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ABSTRACT  

Enzymatic conversion of the abundant and recalcitrant polysaccharides cellulose and chitin is 

an important step in the conversion of biomass to valuable products. Hence, development of 

enzyme technology for biomass saccharification is important. It is well known that 

degradation of cellulose and chitin requires synergistic action of hydrolytic enzymes 

(cellulases and chitinases). Recently, it has been discovered that another class enzymes makes 

an important contribution to the degradation process, namely the Lytic Polysaccharide 

Monooxiginases or LPMOs. These enzymes have the ability to cleave crystalline cellulose or 

chitin in an oxidative manner. While LPMO-encoding genes are abundant, only few enzymes 

have been characterized. The catalytic mechanism of these enzymes remains elusive. There is 

thus a clear need for further characterization and comparative studies of diverse LPMOs.  

The current study focuses on characterization of two LPMO-domains from different Gram-

positive bacteria with different modular structure and substrate specificities. These are: Cels2, 

a cellulose active enzyme from Streptomyces coelicolor comprising an LPMO and a CBM2 

domain and Jden1381 a putatively chitin-active multidomain protein from Jonesia 

denitrificans consisting of an LPMO, a CBM5/12 and a GH18 (chitinase) domain. 

Mutational characterization of CelS2 function by probing conserved residues (Arg212, 

Ser215, and Phe219) in the predicted catalytic site showed the requirement of these residues 

for enzymatic catalysis. Analysis of activity on phosphoric-acid swollen cellulose using both 

mass spectrometry and HPLC for detection of soluble products, showed that the R212A and 

F219Y mutations inactivated the enzyme, whereas the S215A and F219A mutations reduced 

activity by approximately 50 and 85 %, respectively.    

So far, the existence of active LPMOs attached with chitinases in a single protein has not been 

reported. The existence of such combinations suggest a highly chitinolytic potential for the 

chitinase. To assess this potential a codon-optimized gene encoding full length Jden1381 was 

cloned in E.coli using both pET32b and pUCBB-eGFP expression vectors. For analysis of 

individual effects of the domains, a variety truncated versions of Jden1381 were expressed in 

pUCBB-eGFP. Of the five Jden1381 variants expressed in this study, five yielded soluble 

protein and four were purified and characterized. For characterization of the full length 

Jden1381, a crude extract was used. Analysis of product profiles using UHPLC and MALDI-

TOF mass spectrometry showed chitinolytic activity on  α-chitin, β-chitin and collidal chitin 

exerted by both the N-terminal LPMO domain (generating oxidized products) and the C-

terminal GH18 domain (generating native products).  

In conclusion, this study provides novel insights into the catalytic mechanism of LPMOs, 

from the CelS2 work, while the studies on Jden1381 show, for the first time, that nature has 

developed multi-modular enzymes comprising both LPMO and GH domains acting on the 

same substrate. 

 

 



SAMMENDRAG 

Enzymatisk nedbrytning av polysakkaridene cellulose og kitin er en essensielt trinn i 

prosessen hvor biomasse konverteres til verdifulle produkter. Utvikling og forbedring av 

enzymteknologi for omdanning av biomasse er derfor viktig for å forbedre prosessene, samt 

for å få en bedre forståelse for hvordan enzymene virker. Det er velkjent at effektiv 

nedbrytning av cellulose og kitin krever samspill mellom komplementerende hydrolytiske 

enzymer (glykosid hydrolaser; cellulaser og kitinaser). Nylig har også en ny klasse enzymer 

viktig for biomassenedbrytning blitt oppdaget nemlig lytisk polysakkarid monooxyginaser 

(LPMOer).  Disse enzymer  spalter krystallinsk cellulose eller kitin ved hjelp av en oksidativ 

mekanisme. I kombinasjon med vanlige glykosid hydrolaser øker LPMOene 

nedbrytningshastigheten av biomasse, hvilket gjør disse enzymene meget interessante for 

biomas relatert enzymteknologi. Siden oppdagelsen av LPMOer ble gjort for kun 3 år siden 

har bare noen få enzymer blitt karakterisert. Samtidig er den katalytiske mekanismen fortsatt 

ukjent. Det er derfor et stort behov for ytterligere karakterisering av ulike LPMOs. 

Denne studien fokuserer på karakterisering av to LPMO-moduler fra ulike Gram-positive 

bakterier. Det første enzymet er Cels2, en cellulose aktiv LPMO fra Streptomyces coelicolor 

bestående av en LPMO katalytisk module og en CBM2 cellulose-bindene modul. Det andre 

enzymet er Jden1381 som er en ukarakterisert kitin-aktivt multidomene enzyme fra Jonesia 

denitrificans bestående av en LPMO katalytisk module, en CBM5/12 kitin-bindenen modul 

og en GH18 katalytisk modul (kitinase). 

Funksjonen til tre konserverte aminosyrer forbundet med det aktive setet til CelS2 (Arg212, 

Ser215, og Phe219) ble karakterisert ved mutagenes og analyse av aktivitet av Aktivitet mot 

PASC (phosphoric-acid swollen cellulose) ble målt med både massespektrometri og HPLC og 

det viste seg at mutasjonene R212A og F219Y inaktiveres enzymet, mens mutasjonene 

S215A og F219A redusert aktivitet med henholdsvis 50 og 85% sammenliknet med villtype 

enzymet. 

Det andre enzymet analysert i dette studiet, Jden1381, representerer et hittil ukarakterisert 

kombinasjon av kitin-aktive katalytiske moduler, nemlig en LPMO kombinert med en kitinase 

(GH18) . Siden det er kjent at LPMOer og kitinaser viser sterk synergi sammen, bør det 

kitinolytiske potensiale til et slikt multidomeneprotein være stort. 

 



ABBREVIATIONS 

CAZy               Carbohydrate Active Enzyme database 

CBM              Carbohydrate Binding Module  

CBP              Chitin binding protein 

CelS2              LPMO coding gene from Streptomyces coelicolor  

DEAE               Diethylminoethyl cellulose 

DMSO               Dimethyl Sulfoxide 

DNA               Deoxyribonucleic acid  

dNTP              Deoxyribonucleotide triphosphate  

DP               Degree of Polymerization   

GH              Glycoside Hydrolases 

His tag                Hexa-histidine tag  

HPLC               High Performance Liquid Chromatography 

IPTG               Isopropyl-β-D-thio-galactoside 

Jden1381fl                         Chitinase coding gene from Jonesia denitrificans, full length  

Jden1381fl_C-His6  Chitinase coding gene from Jonesia denitrificans, full length, 

C-terminally His tagged 

Jden1381-LPMO  Chitinase coding gene from Jonesia denitrificans, N-terminal 

single domain 

Jden1381-LPMO_C-His6                                 Chitinase coding gene from Jonesia denitrificans, N-terminal 

single domain, C-terminally His tagged  

Jden1381-LPMO-CBM5/12                 Chitinase coding gene from Jonesia denitrificans, N-terminal       

multi- domain 

Jden1381-LPMO-CBM5/12_C-His6    Chitinase coding gene from Jonesia denitrificans, N-terminal 

single domain, C-terminally His tagged   

Jden1381-CBM5/12                             Chitinase coding gene from Jonesia denitrificans, single middle 

domain  

Jden1381-CBM5/12_C-His6                Chitinase coding gene from Jonesia denitrificans, single middle 

domain, C-terminally His tagged  

Jden1381-CBM5-GH18                       Chitinase coding gene from Jonesia denitrificans, C-terminal 

multi- domain 

Jden1381-CBM5-GH18_C-His6          Chitinase coding gene from Jonesia denitrificans, C-terminal 

multi- domain, C-terminally His tagged  

Jden1381-GH18                                   Chitinase coding gene from Jonesia denitrificans, C-terminal 

single domain 

Jden1381-GH18_C-His6 Chitinase coding gene from Jonesia denitrificans, C-terminal 

single domain, C-terminally His tagged  

 LPMO                          Lytic Polysaccharide Monooxiginase 

MALDI-TOF             Matrix Assisted Laser Desorption/Ionization-Time of Flight  

OD600              Optical Density at 600 nano meter 

PCR               Polymerase Chain Reaction  

PDB               Protein structure database 

PMSF               Phenylmethylsulfonyl fluoride 

SDS-PAGE              Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

TAE               Tris-acetate-EDTA 

Tris               Tris(hydroxymethyl)aminomethane 

TRX tag              Thioredoxin tag 



SI UNITS 

 

µg    Micro gram  

µl     Micro liter 

µM    Micro molar 

Kb     Kilo-base  

kDa    Kilo-Dalton    

ng    Nano gram 

psi     Pounds per second inch pressure unit 

v/v     volume/volume 

w/v    weight/volume 
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1 INTRODUCTION 

 

1.1 Polysaccharides 

Carbohydrates are the most abundant biological molecules in nature. These molecules have a 

general formula (CH2O)n where “n” represents the number of carbons present in the sugar 

molecule. Some carbohydrates contain sulfur (e.g. glycosaminoglycans or GAGs) or nitrogen 

(e.g. chitin). In their simplest form carbohydrates are monosaccharides but often they occur as 

oligo- or polysaccharides. Polysaccharides include insoluble crystalline compounds such as 

cellulose and chitin, which serve as structural components in the cell walls of plants, 

microorganisms and crustaceans. In addition, polysaccharides serve as building materials for 

microbial capsules, providing resistance to stressful conditions such as dehydration and 

playing a role in environmental interactions (Davies et al. 1997, Senni et al. 2011, Zaragoza et 

al. 2009 & Zeltins et al. 1995).   

 

1.1.1 Structure and classification of polysaccharides  

Polysaccharides are built through glycosidic linkage of monosaccharides leading to formation 

of either branched or linear sugar chains. The large assortment of monosaccharides combined 

with the many potential coupling and branching points provides an enormous diversity. 

Polysaccharides are divided into two classes; homo-polysaccharides (composed of identical 

monosaccharide units) and hetero polysaccharides (composed of two or more types of 

monosaccharides). Homo-polysaccharides can be further classified by the type of linkage 

joining the monosaccharide units. The linkage can be either an α- or a β- depending on the 

configuration of the hydroxyl group joining the monomers (Lindhorst et al., 2007,  Robyt, J. 

F. (1997) & Varki et al., 1999). The boundary between oligosaccharide and polysaccharide is 

vague. Usually, oligosaccharides are considered to contain up to ~20 monosaccharide units 

while polysaccharides contain 20 or more monosaccharide units 

(www.newworldencyclopidea.org). 

 

 

 

 

http://www.newworldencyclopidea.org/
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1.1.2 Degradation of polysaccharides in nature  

In nature, polysaccharides are degraded through enzymatic cleavage of the glycosidic bonds 

that connect the monomers. The enzyme reactions are mostly hydrolytic, but can also involve 

beta-elimination (polysaccharide lyases) or oxidation (lytic polysaccharide monooxygenases). 

Enzymes responsible for hydrolyzing polysaccharides are called glycoside hydrolases. These 

enzymes are produced by different prokaryotes and eukaryotes for different reasons. 

