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Abstract 

High-elevation ecosystems have recently received increasing attention from the carbon financing 

sector. This has sparked the need for reliable and non-destructive methods to estimate carbon 

stocks in these ecosystems. The puna grasslands of the high Andes represent such a system and 

the current study investigated species richness and carbon stocks (in above- and below ground 

biomass) at a puna site in Peru. The study also examined the effect of fire on species richness and 

carbon stocks by comparing burnt and unburnt areas. Species-specific allometric equations were 

developed for four grass species, and generalised grassland equations were developed, 

combining data from both the burnt and unburnt area. No significant difference in carbon stocks 

between the burnt and unburnt area was found. The areas combined contained on average 3.4 Mg 

C ha
-1

 ± 0.1 SE stored in above-ground biomass, and 3.1 Mg C ha
-1

 ± 0.2 SE in below-ground 

biomass. Species richness was similar, but species composition differed somewhat between the 

burnt and unburnt area; the exotic species Juncus balticus was found mainly in the burnt area, 

and two Lycopodium species were found mainly in the unburnt area. However, Calamagrostis sp. 

was the dominant grass species in both areas. Highly significant allometric models were 

developed for four grass species separately. A generalised model combining the four was also 

developed. Some of the species-specific equations were affected by fire history. These results 

suggest that carbon estimations using allometric equations in puna grasslands can be more 

accurate if the fire history of the study area is known. It also seems that puna grasslands can 

recover their carbon stocks within three years of burning. However, species composition is 

altered by fire and appears to need more time to revert to pre-fire structure. 

 

Key words: allometric equations, carbon, fire ecology, functional ecology, grasslands, Manu, 

mountains, Peru, puna. 
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Introduction 

The Andean grasslands in Peru (puna) have been exposed to increasing anthropogenic pressures 

during the last decades, mainly from grazing and burning (Bustamente Becerra & Bitencourt 2007; 

Tapia Nunez & Flores Ochoa 1984 in Bustamente Becerra & Bitencourt 2007). This could 

potentially lead to increased levels of soil erosion (Oscanoa 1988 in Bustamente Becerra & 

Bitencourt 2007), and consequently a decline in vegetation cover, primary production (Fensham 

1997), plant diversity (Bustamente Becerra 2006), seed production and the amount of seeds stored 

in soil (Bertiller 1996; Coffin & Lauenroth 1989). It is also believed that grazing and burning of the 

puna in forest-puna transition zones constrains the upper limit of the tree line (Braun et al. 2002; 

Sarmiento & Frolich 2002; Young & León 2007). A serious concern considering that estimations for 

temperature rises during the next century may require species to migrate upwards at rates 

significantly higher than during the last 50,000 years (Bush et al. 2004; Feeley & Silman 2010). A 

balance between upwards migration of forests and conservation of puna biodiversity needs to be 

found. 

Another aspect of fire and grazing pressure is their implications for carbon stocks. 

Anthropogenic land use is now widely considered to either contribute to carbon emissions through 

degrading land practices, or to function as a carbon sink for atmospheric carbon through 

sequestration in below- and above-ground forest- and grassland components (Denman et al. 2007). 

This has stimulated research on many different ecosystems with regards to global carbon dynamics, 

and their potential role in the recently developed carbon markets (e.g. Glenday 2006; Malhi & 

Grace 2000). Reforestation, avoided deforestation and better grassland management are some of the 

ways carbon credits for the voluntary carbon market can be generated (Hamilton et al. 2009), and 

even though most of the work until now has focused on lowland forest ecosystems, increasing 

attention is now given to carbon dynamics at higher elevations with the increasing recognition that 

these ecosystems also could benefit from carbon financing (e.g. Fehse et al. 2002; Malhi et al. 

2010). 

The frequent burning of the puna grasslands is likely to represent considerable emissions of 

carbon to the atmosphere, but little is known about puna carbon dynamics, especially in relation to 

fire (e.g. fuel build up). In one of the few studies conducted in puna areas, Gibbon et al. (2010) 

found that more carbon was stored in the soil of puna sites unaffected by fire than those that were 

fire exposed. However, the relationship was not statistically significant (Gibbon et al. 2010). No 

difference in carbon stored in above-ground biomass in relation to fire exposure was found either 

(Gibbon et al. 2010). In short, information on carbon dynamics under different disturbance regimes 

in puna areas is very sparse. More research is therefore clearly needed on puna carbon dynamics in 

relation to land use practices, and methods for estimation of carbon stocks need to be developed in 
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relation to carbon trade. 

Allometric equations have been shown to be an effective and non-destructive tool for 

estimating above ground biomass/carbon stocks (Chave et al. 2005; Litton & Kauffman 2008; 

Nafus et al. 2009). These equations can be species specific (e.g. Litton & Kauffman 2008) or more 

generalized (e.g. Chave et al. 2005; Nafus et al. 2009). Most of the existing equations focus on 

trees, since forests have received most of the attention with regards to carbon dynamics. The recent 

increased recognition  that other ecosystems, such as grasslands, also contribute significantly to the 

global carbon cycle due to human land use (Scurlock & Hall 1998; Schuman et al. 2002), has 

sparked some interest in the development of allometric equations for these areas (e.g. Guevara et al. 

2002; Nafus et al. 2009). For grasslands, generalised, species- and ecosystem-specific equations for 

dominant grasses and herbs are needed if carbon stocks are to be estimated precisely in the future.  

The aims of this project were (i) to explore and quantify differences in carbon stocks of 

above- and below-ground biomass in an area exposed to fire three years previously and an area 

protected from fire for several years, (ii) to explore how the two areas differed in species richness 

and species composition and (iii) to develop allometric equations for the dominant grass species in 

the area for non-destructive above-ground carbon stock estimation in the future. 

 

Methods 

Site Description 

The Manu National Park stretches from the Peruvian Amazon lowlands to the eastern slopes of the 

Andean mountains (IUCN 2008). The 1.5 million ha park is situated between the catchment basins 

of the Urubamba and Madeira rivers to the south and west, and the catchment of the Manu river in 

the eastern lowlands (Fig. 1; IUCN 2008). With an altitude gradient stretching from about 350 masl 

in the lowlands, to grasslands at around 4,000 masl, the park contains an extremely high diversity of 

habitats and species (IUCN 2008). Manu National Park was added to the World Heritage List in 

1987 (IUCN 2008).  

The study was conducted near the Wayqecha research station in the Manu buffer zone in the 

south-western mountainous part of the reserve at approximately 3300 masl (approximate 

coordinates 13
o
18´S, 71

o
58´W). The high altitude areas near Wayqecha have a typical puna 

vegetation type dominated mainly by tussock-forming grasses. Some of the dominant species are 

Jarava ichu Ruiz & Pav., Calamagrostis vicunarum (Wedd.) Pilg. and Festuca dolichophylla J. 

