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ABSTRACT 

Lake Barombi Mbo is an isolated oligotrophic lake situated in the volcanic range of West Cameroon 

and home to several endangered endemic cichlids. A fieldwork was carried out at the lake where 

water and fish samples were collected as part of an investigation. The aim of this study was to 

investigate (i) whether studied trace metals were present at levels exceeding ambient water criteria, 

(ii) link uptake of trace metals in gills and liver of fish to water chemistry, (iii) accumulation of 

mercury in muscles and biomagnification along the food chain. ICP-MS and ICP-OES analysis for 

concentration of trace metals in water samples from the lake showed that, the total concentrations of 

investigated trace metals were below U.S. Environmental Protection Agency (EPA) criteria limits, 

Canadian Council of Ministers of the Environment (CCME), South Africa Water Quality Guidelines 

and World Health Organization (WHO) guidelines for protecting aquatic life. Linking uptake and 

water chemistry, bioconcentration factor (BCF) analyses showed accumulation of trace metals in 

both gills and liver of fish. With minor differences in accumulation sequence, all fish species 

accumulated Al, Mn, and Sr in highest concentration in their gills with Cu, Cd, Co, Cr, Pb, and U 

highest in liver. The highest mean concentration of metal accumulated was observed for Cu (1153 

µg/g dw) in liver of U. species. P. maclareni accumulated Al, Cr, Co, Sr, and Pb in highest 

concentrations. While U. species had Mn and Cu in highest concentration, Cd was present in highest 

concentration in C. maclareni. The high accumulation of Al, Mn and Sr on gills of the three fish 

species, indicates that they are bioavailable and probably high levels in Lake Barombi Mbo. Total 

mercury concentrations (mg/kg ww) were low with mean values of 0.0093 in U. species, 0.0274 in 

P. maclareni and 0.0266 in C. maclareni compared to 0.2 mg/kg WHO recommended guideline for 

Total Dietary Intake (TDI) to protect vulnerable groups (pregnant women and children) from 

mercury toxicity. Stable isotope analysis of carbon δ
13

C used as index for carbon source and flow, 

and nitrogen δ
15

N as index for trophic position within the aquatic food chain were determined. Hg 

concentrations in muscle of fish coupled mean δ
13

C (‰) and nitrogen δ
15

N (‰), showed that U. 

species had the lowest Hg concentrations, δ
13

C (- 32.9 ‰) and δ
15

N (6.6 ‰), and so occupied the 

lowest position of the food chain. C. maclareni and P. maclareni both had the highest Hg levels, but 

C. maclareni had the highest δ
15

N (9.9 ‰) and occupied the highest trophic level. Log THg vs. δ
15

N 

among all species sampled showed a significant positive relationship indicative of mercury 

biomagnification along the food web of Lake Barombi Mbo. Results of trace metal levels in water 

and fish tissues suggest that trace metals do not pose a serious threat to the aquatic biota of Lake 

Barombi Mbo. 
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CHAPTER ONE 

INTRODUCTION 

Trace metals occur naturally in the environment and are usually present in low concentrations 

in freshwater (Ward, 2000; van Loon & Duffy, 2011). Though naturally present at low 

concentrations, anthropogenic inputs continuously increase their concentrations above natural 

geological and biological alterations (Ward, 2000). The non-biodegradable nature and 

toxicity of trace metals is a global issue (Ikem et al., 2003; Malik et al., 2010; Olowu et al., 

2010). While some trace metals (e.g. copper (Cu), manganese (Mn), iron (Fe) and zinc (Zn)) 

are essential at levels of safe exposure, others (e.g. aluminium (Al), cadmium (Cd), mercury 

(Hg), lead (Pb)) exert toxic effects even at low concentrations. The bioavailability and 

toxicity of trace metals in aquatic ecosystems is controlled by their speciation which depends 

on pH, solubility, temperature, nature of other species present and other factors of solution 

chemistry (Franklin et al., 2000; Ward, 2000; Teien et al., 2004). However, the distribution of 

the different physicochemical forms in an aquatic ecosystem vary in terms of size and 

charged fractions between high molecular mass (HMM) (particles and colloids; > 10kDa) to 

low molecular mass (LMM) species usually the bioavailable fractions (Masresha et al., 

2011). Their uptake and toxicity generally correlates to their free metal ion than their total 

concentration (Campbell, 1995). The accumulation of trace metals in aquatic ecosystems may 

result in adverse effects on both biota and humans through consumption due to 

bioaccumulation and bio-magnification over time (Malik et al., 2010). This may result either 

in death, reduced growth, or in impaired reproduction and lower species diversity (Praveena 

et al., 2007). Fish occupy highest trophic level in many aquatic food chains and are constantly 

exposed to pollutants (Agah et al., 2009). Fish therefore serve as excellent biomarkers of 

trace metals in aquatic ecosystems (Nsikak et al., 2007) and provide long-term measure of 

pollutant bioavailability (Nehring et al., 1979), accumulating trace metals in different organs 

to concentrations many times higher than the low levels in water (Namminga and Whilm, 

1976; Noor El Deen et al., 2010). The gills are the dominant physiological organ directly in 

contact with water. They accumulate bioavailable trace metals and their measurements can 

reflect their speciation and concentration in water (Rosseland et al., 1992). The presence of 

trace metals in the liver reflects storage from water (Romeo et al. 1999) and potential 

assimilation through food. Lake Barombi Mbo in Cameroon is the largest Crater Lake within 

the South West eco-region and home to several endemic cichlids and some incipient fish 

species. Serving as local fisheries for nearby inhabitants of Barombi Mbo village and 
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drinking water source for the city of Kumba, Reid (1995) identifies water pollution as a 

potential threat to its water quality. Based on literature survey, to the best of my knowledge 

except for in-depth study on the feeding biology of its fishes, no work has been carried out on 

the environmental quality and biota of the lake.   

The objectives of this study were to: 

 establish the concentrations of trace metals in water, and verify if concentration of 

analyzed trace metals exceeded permissible ambient water quality criteria that may 

cause negative effects on the aquatic organisms; 

 obtain information about trace metal bioavailability and accumulation in fish (gills, 

liver and muscle) of three different fish species representing different trophic levels 

and evaluate the main uptake pathways and risk assessment of accumulation of trace 

metals. 

The predictions were that: 

 high concentration of trace metals in fish is due to exposure of bioavailable trace 

metals; 

 increased concentration of trace metals with trophic level, illustrates biomagnification 

effects. 
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CHAPTER TWO 

BACKGROUND AND LITERATURE REVIEW 

2.1. Lake Barombi Mbo 

Barombi Mbo is an oligotrophic lake situated in the volcanic range of west Cameroon, about 35 

miles north-north-east of Mount Cameroon at 9˚22ʹE and 4˚38ʹN (Fig. 1). The lake is clear and lies 

in a small forested crater. Roughly circular with a diameter of about 2.5 km, it has a maximum depth 

of 111m and an altitude of 301m a.s.l. with one major outflow through the Kake Gorge at the South-

eastern corner and several small inflows, some of them seasonal. A dam has been constructed at its 

outlet, raising its level, and surrounding the lake’s crater rim is felled forest, much of which is used 

for agriculture. Isolated from the nearby river system, the small size of the lake renders it extremely 

vulnerable to even minor disturbances. There are growing concerns on the ecological status of the 

lake due to partial deforestation of the interior crater rim for agricultural land use, water extraction, 

pollution associated to urbanization and introduction of exotic fish species.  

 

Figure 1. Map of Lake Barombi Mbo, Cameroon (Source: google.com) 

The main anthropogenic activity around the forested Crater Lake Barombi Mbo is agriculture. This 

mostly entails the farming of cocoa and the subsequent use of pesticides for spraying cocoa plants. 

Felt trees from the crater rim were also observed in the water probably due to wind or human impact. 
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Lake Barombi Mbo with a high index of endemicity per area is home to 12 endemic cichlids 

(Trewavas et al., 1972). Of the 12 endemic species, all endemics are tilapiine cichlid fishes except 

for the catfish, Clarias maclareni. Four of the five tilapiine genera are endemic: Konia except for the 

clariid catfish C. maclareni. Four of the five tilapiine genera are endemic: Konia (two species), 

stomatepia (three species), Pungu (one species), and Myaka (one species). Ecological surveys 

conducted by Trewavas et al. (1972) based on the examination of stomach contents of the fishes 

revealed that Unga species and Myaka myaka feed on phytoplankton and chaoborus larvae. C. 

maclareni preyed on M. myaka and Konia dikume. Stomatepia mariae was also observed to be 

piscivorous. With the established food chain, bioaccumulation and biomagnification of trace metals 

can be investigated.   

2.2. Trace metals in water 

Trace metals are pollutants which though naturally occurring enters aquatic ecosystems from a 

variety of anthropogenic sources which increase their concentrations at levels exceeding their natural 

background levels. Extensive studies have been carried out for the following metals either on an 

individual or group basis, Cd, Hg, Pb, Al, Cu, Zn, Fe, Mn, Cr, Ni and Co (Förstner & Whittmann, 

1979, Handy, 1992). However, these metals are classified on the basis of their essentiality (Fe, Zn, 

Cu, Co, and Mn) and non-essentiality (Hg, Cd, and Pb). Although Cu, Fe, and Zn are known required 

elements for metabolic activities (Frieden, 1972), at high concentrations they may be toxic. The non 

essential trace metals such as Hg, Cd, and Pb are potentially toxic to biota even at levels of low 

exposure (Förstner & Whittmann, 1979). However, once in aquatic ecosystems like freshwaters, 

many factors affect the dynamics and extent of trace metal bioaccumulation in fish (Campbell, 

1995). These include, the characteristics of the trace metal in view of its solubility and 

physicochemical form (speciation) controlled by pH, temperature, dissolved organic carbon (DOC), 

dissolved oxygen (DO), alkalinity, hardness, total dissolved solids (TDS), and electrical conductivity 

(EC) which characterize the water quality (Franklin et al., 2000; Ward, 2000; Teien et al., 2004). 

These physicochemical characteristics are also linked to biological characteristics of the exposed 

organism (Luoma, 1983). These include behaviour, modes and feeding frequency with the specific 

type of food being ingested, age and size of the organism (Campbell, 1985; Luoma, 1983). The 

parameters for metal speciation differ between metals and the effects exerted by bioavailable metals 

also differ between species of organisms. Whereas microbial activity, and dissolved organic carbon 

(DOC) influence the speciation, bioavailability and toxicity of mercury, pH, reduced DOC, and 

temperature enhance aluminium (Al) speciation, bioavailability, and toxicity. The extent of metal 
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toxicity on fish also depends on the  sensitivity and life history stage of the fish species, as smolt are 

more sensitive to Al toxicity than parr (Kroglund et al., 2008).  

Several studies suggest waterborne and dietary uptake of trace metals as the main sources of metal 

uptake in fish (Spry et al., 1988; Spry & Wiener, 1991; Rosseland et al., 1992; Romeo et al., 1999). 

The possible routes of waterborne uptake and accumulation are by direct uptake through the gills 

which is the primary physiological organ in contact with water and concentration in gills are 

correlated with waterborne exposure (Rosseland et al., 1992). Dietary uptake of trace metals is 

reflected by accumulation in the liver either through absorption from water and/or ingestion from 

food (Romeo et al., 1999). The bioavailable and absorbed metals are redistributed from active uptake 

sites through the blood and accumulate at other target organs distant from the point of entry (Handy, 

1992), resulting in systemic effects (Fig. 2). Metals differ in their ability to accumulate at specific 

uptake sites, as such, though specific metals may target specific tissues such as bone, spleen, kidney, 

muscle and intestines, and the pattern of distribution in tissues may reflect the route of metal uptake 

in fish. Tissue localization studies have shown that fish liver tissue generally accumulates highest 

concentrations of trace metals (Bendell-Young et al., 1986; Ewers & Schlipkoter, 1991). This is also 

due to the fact that the liver is the major producer of the metal binding protein metallothionein 

(Kalay & Canli, 2000).  Also, the liver acts as the organ for storage and detoxification of 

contaminants. The accumulation of trace metals in fish can be quantified either on a whole body or 

on an organ specific basis as bioconcentration factor. The bioconcentration factor (BCF) represents 

the extent or ratio to which the concentration of a specific metal in the tissue of an aquatic organism 

(e.g., fish) exceeds levels in the surrounding environment (water) in which it is exposed (Wood, 

2012). Once present in the aquatic environment and accumulated in fish tissues, trace metals can 

exert toxic effects. The total concentrations in water provide no information concerning the fate of 

trace metals in terms of their interaction with various matrices of the aquatic environment, their 

ability to cross biological membranes, or their resultant toxicity (Christie, 2000). Hence, the 

bioavailability and potential of trace metals to exert toxic effects is generally correlated to the 

concentrations of the free metal ions (Campbell, 1995). The bioavailable free ion concentrations of 

trace metals are compared with ambient water quality criteria (AWQC) based on water hardness as 

safety limits from acute and chronic levels for aquatic life protection. The higher the water hardness, 

the larger the criteria limit and AWQC varies between jurisdictions due to differences in geology and 

sensitivity of aquatic organisms within a given aquatic ecosystem. 
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 Figure 2. Linking metal bioavailability and accumulation in fish tissues (A = antagonistic 

 interaction between trace metal ions and major cations and anions). Sources: 

 www.umb.no & www.hydroqual.com. 

Water hardness plays an important role in altering trace metal uptake at competitive binding sites on 

the calcified tissues of fish. Whilst toxicity is related to the specific trace metal and its concentration, 

some trace metals are more toxic than others even at low concentrations and consequently have 

varying AWQCs. However, high concentrations of some trace metals (e.g., Cu) in the liver do not 

necessarily result in toxic effects. This is as a result of homeostatic control through which their levels 

in liver can be regulated by metabolic processes. In addition, metals such as Cu which are in 

continuous interaction with the gills of fish can be valuable indicators of acute lethal exposure (van 

Hoof & van San, 1981) due to accumulation, but uptake through food might be different. On the 

contrary, the very toxic metals (e.g., Hg, Cd, and Pb) are poorly regulated and their increased half 
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lives in tissues may result in adverse acute and chronic effects. This is due to their slow excretion 

and poor homeostatic control which increases their resident time in fish tissues. Gill and liver of fish 

sampled for trace metal concentrations should reflect the trace metal concentrations from water and 

food, respectively. As such, to determine the extent of contaminants (e.g., trace metals), the natural 

levels or background concentrations need to be established (Velz, 1984). There is lack of comparable 

data on national guidelines for Cameroon on trace metals in fish tissues. Results of trace metals in 

sampled tissues are therefore compared with background levels reported from other countries with 

respect to similarities in geographical settings and fish species studied. It is rare to find one 

contaminant at a time released into the aquatic ecosystem (Kumar & Singh, 2010). When toxicants 

such as trace metals enter the environment, they become subject to various interactions with 

naturally occurring constituents and other toxicants present (Anderson & D'Apollonia, 1978). Most 

of the trace metals interact with each other and are influenced by other ions (Kumar & Singh, 2010). 

Thus, the effect of a toxicant on an organism it encounters can be modified. For example Zn, Cd, Co, 

Pb, and Sr mimic calcium on the calcified tissues of fish by competing for active binding sites on 

calcium rich bone and filaments on the gills arch (Bury et al., 2003). Trace elements entertain 

synergistic or antagonistic interactions whenever in a mixture (Sprague, 1985) and as a result of their 

bio-accumulative and non-biodegradable properties, they constitute an important category of aquatic 

pollutants. 

2.3. Selected trace elements 

The trace metals, Al, Cd, Cr, Pb, Hg, Cu and Mn were chosen for study because they are among the 

most studied and also reported to be present in freshwater ecosystems. Based on this, I characterized 

them in view of their essentiality (Cu, Mn) and non essentiality (Al, Cd, Cr, Pb, Hg) in fish. Some of 

these metals (Cd, Pb, Hg) are reported to be particularly toxic at low concentrations. So, because I 

want to investigate if they were at levels exceeding background concentration, I felt there was a need 

to investigate them over other possible trace metals.  

 

2.3.1. Aluminium (Al) 

Al occurs naturally in the environment as aluminosilicates, oxides, and hydroxides, combined with 

other elements and complexed with organic matter (Landler, 1988). However, soil minerals are the 

primary source of aluminium to aqueous and biological environments (Driscoll & Schecher, 1990) as 

acid rain dramatically influences the leashing of Al from soils into aquatic ecosystems (Ward, 2000). 

Once in aquatic systems, Al can be present in different physicochemical forms, varying from 

particles, colloids, simple monomeric ions to polymers (Salbu & Oughton, 1995). Waterborne Al 
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toxicity is controlled by factors of solution chemistry such pH, temperature, hardness and 

complexation (Teien et al., 2004). According to Wilson (2012), the dietary uptake of Al and 

associated toxicity is very negligible and its bioaccumulation through the aquatic food chain does not 

occur. Though, dietary uptake to internal organs such as muscle, liver, kidney, and gills may occur 

(Handy, 1994). Al predominates as inorganic monomeric species [Al(H2O)6
3+

, Al
3+

, Al(OH)2
+
] 

within pH 4.0-5.0, Al(OH)3 at intermediate pH values and Al(OH)4
-
  under alkaline conditions in 

aquatic ecosystems (Teien et al., 2004; Wilson, 2012). Of all Al species formed under varying 

acidity, the inorganic monomeric species having a positive charge (e.g., Al
3+

) are the most toxic 

(Schlindler, 1988; Gensemer & Playle, 1999). According to Rosseland et al. (1990) and Teien et al. 

(2006), Al
3+ 

is readily bioavailable and very gill-reactive. So, the physiological effects of gill Al vary 

with acidity of the aquatic environment.  Below pH 5.0, Al (OH)3 precipitates due to reduced 

solubility of Al and bioaccumulates on fish gills (Rosseland & Staurnes, 1994). Between pH 5.0-6.0, 

short lived Al
3+

 cellular internalization through Al polymerization is said to occur (Exley et al., 

1991) with toxicity decreasing at low temperatures (Poléo et al., 1991). The resulting effects of gill 

Al are respiratory dysfunction due to impediment of the interlamellar space with excessive mucus 

production, decreased membrane fluidity; disruptive ion regulation associated with increasing loss of 

plasma and haemolymph ions, cell necrosis and increased mortality (Rosseland et al., 1990; Exley et 

al., 1991; Peuranen et al., 2003; Moiseenko & Sharowa, 2006). However, the above mentioned 

effects of Al toxicity are also dependent on fish species, development stages or size (Baker & 

Schofield, 1982). In a study exposing parr and smolts of Atlantic salmon (Salmo salar L.) in the 

same experimental tanks, Monette & McCormick (2007) observed that parr was more Al tolerant as 

it accumulated six fold more Al on its gills than smolt. The concentration of Al in ambient water 

which is highly dependent on speciation is a prerequisite to possible toxic effects on fish when 

background levels are exceeded. The ambient water quality guideline for dissolved Al in freshwater 

is 750 µg/L and 87 µg/L for acute and chronic effects, respectively (EPA, 1998). However, toxicity 

is dependent upon speciation and protecting factors. For Atlantic salmon (Salmo salar L.) smolt 

exposed for a prolonged period of <10 days, a concentration of <20 µg/L labile Al results in a gill Al 

concentration of up to 300 µg/g Al dry weight associated with hypo-osmoregulatory disturbance. 