Polysaccharides like cellulose, chitin and various hemicelluloses are among the main 

polysaccharides that are subjected to enzymatic degradations. The diversity of 

polysaccharides and their complex structures have resulted in the existence of huge diversity 

of enzymes for the degradation of these bio-molecules. Glycoside hydrolases are named after 

their target substrates; for example, hydrolytic enzymes for cellulose and chitin are called 

cellulases and chitinases, respectively. Organisms normally produce multiple enzymes for 

efficient degradation of their target polysaccharide substrates (Béguin et al., 1994, Min et al. 

2012 & Warren 1996).  In this study, we focus on the enzymatic conversion of two robust and 

abundant polysaccharides, cellulose and chitin. 

 

1.2 Chitin and cellulose – structure and classification    

Cellulose and chitin are the most abundant, insoluble bio-polymers found in nature with 

closely related chemical structure, function and mode of polymerization. Cellulose serves as 

structural component of plant cell walls (Fig 1.2), while chitin is the major constituent of  

fungal cell walls, cuticles of insects, exo-skeletons of crustaceans  and the cell walls of zoo-

plankton and some algae (Wilson 2009, Saito et al., 2000 & Raabe et al., 2006).  While 

cellulose is composed of glucose, chitin is composed of N-acetylglucosamine, i.e. a glucose 

variant where the C2 sugar is substituted with an acetamido group.  

 

 

1.2.1 Structure and classification of cellulose   

Cellulose is composed of glucopyranose units linked by β-1, 4-glycosidic bonds in a linear 

chain. Cellulose synthesis starts from polymerization of two β-glucopyranose units where the 

polymerized unit is called cellobiose.  In this reaction, the β-glucopyranose is linked with a 

hydroxyl at the 4
th

 position of another glucose residue producing cellobiose (Haworth 1937). 

Further polymerization reactions lead to formation of cellulose. The orientation of the 
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monomeric units in cellulose is in a “flip-flop” manner, where each monomer is rotated 180
o
 

relative to the following residue.  The polymerization produces long rigid chains with a 

reducing end and a non-reducing end (Fig. 1.1) (Filipponen 2009 & Teeri 1997). 

 

 

Figure 1.1. Structure of a cellulose chain. Cellulose is a linear polysaccharide containing hundreds to thousands of β14 

linked glucose units. Each glucose unit is inverted 180 o relative to the preceding glucose unit (Picture source: Horn et al., 

2012). 

 

Cellulose is found in plants and is also present in fungi and algae. Cellulose is also 

synthesized by certain prokaryotes (e.g. Acetobacter, Rhizobium, and Agrobacterium) 

(Dewick 2009, Brown R.M., JR. 2003 & O’Sullivan 1997). Cellulose produced by living 

organisms is called native cellulose. The number of glucose units in native cellulose is diverse 

depending on the source, such as primary or secondary cell walls. Cellulose polymers from 

primary cell walls contain about 8000 glucose units while secondary cell walls contain about 

15000 glucose units per chain. The number of glucose units required to form an insoluble 

product is approximately eight. Polymers that contain more than eight glucose units have 

greater affinity to one another than to water (Brown R.M., JR., 2003). 

Plant fibers are composed of cellulose chains that are highly ordered into nanostructures 

known as microfibrils. Aggregates of these microfibrils produce macro-fibrils. The quantity of 

microfibrils in macrofibrils is diverse depending on the source. Bundles of these macrofibrils 

produce cellulose fibers (Fig 1.2b) (Brown, JR. 2003 & Donaldson, 2007).   

The microfibrils of cellulose are embedded in a matrix of complex heteropolymeric network 

that contains hemicellulose and pectin. Hemicelluloses are branched polysaccharides 

containing mainly pentoses (like xylose and arabinose) and hexoses (like mannose, glucose 

and galactose) that can form hydrogen bonds to the surface of cellulose fibrils. Pectin is 

composed primarily of uric acids as galacturonic acid units. Pectin glue cells together creating 

layer known as middle lamella that  connects two plant cells (Fig 1.2a) (Cosgrove 2005, 

Somerville et al., 2004 & Taherzadeh et al., 2008). 

 

Non-reducing end Reducing end 



Introduction 

4 
 

 

 
Fig 1.2. Organization of cellulose in plant cell walls. a) Structure of cell wall. The figure shows the components of primary 

plant cell wall. The cell wall is enclosed with plasma membrane and a layer called middle lamella. Cellulose microfibrils are 

embedded with complex heteropolymers such as pectins and hemicellulose. The cellulose-heterosaccharide complex is 

surrounded with proteins. b) 1) Cellulose fiber from ponderosa pine. 2) Cellulose fibers contain macro-fibrils which comprise 

bundles of micro-fibrils (3). 4)  Micro-fibrils consist of bundle of glucose polymers or cellulose chains. Picture (source: a) 

http://www.wpclipart.com/plants/diagrams/Plant_cell_wall_diagram.png.html b) Modified picture from 

http://nutrition.jbpub.com/resources/chemistryreview9.cfm. 

 

 

Cellulose occurs in different crystalline forms: highly ordered crystalline regions, pseudo-

ordered regions (para-crystalline) and so called amorphous regions representing disordered or 

non-crystalline cellulose chains (Boraston et al., 2002). A simplified illustration of cellulose 

chain arrangements in amorphous and crystalline regions is shown in Figure 1.3. 

a) 

b) 

http://www.wpclipart.com/plants/diagrams/Plant_cell_wall_diagram.png.html
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Fig 1.3. Simplified structural view of cellulose showing the difference between amorphous and crystalline regions of 

cellulose (source: Modified figure from Oke 2010) 

 

Native cellulose is classified into several classes according to the alignment of cellulose 

chains. Most commonly, cellulose is classified into cellulose I and cellulose II. Cellulose I, 

(which is the most common type) consists of glucose chains that are aligned in parallel while 

cellulose II consists of anti-parallel chains (Brown, R. M., JR 2003). 

 

1.2.2 Structure and classification of chitin 

Following cellulose, chitin is the second most abundant insoluble bio-molecule on earth and is 

widely distributed among unlike organisms. This molecule is a result of polymerization of N-

acetyl-D-glucosamine or GlcNAc via β-1,4- glycosidic bonds. The length of chitin polymers 

varies from 100-8000 depending on the organism.  As in cellulose, each chitin monomer is 

rotated 180
o
 relative to its preceding residue (Fig 1.4) (Carlstrom 1957, & Mulisch 1993). 

 

 
 

Fig 1.4. Chemical structure of chitin (Source: Academic Brooklyn cuny 

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/chitin.jpg) 

 

 

Chitin chains tend to be arranged in similar was as in cellulose. Chitin fibers from cuticle of 

lobster contain chitin chains that are associated with protein, forming nanofibrils that are 2-5 

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/chitin.jpg
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nm in diameter. Cluster of these nanofibrils form chitin-protein fibers (Fig 1.5) (Raabe et al., 

2006). 

 

 
Fig 1.5. Organization of chitin in lobster cuticles. 1) Chains of N-acetyl-glucose amine form chitin chains 2) Chitin chains 

are wrapped with proteins, forming nano-fibrils which are   3nm in diameter 3) These nano-fibrils cluster to form chitin-

protein fibers which are  100 nm in diameter. 4) Lobster Homarus americanus (Picture source: Modified picture from D. 

Raabe et al., 2006). 

 

 

 

 

In resemblance to its analogue, cellulose, chitin chains are organized in highly ordered 

manner creating the crystalline structure of the bio-polymer. Crystallinity and morphology of 

chitin may vary. According to the orientation of chains, chitin is classified into α-chitin (anti-

parallel), β-chitin (parallel) and γ-chitin (mixture of parallel and anti-parallel). Among these 

classes α-chitin is the most common and rigid type (Mulisch 1993). A more soluble derivative 

of chitin, chitosan, is obtained when acetyl groups are removed, converting the GlcNAc units 

to glucosamine. Although the definition of chitin vs. chitosan based on the degree of 

acetylation (DA) is vague, some researchers state that the DA of chitin is greater than 50 % 

while chitosan has DA value lower than 50 %. Chitosan is less crystalline than chitin, more 

accessible to aqueous solvents, and under some conditions, water soluble. The latter is due to 

the fact that the amino group of glucosamine has a pKa of ~ 6.5, which gives these sugars a 

positive charge at mildly acidic pH. Hence, chitosan is soluble at mildly acidic pH.  In nature 

chitin has tendency to be covalently or non-covalently bound to other macromolecules like 

protein, carotenoids and glucans (Zhang et al., 2012, Tharanathan et al., 2003).  

 

 

1.3 Glycoside hydrolases (EC 3.2.1.x) – classification 

Enzymes that have polysaccharide hydrolytic activity are called glycoside hydrolases (GHs). 

The International Union of Biochemistry and Molecular Biology (IUBMB) Nomenclature 

Committee gave these enzymes Enzyme Commission number EC 3.2.1.x where “x” 
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represents the substrate.  However, this nomenclature has its limitations in representing 

enzymes with broader specificities and does not take into account the concepts of 

evolutionary heritage leading to sequence and structural similarities. These limitations led to 

development of an alternative classification of these enzymes into different families based on 

their amino acid sequences (Henrissat 1991). 

 

Enzymes that participate in carbohydrate degradation and/or modification are classified in the 

carbohydrate active enzymes (CAZy) database (Cantarel et al. 2009) where enzymes are 

organized in families based on their amino acid similarity i.e. evolutionary relationship. 

Members of one family have similar overall structures and catalytic machineries, but may 

have very different binding and/or catalytic activities. The information of this database is 

growing due to continuous discovery and characterization of relevant enzymes. Per February 

2013, the CAZy database listed131 glycoside hydrolase (GH) families. Chitinases belong to 

families 18 and 19, cellulases fall into families 1, 3, 5, 6, 7, 8, 9, 12, 16, 44, 45 and 48 while 

chitosanases occur in families 5, 8 and 46 (http://cazy.org, Warren (1996) & Thu et al., 2010). 

 

The CAZy database classifies several other enzymes types and non-enzymatic carbohydrate-

binding domains, and several of these are needed for efficient polysaccharide degradation. 

This is discussed in more detail, below. 

 

 

1.4 Enzymatic degradation of cellulose and chitin 

Enzymatic degradation of cellulose and chitin is challenging due to the insolubility and 

crystallinity of these bio-polymers (Schwarz 2001). Therefore, cellulolytic and chitinolytic 

bacteria and fungi often produce an array of enzymes that work together. Previous studies 

have shown that the degradation of chitin and cellulose involves the same four types of 

hydrolytic enzymes. Three of these enzymes act on the polymers and are classified as endo- 

and exo- types according to their modes of attack on the polysaccharide chain (Fig 1.6) (Horn 

et al., 2006 & Teeri 1997). The fourth enzyme-type is a beta-glycosidase, that converts the 

oligomeric (mainly dimeric) products from the other three enzymes into monomeric sugars. 
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Fig 1.6. Structural scheme of binding and catalytic sites for endo- and exo- acting glycoside hydrolases (Picture source: 

http://www.cazypedia.org/index.php/Glycoside_hydrolases)   

 

 

1.4.1 Cellulose degradation   

 

Cellulases are sub-classified and named after their mode of action. The main enzyme classes 

are (1) endo-β-(1,4)-glucanases, which cleave randomly within the chain producing new chain 

ends, and (2) exo- β-(1,4)-D-glucanases, also known as cellobiohydrolases (CBH), which 

release cellobiose units from chain ends, in a processive manner. There are two types of CBH, 

known as CBHI and CBHII. CBHI acts on reducing ends of the chain while CBHII acts on 

the non-reducing ends (Fig. 1.6). A β-D-glucosidase, also known as cellobiase converts the 

cellobiose produced by the other glucanases to glucose. These enzymes work synergistically 

in the degradation of cellulose. Studies have shown that of the three polymer-active enzyme 

types, the exo-glucanases catalyze most of the bond cleavages during the saccharification of 

crystalline cellulose (Brown R.M., JR. 2003). 