Presl. (Gibbon et al. 2010). Average annual rainfall is 1900 to 2500 mm, with a wet season from 

October to April (Gibbon et al. 2010). Mean annual temperature is approximately 11
o
C (at 3600 m; 

Gibbon et al. 2010). Puna soils are largely composed of an organic-rich A-layer, stony B/C-layers, 

and no Oh-layer (Gibbon et al. 2010; Zimmerman et al. 2009). Gibbon et al. (2010)  
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Figure 1: Map showing the location of the study area. The green border represents Manu National Park. The pink area 

represents the area of the Wayqecha Cloud Forest Research Centre, part of the southern buffer zone of Manu National 

Park.  

 

reported a mean puna soil depth of 33 cm. The puna has been subject to high grazing and fire 

pressure over the years, and is classified as a “Zone of Recovery” by the Manu National Park, 

highlighting the need for spatial management for recovery (INRENA 2002 in Gibbon et al. 2010).  

 

Above-ground sampling strategy 

Eight transects of 30 m were set up (Fig. 2); four in an area burned in 2007 (Imma Oliveras pers. 

comm.) and four in an area unaffected by fire for at least ten years (Imma Oliveras pers. comm.). 

The sites are subject to similar grazing pressure. In each transect eight plots of 2 x 2 m were set up, 

each separated by two meters. All plants were identified to species level before the following 

measurements were taken for each tussock: The longest basal diameter and the longest 

perpendicular to the first (mm), the height as encountered in field (cm), the maximum height 

(stretched by hand; cm), the longest tussock crown diameter and the longest perpendicular to the 

first (cm). The crown- and basal diameters were averaged and used to estimate circular canopy 

areas and basal areas. The highest vegetative tiller was defined as plant height, excluding 

reproductive tillers that may surpass vegetative tillers. The biomass of these is negligible 

(Cavagnaro et al. 1983 in Guevara et al. 2002). Tussock volume was derived from plant heights and 

basal diameters using the “Basal Elliptical Cylinder” method as recommended by Johnson et al. 
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(1988; Fig. 3). All plants were hand clipped at ground level. Following Ramsay & Oxley (2001), 

dead material still attached to the tussocks was harvested, but ground litter was not. All plants were 

bagged and subsequently oven dried at 70
o
C to constant weight, and weighed to the nearest 0.1 g.  

 

Below-ground sampling strategy 

In each transect, four soil cores 12 cm in diameter and 30 cm in depth were extracted using 

opposable semicircular cutting blades. Small portions of soil were extracted at a time to avoid soil 

compression. The extracted soil was separated into an organic rich organic layer (OL) and a mineral 

layer (ML) and homogenised. Roots were extracted from each layer during four ten minute time 

intervals using one small plastic bag for the roots extracted per time interval. The soil was returned 

to the ground in its original layering after sampling. Following Girardin et al. (2010), the roots were 

transported to the lab where they were washed to remove inorganic material, separated into coarse 

roots (> 2 mm diameter) and fine roots (< 2 mm diameter), and dried to constant weight before they 

were weighed to the nearest 0.01 grams.  

 

Carbon estimation 

Dried vegetative biomass was assumed to contain 50 % carbon (following e.g. Gibbon et al. 2010; 

Glenday 2006). 

 

Effect of fire on above-ground biomass and carbon stocks 

Differences in total above-ground biomass between the burnt and unburnt area were compared 

using an independent samples t-test. 

 

Effect of fire history on species richness and functional diversity 

Plants in all plots were determined to species level and their biomass subsequently measured. 

Differences in plant biomass for the different species between the burnt and unburnt area were 

compared using independent samples t-tests. 

 

Statistical analyses for below-ground biomass 

The curve of cumulative root extraction over time was used to estimate root biomass that could 

potentially be extracted beyond 40 minutes for each soil sample, as shown by Metcalfe et al. (2007). 

This method corrects for the underestimation of below ground biomass often experienced in other 
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Figure 2: Fieldwork images. a – setting up a transect. b – measuring a tussock. c – harvesting and marking a tussock.  

d – weighing samples. e – Calamagrostis sp. tussock. f – a 2x2 meter square after sampling. 
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Figure 3: Canopy volume model calculated as a Basal Elliptical Cylinder using basal diameter and height 

measurements. Figure from Johnson et al. (1988). 

 

methodologies (Metcalfe et al. 2007) and is much less time consuming without compromising 

measurement accuracy (Girardin et al. 2010; Metcalfe et al. 2007). The data obtained were used to 

estimate the amount of total biomass allocated below ground (in Mg/ha). The root biomass 

estimations were carried out using Microsoft Excel for Windows (Microsoft Corporation, Redmond, 

WA, U.S.A.). Differences in total below-ground biomass between the burnt and the unburnt area 

were compared using an independent samples t-test. 

 

Statistical analyses for above-ground biomass 

Calamagrostis sp., Festuca dolichophylla, Scirpus rigidus and Juncus balticus have growth forms 

that make them suitable for developing allometric equations. These four species made up 84.9 % of 

the total biomass at the study site. The rest of the species have growth forms that make it difficult to 

explore allometric relationships with the methods used here, thus equations for these were not 

developed. Allometric equations were developed for the burnt and the unburnt area separately and 

for the two areas combined. A multispecies equation was also developed, using the data from both 

the burnt and unburnt area combined. The best models from the burnt and unburnt area were 

compared to determine if fire history affected the coefficients of the equations. If the 95 % 

confidence intervals of the coefficients overlapped, they were considered not significantly different. 

Because low numbers of Juncus balticus individuals were found, fire history specific equations 

were not developed for this species. All measured variables were log10 transformed in order to 

remove nonlinearity and heterogeneity of variance. Stepwise and simple regression was used to 

identify which variables influenced the model most and to identify possible co-linearity conflicts. 

Based on visual analysis of scatter-plots of estimators vs. biomass, the most extreme outliers (most 
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likely annotation errors) were removed. However, the number of samples removed from the 

analysis was very low (<15). 

Linear regression was performed to produce equations of the form  

Y = a + bX 

where Y = the log transformed dependent variable (plant biomass in grams), X = a log transformed 

independent variable (tussock volume, crown area, height or basal area) and a, and b are the 

regression coefficients derived from the linear regression analysis. 

Some scatter-plots of independent variables vs. biomass suggested a more nonlinear 

tendency even after log10 transformation. Therefore, nonlinear regression was also performed to 

produce equations of the form 

Y = aX
b 

where Y = the log transformed dependent variable (plant biomass in grams), X = a log transformed 

independent variable (tussock volume, crown area, height or basal area) and a, and b are the 

regression coefficients derived from the nonlinear regression analysis. 

Approximately 80 % of the data (called the estimation data set) were used to obtain the 

allometric relationships and 20 % (called the prediction data set) were used for validating the 

equations. Model accuracy was determined using the coefficient of determination (R
2
), and the 

standard error of the estimate (SEE) with a higher R
2
 and a lower SEE being a better fit than the 

opposite. Following e.g. Niklas (2006) analysis of residuals was also used. This was done through 

visual analysis of plots of predicted values against biomass residuals.    