But, >40 µg/L labile Al results in a gill Al concentration >450 µg/g Al dry weight with high 

mortality (Kroglund et al., 2008). 
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2.3.2. Cadmium (Cd) 

Cd occurs ubiquitously in the environment at generally low concentrations with no functional role in 

biological systems (Almeida, 2001; Lydersen et al., 2002; McGeer et al., 2012). With its potential for 

long-range transport, anthropogenic sources have increased Cd levels in the environment beyond 

natural inputs (Okada et al., 1997; Lydersen et al., 2002). Waterborne Cd can result from weathering 

of rocks and also leashing from soils. Once in aquatic ecosystems, Cd predominates as Cd
2+ 

across 

pH 4.5 to 7.0 and at higher alkalinity CdCO3 complex becomes predominant (Lydersen et al., 2002). 

However, the concentration and subsequent bioavailability of Cd in aquatic ecosystems depends on 

numerous factors. These include its interaction with other constituents such as particulate matter 

which result in adsorption or desorption to sediments altering the concentration of cadmium in the 

water column and bioavailability to the biota therein (Thornton, 1995; Lawrence et al., 1996; Skeaff 

et al., 2002; Lydersen et al., 2002). Although, various modes of Cd uptake exist in aquatic 

organisms, Cd
2+

 is readily absorbed directly from water by organisms (AMAP, 1998). McGeer et al. 

(2012) confirm that Cd toxicity to aquatic species depends on its speciation which is proportional to 

the predominant bioavailable Cd
2+

 concentration. In fish, during short exposures with high Cd 

concentrations, the gills are thought to be the primary site of damage and accumulation (Lydersen et 

al., 2002). Following chronic exposure, the kidney is the main target organ for Cd with the liver 

storing considerable amounts (Kumar & Singh, 2010). Wren & Stephenson (1991) suggest that 

though Cd readily bioaccumulates and bioconcentrates in aquatic organisms, it does not biomagnify 

in aquatic food chains. The bioavailability and toxicity of Cd
2+

 can be altered by inorganic cations 

such as Na
+
, Mg

2+
 and especially Ca

2+
 through competitive interactions for active binding sites on 

the chloride cells of the gills and organic cadmium complexes which are comparatively non 

bioavailable (Lydersen et al., 2002; McGeer et al., 2012). Cd exerts a variety of acute and chronic 

effects on fish. Among these is accumulation on gills which disrupts ion homeostasis as Ca uptake 

from water is inhibited causing hypocalcemia. Pratap & Bonga (1993), observed changes in gill 

ultrastructure and degeneration of pavement and chloride cells of the freshwater cichlid Oreochromis 

mossambicus exposed to waterborne and dietary Cd. With varying Cd toxicity in fish, salmonides are 

thought to be the most sensitive taxonomic group (Lydersen et al., 2002). The most susceptible life 

stages are the embryo and early larva, while eggs are the least susceptive (Lydersen et al., 2002). 

Several studies document the chronic effects of Cd as potentially affecting ion regulation, growth, 

reproduction, immunological and histopathological parameters, behaviour, development and 

endocrine functions (Pratap et al., 1989; McGeer et al., 2000a; Thophon et al., 2003). Worthy of 

note, is the fact that Cd accumulation causes oxidative stress resulting from the production of 
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Reactive Oxygen Species (ROS). Pickering & Gast (1972), reported survival over growth as a more 

sensitive endpoint for Cd effects on fathead minnows. Exposed rainbow trout (Oncorhynchus 

mykiss) to concentrations up to 5.5 µg/L Cd showed no effects on growth or survival over 65 weeks, 

but reproductive development was delayed at an even lower exposure (1.8 µg/L Cd). Though Cd 

induces metallothionein in the gills, it is readily detoxified in the liver (Olsson & Hogstrand, 1987). 

The ambient water quality criteria set for Cd is 0.6 µg/L for acute levels and 0.11 µg/L for chronic 

levels based on a water hardness of 30 mg/L (EPA, 2001). 

2.3.3. Chromium (Cr) 

Cr though naturally occurring enters various environmental components (air, water, soil) from a wide 

variety of natural and anthropogenic sources which have further increased its environmental 

concentration above permissible limits (Lydersen et al., 2012; Reid, 2012). The element exist in 

several oxidation states ranging from -2 to +6, with the insoluble trivalent (Cr
3+

, Cr (OH)
2+

, 

Cr(OH)2
+
)  and  highly soluble hexavalent (CrO4

2-
, H CrO4

-
 , Cr2O7

2-
) species being the most stable 

forms in aquatic ecosystems (Lydersen et al., 2012; Reid, 2012). Although Cr
3+

 serves as cofactor for 

insulin action in glucose metabolism (Vincent et al., 1995) and maintains efficient lipid and protein 

metabolism in mammals, it has no known biological function in aquatic organisms (Lydersen et al., 

2002). Both Cr
3+

 and Cr
6+

 can exist in water with little organic matter (Towill et al., 1978), but Cr
6+

 

predominates in oxic conditions as the dissolved stable species (Reid, 2012) being toxic to organisms 

due to its strong oxidative ability (Langard & Nordseth, 1979; Eisler, 1986). Chromium toxicity to 

aquatic biota depends on both biotic (species, age and developmental stage) and abiotic (temperature, 

oxidation state and concentration of Cr, pH, alkalinity, salinity and water hardness) factors (Eisler, 

1986). Chromium exposure to fish can initiate a variety of acute and chronic effects from 

physiology, histopathology, biochemical as well as enzymatic and genetic parameters. Chromium 

accumulation seems to be highest in the gill, liver and intestine (Kuhnert & Kuhnert, 1976; Van der 

Putte et al., 1981), with the gill representing the primary site of uptake (Van der Putte et al., 1981a). 

Hexavalent Cr has been reported to inhibit Na/K-ATPase in gill, liver and intestine of rainbow trout 

exposed at different pH (Van der Putte et al., 1982) and that of coastal teleost at different 

concentrations (5, 10, 15 mg/L) (Thaker et al., 1996). As a result, acute hexavalent Cr exposure leads 

to loss of osmoregulatory and respiratory abilities in fish. The chronic effects of Cr toxicity which 

include changes in histology, reduced survival and growth, production of ROS, and impaired 

immune function are all well documented.  Mishra & Mohanty (2009) reported changes in gill, liver, 

and kidney histology, plasma cortisol, and growth after exposing spotted snakehead (Channa 
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punctata) for 1 and 2 months durations to 2 or 4 mg/L Cr 
6+

 as potassium dichromate (K2Cr2O7) at 

pH 7.3. Tilapia sparrmanii exposed to potassium dichromate (0.098 mg/L) at different pH levels 

showed an increase in the clotting time and in a different study haemoglobin concentration 

significantly decreased at high pH and slightly increased at pH 5.0 affecting hematological indices 

(Gey van Pittius et al., 1992). Farag et al. (2006) observed reduced growth and increased mortality of 

Chinook salmon parr exposed to 120 µg/L and 266 µg/L respectively. Krumschnabel & Nawaz 

(2004) reported increased ROS production and reduced cell viability in isolated hepatocytes of 

goldfish (Carassius auratus) exposed to 13 mg/L Cr
6+

. Ambient water quality criteria for Cr based 

on Cr
6+

 is defined as < 0.29 µg/L as 24h average for acute levels and not to exceed 21µg/L at any 

time for chronic levels (EPA, 1980). 

 

2.3.4. Lead (Pb) 

Pb is a non-essential metal which reaches the aquatic environment through natural mineralization, 

mining, industrial effluents and in highway runoff (Ward, 2000). Natural waters contain 

approximately 0.1to 1 µg/L Pb (Ward, 2000). The speciation of Pb in freshwaters is influenced by 

pH, alkalinity, hardness, particle size of inorganic colloids, the concentration and quality of natural 

organic matter (Benes et al., 1985; Driscoll et al., 1988; Eisler, 1988a; Mager, 2012). Lead toxicity to 

aquatic environments is related to its dissolved fraction with its organic forms being generally more 

toxic than the inorganic forms (Lydersen et al., 2002). Sediments act as sink for Pb, and evidence 

suggests biomethylation takes place within the sediment-water interface producing very toxic Pb 

species (CH3)3Pb
+
 and (CH3)4Pb through alkylation (Ward, 2000) with (CH3)4Pb being the most 

toxic to juvenile rainbow trout (Chau et al., 1980; Wong et al., 1981). However, Pb does not 

biomagnify along the food web (Settle & Patterson, 1980; Demayo et al., 1982) due to its low trophic 

bioavailabilty and sequential biopurification by Ca
2+

 (Mager, 2012). Lead exposure to fish causes 

both acute (mucus production and ionoregulatory) and chronic (hematological, neurological, growth 

and development) effects. Elevated Pb concentrations are normally found in blood, bone, gill, liver 

and kidney and adversely affect survival, growth, reproduction, development and metabolism of 

most species, with the younger, immature organisms being most susceptible to its toxicity (Lydersen 

et al., 2002). The morphological effects of lead on fish are most prominent on the gills associated 

with increased mucus production, disruptive Ca
2+

 homeostasis resulting in respiratory asphyxiation 

and disruption of ionoregulatory homeostasis (Mager, 2012). Some studies report detrimental effects 

of acute Pb exposure on ion homeostasis in rainbow trout (Rogers et al., 2003, 2005; Rogers & 

Wood, 2004). Holcombe et al. (1976) having exposed three generations of brook trout (Salvelinus 
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fontinalis) to mean total lead concentration, observed that, gill, liver, and kidney tissues of first- and 

second generations accumulated the greatest amount of lead with reduced growth in third generation. 

Lead exposure to fish affects heme biosynthesis (hematological dysfunction) causing measurable 

inhibition of aminolevulinic acid (ALAD) activity (Manly, 2000) making ALAD a common 

biomarker of Pb exposure in fish (Mager, 2012). The ambient water quality criteria for dissolved Pb 

based on a water hardness of 20 mg/L is 10.8 µg/L and 0.4 µg/L for acute and chronic levels 

respectively (EPA, 1985).  

 

2.3.5. Mercury (Hg) 

Hg occurs naturally in the environment but enters the environment in different forms from a 

combination of natural and anthropogenic sources (National Research Council, 2000), with human 

related emissions having increased relative to natural loads (Fitzgerald et al, 1998; Chan et al, 2003). 

Atmospheric transport and deposition at normal temperature is mercury's pathway to many of the 

world's aquatic ecosystems (Limbong et al., 2003). Elevated levels of Hg in aquatic ecosystems 

remote from industrial sources have been largely attributed to long-range atmospheric transport and 

deposition of anthropogenic Hg (Fitzgerald et al, 1998). Once Hg enters aquatic ecosystems through 

surface runoff or atmospheric transport and deposition (Rytuba, 2003), its transformation to the most 

toxic and bioavailable form, methylmercury (CH3Hg
+
) (Westcott and Kalff 1996) is influenced by 

both microbial methylation and photon influx (Black et al., 2011).  The solubility of CH3Hg
+ 

is 

enhanced when complexed with organic (e.g. DOC) and inorganic (e.g. SO4
2-

, Cl
-
) ligands (Kidd & 

Batchelar, 2012) and the presence of organic matter is positively correlated with the presence of Hg 

(Babiarz et al., 2001; Black et al., 2011). Apart from the presence of DOC, pH and redox of the 

water strongly influence the speciation of both Hg
2+

 and CH3Hg
+ 

(Kidd & Batchelar, 2012). Unlike 

other forms of Hg which tend to accumulate in aquatic biota, methyl mercury (CH3Hg
+
) is the lone 

species that  biomagnifies up aquatic food chains (Chan et al., 2003) and typically constitutes more 

than 90% of the total mercury (THg) found in fish (Ikingura & Akagi , 2003; Wiener et al, 2003). 

The principal route of Hg uptake in fish is the gut though the gills present a larger surface area (Hall 

et al., 1997). The muscles bear the majority of the total Hg body burden redistributed from other 

tissues (Amlund et al., 2007). The biomagnification of Hg across the food chain is a potential threat 

to aquatic biota (particularly in piscivores), wildlife and humans (Campbell et al., 2003d; Kidd et al., 

2003). Stable isotopes of carbon in fish muscle serve as index for carbon source in the aquatic 

environment and stable isotopes of nitrogen indicate the level of the food chain of the individual 

specimen due to biomagnification rate of Hg across an aquatic food chain (Cabana & Rasmussen, 
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1994). Waterborne or dietary exposure of fish to Hg
2+

 and CH3Hg
+ 

lead to both chronic and acute 

toxicity affecting growth, development and reproduction. CH3Hg
+
 exposure of Atlantic salmon 

(Salmo salar L.) parr through dietary supplements resulted in pathological damage, altered feeding 

behaviour and oxidative stress through production of ROS, but no mortality or reduced growth was 

observed (Berntssen et al., 2003). Examining the effect of dietary CH3Hg
+
 on reproduction of 

fathead minnows (Pimephales promelas), Hammerschmidt et al. (2002) observed that though 

CH3Hg
+
 delayed spawning in fish at phase 1 (juvenile fish until sexual maturity) and phase 2 (at 

sexual maturity male and female allowed to reproduce), it also decreased reproduction of adult 

fathead minnows at dietary concentrations. The toxicity of CH3Hg
+
 is also dependent on life stage 

and species of fish and larger fish tend to be less sensitive than smaller fish of the same species 

(Kidd & Batchelar, 2012). The ambient water quality criteria for total Hg for the protection of 

aquatic life is 1.4 µg/L and 0.77 µg/L representing acute and chronic levels respectively (EPA, 

2009). However, because Hg biomagnifies and assimilates in fish muscle, fish being an important 

food source for humans, guidelines are also set for Hg in edible fish muscle. The recommended Total 

Dietary Intake (TDI) is 0.3 mg/kg set to protect groups vulnerable to Hg toxicity (FAO/WHO, 2003). 

 

2.3.6. Copper (Cu) 

Cu is a naturally occurring metal essential within permissible limits for all organisms as a component 

in many metalloenzymes and proteins (Lydersen et al., 2002). Cu is found in natural waters usually 

at concentrations of < 5µg/L, where mining activities, industrial processes and its use as an algicide 

and molluscicide increase its concentration to harmful levels in fish (Alabaster & Lloyd, 1980). 

Shaw and Brown (1974) suggest the toxicity of Cu in aquatic ecosystems is related to the total 

concentrations of soluble Cu
2+

 and CuCO3. Though, the toxic forms are mainly associated to Cu
2+

 

either as free Cu
2+

 or as ionic hydroxide complexes (Cu(OH)
+
, Cu2(OH)2 

2+
) (Lydersen et al., 2002) 

the most important form is Cu
2+

 (Howarth & Sprague, 1978). Water hardness, temperatures, low 

dissolved oxygen and reduced chelation of Cu on to inorganic and organic substances are the 

parameters that enhance its toxicity to fish in aquatic ecosystems (Spear & Pierce, 1979; Alabaster & 

Lloyd, 1980; Erickson et al., 1996). Several studies document the effects of Cu toxicity on fish 

parameters. In an experiment exposing Poecilia reticulata to a mixture of Ni, Cu and Zn, Khunyakari 

et al. (2001) observed increased mucus secretion over gills, excessive excretion, anorexia and 

increased fin movement. Also, skin and gill mucus production coupled with heavily bleeding gills 

were observed in carp Heteropneustes fossils (Svobodova et al., 1994). Ionoregulatory disturbance 

was observed in rainbow trout (Sayer et al., 1989; Wilson & Taylor, 1993), and inhibition of whole 
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body sodium influx in tilapia Oreochromis mossambicus (Pelgrom et al., 1995) exposed to Cu. 

However, copper toxicity differs with fish species, life stages and size. Cu retarded the growth and 

development of early life stages of brown trout (Salmo trutta L., Sayer et al., 1991) and reduced 

growth of Asian catfish (Saccobranchus fossils) (Khangarot & Tripathi, 1991). Primary life stages of 

brook trout and Chinook salmon were more Cu sensitive than other life stages (Chapman, 1978). 

Exposure to Cu also impaired swimming performance of brown trout as a behavioural effect 

(Beaumont et al., 1995). The ambient water quality criteria for dissolved Cu based on a water 

hardness < 60 mg/L is 1.6 µg/L and 0.53 µg/L for acute and chronic levels respectively (South Africa 

Water Quality Guidelines, 1996).  

 

2.3.7. Manganese (Mn) 

Mn is ubiquitous in the environment and essential for both plant and animal life forms in very small 

concentrations (Hem, 1985; Nealson et al., 1988), with elevated concentrations being toxic to fish 

(Heal, 2001). The natural sources of Mn in aquatic ecosystems include soils, sediments, igneous and 

metamorphic rocks (Hem, 1985), with negligible direct atmospheric deposition (Eisenreich, 1980). 

Mn is most common in nature with an oxidation state of +2, +3, and +4, though Mn
2+

 and Mn
4+

 are 

the main existing forms in aquatic ecosystems (Hem, 1985; Nealson et al., 1988; Lydersen et al., 

2002).  The solution chemistry of Mn (Fig. 3) is greatly influenced by pH and redox potential (Eh), as 

Mn
2+

 predominates as the soluble and bioavailable species at low Eh and pH over Mn
4+

 mostly 

present as insoluble oxides and oxyhydroxides, with abiotic or microbial transformation of both 

species (Nealson et al., 1985; Heal, 2001). However, complexation of Mn
2+

 with organic matter is 

presumed to be weak (Davison et al., 1988; L'Her Roux et al., 1988) as bacteria are believed to 

utilize Mn-oxides for respiration of organic matter under anoxic conditions (Gounot, 1994). 

