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Abstract 

Larvae of the saprophagous blowfly Calliphora vicina Robineau-Desvoidy (Diptera: 

Calliphoridae) cause substantial damage by infesting stockfish in Lofoten. A synthetic lure 

has been developed to control this pest, but the attraction towards this lure is still lower than 

towards natural odors. Better understanding of the succession of volatiles released from a 

carcass during decomposition could improve the lure by identifying missing components, or 

lead to the detection of antagonistic compounds.  

 

This study is a wind tunnel experiment investigating how the volatiles from carcasses of 

different age affects how attractive they are to male and female C. vicina. Mice carcasses 

were used as natural odor sources. We predicted that flies would be more strongly attracted to 

carcasses in early stages of decay, and that females would show stronger preferences for early 

stages than males, since they depend on the carcass for oviposition. We also performed 

additional experiments investigating how conspecific larval secretion affects attraction.  

 

Both male and female C. vicina showed variation in their response to volatiles released from 

mice carcasses of different age, with significantly higher attraction towards carcasses that 

were three, six, and nine days old. We found no differences between males and females 

regarding oriented flight responses, but observed an increase in landings for female flies at the 

most attractive carcasses. Larval secretion was not attractive when tested alone, and had little 

effect on attraction when added to a three day old carcass.  

 

This study shows that C. vicina is capable of assessing an odor source from a distance, 

without relying on visual cues provided by the source. This highlights the importance of 

olfaction for blowflies when locating a resource, and indicates that they use the succession in 

the volatiles emitted from a carcass to locate suitable carrion. The interaction between gender 

and age of carcass observed for landings might point to a closer coupling of vision and 

olfaction in female blowflies compared to males.  
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Introduction 

We humans perceive the world mostly through vision, sound, and touch, and depend 

relatively little on our sense of smell. Insects, on the other hand, use olfactory cues in almost 

all aspects of their life, from location of resources or suitable mates to mediation of social 

interactions with conspecifics (Städler 1984, Keil 1999, Cardé and Millar 2004, Stensmyr 

2004, Gullan and Cranston 2010). Their world is a complex mosaic of countless odors, out of 

which they must be able to sort out and respond to only the small fraction that is relevant 

(Hansson and Christensen 1999, Hartlieb and Andersson 1999, Salecker and Malun 1999, 

Larsson and Svensson 2004). To do so they have a well-developed olfactory system, often 

tuned to only a small number of compounds, or to specific blends (Mustaparta 1984, 

Stensmyr 2004). Olfactory signals are mostly detected by the antennae (Larsson and Svensson 

2004), densely covered by sensory organs known as sensilla (Stensmyr 2004, Gullan and 

Cranston 2010). Odor molecules are able to pass the cuticle through tiny pores in these 

structures and interact with specific olfactory receptor neurons (Steinbrecht 1997, Keil 1999, 

Hansson and Christensen 1999). The signals from these neurons are transmitted to the 

antennal lobe, the main processing center of the central nerve system (Hansson and 

Christensen 1999, Stengl et al. 1999, Todd and Baker 1999). Here the axons of receptor 

neurons expressing the same receptors converge into spheroid structures called glomeruli 

(Anton and Homberg 1999, Todd and Baker 1999). Signals from the glomeruli transmit 

information to higher centers in the brain, which are in turn connected to motor centers 

(Strausfeld 1976). 

 

Seemingly similar behavioral orientation mechanisms are employed by flying insects to locate 

a wide variety of odor sources, regardless of whether they respond to a sex pheromone 

(Kaissling 1997), host-plant odor (Zanen and Cardé 1996), or the odor of a host animal 

(Gibson et al. 1991, Cossé and Baker 1996). Odor strands travel in a more or less straight line 

away from a source (Todd and Baker 1999), creating a meandering plume. Turbulence within 

the moving air causes the odor plume to break up into filaments of high concentration packets 

of odor interspersed with pockets of clean air (Hartlieb and Anderson 1999, Schoonhoven et 

al. 2005, Murlis et al. 1992, Cardé and Willis 2008). The concentration of compounds in these 

filaments is fairly constant throughout the plume, whereas the density of odor filaments 

decreases as you move away from the source (Murlis and Jones 1981). Odor plumes can 

therefore not provide insects with the directional information necessary to locate the source 
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(Cardé and Willis 2008). The quickest way for an insect to locate an odor source is to head 

upwind when in contact with the plume, and switch to casting, zigzag motions perpendicular 

to the wind direction, if contact is lost (Gibson et al. 1991, Hartlieb and Anderson 1999). 

When contact with the plume is re-established, upwind flight can resume (Cardé and Willis 

2008). To keep track of the wind direction, flying insects employ optomotor responses: they 

use visual cues to compute their displacement relative to their surroundings (Mafra-Neto and 

Cardé 1994, Vickers and Baker 1994). This combined system is called optomotor anemotaxis 

(Cardé and Willis 2008).  

 

An accurate sense of smell coupled with good flying abilities enable blowflies to quickly 

locate food, oviposition sites, and other resources. They are among the earliest colonizers of 

carrion, and are therefore important decomposition agents, often used in forensic 

investigations (Rognes 1991, Byrd and Castner 2009). But they are also capable of locating 

resources meant for human consumption, thereby becoming pests. The blowfly species 

Calliphora vicina Robineau-Desvoidy (Diptera, Calliphoridae) is a problem for the stockfish 

industry in northern Norway. Stockfish is made by hanging cod (Garrhus morhua) out to dry 

on racks from February to the end of May (Aak et al. 2010a), and female C.vicina inflict 

substantial damage by ovipositing on the drying fish – during years of high damage levels, 

losses can amount to 2 million € (Aak 2010). Application of pesticide could be a solution 

(Sømme and Gjessing 1963, Walker and Donegan 1984), but is undesirable due to pesticide 

residue in the fish. Harsh weather conditions prevent the use of physical barriers such as 

insect nets, whereas indoor drying is too expensive and reduces the quality of the product 

(Aak et al. 2010a).   