The addition of more than one independent variable to improve the equations was also 

explored, giving linear equations of the form  

Y = a + bX1 + cX2 

and 

Y = a + bX1 + cX2 + dX3 , 

where Y = the log transformed dependent variable (plant biomass in grams), Xn = a log transformed 

independent variable (tussock volume, crown area, height or basal area) and a, b, c and d are the 

regression coefficients derived from the linear regression analysis. 

More variables were also added to the nonlinear models, producing equations of the form 

Y = aX1
b
 + cX2

d 

and 

Y = aX1
b
 + cX2

d 
+ eX3

f 

where Y = the log transformed dependent variable (plant biomass in grams), Xn = a log transformed 
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independent variable (tussock volume, crown area, height or basal area) and a, b, c, d, e and f are 

the regression coefficients derived from the nonlinear regression analysis. 

Some authors note that nonlinear regression techniques with untransformed data have often 

been used in studies of grass allometry (e.g. Johnson et al. 1988). The log10 transformed approach is 

used here because the raw data were not normally distributed, and because the analysis of residuals 

after exploring both techniques suggested a better fit for the log10 transformation method. 

All analyses were carried out using SPSS 17.0 for Windows (SPSS Inc., Chicago, IL, 

U.S.A.) unless otherwise specified. 

 

Results 

Effect of fire on above-ground biomass and carbon stocks 

The unburnt area contained more above-ground biomass than the burnt area, but the difference was 

not significant (P=0.27). The above-ground vegetation in both areas combined was estimated to 

contain on average 6.7 Mg ha
-1

 ± 0.2 SE dry biomass, which translates to 3.4 Mg C ha
-1

 ± 0.1 SE.  

 

Effect of fire on functional diversity 

The number of species in the burnt and unburnt plots was very similar (34 and 32, respectively).  

The species with the highest biomass was Calamagrostis sp. in both the burnt and unburnt area 

(Fig. 4). This species alone made up 71.5 % and 66.3 % of the total biomass in the burnt and 

unburnt area, respectively. However, there was no significant difference in Calamagrostis sp. 

biomass between the areas (P=0.994). Further, Festuca dolichophylla and Scirpus rigidus had a 

relatively high biomass in both areas, with more of both being found in the unburnt area (Fig. 4). 

However, these differences were not significant (P=0.162 and P=0.63 for Festuca dolichophylla and 

Scirpus rigidus, respectively). 

The burnt area contained higher biomass of Juncus balticus (P=0.004), Baccharis pygmaea 

(P=0.004) and Blechnum sp. (not significant P=0.282; Fig. 4). More biomass of Senecio 

rhizomatosus (P=0.003) and of two Lycopodium species was found in the unburnt than in the burnt 

area (one significant (P=0.035) and the other P=0.077; Fig. 4).  

 

Effect of fire on below-ground biomass and carbon stocks 

The unburnt area contained more below-ground biomass than the burnt area, but the difference was 

not significant (P=0.867). Few roots had diameters > 2 mm, and no roots were wider than ~ 4 mm. 

All the roots found were therefore treated as fine root biomass. The puna below ground vegetation 

was estimated to contain on average 6.3 Mg ha
-1

 ± 0.4 SE dry biomass, which translates to 3.1 Mg 

C ha
-1

 ± 0.2 SE. 
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Figure 4: Mean biomass (grams per 2x2 meter plot) of a selection of species from a puna grassland, Peru. Blue bars 

indicate plants from an area protected from fire >10 years. Green bars indicate plants from an area burnt approximately 

three years before harvest. Error bars indicate 95 % confidence intervals of the mean. Asterisks indicate significant 

difference. 

 

Allometric equations 

Stepwise and simple regression techniques revealed that models based on basal area and height 

(either separately or as volume model) were good estimators of plant biomass. Basal area was the 

single most influential estimator, but adding height always improved the models. The addition of 

canopy area improved models in some cases, and in others not. The maximum height was a better 

estimator than height as encountered in field, and all models including height are therefore 

performed using the maximum height data. 

Species-specific, fire history independent equations for both the estimation and the 

prediction datasets are presented in tables 1-4. Results for the burnt area are shown in tables 5-7 and 

for the unburnt area in tables 8-10. The comparison of coefficients based on the best fire history 

related models is presented in table 11. The results from the multispecies-multi area regressions are 

shown in table 12. All models had highly significant F-ratios (p < 0.001), and their residuals were 

determined to be approximately normally distributed.   
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Table 1: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Calamagrostis sp., and comparison of estimation and prediction data statistics. Equations combine 

data from a burnt and an unburnt puna site. A higher R
2
 and a lower SEE (standard error of the estimate) is considered 

a better fit. n estimation set = 1085, n prediction set = 249. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -1.274 0.792     0.759 0.301 0.279 

Nonlinear X1 0.091 2.196     0.794 0.277 0.268 

Linear X2 -0.751 0.696     0.813 0.266 0.244 

Nonlinear X2 0.195 1.706     0.835 0.248 0.23 

Linear X2 X3 -1.606 0.463 0.544    0.854 0.235 0.219 

Nonlinear X2 X3 0.257 1.529 -0.691 -1.9   0.838 0.246 0.23 

Linear X1 X4 -2.787 0.626 1.195    0.827 0.256 0.234 

Nonlinear X1 X4 0.242 1.587 -1.329 -2.703   0.818 0.26 0.244 

Linear X1 X3 -2.162 0.461 0.692    0.841 0.245 0.232 

Nonlinear X1 X3 0.202 1.695 -1.252 -1.578   0.805 0.27 0.258 

Linear X1 X4 X3 -2.744 0.464 0.494 0.661   0.855 0.234 0.298 

Nonlinear X1 X4 X3 0.266 1.526 -1.202 -2.775 -0.415 -1.732 0.819 0.26 0.244 

 

 

Table 2: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Scirpus rigidus, and comparison of estimation and prediction data statistics. Equations combine data 

from a burnt and an unburnt puna site. A higher R
2
 and a lower SEE (standard error of the estimate) is considered a 

better fit. n estimation set = 508, n prediction set = 130. 

                    Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -0.745 0.554     0.675 0.287 0.319 

Nonlinear X1 0.09 2.047     0.694 0.279 0.301 

Linear X2 -0.46 0.534     0.775 0.239 0.266 

Nonlinear X2 0.183 1.639     0.788 0.232 0.252 

Linear X2 X3 -1.49 0.363 0.522    0.838 0.203 0.223 

Nonlinear X2 X3 -93.919 -0.006 92.376 0.021   0.777 0.238 0.256 

Linear X1 X4 -2.42 0.473 1.192    0.808 0.221 0.225 

Nonlinear X1 X4 -341.264 -0.003 340.042 0.006   0.76 0.246 0.262 

Linear X1 X3 -1.993 0.327 0.685    0.807 0.222 0.24 

Nonlinear X1 X3 -2.474 -0.389 1.01 0.903   0.784 0.234 0.25 

Linear X1 X4 X3 -2.603 0.359 0.432 0.762   0.843 0.2 0.502 

Nonlinear X1 X4 X3 -416.124 -0.002 415.246 0.003 0.006 3.966 0.833 0.207 0.24 
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Table 3: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Festuca dolichophylla, and comparison of estimation and prediction data statistics. Equations combine 

data from a burnt and an unburnt puna site. A higher R
2
 and a lower SEE (standard error of the estimate) is considered 

a better fit. n estimation set = 183, n prediction set = 40. 