 

Among the families of GHs listed on CAZy database, families 6, 7, 8, 9, 44, 45 and 48 mainly 

or only comprise cellulases. Cellulase are also found in families 1, 3, 5, 12 and 16 that contain 

enzymes with a wide range of substrate specificity. 

 

 

1.4.2 Chitin degradation 

Chitin degrading enzymes belong to families 18 and 19 of the glycoside hydrolases. The role 

of family 19 enzymes in biomass conversions is rather unclear, whereas family 18 enzymes 

occur in chitinolytic machineries that resemble cellulolytic machineries. As cellulases, these 

family 18 chitinases include exo- and endo acting enzymes. Serratia marcescens, one of the 

best studied chitinolytic microorganisms, produces three GH18 enzymes when grown on 
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chitin, namely ChiA (exo-chitinase working from the reducing end), ChiB (exo-chitinase 

working from the non-reducing end) and ChiC (endo chitinase) (Fig 1.7). 

 

Fig 1.7. Schematic representation of the attack points of cellulases/chitinases during cellulose and chitin hydrolysis. 

Endo-glucanases (EG) and ChiC hydrolyze within the cellulose and chitin chains respectively. Endo acting enzymes 

preferably attack amorphous regions, producing new chain ends. CBHI and ChiA attack from the reducing end and degrade 

processively towards the non-reducing end producing cellobiose and chitobiose, respectively. CBHII and ChiB and attack 

from the non-reducing end of their respective substrate and degrade processively towards the reducing end. C indicates the 

most rigid or crystalline section of the cellulose/chitin. NR = non-reducing end R = Reducing end. White open circles 

represent non-reducing ends. Black circles represent reducing ends. The dimeric products, which may reach large 

concentrations, are inhibitory for the cellulases/chitinases and their conversion to monomeric sugars by -glucosidases is thus 

important (not shown in figure) (Source: Modified figure from Teeri 1997). 

 

 

 

1.5 The modularity of glycoside hydrolases  

Catalytic modules of GHs are often linked with one or more carbohydrate binding modules 

(CBMs). CBMs are mostly involved in mediating contact between the catalytic module and 

the substrate (see section 1.6 for more details) Some GHs may also be linked with modules 

having other functions than carbohydrate/substrate binding in addition to CBMs. Esterase, 

fibronectin type III-like and dockerin are examples of non-CBM domains attached to GHs 

(Fig. 1.8) (Henrissat et al., 2000, Forsberg et al. 2011 & Vaaje-Kolstad et al. 2005a).  
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Fig 1.8. Example of the modular structures of glycoside hydrolases. Yellow boxes represent the catalytic domain of 

glycoside hydrolases (GHs) from different families. The blue boxes represent carbohydrate binding modules of diverse 

families (CBMs).  Light gray blue box labeled “UNK” represents domains of unknown function. Fn3 (Fibronectin type III –

like) domains, an esterase domain and a dockerin (possibly involved in cellulosome formation) are represented as white 

boxes. Defined linker peptides that separate domains are represented by black lines (Source: Modified figure from Herrisat et 

al., 2000). 

 

 

 

 

1.6 Carbohydrate Binding Modules (CBMs)- Function, classification and structure  

An important factor that promotes efficient hydrolysis of chitin and cellulose by glycoside 

hydrolases is the ability of the enzymes to bind and attach to the substrate. The crystalline 

structure and insoluble nature of chitin and cellulose makes this a challenge for the enzymes. 

Once the enzymes have attached to the substrate it may be beneficial for them to remain 

attached. Most catalytic modules are thus equipped with CBMs that mediate substrate binding 

and optimize contact between enzyme and substrate. For many years, the functions of all 

CBMs were thought to relate to binding only. However, recent studies show that some of 

these domains may have extended functions that provide a vital contribution to efficient 

carbohydrate hydrolysis (discussed below) (Boraston et al. 2004, Forsberg et al. 2011 & 

Vaaje-Kolstad et al. 2005a). 

CBMs are currently (by February 2013) classified into 66 families according to their sequence 

similarities and are listed in the CAZy (Carbohydrate-Active Enzymes) database. CBMs with 

the ability to bind cellulose are found in families 1,2, 3, 4, 6, 8, 10, 16, 17, 30, 33, 37, 44, 46, 

49, 59, 63 and 64, whereas CBMs that bind chitin are found in families 5, 12, 14, 18, 19, 33, 

37, 50, 54 and 55. Recent studies have showed that family 33 CBMs in fact are enzymes with 

a lytic polysaccharide monooxygenase activity (Vaaje-Kolstad et al. 2010, Forsberg et al. 

2011; Aachmann et al., 2012). This enzymatic activity was shown to boost the efficiency of 

GHs (Vaaje-Kolstad et al., 2005a, 2010), indicating that these CBM33s are crucial for 

efficient carbohydrate hydrolysis. In fact, since the year 2010, family 33 CBMs has been 

proposed to be regrouped and named Lytic Polysaccharide Mono-Oxygenases (LPMOs). 

(Discussed in section 1.7)) (Horn et al., 2012-BfB review). Hereafter, CBM33s are referred as 

LPMOs.  

 

The structure and function of CBMs have been studied intensely for several decades. A 

general trend is the presence of aromatic amino acids on the binding surface/ site that interacts 

with the targeted carbohydrate. CBMs targeting single chained polysaccharides (like e.g. 
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xylan) usually have binding clefts, whereas CBMs targeting insoluble, crystalline substrates 

like cellulose and chitin usually have flat binding surfaces (Boraston et al., 2004). Structural 

studies of CBMs have revealed high structural diversity of cellulose and chitin targeting 

CBMs (Fig 1.9). Since chitin and cellulose are relatively similar crystalline polysaccharides it 

is not uncommon that CBMs targeting chitin also bind cellulose and vice versa. 

 

 

 

                                                              
 

                                                            
             

Fig 1.9. Examples of structure of carbohydrate binding modules. Family 1: CBM1 from Cellulase 7A (Trichoderma 

reesei) (pdb 1CBH) (Kraulis et al. 1989). Family 4: CBM4 from Cellulase 9B (Cellulomonas fimi) (pdb 1ULO) ( Johnson et 

al. 1996).  Family 12: CBM12 from Chitinase ChiA1 (Bacillus circulans). (pdb 1ED7) (Ikegami et al. 2000).  Family 33: 

CBM33 (known as CBP21) a one-domain protein from Serratia marcescens (pdb 2BEM) (Vaaje-Kolstad et. al 2005b). 

 

 

 

1.7 Lytic polysaccharide monooxygenases (LPMOs)    

For decades the concept of cellulose/chitin degradation has been based on the synergistic 

action of endo-enzymes, processive exo-enzymes and -glucosidases. However, recent 

studies demonstrate the involvement of a novel enzyme type, namely bacterial and fungal 

enzymes listed in family 33 carbohydrate binding modules (CBM33s) and family 61 

glycoside hydrolases (GH61s). It is now clear that these enzymes cleave cellulose and chitin 

chains in their crystalline context and by doing so, they increase the efficiency of classical 

GHs. Interestingly, CBM33s and GH61s use an oxidative mechanism for cleavage. Leaving 

one of the newly generated chain ends oxidized. In the case of CBM33s this usually is the C1 
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sugar, meaning that the enzyme generates aldonic acids. Therefore, it has been proposed to 

reclassify and rename this group of enzymes as lytic polysaccharide monooxiginases or 

LPMOs as this name represents their lytic and monooxidizing function (Horn et al., 2012).   

 

The first LPMO that was characterized and structurally solved was isolated from the Gram 

negative soil bacterium Serratia marcescens. This organism produces at least five chitin 

degrading enzymes and is known to be one of the most efficient chitin degrading bacteria. 

One of the most abundant enzymes produced by S. marcescens is a single-domain CBM33-

type LPMO known as CBP21. Like all other well-studied LPMOs, CBP21 is a cooper-

dependent monooxygenase (Vaaje-Kolstad et al., 2010; Aachmann et al., 2012), the activity 

of which depends on an electron donor (or “reducing agent”) such as ascorbic acid. 

 

LPMOs are wide spread in bacteria, viruses and fungi. Fungal LPMOs (GH61s) share low 

sequence similarity with bacterial LPMOs (usually less than 10%), but have a common fold 

and catalytic motif.  Previous studies have shown that the action of LPMOs the CBM33 and 

GH61 families on cellulose is similar (Westereng et al., 2011, Horn et al., 2012). However, 

while all known CBM33 oxidize C1, some GH61s from Neurospora crassa and Thermoascus 

aurantiacus (TaGH61) generate C4 and/or C6 oxidized products, in addition to C1 oxidized 

products (Horn et al. 2012, Phillips et al. 2011, Quinlan et al. 2011 & Westereng et al. 2011).  

C1 oxidizing GH61s generate non-modified non-reducing end thus may benefit 

cellobiohydrolases that attack from non-reducing ends. On the other hand C4 oxidizing 

GH61s may benefit cellobiohydrolases attacking from the reducing ends. Such anticipated 

very specific synergies have, however, not yet been demonstrated by experiment. The action 

of C1 and C4 oxidizing GH61s, as well as our current understanding of complete cellulolytic 

enzyme machineries, are illustrated in Figure 1.10. 

 

 



Introduction 

13 
 

 
 

Fig 1.10. Schematic illustration showing fungal enzymatic depolymerization cellulose. The figure shows enzymatic 

cleavage of crystalline cellulose facilitated by C1 and C4 oxidizing GH61s (named C1GH61 and C4G61 respectively). 

C1GH61s are indicated with red triangles while C4GH61s are indicated with blue triangles. Oxidized ends are colored red. 

These enzymes generate non-oxidized reducing or non-reducing ends where cellobiohydrolases (CBH1 and CBH2) may 

attack. The catalytic sites of CBHs are attached to cellulose chains with the help of cellulose binding domains (CBMs). It has 

to be noted that many cellulolytic enzyme systems contain several CBHs and endoglucanases (EGs) that may act on various 

parts of the substrate. Products of CBHs are cellobiose and are further degraded to glucose by beta-glucosidases (shown in 

light green). Cellobiose-dehydrogenase (CDH) may provide GH61s with electrons. However, previous studies show that 

organisms that do not contain genes encoding for CDHs may be provided with electrons from other non-enzymatic reductants 

such as ascorbic acid and reduced glutathione. (Source: Horn et al. 2012) 

 

 

 

 

1.7.1 Structure and function  

Previous structural studies of GHs show that these enzymes share common substrate binding 

site architectures, which can be roughly described as groove, cleft or tunnel. The substrate-

interacting surfaces are often lined with aromatic residues, which are important in substrate 

binding and, in the case of processive enzymes, displacement (Zakariassen et al., 2009).  

