and Lovell (2000) argued that the first assumption [             

  ] is conventional; the second assumption 

[              
  ] is based on the plausible proposition that the mean value of technical inefficiency is zero, with increasing 

values of technical inefficiency becoming increasingly less likely. Thus, modeling using the other assumptions can be used 

alternatively to check robustness of the results to changing assumptions. 
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Once point estimates of    are obtained, in the second stage estimates of the Technical Efficiency 

(TE) scores for each plot can be computed as: 

        [ {     }], =    {  ̂ }       (6.19) 

where  ̂  is          .15       

6.3.1.1. Determinants of Technical Efficiency  

Once consistent Technical Efficiency Score is computed for each plot, one can identify the 

determinant of technical efficiency by setting the efficiency score as a function of household, 

farm and village characteristics:  

                      (6.20) 

where    is a       vector of household, farm and village characteristics, including land 

fragmentation, that may influence technical efficiency of plots and that does not contain any 

variable in   ,   is a       vector of unknown parameter to be estimated, and    is a random 

disturbance term assumed to be iid as  (    
 ).  

6.3.1.2. Model Specifications and Distributional Assumptions 

All the parameters involved in the model (            and TE) are estimated using the standard 

maximum likelihood Estimators (MLE). Given the specified assumptions of distribution, the 

MLE is generally the most efficient estimation procedure in the class of estimators that use 

information on the distribution of the endogenous variable conditional on exogenous variables 

(Wooldridge, 2010). As a result the MLE is widely used for its consistency and efficiency 

(Kumbhakar and Lovell, 2003); hence the reason for using it in this study.    

Kumbhakar and Lovell (2003:73) argued that for a cross-sectional data setting “the estimates of 

technical efficiency in (6.19) are less consistent because the variation associated with the 

distribution of         is independent of i.” In order to overcome this limitation of cross-sectional 

data other distributional assumptions on    are suggested including the exponential, truncated-

normal and gamma distributions. I used the half-normal and the exponential distributional 

                                                             
15 Kumbhakar and Lovell, 2000 argued that the “estimates of technical efficiency are inconsistent because the variation 
associated with the distribution of         is independent of i. unfortunately this appears to be the best that can be achieved with 

cross-sectional data” (pp78). This might be one reason for the mixed findings in the literatures of land fragmentation efficiency 

analysis with the Stochastic Frontier Model.  
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assumptions. Since the cross-sectional estimates can generally perform poorly in the presence of 

plot specific unobservable effects, I cannot rely totally on this approach to evaluate the effect of 

land fragmentation on technical efficiency; thus, the reason to employ the panel frontier model.  

6.3.2. Efficiency Analysis Using Panel Data Stochastic Frontier Models  

An important advantage of panel data model is its ability to control for plot specific 

unobservable effects which can be correlated with other explanatory variables in the model, 

given assumptions about the unobservable effect hold.  

In general, the principle of panel data model is the same as that of the cross-sectional model. 

Careful specification of models, functional forms and distributional assumptions are still required 

except that some of the distributional assumptions of     can be relaxed in the panel data model.  

The general form of panel data frontier model is given by:   

     (     )            (6.21A) 

           
        

                  (6.21B) 

where      is the net output value gained from plot           by household          ;    

are vectors of household-level (plot-invariant) regressors;      are vectors of household-plot-level 

regressors,    are household-specific effects (for pooled OLS      , which is an intercept 

common to all producers);              is the stochastic error term consisting of two 

independent elements;     is the idiosyncratic error which is always assumed to be iid        
  ; 

    is error component consisting of plot level non-negative technical inefficiency and 

unobserved heterogeneity. When the model is specified in log form,     is interpreted as the 

percentage deviation of observed performance from the ideal frontier (Greene, 2005).  

Distributional and independent assumptions of      though often flexible in panel data model, are 

the same as in cross-sectional frontier model. They vary between half normal        
  , 

exponential, gamma and truncated normal distributions. I used all assumptions except the gamma 

distribution in analyzing robustness of the results with the half normal distribution being the 

central assumption. Moreover, w.r.t. assumptions on technical efficiency, I used both plot variant 

and plot invariant technical efficiency models to further test robustness of my results.  
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 The plot variant panel model allows technical inefficiency and unobserved heterogeneity 

components of    to vary with plots while the plot invariant panel model does not. Econometric 

models usually assume the later (Kumbhakar and Lovell, 2003). I analyzed both models with 

Fixed Effect and Random Effect Models.   

6.3.2.1.  Plot Invariant Fixed Effects Model 

The simplest panel data model is the fixed effect model which allows the unobserved 

heterogeneity to correlate with the explanatory variable. In order to adopt this model to frontier 

analysis, a minor modification on the form of    is required such that     . While     is still 

assumed to be iid       
  , distributional assumption is not needed for    and it is allowed to 

correlate with the plot variant regressors     and the error component    . Since it is treated as a 

fixed effect, it will be part of the household specific intercept to be estimated along with the 

other parameters. The model can be estimated by applying MLE on:  

        
     

                (6.22) 

where    
         are household specific intercepts.     (6.23) 

By applying within estimator on (6.22) and employing normalization we get:   

 ̂     
 

{ ̂ 
 }  , and         (6.24) 

 ̂   ̂   ̂ 
           (6.25) 

which ensures that  ̂    and producer specific technical efficiency to be 

  ̂     {  ̂ }         (6.26) 

Determinants of efficiency are then identified by regressing
16

  

  ̂                      (6.27) 

6.3.2.2. Plot Invariant Random Effects Model 

Unlike the fixed effect model, the random effect model does not allow    to correlate with either 

the exogenous variables or    . However, analogous to the fixed effect model,    is still assumed 

iid        
   and     is still required to be non-negative with no requirement for distributional 

                                                             
16 Note that STATA result provides technical inefficiency.  
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assumption, although it is required to be randomly distribute with constant mean and variance. 

The virtue of this randomness assumption is that it allows plot invariant regressors to be part of 

the model (Kumbhakar and Lovell, 2003).   

Mathematical formulation of the model can be illustrated by rewriting equation (6.21B) which is 

the general form of panel data model: 

           
        

                 (6.21B) 

Recall that     is assumed to be plot invariant; rewriting this equation as  

      [        ]    
        

         [        ]  (6.28A) 

   
    

        
           

       (6.28B) 

where   
           and   

           

Equation (6.28B) shows that plot invariant regressors can be included in the model. By applying 

FGLS estimator on (6. 28B), which is often appropriate for large N, we can estimate  ̂ 
 ,  ̂   and 

 ̂  ; and from the residuals  ̂ 
  can be estimated as  

 ̂ 
   [       ̂ 

    
  ̂      

  ̂  ]       (6.29) 

By means of normalization of equation (6.29), estimates of  ̂  can then be obtained as 

 ̂     
 

{ ̂ 
 }   ̂ 

         (6.30) 

As usual, technical efficiency is then estimated as 

  ̂     {  ̂ }        (6.26) 

and the determinants of efficiency are obtained by regressing  

  ̂                     (6.27) 

6.3.2.3. Plot Variant Fixed Effects and Random Effects Models 

The assumption that technical efficiency is constant and does not vary along with plots is a 

strong one given the fact that plots may vary considerably in size and quality, and that factors of 

production are deployed accordingly. As the number of plots increase, it is unlikely that one 

would find this assumption to be tenable. As a result, one would require making this assumption 

flexible in order to allow technical efficiency to vary with plots.  
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Equation (6.21B) can be slightly modified to accommodate for this flexible assumption as  

           
        

                  (6.30) 

So that    (as apposed to    which is the random household specific effect) entered the model to 

represent the common intercept of farmers who operate on the p
th

 plot (where p =1,…P) 

(Cornwell et al., 1990, Kumbhakar and Lovell, 2003:108). Rewriting equation (6.30) gives the 

structural form of plot variant panel model: 

            
        

               (6.31) 

                    (6.32) 

where     is plot varying technical inefficiency component of the error term, and     is the 

intercept for producer i operating on plot p.  

The standard two stage method of frontier analysis is no more technically feasible for a     

panel to obtain estimates of all N*P intercepts      , slope parameters and variances 

(Kumbhakar and Lovell, 2003). Instead, Cornwell et al. (1990) suggested an approach to deal 

with by specifying  

                 
           (6.33) 

The quadratic specification of     minimizes the number of intercept parameters to be estimated 

to N*3 and allows technical efficiency to vary with plots and in a different manner for each 

producer.  

If           for all i, then the model collapses to plot-invariant technical efficiency model.   

If           and          , then the model becomes fixed effect model with household 

specific intercepts     and a quadratic term in plots common to all households given by      

   
   (Kumbhakar and Lovell, 2003). This implies that either technical efficiency is household 

specific that varies with plots in the same manner for all households or it is household specific 

and plot invariant with the quadratic term capturing effect of technical change.  

Estimation can be carried out in several ways. A random and fixed effect approaches are 

suggested by Cornwell et al. (1990). In order to show how, first equations (6.31) and (6.33) will 

be nested to provide 
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             (6.34) 

where    
  [      ] and   

  [           ] 

Two strategies are proposed to estimate plot varying technical efficiency. First, by ignoring     

from (6.31) and consequently    
    from (6.34), we estimate     .  Then,    can be estimated by 

regressing the residuals          
  ̂      

  ̂    for household i on    
 . The fitted values from 

this regression provide  ̂    which is a consistent estimator of     in (6.33) as    . Then, 

estimate of    can be provided by: 

  ̂      { ̂  };         (6.35) 

and from (33) it follows that: 

  ̂    ̂   ̂           (6.36) 

Needless to say, once  ̂   is estimated, plot varying technical efficiency can be estimated by 

  ̂      {  ̂  }         (6.26) 

and the determinants of plot varying technical efficiency will be obtained by regressing  

  ̂                       (6.27) 

All models are estimated using the integrated statistical software STATA 2012.
17

  

  

                                                             
17 For the panel data stochastic frontier model, I also used the sfpanel (Stochastic frontier models for panel data) 

package, version 1.3.2., designed by Belotti, Federico, et al. "Stochastic frontier analysis using Stata." (2012). 
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7. RESULTS AND DISCUSSION 

7.1. The Effect of Land Fragmentation on Productivity   

In analyzing this effect, seven panel data models repeated over three functional forms, three 

types of dependent variables and two dimensions of the dependent variable were used. In this 

session, the estimated results of the panel data models using the log-semi-log functional form are 

presented for the aggregated crops model, two-main crops model and dominant crop model 

using net output value (            ) as a dependent variable. These results, I believe, will 

sufficiently illustrate my argument and address the research objective; nonetheless, as a means of 

checking robustness of the results, particularly, for the estimated results of the land 

fragmentation indicators, I also summarized the results obtained using the Lin-Lin and Log-Log 

functional forms and using wheat equivalent net output (            ) as a dependent variable in 

Appendix B.  Tables 4 – 6 summarize estimated result of each panel data model along with the 

standard errors and the level of significance, determined at the 0.05 level.  

I started my analysis with the pooled model on the aggregated output model where 

heteroskedasticity was detected using the White‟s general test although the Breusch-Pagan test 

failed to detect it. However, since the Breusch-Pagan test relies on strict normality assumption, 

which did not hold, I relied on White‟s test for its flexibility to distributional form. The 

Skewness/Kurtosis, Shapiro-Francia, and Shapiro-Wilk tests revealed that normality did not hold 

for the error terms. In Chapter 5, it was already indicated that for plot-panel data the distributions 

can hardly be iid normal which is confirmed by the above tests. Furthermore, the Ramsey 

RESET test gives evidence for model miss-specification.  