 

A possible way of reducing the blowfly population is mass trapping, a technique where pest 

insects are caught with baited traps. Many criteria need to be fulfilled for this technique to be 

successful, and a highly attractive lure is of utmost importance (Karg and Suckling 1999).  

Experiments with C. vicina have shown strong attraction to the odor of freshly dead carrion 

(Stensmyr 2004, Aak et al. 2010b, Aak and Knudsen 2011). However, the use of natural baits 

is problematic due to handling difficulties and variable attraction over time (Muirhead-

Thomson 1968). These problems may be circumvented by using a synthetic lure. An attractive 

lure has been developed for C. vicina (Aak et al. 2010b), and has been used for successful 

mass trapping at stockfish production sites in Lofoten (Aak 2010). However, in a wind tunnel 
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study Aak et al. (2010b) found higher attraction towards natural odors (fish, mice carcasses), 

indicating that the lure can be improved – for instance by adding missing attractive 

components from natural sources.  

Such compounds might be identified by studying the succession of chemicals in the odor 

plume of a carcass. Decomposition of animal tissue is a complex process, and carcasses are 

constantly changing throughout decay (Vass 2001, Gullan and Cranston 2010). Improved 

knowledge of the decay process can yield valuable information about the compounds 

produced in the different stages, and how they affect blowfly behavior. This can lead to the 

identification of missing components that can be added to the existing lure, as well as 

potential antagonistic compounds detering blowflies from an odor source.  

 

Blowfly species with saprophagous larvae, such as C. vicina, use dead animals both as food 

for the adults, and as a resource for the developing larvae (Rognes 1991, Archer and Elgar 

2003a). Male flies attend carrion to obtain food and matings (Shorey et al. 1969), whereas 

females also depend on carrion as a suitable oviposition site (Archer and Elgar 2003a). 

Locating fresh carrion is therefore likely to be more crucial for female blowflies, and a sexual 

bias in selection pressure might have lead to females becoming more attracted to odors 

emitted by carrion in early stages of decay. Oviposition is to a large extent guided by cues 

from the oviposition site, but cues from conspecifics can also be important (Hartlieb and 

Anderson 1999). The larvae of C. vicina empty their alimentary tract prior to pupation, and 

this secretion might be a signal to females of a less suitable oviposition site. It could also be a 

signal to both genders of a food resource of poorer quality. If such antagonistic compounds 

exist, they could be very useful for blowfly control.   

 

The present study is a wind tunnel experiment investigating how volatiles from carcasses of 

different age affect how attractive they are to male and female C. vicina. Mice carcasses in 

different stages of decay were used as natural odor sources. We also tested the effect of 

adding larval secretion to an attractive carcass. We predicted that: 

• Flies would be more strongly attracted to early stages of decay than to late stages 

• Females would show stronger preferences for earlier stages than males 

• Addition of larval secretion would reduce blowfly attraction 
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Materials and methods 

Study species 

The blowfly Calliphora vicina Robineau-Desvoidy (Diptera, Calliphoridae) (Fig. 1) belongs 

to a large family of flies, consisting of more than 1000 species (Stensmyr 2004). It has an 

almost circumpolar distribution (Byrd and Castner 2009), and is very common all over 

Fennoscandia (Rognes 1991). Larval development in animal flesh is characteristic of 

blowflies (Stevens 2003), but C. vicina can also complete development in a wide selection of 

other materials (Sømme and Gjessing 1963, Rognes 1991, Stensmyr 2004). C. vicina has 

three larval instars, and the rate of development is very dependent on temperature (Rognes 

1991). Prior to pupation, the third instar larvae empty their alimentary tract and enter a 

migratory stage. After emergence, the adults feed on carbohydrates, but females also require 

protein to complete maturation of the ova (Rognes 1991).   

 

 
Figure 1: The study species Calliphora vicina (Diptera, Calliphoridae). Photo: A. Aak, illustration: Hallvard 

Elven. ©The Norwegian Institute of Public Health  

 

C. vicina is an important decomposition agent (Rognes 1991). It is among the first colonizers 

of fresh carrion (Stensmyr 2004), and is therefore commonly used to estimate the time of 

death in forensic investigations (Greenberg 1991, Byrd and Castner 2009). It is normally not 

considered an important pest, but as seen at stockfish production sites in northern Norway, it 

can cause problems by infesting food products (Sømme and Gjessing 1963, Rognes 1991, 

Mallis and Hedges 1997, Aak et al. 2010a). It is also an accidental myiasis agent: it may infest 

living animals by ovipositing in necrotic wound tissue (Rognes 1991).  
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Rearing of insects 

The flies used in the experiments originated from a laboratory population at the Norwegian 

Institute of Public Health. This population was founded by flies collected at a stockfish 

production site in Lofoten, but has been bred in the laboratory for five generations. We 

formed a culture using 130 flies, and used the sixth generation for our experiments. Females 

were given a petri dish with small pieces of fish and beef on which they could lay their eggs. 

After oviposition the petri dish was placed in a clear plastic box (30x22x6 cm) with a mesh 

cover, and the larvae were provided with a surplus of meat to feed on. The box was lined with 

moist paper, and humidity was kept high by spraying with water every second day. To ensure 

similar age for all flies in one batch, the larval boxes were examined every day to check for 

pupae. All developed pupae were removed and put in a separate plastic box (250 mL). They 

were allowed to develop in room temperature for one day, and were then stored at 4°C to 

arrest development. Approximately one week before the desired emergence time, 

development was allowed to resume by returning pupae to room temperature. They were 

placed in a plastic hatching box (250 mL) with coarse sawdust, mixed with 30 mL of water to 

prevent desiccation. This box was placed inside an insect cage (25x20x30 cm), and kept in a 

climate chamber at a 16:8 (light:dark) light cycle, with 65 % relative air humidity and a 

temperature of 20ºC. Most of the flies emerged during the course of a single day, and the 

hatching box was subsequently removed to ensure that all flies in one cage were the same age. 