Interestingly, LPMOs do not show a groove, tunnel or cleft, but have flat substrate-binding 

surfaces (Vaaje-Kolstad et al.,  2005b, Aachmann et al., 2012, Karehabadi et al.,  2008) 

explaining their preference for binding and cleaving polysaccharides organized in flat, 

crystalline arrangements like chitin and cellulose. Furthermore, the majority of solvent 

exposed residues of the LPMO binding surfaces are polar residues (discussed below). A 
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schematic illustration of the interaction between an LPMO (CBP21 in this case) and a 

crystalline surface is shown in Fig. 1.11. 

 

 

 

Fig. 1.11 Schematic illustration of interaction between CBP21 and chitin. The figure shows interaction between the flat 

surfaces of CBP21 and β-chitin. The left figure shows a side view of the interaction. The right figure represents a 90o rotated 

view showing the interaction from a top view.  The side chain of residues known to interact with chitin is shown as stick and 

their surfaces are colored magenta. The top view shows all known interacting residues as some of these are hidden in the side 

view. Note that this orientation is hypothetical and the actual orientation of interaction is unknown (Source: Horn et al., 

2012).     

 

 

  

 

As the architecture of LPMO suggests, the catalytic site of LPMOs is exposed to solvent. In 

both CBM33-type and GH61-type LPMOs the active site comprises two conserved histidine 

residues that bind a metal ion (Fig. 1.12, panel d; the metal is copper; see below). Mutational 

probing of conserved residues on the putative binding surface of LPMOs has shown that they 

are important for both binding and the catalytic function of the enzyme (Vaaje-Kolstad et al., 

2005a). It is not yet known which residues determine substrate specificity, but comparison of 

sequences and structure does provide some hints. The latter is illustrated by Fig. 1.12, which 

shows a comparison of CBP21 from Serratia marcescens and chitin-active EfCBM33A from 

Enterococcus faecalis V583 and which highlights residues in the binding surface that  are 

different in the cellulose active CBM33 CelS2 from Streptomyces coelicolor (Vaaje-Kolstad 

et al., 2012). 
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Fig 1.12. Catalytic sites of chitin-active CBM33 type LPMOs from Serratia marcescens and Enterococcus faecalis 

V583.  The amino acid side chains of surface exposed residues of CBP21 from Serratia marcescens  (a) and CBM33A from 

Enterococcus faecalis V583 (b and c) are shown as sticks. The surface exposed residues of both CBM33s contain two 

histidines. These histidines bind metals and this is shown for CBM33A (d). The color coding in panels a, b and c represents 

degree of conservation of residues. Blue; represents non-conserved residues, white; residues conserved to certain degree and 

magenta; highly conserved residues.  In panel c, residues that are not conserved in cellulose active CBM33 CelS2 are 

coloured orange (Picture Source: Vaaje-Kolstad et al., 2012) 

 

 

 

After some initial confusion (Harris et al., 2010, Vaaje-Kolstad et al., 2010), it is now clear 

that  LPMOs are copper dependent-enzymes (Quinlan et al., 2011, Phillips et al., 2011,Vaaje-

Kolstad et al., 2012 Aachmann et al.,2012) where the metal is coordinated by the two 

conserved histidines (Fig 1.12d). The reaction mechanism is currently a subject of discussion 

and research, but from recent work on CBP21 it seems clear that copper is reduced on the 

enzyme after which it can transfer an electron to molecular oxygen, as shown in Fig 1.13. 

This activated oxygen (a superoxo intermediate) can then initiate the reaction by abstracting a 

proton from the substrate. Phillips et al., 2012 have suggested a complete putative mechanism 

for LPMOs in the GH61 family, but most steps in this scheme are putative (Fig 1.14). 
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Notably, several studies have shown that the necessary electron may be donated by cellobiose 

dehydrogenase, as indicated in both Fig. 1.14 and 1.10. 

 

 

  

Fig 1.13. Schematic overview of the proposed reaction mechanism catalyzed by LPMOs. The figure summarizes 

experimental evidence obtained for CBP21. CBP21 coordinates reduced copper ion (Cu(I)) through the conserved histidines, 

then activates molecular oxygen through electron transfer (and copper oxidation),  which then through an unknown 

mechanism results in glycosidic bond cleavage. The C1 carbon is oxidized by single oxygen (red oxygen) and then 

hydrolyzed (blue oxygen), generating the end product, an aldonic acid. The copper binding involves three nitrogen atoms, 

one from the N-terminal amino group and two imidazole nitrogens from two conserved histidines.  

A more detailed full and speculative description of the reaction mechanism is shown in figure 1.14 (Source for this figure: 

Aachmann et al., 2012).  

 

Note that Phillip et al. propose a mechanism that may lead to formation of either C1 or C4 

oxidized sugars (Fig. 1.14). The idea is that the superoxo intermediate extracts a hydrogen 

atom either from C1 or C4 leading to formation of copper hyperoxo intermediate and a 

substrate radical. Initiation of O-O bond cleavage is performed by a second electron from e.g. 

CDH, leading to release of water and formation of a copper oxo radical which couples with 

the substrate radical, thereby hydroxylating the sugar chain at C1 or C4. The glycosidic bond 

is destabilized due to addition of the oxygen atom, leading to elimination of the adjacent 

glucan and formation of a lactone or ketoaldose. Phillips et al further suggested that the 

elimination of glucan may be facilitated by a general acid, possibly a third highly conserved 

histidine located near the metal binding histidines that is found in most GH61s  (Phillips et 

al., 2011).   
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Fig 1.14. Proposed mechanism for LPMOs. C1 and C4 oxidizing GH61s are named PMO1 and PMO2 respectively. Top 

panel: PMO1 abstracts a hydrogen from C1 generating sugar lactones. PMO2 abstracts a hydrogen atom from C4 generating 

ketoaldoses. The bottom panel shows a postulated reaction mechanism for LPMOs: Cu(II) is reduced to Cu(I) by the heme 

domain of CDH and oxygen binds. As a result, a copper superoxo intermediate is formed through internal electron transfer, 

which  abstracts a H• from C1 or C4. A second electron from CDH leads to homolytic cleavage (single bond cleavage) of the 

Cu-bound hydroperoxide. The Copper oxo species (Cu-O•) then couples with the substrate radical, hydroxylating the 

substrate. Addition of oxygen destabilizes the glycosidic bond leading to elimination of the adjacent glucan. (Source: Phillips 

et al., 2011) 

 

 

 

 

1.8 Carbohydrate degradation by Streptomyces coelicolor 

Streptomyces coelicolor A3 (2) is filamentous, gram positive (Gram+) and ubiquitous soil-

dwelling bacterium. The genomic DNA of this species is known to have high GC 

(guanine/cytosine) content (72.12%) and contains a large number of chromosomal genes 

coding for most natural antibiotics used today. This bacterium is essential for its environment 

because of its ability to process insoluble biomass such as lignocellulose and chitin (Bentley 

et al., 2002). 

S. coelicolor A3 (2) degrades both cellulose and chitin in addition to other polysaccharides. 

According to the CAZy database, the genome of Streptomyces coelicolor A3(2) contains 

genes encoding for 148 GHs, 61 glycosyl transferases, 9 polysaccharide lyases, 26 
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carbohydrate esterases and 83 carbohydrate binding modules. These include at least 22 

cellulases, 7 LPMOs (CBM33-type), and 13 chitinases. The carbohydrate binding enzymes 

are listed in Appendix A. 

 

As many other carbohydrate degrading organisms, Streptomyces coelicolor A3(2) expresses 

both single domain GHs and multi modular enzymes. As an example, the domain 

architectures for all the seven LPMOs putatively encoded in S. coelicolor are shown in Fig. 

1.15. 

 

                                                                                                                               

                                                              
                                                      
                                                                                                                 

                                                                                                                                                                             

                                                                                                                                                                                                                                                        

                                                                                                                                   

                                                                                                                                   
                                                                                                                                    

 

 

Fig 1.15. Modular structure of putative LPMOs from S. coelicolor A3(2). Abbreviations: SP, signal peptides; LPMO, Lytic 

polysaccharide monooxygenase; CBM, carbohydrate binding module; UNK, region with unknown function. All LPMO 

domains are colored light blue. SP and other domains are labeled. The putative protein functions are predicted base on  

sequence comparison with similar and are generally not based on experimental data and likeyl to be wrong in some cases. 

CBM2 domains tend to bind to cellulose, whereas CBM5/12 domains are normally associated with chitin-binding. The 

accession numbers for the seven putative LPMOs were obtained  from CAZy database and all modular figures were 

constructed based on the annotated module structures on pfam database.  

 

 

 

Of the seven LPMOs putatively produced by Streptomyces coelicolor A3(2), only one has 

been cloned and characterized, namely CelS2 (UniProt code Q9RJY2). CelS2 is a two-

domain LPMO containing an N-terminal LPMO and a CBM2 domain (see also Fig 1.15). 

CelS2 was in 2011 shown to be a cellulose active LPMO that boosts the degradation of 

cellulose by cellulases. The genome information of S. coelicolor shows that CelS2 is located 

248 bp apart from a gene encoding for a putative cellulase  (CelB, a cellulose in the GH12 

family; accession number: Q9RJY3) suggesting the co-expression of these enzymes. Co-

regulation of these two enzymes was experimentally studied using the closely related strain 

Streptomyces halstedii JM8 showing a gene encoding for Cel2 (a cellulase in the GH12 

family) is clustered with another gene encoding for cellulose binding protein referred as p40 

LPMO Q9RJF2 (putative secreted chitin binding protein) 

 

LPMO Q9RJC1 (putative secreted cellulose binding protein) 

 

LPMO Q9RDB8 (putative secreted chitin binding protein) 

 

LPMO Q9S296 (putative secreted cellulose binding protein) 

 

LPMO Q9RJY2 (putative secreted cellulose binding protein) 

 

LPMO  Q9K460 ( (putative secreted chitin binding protein) 

                         

 LPMO O86614 (putative secreted chitinase) 

 

 

file:///C:/Users/some/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/94TLNGKO/shown
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(which is a highly similar domain with CelS2). The open reading frame (ORF) for p40 is 

located 216 bp downstream from the ORF encoding Cel2. This type of transcriptional co-

regulation of CelS2 with genes coding for enzymes involved in cellulose degradation 

indicates the involvement of CelS2 in cellulose degradation (Garda et al., 1997, Forsberg et 

al., 2011 & http://www.genedb.org/gene/SCO1187#SCO1187). 

 

 

 

1.9 Carbohydrate degradation by Jonesia denitrificans 

Jonesia denitrificans is a coryneform bacterium (aerobically growing and asporogenous gram 

positive rod) originally isolated from cooked ox blood. The organism has an irregular rod-like 

shape with a dimension of 0.3-0.5 µm in diameter and 2-3µm in length (Fig 1.16). The 

genome of this organism is 2,749,646 base pairs in size and contains 2,558 protein coding 

genes. J. denitrificans utilizes sugar derivatives such as cellobiose (glucose dimers), D-

sorbitol and D-galactose. In addition, the cell wall of this organism contains amine containing 

sugars including galactoseamine and glucoseamine (Rüdiger et al., 2009, Funke et al., 1997).  