                    Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -0.802 0.66     0.747 0.253 0.392 

Nonlinear X1 0.167 1.744     0.763 0.244 0.4 

Linear X2 -0.566 0.623     0.782 0.235 0.342 

Nonlinear X2 0.239 1.522     0.809 0.221 0.328 

Linear X2 X3 -1.231 0.508 0.333    0.801 0.225 0.327 

Nonlinear X2 X3 -308.246 -0.004 306.965 0.004   0.751 0.252 0.35 

Linear X1 X4 -3.021 0.557 1.382    0.804 0.224 0.327 

Nonlinear X1 X4 -213.656 -0.007 211.572 0.013   0.759 0.248 0.347 

Linear X1 X3 -1.669 0.492 0.463    0.787 0.233 0.356 

Nonlinear X1 X3 -167.114 -0.008 165.35 0.009   0.733 0.262 0.384 

Linear X1 X4 X3 -3.094 0.476 0.286 1.094   0.816 0.217 1.054 

Nonlinear X1 X4 X3 -265.389 -0.005 263.996 0.007 5.47E-005 7.194 0.815 0.219 0.363 

 

 

Table 4: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Juncus balticus, and comparison of estimation and prediction data statistics. Equations combine data 

from a burnt and an unburnt puna site. A higher R
2
 and a lower SEE (standard error of the estimate) is considered a 

better fit. n estimation set = 140, n prediction set = 37. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -0.641 0.488     0.665 0.289 0.311 

Nonlinear X1 0.067 2.215     0.68 0.282 0.308 

Linear X2 -0.361 0.475     0.743 0.254 0.266 

Nonlinear X2 0.166 1.686     0.75 0.25 0.242 

Linear X2 X3 -1.234 0.362 0.443    0.788 0.231 0.232 

Nonlinear X2 X3 0.285 1.277 -2.333 -3.266   0.771 0.24 0.24 

Linear X1 X4 -1.681 0.429 0.8    0.74 0.256 0.244 

Nonlinear X1 X4 0.397 1.078 -0.847 -1.42   0.718 0.268 0.268 

Linear X1 X3 -1.782 0.341 0.608    0.769 0.241 0.248 

Nonlinear X1 X3 1.023 0.544 -2.993 -1.146   0.739 0.256 0.273 

Linear X1 X4 X3 -1.982 0.349 0.466 0.359   0.778 0.237 0.248 

Nonlinear X1 X4 X3 59.299 0.013 -16.726 -0.032 -44.009 -0.03 0.749 0.254 0.248 
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Table 5: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Calamagrostis sp., and comparison of estimation and prediction data statistics. Equations were 

developed with data from a puna site burned approximately three years before harvest. A higher R
2
 and a lower SEE 

(standard error of the estimate) is considered a better fit. n estimation set = 575, n prediction set = 130. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -1.196 0.773     0.746 0.317 0.291 

Nonlinear X1 0.085 2.249     0.796 0.284 0.277 

Linear X2 -0.681 0.685     0.811 0.274 0.242 

Nonlinear X2 0.177 1.799     0.855 0.24 0.219 

Linear X2 X3 -1.634 0.434 0.597    0.861 0.235 0.207 

Nonlinear X2 X3 -0.809 -0.619 0.245 1.894   0.811 0.273 0.252 

Linear X1 X4 -2.647 0.58 1.233    0.83 0.259 0.236 

Nonlinear X1 X4 -272 -0.005 270.45 0.008   0.771 0.301 0.376 

Linear X1 X3 -2.204 0.426 0.756    0.85 0.243 0.214 

Nonlinear X1 X3 -1.468 -1.013 0.269 1.819   0.823 0.266 0.242 

Linear X1 X4 X3 -2.636 0.428 0.543 0.609   0.862 0.233 0.219 

Nonlinear X1 X4 X3 -372.855 -0.003 372.067 0.003 0.004 4.504 0.869 0.228 0.346 

 

 

Table 6: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Scirpus rigidus, and comparison of estimation and prediction data statistics. Equations were developed 

with data from a puna site burned approximately three years before harvest. A higher R
2
 and a lower SEE (standard 

error of the estimate) is considered a better fit. n estimation set = 192, n prediction set = 56. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -0.815 0.603     0.704 0.293 0.3 

Nonlinear X1 0.096 2.055     0.728 0.282 0.298 

Linear X2 -0.547 0.595     0.8 0.241 0.272 

Nonlinear X2 0.18 1.727     0.821 0.228 0.275 

Linear X2 X3 -1.691 0.411 0.567    0.862 0.2 0.214 

Nonlinear X2 X3 -143.18 -0.005 141.376 0.015   0.816 0.232 0.234 

Linear X1 X4 -2.721 0.513 1.356    0.849 0.209 0.268 

Nonlinear X1 X4 -275.022 -0.005 273.559 0.008   0.814 0.232 0.291 

Linear X1 X3 -2.237 0.369 0.743    0.837 0.218 0.214 

Nonlinear X1 X3 -47.765 -0.019 45.448 0.048   0.817 0.232 0.223 

Linear X1 X4 X3 -2.871 0.412 0.419 0.892   0.874 0.192 0.684 

Nonlinear X1 X4 X3 -340.655 -0.003 339.437 0.004 0.021 2.971 0.859 0.204 0.216 
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Table 7: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Festuca dolichophylla, and comparison of estimation and prediction data statistics. Equations were 

developed with data from a puna site burned approximately three years before harvest. A higher R
2
 and a lower SEE 

(standard error of the estimate) is considered a better fit. n estimation set = 70, n prediction set = 15. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -0.869 0.701     0.758 0.251 0.154 

Nonlinear X1 0.181 1.718     0.77 0.248 0.164 

Linear X2 -0.57 0.645     0.785 0.236 0.167 

Nonlinear X2 0.251 1.515     0.798 0.232 0.173 

Linear X2 X3 -1.41 0.543 0.381    0.806 0.226 0.158 

Nonlinear X2 X3 -185.043 -0.008 183.335 0.008   0.773 0.246 0.216 

Linear X1 X4 -2.554 0.589 1.117    0.788 0.237 0.189 

Nonlinear X1 X4 -200.191 -0.009 198.241 0.012   0.759 0.254 0.207 

Linear X1 X3 -1.841 0.567 0.467    0.792 0.234 0.141 

Nonlinear X1 X3 -146.252 -0.011 144.017 0.011   0.766 0.25 0.167 

Linear X1 X4 X3 -2.803 0.52 0.354 0.79   0.805 0.229 0.641 

Nonlinear X1 X4 X3 -75.375 -0.02 73.745 0.021 0.01 3.303 0.786 0.242 0.176 

 