Adult flies were fed with a continuous supply of sugar and water, and were given ground meat 

as a protein source. The meat was removed after ten days to prevent oviposition and induce 

protein deprivation. Flies were 16-18 days old when used in the experiments.   
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The wind tunnel 

The distinctive behavior displayed by flying insects orienting towards an odor source can be 

readily observed using a wind tunnel (Fig. 2). 

 

 
Figure 2: Schematic drawing of the wind tunnel at Bioforsk, Ås (after Aak et al. 2010b). 

 

This bioassay allows for the control of light, relative humidity, temperature, and wind speed. 

It creates an artificial environment in which the odor source is the only variable. Odor 

filaments moving away from the release point creates a plume in the center of the tunnel. 

Optomotor anemotaxis in flying insects can be studied by observing the characteristic zigzag 

flight within the plume, resulting from a combination of upwind surge and casting, followed 

by landing close to the release point.  

 

Experiments were conducted in the wind tunnel at Bioforsk, Norwegian Institute for 

Agricultural and Environmental Research (Ås, Norway) (Fig. 2). This tunnel consisted of a 

polycarbonate flight section (67x88x200 cm). Before entering the tunnel, air blown by a fan 

(model D640/E35; Fischbach GmbH, Neunkirchen, Germany) passed through a filter housing 

containing a dust filter and 24 active charcoal filters (Camhill Farr, Trosa, Sweden). To even 

the flow, there was a 30 cm section between the filter housing and the flight section, with 

perforated metal grids on each side (upwind pore size 8 mm with 54 % open area; downwind 

pore size 3 mm with 51 % open area). At the end of the tunnel, the air passed through a 

similar filtering system before release back to the room. The wind speed was calibrated to  

30 cm/s (SwemaAir 300; Swema AB, Stockholm, Sweden).  
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The odor source was placed in a 2L glass jar closed with a grounded glass fitting, positioned 

inside the 30 cm section upwind of the flight arena. Pressurized and charcoal-filtered air 

passed over the odor source at approximately 1.10 L/min and entered the tunnel through a 

glass pipe 30 cm above the ground (Fig. 3, left). Directly below this release point a glass plate 

(18x10 cm) was mounted. Together with the adjacent area on the metal grid, this platform 

served as a predefined landing area (Fig. 3, right). To avoid odor contamination all glassware 

was replaced between treatments, and heated to 300°C for a minimum of 8 hours using a 

drying oven (model FD 53; Binder, Tuttlingen, Germany).   

 

   
Figure 3: Details from the wind tunnel experiments. Left: the glass jar containing the odor source. Air enters the 

jar from the right, passes over the carcass at approximately 1.10 L/min, and is released into the tunnel. Right: the 

release point of the odor plume, with landing platform and visual stimuli. Photo: M. Solum.  

 

To enable the flies to keep track of wind direction, visual cues were provided in the form of 

blue dots of different size (from 6 to 12 cm in diameter) along the tunnel floor (Fig. 4).  

C. vicina has been shown to require a vertical visual contrast in order to successfully initiate 

landing (Aak and Knudsen 2011). As the odor source provided no visual cues, a black paper 

oval was placed directly above the landing platform to provide this type of stimuli. A hole in 

the middle allowed the glass pipe from the jar to enter the tunnel (Fig. 3 and 4).       
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Figure 4: Visual cues provided in the wind tunnel. Left: The tunnel seen from the downwind end. Right: The 

upper half of the wind tunnel, with filtering system for incoming air. Photo: M. Solum 

 

Experimental protocol 

Wind tunnel experiments were conducted between 09.00 hours and 18.00 hours. The light 

intensity was 150 lux. Temperature inside the tunnel ranged from 20 to 24°C, and relative 

humidity from 47-79 %. Individual flies were placed in glass tubes (2.8x13 cm) covered with 

gauze at one end and a plastic cap at the other. They were allowed to adjust to the conditions 

in the wind tunnel room for at least one hour before the experiments. The odor source was 

placed in the glass jar just before the experiments started, and positioned inside the wind 

tunnel.   

 

Flies were introduced into the tunnel one at a time by placing the glass tube on a starting 

platform 30 cm above the ground, 180 cm downwind of the odor release point (Fig. 4, left). 

The plastic cap was removed, and the flies were given four minutes to respond. Random flight 

was recognized as high-speed, nondirectional movements followed by landing outside the 

odor plume (floor, roof, tunnel walls). Oriented flight was recognized by the characteristic 

search pattern of flying insects displaying optomotor anemotaxis. Behavior was scored 

through personal observation as four predefined categories in accordance with well defined 

optomotor anemotaxis definitions: Take-off; oriented flight in the back half (0-90 cm) of the 

wind tunnel (OF-1); sustained oriented flight into the upper half (90-180 cm) of the tunnel 

(OF-2); and landing in the predefined landing area, following oriented flight. Flies were 

scored in a successive manner to only one of these categories. If orientation was sustained 

into the upper half of the tunnel, they were scored as OF-2 only (not as OF-1). Landing was 
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the maximum score for attraction, and further testing of flies scored to this category would 

give no new information. They were therefore removed from the tunnel. If the flies landed 

outside the odor plume, they were returned to the starting position. All flies showing no take-

off were tested to see if they could fly. Flies that were not able to fly, were replaced by new 

individuals. Each fly was used only once. After the experiments, flies were killed by freezing 

them for at least one hour at -18°C. Females were dissected to assess their egg development 

stage. They were placed into four different categories: I – visible follicles, but no developed 

eggs; II – developed, circular eggs, still in an early stage; III – more developed, ellipse-shaped 

eggs; IV – fully elongated eggs ready for oviposition. After each treatment, headspace from 

the odor source was sampled for later chemical analyses. The methodology used is described 

in Appendix 1.  