To use as a starting point of my analysis, I applied clustering of error terms at village level to 

correct for the observed heteroskedasticity and autocorrelation. Although, the pooled estimator, 

after correcting for heteroskedasticity and autocorrelation, provides estimates that are the same in 

sign and level of significance for the variables of interest as expected, the estimates cannot be 

unbiased or inconsistent if the model, as revealed by the Ramsey RESET test, is miss-specified. 

Thus, I proceeded to the next model. 

The RE estimates, as already discussed in Chapter 6, are consistent only if the strict exogeneity 

and orthogonality assumptions simultaneously hold, in which case it will be efficient compared 
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to the FE estimator that does not rely on the orthogonality assumption. Using the standard 

Hausman-Wu test, I found no evidence for the violation of orthogonality which implies that the 

RE is the appropriate estimator. However, this test result is valid only if the assumption of 

homoscedasticity and no serial correlation holds. But the assumption did not hold as tested by 

both the standard Breusch and Pagan Lagrangian multiplier test for random effects and another 

test for unbalanced panels.
18

 Thus, I cannot rely on it totally. Instead, using the robust standard 

error, clustered at village level, I estimated the random effects by the RE-GLS regression.  

Assuming normality of the error terms, I also estimated 

the random effects by the maximum likelihood (ML) 

method to get efficient estimates. The assumption of 

normality was reasonable as indicated by the kernel 

density of the error terms after the Random-effects ML 

regression which is presented in Figure 3, although tests 

of normality do not support it. Yet, I estimated using a 

bootstrap technique with 200 replications to get robust 

standard errors. The estimated results of random effects by the GLS and ML regressions are 

presented in column 2 and 4 of Table 4, while the fixed-effects within estimator is presented in  

column 3, after corrected for heteroskedasticity and autocorrelation.  

In all models, where relevant, errors are clustered at the village level to compute robust standard 

errors. Interpretation of the robustness of the errors should be taken cautiously as the numbers of 

clustering groups (villages) are less than the minimum threshold amount required to do 

clustering.
19

 Where clustering is not relevant, the bootstrap method with 200 replications is used 

as an alternative to compute robust standard errors. The type of techniques used to compute the 

robust standard errors in each model is indicated on the last rows of the result summary tables.  

                                                             
18 I used the xttest1 command in Stata, proposed by W. Sosa-Escudero and A. K. Bera, to test for heteroskedasticity 
in unbalanced error component models. The command is an extension of the standard xttest0 command that 

computes seven specification tests for balanced error component models. 
19 It is argued that if the number of clusters is small, the critical values will substantially increase relative to those 

computed from the standard Normal (t with large d.f.). As a rule of thumb, Nichols and Schaffer (2007) in a report 

titled “Clustered standard errors in Stata” suggest that the data should have at least 20 balanced clusters or 50 

reasonably balanced clusters. Rogers‟ seminal work (Stata Tech.Bull., 1993) suggested that no cluster should 

contain more than five per cent of the data. The number of reasonably balanced village clusters in the models is 18, 

each consisting of, on average, 5.5% of the observation. This indicates that the clustering fails to meet both 

requirements, and hence its result should be taken cautiously.    
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So far, the illustrated models deal with the assumption of strict exogeneity. The estimates will 

not be consistent if this assumption violates. There are sufficient reasons that cast doubt over the 

likely violation of this assumption. The decisions to use fertilizers, manure, herbicide and 

pesticide; to hire labor or to participate in land market are more likely to be endogenous. 

Consequently, the Hausman-Taylor (HT) model is used to deal with such endogeneity where 

variables including fertilizers (dap and urea), manure, herbicides and pesticides, plot renting, 

hired labor, sub-farm size, and plot size are treated as endogenous in the two stage model. Plot 

size is considered partially as endogenous to account for the demand side fragmentation; and 

sub-farm size to account for fallowing practices, renting in and out of lands. Crop diversity, 

recognizing as a potential endogenous variable that affects productivity, is dropped in all models 

since all the variables that are assumed to determine crop diversity are already in the model.  

The estimated result for the HT model along with its robust standard errors is presented in 

column 5 Table 4. Using the standard Hausman-Wu test, as suggested by Baltagi et al. (2003), 

the HT model is found to be appropriate; or in technical terms, the choice of strictly exogenous 

variables is found to be appropriate. However, while the HT can be preferred, due to the 

observed heteroskedasticity in the model, I cannot have full confidence in the test to rely totally 

on the HT model; thus, the need for additional econometric specifications.   

Some plots, as reported in the survey data, have experienced unexpected production loss due to 

flood and other events. As a result the net output for such plots is found to be negative. Of the 

total 1918 observed plots, 195 plots are of this type. These plots are automatically dropped from 

the analysis given the dependent variable is used in its logarithmic form. If the loss of the 

observations is systematic, the standard regression method will not give consistent estimates. 

Perhaps, this could be the reason for the frequent detection of violation of normality in the 

previous models. To deal with this problem, considering the dependent variable as a latent 

variable – that is only observed if it has positive value – the random effects Tobit  (RE-T) model 

is used treating the observation as if it is left censored at zero. The estimated result is presented 

in column 6 along with its bootstrapped standard errors computed from 200 replications.  

Finally, the feasible GLS regression is used to allow estimation in the presence of within panel 

auto-correlation and across panel correlation and heteroskedasticity. Comparison of results 

estimated by allowing only for across panel correlation and heteroskedasticity (GLS1) against 

results estimated by allowing for both within and across panel correlations and heteroskedasticity 
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(GLS2) by Hausman test reveals significant difference between the two models. This indicates 

the potential for inconsistency in estimators if the within panel autocorrelation is not recognized 

and treated properly, and hence the rationale to include the GLS2 model as an alternative. 

Table 4 Determinants of productivity for the aggregated output model  

log(net output 

value) (br/ha) 

POOLED RE FE RE-MLE HT RE-TOBIT RE-GLS 

       

hh-edu -0.002 -0.019  -0.017 -0.007 -0.023 -0.026 

hh-age 0.001 0.000  0.000 -0.002 0.003 0.001 

hh-sex 0.275*** 0.287*  0.285*** 0.254* 0.436*** 0.254*** 

lfem.labor -0.102 -0.124  -0.122 0.152 -0.121 -0.105* 

lmalelabor -0.013 -0.023  -0.023 0.054 -0.093 -0.044 

ladulteqvt -0.063 0.017  0.008 0.219 0.076 -0.078 

ldist 0.029 0.008 -0.004 0.010 0.006 0.037 0.024 

lno.of.plot 0.498** 0.565*  0.561** 0.425* 0.420* 0.515*** 

si-index -0.475 -0.344  -0.365 -0.311 -0.058 -0.439 

lsfarmsz -0.108 -0.119 -0.091 -0.119* -0.002 -0.092 -0.097** 

lplotsize -0.419*** -0.331 0.255 -0.344*** 0.382 -0.340* -0.477*** 

landqlty 0.071 0.103* 0.129* 0.099* 0.066* 0.091* 0.098*** 

slope -0.005 -0.038 -0.074** -0.033 -0.013 -0.011 -0.057* 

soiltype -0.008 -0.001 0.011 -0.003 0.017 -0.027 -0.013 

soildepth -0.053 -0.030 -0.002 -0.033 -0.066 -0.098** -0.031 

erosion 0.080** 0.060* 0.026 0.063* 0.018 0.049 0.069*** 

lfam.labr 0.299*** 0.327*** 0.341*** 0.325*** 0.331*** 0.353*** 0.286*** 

hirdlabor 0.004* 0.005** 0.004* 0.004* 0.004 0.002 0.005** 

ddap 0.114 0.118 0.147 0.115 0.232 0.031 0.058 

durea -0.061 -0.067 -0.097 -0.064 -0.139 0.095 -0.036 

dmanure 0.088 0.052 0.046 0.054 0.081 0.176** 0.049 

dherbpest -0.034 -0.060 -0.133 -0.056 -0.175 -0.055 -0.011 

loxen.own 0.003 0.022 0.455 0.020 0.177 0.020 0.013 

plotrent -0.188** -0.208* -0.531*** -0.203** -0.239 -0.178* -0.180*** 

ltotvist 0.085 0.068 0.006 0.071 0.048 0.012 0.119*** 

solevisit 0.002* 0.003* 0.005* 0.003* 0.003* 0.003* 0.002* 

_cons 4.923*** 4.652*** 5.585*** 4.674*** -1.490 4.522*** 4.954*** 

N 966.000 966.000 966.000 966.000 1008.000 966.000 966.000 

SE Clustered Clustered Clustered Bootstrap Bootstrap Bootstrap Bootstrap 

 

Legends: In the first row: POOLS = the Pooled OLS estimates; RE= the Random Effects model; MLE= Random 

Effects Estimated by Maximum Likelihood Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects 

tobit model; GLS= the Generalized Least Square Estimator for Panel Data. All Models used “Net output value 

(birr/ha)” as a dependent variable and the log-semi-log functional form             
       

           .  

In models with bootstrapped standard errors, each bootstrapping is replicated on 200 re-sampled observations; 

Clustering is done at village level; *significant at 5 per cent; ** significant at 1 per cent; ***significant at 0.1 per 

cent.  
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It is based on these alternative approaches that the main findings are summarized in Table 4. 

Similar approach is followed in all the subsequent models and functional forms, including for the 

results summarized in Tables 5 and Table 6, and in Appendix B.  

Table 4 presents estimation results of the Pooled, RE, FE, RE-ML, HT, RE-T and GLS models, 

respectively, using the log-semi-log functional form with              being the dependent 

variable. Table 5 presents similar result but only for the dominant crop (henceforth, the teff 

model) and Table 6 presents for the main two crops model (henceforth, the teff-wheat model). 

All statistical tests are performed at the 0.05 level.  

The effect of numbers of operated plots on productivity is found to be positive and significant 

across all models except, of course, for the FE model which does not provide estimates for plot 

invariant regressors
20

 (Table 4, 5 and 6). The result is consistent with the findings reported by 

Tan et al. (2010), for instance. The result is also robust to changing functional forms and model 

specifications; See Table B.1., in Appendix B, for summary of the result of robustness test with 

different model specifications. The following discussion is based on these tables. 

For the aggregated output model, the effect of number of plots on productivity is clearly positive 

and significant with all models and functional forms; i.e. it is fully robust in all model types. For 

the two main crops model, the estimated result is, more or less, robust, with some deviations 

observed with the Lin-Lin model using net-output value as a dependent variable. However, for 

the dominant crop model, while the predicted values are is still positive in all models, the 

significance (at the 0.05 level) disappeared with some model changes: in terms of functional 

form, less robust result is observed with the Lin-Lin model, and in terms of econometric 

specification, less robust result is observed with the HT model. Particularly, the estimated result 

of the HT model for the dominant crop model offers interesting interpretation. Since, the HT 

model controls for some of the potential endogenous variables, the predicted significance of 

number of plots for the dominant crop became less robust, while it does not affect the results in 

the teff-wheat and the aggregate output models.  

This may indicate that had the study relied only on dominant crop productivity analysis, as some 

authors already did, the result would have been less robust; implying that statistical inference 

                                                             
20 In fact, the FE with in estimator tends to predict unexpected signs to some variables such as land quality, erosion and hired 

labor. Since, the Hausman test also favored RE over FE, the FE is least preferred next to the Pooled estimator.    
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based on dominant crop analysis might be biased as it does not represent the farming system 

fully and can yield less robust results for the following reason.    