 

 
 

Fig 1.16. Electron micrograph of Jonesia denitrificans. The picture is taken from Pukall et al. 2009; photo credit: Dr. 

Manfred Rohde at Helmholtz Centre for Infection Research, Braunschweig. 

 

Reference materials for J. denitrificans are scarce. However, due to the organism’s 

phylogenetic position, the complete genome of this organism was sequenced and published by 

Pukall et al. in 2009. The bioinformatics resource known as Kyoto encyclopedia of genes and 

genomes (http//genome.jp/KEGG) has recently included the J. denitrificans “metabolic 

genome” in the database, which allows prediction of the putative strategies that this bacterium 

has for carbohydrate degradation.  
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Jonesia denitrificans is predicted to contain several genes encoding for carbohydrate active 

enzymes. Per November 2012, the CAZy database listed 64 GHs, 21 glycosyl transferases, 2 

polysaccharide lyases, 7 carbohydrate esterases and 32 carbohydrate binding modules for this 

organism. These include at least 6 cellulases, 2 LPMOs, and 1 chitinase 

(http://www.cazy.org/b1048.html). The carbohydrate binding enzymes are listed in Appendix 

B. 

 

According to the KEGG pathway database, J. denitrificans is capable of degrading chitin to 

N-acetyl glucosamine which then enters into other metabolic pathways (Fig 1.17). The 

conversion of chitin to N-acetylglucoseamine is performed by two hydrolytic enzymes. The 

first step of chitin degradation is performed by a GH18 chitinase (EC 3.2.1.14), converting 

chitin to chitobiose units. Chitobiose units are further converted to N-acetyl-glucosamine by a 

GH20 beta-N-acetylhexoseaminidase (Fig 1.17). The GlcNAc is then taken up by the 

bacterium and enters the amino sugar metabolic pathway. 

 

 

 
 
Fig 1.17. Amino-sugar metabolism of J. denitrificans. The predicted pathways for degradation of chitin are shown in the figure. The 

enzymes involved in these processes are indicated with their EC- numbers. Chitin degradation is indicated by the red circle. Chitin is 

degraded to chitobiose by EC 3.2.1.14 (chitinase) (circled orange with broken line; one gene). Chitobiose is further degraded to N-acetyl-

glucosamine by EC 3.2.1.52 (beta-N-acetylhexoseaminidase) (circled purple with broken line) (Source: http://www.genome.jp/kegg-

bin/show_pathway?jde00520). 

 

 

http://www.cazy.org/b1048.html
http://www.genome.jp/kegg-bin/show_pathway?jde00520
http://www.genome.jp/kegg-bin/show_pathway?jde00520
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Analysis of J. denitrificans GHs in the CAZy database revealed the presence of one GH18 

chitinase that contains 651 amino acids.  The modular structure of this chitinase is unique 

compared all other chitinases of this family. Judged by its sequence, the enzyme is predicted 

to contain three chitin active domains namely; an N-terminal CBM33 type LPMO, CBM5/12 

chitin binding domain and c-terminal GH18.  N-terminally, the chitinases has a signal peptide 

for secretion. The three domains are predicted to be linked by two linker peptides that are 22-

25 amino acids in length. The first linker peptide is rich in aspartic acids, asparagines, 

glycines and threonines, while the second linker peptide is rich in prolines, aspartic acids and 

glycines. The modular arrangement of this chitinase is shown Fig. 4.1. 

 

 

 

1.10 Protein Expression   

The goal of the present study was to produce and characterize LPMOs (see below for more 

details) and to do so the genes encoding these proteins need to be cloned. Factors determining 

the success of heterologous protein expression include optimization of the gene of interest, 

selection of suitable expression vectors and use of optimal host strains (Waltson et al. 2007).  

 

 

 

1.10.1 Gene optimization and modification  

There exists a variety of codons representing the 20 amino acids used in protein synthesis. 

There is a substantial difference in the preference of codon usage amongst microorganisms,  

meaning that regularly used codons in one bacterium will be rarely used in another. Cloned 

genes may contain codons that are rarely used in the production strain (e.g. Escherichia coli). 

Thus, expression of the recombinant gene may be slow or even absent. In addition, there are 

variations in the guanine and cytosine content (GC-content) that may interfere with 

expression levels. For instance, a gene with GC content may be suitable for expression in host 

organisms having low GC-content but not for expression in organisms with high GC-content. 

It may therefore be advantageous to optimize the DNA sequence of the to-be-expressed gene. 

This can be done by synthesizing the target gene where the GC content has been adapted and 

rare codons have been substituted with codons that are used by the production strain  

(Ermolaeva et al.,  2001, Maertens et al., 2010 & Sastalla et al., 2009).  



Introduction 

22 
 

1.10.2 Expression vectors 

Expression vectors are plasmids that can be used to express a foreign gene in a host cell, often 

at high levels. These types of plasmids are constructed by combination of defined DNA 

fragments. Expression vectors are different depending on the components they are assembled 

from. One of these components is the promoter which drives the transcription of inserted 

genes (Baneyx 1999). 

 

Known promoters for expression in E.coli include the lac promoter (plac) derived from the 

lactose utilization system of E.coli and the T7 promoter, which is derived from a 

bacteriophage. The efficiency of protein expression depends on the strength of the promoter. 

The T7 promoter is a strong promoter that promotes high levels of protein expression 

comparing to e.g. plac. Some promoters require to be induced in order to be activated while 

others are constitutive. The T7 promoter is an inducible promoter that can be turned on by the 

non-hydrolyzable lactose analogue isopropyl-β-D-1-thiogalactopyranoside (IPTG). In some 

cell types T7 promoters may be active even in the absence of inducer (Vaaje-Kolstad et al., 

2005). This phenomenon is known as promoter leakage (Baneyx 1999). It is important to note 

that promoter strength not necessarily is a success criterion. Too fast production or too much 

protein may be one of the reasons for the formation of so-called inclusion bodies, i.e. non-

soluble and denatured protein (see below). 

 

 

 

1.10.3 Host strains  

The Gram negative bacterium E. coli is the most commonly used and preferable strain for 

protein expression, for various reasons. The growth rate of E. coli is very higher compared to 

the growth rates of other possible host strains (Sørensen et al., 2004).  

 

A problem often encountered in heterologous protein overexpression is low yields of soluble 

protein due to the physiological response of the host strain. Excess production of protein may 

be toxic to host organisms and prevent the proteins from being folded properly into functional 

protein. As a result, excessively expressed proteins may accumulate in the host cell forming 

non-functional protein aggregates known as inclusion bodies.  In vitro re-folding of inclusion 

bodies into soluble proteins is possible and is widely used for recovery of complex and toxic 
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proteins like membrane proteins. However, re-folding may be difficult and unsuccessful 

(Wagner et al. 2007).  

 

In general, host strains must stably maintain expression plasmids and confer the genetic 

material relevant to the expression system. Many host strains are selected or genetically 

modified to control expression levels based on either the type of expression vector they carry 

or the type of protein they express. For instance, host strains that are designed to express 

recombinant genes cloned on T7 promoter based expression vectors contain gene for T7 RNA 

polymerase (DE3) (Casali 2003).  

 

  

1.10.4 Protein secretion  

Microbes secrete part of their proteins. Secretion systems vary, between eukaryotes and 

prokaryotes and among prokaryotes.  Gram negative bacteria contain double membranes 

where each has its own function and composition. Therefore, extracellular protein 

translocation in Gram-negative bacteria requires the passage of the protein through these 

double membranes. Gram negative bacteria secrete some of their proteins in the space 

between these membranes, known as periplasmic space (Mergulhão et al. 2005). Gram-

positive bacteria have only one membrane and are generally considered as a better organism 

for secretion. Clearly, if one wants to have an overexpressed protein secreted, it is required to 

have knowledge of the secretion processes applicable for the host stain (Cleland et al. 1996 & 

Mergulhão et al. 2005). 

 

Recombinant protein secretion within the periplasmic space or into the extracellular 

environment reduces the risk for cytoplasmic protein”overloading” in the host cell. It will also 

provide comparatively easier protein recovery due to the simplicity of protein extraction. For 

instance, recovery of extracellularily secreted proteins does not require cell disruption. In the 

case of export to the periplasmic space, proteins can be recovered from periplasmic extracts 

that can be obtained from simple osmotic shocking procedures (Mergulhão et al. 2005). 

 

Proteins intended to be translocated to external environments or the periplasmic space contain 

N-terminal amino acid sequences (usually 18-30 amino acids in length) called signal peptides 

(or leader peptides). Signal peptides are cleaved off during the translocation process by signal 
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peptide peptidases that are associated with the innermembrane, where their active sites face 

the periplasm (Baneyx, 1999). 

 

 

1.11  Protein purification  

Protein purification may require a single or multiple steps depending on the nature of the 

protein and the complexity of the starting material. There exists a range of different 

purification techniques, varying from “rough” techniques aimed at simplifying or 

concentrating the starting mixture (e.g. ultrafiltration, ammonium sulfate precipitation) to high 

resolution chromatographic techniques for “final” purification steps. Chromatographic 

techniques exploit protein properties such as net charge, hydrophobicity, or size. 

Alternatively, many current techniques for purification of recombinant proteins are based on 

adding amino acid tags that convey affinity to a specific target molecule. Below, some key 

chromatographic methods used in this study are discussed. 

 

 

1.11.1 Ion-exchange chromatography (IEC) 

Ion-exchange chromatography separates proteins according to their charge. IEC can be 

carried out at physiological conditions, hence it is a robust technique for separation of 

biomolecules like proteins that are intended to maintain their native structure and function. 

IEC is divided into anion- and cation-exchange chromatography depending on the charge of 

the column material (Yang et al. 1996). 

 

Anion-exchange columns are made from positively charged materials. The most commonly 

used anion column is made of ethylaminoethyl-cellulose (DEAE cellulose).  

During protein purification, positively charged amine groups that are attached to a resin will 

interact with negatively charged residues on the proteins (i.e. aspartic and glutamic acid side 

chains  pKa   4.4) and retain sufficiently charged proteins on the column (Fig 1.1 ). The pH of 

the buffer is adjusted to a value greater than the pKa value of the anionic groups in order to 

maintain these in the deprotonated state. Retention of proteins on the column will be 

determined by the number of (exposed) anionic side chains, the charge on the column, the 
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actual pKa’s of the anionic side chains, and the pH of the buffer  (Guetta 2006, Berg et al. 

2002 & Vydac product manual). 

 

In contrary, cation exchange columns are made from negatively charged materials and interact 

with positively charged amino acids (arginine, pKa   12.4 , histidine, pKa    .  and lysine, 

pKa   10). The basic side chains of these residues will be maintained in a protonated state by 

adjusting the pH of the running buffer to below 6 or 7.  

 

Proteins that are bound both to ion exchange columns are usually eluted with salt gradients, 

this salt normally being sodium chloride. It is recommended to increase the salt concentration 

gradually in order to separate proteins according to their interaction strength (Vydac product 

manual). 