 

Experimental design 

Mice carcasses in different stages of decay were used as odor sources in the experiments. The 

mice came from a laboratory culture at the Norwegian Institute of Public Health, and were 

stored at -18°C. Before the experiments they were placed in a plastic box (250 mL) lined with 

moist paper. Boxes were kept in a vented hood in room temperature to start decomposition, 

and the abdomen of the mice was cut open to expose blood and intestines. Water was added 

every second day to prevent desiccation. In the early stages of decay, bacteria and other 

microorganisms found in the soil are of great importance (Vass 2001). Therefore each age of 

decay was tested with and without addition of soil bacteria. Bacteria were added by mixing 

rich soil, sampled from a deciduous forest, with water. The mix was filtered through a small-

meshed sieve, and the carcass soaked in the resulting solution. We defined seven different 

decay treatments for our main experiment, based on age of carcass: 0 (fresh), 1, 3, 6, 9, 20, 

and 33 days old (Table 1). As control, we tested attraction towards an empty glass jar.  
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Table 1: The setup for the main experiment investigating the effect of carcass age on wind tunnel attraction in 

male and female blowflies. Numbers are total number of flies tested per treatment. For the different treatments, 

we used mice carcasses of different age (D = days). Each treatment was conducted with and without added soil 

bacteria. Treatments were replicated five times for each gender, using ten flies for each replicate. As control, 

attraction was observed when no odor source was present.  

Decay treatment  0D 1D 3D 6D 9D 20D 33D Control 

Females + bacteria 50 50 50 50 50 50 50 

  -  bacteria 50 50 50 50 50 50 50 50 

Males  + bacteria 50 50 50 50 50 50 50 

  -  bacteria 50 50 50 50 50 50 50 50 

 

Larval secretion for the additional experiments was collected by placing third instar larvae in 

sealed petri dishes lined with filter paper. Ten larvae were used for each petri dish. When they 

had emptied their alimentary tract the larvae were removed, and the paper stored at -18°C. We 

tested the behavioral response to this secretion in the wind tunnel, both alone and when added 

to an attractive carcass (Table 2). To confirm attraction, the carcasses used were tested as an 

odor source in the wind tunnel with male and female flies directly before adding larval 

secretion. Secretion was added to the carcass by placing the filter paper next to it in the glass 

jar.  

 

Table 2: The setup for the additional experiments investigating how larval secretion affects wind tunnel 

attraction in male and female blowflies. Numbers are total number of flies tested per treatment. An attractive 

mouse carcass was used as an odor source. Larval secretion was presented as a filter paper with secretion from 

ten blowfly larvae, and was added to the carcass by placing the paper next to it. Treatments were replicated five 

times for each gender, using ten flies for each replicate.  

Treatment  Larval secretion Attractive carcass Carcass + secretion 

Females   50   50   50 

Males    50   50   50   

 

Each treatment was repeated five times testing ten individual flies each time. Two or three 

treatments, in random order, were conducted each day. The treatments were conducted with 

males and females on the same day, using the same odor source, and the order of gender was 

randomized by drawing. The overall order of treatments was also initially randomized by 

drawing. After all treatments had been replicated once, a new order was assigned by moving 
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the last treatment in the previous replicate to the start of the next. This process was repeated at 

the end of each series of replicates. In total, 1800 flies were used in the experiments: 1500 

flies (750 males and 750 females) to investigate the effect of carcass age, and 300 (150 males 

and 150 females) for the additional experiments with larval secretion.  

 

Statistical analysis 

Statistical tests were done with Minitab (Version 15). We used t-tests for comparing two 

groups, and ANOVA for multiple comparisons. If data were not normally distributed, and we 

were unable to normalize them by transformation, we used Mann-Whitney Rank Sum tests to 

compare two groups and Kruskal-Wallis ANOVA on Ranks for multiple comparisons. Paired 

t-tests were used to compare attraction before and after added larval secretion. To investigate 

the effect of several factors on blowfly attraction, as well as any interactions between them, 

we ran a multiple nominal logistic model using JMP (Version 9). Single factors were first 

tested as predictor variables. To simplify the model, factors with a p-value ≥ 0.5 were 

removed. A new model with interactions was then run for the remaining factors. Figures were 

made using SigmaPlot (Version 12).   
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Results 

Potential confounding factors 

In order to assess the effect of carcass age on blowfly attraction, we wanted to keep 

potentially confounding factors constant across treatments. Age of flies have been shown to 

affect attraction in wind tunnel bioassays (Crnjar et al. 1990, Aak and Knudsen, manuscript). 

The mean age of all 1500 flies used in the main experiments was 17.4 (± 0.1) days. There was 

no significant difference in age between the seven decay treatments, neither for females 

(Kruskal-Wallis ANOVA on Ranks: H = 4.23, p = 0.753) nor for males (Kruskal-Wallis 

ANOVA on Ranks: H = 2.61, p = 0.918). The mean age was 17.3 (± 0.1) days for female 

flies, and 17.4 (± 0.1) days for males. When these means were compared by pooling data for 

all treatments, we found no significant differences in age between genders (Mann-Whitney 

Rank Sum: W = 5532.0, p = 0.6251) (Fig. 5).   

 

 
Figure 5: Mean age (± SE) of all blowflies used in the wind tunnel experiments for different ages (D = days) of 

mouse carcass. 

 

The developmental stage of eggs influence female flight behavior (Campan 1977, Aak and 

Knudsen, manuscript). Our dissections of the ovaries showed that most flies had eggs in late 

stages of development (stage I = 1.6 %, II = 6.8 %, III = 23.3 %, IV = 68.3 %). Mean egg 

development was 3.6 (± 0.0) and there was no significant differences in egg development  

between decay treatments (Kruskal-Wallis ANOVA on Ranks: H = 7.79, p = 0.351) (Fig. 6).  
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Figure 6: Mean egg development (± SE) for female Calliphora vicina for different ages (D = days) of mouse 

carcass. Egg development was scored using a continuous scale from 1-4, where 1 = barely developed eggs and  

4 = fully developed eggs. 