Operating on more than one plot allows farmers to diversify production and thereby, manage 

agricultural risk relatively efficiently. That crop diversification is positively associated with the 

number of plots operated is investigated and evidenced in this study, which is presented in 

session 7.2; and that farm productivity (profitability) is positively associated with the number of 

crops (on-farm diversity) is investigated and confirmed by Di Falco et al. (2010). Thus, the 

positive and significant effect of number of plots on productivity is reasonable and expected 

particularly for analysis with two or more crop production. Besides its effect through diversit y 

and risk management, number of plots can further affect productivity positively through its role 

on smoothing farm labor supply. This is also reasonable principally when the effect of farm labor 

on productivity is strong, positive and significant across all models, functional forms and forms 

of the dependent variable (Table 4, 5 and 6).       

The SI index is found to have negative but insignificant effects in all models and functional 

forms when productivity analysis involves at least two crop outputs (tables 4 and 6). This result 

is consistent with the finding reported by Wu et al. (2005) where the dependent variable was 

aggregated output (of cereals and vegetables). On the other hand, for the teff model, I found 

significant negative relationship between land fragmentation (the SI index) and productivity 

(Table 5) which is also consistent with findings of studies on productivity of main crop such as 

by Rahman and Rahman (2009) on rice productivity and by Jabarin and Epplin (1994) on wheat 

productivity. This seemingly contradictory effect of SI-index is robust to changing functional 

forms and model specifications (See Table B.3, in Appendix B).   

Yet, interestingly, the combined result reinforces the previous argument that evaluating land 

fragmentation dealing only with dominant crop productivity is methodologically inconsistent 

when farm production involves diversification,
21

since the SI index can counterbalance the 

negative impact of fragmentation on management and technology adoption mainly by improving 

risk management through diversification. The finding presented in session 7.2 is also consistent 

with the argument that higher SI index encourages farmers to diversify thereby counterbalance 

its detrimental effect. This is the most likely reason why a negative but insignificant effect is 

observed in the non-single crop productivity analysis.  

                                                             
21 Supporting evidence to this argument is also illustrated in Appendix B, Table B.1.    
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Table 5 Determinants of productivity for the Dominant Crop (Teff) model  

log(Net Output 

Value) (br/ha) 

POOL RE FE HT RE-TOBIT RE-GLS 

      

hh-edu -0.029 -0.043  -0.041 -0.043 -0.042** 

hh-age 0.001 -0.000  -0.006 -0.000 0.001 

hh-sex 0.174 0.170  0.208 0.170 0.209*** 

lfem.lab.force 0.006 -0.008  0.196 -0.008 0.046 

lmal.lab.force 0.154 0.135  0.213 0.135 0.070 

ladult.eqvt -0.405 -0.380  -0.474 -0.379* -0.37*** 

ldistance -0.027 -0.013 -0.019 -0.014 -0.014 -0.008 

lno.of.plots 0.844* 0.946**  0.788 0.945*** 0.810*** 

si-index -2.410* -2.621**  -2.867 -2.619** -2.29*** 

lsfarmsz -0.225 -0.231 -0.805 -0.080 -0.231* -0.24*** 

lplotsize -0.359 -0.405 -0.123 -0.129 -0.403* -0.4*** 

landqlty 0.133 0.119 -0.008 0.061 0.120 0.118*** 

slope 0.096 0.109 0.052 0.098 0.109 0.122*** 

soiltype -0.036 -0.039 -0.068 -0.042 -0.038 -0.026 

soildepth 0.024 0.016 0.009 0.006 0.016 0.004 

erosion 0.101 0.074 -0.044 0.007 0.075 0.111*** 

ltot.farm.lob 0.350*** 0.394*** 0.644* 0.470 0.393** 0.338*** 

Hird.labor 0.001 0.001 -0.001 0.001 0.002 0.002 

ddap -0.080 -0.112 -0.489 -0.456 -0.110 0.026 

durea 0.253 0.282 0.682 0.584 0.280 0.176*** 

dmanure 0.167 0.141 0.246* 0.140 0.141 0.120** 

dherbpest -0.250** -0.236* -0.311 -0.242 -0.237 -0.31*** 

Loxen.own 0.027 -0.008 0.052 0.066 -0.007 0.030 

plotrent -0.067 -0.077 -0.206 -0.052 -0.077 -0.009 

ltotvist 0.014 -0.003 -0.332 -0.099 -0.002 0.028 

solevisit -0.001 -0.000 -0.003 -0.000 -0.000 -0.000 

_cons 6.240*** 6.251*** 5.991** 1.049 6.247*** 6.022*** 

N 280.000 280.000 280.000 283.000 280.000 280.000 

SE Clustered Clustered Clustered Bootstrap Bootstrap Bootstrap 

 

Legends: In the first row: POOLS = the Pooled OLS estimates; RE= the Random Effects model; MLE= Random 

Effects Estimated by Maximum Likelihood Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects 

tobit model; GLS= the Generalized Least Square Estimator for Panel Data. All Models used “Net output value 

(birr/ha)” as a dependent variable and the log-semi-log functional form             
       

           .  

Bootstrapping is replicated on 200 re-sampled observations; Clustering is done at village level; *significant at 5 per 

cent; ** significant at 1 per cent; ***significant at 0.1 per cent.  

The relationship between plot distance and productivity is not clear. The result is not robust to 

changes in functional forms and forms of the output variable. First, it is found to have 

statistically insignificant effect on productivity for the log-semi-log function for all of the models 
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and forms of the dependent variable, but its sign is mixed. It‟s negative for the teff and teff-

wheat models (Table 5 and 6), but positive though very small in magnitude in the aggregated 

output model (Table 4). Using the log-linear model it is found to have positive and significant 

effect for the aggregated output model, positive but insignificant for the teff-wheat model; and 

negative and insignificant for the teff model. See the summarized results of distance estimated by 

all models in table B.2., in Appendix B. This inconsistency could be attributed to measurement 

error which was already indicated in Chapter 5 where the limitations and the apparent 

measurement errors with the distance data were discussed.
22

  

Contrary to what was expected, plot size is found to associate negatively with productivity in all 

regressions except in the FE and HT models for the aggregated output (Table 4). Though not 

robust the effect is significant at the 0.05 level for the non-dominant crop models. Similar results 

were reported in earlier studies such as by Blarel et al. (1992) in Ghana and Rwanda and by 

Holden et al. (2001) in Ethiopia even after controlling for a wide range of land quality variables 

that was assumed to explain the inverse productivity relationship.  

Several reasons can explain this relationship except diseconomies of scale which I have little 

evidence to concluded so. First, it could be due to the labor intensive production system that 

predominates in the area where land poor households are often labor endowed. Thus, small plots 

can be more efficient at the expense of labor inefficiency which is, as Bhalla and Roy (1988) 

argued, a typical sign of labor market imperfection. This justification makes sense particularly 

with the result in Table 5 that predicts the inverse productivity relationship even for the dominant 

crop model. Second, it could be due to the tendency that small plots are allocated to vegetable 

production where their net output value per unit area tends to be larger than that of cereals. 

Third, as Udry (1996)  suggested it could be due to unobservable land qualities.
23

 Fourth, as 

Holden et al. (2001) hypothesized, it could be due to the prevalence of small variation in farm 

size within the farm community in Ethiopia owing to the relatively egalitarian land distribution 

system. Finally, since the result is not robust (see Table B4, in Appendix B) to all models and 

functional forms, particularly in its significance level, the inverse-relationship can be justified by 

                                                             
22

 To deal with this bias, I tried using standardized distance variable computed as: (     ̅ )  ̅, where    is 

distance of each plot,  ̅  is average distance at household level, and  ̅ is average distance for all observations. The 
result was basically the same, inconclusive.  
23 A separate analysis, its result of which is not presented here, seems to support this hypothesis. Introducing an 

interaction term, between operated plot size and land quality, in to the models provides significant positive 

relationship with productivity; although the positive relationship that was observed, as expected, between land 

quality and productivity turned negative after introducing the interaction term.  
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the possible bias in plot size measurement where plot size was estimated based on local method 

during land distribution. The HT estimate, specifically, in Table 4 seems to support this 

justification since plot size is predicted to positively associate with productivity after treating it 

as an endogenous variable. Even more supportive of this reasoning is the opposite predictive 

signs that are observed by the HT model for the partial outputs in tables 5 and 6. Empirically, 

Holden et al. (2001) argued that plot sizes in the area are biased downwards particularly on 

larger plots with difficult terrains. This suggests the need for cross-checking robustness of the 

result with plots measured by the standard measurements techniques, for example, using GPS 

coordinates or remotely sensed images; thus, a potential research gap for further study.  

Operated sub-farm size, which subtracted plot size from the total operated farm size, is found to 

have negative, though insignificant, effect on plot level productivity. The result is contrary to 

what economic theories of scale suggest – large farms necessitate less coordination.  However, as 

Bardhan (1973) suggested the observed negative relationship is likely to be the result of an 

inverse relationship between farm size and other inputs due to production uncertainties and 

market imperfections than the result of scale diseconomies. Thus, the result may reflect inter-plot 

factor competition given the limited factors endowments by households in an environment with 

imperfect factor market. Table B5, in Appendix B, summarizes estimated results of this variable 

using different econometric specifications.           

As expected, male headed operated plots are found to be significantly more productive than 

female headed households. This is consistent with the results described by Bezabih and Holden 

(2006), Holden and Bezabih (2008) and Ghebru and Holden (2008). A possible explanation 

stems from the traditional gender-based division of farm labor. Traditionally, farming in the area 

is highly characterized by gender-based division of labor where women are mostly in charge of 

domestic activities and men are in charge of land management. Only men can till the land with 

oxen; as a result, women possessed limited ability to till the land (Holden et al., 2011). A 

common empirical finding in the highlands of Ethiopia reveals that female headed households 

usually face problems with respect to male labor and oxen which are often insufficient (Bezabih 

and Holden, 2006, Ghebru and Holden, 2008, Holden et al., 2011). Consequently, female headed 

households are usually characterized by renting out plots. Their participation in land rental 

market is claimed to increase significantly due to land certification (Holden et al., 2011). In this 

study, 26% of the plots operated by female households have involved in land rental market. 
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Table 6 Determinants of productivity for the Two Dominant Crops (Teff and Wheat) Model   

log(net output 

value) (br/ha) 

POOL RE FE HT RE-TOBIT RE-GLS 

      

hh-edu 0.019 0.008  0.036 0.009 0.001 

hh-age 0.005 0.003  0.001 0.004 0.004** 

hh-sex 0.295* 0.288**  0.291 0.290** 0.305*** 

lfem.lab.force -0.045 -0.051 0.066 -0.010 -0.048 0.003 

lmal.lab.force -0.030 -0.008  0.046 -0.011 -0.054 

ladulteqvt -0.134 -0.164  -0.217 -0.159 -0.170** 

ldistance -0.022 -0.033 -0.019 -0.002 -0.032 0.009 

lnum.of.plots 0.527* 0.72***  0.7** 0.68*** 0.57*** 

SI-Index -0.858 -1.214  -0.899 -1.178 -0.733* 

lofarmsz -0.176 -0.159 -0.722 -0.168 -0.158* -0.16*** 

lplotsize -0.492** -0.485*  -0.469 -0.49*** -0.46*** 

landqlty 0.097 0.096* 0.090 0.081 0.097 0.083*** 

slope -0.004 -0.036 -0.132 -0.062 -0.024 0.013 

soiltype -0.026 -0.033 -0.054 -0.029 -0.031 -0.020 

soildepth -0.013 0.000 0.013 -0.033 -0.002 -0.026 

erosion 0.098 0.094 0.061 0.047 0.097* 0.077*** 

ltot.fam.lobr 0.34*** 0.37*** 0.45** 0.35** 0.36** 0.34*** 

hird.lobor 0.003 0.003* 0.001 0.001 0.003 0.004* 

ddap 0.083 0.064 0.051 0.132 0.066 0.018 

durea -0.004 -0.000 -0.053 -0.127 0.004 0.048 

dmanure 0.077 0.111 0.175 0.194 0.103 0.057 

dherbpest -0.119 -0.157 -0.267 -0.131 -0.143 -0.079 

loxen.own -0.057 -0.061 0.209 -0.034 -0.058 -0.001 

plotrent -0.214* -0.259* -0.506*** -0.281 -0.245** -0.176*** 

ltot.vist 0.025 0.028 -0.058 0.014 0.030 0.098*** 

solevisit 0.002 0.001 0.003 0.002 0.001 0.001 

_cons 5.006*** 5.138*** 5.418*** -0.890 5.125*** 4.735*** 

N 511.000 511.000 511.000 529.000 511.000 511.000 

SE Clustered Clustered Clustered Bootstrap Bootstrap Bootstrap 

 

Legends: In the first row: POOLS = the Pooled OLS estimates; RE= the Random Effects model; MLE= Random 

Effects Estimated by Maximum Likelihood Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects 
tobit model; GLS= the Generalized Least Square Estimator for Panel Data. All Models used “Net output value 

(birr/ha)” as a dependent variable and the log-semi-log functional form             
       

           .  