 

 

1.11.2 Size exclusion chromatography (SEC) 

Size exclusion chromatography, also known as gel filtration, is a separation method where 

proteins are separated according to size. Unlike other chromatographic methods, SEC does 

not require the interaction of molecules with the stationary phase. The whole separation 

process happens in one and the same buffer, which is an advantage for sensitive biomolecules 

that do not tolerate chemical shift. The SEC column is made of an inert porous matrix of 

particles that contain pores of different sizes. The column has to be equilibrated with buffer 

with buffer prior to purification, so that the pores as well as the space between the particles is 

filled with buffer. A SEC column contains void volume (Vo) (volume of buffer outside of the 

pores) and total column volume (Vt) (volume of buffer outside and inside the pores). During 

separation, the larger molecules that cannot enter into the particle pores will elute in the void 

volume at the buffer flow rate. Medium sized molecules that have partial access to the particle 

pours will subsequently elute according to size. The smallest molecules and salt have full 

access to all pores and elute together at Vt (Fig 1.18-2) (Amersham Biosciences).  
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1.11.3 Affinity-chromatography  

In affinity chromatography proteins are separated according to specific and reversible 

interactions with specific immobilized ligands attached to the stationary phase. (Fig 1.18-3). 

This is a robust biomolecule purification method due to its high specificity and the use of 

natural conditions that maintain of protein functionality. Protein recovery from affinity 

chromatography can be achieved either by using competitive ligands or by changing the pH, 

ionic strength or polarity (Amersham Biosciences). For instance, chitinases and poly-

Histidine (Poly-His) tagged recombinant proteins can be purified by such affinity 

chromatography, using chitin-beads and colums with immobilized nickel, respectively 

(Anderson et al. 1999 & Taira et al. 2004). 

 

 

 

 
 

Fig 1.18. Schematic illustration of chromatographic methods 1) Anion-exchange chromatography. Proteins (green) with a 

higher number of residues with negative side chains interact more strongly with the positively charged stationary phase and 

are thud retained. These electrostatic interactions are shielded by salts, which can thus be used to elute the proteins. Proteins 

with few negatively charged residues elute prior to proteins with high number of negatively charged residues. 2) Size 

exclusion chromatography.  Proteins with higher molecular weight do not fit into the column particle pores and elute first. 

Medium sized proteins that have partial accessibility to the particle pores elute later, whereas small proteins fitting into  all 

pores elute last. 3) Affinity chromatography. Proteins that can interact with specific ligands will be retained, while other 

proteins will pass through.  This interaction can be reversed by changing environmental factors such as pH. (Figure Source: 

Amersham pharmacia biotech Handbook “Affinity chromatography: principles and methods” http://www.bio-

sun.com.cn/download/1.pdf) 
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http://www.bio-sun.com.cn/download/1.pdf
http://www.bio-sun.com.cn/download/1.pdf
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1.12 Protein characterization   

Once a protein has been cloned and successful strategies for expressed and purified have been 

established, the physical characterization of the protein properties can start. In modern protein 

chemistry, bioinformatics techniques are also an essential toolbox for helping planning, 

guiding and understanding experiments in the lab. Studies of protein including its biological 

function, identification of 3-dimentional (3D) structure, evolutionary relations, optimal 

functional conditions, and kinetics fall under protein characterization. Most of all 

identification of the 3D structure of a protein is crucial step since it may contain valuable 

information for understanding its function. Therefore, traditional protein characterization 

often starts with searching for sequence similarities which in turn identify proteins of 

resemble structures.  

 

 

1.12.1 Experimental techniques   

 

1.12.1.1 Enzyme assays 

Enzyme assays are experimental methods used to measure enzyme activities and its kinetics. 

Study of enzyme activity is key step for further characterization of the particular enzyme. The 

activity of enzymes on its particular substrate may be studied for instance through 

quantification of end products using quantitative analytical methods such as colorimetric 

analysis. The activity and kinetic of an enzyme correlates to factors like pH, temperature and 

substrate concentrations. Optimization of factors is essential for visualization of the enzymes 

character and all these can be studied with enzyme assays.  

 

1.12.1.2 Site directed mutagenesis 

 

Site directed mutagenesis is a useful technique for studying relations between structure and 

function of protein. Specific nucleotide substitution within a gene sequence leads to alteration 

of protein the gene encodes. This type of nucleotide alteration is known as site directed 

mutagenesis. Amino acids for substitution are selected by homologous protein sequence 

comparisons. And the introduction of site specific mutations can be achieved through 

different methods. Yet, polymerase chain reaction (PCR) based mutation is a common 



Introduction 

28 
 

method. PCR based mutation is obtained through amplification of the entire plasmid bearing 

the gene of interest by using complementary synthetic oligonucleotides containing the desired 

mutation (Hogrefe et. al 2002). Overview of site directed mutagenesis is shown in figure 1.19 

 

 
Fig. 1.19 Overview of quick change site directed mutagenesis.   

 

 

 

 

 

1.12.2 Bioinformatics techniques 

 

1.12.2.1 Homology modeling  

 

Homology modeling is simply means mapping of protein of known sequence but not structure 

with two or more evolutionary related proteins with known structure. Two proteins of same 

origin are expected to have similar structure and function. Therefore, proteins with known 

structure can serve as template for structural prediction of structurally unknown proteins 

(Wallner et al. 2005). 

 

 

1.12.2.2 Sequence alignment 

Multiple-sequence alignment is a useful technique for detecting possibly important residues in 

a protein. Amino acid residues that are critical for stability, structure or function are 

anticipated to be conserved throughout evolution and may be detected by critical inspection of 

sequence alignments (Schueler-Furman et al. 2003). Their essentiality is often predicted 

according to their degree of conservation, i.e., the more a residue is conserved throughout 
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evolution the more important it is for the protein. It is important to note that there are many 

different reasons that may lead to a residue being conserved: activity, stability, foldability, 

flexibility. It is thus not straightforward to extract functional information from sequence 

alignments. 

 

1.12.2.3 General database tools : CAZy, Uniprot and Pfam  

Biological databases contain massive amounts of useful information, including protein and 

DNA sequences, protein structures and all sorts of protein classifications. Most of these 

databases provide freely accessible information. In this study CAZy, Uniprot and Pfam have 

been of particular importance.  

The CAZy database (http://www.cazy.org/) contains families carbohydrate-active enzymes 

and binding-modules. Members of a family are structurally related and have similar catalytic 

mechanism, but may vary in terms of substrate-specificity. Protein classes accessible in CAZy 

include the Glycoside Hydrolases (GH) and Carbohydrate Binding Modules (CBM). 

Uniprot archives protein sequence and functional information. 

Pfam is a searchable collection of multiple sequence alignments, each summarized as a 

Hidden Markov Models. By searching Pfam, one can easily and reliably identify known 

protein domains in a protein sequence. 
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1.13 Aim of this project   

There is accumulating evidence that LPMOs play a vital role in hydrolysis of recalcitrant 

polysaccharides and, thus, biomass conversion. However, many aspects of these enzymes 

require extensive additional experimental work, addressing issues such as the catalytic 

mechanism and (possible) functional diversity among the many family members. LPMOs 

show great diversity in source and sequence, which indicates variation and substrate 

specificity.  This has created huge interest in performing comparative studies of these 

enzymes. Accordingly, the aim of this study was to characterize two LPMOs from different 

Gram-positive bacteria with different modular structures and likely to have different substrate 

specificities.  

The first part of this study addresses the characterization of CelS2 from Streptomyces 

coelicolor, two-domain CBM33-type cellulose-active LPMO containing an N-terminal LPMO 

domain following by a C-terminal CBM2 domain. The goal of this part of the study was to 

evaluate the role of five highly conserved surface exposed residues located near the catalytic 

center, using site-directed mutagenesis. Accordingly, six mutations were planned: R212A, 

D214A, S215A, E217A, F219A and F219Y. To simplify analysis, the mutations were made in 

truncated CelS2 variant lacking the CBM2 domain, which expresses better than the full length 

protein. The functional properties of these mutants were compared with those of the truncated 

wild type enzyme.  

The second part of this study addresses the cloning, expression and characterization of novel 

protein called Jden1381 from Jonesia denitrificans, which comprises an N-terminal CBM33-

type LPMO followed by a putatively chitin-binding CBM5/12 and, C-terminally a putative 

chitinase from family GH18. The aim was to clone, express and purify full length and 

truncated versions of this enzyme and to study the functional properties of the various 

constructs. Jden1381 is rather special because the protein combines an LPMO with a 

glycoside hydrolase, suggesting that the synergy between LPMOs and hydrolases may also be 

accomplished by having these catalytic modules in one and the same protein. 
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2 MATERIALS 

 

2.1 Laboratory equipment 

Equipments  Supplier  

Automated pipettes  Labsystems 

Pipette tips  Thermo scientific 

Eppendorf tubes  Avant  

Cryo tubes  Sarstedt 

pH meter  Metrohm  

Cuvettes  Eppendorf  

Electrophoresis power supply   

        PowerPac 300 BioRad  

SDS-Page gel electrophoresis equipment BioRad  

        SDS-PAGE Gels  BioRad  

DNA gel electrophoresis power supply  

        PowerPac Basic  BioRad  

        Mini sub cell GT (chamber) BioRad 

Electroporator 

        MicroPulser Electroporator  

         100-120V/220-240V 

BioRad 

Protein Gel shaker  Ika® 

Stirrer Ika® 

Spectrophotometer   

          Eppendorf  Biophotometer Eppendorf   

          Ultrospec 3300 pro 

          UV/Visible Spectrophotometer 

GE Health care 

          NanoDrop 2000 Thermo Scientific 

Centrifuges  

       Table centrifuge Eppendorf 

         Centrifuge 5430R Eppendorf  

       Cooling centrifuge  Beckman Coulter 

Thermo cycler (pcr) machine  

       Master cycler  Eppendorf 

       Pcr tubes (micro tubes) Axygen  

ThermoMixer  

Protein purification equipment  Akta purifier  

      Columns- HisTrap/DEAE/SEC GE Healthcare 

      Software – Unicorn 5.20  

Sterilization hood  Teistar AV-100 

HPLC equipment   

ICS-300 Dionex  

      Column- Carbo-Pack PA1 Dionex 

UHPLC-Ultimate 3000 Dionex  

              Column- HELIC  

      Software – Chromeleon® 7  Dionex 

Agilent 1100 series Agilent 

             Column-  Tsk Gel
TM

 Column  

                  (Amide 80) 

Tosoh Bioscience  

     Software – Chem Station version B.04.01 Agilent 

Culture incubator Infors  

Water bath Julabo 
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2.2 Chemicals  

Chemical Supplier 

2,5-Dihydroxybenzoic acid (DHB)  Bruker Daltonics 

Acetic acid 99.8 % VWR 

Acetonitrile (CH3CN) Fulltime 

Acrylamide  National Diagnostics ProtoGel 

Agar bacteriological (Agar No. 1) Oxoid 

Agarose, SeaKem® Lonza 

Albumin, bovine serum (BSA), Fraction V Sigma-Aldrich 

Ammonium Persulfate Bio-Rad 

Ammonium sulfate (NH4 )2SO4 Merck 

Ampicillin Sigma-Aldrich 

Ascorbic acid Sigma-Aldrich 

Bacto™ Peptone Becton, Dickinson and Company 

Bacto™ yeast extract Becton, Dickinson and Company 

Bacto™Tryptone Becton, Dickinson and Company 

Biotin Sigma-Aldrich 

Bis-Tris (C8H19NO5) Sigma-Aldrich 

Brain heart infusion (BHI) Oxoid 

Calcium chloride (CaCl2) Sigma-Aldrich 

Calcium sulfate (CaSO4) Sigma-Aldrich 

Coomassie Brilliant Blue R250 Merck 

D(+)-Glucose monohydrate VWR 

DL-Dithiothreitol (DTT) Sigma-Aldrich 

D-Sorbitol Sigma-Aldrich 

Ethanol 96 % (v/v) Arcus 

Ethidium bomide, ultrapure Bioreagent J.T. Baker 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich 