 

Table 8: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Calamagrostis sp., and comparison of estimation and prediction data statistics. Equations were 

developed with data from a puna site protected from fire >10 years before harvest. A higher R
2
 and a lower SEE 

(standard error of the estimate) is considered a better fit. n estimation set = 514, n prediction set = 122. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -1.623 0.888     0.774 0.277 0.256 

Nonlinear X1 0.094 2.17     0.79 0.268 0.244 

Linear X2 -1.147 0.808     0.825 0.244 0.223 

Nonlinear X2 0.16 1.855     0.84 0.234 0.212 

Linear X2 X3 -1.871 0.554 0.522    0.861 0.218 0.221 

Nonlinear X2 X3 0.305 1.45 -1.818 -1.922   0.849 0.228 0.219 

Linear X1 X4 -3.655 0.703 1.506    0.836 0.237 0.225 

Nonlinear X1 X4 0.455 1.25 -2.908 -2.49   0.827 0.242 0.236 

Linear X1 X3 -2.361 0.533 0.666    0.841 0.232 0.238 

Nonlinear X1 X3 0.706 1.002 -3.073 -1.051   0.816 0.25 0.254 

Linear X1 X4 X3 -3.543 0.504 0.483 1.027   0.865 0.215 0.712 

Nonlinear X1 X4 X3 50.665 0.032 -20.38 -0.098 -33.448 -0.043 0.841 0.234 0.248 
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Table 9: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Scirpus rigidus, and comparison of estimation and prediction data statistics. Equations were developed 

with data from a puna site protected from fire >10 years before harvest. A higher R
2
 and a lower SEE (standard error of 

the estimate) is considered a better fit. n estimation set = 318, n prediction set = 85. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -0.793 0.561     0.683 0.281 0.311 

Nonlinear X1 0.077 2.156     0.715 0.268 0.296 

Linear X2 -0.529 0.548     0.774 0.238 0.244 

Nonlinear X2 0.148 1.803     0.803 0.223 0.232 

Linear X2 X3 -1.447 0.374 0.486    0.826 0.209 0.204 

Nonlinear X2 X3 -1.167 -0.569 0.332 1.519   0.773 0.238 0.232 

Linear X1 X4 -2.427 0.473 1.176    0.809 0.219 0.207 

Nonlinear X1 X4 -234.154 -0.005 232.819 0.008   0.767 0.242 0.248 

Linear X1 X3 -1.918 0.329 0.646    0.798 0.225 0.228 

Nonlinear X1 X3 -1.362 -0.95 0.204 1.851   0.775 0.238 0.236 

Linear X1 X4 X3 -2.576 0.362 0.388 0.796   0.837 0.202 0.559 

Nonlinear X1 X4 X3 -258.137 -0.003 257.3 0.004 0.001 5.385 0.842 0.2 0.221 

 

 

Table 10: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for Festuca dolichophylla, and comparison of estimation and prediction data statistics. Equations were 

developed with data from a puna site protected from fire >10 years before harvest. A higher R
2
 and a lower SEE 

(standard error of the estimate) is considered a better fit. n estimation set = 110, n prediction set = 32. 

                     Coefficient           

Regression Estimator a b c d e f R
2 

SEE 

Prediction 

SEE 

Linear X1 -0.641 0.614     0.829 0.204 0.339 

Nonlinear X1 0.204 1.589     0.834 0.202 0.337 

Linear X2 -0.461 0.588     0.853 0.189 0.293 

Nonlinear X2 0.259 1.451     0.86 0.187 0.282 

Linear X2 X3 -0.652 0.548 0.104    0.855 0.189 0.279 

Nonlinear X2 X3 0.267 1.431 -0.036 -0.929   0.86 0.187 0.282 

Linear X1 X4 -2.834 0.538 1.309    0.861 0.185 0.244 

Nonlinear X1 X4 0.371 1.213 -30.087 -8.106   0.862 0.184 0.258 

Linear X1 X3 -0.967 0.538 0.188    0.836 0.2 0.309 

Nonlinear X1 X3 0.286 1.384 -0.406 -1.039   0.836 0.202 0.328 

Linear X1 X4 X3 -2.818 0.52 0.052 1.246   0.861 0.185 1.581 

Nonlinear X1 X4 X3 0.134 1.749 -5.57 -3.351 0.904 0.065 0.869 0.181 0.234 
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Table 11: Comparison of regression coefficients from similar regression models based on data from one area burned approximately 3 years before harvest and one area protected 

from fire >10 years. Regression models were derived from different log transformed data (tussock basal area in mm
2
 (X1), tussock volume in cm

3
 (X2), canopy area in cm

2
 (X3), 

maximum plant height in cm (X4)), with a higher R
2
 and a lower SEE (standard error of the estimate) considered a better fit. Models are considered different if compared coefficients 

lie outside each other's 95 % confidence intervals. 

        Coefficient          

Species Area Regression Estimator a 95% interval b 95% interval c 95% interval R
2 

SEE Prediction SEE 

Calamagrostis sp. Burnt Nonlinear X2 0.177 (0.159, 0.194) 1.799 (1.723, 1.875)   0.855 0.24 0.219 

 Unburnt Nonlinear X2 0.16 (0.143, 0.178) 1.855 (1.774, 1.937)   0.84 0.234 0.212 

 Burnt Linear X2 X3 -1.634 (-1.785, -1.483) 0.434 (0.393, 0.476) 0.597 (0.515, 0.678) 0.861 0.235 0.207 

 Unburnt Linear X2 X3 -1.871 (-2.031, -1.711) 0.554 (0.502, 0.607) 0.522 (0.432, 0.611) 0.861 0.218 0.221 

 

Scirpus rigidus Burnt Nonlinear X2 0.18 (0.148, 0.212) 1.727 (1.578, 1.876)   0.821 0.228 0.275 

 Unburnt Nonlinear X2 0.148 (0.126, 0.170) 1.803 (1.679, 1.926)   0.803 0.223 0.232 

 Burnt Linear X2 X3 -1.691 (-1.954, -1.427) 0.411 (0.359, 0.464) 0.567 (0.447, 0.688) 0.862 0.2 0.214 

 Unburnt Linear X2 X3 -1.447 (-1.649, -1.245) 0.374 (0.328, 0.419) 0.486 (0.388, 0.584) 0.826 0.209 0.204 

Festuca dolichophylla Burnt Nonlinear X2 0.251 (0.180, 0.322) 1.515 (1.292, 1.738)   0.798 0.232 0.173 