Bootstrapping is replicated on 200 re-sampled observations; Clustering is done at village level; *significant at 5 per 

cent; ** significant at 1 per cent; ***significant at 0.1 per cent.  

However, the relationship between the dummy variable for participation in land rental market 

and productivity is found to be negative and significant for the teff and the aggregate output 

models (Table 4 and 6) but insignificant for the teff and wheat model (Table 5). The negative 
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sign is consistent in all models even after treating the variable as endogenous variable in the two 

stage HT model, though its significance, at the 0.05 level, disappeared (Tables 4 and 6).  

Possible reason that explains this relationship is the existence of higher transaction cost and 

Marshallian inefficiency in the study area. The rental market in the study area is dominated by 

sharecropping arrangements (Holden et al., 2011). Investigating the efficiency of sharecropping 

arrangements in the Ethiopian highlands, Deininger et al. (2006) provides empirical support to 

the hypothesis of Marshallian inefficiency. They argued that the inefficiency is attributed mainly 

to market imperfection, suggesting that the hypothesis of Marshallian inefficiency is reasonable 

if there are market imperfections. Holden et al. (2001), on the other hand, argued that market 

imperfection arises from higher transaction cost and information asymmetries. But the existence 

of substantial transaction costs and information asymmetries in the land rental market in Tigray 

is already documented by Ghebru and Holden (2008). Therefore, if there are substantial TCs and 

information asymmetries then it may cause market imperfection which, in turn, may cause 

Marshallian inefficiency.   

It is also argued that the existence of significant transaction cost causes the land rental market to 

operate less efficiently and undermines its potential to contribute in poverty reduction (Holden et 

al., 2012). Thus, there is ample evidence to hypothesize that higher transaction cost and 

Marshallian inefficiency can explain the observed negative relationship between plot renting and 

productivity. However, it should be note that variation in productivity and efficiency may be 

observed depending on whether the plot is rented out or rented in as well as whether the rented 

plot is own operated, operated by blood-relatives or non-relatives. Detailed analysis of this sort is 

beyond the scope of the study; however, Bezabih and Holden (2006), Holden et al. (2011) and 

Kassie and Holden (2007) have already addressed it.  

Land quality, in the aggregated output model, is predicted to have positive and significant effect 

on productivity using all models except the pooled regression. For the teff and teff-wheat 

models, although positive, it has insignificant effect on productivity, at the 0.05 level. Other sets 

of land quality indicators are predicted to have insignificant effect on productivity 

All household characteristics, other than sex of the household head, are found to have generally 

insignificant effect on or relationship with productivity. Most models predict negative 

association between household labor force (male, female and adult equivalent) per hectare and 
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productivity, although not significant. This prediction, however, is more likely to reflect the 

general correlation between productivity and the household labor force than any causality. 

Perhaps, other omitted factors such as household members‟ participation in off- and non-farm 

activities, could explain this association. Some members of the household may be, for instance, 

students or off-farm workers who have little contribution in farm activity.  

Among household factor endowments, oxen ownership per hectare has less significant effect. 

One reason could be due to the smallest variation in households‟ oxen endowment where the 

average holding is slightly above a pair of oxen, 2.35, with more than 95% having at least single 

ox. Given, the smaller average land holding, oxen ownership more than a pair may not result in 

significant productivity difference.   

7.2. The Effect of Land Fragmentation on Crop Diversity  

Table 7 and 8 present estimation results of the determinants of diversity richness using the 

translog and linear functional forms, respectively. Estimation is carried out based on Pooled OLS 

(with the dependent variable in log-form), Pooled Poisson, Random Effect Poisson, Pooled 

Negative Binomial and Generalized Negative Binomial models.
24

 In all models, except for the 

Pooled OLS model, robust standard errors are computed by the bootstrapping technique on 

resampled observations with 200 replications. For the Pooled OLS model, robust standard errors 

are generated by clustering errors at village level. 

The average number of crops harvested by households is 3.47 ranging between one and eight. 

Only 3% of the household samples cultivated one crop,25 while 17% of them cultivated at least 5 

crops. The fraction of households that cultivated 2, 3 and 4 crops are 21%, 30% and 31.3% 

respectively. The dominant crop cultivated by the largest share of households is Teff which 

comprises of 31% of the total plots, followed by wheat (21.5%) and barley (10%).   

 Generally speaking, the models predict strong and positive effect of land fragmentation on crop 

diversity. Of the three indicators, only distance was found to have no significant effect on 

diversity despite the claim that location and distance to plots are important factors that determine 

diversification (Benin et al., 2004). Although the result is robust to changing functional forms, 

                                                             
24 Since the dependent variable is household level observation, as opposed to plot level, there is little room to exploit 

the potential advantage of panel data models. FE-Poisson model is impossible with such data. Thus I used the RE 

Poisson to account for unobserved heterogeneity while I rely more on pooled estimates.   
25 This fact alone indicates how misguided it would be to analyze productivity considering only the dominant 

(single) crops which, I think, was one limitation of earlier works.   
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the previously (in session 7.1) suspected measurement bias of distance may have its play in this 

result, too. Interestingly, the SI-index and number of plots are found to have strong positive and 

significant effect on diversification as expected. The result is consistent with the assertion that 

operating on fragmented plots may encourage farmers to diversify more (Benin et al., 2004, 

Blarel et al., 1992, Di Falco and Chavas, 2006, Di Falco et al., 2010). A high level of diversity 

on more fragmented plots may appear desirable owing to higher expected revenue, lower risk 

exposure, agro-ecological diversity and heterogeneity in land quality.  

All other factors being equal, farm size is associated negatively and significantly with crop 

diversity. This is consistent with the above explanation that fragmented plots encourage farmers 

to diversify more. Similar finding was reported by Di Falco et al. (2010) although the opposite 

was reported by Benin et al. (2004). Among the relevant household characteristics that are 

included in the model, education and age of the household head, household size and adult 

equivalent labor force are found to determine crop diversity significantly. While age of the 

household head affects diversification positively and significantly, education of the household 

head, contrary to what was expected, is estimated to affect diversification negatively and 

significantly. The later prediction is even more robust to changing functional form, while the 

effect of age of the household head is found to be less robust in the sense that the predicted 

association disappeared in the Lin-Lin model if the normality assumption of the Poisson 

distribution does not hold, i.e. if the negative binomial model is the appropriate one. 

Possible explanations to this prediction could be that with age comes experience and thus 

household heads who are relatively older may tend to have the skill to manage diversified crops. 

On the other hand, relatively younger household heads, may lack the skill to manage diversified 

crops or they may tend towards specialization (Van Dusen and Taylor, 2005). Moreover, older 

households may be more risk averse and tend to diversify for fear of production loss.   

Similarly, more years of education may mean relatively better confidence and less risk averse 

and hence the tendency to diversify less, if diversification is a copping mechanism than a risky 

venture in itself. In fact, in a drought-prone rain-fed agricultural systems diversification is 

claimed to have a major potential role in maintaining yields under adverse shocks, reducing 

exposure to risk and lowering risk premium (Blarel et al., 1992, Di Falco and Chavas, 2006). 

Moreover, in developing countries like Ethiopia, where access to primary education is a recent 

phenomenon, particularly in Tigray, more number of school years is likely to associate with 
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relatively younger ages; thus, as already argued, if the relatively younger lacks skill, then they 

will tend to diversify less, if diversification is skill demanding. 

Table 7 Determinants of on-farm crop diversity: The Semi-Log model 

Diversity POOLED
 

POISSON POISSON-RE N.BINOMIAL 

     

hh-age 0.003*** 0.003*** 0.003*** 0.003*** 

hh-sex 0.032 0.036 0.026 0.036 

hh-edu -0.023** -0.029*** -0.024*** -0.029*** 

hh-size -0.003 -0.006 -0.003 -0.006 

lfem.labor -0.008 -0.016 -0.010 -0.016 

lmalelabor -0.029 -0.028 -0.024 -0.028 

ladulteqvt 0.104** 0.132*** 0.095*** 0.132*** 

lofarmszh -0.078*** -0.081*** -0.085*** -0.081*** 

si-index 0.933*** 0.766*** 0.728*** 0.766*** 

distance 0.000 0.000 0.000 0.000 

no.of.plot 0.054*** 0.053*** 0.061*** 0.053*** 

soildepth -0.004 -0.006 -0.005 -0.006 

Landqlty 0.012 0.008 0.010 0.008 

Soiltype -0.007 -0.000 -0.004 -0.000 

Slope 0.074*** 0.073*** 0.058*** 0.073*** 

loxen.own -0.039*** -0.063*** -0.043*** -0.063*** 

_cons -0.177 -0.023 0.035 -0.023 

N 1446 1446 1446 1446 

SE CLUSTERED BOOTS BOOTS BOOTS 

Wald chi2              1438.55 2464.74 1395.01 

Prob > chi2 (.) 0.0000 0.0000 0.0000 

Log Likelihood (.) -2417.73 -2409.24 -2417.75 

 

Legend: POOLED = the Pooled OLS model with the dependent variable in log form, as explained in Chapter 6.2; 

POISSON = the Pooled Poisson Regression Model; POISSON-RE = the Random Effects Poisson Regression 
Model; N.BINOMIAL = the Pooled Negative Binomial Regression Model; SE = Robust standard error computed 

either by bootstrapping technique (boots) with 200 replications or clustering the error terms at village level 

(clustered); *significant at 5 per cent; ** significant at 1 per cent; ***significant at 0.1 per cent. 

Furthermore, more education may mean more opportunities to off-farm and non-farm activities 

and hence limited time and devotion to labor intensive farming activities. Thus, the more 

educated ones may tend to diversify less, if diversification is labor demanding and the 
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opportunity cost of labor is higher to the relatively more educated households. More education 

may also mean more tendencies toward specialization. The specialization and opportunity cost 

arguments are supported by Van Dusen and Taylor (2005), although Benin et al. (2004) stated 

opposite finding where the young and more educated households were found to diversify more. 

The opportunity cost explanation seems to be supported by the observed positive and significant 

association between household size, adult equivalent labor force and crop diversity, although the 

result is less robust to changing functional form. Where the household size is significantly 

associated with diversity, the adult equivalent labor force is not, and the vice versa. Nonetheless, 

it sufficiently indicates that diversity is associated with some degree of labor endowment. 

Besides the household size, the significance of adult labor force may indicate the role of children 

and elder people on diversification, for example, through supervision.  

Oxen endowment is found to be another determining factor of diversification, although 

negatively associated. Contrary to the findings reported by Benin et al. (2004), I found 

households who own relatively more oxen cultivating significantly less diversified crops. 