Manganese is soluble, bioavailable and toxic as Mn
2+

 to fish. Nyberg et al. (1995) assumed brown 

trout mortality was significantly correlated to the concentration and rate of accumulation of Mn
2+

 on 

gills. Examining the mechanism of Mn toxicity to the South African banded tilapia (Tilapia 

sparrmanii) exposed to 4.43 mg/L Mn at pH 7.4 and 5, Wepener et al. (1992) observed significant 

changes in hematological indices and no mortalities. Decreases in white blood cells, red blood cells, 

hemoglobin, hematocrit and mean cell volume were attributed to internal hemorrhaging possibly as a 

result of necrosis of the intestinal mucosa and kidneys. 
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             Figure 3. Microbial oxidation of manganese. (Source: Nealson et al., 1988) 

 

The essentiality of Mn cannot be overlooked amidst its toxicity. Manganese deficient diet (4.4mg 

Mn/kg diet) fed on by rainbow trout for 60 weeks resulted in lens cataracts, short body dwarfism 

with no effect on growth (Yamamoto et al., 1983). Low dietary Mn effects on plasma ion levels, 

hepatic minerals and hepatic enzyme activity in trout with no effect on growth are reported (Knox et 

al., 1981). In natural waters, the toxicity of Mn
2+

 can be affected by water hardness. The toxicity of 

Mn
2+

 was observed to decrease with increasing water hardness (30-450 mg CaCO3/L) in the early 

life stage of brown trout during 62 days test (Stubblefield et al., 1997). Lewis (1976), observed 

significant mortality in rainbow trout eggs exposed for 29 days to 1mg MnSO4/L in soft water. The 

ambient water quality criteria for dissolved Mn based on a water hardness of 20 mg/L is 120 µg/L for 

chronic levels (EPA, 2004).  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1. Study area 

Lake Barombi Mbo situated in the volcanic range of west Cameroon, about 35 miles north-north-east 

of Mount Cameroon was the site of investigation. I carried out the fieldwork from November 2011 to 

January 2012. This period of the year was the dry season and the weather was hot with temperatures 

around 30 °C. During the study no inflows were observed but rather the only outflow to Kake Gorge 

persisted (Fig. 4). 

 

 

Figure 4. Major outflow to Kake Gorge showing water clarity of Lake Barombi Mbo. 
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3.2. Water sampling 

3.2.1. Collection of water samples 

Since, most trace metals to be measured in aquatic systems are often present at very low or ultra 

trace levels (µg/L or ng/L) sample contamination and analyte losses are potential problems. Water 

samples were collected from four different locations to obtain both representative and reproducible 

samples. The first water sampling was carried out in the morning of 29/12/2011. Triplicate 1.5 L 

water samples from four different locations were collected and their coordinates obtained using a 

GPS Silva Multi Navigator (Table 1). Low density plastic bottles were rinsed thrice with ambient 

water prior to sampling. 

Table 1. GPS coordinates for lake water samples 

Sample N
o
 GPS coordinates GPS Elevation (m) Barometric reading(mmHg) Altitude (m) a.s.l. 

1        .8N 

       .8E 

408 731 239±5.0 

2        .8N 

       .8E 
408 730 249±5.0 

3        .8N 

       .8E 
408 730 255±5.0 

4        .3N 

       .7E 
332 729 260±5.0 

GPS: SILVA Multi Navigator. 

One representative 1.5 L composite for each location was then obtained. Thereafter: 

 0.5 L from each composite sample was transferred into HDPE bottles, capped, marked, and 

stored cold in a cooler for transport and subsequent storage. 

 50 ml of raw water samples from each composite were collected and kept cold prior to total 

measurements of trace metals. 

 50 ml were used to obtain pH and temperature values 

 50 ml triplicates for total organic carbon (TOC) and anion measurements 

 0.9 L was used for fractionation purposes. 

3.2.2. Determination of General Water Quality  

WTW multi 340i with SenTix pH electrode was used to obtain pH measurements at site. The pH 

meter was calibrated in field before usage. Buffer 4 was used as first standard for calibrating the pH 

probe after being cleaned with distilled water. Obtained readings of pH and temperature with respect 

to the standard buffer were recorded. Once the probe was thoroughly rinsed with distilled water, it 
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was inserted into the second standard, buffer 7 and obtained readings also recorded. Then the slope 

mV/pH was obtained before taking off the probe. The reason for this was to ensure that the probe 

was calibrated and readings obtained were acceptable. Thereafter, the probe was rinsed again and 

inserted into the raw water sample collected from the lake. 10 ml of buffers 4 and 7 were separately 

transferred into two 50ml tubes to avoid contamination of the bulk volume while calibrating the 

WTW multi 340i for pH. HANNA Instruments HI9811 pH-EC-TDS was used to obtain electrical 

conductivity (EC) and total dissolved solid (TDS) values. A waterproof thermometer Extech 

Instruments 39240 was used to obtain temperature readings. Prior to obtaining pH and temperature 

readings from each sample, the pH probe and thermometer were cleaned with distilled water from an 

LDPE wash bottle. The entire sampling within the lake took approximately two (2) hours from the 

hours of ten to about midday. Ten readings of EC and TDS were obtained from three different 

locations of the lake (Appendix 1). This was aimed at verifying for any differences between 

sampling locations. In order to verify for consistency in obtained readings, triplicate readings of pH, 

temperature, TDS and EC were obtained for the littoral and in lake regions of the lake (Appendix 1 

& 2). Based on the samples collected, other water quality parameters; TOC, anions (Cl
-
, SO4

2-
, NO

3-

), major cations (Na
+
, K

+
, Mg

2+
, Ca

2+ 
) and Si were determined after storage and transportation to 

Norway for analysis at the Norwegian University of Life Sciences (UMB), Department of Plant and 

Environmental Sciences (IPM). The 50 ml samples were acidified with 1 ml ultrapure HNO3 (i.e. 

2vol % HNO3) before analyses for major cations (Na
+
, K

+
, Mg

2+
, Ca

2+
) and Si using ICP-OES 

(Perkin Elmer, Optima 5300 DV). The non acidified 50 ml samples were used for analyses of major 

anions (Cl
-
, SO4

2-
, NO3

-
) and TOC using ion-chromatography and a carbon analyzer, respectively. 

3.2.3. Fractionation of water 

To obtain information of trace metal speciation, size and charge fractionation was performed. 

Filtration and fractionation were performed immediately at the site to reduce the storage time of the 

composite water samples and also minimize subsequent changes in the water. In the absence of a 

peristaltic pump, filtration was performed under gravity (Fig. 5). A 0.45µm membrane filter paper 

was inserted into a filter paper holder and tightly locked. Thereafter, a substantial amount of the first 

water composite was transferred into a plastic bottle and fitted to the filter paper holder by means of 

a plastic tube. The water was then gently passed through the filter paper by pressing the bottle to 

exclude any air trapped within the filter paper holder. Once this was achieved, the bottle was 

exchanged with another which had no bottom and constant level of water to enhance free and 

constant flow. Because the process was manual and time consuming to get a substantial volume of 

the 0.45µm membrane filtrate, the filter paper was changed several times to avoid clogging and 
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reduce the residence time of the water through the filter paper. With a substantial volume of the 

0.45µm filtrate enough to ensure continuous flow, charge fractionation was started. Portions of the 

filtrate were poured into a clamped plastic vessel with holes at the walls. The containing vessel was 

fitted to a clamped tube containing 15 ml Chelex100 resin by means of a junction tap (T1) to control 

flow. At the end of the tube containing the resin was another tap (T2). With the set-up complete, both 

taps were opened for fractionation of the filtrate through the Chelex 100 cation exchange resin. The 

first chelex filtrate was collected in a 50 ml tube.  

 

Figure 5. Set up for in-situ filtration and fractionation of raw water samples. 

The first 50 ml of eluate obtained through the Chelex 100 resin was used for conditioning purpose 

and to ascertain flow and calculate pH again, before a second 50 ml of the eluate was collected. The 

flow rate was 9 ml/15 ml resin/min. The same procedure was performed for all four composite water 

samples. Triplicate 50 ml of the chelex eluate were obtained for each of the four composites. They 

were then kept into a cooler, transported and then stored cold devoid of light. The same fractionation 

procedure was performed for all four composite water samples. Then, 50 ml triplicates of the Chelex 

100 eluate were obtained for each of them and marked with their sample numbers. They were then 

kept in a cooler containing ice blocks, transported and later stored in a fridge devoid of light. The 

filtration and charge fractionation of all four 0.9 L raw water composites took at most four (4) hours 

and their temporal storage time to final storage location was about two (2) hours. From then, all 

samples were stored cold in the fridge at approximately    C till their final transportation to Norway 
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for further analysis at the Norwegian University of Life Sciences (UMB), Department of Plant and 

Environmental Sciences (IPM). 

3.2.4. Trace metals in water 

Triplicate 50 ml water samples representative of each fractionation series (unfiltered, filtered and 

eluate from Chelex 100) were acidified with 1 ml ultrapure HNO3 before determination using ICP-

OES and ICP-MS (Perkin-Elmer Sciex ELAN 6000). 

Thus, the following information was obtained: 

 Concentration of total concentration of trace metals, based on unfiltered sample. 

 Concentration of trace metals not retained in the Chelex 100 resin, analyses of trace metal in 

the eluate from the Chelex 100. 

 Concentration of trace metals retained in the Chelex 100 resin, obtained by differences 

between trace metals in filtered samples and filtered before eluted from Chelex 100. 

The differences between unfiltered sample and the eluate sample could be due to exclusion by the 

filter or retained by the Chelex 100. Unfortunately samples for only filtered water was not collected 

during the field work, thus, the concentration of trace metals retained in the Chelex 100 could not be 

calculated. Total concentration of trace metals was then used to characterize the water quality. 

3.3. Fish species 

3.3.1. Fish species of study 

Fish was collected to obtain information of bioconcentration of trace metals and to obtain 

information of biomagnification, e.g., changes in the food chain. Different fish species were chosen 

to represent distinct trophic levels with the lake's aquatic food chain (Fig. 6). U. species represent the 

juveniles of S. caroli and S. linellii which are the most consumed fishes of the lake. U. species 

(phytoplankton feeder) was most abundant and most consumed of all three species chosen. Reasons 

for high consumption were its fleshy nature and sweet taste. P. maclareni (zooplankton feeder) was 

chosen over Konia dikume because it is said to be threatened and it is on the IUCN red list for 

critically endangered species (Reid, 1990). It was also observed to be very rare during the study. P. 

maclareni is abundant near shore lines (Fig. 7) and it is a sponge feeder. The catfish C. maclareni 

lives in deep and shallow areas of the lake. C. maclareni is a gill and lung breathing piscivorous fish 

and the top predator in the lake aquatic food chain.  
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Figure 6. Selected fish species of Lake Barombi Mbo, Cameroon. A) U. species, B) P. maclareni, C) 

C. maclareni. 

P. maclareni is abundant near shore lines (Fig. 7) and has an average length of 10 cm. It is also a 

sponge feeder and most importantly it is on the IUCN red list for critically endangered species. The 

catfish C. maclareni is the only endemic piscivore of the lake and lives in deep and shallow areas of 

the lake.  

3.3.2. Fish sampling 

On a typical sampling day, pre-ordered fish samples were collected in the morning from local 

fishermen (Fig. 4). The fish supplied were always carefully selected to obtain fresh ones and most 

especially to have sampled organs in the best conditions possible. Except for C. maclareni, which 

was most often caught by nets set overnight, P. maclareni and U. species were both caught the same 

morning prior to sampling. Fish were then kept in zipped-plastic bags, stored in a cooler and 

transported for close to ninety (90) minutes to the laboratory for sampling. The total lengths and 

weights of the fish were obtained on different sampling days by using a measuring tape and 

electronic balance (Adventurer Ohaus AR3130) respectively and values recorded (Appendix 4). The 

secondary gill arch, liver, kidney and muscle (Hg, isotope analysis) were sampled following the 

procedures in the EMERGE Protocol (Rosseland et al., 2001) using slicers and scalpels. The 
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equipments were cleaned with distilled water and the slices changed frequently to avoid any risk of 

sample contamination. Liver and muscle were wrapped in Al-foil and the gills were kept in plastic 

vials, marked, sealed in plastic zip-bags and kept frozen devoid of light, until subsequent analysis 

after transportation to the Norwegian University of Life Sciences (UMB), Department of Plant and 

Environmental Sciences (IPM). In total, 20 U. species, 19 P. maclareni and 15 C. maclareni was 

sampled. Fishing was done on a daily basis only by indigenous fishermen of Barombi Mbo village 

with the use of gill nets. Only canoes were used for transportation and fishing.  

 

Figure 7. Setting gill nets near shore line for harvesting of P. maclareni. 

 

3.3.3. Isotope analysis of 
15

N (‰) and 
14

N (‰), and 
13

C (‰) and 
12

C (‰) in muscles 

Analyses of stable isotopes were determined to obtain information on the trophic level of each fish. 

Isotope analyses were based on one separate sample tissue of the muscle wrapped in aluminium (Al) 

foil that had been stored frozen. The muscle tissues were homogenates. Milli-Q water was added to 
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them and homogenized by aid of an electric stirrer. The procedure was step-wise accompanied by 

sequential rinsing after every muscle extract sample to avoid contamination and interference in 

results obtained thereafter. The homogenates were transferred to labelled plastic vessels and sealed 

with perforated parafilm followed by freeze drying (Fig. 8). After freeze drying, the samples were 

weighed and prepared for Isotope-ratio mass spectrometry (IRMS) following standard procedures at 

the Isotope Laboratory of the Environmental Chemistry Section of the Department of Plant and 

Environmental Sciences (IPM), Norwegian University of Life Sciences (UMB), Norway (see Desta 

et al., 2007). Control sample results are given in stable isotope ratio of carbon (δ
13

C) and nitrogen 

(δ
15

N). 

 

Figure 8. Muscle tissues prepared for stable isotope measurements. a) muscle homogenates prior to freeze 

drying, b) muscle tissues after freeze drying. 

3.3.4. Determination of Trace Metals in Gills and Liver 

At the laboratory (Fig. 9), gills and whole liver samples were freeze-dried, transferred to Teflon 

tubes and their dry weights determined in grams using an AG204 Delta Range Toledo electronic 

balance. To all dried samples (weighed ≤  .  g) was added 1ml HNO3 and 50 µL Internal Standard 

(IS) as standard procedure prior to digestion using ultraclave. Three blanks as well as DOLT-4 

(piked dogfish) certified reference material from the National Research Council of Canada, Ottawa, 

were used as control and for traceability to control sample values and the accuracy of the methods 

respectively. The material of DOLT-4 added to the Teflon tubes was about 0.5 g, so 250 µL Internal 

Standard (IS) and 5 ml HNO3 were added to it. After digestion, all samples and blanks were diluted 

with Milli-Q (MQ) water to 10ml and DOLT-4 to 50 ml respectively after transfer from Teflon tubes 
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(Fig. 10). Thus, all samples have the same concentration of HNO3 (5 volume %) and the same 

concentration of IS. Trace metal concentration in digested gill and liver tissues were measured using 

ICP-MS. Analyzed and presented trace metals are selected based on the results from ICP-MS. Iron 

was not analyzed and Cobalt (Co), Strontium (Sr), and Uranium (U) were included in the list in 

addition to selected metals. 

 

Figure 9. Gill and liver sample handling at IPM laboratory. a) sealed samples, b) sampled tissues sorted with 

respect to corresponding fish species and codes, c) samples prior to dry freezing, d) samples in freeze drier, e) 

freeze-dried samples. 
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Figure 10. Standard dilution of digest. a) transfer of digested liver, gill, blanks and DOLT-4 from Teflon 

tubes to dilution tubes, b) dilution of digested samples with distilled water. 

3.3.5. Mercury Analysis in Muscles 

Mercury analyses were based on one separate sample tissue of the muscle wrapped in aluminium foil 

that had been stored frozen. Mercury (Hg) analysis in muscles of sampled fish species was 

performed following standard procedures in the Environmental Chemistry Section of the Department 

of Plant and Environmental Sciences (IPM), Norwegian University of Life Sciences (UMB), 

Norway. Blanks and DORM-2 (piked dogfish) certified reference material from the National 

Research Council of Canada, Ottawa, were used as control and accuracy of the method respectively. 

3.4. Statistical analysis 

Information on the concentration of trace metals in water and tissue samples were reported as mean 

(± SD) using MS-Excel. Trace metals in gills, liver and accumulation of total mercury concentration 

(THg) in muscles of fish species was tested for correlation with length, weight, δ
13

C and δ
15

N using 

Linear regression analysis described by r
2
 and p-values (p < 0.05). Analysis of variance (ANOVA) 

was used to examine differences in mean values of THg, δ
13

C and δ
15

N among all species with 

significance at p < 0.05. All statistical procedures were performed using MINITAB 16 release. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1. Lake water 

4.1.1. General water quality of Lake Barombi Mbo. 

The main physicochemical properties of Lake Barombi Mbo water pertaining to general water 

quality including pH, electrical conductivity (EC), major cations (Na
+
, K

+
, Mg

2+
, Ca

2+
), Si, major 

anions (Cl
-
, SO4

2-
, NO

3-
), total organic carbon (TOC) and total dissolved solid (TDS) are given in 

Table 3. The pH range was in the range 7.04-7.62. The mean temperature of the lake water during 

the investigation was 30 °C. As EC and TDS are useful measures of ionic strength, low EC and TDS 

represent low ionic strength. From the investigation, low ionic strength, low hardness and especially 

low TOC content asserted by the clear nature of the lake characterized the lake water. Of note, is the 

fact that measured parameters between sites (Appendix 1) and also collected water samples did not 

show any differences for pH, EC, TDS and temperature (Table 2). This implied no changes for these 

parameters due to storage.  

Table 2. Mean values for Lake Barombi Mbo water parameters in field.  

Lake water n Temperature 

(°C) 

pH EC 

(mS/m) 

TDS 

(mg/L) 

In-situ 12 30.2 7.4 4.0 19.7 

Bottled 

samples 

3 30.0 7.3 4.0 20.0 

n=sample size (based on triplicate measurements). 

Hardness = [Ca
2+

] + [Mg
2+

], quantified as CaCO3 equivalent in mg/L (Wood et al., 2012). 

The hardness of the water was 6.6 mg/L CaCO3 as [Ca
2+

] = 3.6 mg/L and [Mg
2+

] = 3.0 mg/L. 
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Table 3. Mean (±SD) values for general water quality parameters of Lake Barombi Mbo, Cameroon. 