 

The proportion of flies initiating flight ranged from 84 % to 100 % when comparing mean 

take-off frequency for all decay treatments. In our experiments there was no significant 

difference in take-off between decay treatments, neither for females (Kruskal-Wallis ANOVA 

on Ranks: H = 10.46, p = 0.164) nor for males (Kruskal-Wallis ANOVA on Ranks: H = 4.49, 

p = 0.722). Mean take-off rate across all treatments was 93.7 (± 1.1) % for females and 96.0 

(± 0.7) % for males. When these means were compared, there was no significant difference in 

take-off between genders (Mann-Whitney Rank Sum: W = 5439.0, p = 0.4019) (Fig. 7).   
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Figure 7: Proportion (± SE) of blowflies with take-off (initiated flight) in the wind tunnel for different ages (D = 

days) of mouse carcass.    

 

Effect of decomposition on attraction 

For all three behavioral categories (OF-1, OF-2, landing), we observed variations in blowfly 

attraction to the different decay treatments. This was evident both for females (Fig. 8A) and 

males (Fig. 8B).  
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A) Females 

 

B) Males 

 

Figure 8: Wind tunnel attraction (± SE) for female (A) and male (B) Calliphora vicina to different ages (D = 

days) of mouse carcass. Attraction was scored in three categories: OF-1 (oriented flight in the back half (< 90 

cm) of the wind tunnel), OF-2 (oriented flight in the upper half (> 90 cm) of the tunnel), and landing (orientation 

followed by landing in a predefined area).  

 

To investigate differences between treatments (age of carcass), a multiple nominal logistic 

model was used to assess the effect of decay and other single factors (gender of flies, added 

soil bacteria) on blowfly attraction. The results of the model are presented in Table 3.  
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There was a significant effect of age of carcass in all three behavioral categories (multivariate 

logistic model: Chi = 70.7, df = 6, p < 0.0001 (OF-1); Chi = 50.8, df = 6,  

p < 0.0001 (OF-2); Chi = 18.2, df = 6, p = 0.0058 (landing)). There was also a significant 

effect of gender for landing (multivariate logistic model: Chi = 5.4, df = 1, p = 0.0203).  

 

Table 3: Results from a multivariate logistic model with blowfly attraction in the wind tunnel as the response 

variable and age of a mouse carcass, gender of flies, and added soil bacteria as explanatory variables. Attraction 

was measured as three behavioral categories: OF-1, oriented flight < 90 cm; OF-2, oriented flight > 90 cm; 

landing in predefined area.    

  Factor   d.f.  Chi  P 

OF-1  Age of carcass  6  70.7  < 0.0001*   

  Gender   1  0.7  0.4097   

  Bacteria  1  0.4  0.5454 

OF-2  Age of carcass  6  50.8  < 0.0001* 

  Gender   1  0.1  0.7 

  Bacteria  1  0.1  0.7 

Landing Age of carcass  6  18.2  0.0058* 

  Gender   1  5.4  0.0203 

  Bacteria  1  0.5  0.4945 

* denotes significance at a 0.05 significance level 

 

Bacteria had no significant effect on the behavior of the flies in any of the three categories 

(multivariate logistic model: Chi: 0.4, df = 1, p = 0.5454 (OF-1); Chi = 0.1, df = 1, p = 0.7318 

(OF-2); Chi = 0.5, df = 1, p = 0.4945 (landing)). Applying our p ≥ 0.5 criteria, bacteria was 

therefore excluded as an explanatory variable. The new model was then run with interactions 

for the two remaining explanatory factors (behavioral response = age of carcass + gender + 

age of carcass*gender), and the results are presented in Table 4.     
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Table 4: Results from a multivariate logistic model with blowfly attraction in the wind tunnel as the response 

variable and age of a mouse carcass, gender of flies, and the interaction of age of carcass and gender as 

explanatory variables. Attraction was measured as three behavioral categories: OF-1, oriented flight < 90 cm; 

OF-2, oriented flight > 90 cm; landing in predefined area.    

  Factor   d.f.  Chi  P 

OF-1  Age of carcass  6  71.4  < 0.0001*   

  Gender   1  0.5  0.4599   

  Age*gender  6  7.4  0.2840 

OF-2  Age of carcass  6  51.0  < 0.0001* 

  Gender   1  2.2  0.1381 

  Age*gender  6  11.0  0.0886 

Landing Age of carcass  6  16.5  0.0114* 

  Gender   1  0.8  0.3619 

  Age*gender  6  14.5  0.0243* 

* denotes significance at a 0.05 significance level 

 

The age of a carcass had a significant effect on flight behavior: all three measured behavioral 

responses were significantly influenced by decay (multivariate logistic model: Chi = 71.4, df 

= 6, p < 0.0001 (OF-1); Chi = 51.0, df = 6, p < 0.0001 (OF-2); Chi = 16.5, df = 6, p = 0.0114 

(landing)). The multivariate model also identified significant differences between the different 

stages of decay (Fig. 8; Appendix 2): For OF-1, attraction increased significantly from fresh 

carcasses (0 days of decay) to one day old carcasses, while for OF-2 and landing, there were 

no significant difference between these treatments. For all three behavioral measurements, 

attraction increased significantly from one day old carcasses to three day old carcasses. After 

this the attraction remained the same for carcasses that were six and nine days old, but 

decreased significantly for 20 day old carcasses. A further decrease was found for 33 day old 

carcasses for OF-1 and OF-2, but not for landing.  