However, this significant relationship is not robust to changing the functional form. Yet, the 

inverse relationship is maintained in all models and functional forms. Three possible reasons 

may explain this relationship: First, oxen-rich farm households may be more concerned with 

crop residues in order to feed their oxen. If so, they are likely to concentrate on cultivating few 

crops that can offer good amount or quality of fodder than on diversification.  

Second, households who own more oxen are often relatively rich. Sometimes land-poor 

households may own more oxen on which their livelihood is based, through renting their oxen 

out, though a rare case. If diversification, as already argued, is a copping mechanism, then the 

relatively (oxen-) poor households are likely to tend to diversify more. Finally, as Benin et al. 

(2004) argued, oxen-rich households may tend to focus on cultivating crops that are more 

valuable but demands for intensive ploughing such as teff. This explanation is a likely scenario, 

although I found little evidence for the teff case where of the total number of plots allocated to 

teff production only 54% were cultivated by households who own more than a pair of oxen. 

 Finally, the terrain feature of the cultivated plot was found to determine diversification 

positively and significantly; implying that households who operate on steeper terrains gravitate 

toward diversification. 
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 Table 8 Determinants of on-farm crop diversity: The Lin-Lin Model 

cropdiv POOLS POISSON POISSON-RE N.BINOM. G.N.BINOM  

hh-age 0.001* 0.001** 0.001* 0.001 0.001 

hh-sex 0.034 0.022 0.019 0.036 0.021 

hh-edu -0.032*** -0.035*** -0.028*** -0.037** -0.035** 

hh-size 0.022*** 0.022*** 0.020*** 0.021** 0.022** 

fem.labor 0.000 0.000 0.000 0.000 0.000 

malelabor -0.000 0.000 -0.000 0.000 0.000 

adulteqvt 0.000 0.000 0.000 -0.000 0.000 

ofarmszh -0.058*** -0.061*** -0.062*** -0.057*** -0.061*** 

si-index 0.829*** 0.740*** 0.673*** 0.782*** 0.725*** 

distance -0.000 0.000 -0.000 0.000 0.000 

no.of.plot 0.064*** 0.064*** 0.072*** 0.063*** 0.064*** 

soildepth -0.007 -0.009 -0.008 -0.010 -0.009 

landqlty 0.015 0.009 0.012 -0.003 0.009 

soiltype -0.005 -0.001 -0.004 -0.002 -0.001 

slope 0.075*** 0.070*** 0.055*** 0.072*** 0.070*** 

oxen.own -0.000 -0.000 -0.000 -0.000 -0.000 

_cons 0.024 0.151* 0.205** 0.157 0.161 

N 1784.000 1784.000 1784.000 1784.000 1784.000 

SE CLUSTERED BOOTS BOOTS BOOTS BOOTS 

R2/Wald/LR-chi2 R2 =0.495 Wald=1700.21 Wald=3303.03 LR = 416.26 LR = 416.26 

Prob > chi2 - 0.0000 0.0000 0.0000 0.0000 

Log-likelihood - -2948.6 -2936.6082 -2948.6 -2948.6 

 

Legend: POOLED = the Pooled OLS model with the dependent variable in log form, as explained in Chapter 6.2; 

POISSON = the Pooled Poisson Regression Model; POISSON-RE = the Random Effects Poisson Regression 

Model; N.BINOM = the Pooled Negative Binomial Regression Model; G.N.BINOM = the Generalized Negative 

Binomial Regression Model;  SE = Robust standard error computed either by bootstrapping technique (boots) with 

200 replications or clustering the error terms at village level (clustered); *significant at 5 per cent; ** significant at 1 

per cent; ***significant at 0.1 per cent. 

Moreover, in an attempt to further assess the potential effect of agro-ecological and price 

variations on diversification, I run additional model that introduced the wereda (district) dummy 

variable to account for wereda specific effects and found the above results to be robust. 

However, after controlling for the wereda specific effects, land quality and soil depth turned to 
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have significant effect on diversification. Plots with good land quality and deep soil seem to be 

favorable to diversification. The result is tabulated and presented in Appendix C.  

7.3. The Effect of Land Fragmentation on Technical efficiency    

Efficiency analysis is carried out using cross-sectional and panel data frontier models. The 

results are summarized in Tables 9 and 10. More supplementary results are also provided in 

Appendix D. The main finding is, basically, in line with the findings in session 7.1. Table 9 

summarizes the results estimated by employing 5 cross-sectional and 2 panel data frontier 

models, using the log-log functional form. The production function is assumed to be determined 

by factors including: plot size, fertilizers (dap, urea and manure), herbicide and pesticide, total 

labor used and oxen ownership per ha, as a proxy to amount of draft power used in the 

production process. The fertilizer variables entered the model as dummies, to make sense of 

estimating its effect.
26

 Household, plot and village characteristics are used to predicted variations 

in technical inefficiency. Column 1 portrays estimation result of the cross-sectional frontier 

model for aggregated output using net output value as a dependent variable and assuming a 

normal-half normal (h) distribution of the error components. 

Table 9 Stochastic Frontier Models: The Log-Log Model 

Prod-Function 

Cross-Sectional Frontier Model Panel-Frontier M. 

fh1 fx1          fx2 fh3 fh4 feh bc95 

lplotsize -0.37*** -0.35*** -0.29** -0.169 -0.31*** -0.282 -0.44*** 

dmanure 0.078 0.075 0.105 0.195 0.129 0.069 -0.055 

durea -0.053 -0.034 -0.084 0.209 0.001 -0.127 -0.082 

ddap 0.146 0.118 0.169* -0.062 0.083 0.145 0.216 

dherbpest -0.002 -0.002 -0.002 -0.01** -0.003 -0.002 -0.004 

lfam.labr 0.32*** 0.32*** 0.29*** 0.35*** 0.35*** 0.38*** 0.36*** 

loxen.own -0.039 -0.038 -0.003 0.07 -0.034 0.437 -0.099 

_cons 6.699*** 6.486*** 0.412* 0.182 0.299  7.08*** 

                                                             
26 Since fertilizer application rate in the study area is fixed, by officials, for the same type of crop, analyzing its 

marginal effect will be misleading, as each additional observation (of the same crop type) does not add any 

information in estimating the effect of a unit change of fertilizer use on productivity; Instead, the marginal effect 

would only reflect the difference in application rate for the different crops, which is exogenous to farmers economic 

decision. Thus, I introduced the dummy variables so that I can see the difference easily between plots that used 

fertilizer and that did not. One exception could be manure, as the rate is not fixed; however, since I suspected of 

measurement error, I preferred to treat it as a dummy along with the others.   
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  - -1.23*** -0.99*** -1.12***        -1.44***        -1.61*** -1.05*** -1.47*** 

Technical Efficiency 

hh-sex 0.316* 0.516* 0.79*** 0.562 0.529* -2.567* 0.162 

lhh-agea 0.063 0.071 -0.266 0.489 0.297 0.179 -0.009 

lhh-edua 0.178 0.206 0.166 0.368 0.48** 0.493 0.231 

ldist 0.068 0.104 0.103 -0.112 -0.043 0.585* -1.04*** 

si-index -0.265 -0.52 -0.754 -7.288* -2.596 -15.471 -4.933 

lno.of.plot 0.894* 1.298* 1.414** 3.13** 1.977* 7.58*** 4.144* 

lsfarmsz -0.264* -0.375* -0.559** -0.762** -0.526* -4.698* -1.17 

lsolev 0.310*** 0.446*** 0.343** 0.113 0.203 2.951 0.881 

landqlty 0.159 0.241 0.175 0.399* 0.325* 5.11*** 0.769 

slope -0.037 -0.061 -0.081 0.282 -0.056 -1.204 -0.121 

soiltype -0.036 -0.064 0.002 -0.036 -0.118 0.868 -0.21 

soildepth -0.099 -0.125 -0.304* -0.053 -0.111 0.136 -0.458 

Plotrent -0.345* -0.481* -0.203 -0.25 -0.606* -3.971 -0.631 

lfem.labor -0.047 -0.055 0.316 0.657* 0.433* 0.605 -0.347 

lmalelabor 0.065 0.078 0.248 0.358 0.381 3.058 -0.7 

ladulteqvt -0.266 -0.333 -0.669* -1.256* -0.918* -0.822 -0.644 

_cons -1.871 -1.537 -0.929 -0.384 -1.549 -24.512 2.1 

N 959 959 1001 279 525 959 959 

SE Bootst. Bootst. Bootst. Bootst. Bootst. Clustered Clustered 

Wald chi2 140.27 123.75 124.82 83.65 121.80 382.49 227.76 

Log-pseudo-likelihood -1136.42     -1138.52 -1104.0 -270.73 -503.49 -862.182 -941.19 

a In the panel model the variables entered the model in linear form since the full-log model could not return results.  

Legends: fh = frontier model with normal-half-normal distribution; fx = frontier model with normal-exponential 

distribution; The numerical subscripts: 1 = Aggregated crop model, in net-output-value (birr/ha); 2 = Aggregated 

crop model, in wheat-equivalent net output (quintal/ha); 3 = Dominant crop model (teff), in net-output value 
(birr/ha); 4 = Two main crops model (teff and wheat), net-output value (birr/ha). feh = the true fixed effect model 

with normal-half-normal distribution; bc95 = random effects model with normal-truncated distribution. SE is robust 

standard error computed either by bootstrapping with 200 replications or clustering the error terms at village level; 

*significant at 5 per cent; ** significant at 1 per cent; ***significant at 0.1 per cent. 

Column2 portrays results estimated similar to column 1, but changing the distributional 

assumption to normal-exponential (x). Column 3 portrays result estimated similar to column 2, 

but using wheat equivalent net output as a dependent variable. Column 4 and 5 portray estimated 

result similar to column 1 but for the dominant and two crop output models, respectively. The 

last two columns depict results estimated by the true fixed effects model assuming half normal 
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distribution and random effect model assuming truncated-normal
27

 distribution of the error 

component   , respectively. 

The results are generally in line with the results presented in session 7.1. In the first stage 

analysis of the frontier models, all models predict negative and significant association between 

productivity and plot size. The possible reason that can explain this relationship is already 

provided in session 7.1. Similarly, strong positive and significant effect of total farm labor is 

predicted. The other inputs are estimated to have no significant effect on productivity in all 

models, with two exceptions. For the dominant crop model, herbicide and pesticide usage is 

predicted to associate negatively and significantly. This is more likely to be a mere association 

than causality, since farmers in the area usually tend to use herbicide and pesticide on plots that 

are already (highly) infested. The negative relationship is likely to reflect loss due to infestation 

than due to the use of chemicals. Of course, the effect of inappropriate application of chemicals 

cannot be ruled out, but such significant negative effect is less expected.   

Technical efficiency is found to have significant association with sex of the household head, sub-

farm size, number of plots operated, land quality, plot supervision, and plot renting. All models 

predict a positive and significant effect of number of plots on technical efficiency, implying that 

farm households operating with few plots are relatively inefficient. This result is consistent with 

my finding in analyzing productivity, where with more plots productivity is predicted to 

increase. The possible reasons are already discussed in session 7.1.   

Again, the effect of distance on technical efficiency is not clear. Some models predicted negative 

relationship while others predicted positive relationship. For the teff and wheat-teff models 

distance is estimated to increase inefficiency though not significantly. While this relationship is 

normally expected, the opposite is observed for the aggregated output model, to which I have no 

better explanation than enhancing my suspicion of measurement bias. More supporting of this 

suspicion is the result predicted by the panel frontier model, in the last two columns. For the 

same aggregated crop model using net output value as a dependent variable, the same functional 

form and the same assumption of plot variant technical inefficiency, but differing in the 

distributional assumption of    , the models predict quite opposite result; with the half-normal 

                                                             
27 In stochastic frontier literatures the normal-truncated distributional assumption is usually regarded as less efficient 

compared to the other three distributional assumptions. But I included it here because the other models could not 

give results.   
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distribution significant (p<0.05) positive effect of distance on technical efficiency is estimated 

while with the truncated-normal distribution significant (p<0.001) negative effect is predicted. 