Ethylenediaminetetraacetic acid disodium salt dihydrate 

(EDTA-Na2) 

Sigma-Aldrich 

Gallic acid Sigma-Aldrich 

Glycerol 85 % (w/v) Merck 

Hydrochloric acid (HCl) Merck 

Imidazole Sigma-Aldrich 

Isopropyl β-D-1-thiogalactopyranoside Sigma-Aldrich 

LE-Agarose  Gene Mate 

L-Gluthation, reduced Sigma-Aldrich 

Magnesium chloride (MgCl2) Qiagen 

Magnesium sulphate (MgSO4) Merck 

Magnesium sulphate heptahydrate (MgSO4) x 7H2O Merck 

MES (C6H13NO4S ) hydrate Sigma-Aldrich 

Methanol, HPLC grade LAB-SCAN 

N-Acetyl-D-glucosamine Sigma-Aldrich 
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Phenylmethanesulfonylfluoride (PMSF) Sigma-Aldrich 

Phosphoric acid (KOH) 85 % (w/v) Merck 

Potassium chloride (KCl) Merck 

Potassium dihydrogen phosphate (KH2PO4) Merck 

Potassium phosphate dibasic (K2HPO4) Sigma-Aldrich 

Potassium sulphate (K2SO4) Sigma-Aldrich 

Sodium acetate (C2H3NaO2) Sigma-Aldrich 

Sodium chloride (NaCl) Sigma-Aldrich 

Sodium hydroxide (NaOH) 50 % (w/v) J.T. Baker 

Sodium sulphate (Na2SO4) Sigma-Aldrich 

Sodiumdodecylsulfate (SDS) Bie & Berntsen 

Sulphuric acid (H2SO4) Sigma-Aldrich 

Tetramethylethylenediamine (TEMED) Bio-Rad 

Thiamine Sigma-Aldrich 

Tris(hydroxymethyl)aminomethan (Tris-HCl) Sigma-Aldrich 

Yeast extract Remel 

α-cyano-hydroxy-cinnamic acid (CHCA), 97 % (w/v) Aldrich 

Β-lactoglobulin from Bovine Milk, 90 % (w/v) Sigma-Aldrich 

2.3 Proteins and enzymes  

Protein/enzyme Suppliers 

Bovine Serum Albumine New England Biolabs (NEB) 

Celluclast Novozymes 

Cel5A from Thermobifida fusca Gift from David Wilson (Cornell                                            

University) 

DNA polymerase  

Vent Polymerase (with 10x reaction buffer) New England Biolabs (NEB) 

Phusion polymerase (with 5x isothermal buffer) New England Biolabs (NEB) 

Pfu polymerase (with 10x reaction buffer) New England Biolabs (NEB) 

Protein standard  

Benchmark Protein Ladder Bio-Rad 

Restriction buffers  

NEBuffer 3 (10x) NEB 

NEBuffer 4 (10x) NEB 

Restriction enzymes  

BamHI (20U/µl)  NEB 

BamHI-HF (20U/µl) NEB 

NotI   (20U/µl) NEB 

NotI-HF(20U/µl) NEB 

T4 DNA ligase (with 10x reaction mix)  Promega 

T5 Exonuclease (with 5x isothermal buffer) NEB 

Taq DNA ligase (with 10x reaction buffer) NEB 
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2.4 DNA 

DNA Suppliers 

dNTP-mix Invitrogen 

DNA standards   

         1Kb DNA ladder Fermentas 

         GeneRuler 1Kb Plus DNA ladder Thermo Scientific  

 

2.5 Carbohydrate substrates  

Table 2.1 Carbohydrate substrates used for degradation experiment.   

Substrates Source Specifications 

provided by the 

supplier  

Supplier  

α-chitin Shrimp shell Dried and milled 

chitin (   400  m 

particle size, ash 1.7 

%, 4.7 % moisture)  

Sea garden 

β-chitin Squid pen  Dried and milled     

(   400  m particle 

size) 

France chitin, 

Marseille, France 

Collidal chitin  Shrimp shell Hydrochloric acid  

swollen chitin  

Prepared in-house 

(Shimahara et al.,  

1988) 

Avicel
 

Cellulose ~50 µm particle size PH101 Sigma-

Aldrich 

PASC
 

Shrimp shell Phosphoric acid 

swollen cellulose 

K. Igarashi 

 

2.6 Kits 

Kit  Suppliers 

BigDye® Terminator v3.1 Cycle Sequencing Kit  

              Ready reaction mix  

              pGEM®.3Zf(+) double-stranded DNA control Template 

              -21M13 Control Primer (forward) 

              BigDye Terminator v1.1/3.1 Sequencing Buffer (5x) 

                           

Perkin Elmer/Applied 

Biosystems  

dNTP set (100mM) PCR Grade 

 

Invitrogen 

GoTaq® Green Master Mix  

               GoTaq DNA polymerase 

               MgCl2 (3 mM) 

               dNTP (400µM) 

               Green GoTaq® reaction buffer (pH 8.5) (2x)  

 

Promega 

Illustra
TM

 GFX
TM

 PCR DNA and Gel Band Purification Kit 

              GFX columns  

GE Healthcare 
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              Collection tubes 

              Color-coded bottles of capture buffer 

              Wash buffer 

              Elution buffer
1
 (sterile water) 

              Elution buffer
2
 (Tris-HCl) 

                
Phusion® High Fidelity DNA Polymerase 

              High Fidelity pfu (2,000 U/ml) 

              DMSO (100%) 

              MgCl2 solution (50mM) 

              Phusion GC buffer (5x) 

              Phusion HF reaction buffer (5x) 

 

New England Biolabs (NEB) 

QuickChange II Site-Directed Mutagenesis kit  

              Pfu High-Fidelity DNA polymerase (2.5 U/µl) 

              10x reaction buffer 

              Dpn I restriction enzyme (10U/µl) 

              Oligonucleotide control primer #1[34-mer (100ng/µl)] 

               ’CCA TGA TTA CGC CAA GCG CGC AAT TAA CCC TCA C 3’ 

              Oligonucleotide control primer #2[34-mer (100ng/µl)] 

               ’GTG AGG GTT AAT TGC GCG CTT GGC GTA ATC ATG G 3’ 

              pWhitescript 4.5-kb control plasmid (5 ng/µl) 

              dNTP Mix 

              XL1-Blue supercompetent cells  

              pUC18 control plasmid (0.1 mg/µl in TE buffer)  

 

Agilent Technologies  

T4 Ligase 

               T4 DNA ligase 

               T4 ligase buffer (5x)  

                       250 mM Tris-HCl (pH 7.6) 

                       50 mM MgCl2   

                       5 mM ATP  

                       5 mM DTT  

                       25% (w/v) polyethylene glycol-8000  

 

Invitrogen
TM 

T5 Exonuclease  

              T5 DNA ligase (10,000U/m) 

              NEBuffer 4 (10x) 

 

New England Biolabs (NEB) 

Taq DNA ligase  

              Taq DNA ligase (40,000U/ml) 

               λ DNA-BSTEII digest 

 

New England Biolabs (NEB) 

Wizard® Plus SV Minipreps DNA purification System 

             20ml Cell Resuspension Solution (CRA) 

             20ml Cell Lysis Solution (CLA) 

             30ml Neutralization Solution (NSB) 

             20ml Column Wash Solution (CWA) 

             50 Wizard® 

             SV Minicolumns 

             50 Collection Tubes (2ml) 

             550µl Alkaline Protease Solution 

             13ml Nuclease-Free Water 

             20 Vacuum Adapters 

 

Promega 

VentR® DNA polymerase 

              VentR® DNA polymerase (2,000U/ml) 

              MgSO4 (100 mM) 

              ThermoPol reaction buffer (10x) 

New England Biolabs (NEB) 
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2.7 Primers 

Table 2.2. Primers by name and sequence 

Primer name Primer Sequence ( ’  3’) 

CelS2-R212A-F 

 

TCATGCAGTGGGTGGCTTCGGACAGCCAGG 

CelS2-R212A-R 

 

CCTGGCTGTCCGAAGCCACCCACTGCATGA 

CelS2-D214A-F 

 

TGGGTGCGTTCGGCCAGCCAGGAGAAC 

CelS2-D214A-R 

 

GTTCTCCTGGCTGGCCGAACGCACCCA 

CelS2-S215A-F 

 

GTGGGTGCGTTCGGACGCCCAGGAGAACTTCTTC    

CelS2-S215A-R 

 

GAAGAAGTTCTCCTGGGCGTCCGAACGCACCCAC 

CelS2-E217A-F 

 

GTTCGGACAGCCAGGCGAACTTCTTCTCCTG 

CelS2-E217A-R 

 

CAGGAGAAGAAGTTCGCCTGGCTGTCCGAAC 

CelS2-F219A-F 

 

GCCAGGAGAACGCCTTCTCCTGCTC 

CelS2-F219A-R 

 

GAGCAGGAGAAGGCGTTCTCCTGGC 

CelS2-F219Y-F 

 

CAGCCAGGAGAACTACTTCTCCTGCTCGG 

CelS2-F219Y-R 

 

CCGAGCAGGAGAAGTAGTTCTCCTGGCTG 

BamHI_Jden1381-F 

 

CCGTAGCAATGGATCCATGAAGAAGAGAAAGTTGAGA

GCGTCAGC 

Jden1381_NotI-R 

 

GGCATTACGAGCGGCCGCTCATTGTAAACCAGTAGCA

ATCGCTGTAATCAAGTCG 

Jden1381_NotI_His-R 

 

GTAATGCCGCGGCCGCTCAATGATGATGATGATGATG

TTGTAAACCAGTAGCAATCGCTG 

BamHl_Jden1381-LPMO-F 

 

CCGTAGCAATGGATCCATGAAGAAGAGAAAGTTGAGA

GCGTCAGC 

Jden1381-LPMO_Notl-R 

 

TCGTAATGCCGCGGCCGCTCATGAGACCACAACATCC

ATACAGTTG 

Jden1381-LPMO_His_NotI-R TCGTAATGCCGCGGCCGCTCAATGATGATGATGATGA

TGTGAGACCACAACATCCATAC 

Jden1381-CBM5/12-F GAGGAGATCTGGATCCATGAATAACGGTGGCAATACA

GGTGGC 

Jden1381-CBM5/12-R GATGCTCGAGGCGGCCGCTCAAGGTGGAGTGCCACCT

TCACCTGGG 

Jden1381-CBM5/12_HIS-R GATGCTCGAGGCGGCCGCTCGATGATGATGATGATGA

TGAGGTGGAGTGCCACCTTCACC 

Jden1381-LPMO-CBM5/12-

His _NotI-R 

 