 

Sex differences in attraction 

The model also showed that there was no effect of gender during oriented flight (multivariate 

logistic model: Chi = 0.5, df = 1, p = 0.4599 (OF-1); Chi = 2.2, df = 1, p = 0.1381 (OF-2)) 

(Table 4). However, a significant interaction between gender and decay treatment was 

observed for landing (multivariate logistic model: Chi = 14.5, df = 6, p = 0.0243), indicating 
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that carcass age influence landing behavior differently in male and female flies. This 

interaction can be interpreted through the profile of landing response across the different 

stages of decay (Fig. 9). Males show a flatter, more fluctuating profile, whereas females have 

a distinct peak performance at six day old carcasses.  

 
Figure 9: Proportion (± SE) of landings in a predefined landing area for male and female Calliphora vicina for 

different ages (D = days) of mouse carcass.   

 

Effect of larval secretion 

There was no attraction towards larval secretion when used alone as an odor source. Since 

they had been shown to be attractive, three day old carcasses were used to test the effect of 

adding larval secretion. When adding secretion to a carcass, we found a significant reduction 

in attraction for males in oriented flight in the back half of the wind tunnel (paired t-test:  

t = 3.14, p = 0.035 (OF-1)), but no difference in attraction for the two other behavioral 

categories (paired t-tests: t = 1.39, p = 0.235 (OF-2); t = 1.00, p = 0.374 (landing)) (Fig. 10A). 

For females, there were no significant differences in attraction for either of the behavioral 

categories (paired t-tests: t = 2.24, p = 0.089 (OF-1); t = 0.00, p = 1.000 (OF-2); t = -0.78,  

p = 0.477 (landing)) (Fig. 10B).    
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A) Males 

 

B) Females 

 

Figure 10: Proportion (± SE) of flies showing a behavioral response to a three day old carcass, before and after 

adding larval secretion. Wind tunnel experiment performed on male (A) and female (B) Calliphora vicina. 

Attraction was scored in three categories: OF-1 (oriented flight in the first half (< 90 cm) of the wind tunnel), 

OF-2 (oriented flight in the second half (> 90 cm) of the tunnel, and landing (orientation followed by landing in a 

predefined area). In a pairwise comparison within the same behavioral category, * denotes significant difference.    
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Discussion 

This wind tunnel study demonstrated that both male and female C. vicina showed variation in 

their response to volatiles released from mice carcasses of different age, with significantly 

higher attraction towards carcasses that were three, six, and nine days old (Fig. 8). 

Interestingly, we found no differences between males and females in their oriented flight 

response, but we observed an increase in landings for female flies at the most attractive 

carcasses (Fig. 9). Our experiments excluded confounding elements such as age of flies, egg 

development, and variation in take-off rates, allowing us to conclude that the observed 

differences are a result of the odors presented to the flies. Addition of larval secretion to an 

attractive carcass had little apparent impact on attraction (Fig. 10), but as males on one 

occation responded negatively to relatively small amounts of secretion, we can not rule this 

out as a factor regulating behavior.   

 

Observations from the field have identified C. vicina and other Calliphoridae as early 

colonizers of fresh carrion (Archer 2002, Stensmyr 2004, Gullan and Cranston 2010), and the 

results from our experiments, conducted in a controlled laboratory setting, confirm these 

observations. Laboratory trials allow more detailed observations of behavior than field 

studies, and may give valuable information about the mechanisms behind observed biological 

phenomena. Our study also demonstrates that C. vicina is capable of assessing a carcass from 

a distance, without visual or gustatory information provided by the actual resource. This 

indicates that C. vicina is strongly dependent on released volatiles when locating a carcass.  

 

Effect of decomposition on attraction 

Decomposition of animal tissue is a complex process consisting of many consecutive stages, 

and the volatile profile of a carcass changes throughout decay (Vass 2001, Gullan and 

Cranston 2010). This succession of olfactory cues can provide blowflies with a way of 

locating suitable carrion (Morris et al. 1998). In initial stages of decay, there is a lot of flesh 

present on the carcass (Archer and Elgar 2003a). Protein breakdown mostly occurs during 

these early stages, leading to the formation of sulphurous compounds (Brown 1982, Archer 

2002, Statheropoulos et al. 2007). Oligosulphids have been shown to be highly attractive to 

carrion flies (Brown 1982, Ashworth and Wall 1994). Both male and female blowflies attend 

fresh carrion to obtain food, and released oligosulphids from carcasses in early stages of 

decay can be a signal that flesh is still abundant.  
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During later stages of decomposition, less flesh is present on the carcass, and bacterial activity 

might be reduced due to desiccation. The result can be a reduction in the amount of 

oligosulphids released, and this might explain decreased attraction towards older carcasses. 

However, an antagonistic effect of volatiles produced later in the decomposition process can 

also explain the decreased attraction. Degradation of fat during late stages of decay leads to 

the formation of volatile fatty acids (Vass et al. 1992, Gill-King 1997), and these compounds 

might be a signal to the blowflies of a food resource of poorer quality.    

 

Sex differences in attraction 

We predicted that females would be more responsive to the volatiles from early stages of 

decay than males, since female flies are dependent on carcasses for oviposition. Suitable 

oviposition sites are scarce, leading to strong intra- and interspecific competition for fresh 

carrion (Fuller 1934, Ullyett 1950). The ability to quickly locate a suitable carcass is therefore 

of vital importance for female blowflies (Spradberry 1979, Hayes et al. 1999), and it is likely 

that they have become more selected for locating carcasses in early stages of decay than 

males, who primarily attend carrion to locate potential mates (Shorey et al. 1969).  

 

The equal orientation response for males and females found in this study seems to contradict 

previous results for saprophagous calliphorids, suggesting that female flies are more attracted 

by carcass odors than males (Stoffolano et al. 1990, Archer and Elgar 2003b). Most of these 

studies have been conducted in the field, where the capture rate of male and female flies have 

been used to assess attraction. In a wind tunnel the mechanisms behind this observed behavior 

can be investigated. The interaction of gender and age of carcass found in this study indicates 

that higher catches of female flies in the field might be a result of an increase in landings for 

females at attractive odor sources.    