Moreover, changing the functional form, in Table 10, the estimated magnitude resulted almost 

null. Consequently, the measurement bias for this variable seems inevitable as manifested in all 

analyses including the productivity and crop diversity analyses. Thus, further investigation is 

necessary with actual measurements than subjective estimates of distance in the future. 

Technical efficiency decreases significantly with the increase in SI-index for the dominant crop 

model (column 4) while it is insignificant with rest of other models. The insignificant 

relationship is robust to changing functional form and distributional assumptions for the 

aggregated crop model, Table 10. The result is similar to the result in session 7.1; thus, the 

inference will also be the same: analyzing fragmentation effect with respect to dominant crop 

model, when farming involves diversification, may give misleading, or less robust, result.  

In all models, except in the random effects model (column 7), farm size is predicted to increase 

inefficiency significantly. As previously discussed, this association is more likely to reflect the 

inter-plot factor competition due to market imperfection than the result of scale diseconomies. In 

fact, assuming fixed average plot size, the positive association between number of plots and 

efficiency can be a sign of positive scale effect. Thus, if not due to factor market imperfection or 

unobserved plot heterogeneity, the predicted inverse size-efficiency relationship is more likely 

the result of measurement bias. Measurement bias is already suspected in session 7.1 with plot 

size estimations, suggesting the need for further robustness check,  

To this end, further random effects frontier models are employed using log-semi-log functional 

form and changing the assumption of plot invariant technical efficiency to plot variant. As 

illustrated in Table 10, the result does not persist; the significant inverse relationship between 

farm-size and efficiency disappeared. Thus, the less robust result may further strengthen the 

hypothesis that the inverse relationship may be explained by measurement bias than due to 

diseconomies of scale. 

Male households are found to be relatively more efficient than their female counterparts. The 

difference is significant at the 0.05 level and, more or less, robust to model changes. Although 

less robust, land quality and plot supervision are also found to affect efficiency positively while 

plot renting affects negatively. 
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Table 10 Stochastic Frontier Models: The Semi-Log Model 

Prod-Function xfh1 xfh2 xfh3           xfh4 

lplotsize -0.143** -0.201*** -0.159** -0.214*** 

dmanure 0.134** 0.135*** 0.087 0.083* 

durea 0.053 0.005 0.050 0.002 

ddap 0.048 0.085 0.048 0.084 

dherbpest -0.000 -0.000 -0.000 -0.000 

lfam.labr 0.346*** 0.319*** 0.329*** 0.302*** 

loxen.own 0.043 0.024 0.041 0.025 

_cons 6.798*** 0.448*** 6.881*** 0.529*** 

       
    

  -0.133 0.178 -0.064 0.226 

Technical Inefficiency   

hh-sex 0,073 0,176** 0,134 0.223** 

hh-age 0.000 -0,001 -0,002 -0,002 
hh-edu -0,024 -0,018 -0,024 -0,02 
ldist 0.000 0.000 0.000 0.000 

si-index -0,487 -0,603 -0,12 -0,184 
lno.of.plot 0.393*** 0.394*** 0,184 0,216 
lsfarmsz -0,006 -0,026 -0,025 -0,037 
lsolev 0,001 0,001 0,003 0,002 
landqlty 0.000 0.000 0.000 0.000 

slope 0,001 0,001 0,001 0,001 
soiltype 0.000 0.000 0.000 0.000 

soildepth -0,001 -0,001 -0,001 -0,001 
plotrent -0,026 -0,022 -0,069 -0,042 
lfem.labor -0,012 0,038 -0,004 0,059 
lmalelabor -0,041 -0,039 -0,004 -0,019 
ladulteqvt 0,054 0,006 0,014 -0,031 
_cons -0.988*** -0.790*** -1.126*** -0.948*** 

N 1075 1075 1075 1075 

SE Bootstrapped Bootstrapped Bootstrapped Bootstrapped 

Wald 330.87 413.36 327.12 410.77 

Log likelihood -1239.476 -1240.367 -1240.367 -953.780 

 

Legends: xfh1 = Panel data frontier model with net output value (for all crops) used as a dependent variable, 

assuming half-normal distribution of ui and plot invariant technical efficiency; xfh2 = Panel data frontier model 

with wheat-equivalent net output (for all crops) used as a dependent variable, assuming half-normal distribution of ui 

and plot invariant technical efficiency; xfh3 = Panel data frontier model with net output value (for all crops) used as 

a dependent variable, assuming half-normal distribution of ui and plot variant technical efficiency; xfh4 = Panel 

data frontier model with wheat-equivalent net output (for all crops) used as a dependent variable, assuming half-
normal distribution of ui and plot variant technical efficiency. All are estimated by the random effects method. SE is 

robust standard error computed either by bootstrapping with 200 replications; *significant at 5 per cent; ** 

significant at 1 per cent; ***significant at 0.1 per cent. 



 
 

- 78 - 

Table 10 summarizes results based on the semi-log functional form for the aggregated output 

model. The first two columns assumed plot invariant technical efficiency while the later assume 

plot variant efficiency. Columns 1 and 3 used net output value as a dependent variable while the 

others used wheat-equivalent net output as dependent variable. The models are used to further 

check robustness of results.    
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8. CONCLUSION  

Land fragmentation is a common feature of agrarian society. Population pressure and egalitarian 

land reforms are usually understood as the principal factors of land fragmentations in Ethiopia. 

While policy makers in the past emphasized on plot diversification to protect people and enhance 

food self-sufficiency using land distribution as a safety net, the effect of this plot diversification 

on productivity and efficiency seemed to get little scholarly attention. Yet, the Government of 

Ethiopia appeared to radically shift its land policy from encouraging the small scale agriculture, 

for nearly two decades, to promoting large scale commercial farming. Whether this shift has 

emanated from evaluating the performance of the small scale agriculture is open to investigation, 

which gives raise to the first motive of this study. The intention toward contributing to the 

ongoing, yet unresolved, debate on the relationship between land fragmentation and productivity 

was another motive.  

In this study I investigated the effect of land fragmentation (LF) in Northern Ethiopia on 1) farm 

productivity, 2) efficiency and 3) crop diversity using stochastic production frontier (SPF) 

analysis and farm household model (FHHM) with factor market imperfections. The analysis is 

carried out at plot level mainly in a plot-panel framework using a cross-sectional sample data of 

421 households and their corresponding 1918 plots. Along with "plot size" and "farm size", I 

used three other land fragmentation indicators that are widely used in the literature: "number of 

operated plots", "distance to plots" and "SI-index" (where larger index means highly 

fragmented). 

First, derived from the FHH model, productivity analysis in terms of net output value (and 

alternatively wheat equivalent net output) was carried out using different panel data 

specifications. The persistence of heteroskedasticity and non-normality of the error terms under 

the different models created the need to test the robustness of the results to different econometric 

model specifications.   

I applied Fixed Effects, Random Effects, Hausman-Taylor, Random Effects Tobit and the panel 

data GLS models on 1) dominant-crop model, 2) two-main-crops model and 3) aggregated-

output models as a means to test robustness of results to different model specifications. The 

following important results were revealed (all statistical tests were performed at the 0.05 level). 
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Productivity is associated with "number of plots operated" positively and significantly as 

expected. This association is robust to all model changes. The effect of "distance" is generally 

predicted to be insignificant. But the direction of its effect is not clear. It is predicted to have 

negative effect for the dominant crop model, mixed for the two-main crops model and positive 

for the aggregated output model. Further, it is less robust to changing functional forms triggering 

suspicion of measurement bias. The effect of "SI-index" was found to be negative and significant 

in the dominant crop model but insignificant in the two-crops and aggregated-output models; this 

trend is robust with all models and functional forms. The combined result offers important 

interpretation in that evaluation of land fragmentation by considering only the dominant crop is 

methodologically inconsistent when farm production involves diversification, since higher 

fragmentation can counterbalance the negative impact through diversification.    

Moreover, inverse productivity relationship is observed at plot and farm level in the non-

dominant crop model, even after controlling for land quality and other plot characteristics. 

Generally speaking, the result is robust to changing econometric specifications. Given the 

significant positive effect of number of plots, which may indicate the likelihood of positive scale 

effects, the inverse relationship is suspected to reflect effect of factor market imperfection 

(Bhalla and Roy, 1988), unobserved land quality heterogeneity (Udry, 1996), or plot size 

measurement bias (Holden et al., 2001) than diseconomies of scale (Niroula and Thapa, 2005).  

Second, extended from the FHH model, crop diversity analysis in terms of diversity richness was 

carried out using panel data models for limited dependent variables, namely the Pooled and the 

Random Effects Poisson models, the Pooled Negative Binomial model and the Generalized 

Negative Binomial model on two functional forms: Lin-Lin and Lin-Log models. In all models, 

the result revealed that on-farm crop diversity is positively and significantly associated, as 

expected, with "number of plots operated" and "SI-index"; and negatively and significantly 

related to "farm size". These results are robust to all model specifications and to changing 

functional forms. Important inference from these results can be drawn; land fragmentation can 

encourage on-farm crop diversification. 

Third, technical efficiency analysis was carried out by employing cross-sectional and panel data 

stochastic frontier analysis using different distributional assumptions as a means of checking 

robustness of results. Similar to productivity analysis, three models was framed: model for 1) 

dominant-crop, 2) two-main-crops and 3) aggregated-output. Moreover, further robustness check 
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was performed assuming technical efficiency as 1) plot variant and 2) plot invariant. The main 

results include:  

Farmers operating on more plots are relatively efficient from the view point of aggregated output 

analysis. While positively associated with efficiency, it is not significant in the dominant crop(s) 

model. Larger SI-index causes significant reduction in efficiency from the dominant crop point 

of view, but it is estimated to have insignificant reduction effect for the non-dominant crop 

models. The result is more or less robust. The effect of distance on efficiency is not clear. 

Though less robust to changing functional form, technical efficiency is predicted to associate 

inversely with farm size. This is consistent to the conclusion drawn in the previous page on 

productivity-size relationship.    

In general, I found no evidence to the conventional claim that land fragmentation could be 

detrimental to productivity or efficiency; in fact, the results indicate to the opposite. I found 

productivity, efficiency and crop diversity to associate positively and significantly with the 

number of plots operated; and crop diversity to associate positively and significantly with SI-

index. Thus, the increase in productivity and efficiency due to fragmentation is probably 

attributed to its indirect effect through diversification than due to diseconomies of scale. In fact, 

for a constant average plot size, the positive and significant association between number of 

operating plots and productivity or technical efficiency may witness the existence of economies 

of scale; altogether, suggesting that for the same total farm size, several small plots are preferred 

to one large plot. But this may give rise to the question „how small do plots get before we get 

economies of scale?‟ that invites for further investigation.  

Finally, it should be note that these findings are based on the existing data quality some of which 

may introduce measurement bias in to the models due to the subjective (plot distance) and 

traditional (plot size) estimation methods involved during data collection.  
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APPENDIX 

 

A. Expansion of the household  model 

Eq. (4.12) can be further expanded for each factor and types of household as follows: 
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B. Robustness of Results of Productivity analysis 

Robustness of the results were tested using: 3 functional forms (Log-Semi-Log, Log-Lin, and 

Log-Log forms), 3 dependent variables (aggregated output model, dominant crop model, two 

main crops model) and 2 dimensions of the dependent variable (net output value and net wheat-

equivalent output) repeated over the 7 econometric specifications for panel data. It would be 

tedious to present all the result here, but I summarized only the predicted values of land 

fragmentation indicators in the following five tables.  