 Unburnt Nonlinear X2 0.259 (0.213, 0.304) 1.451 (1.311, 1.591)   0.86 0.187 0.282 

 Burnt  Linear X2 X3 -1.41 (-2.085, -0.736) 0.543 (0.434, 0.652) 0.381 (0.098, 0.663) 0.806 0.226 0.158 

 Unburnt Linear X2 X3 -0.652 (-0.992, -0.313) 0.548 (0.468, 0.628) 0.104 (-0.062, 0.269) 0.855 0.189 0.279 

 Burnt Linear X1 X4 -2.554 (-3.694, -1.414) 0.589 (0.473, 0.705) 1.117 (0.390, 1.844) 0.788 0.237 0.189 

  Unburnt Linear X1 X4 -2.834 (-3.725, -1.943) 0.538 (0.481, 0.595) 1.309 (0.786, 1.833) 0.861 0.185 0.244 
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Table 12: Linear and nonlinear regression equations of different log transformed data (tussock basal area in mm
2
 (X1), 

tussock volume in cm
3
 (X2), canopy area in cm

2
 (X3), maximum plant height in cm (X4)) on log transformed plant dry 

biomass in g for four puna grass species combined (Calamagrostis sp., Scirpus rigidus, Festuca dolichophylla and 

Juncus balticus), and comparison of estimation and prediction data statistics. Equations were developed from plants 

found both in a puna site protected from fire >10 years before harvest and from a site burned three years before harvest. 

A higher R
2
 and a lower SEE (standard error of the estimate) is considered a better fit. n estimation data set = 1957, n 

prediction data set = 467.  

                   Coefficient        

Regression Estimator a b c d e f  R
2 

SEE 

Prediction 

SEE 

Linear X1 -1.216 0.756     0.737 0.333 0.334 

Nonlinear X1 0.072 2.339     0.779 0.306 0.317 

Linear X2 -0.781 0.691     0.813 0.281 0.281 

Nonlinear X2 0.147 1.912     0.851 0.25 0.258 

Linear X2 X3 -1.61 0.509 0.472    0.845 0.256 0.25 

Nonlinear X2 X3 0.167 1.824 -0.532 -2.658   0.852 0.25 0.258 

Linear X1 X4 -2.881 0.584 1.309    0.834 0.264 0.26 

Nonlinear X1 X4 0.281 1.483 -1.412 -2.407   0.817 0.279 0.281 

Linear X1 X3 -2.263 0.477 0.676    0.817 0.278 0.273 

Nonlinear X1 X3 0.16 1.826 -1.426 -1.88   0.789 0.298 0.308 

Linear X1 X4 X3 -2.984 0.479 0.374 0.934   0.851 0.251 0.731 

Nonlinear X1 X4 X3 0.286 1.47 -1.393 -2.412 -0.114 -2.221 0.817 0.279 0.279 

 

 

 

 

Species-specific multi-area models 

The linear model based on plant volume and canopy area gave the best fit for Calamagrostis sp.. 

However, when the predicted values were plotted against biomass residuals for this model, it seems 

that it underestimated biomass of small plants (Fig. 5). The nonlinear models based on volume and 

volume + canopy area also gave good fits, and give a better prediction for the full range of plant 

sizes (Fig. 6). These are therefore considered better than the linear model for Calamagrostis sp.. 



17 

 

Figure 5: Plot of predicted values vs. biomass residuals for a linear allometric model based on volume and canopy area 

for Calamagrostis sp. in a puna grassland, Peru. The model is based on data from an area burned approximately 3 years 

before harvest and an area protected from fire >10 years combined. 

Figure 6: Plot of predicted values vs. biomass residuals for a nonlinear allometric model based on tussock volume for 

Calamagrostis sp. in a puna grassland, Peru. The model is based on data from an area burned approximately 3 years 

before harvest and an area protected from fire >10 years combined. 
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Figure 7: Plot of predicted values vs. biomass residuals for a linear allometric model based on volume and canopy area 

for Scirpus rigidus in a puna grassland, Peru. The model is based on data from an area burned approximately 3 years 

before harvest and an area protected from fire >10 years combined. 

Figure 8: Plot of predicted values vs. biomass residuals for a nonlinear allometric model based on volume for Festuca 

dolichophylla in a puna grassland, Peru. The model is based on data from an area burned approximately 3 years before 

harvest and an area protected from fire >10 years combined. 
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Figure 9: Plot of predicted values vs. biomass residuals for a linear allometric model based on volume and canopy area 

for Juncus balticus in a puna grassland, Peru. The model is based on data from an area burned approximately 3 years 

before harvest and an area protected from fire >10 years combined. 

 

A linear model based on volume and canopy area gave the best fit for Scirpus rigidus. The 

plot of predicted values vs. biomass residuals shows that it gives a balanced estimation for the full 

range of plant sizes (Fig. 7). 

The Festuca dolichophylla analysis showed good results for nonlinear models based on 

volume alone and for volume combined with canopy area. Plots of predicted values vs. residuals 

were good for both models. However, the prediction data fit was considerably better for the model 

based on volume alone, and this model is therefore considered better (Fig. 8). 

The analysis of Juncus balticus showed that a linear model combining volume and canopy 

area was the best fit. The plot of predicted values vs. biomass residuals was also balanced (Fig. 9). 

 

Multispecies model 

The multispecies analysis based on data from Calamagrostis sp., Scirpus rigidus, Festuca 

dolichophylla and Juncus balticus data from the burnt and unburnt area combined, showed that 

nonlinear models based on volume and volume + canopy area gave the best fits. The residual 

analysis from the model based on volume also show a balanced estimation over the full range of 

plant sizes (Fig. 10). Adding canopy area only improves the R
2 

value with 0.001
 
(Table 12).  
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Figure 10: Plot of predicted values vs. biomass residuals for a nonlinear allometric model based on volume for 

Calamagrostis sp., Scirpus rigidus, Festuca dolichophylla and Juncus balticus combined in a puna grassland, Peru. 

Model is based on data from an area burned approximately 3 years before harvest and an area protected from fire >10 

years combined. 

 

Species-specific models based on fire history 

The results from the analysis based on fire history corresponded with the multi-area models for 

Calamagrostis sp.. Linear models based on volume and canopy area gave better fits, but residual 

analysis show that nonlinear models based on volume and volume + canopy area produced a more 

balanced estimation across the full range of plant sizes. This was the case for both the burnt and 

unburnt area. 

The Scirpus rigidus analysis gave similar results as the multi-area analysis, with a linear 

model based on volume and canopy area giving both the best fit and a balanced residuals plot in 

both the burnt and unburnt area. 

For Festuca dolichophylla the results were somewhat different. In the burnt area, a linear 

model based on volume and canopy area gave the better fit, including balanced residuals. In the 

unburnt area a nonlinear model based on basal area, plant height and canopy area (as three 

independent variables) gave the best fit. However, it was only marginally better than a nonlinear 

model based on volume alone. 