 

For many diptera, vision is important for foraging and oviposition (Prokopy et al. 1983a, 

Prokopy et al. 1983b, Brevault and Quilici 1999, Pinero et al. 2006), and Aak and Knudsen 

(2011) demonstrated the importance of visual feedback for C. vicina when locating an odor 

source. They found that female blowflies showed the highest response rate to a combined 

stimuli of an attractive odor source and visual cues. Our results, with a higher proportion of 

landings for female flies on the most attractive carcasses, point to the same conclusion. When 

a fly approaches an object, the image projected across its retina expands. This visual cue is 
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used to avoid collisions, either by turning away or by landing on the object (Tammero and 

Dickinson 2002, Srinivasan and Zhang 2004). Attractive odor sources seem to allow female 

flies to suppress avoidance behavior and initiate landing. As an increase in landing was not 

found in males, there seems to be a stronger connection between olfaction and vision in 

female blowflies. This might be a result of different selection pressures: males could be less 

dependent on landing on the carcass since they are able to locate and approach females in the 

air (Boeddeker et al. 2003). Specific neurons responding to rapidly moving targets have been 

found in male flies (Hausen and Strausfeld 1980, Gilbert and Strausfeld 1991), but are small 

or absent in females (Srinivasan and Zhang 2004). Another indicator of different use of vision 

is differences in the eye structure of male and female flies (Strausfeld 1976).   

 

Effect of larval secretion 

Compounds produced by larvae have been shown to have an antagonistic effect on 

conspecific adults for several species, for instance in leaf beetles (Blum 1994, Schindek and 

Hilker 1996) and in the Egyptian cotton leaf worm Spodoptera littoralis (Anderson et al. 

1993). Mature larvae of C. vicina produce a larval secretion when they are done feeding on a 

carcass, prior to pupation. This could be a signal to conspecific females that the carcass in 

question is too old, or that the precense of other larvae will lead to strong competition. We 

found no apparent effect on attraction when adding secretion to a carcass. However, males did 

respond negatively on one occasion, even though only a small amount of secretion was added.  

We can therefore not rule out larval secretion as a potential factor affecting behavior.  

 

For each replicate we used collected secretion from ten larvae, and this might not have been 

enough to deter females – especially since the carcass used was still fresh and undamaged. If 

the larvae had developed on the carcass, the production of larval secretion would have been 

accompanied by a reduction in available flesh. During experiments, flies did not have the 

opportunity to land on the actual carcass. Most oviposition-deterring pheromones are contact 

pheromones (Papaj 1993), and the effects of such compounds would not have been possible to 

assess with the present experimental setup.     
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Practical applications 

The existing lure for C. vicina was developed by testing synthetic compounds known to 

attract other blowfly species (Aak et al. 2010b). By using authentic carcasses in our 

experiments, we found that six day old carcasses were the most attractive. This indicates that 

analyses of released compounds from these carcasses might lead to the identification of new 

components that can be added to the synthetic lure. Reduced attraction towards later stages of 

decay might also indicate that antagonistic compounds can be identified. Such compounds 

might be very useful in push-pull strategies, where they are combined with traps baited with 

the attractive lure. A lure with closer resemblance to odors released from an attractive carcass 

can improve the success of mass trapping at stockfish production sites in Lofoten. Blowfly 

infestation of drying fish is also a major concern in many countries in Asia, Africa, and the 

Pacific (Wall et al. 2001). Calliphorids are among the most common blowflies infesting fish 

in African countries (Walker and Donegan 1984, Walker and Wood 1985), and it is possible 

that attractive compounds identified for C. vicina could be used for population control of 

other saprophagous species in the same family.      

 

The most important blowfly problem worldwide is myiasis – a form of parasitism where 

larvae develop in living animals (Hall and Wall 1995). Blowflies are divided into three groups 

based on their larval feeding habits: saprophagous species developing in decaying matter,  

facultative parasites living either as saprophages or initiating myiasis, and obligate parasites 

that only feed on the tissues of living animals (Stevens 2003). C. vicina normally develops in 

decaying matter, and only accidentally becomes a myiasis agent (Rognes 1991). However, 

field studies using the synthetic lure for C. vicina also resulted in high female catches of 

Lucilia spp. (Aak and Knudsen 2011), a genus that includes many facultative parasites 

(Stevens 2003). Several species of this genus are economically important myiasis agents in 

sheep (Wall and Smith 1997, Wall et al. 1992, Urech et al. 2009), and new attractive 

components identified for C. vicina might also improve existing lures for these species. Push-

pull strategies using antagonistic compounds could be especially useful in this situation.   

 

The presence of saprophagous flies is often used in forensic investigations (Greenberg 1991). 

Since C. vicina is an early colonizer of human corpses (Byrd and Castner 2009), detailed 

knowledge about the behavior of this species could be useful, for instance by improving the 

accuracy of time of death-estimates.  
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Possible limitations 

A wind tunnel bioassay is an artificial setting, and results from laboratory experiments can not 

always be extended to the field. However, several results from laboratory work on C. vicina 

have been sustained in field trials (Aak et al. 2010b, Aak and Knudsen 2011), making the 

wind tunnel a valid tool for studying behavior in this species. A confounding factor in our 

experiments could have been that behavior was scored by two different observers. However, 

we believe that clearly defined behavioral categories prevented any effect of subjectivity.   

 

Several factors might have had an impact on the decomposition of the carcasses used in these 

experiments. Due to the presence of decomposition agents, decay is likely to start earlier and 

proceed faster in nature, compared to what we observed in the laboratory. There might also 

have been an effect of using mice carcasses that had been frozen. It is possible that a slower 

artificial decomposition process might explain why we had relatively low attraction to one 

day old carcasses, while in the field these have been shown to be full of developing larvae 

(Archer and Elgar 2003b). However, since relative measurements of attraction are used to 

assess the effect of carcass age, it is likely that the relationship between different stages of 

decay will be the same in natural settings.  