 

Parameters Present Study 

Field  

pH 7.4±0.2 

Temp. (°C) 30.2±0.5 

EC (mS/m) 4.0±0.2 

TDS (mg/L) 19.7±1.7 

Laboratory  

Ca
2+

 (mg/L) 3.6±0 

Mg
2+ 

(mg/L) 3±0 

K
+ 

(mg/L) 6.9±1 

Na
+ 

(mg/L) 2.8±0.2 

Si (mg/L) 6.3±0 

Cl
-
 (mg/L) 0.8±0 

NO3
-
 (mg/L) <0.006 

SO4
2- 

(mg/L) 0.12±0 

 

 

4.1.2. Trace metals in water 

Table 4 show the concentration of analyzed trace metals in water samples from Lake Barombi Mbo. 

The sequence of trace metal concentrations in unfiltered water samples was Sr > Al > Mn > Cu > Cr 

> Pb > Co > Cd > U. The results of total concentration of trace metals in unfiltered water samples 

indicated that the concentrations of Sr, Al and Mn were higher than the other metals (Table 4 and 

Fig. 11). The mean total concentrations of trace metals in the water samples from Lake Barombi 

Mbo were below ambient water quality criteria (AWQC) and low compared to CCME and EPA 

limits for protection of aquatic life. Also, the total concentrations of the trace metals were lower than 

dissolved analyte concentrations with respect to EPA 2004 criteria limits. At the time of sampling, 

the use of pesticides for spraying of cocoa farms around the rim of the lake was the only observed 

anthropogenic activity. The lake being far removed and isolated from large urban settlement makes it 

presumably less susceptible to direct contaminant inputs from sewage and industrial effluents. This 

probably explains the very low levels of trace metals in the lake water. These results are in 

agreement with many of the African lake waters which have low concentrations of trace metals 

(Biney et al., 1994).  
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Table 4. Mean (±SD) concentration of trace metals (µg/L) in different size fractions of water 

samples from Lake Barombi Mbo (LBM), Cameroon compared with water quality criteria. Acute 

and chronic values are based on a hardness of 20 mg/L unless stated. 

Metal Unfiltered 

(Total) 

*Chelex 

eluate 

(Lab) 

Acute 

(µg/L) 

Chronic 

(µg/L) 

Guideline 

Al 5.8±0.9 3.3±0.2 750 

 

87 EPA (1998) 

Cr 0.3±0.1 0.2±0  

 

21 EPA (1980) 

Mn 2.5±0.4 0.3±0.1  

 

120 EPA (2004) 

Co 0.03±0.01 0±0  

 

8 WHO (2006) 

Ni 0.7±0.4 0.3±0 120 

 

13 EPA (2005) 

Cu 1±0.6 1.1±0.1 1.6  

 

0.53  
a 

SA (1996) 

Zn 3.2±2 0.6±0.1 30.6  

 

30.2
 
 

 
EPA (1987) 

Sr 43±5 0.04±0.02 40000  
 

21000  b
EPA (2009) 

Cd 0.004±0.004 0±0 0.6 

 

0.11 EPA (2001) 

Pb 0.048±0.049 0±0 10.8 

 

0.4 EPA (1985) 

U <0.005 <0.005 33 

 

15 CCME (2011) 

Fe 28.9±4.1 13.2±1.5  300  ** 
CCREM (1987) 

* sample filtered using 0.45 µm filter prior to ion exchange. 
a 

SA (1996): South Africa Department of Water Affairs and Forestry ( criteria value based on Hardness < 60 

mg CaCO3 /L); 
b 

EPA (2009): US Environmental Protection Agency, Ohio;   
** 

CCREM  & CCME: Canadian 

Council of Ministers of the Environment based on total measured Fe concentration;  WHO: World Health 

Organization. 

 

 
 
Figure 11. Concentration of trace metals in the water of Lake Barombi Mbo, Cameroon. 
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4.2. Fish 

4.2.1. Characteristics of fish species collected 

Based on literature survey, U. species and P. maclareni are tilapiine cichlids and C. maclareni is the 

only endemic catfish of Lake Barombi Mbo. All three fish species showed significant differences in 

their sizes (Table 5, Fig. 12, and see Appendix 4). The mean lengths and weights were 15.6 cm and 

49.9 g in U. species, 9.7 cm and 16.6 g in P. maclareni, and 26.9 cm and 178.6 g in C. maclareni 

(Table 5).  
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Figure 12. Length and weight of individual fish species in Lake Barombi Mbo, Cameroon. a) U. 

species, b) P. maclareni, c) C. maclareni. 

Results of IRMS analysis showed that the mean δ
13

C (‰) values was -32.9‰ in U. species, -30.2‰ 

in P. maclareni and -31.5‰ in C. maclareni. The sequence for decreasing stable carbon isotope ratio 

was P. maclareni > C. maclareni > U. species. So, P. maclareni had the highest δ
13

C of all three fish 

species in the aquatic food chain (p = 0.000). However, δ
13

C (‰) values showed no significant 

relationship with fish size in both U. species and P. maclareni (Fig. 13a & 13b). U. species being 

phytoplankton feeders have lower δ
13

C compared to P. maclareni being zooplankton feeders. 

Conversely, there was a significant relationship between δ
13

C and fish size in C. maclareni, with 

total length (p=0.016, r
2
=0.371) being relatively more significant over total weight (p=0.021, 

r
2
=0.348). This probably relates to changes in carbon source with increasing fish size depending on 

the fish species. Trophic index analysis for δ
15

N showed that the mean values for individual species 

were 6.6 ‰ in U. species, 8.4 ‰ in P. maclareni and 9.9 ‰ in C. maclareni (Table 5). C. maclareni 

had the highest δ
15

N value (9.9 ‰) and thus occupied the highest trophic level (Fig. 14). With the 

lowest δ
15

N value, U. species occupied the lowest level of the food chain of the three fish species 

analyzed. There was no significant relationship between δ
15

N and fish size for all species (p>>0.05) 

as shown in Table 8 and Figures 13. All pair wise comparison for mean values of δ
15

N (n = 54, df = 

2, F = 54.29, p = 0.000; ANOVA) and δ
13

C (n = 54, df = 2, F = 10.09, p = 0.000; ANOVA) among 

levels of species were significantly different (Appendix 11). Pearson's correlation coefficient showed 

that there was a more significant correlation between δ
15

N and species level (r
2
 = 0.680) over δ

13
C 

and species level (r
2
 = 0.284).  Apparently, observed variations in δ

15
N (‰), and δ

13
C (‰) with fish 
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size seemed to be more explanatory in C. maclareni than in U. species and P. maclareni (Table 6). 

Thus, C. maclareni represents a higher trophic level than U. species and P. maclareni, and based on 

δ
13

C, the carbon source for U. species is -32.9‰ and -30.2‰ for P. maclareni (Table 5). Significant 

differences in δ
13

C and δ
15

N between all fish species reveal diverse food prey items and thus 

different trophic positions of individual fish in the same size group.  
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Figure13a. Relationship between stable isotopes of carbon and nitrogen with fish size in U. species from Lake Barombi Mbo, Cameroon. 
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Figure 13b. Relationship between stable isotopes of carbon and nitrogen with fish size in P.  maclareni from Lake Barombi Mbo, Cameroon. 
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Figure 13c. Relationship between stable isotopes of carbon and nitrogen with fish size in C.  maclareni from Lake Barombi Mbo, Cameroon.
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Table 5. Mean (±SD) of total length (cm), total weight (g), δ
13

C (‰) and δ
15

N (‰) of fish species from Lake Barombi Mbo, Cameroon. n = sample 

size. 

Species n Length (cm) Weight (g) δ
13

C (‰) δ
15

N (‰) 

U. species 20 15.6±2.7 (9.3, 20.8) 80.0±17.3 (49.9, 107.4) 

 

-32.9±0.7 (-33.9, -31.4) 

 

6.6±1.0 (4.8, 8.5) 

P. maclareni 19  9.7±0.7 (8.4, 10.7) 25.3±5.7 (16.6, 31.2) 

 

 -30.2±2.8 (-38.6, -26.9) 8.4±0.8 (6.9, 9.8) 

C. maclareni 15 26.9±3.8 (23.2, 37.5) 178.6±24.9 (154, 254) 

 

-31.5±1.5 (-34.3, -29.2) 9.9±0.9 (7.9, 11.4) 
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            Table 6. 
            Regression of δ

15
N and δ

13
C against total length (LT) and total weight (WT) for sampled fish species from    

           Lake Barombi Mbo, Cameroon.  For each regression, the sample size (n), intercept, slope, r
2
, and p-values  

             were given (bold numbers indicate significant regression). 

Species Regression n Intercept Slope r
2
 p-value 

U. species δ
15

N vs LT 20 6.16 0.0293 0.006 0.746 

 δ
15

N vs WT 20 5.89 0.0090 0.002 0.528 

 δ
13

C vs LT 20 -33.3 0.0235 0.008 0.715 

 δ
13

C vs WT 20 

 
-33.6 0.0085 0.039 0.404 

P. maclareni δ
15

N vs LT 19 8.16 0.0280 0.001 0.916 

 δ
15

N vs WT 19 

 
8.45 -0.0007 0.000 0.983 

 δ
13

C vs LT 19 -19.5 -1.1000 0.085 0.226 

 δ
13

C vs WT 

 

19 

 
-27.2 -0.1160 0.058 0.320 

C. maclareni δ
15

N vs LT 15 10.5 -0.0231 0.009 0.733 

 δ
15

N vs WT 15 10.4 -0.0029 0.006 0.779 

 δ
13

C vs LT 

 

15 

 
-38.0 0.2400 0.371 0.016 

 δ
13

C vs. WT 15 

 
-37.9 0.0355 0.348 0.021 
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Figure 14. The relationship between δ
15
N and δ

13
C values of fish species sampled in Lake Barombi Mbo, Cameroon. Ranges of error bars indicate standard 

deviations from the mean, with vertical bars for δ
15
N and horizontal bars δ

13
C values (symbols: green dots = U. species, red dots = P. maclareni, black dots 

= C. maclareni). 
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4.3. Trace metals in fish tissues 

The results presented in Table 7 showed that trace metals in water were also present in fish 

tissues. Trace metal concentrations in fish tissues decreased generally in the sequence;  Sr > 

Mn  > Al  > Co  > Cu  > Cr  > Pb  > U  > Cd in gills - with minor changes between species 

and in the sequence Cu > Mn  > Co > Sr  > Cd  > Cr  > Pb  > U in liver with minor changes 

between species. The differences in metal accumulation sequence revealed that tissues of fish 

species accumulated metals in varying amounts. All three fish species showed highest 

concentration of Al, Mn and Sr in their gills whereas Cr, Co, Cu, Cd, and U had higher 

concentrations in the liver. This suggests that gills were the major site for Al, Mn and Sr 

accumulation for the three fish species. There was no significant difference in Pb 

concentration for both tissues in all species (p > 0.05). Whilst the levels of metals in gills 

represent uptake of bioavailable forms from water (Rosseland et al., 1992), levels in liver 

represent storage of metals in the water (Romeo et al., 1999), hence, uptake through water 

and/or food by absorption or ingestion. The bioconcentration factor (BCF) between water and 

fish tissues, were greater than or equal to 1, except for Cu in P. maclareni (gills/water) and Sr 

in C. maclareni (liver/water) as presented in Table 8. Higher metal concentrations in fish 

tissues compared to water are indicative of bioaccumulation. BCF were highest for Al, Mn 

and Sr in gills of all species, whereas Co, Cu and Cd had the highest values in liver for all 

species. Cu had a very high BCF of 1153 in liver of tilapia U. species compared to P. 

maclareni and C. maclareni. Consistent with this study, Abdel-Baki et al. (2011) reported 

highest concentrations of 11533 ppb (11533 µg/g) and transfer factor of 263.9 for Cu in liver 

of tilapia species (liver/water) demonstrating trace metal bioaccumulation from water.  In this 

study, BCF values suggest that Cr, Co, Cu, Cd, and U were stored and detoxified in the liver. 

BCF for Pb between water and tissues of the fish species did not show any clear difference 

especially for U. species and C. maclareni. However, Pb predominantly concentrates within 

calcified hard tissues (e.g., skeleton and scales) and it mimics Ca
2+

 uptake on the apical 

surface of the gill epithelium (Rogers et al., 2003). Pb also concentrates to a large extent 

within blood, gill, and kidney in fish (Mager, 2012). The concentration of Cu in liver of U. 

species was high, which may reflect feeding on Cu-containing algae. The variations in metal 

concentrations with fish size (length and weight) by linear regression, showed no significant 

relationship in P. maclareni. U. species showed a significant 
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Table 7. Trace metal concentrations (mean ± SD, µg/g d.w) in gills and liver of three selected fish species from Lake Barombi Mbo, Cameroon.  

n= sample size. 
 

Species Tissue N Al Cr Mn Co Cu Sr Cd Pb U 

U. species Gills 20 26.5±23.6 0.91±2.75 213.3±94.5 2.1±1.0 0.99±0.33 336.5±109.1 0.01±0.004 0.15±0.065 0.021±0.008 
 Liver 17 - 1.15±1.52 75.5±102.4 10.0±4.7 1153±588 2.71±3.45 2.2±0.91 0.15±0.43 0.024±0.017 
            

P. 
maclareni 

Gills 19 140±199 0.90±1.11 88±23 1.7±0.5 0.19±1.25 402.5±74.1 0.024±0.011 0.45±0.47 0.036±0.013 

 Liver 16 - 3.48±3.88 20.9±21.3 35.0±19.9 14±8.1 29.3±55.9 4.53±4.96 0.33±0.43 0.046±0.064 
            

C. 
maclareni 

Gills 15 36.0±36.6 0.26±0.18 66.8±20.2 0.25±0.094 0.99±0.37 208.3±53.4 0.073±0.040 0.12±0.27 0.001±0.0008 

 Liver 11 - 0.41±0.30 11.9±4.7 0.54±0.24 46.3±32.3 
 

2.5±0.9 6.9±5.4 
 

0.111±0.068 
 

0.002±0.004 
 

CRM  certified           
DOLT-4 determined  - 1.4 - 0.25 31.2±1.1 5.5 24.3±0.8 0.16±0.04 - 

DOLT is a reference material that was used to check if the ICP-MS instrument measured the right value that is certified for DOLT-4. See information values (Appendix 9). 
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Figure 15. Comparing concentrations of trace metals in tissues (gills and liver) of three selected fish species from Lake Barombi Mbo, Cameroon. A) gills , B) 

liver, and B1) liver. 
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relationship between gill- metal concentration and fish size for Al, Cr and Co (p < 0.05, Appendix 

12). But C. macalreni also showed a significant relationship (Appendix 12) between gill- metal 

concentration and fish size for Co (p = 0.001) and Sr (p = 0.000). Like several metals (e.g., Cd, Zn, 

and Pb), Co and Sr appear to specifically target Ca
2+

 channels on the gills through ionic mimicry 

(Bury et al., 2003) by competitive interaction with calcium at active binding sites. The gill arch 

consists of both filament and some calcified bone, and the size of the gill is correlated with the size 

of the fish. Thus, it is expected that with Sr mimicking Ca, the concentration of both Ca and Sr 

should increase with increasing fish size. There was also a significant relationship in C. maclareni 

between concentration of Co and weight in liver (p = 0.023, Appendix 12). Adeyeye et al. (1996), 

reported differences in tissue-metal concentrations being species dependent. But, results in this study 

seem to indicate such differences are influenced by both, the type of metal present and the species of 

fish exposed to the metal.  Türkem et al. (2005) found that concentration of metals was significantly 

affected by the sampling site and fish species in three commercially valuable fish species.  In 

contrast, Evans et al. (1993) reported that the concentrations of trace metals (Cd, Cu, Mn, Pb) in 

livers of Atlantic croaker (Micropogonias undulatus) increased with fish length. They suggested that 

the pattern of increase was expected for non essential metals such as Ag, Cd, Hg, and Pb given their 

poor homeostatic control. Nevertheless, the concentrations of trace metals in this study showed no 

significant relationship with fish length in liver.  

 

Table 8. Bioconcentration factor (BCF) of trace metals from water into gills and liver of selected 

fish species from Lake Barombi Mbo. Concentration in tissue in µg/g tissue d.w. 

Species Parameter Al Cr Mn Co Cu Sr Cd Pb U 

U. 
species 

Gills/Water 4.6 3.0 85.3 70.7 1 7.8 2.5 3.1 - 

 Liver/Water - 4 29.4 333 1153 0.06 550 3.1 - 
           
P. 
maclareni 

Gills/Water 24.1 3 35.2 56.7 0.2 9.4 5 9.2 - 

 Liver/Water - 11.7 8.4 1167 14 0.7 1125 6.3 - 
           
C. 
maclareni 

Gills/Water 6.2 1 26.7 8.3 1 4.8 17.5 2.5 - 

 Liver/Water - 1.3 4.8 16.7 46.3 0.06 1725 2.3 - 

Concentration of Uranium in water was <0.005, this explains the absence of BCF values for Uranium in 

tissues. There are no BCF values for Al in liver/water because liver samples were stored in Al foil. 

Bioconcentration Factor (BCF) = [M]tissue / [M]water 

Where, [M]tissue  is the trace metal concentration in gills and/or liver 

         [M]water  is the trace metal concentration in water. 
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However, some differences were observed in the concentration of trace metals between tissues 

sampled. P. maclareni had Al and Sr in gill with Cr, Co, Pb, and U in liver all in highest 

concentrations. On the other hand, U. species had Mn and Cu in highest concentration in their liver, 

while C. maclareni showed highest Cd concentration in liver. BCF analyses also illustrate the same 

pattern of metal accumulation differences between fish species. Differences in trace metal 

accumulation and their relationship to fish species could be further explained based on δ
13

C and δ15
N 

values elucidating food sources and trophic levels of the fishes (Fig. 14). The significant variations in 

δ
13

C and δ15
N between fish species indicate different carbon sources and trophic levels within the 

lake ecosystem. P. maclareni having the highest δ
13

C (feeding closer to the littoral area) and the 

highest concentration of Cr, Co, Pb and U in liver, possibly linking the carbon source to the 

accumulation of metals. Though some trace metals perform essential biological functions by either 

acting as enzyme cofactors, enhancing glucose metabolism and heme synthesis, very high intakes 

may pose adverse effects in fish. Copper was found in highest concentration (1153µg/g dry weight) 

in liver of U. species (Table 7 & Fig. 15 B1). At levels exceeding safe exposure, copper adversely 

affects fish by changing hematological parameter, disrupting migration and osmoregulation, 

impairing respiration, survival, growth and reproduction of fish (Hodson et al., 1979; Lwanga et al., 

2003). However, such high metal concentrations for essential metals do not necessarily suggest 

potential adverse effects. Because tissue concentrations of essential elements are internally controlled 

by homeostasis (Liebscher & Smith, 1968), enzyme systems may maintain their optimal levels 

(Giesy & Wiener, 1977) and the better regulated the shorter their half lives in tissues (Heath, 1987). 