Many of the fire history based equation coefficients had overlapping 95% confidence 

intervals (Table 11). However, some of them did not, indicating equation differences between the 

burnt and unburnt area.  
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Discussion 

Effect of fire on above-ground biomass and carbon stocks 

Above-ground biomass did not differ significantly between the unburnt and the burnt area. Similar 

results were obtained by Gibbon et al. (2010). However, Gibbon et al. (2010) estimated above-

ground carbon density at 6.5 Mg C ha
-1

 ± 0.3 SE for their grazed puna sites. This is significantly 

higher than the estimates presented here, where above-ground carbon density was 3.4 Mg C ha
-1

 ± 

0.1 SE.  

The difference between this study and Gibbon et al. (2010) could be explained by the fact 

that they also quantified the contribution of litter and moss to the carbon pool. They also operated in 

areas with some shrub cover. They fail to specify the contribution of litter and moss to the total 

carbon pool, but shrubs accounted for 0.5 Mg C ha
-1

 ± 0.2 SE.  

The lack of effect of fire history may be related to short biomass recovery times. Biomass 

recovery in comparable ecosystems in Ecuador has been estimated to as little as 3-5 years (Ramsay 

1992 in Ramsay & Oxley 1996), and physiognomic recovery in as little as 2 years (Ramsay & 

Oxley 1996). This also appears to be true for the burnt puna site in the current study because there 

was not significantly less biomass in the burnt than in the unburnt area investigated. However, 

Ramsay & Oxley (1996) also state that altitude influences recovery time, and that a biomass or 

physiognomic recovery does not necessarily mean that that community structure has completely 

recovered.   

Ramsay & Oxley (2001) studied grazed Ecuadorian páramo grasslands and found carbon 

densities of 4.0 and 4.2 Mg C ha
-1

 at 3750 and 4000 meters, respectively. These values are 

comparable to those found in this study.  

Hofstede et al. (1995) includes an overview of biomass studies carried out in a selection of 

high-altitude tropical and temperate grasslands. In general, páramo grasslands in Colombia appear 

to store more carbon in above-ground vegetation than other sites in tropical South-America 

(Hofstede et al. 1995). However, differences in sampling techniques make comparisons difficult. 

Results from the present study correspond well to those obtained by Gibbon et al. (2010) in 

Peru and Ramsay & Oxley (2001) in Ecuador. Nevertheless, in order to obtain good estimations of 

carbon stocks in high altitude tropical ecosystems, more studies should be conducted - also in areas 

where a more detailed fire history can be obtained. 

 

Effect of fire history on species richness and functional diversity 

This is to date the first study to investigate the effects of fire on species richness in the puna 

ecosystem. 
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Species richness between the areas was relatively similar (34 and 32 in the burnt and 

unburnt area, respectively). Calamagrostis sp. was the dominant species in both the burnt and 

unburnt area, with 71.5 % and 66.3 % of the total biomass, respectively. This is in agreement with 

other studies in South-American tussock grasslands, where dominant grasses tend to re-colonise 

burnt areas quickly (Cianciaruso et al. 2010; Ghermandi et al. 2004; Laterra et al. 2003; Ramsay & 

Oxley 1996). Many species appear to be able to regenerate from roots or rhizomes, or may 

sufficiently shield developing buds from fire with less sensitive plant parts (Ramsay & Oxley 

1996). Fire temperatures decrease rapidly down the soil profile (less than 65
o
C 2 cm underground in 

Ecuadorian páramo; Ramsay & Oxley 1996), and can also be low enough at tussock bases for the 

survival of buds and rootstock (Ramsay & Oxley 1996). Interestingly, Trabaud (1987 in Ramsay & 

Oxley 1996) suggested that these shielding growth forms may be an adaptation to the cold Andean 

nights, more than a response to selective fire pressure. 

Festuca dolichophylla and Scirpus rigidus also attained high biomass, with more of both 

being found in the unburnt area. This suggests that Festuca dolichophylla and Scirpus rigidus are 

inferior competitors and need more time to increase their biomass in an area. However, the 

differences were not statistically significant, which complicates any firm conclusions. 

Juncus balticus was found mainly in the burnt area. This is an exotic species that has been 

known to colonise newly burned areas (Nelson Cahuana pers. comm.). The results therefore clearly 

support the hypothesis that the spread and/or persistence of exotic plant species can be facilitated by 

burning, as shown in several other South American ecosystems (Ghermandi et al. 2004; Gómez-

Gonzales et al. 2011). However, it appears that Juncus balticus gradually loses its competitive 

advantage and is replaced by other species over time. This is reflected by the low biomass of Juncus 

balticus in the area not burned for several years. This strategy of colonising gaps created by 

disturbances is seen after fire in several ecosystems, and allows species to recharge the seed bank in 

anticipation of a new favourable disturbance (Ghermandi et al. 2004).  However, some authors 

suggest that the small biomass of Juncus balticus in the unburnt area may be due to that a stable 

puna ecosystem might not provide an appropriate niche for its spread and growth (e.g. Shea & 

Chesson 2002). 

Blechnum sp. had a higher biomass in the burnt area. This species is known as an indicator 

of past fire disturbance in puna ecosystems (Imma Oliveras pers. comm.) and this result was 

therefore to be expected. This difference was not statistically significant, but nearly all the 

Blechnum sp. biomass in the unburnt area was from one very large individual, while several 

individuals were found in the burnt area (pers. obs.). The majority of biomass of two Lycopodium 

species was found in the unburnt area. These species grow as creeping “mats” on the ground 

between other plants, and plants with this growth form have been shown to be less fire resistant than 
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tussock species in some ecosystems (Uys et al. 2004).   

In addition, a higher biomass of Senecio rhizomatosus and Baccharis pygmaea was found in 

the unburnt and burnt area, respectively. Due to our poor understanding of many puna species, it is 

difficult to ascertain whether this is related to fire history. More studies on puna botany and ecology 

are clearly needed. 

 

Effect of fire on below-ground biomass and carbon stocks 

The average below-ground biomass of the whole study area was estimated to 6.3 Mg ha
-1

 ± 0.4 SE 

dry biomass, which translates to 3.1 Mg C ha
-1

 ± 0.2 SE. 

No previous study has investigated below-ground biomass as a carbon pool in puna 

ecosystems. However, a simultaneous study from the Ajanaco ranger station located approximately 

150 m higher than the current study site was found to contain 2.5 Mg C ha
-1 

(Oliveras unpublished). 

This corresponds well with results presented here, with no significant difference found when 

comparing data from Wayqecha and Ajanaco. Oliveras (unpublished) neither found significant 

differences between burnt and unburnt areas.  

Zimmerman et al. (2010) investigated below-ground carbon stocks in puna, but did not 

separate below-ground biomass from soil organic carbon. They did not find significant differences 

in carbon stocks between their burnt and unburnt plots either, but comparison cannot be made 

directly as they did not separate biomass from their soil samples (Zimmerman et al. 2010). 