Log – Semi-Log Model  

                                         

Log – Log Model 

                               

Log – Lin Model 

                             

Where ln    is the log of net output value (Group 1) or wheat-equivalent net output (Group 2) of 

aggregated output (A), dominant crop (teff) (1) or two-main crops (teff & wheat) (2);    is the 

vector of unknown parameters to be estimated;     is a vector of linear exogenous continuous 

variables conditioning    ;       is a vector of exogenous continuous variables expressed in 

logarithmic form;    the unobserved heterogeneity;      is a vector of dummy variables; and     

is the idiosyncratic error terms.  
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B.1.  Robustness of the effect of number of plots on productivity 

No.of.plots RE MLE HT TOBIT GLS 

Group 1 - Net output Value (birr/ha) – Dependent variable 

SL-A   0.565* 0.561** 0.572** 0.561*** 0.515*** 

SL-1 0.946** 0.945** 0.788 0.945** 0.810*** 

SL-2 0.713*** 0.682** 0.698** 0.682** 0.572*** 

Lin-A 0.068* 0.065** 0.065** 0.044*** 0.073* 

Lin-1 0.107 0.106** 0.051 0.106** 0.082*** 

Lin-2 0.084 0.081** 0.05 0.081** 0.074*** 

Ln-A 0.5 0.436** 0.542* 0.436** 0.402** 

Ln-1 0.909** 0.909** 0.839 0.909** 0.813*** 

Ln-2 0.73*** 0.669** 0.685* 0.669** 0.57*** 

Group 2 - Net wheat equivalent output (Quintal/ha) – Dependent variable 

SL-A 0.514* 0.512** 0.425* 0.513** 0.558*** 

SL-1 0.918** 0.918*** 0.788 0.861** 0.779*** 

SL-2 0.702** 0.695** 0.698* 0.658** 0.508*** 

Lin-A 0.080** 0.078*** 0.079** 0.075*** 0.060*** 

Lin-1 0.108 0.108** 0.051 0.096** 0.089*** 

Lin-2 0.082* 0.082** 0.050* 0.076** 0.073*** 

Ln-A 0.525* 0.520** 0.433* 0.519** 0.537*** 

Ln-1 0.886** 0.886** 0.839 0.834** 0.779*** 

Ln-2 0.687** 0.678** 0.685* 0.643** 0.503*** 

SE Clustered Bootstrapped Bootstrapped Bootstrapped Bootstrapped 

Legends: In the first column: SL = the log-semi-log functional form; Ln = the full log functional form; Lin = the 

log-lin form; A = the Aggregated output model; 1 = the Dominant crop model (teff); and 2 = the two main crops 

model (teff and wheat).  

In the first row: RE= the Random Effects model; MLE= Random Effects Estimated by Maximum Likelihood 

Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects tobit model; GLS= the Generalized Least 

Square Estimator for Panel Data. All Models in Group 1 used “Net output value (birr/ha)” as a dependent variable, 

while in Group 2 “Net Wheat-Equivalent Output (quintal/ha)” is used as a dependent variable.   
In models with bootstrapped standard errors, each bootstrapping is replicated on 200 re-sampled observations; 

otherwise, the standard error is clustered at village level.*significant at 5 per cent; ** significant at 1 per cent; 

***significant at 0.1 per cent.  
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B.2.  Robustness of the effect of distance on Productivity  

Distance RE            FE MLE HT TOBIT         GLS 

Group 1 - Net output Value (birr/ha) – Dependent variable 

SL-A 0.008 -0.004 0.01 0.001 0.01 0.024 

SL-1 -0.013 -0.019 -0.014 -0.014 -0.014 -0.008 

SL-2 -0.033 -0.019 -0.032 -0.002 -0.032 0.009 

Lin-A 0.002** 0.002* 0.002* 0.002* 0.002** 0.002* 

Lin-1 0.001 0.002 0.001 0.002 0.001 0.002** 

Lin-2 0.000 0.000 0.000 0.000 0.000 0.000 

Ln-A 0.034 0.037* 0.036 0.003 0.036 0.037 

Ln-1 -0.012 -0.005 -0.013 -0.014 -0.013 -0.004 

Ln-2 -0.033 -0.021 -0.032 0.000 -0.032 0.007 

Group 2 - Net wheat equivalent output (Quintal/ha) – Dependent variable 

SL-A 0.022 -0.003 0.024 0.006 0.021 0.044** 

SL-1 -0.007 -0.024 -0.007 -0.014 -0.004 0.001 

SL-2 -0.011 0.001 -0.01 -0.002 -0.015 0.013 

Lin-A 0.002*** 0.002 0.003** 0.002* 0.002** 0.003*** 

Lin-1 0.002 0.002 0.002 0.002 0.002 0.002** 

Lin-2 0.001 0.000 0.001 0.000 0.000 0.001** 

Ln-A 0.023 -0.002 0.025 0.007 0.023 0.050*** 

Ln-1 -0.009 -0.018 -0.009 -0.014 -0.007 0.002 

Ln-2 -0.011 -0.002 -0.01 0.000 -0.015 0.009 

SE Clustered Clustered Bootstrap Bootstrap Bootstrap Bootstrap 

Legends: In the first column: SL = the log-semi-log functional form; Ln = the full log functional form; Lin = the 

log-lin form; A = the Aggregated output model; 1 = the Dominant crop model (teff); and 2 = the two main crops 

model (teff and wheat).  

In the first row: RE= the Random Effects model; MLE= Random Effects Estimated by Maximum Likelihood 

Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects tobit model; GLS= the Generalized Least 

Square Estimator for Panel Data. All Models in Group 1 used “Net output value (birr/ha)” as a dependent variable, 

while in Group 2 “Net Wheat-Equivalent Output (quintal/ha)” is used as a dependent variable.   

In models with bootstrapped standard errors, each bootstrapping is replicated on 200 re-sampled observations; 

otherwise, the standard error is clustered at village level.*significant at 5 per cent; ** significant at 1 per cent; 
***significant at 0.1 per cent.  
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B.3. Robustness of effect of SI-index on productivity 

 

SI-index RE MLE             HT   TOBIT GLS 

Group 1 - Net output Value (birr/ha) – Dependent variable 

SL-A -0.344 -0.365 -0.438 -0.365 -0.439 

SL-1 -2.621** -2.619* -2.867 -2.619* -2.293*** 

SL-2 -1.214 -1.178 -0.899 -1.178 -0.733* 

Lin-A -0.275 -0.263 -0.263 -0.203 -0.132 

Lin-1 -0.808 -0.803 -0.847 -0.803 -0.832*** 

Lin-2 -0.519 -0.517 -0.382 -0.517 -0.466** 

Ln-A -0.509 -0.207 -0.395 -0.207 -0.396 

Ln-1 -2.551** -2.551* -2.865 -2.551* -2.303*** 

Ln-2 -1.212 -1.171 -0.77 -1.171 -0.779* 

Group 2 - Net wheat equivalent output (Quintal/ha) – Dependent variable 

SL-A -0.07 -0.072 -0.311 -0.05 -0.303 

SL-1 -2.290** -2.294* -2.867 -2.171* -1.657*** 

SL-2 -0.965 -0.953 -0.899 -0.905 -0.18 

Lin-A -0.303 -0.288 -0.213 -0.239 -0.082 

Lin-1 -0.816 -0.816 -0.847 -0.707 -0.765*** 

Lin-2 -0.468 -0.471 -0.382 -0.384 -0.310* 

Ln-A -0.121 -0.118 -0.3 -0.095 -0.302 

Ln-1 -2.247** -2.250* -2.865 -2.146* -1.691*** 

Ln-2 -0.954 -0.938 -0.77 -0.892 -0.286 

SE Clustered Bootstrap Bootstrap Bootstrap Bootstrap 

Legends: In the first column: SL = the log-semi-log functional form; Ln = the full log functional form; Lin = the 

log-lin form; A = the Aggregated output model; 1 = the Dominant crop model (teff); and 2 = the two main crops 

model (teff and wheat).  

In the first row: RE= the Random Effects model; MLE= Random Effects Estimated by Maximum Likelihood 

Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects tobit model; GLS= the Generalized Least 

Square Estimator for Panel Data. All Models in Group 1 used “Net output value (birr/ha)” as a dependent variable, 

while in Group 2 “Net Wheat-Equivalent Output (quintal/ha)” is used as a dependent variable.   

In models with bootstrapped standard errors, each bootstrapping is replicated on 200 re-sampled observations; 

otherwise, the standard error is clustered at village level.*significant at 5 per cent; ** significant at 1 per cent; 

***significant at 0.1 per cent.  
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B.4.  Robustness of effect of Plot Size on productivity 

Plot Size RE FE MLE HT TOBIT GLS 

Group 1 - Net output Value (birr/ha) – Dependent variable 

SL-A -0.331 0.255 -0.344* 0.167 -0.344** -0.477*** 

SL-1 -0.405 -0.123 -0.403 -0.129 -0.403 -0.395*** 

SL-2 -0.485*  -0.485** -0.469 -0.485** -0.464*** 

Lin-A -1.333***  -1.357*** -1.357*** -1.433*** -1.160*** 

Lin-1 -0.675*** -0.492 -0.679** -0.319 -0.679** -0.851*** 

Lin-2 -1.242*** -0.996 -1.254*** -1.239*** -1.254*** -1.269*** 

Ln-A -0.463** -0.321 -0.350** 0.169 -0.350** -0.423*** 

Ln-1 -0.415  -0.414* -0.039 -0.414* -0.364*** 

Ln-2 -0.520*  -0.521** -0.57 -0.521** -0.503*** 

Group 2 - Net wheat equivalent output (Quintal/ha) – Dependent variable 

SL-A -0.299 0.225 -0.313* 0.382 -0.302* -0.458*** 

SL-1 -0.340* -0.26 -0.341 -0.129 -0.336 -0.376*** 

SL-2 -0.494**  -0.496** -0.469 -0.481*** -0.492*** 

Lin-A -1.418***  -1.436*** -1.269*** -1.343*** -1.442*** 

Lin-1 -0.719*** -0.512 -0.719** -0.319 -0.664** -0.804*** 

Lin-2 -1.301*** -1.071* -1.310*** -1.239*** -1.187*** -1.350*** 

Ln-A -0.337 0.205 -0.352** 0.369 -0.339** -0.489*** 

Ln-1 -0.351*  -0.351 -0.039 -0.345 -0.349*** 

Ln-2 -0.520**  -0.523*** -0.57 -0.506*** -0.512*** 

SE Clustered Clustered Bootstrap Bootstrap Bootstrap Bootstrap 

Legends: In the first column: SL = the log-semi-log functional form; Ln = the full log functional form; Lin = the 

log-lin form; A = the Aggregated output model; 1 = the Dominant crop model (teff); and 2 = the two main crops 

model (teff and wheat).  

In the first row: RE= the Random Effects model; MLE= Random Effects Estimated by Maximum Likelihood 

Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects tobit model; GLS= the Generalized Least 

Square Estimator for Panel Data. All Models in Group 1 used “Net output value (birr/ha)” as a dependent variable, 

while in Group 2 “Net Wheat-Equivalent Output (quintal/ha)” is used as a dependent variable.   