Toxic effects occur when homeostatic control is inefficient and detoxification mechanisms are no 

longer able to offset uptake or storage cells die and the "stored" metal episodic increase blood 

concentration to cause cardiac arrest among other effects (Heath, 1987).  

The concentrations of some selected trace metals (Table 9) reported for brown trout gill-metal 

accumulation (Rosseland et al., 2007), are compared with fish gill-metal accumulation in this study. 

This is based on the similarity in water chemistry parameter and also the time of sampling. The pH 

of 7.4 (Table 3) for Lake Barombi Mbo water samples is presumed neutral or non-acidified as the 

neutral waters of Lochnagar. Although Lake Barombi Mbo is in the tropics and Lochnagar in the 

arctic, sampling was carried out during hot and dry periods. The highest mean gill-Al concentration 

(140 µg/g dw) was in P. maclareni and was greater than the maximum gill-Al concentration (108 

µg/g dw) for Lochnagar trout. Aluminium is known to be highly gill reactive, impairing 

physiological functions by disrupting ion regulation, affecting growth and survival in fish (Rosseland 

et al., 1992; Kroglund et al., 2008). Most importantly, acute toxicity of Al is associated to ion 
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regulation disturbances at low pH, and chronic toxicity with respiratory disturbances at high pH 

(Kroglund et al., 2008; Rosseland et al., 2007). With Al concentration of 108 µg/g dw on trout gill, 

ion regulation was not severed (Rosseland et al., 2007) and at pH > 5.8 with < 300 µg/g dw Al on 

smolt gill, osmoregulatory capacity was disturbed (Kroglund et al., 2008). Thus, tilapia P. maclareni  

being more tolerant than trout and smolt might exhibit acute ion regulatory disturbances at much 

higher gill-Al concentrations than 140 µg/g dw. The concentrations of Cr, Cd and Pb were below 

concentrations reported for trout gill-metal accumulation. Based on fish species tolerance toward 

tissue metal accumulation it may be possible to set background levels. The effects trace metals 

relative to background levels in trout can be extrapolated at higher concentrations for more tolerant 

fish species in this study.  

Table 9. Comparing selected gill-metal background concentrations (µg/g dw) in brown trout from 

Lochnagar with fish species sampled from Lake Barombi Mbo, Cameroon. 

Fish 

species 

Al Cr Mn Cu Cd Pb Reference 

Brown 

trout 

108±24 3±0.5 21±4 2±0.1 10.5±5 19.5±3.5 Rosseland et al., 

2007 

U. species 26.5±23.6 0.91±2.75 213±94.5 2.1±1.0 0.01±0.004 0.15±0.065 This study 

 

P. 

maclareni 

140±199 0.90±1.11 88±23 1.7±0.5 0.024±0.011 0.45±0.47 This study 

C. 

maclareni 

36±36.6 0.26±0.18 66.8±20.2 0.25±0.09 0.073±0.040 0.12±0.27 This study 

Values in Rosseland et al., 2007 have been transformed by a factor of 5 from µg/g ww to µg/g dw for 

consistency and easy comparison. i.e., 1 µg/g ww = 5 µg/g dw. 

The potential for trace metals to persist in the environment, bioaccumulate, and exhibit acute or toxic 

effects in aquatic biota is of serious concern particularly the non essential metals which are capable 

of causing deleterious effects even at levels of low exposure especially Cd and Pb. Both metals are 

reported to adversely affect ion-regulation, survival, growth, reproduction, histopathology and 

metabolism of most fish species (Lydersen et al., 2002; McGeer et al., 2000a). They are also readily 

accumulated in the kidney and detoxified by binding to metallothioneins in the liver of fish.  

4.4. Mercury (Hg) concentration in fish muscle 

The mean concentration of Hg in U. species was 0.0093±0.0010 mg/kg ww, while that in P. 

maclareni and C. maclareni were 0.0274±0.0082 mg/kg ww and 0.0266±0.0136 mg/kg ww 

respectively (Table 10). The total mercury concentration ranged from 0.008 mg/kg wet weight 

minimum concentration in U. species to 0.062 mg/kg wet weight maximum concentration in C. 
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maclareni. The mean Hg concentration was highest in C. maclareni and P. maclareni and lowest in 

U. species (Table 10). Pair wise comparisons (ANOVA) among levels of species for mean 

concentration of Hg showed no significant difference between P. maclareni and C. maclareni, 

though both were significantly different from U. species (p = 0.000). Thus, U. species had lower Hg 

concentration in their muscle tissue than the other fish species sampled. 

The low concentrations can be explained based on water chemistry parameters recorded. Low pH 

and high DOC together enhance mercury uptake by fish and subsequently concentration of Hg 

(Tadiso et al., 2011; Watras et al., 1998). According to Xun et al. (1987), increasing acidity increases 

microbial methylation of Hg
2+

. Spry & Wiener (1991) also acknowledge that in lakes, low pH, low 

alkalinity and high organic carbon concentrations are conditions which enhance Hg methylation and 

subsequently increase CH3Hg
+ 

burden in fish. In this study a mean neutral pH of 7.4 and total 

organic carbon (TOC) of 1.56 mg/l (Table 3) is presumed not to greatly influence methylation of Hg 

and Hg uptake. According to Black et al. (2011), high organic content of freshwater reduce photon 

influx over microbial influence in the transformation of Hg
2+

 to CH3Hg
+
 and clearer water bodies are 

more susceptible to photon influx and less microbial influence. With respect to this study, water 

clarity, neutral pH and low organic matter could possibly explain the low Hg concentration in muscle 

tissues of all fish species sampled. Ramlal et al. (1993) suggest that low Hg concentration in fish is 

caused by low sediment fluxes of Hg and low net methylation rates in the cold and clear lakes. 

Similar to this study, low Hg concentration in muscle tissue of fish are reported by Voegborlo & 

Akagi (2007).Worth noting, is that the levels of Hg in fish from studied areas of tropical Africa are 

substantially lower than those recorded in freshwater fish from comparable regions globally (Black 

et al., 2011).  

Table 10. Mean (±SD) of total mercury concentration (mg/kg, w.w) in fish species from Lake Barombi Mbo, 

Cameroon. n = sample size. 

 

Species N Tot-Hg Range 

U. species 20 0.0093±0.001 (0.008, 0.011) 

P. maclareni 19 0.0274±0.0082 (0.018, 0.049) 

C. maclareni 15 0.0266±0.0136 (0.008, 0.062) 

 

4.5. Relationship between Hg and fish size 

The relationship between Hg concentration in muscle tissue and fish size (total length, TL and total 

weight, TW) was investigated by separately regressing, Log Hg against TL and TW.  There was a 
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negative significant relationship in U. species for both length (p=0.010 < 0.05) and weight (p=0.032) 

but the variation in total Hg concentration explained by both length (r
2
=0.316) and weight (r

2
=0.230) 

was not high (Table 11; Fig. 16a & 16b).  Thus, the Hg concentration reflects the phenomenon of 

Tilapia species which feed on zooplankton as small, and then turn to plant diet as they grow larger 

(Desta, 2007). In C. maclareni the relationship was positive and highly significant for both length 

(p=0.000) and weight (p=0.000) with Hg concentration respectively, and the variation in Hg 

explained by both length (r
2
=0.675) and weight (r

2
=0.642) was high. This means that total Hg 

concentration in muscle tissue increases with increased feeding and increased growth (and thus age) 

in C. maclareni. Conversely, there was no significant relationship between fish size and Hg 

concentration in P. maclareni (Table 11; Fig. 16a & 16b). The variation in total Hg concentration 

explained by both length (r
2
=0.069) and weight (r

2
=0.067) in P. maclareni was very low. The 

relationships between mercury concentrations against total length and total weight were positive, and 

strongly significant in C. maclareni (p=0.000), negative and significant in U. species, but not 

significant in P. maclareni.  

Table 11. Regression of log-transformed total mercury concentration (log [THg] in mg/kg ww) against total 

length (LT), total weight (WT), δ
13

C (‰) and δ
15

N (‰) for sampled fish species from Lake Barombi  

Mbo, Cameroon. For each regression, the sample size (n), intercept, slope, r
2
, and p-values are 

 

Species Regression n Intercept Slope r
2
 p-value 

U. species log [THg] vs. LT 20 -1.89 -0.0095 0.316 0.010 

 log [THg] vs. WT 20 -1.93 -0.0013 0.230 0.032 

 log [THg] vs. δ
15

N 20 -2.03 -0.0007 0.000 0.949 

 log [THg] vs. δ
13

C 20 -1.96 0.0024 0.001 0.872 

       

P. maclareni log [THg] vs. LT 19 -2.01 0.0445 0.069 0.278 

 log [THg] vs. WT 19 -1.72 0.0056 0.067 0.286 

 log [THg] vs. δ
15

N 19 -0.836 -0.0882 0.324 0.011 

 log [THg] vs. δ
13

C 19 -2.43 -0.0280 0.390 0.004 

       

C. maclareni log [THg] vs. LT 15 -2.91 0.0476 0.675 0.000 

 log [THg] vs. WT 15 -2.89 0.0071 0.642 0.000 

 log [THg] vs. δ
15

N 15 -1.96 0.0335 0.002 0.621 

 log [THg] vs. δ
13

C 15 2.18 0.1210 0.673 0.000 
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Figure 16a. Log (THg) (mg/kg, ww) vs. total length (cm) in U. species, P. maclareni, and C. maclareni from 

Lake Barombi Mbo, Cameroon. 
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Figure 16b. Log [THg] (mg/kg, ww) vs. total weight (g) in U. species, P. maclareni, and C. maclareni from 

Lake Barombi Mbo, Cameroon. 

 

4.6. Relationship between mercury (Hg) concentration and carbon source 

Results from Table 5 & 10, showed that P. maclareni had the highest mean Hg concentration 

(0.0274 mg/kg ww) and highest δ
13

C (- 30.2 ‰). C. maclareni had mean Hg concentration of 0.0266 

mg/kg ww and mean δ
13

C of -31.5 ‰, meanwhile U. species had mean values of 0.0093 mg/kg ww 

and -32.9 ‰, for mean Hg concentration and δ
13

C, respectively. The sequence for Hg concentration 

32,530,027,525,022,520,017,515,0

-1,3

-1,4

-1,5

-1,6

-1,7

-1,8

Total weight (g)

L
o

g
 T

H
g

 (
m

g
/

k
g

 w
w

)

P. maclareni

250225200175150

-1,0

-1,2

-1,4

-1,6

-1,8

-2,0

-2,2

Total weight (g)

L
o

g
 T

H
g

 (
m

g
/

k
g

 w
w

)

C. maclareni

1101009080706050

-1,950

-1,975

-2,000

-2,025

-2,050

-2,075

-2,100

Total weight (g)

L
o

g
 T

H
g

 (
m

g
/

k
g

 w
w

)

U. species



49 
 

and carbon source revealed that U. species had the lowest Hg concentration and δ
13

C values. As a 

result, the carbon source influenced the Hg concentration in the U. species. Though, U. species 

showed no significant relationship between Hg concentration and δ
13

C,  P. maclareni and C. 

maclareni both showed a significant relationship between Hg concentration and  δ
13

C (Table 11). 

While the relationship between Hg and δ
13

C was positively correlated in U. species and C. 

maclareni, the relationship was negatively correlated in P. maclareni. Mean δ
13

C values increased in 

the order U. species < C. maclareni < P. maclareni. Thus, U. species had the lowest stable isotope 

values of all three fish species sampled (Table 5). This suggests that U. species feed distant from the 

littoral region or within the pelagic region of the lake. 

4.7. Relationship between mercury (Hg) concentration and δ
15

N 

With no significant difference in Hg concentration between P. maclareni (0.0274 mg/kg ww) and C. 

maclareni (0.0266 mg/kg ww), C. maclareni had the highest mean δ
15

N (9.9 ‰) . In contrast, U. 

species with lowest Hg concentration (0.0093 mg/kg ww) had the lowest δ
15

N (6.6 ‰) and occupied 

the lowest trophic position of the aquatic food chain established by the three fish species (Table 10 & 

Fig. 14). The relationship between Hg concentration and δ
15

N was significant (p = 0.011) P. 

maclareni, and non significant in both U.  species and C. maclareni. 

Negative correlations (log THg vs. TL, TW) were observed in U. species (Table 11). Worth noting, is 

that while all regressed parameters except for δ
15

N vs. TL were negatively correlated in P. maclareni, 

TL and TW were negatively correlated with δ
15

N in C. maclareni. Tadiso et al. (2011), also observed 

positive correlation and significant relationship between mercury concentrations with total length 

and total weight in T. zilli, C. auratus, and C. gariepinus, (same for C. maclareni in this study) but 

not in O. niloticus (same observation with U. species and P. maclareni in the present study). With 

reference to their study, such positive correlations are indicative of Hg concentration being 

influenced by both bioaccumulation and biomagnification as in C. maclareni. 

Trewavas et al. (1972) traditionally assessed the trophic positions of the fishes of Lake Barombi Mbo 

by inferring feeding behaviour and stomach content analysis. But, according to Atwell et al. (1998), 

such methods are most often just a "snapshot" of feeding habits for a particular season, life history 

stage, or location and may not necessarily reflect long-term feeding habits of the aquatic biota, which 

can eventually influence its contaminant uptake and load (e.g. Hg in this study). Additionally, fishes 

are opportunistic feeders whose diets and trophic levels often change as they grow, and can also vary 

significantly even among individuals of the same species (Trippel & Beamish, 1993). So based on 

Trewavas et al. (1972), food web for fishes of Lake Barombi Mbo, the species sampled in this study 
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represent a subset of the food web and forage on varying food items. However, the use of stable 

isotope analysis provides a more conventional measure of either the simplicity or complexity of a 

food web structure (Stapp et al., 1999). Used as a continuous measure of trophic behaviour (Kidd et 

al., 1995a), the nitrogen isotope (δ
15

N) serves as a food web descriptor and reflects variations in the 

underlying food web structure with top predators having the highest 
15

N enrichment relative to 

assimilated food (Cabana & Rasmussen, 1994; Zanden et al., 1999). These observations are 

consistent with the results of this study, as C. maclareni exhibited the highest δ
15

N and occupied the 

highest trophic level of all three fish species. Isotope values support Trewavas et al. (1972) trophic 

positioning of C. maclareni as the top level predator of Lake Barombi Mbo. Though there was a 

significant difference in mean δ
13

C values for all the fish species, none of them exhibited a wide 

variation in δ
13

C values (Fig. 14). This could suggest foraging within the same pelagic confine and 

sharing the same carbon source.  

4.8. Biomagnification of mercury 

The mean trophic index values for the fish species was 6.6 6 ‰ δ
15

N in U. species, 8.4 ‰ δ
15

N in P. 

maclareni and 9.9 ‰ δ
15

N in C. maclareni. 

The regression equation: 

(Log THg (mg/kg) = - 2.49 + 0.0893 δ
15

N) . . . (1) 

depicting trophic biomagnification of THg, revealed an overall biomagnification rate of 0.0893  per 

δ
15

N (‰) .  

There was a significant difference in the biomagnification rate of the sampled fish species of Lake 

Barombi Mbo (n=54, r
2
 = 0.322, p=0.000) and C. maclareni had the highest Hg uptake rate (0.0335) 

(Table 11 & Fig. 17). Although, the biomagnification rate depicted by the relationship between log 

(THg), mg/kg ww) and (δ
15

N, ‰) was significant in P. maclareni (n=19, slope=-0.0882, r
2
=0.324, 

p=0.011), there was no significant relationship in U. species (n=20, slope=-0.0007, r
2
=0.000, 

p=0.949) and C. maclareni (n=15, slope = 0.0335, r
2
=0.002, p=0.621) respectively (Table 11). There 

was also no evidence of biomagnification with trophic position in U. species (Log (THg) (mg/kg) = - 

2.03 -  .     δ
15

N) and P. maclareni (Log THg (mg/kg) = - 0.836 -  .     δ
15

N), but, C. maclareni 

showed evidence of biomagnification with trophic position (Log THg (mg/kg) = - 1.96 + 0.0335 

δ
15

N). However, the significant linear relationship (n=54, r
2
 = 0.322, p = 0.000) between trophic 

index, δ
15

N and THg in fish species (Fig. 17), indicated an overall biomagnification of Hg. The 

biomagnification rate (0.0893) in this study did not represent the entire food web and neither was it 

within 0.12 to 0.26 per δ
15

N, ‰  , reported in some African lakes (Campbell et al., 2003b, 2004; 



51 
 

Kidd et al., 2003)  nor within the world wide range (0.11-  .   per δ
15

N, ‰ ) referred from several 

studies by Sharma et al (2008).  

 

 

Figure 17. Relationship between trophic level, determined by log-transformed mercury 

concentrations (log [THg], mg/kg ww) and stable isotope ratios of nitrogen (δ
15

N, ‰) in fish from 

Lake Barombi Mbo, Cameroon. 
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4.9. Risk Assessment 

World Health Organization (WHO) has  given advice to both Cd and Hg on consumption based on 

Provisional Tolerable Weekly Intake (PTWI) related to body weight and groups at risk (pregnant 

women and children). WHO (2012), recommend that the level should be to 1.6 µg/kg body 

weight/week in order to sufficiently protect the developing foetus from neurotoxic effects. The foetus 

is exposed to Hg through contaminated food eaten by the pregnant mother. This new 

recommendation changes the prior recommendation for a dietary limit of 3.3 µg/kg body 

weight/week. With dietary exposure assumed to account for total Hg exposure in humans through 

fish consumption, a total daily intake (TDI) for a 70 kg person can be estimated to be 16 µg/day ((1.6 

µg/kg body weight/week * 70 kg) / 7 days). A PTWI of 1.6 µg/kg body weight/week, means that a 

person of 70 kg body weight (bw) should not consume more than 560 g of fish muscle if the Hg 

concentration in that fish is 0.2 mg/kg ww. The mean Hg concentration (0.0093 mg/kg) in U. species 

which is the most consumed fish from Lake Barombi Mbo, and 0.0266 mg/kg in C. maclareni was 

well below the marketing limit of the European Union (0.5 mg/kg) (FAO/WHO, 2003) and 

recommended guideline for safe fish consumption (0.2 mg/kg) (WHO, 1990). Thus, a person of 70 

kg will have to consume 11760 g muscle of U. species or 4200 g muscle of C. maclareni a week to 

attain 0.2 mg/kg ww of Hg.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

The findings of the present study showed that the concentrations of investigated trace metals in water 

were below ambient water quality criteria for acute and chronic levels recommended by EPA, 

CCME, South Africa Water Quality Guidelines and WHO guidelines for aquatic life protection. 