Studies from other grassland and shrubland ecosystems present conflicting results on the 

effect of fire history. Cleary et al. (2010) and Coetsee et al. (2010) found no significant differences 

in fine root biomass based on fire history in a big sagebrush steppe in Wyoming, USA, and South 

African savanna, respectively, whereas Kitchen et al. (2009) found significant differences in a 

tallgrass prairie in Kansas, USA. 

Ram et al. (1989) found from 1.6 to 2.4 Mg C ha
-1

 (recalculated from root biomass) in the 

Garwhal Himalaya, while Jackson et al. (1996) gives an average root carbon content of 3.9 Mg C 

ha
-1 

(recalculated from biomass)
 
stored in the upper 30 cm of soil for tropical grasslands in their 

review of root distributions for terrestrial biomes. The corresponding number for temperate 

grasslands is 5.8 Mg C ha
-1 

(recalculated from root biomass). Nevertheless,
 
the estimation of total 

root carbon ends up nearly equal due to the fact that more roots are stored below the upper 30 cm in 

tropical grassland soils than in temperate soils (Jackson et al. 1996). 

The present study corresponds well with the above studies. However, comparisons are 

difficult due to the many different methods used and differences in ecosystems studied. In order to 

estimate carbon stocks more accurately, more below-ground biomass studies are needed in high-

altitude tropical grassland ecosystems. 
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Allometric equations 

The present study shows that basal measurements are the best predictor of above ground biomass 

for the species investigated. Adding height to the models improved them, while the addition of 

canopy measurements gave conflicting results. This agrees with Johnson et al. (1988), who found 

that a basal elliptical cylinder volume model based on basal- and height measurements gave a good 

estimation of plant biomass. They also found that adding canopy area to the equations improved 

them, but recommended the basal elliptical cylinder approach because canopy diameters can be 

difficult to measure correctly, especially in windy conditions. Both the results from the present 

study and those obtained by Johnson et al. (1988) show that basal area combined with height 

provide good estimations of plant biomass in the areas investigated. While Johnson et al. (1988) 

found that the addition of canopy measurements improved all their models, this was only the case 

for some species (Calamagrostis sp., Scirpus rigidus and Juncus balticus) examined in the current 

study. 

Andariese & Covington (1986) and Nafus et al. (2009) found that basal measurements were 

the best estimator of above-ground biomass. They report small or no improvement when height is 

added to their models. Guevara et al. (2002) report that adding height in addition to basal area 

improved the model for some of the species investigated in an Argentinean grassland. The present 

study support basal measurements as the most influential estimator, but the conflicting results 

regarding addition of plant height and canopy measurements in different studies suggest that several 

parameters should be examined before conclusions are made. 

 

Species-specific models based on fire history 

Basal- and height measurements were good estimators of plant above-ground biomass in the 

species-specific models, and models could sometimes be improved by adding canopy 

measurements. However, the Festuca dolichophylla results show that estimators can vary in 

performance between areas based on fire history. Separate analyses should therefore be conducted 

in areas where differences in fire history are known in order to optimise results. 

 

Comparison of model coefficients based on fire history 

Comparing coefficients from the best models in the burnt and unburnt area revealed that some of 

them did not have overlapping 95 % confidence intervals. This confirms that fire history can affect 

regression coefficients.  

Andariese & Covington (1986) also found that fire history could affect allometric models 

for grass species. They also found that differences in canopy cover could affect the models. Johnson 

et al. (1988) showed that regression coefficients could even vary from year to year in the same area. 
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In light of this, the results presented here confirm that allometric equations developed at a 

particular site should be used cautiously at different spatial and temporal scales since several factors 

can influence the equations. Whenever possible, equations should be developed annually, and 

several environmental factors should be known and considered (e.g. fire history, canopy cover, 

climatic measurements). A practical solution to these spatial and temporal challenges could be that 

the sampling area is increased to better account for variation between areas. Furthermore, the 

number of tussocks sampled in this study is significantly higher than what is normally sampled to 

develop allometric equations. This suggests that equations could be developed rapidly before 

carbon estimation is carried out, and that the method will be less destructive than it appears in the 

present study. Multi-year studies should also be conducted to see how the equations vary over time. 

Equations based on averages over several years could also potentially be useful in future carbon 

estimations. 

 

Multispecies model 

A nonlinear model based on canopy volume alone gave a very good fit with balanced residuals for 

the multispecies model. These results have several important implications for future estimates of 

carbon in puna grasslands using allometric equations. The fact that the model gives a good 

estimation without including canopy measurements could potentially save time and costs related to 

the extra work needed to take these measurements in field. In addition, uncertainties related to 

canopy measurements in windy conditions (as highlighted by Johnson et al. 1988) would be 

avoided. Furthermore, the good fit of the multispecies model eliminates the need for species 

identification skills and suggests that measurements may be conducted by untrained personnel. 

However, it must be stressed that this is only an advantage in general carbon stock measurements. 

In most cases, it would generally be of interest to know the species composition of the investigated 

area. As previously noted, this equation should also be applied to other areas with great caution, as 

the model may not be valid in areas with different species composition and environmental factors. 

However, the results show that multispecies grass models can be an important tool in future 

estimation of puna carbon stocks.  

 

Conclusion 

Puna carbon stocks in below- and above-ground biomass seem to be able to recover to pre-fire 

levels within three years. However, species composition was dissimilar, although the same species 

were dominant in both treatments. This suggests that fire alters species composition in puna 

grasslands, or that puna grasslands need more than three years to revert to pre-fire community 

structure. Future studies should focus on the effects of fire frequency and grazing pressure on both 
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carbon stocks and species composition in puna areas in order to better understand carbon flow and 

the effects of anthropogenic pressures on this poorly studied ecosystem. Decreased pressure from 

fire and grazing at the tree line could also lead to increased income from future carbon trade 

(Gibbon et al. 2010). Studies aimed at managing the forest-puna transition zone in a way that allows 

for upward migration of tree species while still conserving puna biodiversity should therefore also 

be conducted. 

Tussock basal area measurements combined with maximum plant height as a basal elliptical 

cylinder volume model proved to be a good estimator for above-ground grass biomass for dominant 

species, and the addition of canopy area to the models improved them further in some cases. These 

findings should facilitate future estimations of puna carbon stocks. However, the equations 

developed in this study should be implemented in other areas with caution, as several studies have 

shown that equations are both spatially and temporally specific (e.g. Andariese & Covington 1986; 

Johnson et al. 1988). Optimally, a new set of equations should be developed annually for more 

precise carbon stock estimation. Multi-year studies should also be conducted to explore how 

allometric relationships in grasslands change over time. 

The lack of research concentrated on the puna grasslands of the high Andes clearly 

highlights the need for further studies on their ecology, and further studies are evidently needed to 

enhance our understanding of carbon flow in tropical mountainous ecosystems.
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