 

Future prospects 

This behavioral study demonstrates variations in response to volatiles from carcasses of 

different age, but does not identify the actual compounds affecting blowfly behavior.  

The evident course of action for future studies would therefore be to analyze the headspace 

volatiles sampled from each carcass. To do this, gas chromatography can be applied to 

separate the individual components of the collected volatiles by eludation. The gas 

chromatograph can be coupled with mass spectrocopy (GC-MS) to identify the components 

based on their mass. To identify the components affecting insect behavior, the compounds can 

simultaneously be passed over an insect antennae (GC-EAD).  

 

The combination of these techniques would enable us to identify the components of the 

collected headspace that actually invoke a response in the flies. However, it tells us nothing 

about what kind of behavior these compounds elicit. This would have to be assessed 

separately, for instance by investigating how they affect behavioral responses in the wind 

tunnel.    
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To follow up our initial experiments on larval secretion, we would like to conduct more wind 

tunnel experiments. It would be interesting to investigate if adding a higher dose of secretion 

has an effect on attraction, or to add secretion to carcasses in later stages of decay.     

 

Lastly, it would be interesting to investigate if the equal attraction found for male and female 

C. vicina in the laboratory can be observed in the field. If attraction is the same, we would 

expect to find an equal proportion of male and female flies around an odor source. But 

different responses in landing could lead to more females being present on the actual source, 

with a higher proportion of males found downwind of or around the odor source.   
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Appendix 1: Methodology for collecting headspace 

 

The odor source was placed in a 2L glass jar, closed with a grounded glass fitting. For 

collection of volatiles, we used traps made of 4x40 mm glass tubes containing 35 mg Super Q 

(80/100 mesh; Alltech, Deerfield, USA) held between glass wool plugs. A pure air stream 

produced by a zero air generator (model HPZA-3500-220; Parker-Balston, Haverhill, USA) 

was passed through a variable area meter (SHO-RATE series, model 1355; Brooks 

Instruments, Ede, the Netherlands) to create an air flow of 220 mL/min. A reduction valve 

ensured an air pressure of 1 bar. The air stream then passed through a charcoal filter and was 

pushed over the carcass from the top to the bottom of the jar and over the trap. The charcoal 

filter (incoming air) and the trap (outgoing air) were connected to the jar with grounded glass 

fittings. During sampling, the trap was wrapped in aluminum foil to protect it from light. 

Collections were done for 3 hours, at 20-22°C.  

 

After sample collection, all further extraction procedures were conducted in a vented hood. 

Traps were rinsed with 0.3 mL of hexane to extract volatiles. The extracts were collected in  

2 mL vials with a 100 µL glass insert. 500 ng 7-OAC heptyl-acetate (99.4 % pure; Chiron AS) 

and 500 ng 11-OAC undecyl-acetate (99 % pure; gift from Marie Bengtsson) were added as 

internal standard. The vial was then sealed with a crimp cap and stored at -80°C.   

 

After use, traps were rinsed sequentially with 6 mL of laboratory grade n-hexane (> 99 % 

pure; Sigma-Aldrich), methanol (> 99 % pure; Sigma-Aldrich), and n-hexane again. All 

glassware was heated to 300°C for 8 hours between headspace collections. In addition to the 

headspace collections, we also conducted system controls by sampling volatiles from an 

empty jar (using the described procedures).     
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Appendix 2: Results from the multiple nominal logistic model 

 

Variable  P-value Category % responding (n) Odds ratio  

          (95% CI) 

 

Oriented flight 1 

Treatment  < 0.0001     0D  36 % (200)   -  

              1D  52 % (200)  0.51 (0.34 – 0.76)     

              3D  68 % (200)  0.50 (0.33 – 0.75) 

              6D  60.5 % (200)  1.41 (0.93 – 2.14) 

              9D  64.5 % (200)  0.84 (0.56 – 1.27) 

            20D  51 % (200)  1.75 (1.17 – 2.62) 

            33D  41 % (200)  1.50 (1.01 – 2.23) 

 

Gender  0.4599     Male  52.3 % (700)   - 

           Female 54.3 % (700)  1.24 (0.70 – 2.23) 

 

Treatment*gender 0.2840  

  

 

Oriented flight 2 

Treatment  < 0.0001     0D  24.5 % (200)   -  

         1D  33 % (200)  0.65 (0.42 – 1.01) 

         3D  44.5 % (200)  0.61 (0.41 – 0.92) 

         6D  39.5 % (200)  1.24 (0.83 – 1.85) 

         9D  47.5 % (200)  0.72 (0.48 – 1.07) 

        20D  33.5 % (200)  1.81 (1.21 – 2.72) 

        33D  23 % (200)  1.83 (1.17 – 2.88) 

 

Gender  0.1381     Male  34.9 % (700)   - 

        Female 35.3 % (700)  1.63 (0.85 – 3.17) 

 

Treatment*gender 0.0886 
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Variable  P-value Category % responding (n) Odds ratio  

(95% CI) 

 

Landing 

Treatment  0.0114     0D  18.5 % (200)   - 

        1D  16 % (200)  1.24 (0.73 – 2.13) 

        3D  23.5 % (200)  0.59 (0.35 – 0.99) 

        6D  24.5 % (200)  1.03 (0.64 – 1.67) 

        9D  24.5 % (200)  0.92 (0.57 – 1.48) 

       20D  13.5 % (200)  2.06 (1.23 – 3.50) 

       33D  14.5 % (200)  0.93 (0.53 – 1.65) 

 

Gender  0.3619    Male  16.9 % (700)   - 

       Female 21.7 % (700)  1.40 (0.68 – 2.90) 

 

Treatment*gender 0.0243   
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 God in His wisdom 

 Made the fly 

 And then forgot 

 To tell us why  

Ogden Nash 

 