However, BCF analyses showed evidence of trace metal uptake from water and subsequent 

bioaccumulation in gills and liver of fish sampled. Accumulation sequence for trace metals in fish 

tissues sampled varied between species with minor differences between trace metals. The high 

accumulation of Al, Mn and Sr on gills of the three fish species, indicates that they are bioavailable 

and probably high in Lake Barombi Mbo. With P. maclareni having the highest gill-Al concentration 

(140 µg/g dw) and given that Al causes ion regulation disturbances affecting growth and survival, 

this may be a reason why P. maclareni is on the IUCN red list for critically endangered species. 

Total Hg concentration in fish muscles revealed concentrations lower than WHO recommended 

guidelines of 0.2 mg/kg for groups vulnerable to mercury toxicity and 0.5 mg/kg European Union 

marketing limit. Also, coupled PTWI U. species and C. maclareni consumption as protein source 

will not pose a risk of mercury exposure to people vulnerable to mercury toxicity. In addition, 

isotopic ratio analyses showed mercury biomagnification along the food web of Lake Barombi Mbo, 

with C. maclareni at the top of the food chain. These findings indicate that though some trace metals 

may accumulate in tissues of fish at worrisome levels, the general water quality of the lake suggests 

that trace metals do not pose an immediate threat to the biota. Based on results obtained, this study 

may provide baseline information on the environmental quality of the lake for future research work. 

Finally, it is important that the environmental quality of the lake be monitored constantly especially 

for the metals Al, Mn, and Sr, which seemed to indicate bioavailability and high presence in Lake 

Barombi Mbo. This may contribute in preserving the already threatened endemic cichlids especially 

P. maclareni which accumulated most of the metals investigated, in highest concentrations. Also, 

future work may focus on linking trace metals in tissues with food type ingested by different fish 

species of Lake Barombi Mbo, Cameroon. 
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APPENDIX 

APPENDIX 1: Triplicate readings for water parameters at different locations in field. 

Location pH Temperature 

(℃) 
TDS 

(mg/l) 

EC 

(mS/m) 

Littoral 1 7.62 30.8 20 5 

Littoral 1 7.60 30.6 20 4 

Littoral 1 7.51 30.6 20 4 

Littoral 2 7.58 30.5 20 4 

Littoral 2 7.52 30.3 20 4 

Littoral 2 7.49 30.6 20 4 

Littoral 3 7.50 30.7 20 4 

Littoral 3 7.50 30.6 20 4 

Littoral 3 7.49 30.3 20 4 

Littoral 4 7.33 30.5 20 4 

Littoral 4 7.33 30.6 10 4 

Littoral 4 7.31 30.3 20 4 

Littoral 5 7.31 30.7 20 4 

Littoral 5 7.28 30.5 20 4 

Littoral 5 7.29 30.6 20 4 

Littoral 6 7.28 30.6 20 4 

Littoral 6 7.29 30.3 20 4 

Littoral 6 7.65 30.4 20 4 

Littoral 7 7.65 30.3 20 4 

Littoral 7 7.63 30.5 20 4 

Littoral 7 7.60 30.6 20 4 

Littoral 8 7.61 30.3 20 4 

Littoral 8 7.61 30.5 20 4 

Littoral 8 7.60 30.5 20 4 

Littoral 9 7.61 29.8 20 4 

Littoral 9 7.61 30.2 20 4 

Littoral 9 7.65 30.1 20 4 

Littoral 10 7.62 30.2 20 4 

Littoral 10 7.48 29.4 20 4 

Littoral 10 7.44 29.6 20 4 

In lake 11 7.18 29.2 20 4 

In lake 11 7.05 29.6 20 4 

In lake 11 7.04 29.6 20 4 

In lake 12 7.08 29.5 20 4 

In lake 12 7.05 29.2 20 4 

In lake 12 7.04 29.0 20 4 
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APPENDIX 2:  Electrical conductivity (EC) and total dissolved solid (TDS) values at different 

locations of the lake. 

Date       Locations 
  _____________________________________________________________________ 

03/01/12 Littoral    In lake     Outlet 

        EC TDS          EC TDS          EC TDS 

       mS/cm       g/L        mS/cm         g/L        mS/cm   g/L 

_________________________________________________________________________________ 

      0.04 0.02        0.04 0.02        0.05 0.02 

 

          0.04 0.02        0.04 0.02        0.05 0.02 

 

      0.04 0.02        0.04 0.02        0.04 0.02 

          0.04 0.02        0.04 0.02        0.04 0.02 

                 0.04 0.02        0.04 0.02        0.04 0.02 

                 0.04 0.02        0.04 0.02        0.04 0.02 

                 0.04 0.02        0.04 0.02        0.04 0.02 

                 0.04 0.02        0.04 0.02        0.04 0.02 

                 0.04 0.02        0.04 0.02        0.04 0.02 

                 0.04 0.02        0.04 0.02        0.04 0.02 
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APPENDIX 3:  pH and Temperature of composite water samples from different locations of the lake 

Sample No GPS 

Coordinates 

GPS 

Elevation 

(m) 

Barometric 

reading 

(mmHg) 

Altitude 

(m) 

pH Temperature 

(°C) 

1 4°08ʹ59.8N 408 731 239±5.0 7.28 30.5 

 9°17ʹ05.8E    7.29 30.3 

     7.31 30.4 

     7.30 30.4 

2 4°08ʹ59.8N 408 730 249±5.0 7.23 29.8 

 9°17ʹ05.8E    7.19 29.4 

     7.20 29.7 

     7.21 29.2 

3 4°08ʹ59.8N 408 730 255±5.0 7.48 30.4 

 9°17ʹ05.8E    7.50 30.2 

     7.47 30.0 

     7.43 29.9 

4 4°39ʹ08.3N 332 729 260±5.0 7.59 30.6 

 9°24ʹ32.7E    7.60 30.5 

     7.63 30.6 

     7.61 30.3 
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APPENDIX 4:  Sizes of individual fish species sampled from Lake Barombi Mbo, Cameroon. 

Year 

2011 

No Species Length 

(cm) 

Weight 

(g) 
Year 

2011 

No Species Length 

(cm) 

Weight 

(g) 

16/12/11 1 Pungu 10.0 28.1 16/12/11 1 Clarias 23.2 154.0 

16/12/11 2 Pungu 9.5 23.0 16/12/11 2 Clarias 30.0 192.0 

19/12/11 3 Pungu 9.2 19.9 19/12/11 3 Clarias 28.9 187.0 

19/12/11 4 Pungu 10.3 29.8 19/12/11 4 Clarias 25.3 172.4 

19/12/11 5 Pungu 10.4 30.1 19/12/11 5 Clarias 27.3 185.0 

19/12/11 6 Pungu 8.4 16.6 21/12/11 6 Clarias 30.6 194.0 

22/12/11 7 Pungu 10.3 30.7 21/12/11 7 Clarias 29.1 190.0 

22/12/11 8 Pungu 8.8 17.9 21/12/11 8 Clarias 25.1 170.5 

22/12/11 9 Pungu 9.3 21.5 21/12/11 9 Clarias 23.5 155.0 

23/12/11 10 Pungu 8.5 16.9 21/12/11 10 Clarias 25.0 168.0 

23/12/11 11 Pungu 10.1 29.6 22/12/11 11 Clarias 24.0 159.0 

23/12/11 12 Pungu 10.5 31.1 22/12/11 12 Clarias 25.0 167.9 

27/12/11 13 Pungu 10.6 31.1 23/12/11 13 Clarias 24.2 158.1 

27/12/11 14 Pungu 10.0 30.2 23/12/11 14 Clarias 37.5 254.0 

27/12/11 15 Pungu 8.8 16.6 23/12/11 15 Clarias 25.2 171.9 

27/12/11 16 Pungu 10.7 31.2 

27/12/11 17 Pungu 9.1 21.4 

27/12/11 18 Pungu 10.0 30.5 

27/12/11 19 Pungu 9.6 24.3 

 

 

 

 

 

Year 

2011 

No Species Length 

(cm) 

Weight      

(g) 

12/12/11 1 Unga 15.5 85.6 

12/12/11 2 Unga 16.0 94.4 

12/12/11 3 Unga 18.5 90.2 

12/12/11 4 Unga 20.8 107.4 

12/12/11 5 Unga 18.6 91.4 

13/12/11 6 Unga 18.4 89.8 

13/12/11 7 Unga 17.4 87.0 

13/12/11 8 Unga 17.4 88.3 

13/12/11 9 Unga 14.5 77.7 

14/12/11 10 Unga 18.1 104.3 

14/12/11 11 Unga 15.4 92.5 

14/12/11 12 Unga 11.9 53.0 

14/12/11 13 Unga 9.3 49.9 

15/12/11 14 Unga 13.4 62.0 

15/12/11 15 Unga 14.0 64.5 

15/12/11 16 Unga 13.5 62.8 

15/12/11 17 Unga 14.8 72.0 

15/12/11 18 Unga 13.4 62.0 

16/12/11 19 Unga 13.9 65.4 

16/12/11 20 Unga 17.5 100.0 
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APPENDIX 5:  ICP-MS and ICP-OES concentration of trace metals in water sample fractions from Lake Barombi Mbo, Cameroon. 

 

 

 

 

 

 

 

 

Water Fractions Al Cr Mn Co Ni Sr Cd Ba Pb U Fe Ni Zn

ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L

LBM Raw Water 1 4,854 0,273 2,083 0,041 1,202 39,418 0,01 13,5 0,1 0,002 0,0201 0,00

LBM Raw Water2 6,088 0,411 2,815 0,030 0,510 48,707 0,00 16,5 0,0 0,001 0,0197 0,00

LBM Raw Water 3 6,597 0,299 2,612 0,031 0,388 40,880 0,00 14,0 0,0 0,000 0,0208 0,00

LBM Raw Water 4 6,458 0,484 0,064 0,014 0,791 0,016 0,01 0,0 0,8 0,001 0,0185 0,00

LBM Chelex filtrate 1 3,615 0,266 0,432 0,012 0,334 0,083 0,00 0,3 0,0 0,000 0,01 0,01 0,00

LBM Chelex filtrate 2 3,532 0,348 0,480 0,012 0,358 0,055 0,00 0,3 0,0 0,000 0,01 0,01 0,00

LBM Chelex filtrate 3 2,983 0,171 0,398 0,015 0,542 0,085 0,00 0,3 0,1 0,001 0,01 0,01 0,00

LBM Chelex filtrate 4 1,172 0,173 0,126 0,013 0,503 33,798 0,00 10,9 2,9 0,002 0,01 0,01 0,01

LBM Chelex filtrate 1' 2,545 0,144 0,295 0,009 0,242 0,026 0,00 0,2 0,0 0,000 0,01 0,01 0,00

LBM Chelex filtrate 2' 2,9 0 0,4 0,0 0,3 0,06 0,01 0,2 0,0 0,000 0,01 0,01 0,00

LBM Chelex filtrate 3' 5,50 0,22 0,41 0,01 0,32 0,07 0,00 0,29 0,04 0,000 0,02 0,01 0,00

LBM Chelex filtrate 4' 3,90 0,26 0,28 0,01 0,27 0,03 0,00 0,20 0,04 0,000 0,01 0,01 0,00
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APPENDIX 6: Mercury and IRMS analyses in fish muscle tissue. 

Code Species Tot - Hg (mg/kg ww) Log THg (mg/kg ww) Length (cm) Weight (g) δ15N δ13C N, %  C, %

U-1 U. species 0,008 -2,08 15,5 85,6 8,5 -31,4 14,5 48,2

U-2 U. species 0,009 -2,02 16 94,4 5,8 -33,9 13,0 45,6

U-3 U. species 0,008 -2,09 18,5 90,2 4,8 -33,1 11,6 39,0

U-4 U. species 0,008 -2,07 20,8 107,4 6,9 -33,2 12,5 45,6

U-5 U. species 0,008 -2,09 18,6 91,4 4,9 -33,0 12,2 39,1

U-6 U. species 0,008 -2,09 18,4 89,8 7,2 -33,2 14,1 48,3

U-7 U. species 0,010 -1,99 17,4 87,0 8,2 -31,5 13,9 49,9

U-8 U. species 0,009 -2,07 17,4 88,3 8,5 -32,2 14,2 49,1

U-9 U. species 0,009 -2,06 14,5 77,8 5,4 -33,4 12,9 43,2

U-10 U. species 0,009 -2,07 18,1 104,3 6,8 -33,5 12,9 46,6

U-11 U. species 0,009 -2,04 15,4 92,5 6,8 -31,6 12,6 41,8

U-12 U. species 0,011 -1,96 11,9 53,0 6,1 -33,6 13,7 46,8

U-13 U. species 0,010 -1,99 9,3 49,9 6,9 -32,4 14,2 45,6

U-14 U. species 0,010 -2,02 13,4 62,0 6,6 -33,1 13,6 45,5

U-15 U. species 0,010 -2,02 14 64,6 6,5 -33,4 13,5 46,1

U-16 U. species 0,010 -2,02 13,5 62,8 6,5 -33,2 13,6 44,6

U-17 U. species 0,008 -2,09 14,8 72,1 6,8 -33,3 13,9 47,9

U-18 U. species 0,009 -2,04 13,4 62,0 6,7 -33,5 13,8 49,0

U-19 U. species 0,011 -1,95 13,9 65,5 5,2 -33,1 12,5 39,1

U-20 U. species 0,011 -1,97 17,5 100,0 7,3 -32,4 13,7 46,0

P-1 P. maclareni 0,025 -1,61 10 28,1 9,2 -28,9 14,5 45,8

P-2 P. maclareni 0,023 -1,64 9,5 23,1 8,8 -31,2 14,0 48,4

P-3 P. maclareni 0,032 -1,49 9,2 19,9 8,9 -29,5 14,1 44,9

P-4 P. maclareni 0,036 -1,44 10,3 29,9 6,9 -38,6 14,2 47,3  
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cont'd 

P-5 P. maclareni 0,049 -1,31 10,4 30,2 7,5 -35,6 13,1 40,0

P-6 P. maclareni 0,032 -1,50 8,4 16,6 7,7 -30,5 13,6 47,2

P-7 P. maclareni 0,024 -1,61 10,3 30,7 8,3 -29,7 13,9 44,7

P-8 P. maclareni 0,018 -1,75 8,8 18,0 9,5 -28,1 13,9 45,9

P-9 P. maclareni 0,032 -1,49 9,3 21,5 8,5 -29,8 14,1 46,6

P-10 P. maclareni 0,020 -1,69 8,5 16,9 8,0 -27,5 14,2 46,8

P-11 P. maclareni 0,032 -1,49 10,1 29,6 8,5 -30,5 12,8 46,7

P-12 P. maclareni 0,018 -1,74 10,5 31,2 9,5 -28,7 13,9 42,4

P-13 P. maclareni 0,033 -1,49 10,6 31,2 8,5 -28,4 13,5 40,5

P-14 P. maclareni 0,035 -1,46 10 30,2 6,9 -28,8 13,3 41,2

P-15 P. maclareni 0,026 -1,58 8,8 16,7 8,3 -31,3 12,9 44,8

P-16 P. maclareni 0,023 -1,64 10,7 31,2 8,8 -31,3 13,4 47,2

P-17 P. maclareni 0,019 -1,73 9,1 21,5 8,7 -29,2 13,9 46,5

P-18 P. maclareni 0,024 -1,62 10 30,5 9,8 -28,9 14,2 47,3

P-19 P. maclareni 0,018 -1,75 9,6 24,3 8,0 -26,9 13,5 42,5

N-1 C. maclareni 0,015 -1,84 23,2 154,1 9,2 -33,7 12,6 49,5

N-2 C. maclareni 0,038 -1,42 30 192,1 9,9 -30,2 13,3 47,5

N-3 C. maclareni 0,036 -1,45 28,9 187,0 10,8 -29,2 14,5 47,1

N-4 C. maclareni 0,019 -1,71 25,3 172,4 9,8 -32,4 14,0 47,3

N-5 C. maclareni 0,037 -1,43 27,3 185,0 10,4 -30,0 14,3 45,8

N-6 C. maclareni 0,032 -1,50 30,6 194,0 9,2 -31,6 11,0 44,0

N-7 C. maclareni 0,037 -1,43 29,1 190,0 9,9 -30,9 12,0 47,3

N-8 C. maclareni 0,016 -1,80 25 170,5 9,7 -31,7 14,0 47,6

N-9 C. maclareni 0,023 -1,64 23,5 155,0 11,4 -30,4 14,5 47,5

N-10 C. maclareni 0,016 -1,81 25 168,1 9,8 -34,3 9,8 53,3

N-11 C. maclareni 0,022 -1,65 24 159,0 7,9 -32,1 11,9 44,1  
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cont'd 

N-12 C. maclareni 0,021 -1,68 25 168,0 11,1 -31,6 13,6 49,8

N-13 C. maclareni 0,008 -2,08 24,2 158,2 9,0 -33,4 13,2 46,5

N-14 C. maclareni 0,062 -1,21 37,5 254,1 9,2 -29,6 13,1 43,7

N-15 C. maclareni 0,018 -1,75 25,2 172,0 10,7 -31,7 14,2 49,3  

 

APPENDIX 7:  ICP-MS concentration of trace metals in digested gills and liver of fish species sampled from Lake Barombi Mbo. 