In models with bootstrapped standard errors, each bootstrapping is replicated on 200 re-sampled observations; 
otherwise, the standard error is clustered at village level.*significant at 5 per cent; ** significant at 1 per cent; 

***significant at 0.1 per cent.  
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B.5.  Robustness of the effect of Operated Sub-Farm Size on productivity 

S-Farm size RE            FE MLE HT TOBIT GLS 

Group 1 - Net output Value (birr/ha) – Dependent variable 

SL-A -0.119 -0.091 -0.119 -0.006 -0.119* -0.097** 

SL-1 -0.231 -0.805 -0.231* -0.08 -0.231* -0.240*** 

SL-2 -0.159 -0.722 -0.158* -0.168 -0.158* -0.162*** 

Lin-A -0.134 1.076** -0.128** -0.128** -0.078** -0.093 

Lin-1 -0.212*  -0.212** -0.009 -0.212** -0.176*** 

Lin-2 -0.199*  -0.200** -0.104 -0.200** -0.197*** 

Ln-A -0.092 -0.092 -0.098 0.021 -0.098 -0.056 

Ln-1 -0.225 -0.827 -0.225* -0.051 -0.225* -0.231*** 

Ln-2 -0.151 -0.727 -0.149 -0.177 -0.149 -0.167*** 

Group 2 - Net wheat equivalent output (Quintal/ha) – Dependent variable 

SL-A -0.168* -0.039 -0.170** -0.002 -0.149** -0.157*** 

SL-1 -0.237 -0.715 -0.236* -0.08 -0.229* -0.281*** 

SL-2 -0.186 -0.605 -0.186** -0.168 -0.178** -0.206*** 

Lin-A -0.170* 1.161*** -0.166*** -0.123 -0.152*** -0.141*** 

Lin-1 -0.221*  -0.221** -0.009 -0.207** -0.195*** 

Lin-2 -0.202*  -0.203*** -0.104 -0.198*** -0.212*** 

Ln-A -0.153 -0.041 -0.155** 0.02 -0.135* -0.139*** 

Ln-1 -0.228 -0.724 -0.227* -0.051 -0.221* -0.273*** 

Ln-2 -0.178 -0.606 -0.179* -0.177 -0.170* -0.208*** 

SE Clustered Clustered Bootstrap Bootstrap Bootstrap Bootstrap 

Legends: In the first column: SL = the log-semi-log functional form; Ln = the full log functional form; Lin = the 

log-lin form; A = the Aggregated output model; 1 = the Dominant crop model (teff); and 2 = the two main crops 

model (teff and wheat).  

In the first row: RE= the Random Effects model; MLE= Random Effects Estimated by Maximum Likelihood 

Estimator; HT= the Hausman-Taylor Model; Tobit= the random effects tobit model; GLS= the Generalized Least 

Square Estimator for Panel Data. All Models in Group 1 used “Net output value (birr/ha)” as a dependent variable, 

while in Group 2 “Net Wheat-Equivalent Output (quintal/ha)” is used as a dependent variable.   

In models with bootstrapped standard errors, each bootstrapping is replicated on 200 re-sampled observations; 
otherwise, the standard error is clustered at village level.*significant at 5 per cent; ** significant at 1 per cent; 

***significant at 0.1 per cent.  
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C. Further Analysis of Crop Diversity  

 Controlling for wereda specific effects 

Diversity    POOLS POISSON POISSON-RE N.BINOM G.N.BINOM 
Richeness      
hh-age 0.002* 0.002* 0.001 0.002* 0.001 

hh-sex 0.032 0.031 0.026 0.031 0.026 

hh-edu -0.027*** -0.028*** -0.027 -0.028*** -0.027 

hh-size -0.011* -0.013** -0.011 -0.013** -0.011 

lfem.labor 0.013 0.007 0.011 0.007 0.011 

lmalelabor -0.079*** -0.080*** -0.078 -0.080*** -0.078 

ladulteqvt 0.133*** 0.157*** 0.135 0.157*** 0.135 

lofarmszh -0.060** -0.046* -0.053 -0.046* -0.053 

si-index 0.985*** 0.834*** 0.808*** 0.834*** 0.808*** 

distance 0.000 0.000 0.000 0.000 0.000 

no.of.plot 0.057*** 0.055*** 0.060*** 0.055*** 0.060*** 

soildepth -0.022* -0.023** -0.021 -0.023** -0.021 

landqlty 0.026* 0.023* 0.022 0.023* 0.022 

soiltype -0.01 -0.005 -0.008 -0.005 -0.008 

slope 0.050*** 0.051*** 0.042* 0.051*** 0.042 

loxen.own -0.045*** -0.068*** -0.055* -0.068*** -0.055* 

_Iwereda_3 0.026 0.036 0.018 0.036 0.018 

_Iwereda_4 -0.02 -0.055* -0.045 -0.055* -0.045 

_Iwereda_5 -0.039 -0.051* -0.05 -0.051* -0.05 

_Iwereda_6 0.039 0.032 0.034 0.032 0.034 

_Iwereda_7 -0.015 0.008 0.000 0.008 0.000 

_Iwereda_8 0.041 0.059* 0.053 0.059* 0.053 

_Iwereda_9 0.220*** 0.245*** 0.228** 0.245*** 0.228** 

_Iwereda_10 0.272*** 0.245*** 0.245** 0.245*** 0.245** 

_Iwereda_11 -0.063* -0.057* -0.06 -0.057* -0.06 

_Iwereda_12 -0.131*** -0.158*** -0.150* -0.158*** -0.150* 

_cons -0.085 0.071 0.104 0.071 14.993 

N 1446 1446 1446 1446 1446 

SE CLUSTERED BOOTS BOOTS BOOTS BOOTS 

Legend: POOLED = the Pooled OLS model with the dependent variable in log form, as explained in Chapter 6.2; 

POISSON = the Pooled Poisson Regression Model; POISSON-RE = the Random Effects Poisson Regression 

Model; N.BINOM = the Pooled Negative Binomial Regression Model; G.N.BINOM = the Generalized Negative 

Binomial Regression Model;  SE = Robust standard error computed either by bootstrapping technique (BOOTS) 

with 200 replications or clustering the error terms at village level (CLUSTERED); *significant at 5 per cent; ** 

significant at 1 per cent; ***significant at 0.1 per cent. 
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D. Further Efficiency Analysis using the Frontier Models:  

D1. Cross-Sectional Frontier Model: Log-Semi-Log Form 

 

fh1 fx1           fx2 fh3 fh4 

Production Function 

lplotsize -0.373*** -0.345*** -0.293** -0.17 -0.307*** 

dmanure 0.078 0.075 0.105 0.197 0.128 

durea -0.054 -0.034 -0.084 0.211 -0.001 

ddap 0.146 0.119 0.171* -0.064 0.084 

dherbpest -0.002 -0.002 -0.002 -0.013** -0.003 

lfam.labr 0.318*** 0.323*** 0.292*** 0.352*** 0.346*** 

loxen.own -0.039 -0.038 -0.004 0.07 -0.033 

_cons 6.702*** 6.488*** 0.415* 0.19 0.307 

  (  
 ) -1.230*** -0.989***        -1.183***        -1.442***        -1.623*** 

Technical inefficiency  

hh-sex -0.316* -0.514* -0.780*** -0.607 -0.508* 

hh-age -0.002 -0.003 0.003 -0.005 -0.007 

hh-edu -0.086 -0.101 -0.081 -0.139 -0.241** 

ldist -0.068 -0.104 -0.103 0.108 0.043 

si-index 0.244 0.485 -0.792 7.416* 2.51 

lno.of.plot -0.887* -1.284* -1.393* -3.177** -1.960* 

lsfarmsz 0.262* 0.372* 0.556** 0.753** 0.519* 

lsolev -0.311*** -0.447*** -0.345** -0.103 -0.202 

landqlty -0.161 -0.244 -0.178 -0.402* -0.327* 

slope 0.036 0.061 0.081 -0.282 0.049 

soiltype 0.036 0.064 -0.004 0.039 0.118 

soildepth 0.096 0.122 0.301* 0.049 0.109 

plotrent 0.341* 0.476* 0.197 0.245 0.590* 

lfem.labor 0.047 0.057 -0.308 -0.680* -0.436* 

lmalelabor -0.062 -0.072 -0.227 -0.41 -0.378 

ladulteqvt 0.26 0.322 0.64 1.325* 0.909* 

_cons 1.844 1.534 1.949 -1.2 1.065 

N 959 959 1001 279 525 

SE BOOTS BOOTS BOOTS BOOTS BOOTS 
 

Legends: fh = frontier model with normal-half-normal distribution; fx = frontier model with normal-exponential 

distribution; The numerical subscripts: 1 = Aggregated crop model, in net-output-value (birr/ha); 2 = Aggregated 

crop model, in wheat-equivalent net output (quintal/ha); 3 = Dominant crop model (teff), in net-output value 

(birr/ha); 4 = Two main crops model (teff and wheat), net-output value (birr/ha). SE= Bootstrapped (BOOTS) 

standard errors with 200 replications; *significant at 5 per cent; ** significant at 1 per cent; ***significant at 0.1 per 

cent. 
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D2. Cross-Sectional Frontier Model: Log-Lin Form 

 fh1 fx1 fx2 fh3 fh4 

Production Function 

plotsize -1.277*** -1.234*** -1.273*** -0.875*** -1.290*** 

dmanure 0.148** 0.139** 0.137** 0.248** 0.194*** 

durea -0.017 0.005 -0.047 0.270* 0.003 

ddap 0.139 0.107 0.142 -0.141 0.062 

dherbpest -0.001 -0.002 -0.001 -0.007 -0.001 

fam.labr 0.002*** 0.002*** 0.002*** 0.002* 0.001* 

oxen.own 0.001 0.001 0.001 0.003* 0.002 

_cons 8.757*** 8.495*** 2.325*** 2.255*** 2.502*** 

     
   -1.176*** -0.963*** -1.144***       - 1.524***       - 1.637*** 

Technical Inefficiency 

hh-sex -0.052 -0.114 -0.322 -0.277 -0.063 

hh-age -0.007 -0.01 -0.005 -0.012 -0.014* 

hh-edu -0.066 -0.081 -0.07 -0.01 -0.098 

distance -0.003 -0.005 -0.006 -0.003 -0.001 

si-index -0.536 -0.732 -0.583 0.992 0.678 

no.of.plot -0.041 -0.058 -0.179** -0.260* -0.199** 

sfarmsz 0.181* 0.263* 0.452*** 0.477* 0.444*** 

solevisit -0.009** -0.014** -0.012** -0.009 -0.005 

landqlty -0.145 -0.213 -0.139 -0.105 -0.269* 

slope -0.063 -0.084 -0.036 -0.447* -0.191 

soiltype 0.025 0.04 0.049 0.024 0.126 

soildepth 0.208* 0.297* 0.410*** 0.091 0.125 

plotrent 0.219 0.268 0.217 0.153 0.388* 

fem.labor 0.003 0.005 -0.002 -0.032** -0.025** 

malelabor -0.001 -0.001 -0.006 -0.030* -0.025** 

adulteqvt 0.001 0.001 0.004 0.029** 0.020*** 

_cons 0.867 0.044 -0.26 1.027 0.8 

N 1311 1311 1371 378 713 

SE BOOTS BOOTS BOOTS BOOTS BOOTS 

Legends: fh = frontier model with normal-half-normal distribution; fx = frontier model with normal-exponential 

distribution; The numerical subscripts: 1 = Aggregated crop model, in net-output-value (birr/ha); 2 = Aggregated 

crop model, in wheat-equivalent net output (quintal/ha); 3 = Dominant crop model (teff), in net-output value 

(birr/ha); 4 = Two main crops model (teff and wheat), net-output value (birr/ha). SE= Bootstrapped (BOOTS) 

standard errors with 200 replications; *significant at 5 per cent; ** significant at 1 per cent; ***significant at 0.1 per 

cent. 
 

 