Tissue Species Dry weight of sample Al Cr Mn Co Cu Sr Cd Pb U

g µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L

gill U1 U. species 0,101 5,075 0,230 407,623 2,104 1,036 339,443 0,008 0,067 0,013

gill U2 U. species 0,0926 14,854 0,135 189,245 1,891 1,055 325,192 0,014 0,125 0,015

gill U3 U. species 0,066 33,395 0,288 385,268 4,576 2,109 636,976 0,015 0,283 0,037

gill U4 U. species 0,1049 19,804 0,204 342,304 5,096 1,670 628,475 0,017 0,178 0,044

gill U5 U. species 0,1737 6,063 0,568 127,359 1,792 0,834 194,642 0,006 0,127 0,013

gill U6 U. species 0,1148 18,919 0,233 168,580 1,880 0,918 287,765 0,006 0,122 0,018

gill U7 U. species 0,1251 18,064 0,151 180,800 2,043 0,755 367,615 0,011 0,127 0,028

gill U8 U. species 0,1388 6,174 0,458 210,692 2,101 0,687 362,913 0,010 0,121 0,026  
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gill U9 U. species 0,0638 20,922 0,145 209,471 1,639 0,931 284,800 0,013 0,120 0,019

gill U10 U. species 0,141 5,120 0,101 143,848 1,813 1,015 253,691 0,010 0,072 0,018

gill U11 U. species 0,0877 5,216 0,103 421,679 2,108 0,902 323,562 0,015 0,100 0,019

gill U12 U. species 0,0275 66,698 0,415 167,538 1,687 0,823 314,655 0,010 0,113 0,015

gill U13 U. species 0,0121 93,295 12,558 145,259 1,596 0,816 362,931 0,019 0,102 0,013

gill U14 U. species 0,0455 19,764 0,288 156,144 1,841 0,937 257,981 0,008 0,152 0,018

gill U15 U. species 0,0563 41,504 0,503 121,468 1,431 0,857 299,185 0,009 0,145 0,019

gill U16 U. species 0,0497 33,162 0,437 161,443 1,752 0,914 289,262 0,006 0,338 0,017

gill U17 U. species 0,0614 28,677 0,267 193,514 1,787 0,929 296,608 0,008 0,189 0,018

gill U18 U. species 0,0418 27,399 0,429 161,158 1,835 0,853 298,965 0,007 0,149 0,030

gill U 19 U. species 0,0547 60,922 0,583 164,984 1,637 0,973 290,869 0,009 0,142 0,021

gill U20 U. species 0,1016 5,833 0,142 207,960 1,723 0,829 314,467 0,009 0,178 0,022

gill P1 P. maclareni 0,0092 127,048 1,603 82,691 1,851 0,086 463,896 0,039 0,407 0,053

gill P2 P. maclareni 0,0079 71,458 0,441 84,972 1,889 1,173 439,594 0,027 0,730 0,039

gill P3 P. maclareni 0,0079 73,937 4,571 86,250 1,792 -0,320 392,284 0,004 2,248 0,021

gill P4 P. maclareni 0,0057 34,878 0,015 60,563 1,289 -1,077 372,375 0,013 0,188 0,061

gill P5 P. maclareni 0,014 34,957 2,207 47,096 1,626 0,234 332,764 0,015 0,238 0,026

gill P6 P. maclareni 0,0055 45,279 0,956 77,723 1,664 -1,434 395,591 0,020 0,244 0,037

gill P7 P. maclareni 0,0109 226,836 0,680 78,968 1,326 2,688 375,744 0,028 0,863 0,031

gill P8 P. maclareni 0,0064 350,792 1,850 102,681 1,848 2,881 327,228 0,046 0,370 0,058

gill P9 P. maclareni 0,0095 47,189 0,191 103,814 2,023 1,812 425,551 0,036 0,410 0,015

gill P10 P. maclareni 0,0053 21,180 1,150 80,479 1,299 -1,780 428,793 0,010 0,125 0,052

gill P11 P. maclareni 0,0101 25,156 -0,027 62,883 1,042 -0,151 391,305 0,013 0,324 0,035

gill P12 P. maclareni 0,0088 25,851 0,067 150,533 1,740 0,144 493,090 0,025 0,362 0,037

gill P13 P. maclareni 0,0112 118,513 0,546 93,217 3,031 0,121 540,349 0,029 0,310 0,041  
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cont'd 

gill P14 P. maclareni 0,0113 866,549 0,187 86,628 2,018 0,221 458,464 0,020 0,242 0,028

gill P15 P. maclareni 0,0079 47,973 0,115 72,298 1,093 -1,017 256,420 0,014 0,163 0,017

gill P16 P. maclareni 0,0138 261,030 1,362 105,100 1,313 0,736 315,693 0,023 0,333 0,033

gill P17 P. maclareni 0,0062 178,745 0,496 117,536 1,235 -0,382 311,578 0,023 0,308 0,030

gill P18 P. maclareni 0,0094 26,000 0,109 103,049 2,023 -0,316 514,792 0,041 0,398 0,029

gill P19 P. maclareni 0,0077 73,204 0,618 76,285 1,722 0,037 411,242 0,022 0,186 0,036

gill N1 C. maclareni 0,0392 40,861 0,444 57,540 0,165 0,615 171,206 0,071 0,029 0,001

gill N2 C. maclareni 0,0441 23,543 0,210 59,749 0,306 1,142 317,763 0,039 0,082 0,001

gill N3 C. maclareni 0,0621 19,499 0,229 60,488 0,440 1,342 220,673 0,056 0,075 0,002

gill N4 C. maclareni 0,0488 24,540 0,151 84,852 0,187 0,654 206,961 0,069 0,041 0,000

gill N5 C. maclareni 0,0395 8,932 0,111 84,923 0,279 0,614 211,688 0,082 0,023 0,000

gill N6 C. maclareni 0,0742 1,770 0,077 79,953 0,198 0,369 228,647 0,016 0,032 0,001

gill N7 C. maclareni 0,0627 127,011 0,515 62,603 0,318 1,240 219,429 0,089 0,080 0,003

gill N8 C. maclareni 0,0491 40,372 0,187 50,217 0,200 1,079 210,527 0,064 0,039 0,001

gill N9 C. maclareni 0,0376 7,788 0,191 119,166 0,243 0,589 182,623 0,149 0,030 0,000

gill N10 C. maclareni 0,0625 13,002 0,110 51,619 0,158 1,141 143,499 0,066 0,030 0,000

gill N11 C. maclareni 0,058 2,337 0,089 38,131 0,151 1,435 114,922 0,039 1,096 0,000

gill N12 C. maclareni 0,0404 47,675 0,646 73,904 0,235 1,212 212,322 0,152 0,042 0,001

gill N13 C. maclareni 0,0763 11,748 0,117 54,858 0,162 1,214 161,956 0,041 0,025 0,000

gill N14 C. maclareni 0,1175 88,578 0,387 48,469 0,443 0,638 308,800 0,036 0,053 0,002

gill N15 C. maclareni 0,0567 81,415 0,463 75,785 0,261 1,568 214,216 0,119 0,050 0,002

liver U1 U. species 0,0057 153,757 0,677 196,945 6,463 1027,455 1,841 0,912 0,042 0,019

liver U2 U. species 0,0094 209,966 0,858 56,277 9,066 1459,617 1,324 1,716 0,194 0,059

liver U3 U. species 0,0516 159,121 3,144 182,346 42,457 7908,616 16,528 10,636 0,067 0,090

liver U4 U. species 0,0634 208,176 3,732 184,321 89,181 ####### 6,321 20,256 0,107 0,190  
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cont'd 

liver U5 U. species 0,0378 103,899 8,453 122,164 41,547 6409,351 3,423 8,066 0,052 0,072

liver U6 U. species 0,0233 182,148 1,318 118,927 29,557 3037,063 2,300 3,077 0,044 0,035

liver U7 U. species 0,0251 122,928 1,767 85,870 24,415 1740,326 2,962 5,340 0,049 0,094

liver U8 U. species 0,0142 121,127 1,375 88,986 25,108 1337,288 2,705 5,296 0,064 0,083

liver U9 U. species 0,0213 57,637 1,891 213,250 25,540 3041,843 5,039 4,575 0,047 0,037

liver U10 U. species 0,0380 132,813 25,509 78,518 12,131 2119,696 1,500 3,082 0,056 0,038

liver U11 U. species 0,0041 26,122 0,295 136,846 4,966 395,612 0,952 1,348 0,004 0,015

liver U14 U. species 0,0195 50,715 0,553 29,741 31,731 2118,257 1,894 3,665 0,062 0,030

liver U15 U. species 0,0120 18,542 0,264 35,393 5,936 760,787 16,779 1,527 0,020 0,016

liver U17 U. species 0,0287 63,416 1,761 66,998 19,446 2580,319 2,702 3,782 0,035 0,041

liver U18 U. species 0,0063 98,430 1,020 27,325 9,558 1153,146 0,531 1,064 0,022 0,014

liver U19 U. species 0,0356 372,945 1,781 36,237 3,172 260,388 30,167 11,659 6,421 0,012

liver U20 U. species 0,0406 180,478 1,158 96,517 17,697 1474,859 7,790 15,094 0,691 0,038

liver P2 P. maclareni 0,0056 37,018 7,325 4,048 14,803 18,159 0,836 1,147 0,074 0,034

liver P3 P. maclareni 0,0088 44,689 0,653 6,297 28,035 10,743 1,318 2,260 1,638 0,022

liver P5 P. maclareni 0,0029 24,817 1,472 1,387 7,120 4,486 0,716 0,754 0,061 0,011

liver P6 P. maclareni 0,0006 108,650 0,472 2,579 2,170 1,542 0,666 0,113 0,026 0,002

liver P8 P. maclareni 0,0080 93,285 0,589 13,341 16,375 5,400 45,878 2,132 0,174 0,053

liver P9 P. maclareni 0,0078 39,019 0,539 5,628 19,480 6,835 0,483 2,224 0,059 0,023

liver P10 P. maclareni 0,0010 12,888 0,335 1,259 7,451 0,572 0,279 0,393 0,052 0,004

liver P11 P. maclareni 0,0550 550,769 5,953 42,628 26,976 73,302 5,897 13,151 0,882 0,033

liver P12 P. maclareni 0,0010 19,955 0,835 7,788 6,840 0,563 15,560 2,178 0,045 0,028

liver P13 P. maclareni 0,0035 44,311 2,930 5,105 20,353 6,006 0,517 2,454 0,095 0,026

liver P14 P. maclareni 0,0010 5,847 0,156 0,952 4,669 2,316 0,132 0,582 0,005 0,001

liver P15 P. maclareni 0,0098 329,309 0,829 45,420 9,619 7,264 52,291 1,200 0,086 0,016  
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cont'd 

liver P16 P. maclareni 0,0032 22,454 0,204 3,205 6,884 4,098 0,293 0,812 0,052 0,005

liver P17 P. maclareni 0,0017 11,398 0,238 8,499 3,837 0,601 29,497 0,531 0,052 0,003

liver P18 P. maclareni 0,0032 24,188 0,301 3,549 15,589 6,037 0,838 2,470 0,053 0,012

liver P19 P. maclareni 0,0052 73,531 0,482 4,550 20,663 7,683 0,801 1,171 0,067 0,010

liver N1 C. maclareni 0,0253 271,702 1,326 23,190 0,874 199,320 5,215 13,207 0,175 0,000

liver N4 C. maclareni 0,0144 158,778 1,633 24,961 0,596 71,957 4,607 10,754 0,117 0,000

liver N5 C. maclareni 0,0326 268,786 0,750 27,688 1,454 269,604 8,576 18,504 0,302 0,000

liver N6 C. maclareni 0,0477 346,631 0,897 35,547 1,300 50,392 9,896 3,142 0,355 0,002

liver N7 C. maclareni 0,0450 140,144 0,819 46,804 2,016 93,282 8,967 18,713 0,496 -0,001

liver N8 C. maclareni 0,0324 102,516 0,433 25,485 2,397 82,940 6,658 22,899 0,096 -0,002

liver N9 C. maclareni 0,0272 164,234 1,165 45,288 1,053 130,859 6,249 34,115 0,685 0,002

liver N12 C. maclareni 0,0123 125,306 0,931 21,905 0,802 127,686 5,772 25,252 0,230 0,008

liver N13 C. maclareni 0,0236 88,390 0,917 24,427 1,149 144,215 3,739 9,853 0,153 -0,001

liver N14 C. maclareni 0,1399 319,491 2,267 89,657 15,790 143,271 23,112 40,346 0,983 0,004

liver N15 C. maclareni 0,0036 73,766 0,145 6,732 0,223 6,205 1,118 1,980 0,067 0,005  

For obtaining concentration of trace metals in gills and liver based on dry weight (µg/g d.w.),  

Concentration (µg/g d.w) = (measured ICP-MS value in digested tissue) / (100 * dry weight of tissue) 

Measured value is divided by 100 because samples were digested in 10 ml instead of 1000 ml. 
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APPENDIX 8: Concentration of trace metals in gills and liver based on dry weight (µg/g d.w). 

Tissue Species Al Cr Mn Co Cu Sr Cd Pb U

µg/g d.w µg/g d.w µg/g d.w µg/g d.w µg/g d.w µg/g d.w µg/g d.w µg/g d.w µg/g d.w

gill U1 U. species 0,502 0,023 40,359 0,208 0,103 33,608 0,001 0,007 0,001

gill U2 U. species 1,604 0,015 20,437 0,204 0,114 35,118 0,001 0,013 0,002

gill U3 U. species 5,060 0,044 58,374 0,693 0,320 96,512 0,002 0,043 0,006

gill U4 U. species 1,888 0,019 32,631 0,486 0,159 59,912 0,002 0,017 0,004

gill U5 U. species 0,349 0,033 7,332 0,103 0,048 11,206 0,000 0,007 0,001

gill U6 U. species 1,648 0,020 14,685 0,164 0,080 25,067 0,001 0,011 0,002

gill U7 U. species 1,444 0,012 14,452 0,163 0,060 29,386 0,001 0,010 0,002

gill U8 U. species 0,445 0,033 15,180 0,151 0,049 26,146 0,001 0,009 0,002

gill U9 U. species 3,279 0,023 32,832 0,257 0,146 44,639 0,002 0,019 0,003

gill U10 U. species 0,363 0,007 10,202 0,129 0,072 17,992 0,001 0,005 0,001

gill U11 U. species 0,595 0,012 48,082 0,240 0,103 36,894 0,002 0,011 0,002

gill U12 U. species 24,254 0,151 60,923 0,613 0,299 114,420 0,004 0,041 0,006

gill U13 U. species 77,103 10,379 120,049 1,319 0,675 299,943 0,016 0,085 0,011

gill U14 U. species 4,344 0,063 34,317 0,405 0,206 56,699 0,002 0,033 0,004

gill U15 U. species 7,372 0,089 21,575 0,254 0,152 53,141 0,002 0,026 0,003

gill U16 U. species 6,672 0,088 32,483 0,353 0,184 58,202 0,001 0,068 0,003

gill U17 U. species 4,670 0,044 31,517 0,291 0,151 48,308 0,001 0,031 0,003

gill U18 U. species 6,555 0,103 38,555 0,439 0,204 71,523 0,002 0,036 0,007

gill U 19 U. species 11,138 0,107 30,162 0,299 0,178 53,175 0,002 0,026 0,004

gill U20 U. species 0,574 0,014 20,469 0,170 0,082 30,951 0,001 0,018 0,002

gill P1 P. maclareni 138,096 1,742 89,882 2,012 0,094 504,235 0,043 0,442 0,058

gill P2 P. maclareni 90,453 0,558 107,559 2,392 1,484 556,448 0,034 0,924 0,050  
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cont'd 

gill P3 P. maclareni 93,592 5,786 109,177 2,268 -0,405 496,563 0,005 2,846 0,027

gill P4 P. maclareni 61,189 0,027 106,251 2,262 -1,890 653,290 0,022 0,329 0,107

gill P5 P. maclareni 24,969 1,576 33,640 1,161 0,167 237,689 0,010 0,170 0,019

gill P6 P. maclareni 82,325 1,738 141,315 3,026 -2,608 719,257 0,037 0,444 0,068

gill P7 P. maclareni 208,106 0,624 72,448 1,216 2,466 344,719 0,025 0,792 0,029

gill P8 P. maclareni 548,112 2,891 160,439 2,887 4,502 511,294 0,071 0,578 0,091

gill P9 P. maclareni 49,672 0,201 109,278 2,130 1,908 447,949 0,038 0,432 0,016

gill P10 P. maclareni 39,962 2,169 151,847 2,451 -3,358 809,044 0,019 0,236 0,097

gill P11 P. maclareni 24,907 -0,027 62,261 1,031 -0,149 387,430 0,013 0,321 0,034

gill P12 P. maclareni 29,376 0,076 171,060 1,977 0,163 560,330 0,028 0,412 0,042

gill P13 P. maclareni 105,815 0,487 83,229 2,706 0,108 482,454 0,026 0,277 0,037

gill P14 P. maclareni 766,857 0,166 76,662 1,785 0,196 405,720 0,017 0,214 0,025

gill P15 P. maclareni 60,726 0,146 91,516 1,383 -1,288 324,583 0,018 0,206 0,022

gill P16 P. maclareni 189,152 0,987 76,159 0,951 0,533 228,763 0,017 0,241 0,024

gill P17 P. maclareni 288,298 0,800 189,575 1,992 -0,616 502,546 0,037 0,497 0,048

gill P18 P. maclareni 27,659 0,116 109,627 2,152 -0,336 547,651 0,043 0,424 0,031

gill P19 P. maclareni 95,071 0,803 99,072 2,236 0,048 534,080 0,028 0,242 0,046

gill N1 C. maclareni 10,424 0,113 14,679 0,042 0,157 43,675 0,018 0,007 0,000

gill N2 C. maclareni 5,339 0,048 13,549 0,069 0,259 72,055 0,009 0,019 0,000

gill N3 C. maclareni 3,140 0,037 9,740 0,071 0,216 35,535 0,009 0,012 0,000

gill N4 C. maclareni 5,029 0,031 17,388 0,038 0,134 42,410 0,014 0,008 0,000

gill N5 C. maclareni 2,261 0,028 21,500 0,071 0,155 53,592 0,021 0,006 0,000

gill N6 C. maclareni 0,239 0,010 10,775 0,027 0,050 30,815 0,002 0,004 0,000

gill N7 C. maclareni 20,257 0,082 9,984 0,051 0,198 34,997 0,014 0,013 0,000

gill N8 C. maclareni 8,222 0,038 10,227 0,041 0,220 42,877 0,013 0,008 0,000

gill N9 C. maclareni 2,071 0,051 31,693 0,065 0,157 48,570 0,040 0,008 0,000  
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cont'd 

gill N10 C. maclareni 2,080 0,018 8,259 0,025 0,183 22,960 0,011 0,005 0,000

gill N11 C. maclareni 0,403 0,015 6,574 0,026 0,247 19,814 0,007 0,189 0,000

gill N12 C. maclareni 11,801 0,160 18,293 0,058 0,300 52,555 0,038 0,010 0,000

gill N13 C. maclareni 1,540 0,015 7,190 0,021 0,159 21,226 0,005 0,003 0,000

gill N14 C. maclareni 7,539 0,033 4,125 0,038 0,054 26,281 0,003 0,005 0,000

gill N15 C. maclareni 14,359 0,082 13,366 0,046 0,276 37,781 0,021 0,009 0,000

liver U1 U. species 269,75 1,19 345,52 11,34 1802,55 3,23 1,60 0,07 0,03

liver U2 U. species 223,37 0,91 59,87 9,65 1552,78 1,41 1,83 0,21 0,06

liver U3 U. species 30,84 0,61 35,34 8,23 1532,68 3,20 2,06 0,01 0,02

liver U4 U. species 32,84 0,59 29,07 14,07 2240,63 1,00 3,19 0,02 0,03

liver U5 U. species 27,49 2,24 32,32 10,99 1695,60 0,91 2,13 0,01 0,02

liver U6 U. species 78,18 0,57 51,04 12,69 1303,46 0,99 1,32 0,02 0,02

liver U7 U. species 48,98 0,70 34,21 9,73 693,36 1,18 2,13 0,02 0,04

liver U8 U. species 85,30 0,97 62,67 17,68 941,75 1,91 3,73 0,04 0,06

liver U9 U. species 27,06 0,89 100,12 11,99 1428,10 2,37 2,15 0,02 0,02

liver U10 U. species 34,95 6,71 20,66 3,19 557,81 0,39 0,81 0,01 0,01

liver U11 U. species 63,71 0,72 333,77 12,11 964,91 2,32 3,29 0,01 0,04

liver U14 U. species 26,01 0,28 15,25 16,27 1086,29 0,97 1,88 0,03 0,02

liver U15 U. species 15,45 0,22 29,49 4,95 633,99 13,98 1,27 0,02 0,01

liver U17 U. species 22,10 0,61 23,34 6,78 899,07 0,94 1,32 0,01 0,01

liver U18 U. species 156,24 1,62 43,37 15,17 1830,39 0,84 1,69 0,03 0,02

liver U19 U. species 104,76 0,50 10,18 0,89 73,14 8,47 3,28 1,80 0,00

liver U20 U. species 44,45 0,29 23,77 4,36 363,27 1,92 3,72 0,17 0,01

liver P2 P. maclareni 66,10 13,08 7,23 26,43 32,43 1,49 2,05 0,13 0,06

liver P3 P. maclareni 50,78 0,74 7,16 31,86 12,21 1,50 2,57 1,86 0,02

liver P5 P. maclareni 85,58 5,08 4,78 24,55 15,47 2,47 2,60 0,21 0,04  
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cont'd 

liver P6 P. maclareni 1810,84 7,87 42,98 36,17 25,71 11,10 1,89 0,43 0,03

liver P8 P. maclareni 116,61 0,74 16,68 20,47 6,75 57,35 2,66 0,22 0,07

liver P9 P. maclareni 50,02 0,69 7,22 24,97 8,76 0,62 2,85 0,08 0,03

liver P10 P. maclareni 128,88 3,35 12,59 74,51 5,72 2,79 3,93 0,52 0,04

liver P11 P. maclareni 100,14 1,08 7,75 4,90 13,33 1,07 2,39 0,16 0,01

liver P12 P. maclareni 199,55 8,35 77,88 68,40 5,63 155,60 21,78 0,45 0,28

liver P13 P. maclareni 126,60 8,37 14,59 58,15 17,16 1,48 7,01 0,27 0,07

liver P14 P. maclareni 58,47 1,56 9,52 46,69 23,16 1,32 5,82 0,05 0,01

liver P15 P. maclareni 336,03 0,85 46,35 9,81 7,41 53,36 1,22 0,09 0,02

liver P16 P. maclareni 70,17 0,64 10,02 21,51 12,81 0,92 2,54 0,16 0,01

liver P17 P. maclareni 67,05 1,40 49,99 22,57 3,53 173,51 3,12 0,31 0,02

liver P18 P. maclareni 75,59 0,94 11,09 48,71 18,87 2,62 7,72 0,17 0,04

liver P19 P. maclareni 141,41 0,93 8,75 39,74 14,78 1,54 2,25 0,13 0,02

liver n1 C. maclareni 107,39 0,52 9,17 0,35 78,78 2,06 5,22 0,07 0,00

liver N4 C. maclareni 110,26 1,13 17,33 0,41 49,97 3,20 7,47 0,08 0,00

liver N5 C. maclareni 82,45 0,23 8,49 0,45 82,70 2,63 5,68 0,09 0,00

liver N6 C. maclareni 72,67 0,19 7,45 0,27 10,56 2,07 0,66 0,07 0,00

liver N7 C. maclareni 31,14 0,18 10,40 0,45 20,73 1,99 4,16 0,11 0,00

liver N8 C. maclareni 31,64 0,13 7,87 0,74 25,60 2,06 7,07 0,03 0,00

liver N9 C. maclareni 60,38 0,43 16,65 0,39 48,11 2,30 12,54 0,25 0,00

liver N12 C. maclareni 101,87 0,76 17,81 0,65 103,81 4,69 20,53 0,19 0,01

liver N13 C. maclareni 37,45 0,39 10,35 0,49 61,11 1,58 4,17 0,06 0,00

liver N14 C. maclareni 22,84 0,16 6,41 1,13 10,24 1,65 2,88 0,07 0,00

liver N15 C. maclareni 204,91 0,40 18,70 0,62 17,24 3,11 5,50 0,19 0,01  
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APPENDIX 9: Certified and Information values for DOLT-4. 

Element Mass Fraction (mg/kg) 

Arsenic 9.66±0.62 

Cadmium 24.3±0.8 

Copper 31.2±1.1 

Iron 1833±75 

Lead 0.16±0.04 

Mercury 2.58±0.22 

Nickel 0.97±0.11 

Selenium 8.3±1.3 

Silver 0.93±0.07 

Zinc 116±6 

CH3Hg (as Hg) 1.33±0.12 

Information value for DOLT-4  

Na 6800 

Mg 1500 

Al 200 

K 9800 

Ca 680 

V 0.6 

Cr 1.4 

Co 0.25 

Sr 5.5 

Mo 1 

Sn 0.17 
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APPENDIX 10: Descriptive statistics for mercury accumulation in muscles between fish 

species. 

For pairwise comparison if intervals do not include zero (0), then, it means they are 

significantly different. (p < 0.05). 
 

One-way ANOVA: THg (mg/kg w.w) versus Species  
 
Source   DF         SS         MS      F      P 

Species   2  0,0039789  0,0019895  26,62  0,000 

Error    51  0,0038121  0,0000747 

Total    53  0,0077911 

 

S = 0,008646   R-Sq = 51,07%   R-Sq(adj) = 49,15% 

 

 

                               Individual 95% CIs For Mean Based on 

                               Pooled StDev 

Level   N      Mean     StDev  --+---------+---------+---------+------- 

N      15  0,026574  0,013590                          (-----*-----) 

P      19  0,027368  0,008190                           (-----*-----) 

U      20  0,009254  0,001007  (----*-----) 

                               --+---------+---------+---------+------- 

                               0,0070    0,0140    0,0210    0,0280 

 

Pooled StDev = 0,008646 

 

 

Grouping Information Using Fisher Method 
 

Species   N      Mean  Grouping 

P        19  0,027368  A 

N        15  0,026574  A 

U        20  0,009254    B 

 

Means that do not share a letter are significantly different. 

 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of Species 

 

Simultaneous confidence level = 87,93% 

 

 

Species = N subtracted from: 

 

Species      Lower     Center      Upper 

P        -0,005201   0,000794   0,006789 

U        -0,023248  -0,017320  -0,011391 

 

Species     +---------+---------+---------+--------- 

P                           (----*----) 

U            (----*----) 

            +---------+---------+---------+--------- 

         -0,024    -0,012     0,000     0,012 

 

 

Species = P subtracted from: 

 

Species      Lower     Center      Upper 

U        -0,023675  -0,018114  -0,012554 

 

Species     +---------+---------+---------+--------- 

U           (----*----) 

            +---------+---------+---------+--------- 

         -0,024    -0,012     0,000     0,012 
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N/B: 

One-way ANOVA is used to test whether accumulation of mercury (Hg) is dependent on fish 

species and consequently trophic level in the present study. 

However , pairwise comparison between the various fish species indicates differences. If the 

intervals do not include zero (0), then, it means they are significantly different. Thus, 

accumulation of Hg will be different for the species at different trophic levels. 

From the above data display, I can conclude that P. maclareni (P) and C. maclareni (N) are 

significantly different from U. species (U) in their accumulation of mercury. 

The scatter plot diagram of weight vs length for all three species showed high correlation. 

U. species (U): R
2
= 0,836; P. maclareni (P): R

2
= 0,947; C. maclareni (N): R

2
= 0,968 

It is important to note that, high correlation here implies that both variables can play the same 

role in a model, or that the variation of weight is highly explained by variation in length. 

In U. species, variation in total mercury (THg) concentration is not significantly explanatory 

by either length or weight (R
2

L=30,7% > R
2

W=22,8%). 

In P. maclareni, variation in THg concentration is weakly explained by both length and 

weight (R
2

L=7,6% > R
2

W=7.1%). 

In C. maclareni, much of the variation in THg concentration is significantly explanatory by 

the length and weight (R
2

L=83,5% > R
2

W=83,7%). 

Where, R
2

L= R_Square for length; R
2

W= R_Square for weight. 

 

APPENDIX 11: Significant differences for stable isotopes in muscle of fish species sampled  

One-way ANOVA: δ15N versus Species  
 
Source   DF       SS      MS      F      P 

Species   2   93,460  46,730  54,29  0,000 

Error    51   43,894   0,861 

Total    53  137,355 

 

S = 0,9277   R-Sq = 68,04%   R-Sq(adj) = 66,79% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level   N   Mean  StDev  --------+---------+---------+---------+- 

N      15  9,878  0,913                            (---*---) 

P      19  8,432  0,802                 (--*---) 

U      20  6,614  1,043  (--*---) 

                         --------+---------+---------+---------+- 

                               7,2       8,4       9,6      10,8 

 

Pooled StDev = 0,928 
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Grouping Information Using Fisher Method 
 

Species   N    Mean  Grouping 

N        15  9,8781  A 

P        19  8,4324    B 

U        20  6,6144      C 
 

Means that do not share a letter are significantly different. 

 

 

Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of Species 

 

Simultaneous confidence level = 87,93% 

 

 

Species = N subtracted from: 

 

Species    Lower   Center    Upper  ----+---------+---------+---------+----- 

P        -2,0890  -1,4457  -0,8024             (---*---) 

U        -3,8998  -3,2636  -2,6275  (---*---) 

                                    ----+---------+---------+---------+----- 

                                     -3,2      -1,6      -0,0       1,6 

 

 

Species = P subtracted from: 

 

Species    Lower   Center    Upper  ----+---------+---------+---------+----- 

U        -2,4146  -1,8179  -1,2212           (---*--) 

                                    ----+---------+---------+---------+----- 

                                     -3,2      -1,6      -0,0       1,6 

 

 

 

One-way ANOVA: δ13C versus Species  
 
Source   DF      SS     MS      F      P 

Species   2   71,08  35,54  10,09  0,000 

Error    51  179,63   3,52 

Total    53  250,71 

 

S = 1,877   R-Sq = 28,35%   R-Sq(adj) = 25,54% 

 

 

                           Individual 95% CIs For Mean Based on Pooled StDev 

Level   N     Mean  StDev     -+---------+---------+---------+-------- 

N      15  -31,526  1,497               (-------*-------) 

P      19  -30,190  2,766                           (------*-------) 

U      20  -32,891  0,744     (------*------) 

                              -+---------+---------+---------+-------- 

                           -33,6     -32,4     -31,2     -30,0 

 

Pooled StDev = 1,877 

 

 

Grouping Information Using Fisher Method 
 

Species   N     Mean  Grouping 

P        19  -30,190  A 

N        15  -31,526    B 

U        20  -32,891      C 
 

Means that do not share a letter are significantly different. 
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Fisher 95% Individual Confidence Intervals 

All Pairwise Comparisons among Levels of Species 

 

Simultaneous confidence level = 87,93% 

 

 

Species = N subtracted from: 

 

Species   Lower  Center   Upper     +---------+---------+---------+--------- 

P         0,034   1,335   2,637                         (------*-----) 

U        -2,652  -1,365  -0,078            (-----*------) 

                                    +---------+---------+---------+--------- 

                                 -4,0      -2,0       0,0       2,0 

 

 

Species = P subtracted from: 

 

Species   Lower  Center   Upper     +---------+---------+---------+--------- 

U        -3,907  -2,700  -1,493     (-----*------) 

                                    +---------+---------+---------+--------- 

                                 -4,0      -2,0       0,0       2,0 

 

  

  

APPENDIX 12:  Significant statistical relationships between metal concentration and tissue 

size of fish species.  

Unga species  

Gills 

Regression Analysis: Al versus Total length (cm)  
 
The regression equation is 

Al = 123 - 6,19 Total length (cm) 

 

 

Predictor            Coef  SE Coef      T      P 

Constant           123,20    22,24   5,54  0,000 

Total length (cm)  -6,190    1,404  -4,41  0,000 

 

 

S = 16,8241   R-Sq = 51,9%   R-Sq(adj) = 49,3% 

 

 

Analysis of Variance 

 

Source          DF       SS      MS      F      P 

Regression       1   5502,7  5502,7  19,44  0,000 

Residual Error  18   5094,9   283,0 

Total           19  10597,6 

 

 

 

Regression Analysis: Al versus Total weight (g)  
 
The regression equation is 

Al = 111 - 1,05 Total weight (g) 

 

 

Predictor            Coef  SE Coef      T      P 

Constant           110,76    16,78   6,60  0,000 

Total weight (g)  -1,0523   0,2052  -5,13  0,000 
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S = 15,4672   R-Sq = 59,4%   R-Sq(adj) = 57,1% 

 

 

Analysis of Variance 

 

Source          DF       SS      MS      F      P 

Regression       1   6291,4  6291,4  26,30  0,000 

Residual Error  18   4306,2   239,2 

Total           19  10597,6 

 

 

Regression Analysis: Co versus Total weight (g)  
 
The regression equation is 

Co = 0,057 + 0,0257 Total weight (g) 

 

 

Predictor            Coef  SE Coef     T      P 

Constant           0,0568   0,9366  0,06  0,952 

Total weight (g)  0,02574  0,01145  2,25  0,037 

 

 

S = 0,863154   R-Sq = 21,9%   R-Sq(adj) = 17,6% 

 

 

Analysis of Variance 

 

Source          DF       SS      MS     F      P 

Regression       1   3,7631  3,7631  5,05  0,037 

Residual Error  18  13,4106  0,7450 

Total           19  17,1738 

 

 

 

Regression Analysis: Co versus Total length (cm)  
 
The regression equation is 

Co = - 1,02 + 0,201 Total length (cm) 

 

 

Predictor             Coef  SE Coef      T      P 

Constant            -1,015    1,052  -0,97  0,347 

Total length (cm)  0,20057  0,06640   3,02  0,007 

 

 

S = 0,795708   R-Sq = 33,6%   R-Sq(adj) = 30,0% 

 

 

Analysis of Variance 

 

Source          DF       SS      MS     F      P 

Regression       1   5,7770  5,7770  9,12  0,007 

Residual Error  18  11,3967  0,6332 

Total           19  17,1738 

 

 

Regression Analysis: Cr versus Total length (cm)  
 
The regression equation is 

Cr = 9,58 - 0,555 Total length (cm) 

 

 

Predictor             Coef  SE Coef      T      P 

Constant             9,579    3,101   3,09  0,006 

Total length (cm)  -0,5550   0,1957  -2,84  0,011 
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S = 2,34517   R-Sq = 30,9%   R-Sq(adj) = 27,0% 

 

 

Analysis of Variance 

 

Source          DF       SS      MS     F      P 

Regression       1   44,239  44,239  8,04  0,011 

Residual Error  18   98,997   5,500 

Total           19  143,236 

 

Clarias maclareni 

Gills 

Regression Analysis: Co versus Total length (cm)  
 
The regression equation is 

Co = - 0,258 + 0,0189 Total length (cm) 

 

 

Predictor              Coef   SE Coef      T      P 

Constant            -0,2582    0,1215  -2,13  0,053 

Total length (cm)  0,018870  0,004471   4,22  0,001 

 

 

S = 0,0635321   R-Sq = 57,8%   R-Sq(adj) = 54,6% 

 

 

Analysis of Variance 

 

Source          DF        SS        MS      F      P 

Regression       1  0,071888  0,071888  17,81  0,001 

Residual Error  13  0,052472  0,004036 

Total           14  0,124361 

 

 

Regression Analysis: Co versus Total weight (g)  
 
The regression equation is 

Co = - 0,262 + 0,00287 Total weight (g) 

 

 

Predictor              Coef    SE Coef      T      P 

Constant            -0,2622     0,1235  -2,12  0,053 

Total weight (g)  0,0028663  0,0006852   4,18  0,001 

 

 

S = 0,0638542   R-Sq = 57,4%   R-Sq(adj) = 54,1% 

 

 

Analysis of Variance 

 

Source          DF        SS        MS      F      P 

Regression       1  0,071355  0,071355  17,50  0,001 

Residual Error  13  0,053006  0,004077 

Total           14  0,124361 

 

Regression Analysis: Sr versus Total length (cm)  
 
The regression equation is 

Sr = - 92,2 + 11,2 Total length (cm) 

 

 



90 
 

Predictor            Coef  SE Coef      T      P 

Constant           -92,25    64,46  -1,43  0,176 

Total length (cm)  11,166    2,372   4,71  0,000 

 

 

S = 33,7094   R-Sq = 63,0%   R-Sq(adj) = 60,2% 

 

 

 

 

Analysis of Variance 

 

Source          DF     SS     MS      F      P 

Regression       1  25172  25172  22,15  0,000 

Residual Error  13  14772   1136 

Total           14  39945 

 

 

Regression Analysis: Sr versus Total weight (g)  
 
The regression equation is 

Sr = - 90,0 + 1,67 Total weight (g) 

 

 

Predictor           Coef  SE Coef      T      P 

Constant          -89,95    67,26  -1,34  0,204 

Total weight (g)  1,6700   0,3732   4,47  0,001 

 

 

S = 34,7786   R-Sq = 60,6%   R-Sq(adj) = 57,6% 

 

 

Analysis of Variance 

 

Source          DF     SS     MS      F      P 

Regression       1  24220  24220  20,02  0,001 

Residual Error  13  15724   1210 

Total           14  39945 

 

 

Liver 

Regression Analysis: Co versus Total weight (g)  
 
The regression equation is 

Co = - 0,490 + 0,00574 Total weight (g) 

 

 

Predictor             Coef   SE Coef      T      P 

Constant           -0,4901    0,3794  -1,29  0,229 

Total weight (g)  0,005742  0,002092   2,75  0,023 

 

 

S = 0,186303   R-Sq = 45,6%   R-Sq(adj) = 39,5% 

 

 

Analysis of Variance 

 

Source          DF       SS       MS     F      P 

Regression       1  0,26157  0,26157  7,54  0,023 

Residual Error   9  0,31238  0,03471 

Total           10  0,57395 
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