GATGCTCGAGGCGGCCGCTCAAGGTGGAGTGCCACCT

TCACCTGGG 

Jden1381-GH18-F CCGTAGCAATGGATCCATGCCTGATACGCCTGGTACC

GGC 

JdenEt-F 

 

CCCAGATCTGGGTACCGACGACGACGACAAGCATGGT

TGGGTGACAGATCCACCGTCCAG 
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JdenEt-R 

 

GTGGTGGTGGTGGTGCTCGAGTGCGGCCGCTCATTGTA

AACCAGTAGCAATCGCTG 

pET32b-F 

 

CAGCGATTGCTACTGGTTTACAATGAGCGGCCGCACTC

GAGCACCACCACCACCAC 

pBBinF CATCCTGAACTTATCTAGACC 

pBBinR GCAGGTCCTGAAGTTAACTAG 

T7 Fwd TAATACGACTCACTATAGGG    

T7 Rev CCCTATAGTGAGTCGTATTA 

pRSET-B SeqF GATCTCGATCCCGCGAAATT 

pRSET-B SeqR TGTTAGCAGCCGGATCAAGC 
 

Table 2.3. Primers by name and description 

Primer name Primer description 

CelS2-R212A-F 

 

CelS2-R212A, forward mutational primer 

CelS2-R212A-R 

 

CelS2-R212A, reverse mutational primer 

CelS2-D214A-F 

 

CelS2-D214A, forward mutational primer 

CelS2-D214A-R 

 

CelS2-D214A, reverse mutational primer 

CelS2-S215A-F 

 

CelS2-S215A, forward mutational primer 

CelS2-S215A-R 

 

CelS2-S215A, reverse mutational primer 

CelS2-E217A-F 

 

CelS2-E217A, forward mutational primer 

CelS2-E217A-R 

 

CelS2-E217A, reverse mutational primer 

CelS2-F219A-F 

 

CelS2-F219A, forward mutational primer 

CelS2-F219A-R 

 

CelS2-F219A, reverse mutational primer 

CelS2-F219Y-F 

 

CelS2-F219Y, forward mutational primer 

CelS2-F219Y-R 

 

CelS2-F219Y, reverse mutational primer 

BamHl_Jden1381-F 

 

Jden1381, forward cloning primer, full length  

Jden1381_NotI-R 

 

Jden1381, reverse cloning primer, full length 

BamHl_Jden1381_His-F 

 

Jden1381, forward cloning primer, full length with C-terminal His-

tag 

Jden1381_NotI_His-R 

 

Jden1381, reverse cloning primer, full length with C-terminal His-

tag 

BamHl_Jden1381-LPMO-F 

 

Jden1381-LPMO, forward cloning primer, N-terminal domain 

Jden1381-LPMO_NotI-R 

 

Jden1381-LPMO, reverse cloning primer, N-terminal domain  

BamHl_Jden1381-

LPMO_His-F 

 

Jden1381-LPMO, forward cloning primer, N-terminal domain with 

C-terminal is tag  

Jden1381-LPMO_NotI_His-R Jden1381-LPMO, reverse cloning primer, N-terminal domain with 
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 C-terminal His tag 

Jden1381-CBM5/12-F Jden1381-CBM5/12, forward cloning primer  

Jden1381-CBM5/12-R Jden1381-CBM5/12-F, reverse cloning primer  

Jden1381-LPMO-CBM5/12-F 

 

Jden1381-LPMO-CBM5/12, forward cloning primer, N-terminal 

multi domain 

Jden1381-LPMO-CBM5/12-R 

 

Jden1381-CBM33-CBM5/12, reverse cloning primer, N-terminal 

multi domain 

Jden1381-LPMO-CBM5/12-F 

 

Jden1381-LPMO-CBM5/12, forward cloning primer, N-terminal 

multi domain with C-terminal His-tag 

Jden1381-LPMO-CBM5/12-R 

 

Jden1381-CBM33-CBM5/12, reverse cloning primer, N-terminal 

multi domain with C-terminal His tag 

JdenEt-F 

 

Jden1381, forward cloning primer, with N-terminal Enterokinase 

cleavage site 

JdenEt-R 

 

Jden1381, reverse cloning primer, with N-terminal Enterokinase 

cleavage site 

pET32b-F 

 

pET32b, forward vector cloning primer 

pET32b-R 

 

pET32b, reverse vector cloning primer 

pBBinF pUCBB, forward sequencing primer  

pBBinR pUCBB, Reverse sequencing primer  

T7 Fwd pET32b, forward sequencing primer  

T7 Rev pET32b, Reverse sequencing primer  

pRSET-B SeqF pRSET-B, forward sequencing primer  

pRSET-B SeqR pRSET-B, Reverse sequencing primer  

 

2.8 Bacterial Strains  

Strain  Source 

Escherchia coli BL21Star
TM

 (DE3)  Invitrogen  

T7 express competent Escherchia coli 

(C2566H) 

NEB 

Escherchia cloli JM109 Stratagene 

Escherchia cloli Rosetta 
TM 

Merck Millipore 

Escherchia cloli TOP10 Invitrogen 

Escherchia cloli XL1-blue Agilent 
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2.9 Plasmids 

Plasmid  Source and reference  

pET32b Novagene (Appendix C) 

pRSETB/CelS2 (Forsberg et al., 2011) (pRSETb/CelS2-N 

map retrieved from Addgene is shown in 

Appendix D) 

pUCBB-eGFP (Vick et al., 2011) (pUCBB-eGFP map 

retrieved from Addgene is shown in 

Appendix 5 Fig E) 
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3 METHODS 

3.1 Microbiology methods 

 

3.1.1  Cultivation media 

All media were prepared using MilliQ water filtered through a 0.22 µm Millipore filter and autoclaved 

at 15 psi (1 bar) and 121 
o
C for 20 minutes. 

 

3.1.1.1  Agar plates 

Agar was added to the LB medium to an end concentration of 15 g/L (w/v) before volume 

adjustment and autoclaving.  For agar plates intended for positive selection of transformants, 

100 µg/mL ampicillin was added after cooling to ~50
o
C, just before pouring the plates. The 

medium (1 L) was distributed over approximately 20 Petri dishes. The agar plates were left in 

the laminar flow cabinet to cool and solidify for 20 minutes and stored in plastic bags at +4
o
C. 

 

 

3.1.1.2 Antibiotics  

 

Ampicillin 

Ampicillin (Sigma-Aldrich) is a beta-lactam antibiotic that inhibits bacterial growth through 

inhibition of peptidoglycan cross linking (cell wall synthesis) by inhibiting transpeptidases on 

the inner surface of the bacterial membrane. Ampicillin is active against both Gram-positive 

and Gram-negative bacteria.  Expression plasmids harboring the β-lactamase (bla) promoter 

and gene express the ampicillin resistance protein, β-lactamase, which allows selection of 

Escherichia coli transformants harboring these plasmids. Ampicillin is commonly used as a 

selective marker in biotechnology. 

In this study, ampicillin was used in agar and liquid media (Table 3.1).  A stock solution of 50 

mg/ml ampicillin was used in all cases.   

 

 

http://en.wikipedia.org/wiki/Selectable_marker
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3.1.1.3 Luria Bertani (LB) 

   

  Liquid medium  

 10 g Bacto Trypton 

 10 g NaCl (  g for “low salt LB”) 

 5 g Bacto yeast extract 

 

All solid ingredients were mixed in a 1L flask and dissolved in 800 mL dH2O by stirring with 

a magnet stirrer. After the solid components were dissolved, the volume was adjusted to 1 

liter with dH2O and the solution was autoclaved. For media intended for growing 

transformants, 50 µg/ml of ampicillin was added prior to cultivation. 

 

 

3.1.1.4 M9 minimal medium 

M9 minimal media supplemented with either 0.2% (w/v) glucose or 0.2 % (v/v) glycerol was 

prepared. The ingredients include different salts and vitamin (thiamine).  

 

For making 10X M9 salt, the salts listed below were dissolved in 900 ml dH2O. After all salts 

were dissolved, the volume was adjusted to 1000 ml and autoclaved. 

 

 10 X M9 salts  

 Na2HPO4 60 g/L 

 KH2PO4 30 g/L 

 NH4Cl  10 g/L 

 NaCl  5 g/L 

 

The ingredients listed below were made and autoclaved (except for thiamine) separately.   

 

 1 M thiamine HCl (sterile filtered, storage 4 
o
C) 

 100 mM CaCl2 

 1M MgSO4 

 20 % (w/v) glucose  

 20%  (v/v) glycerol   
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A 887 ml autoclaved dH2O was prepared and the following amounts of the ingredients were 

added. 

 100 ml            10x M9 salts (see above) 

 1 ml  1 M thiamine HCl (sterile filtered, storage 4 
o
C) 

 1 ml  100 mM CaCl2 

 1 ml   1M MgSO4 

 10 ml  20% (w/v) glucose or 20% (v/v) glycerol  

 

3.1.1.5 Terrific broth (TB) 

 

 10 x TB salts:  

- 23.12 g KH2PO4 

- 125.41 g K2HPO4 

The chemicals were carefully mixed, and dissolved in dH2O to a final volume of 1 liter and 

autoclaved. 

 

           Liquid medium   

 12 g Bacto Trypton 

 24 g Bacto yeast extract 

 5 ml of 97% (v/v) Glycerol ( Final concentration was ~ 0.5 % (v/v) 

 

All ingredients were carefully mixed and dissolved in dH2O to a final volume of 897 ml 

before autoclaving.  After autoclaving, 100 ml 10x TB salts were added. 

 

3.1.1.6 Brain Heart Infusion Broth (BHI) 

 

37 g BHI was completely dissolved in dH2O to a final volume of 1 liter and autoclaved. 
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3.1.1.7 2 x TY 

 

            2xTY medium  

 16g Bacto Tryptone  

 10g Yeast extract  

 5g NaCl 
 

All ingredients were carefully mixed and dissolved in dH2O to a final volume of 1000 ml 

before autoclaving.  

 

 

3.1.2 Cultivation of bacterial strains 

All media and reagents used for cultivation were sterilized either by autoclaving or sterile-

filtration (0.45 µm pore size). All culturing work was performed in sterile conditions. To start 

new cultures, a single colony from an agar plate or a piece of glycerol stock (see section 3.4) 

was inoculated in 5 ml medium of choice in culture tubes and incubated overnight at 30°C or 

37°C with shaking at 220 rpm as described in Table 3.1.  For media recipes, see section 3.1.1. 

The growth of microorganisms was monitored by measuring optical density at a wavelength 

of 600 nm (OD600).  

 

Table 3.1. Culturing conditions of strains used. 

Strains  Culturing conditions  

 E. coli C2566H (NEB) Strains harboring plasmids encoding ampicillin 

resistance were cultivated in liquid LB- 

medium supplemented with 50 µg/ml 

ampicillin, with shaking at either 18 or 30 
o
C 

or on LB-agar plates supplemented with 100 

µg/ml ampicillin at 37 
o
C. For optimal 

expression of Jden1381, the bacteria were 

cultured in either M9 or LB media 

supplemented with 50 µg/ml ampicillin at 30 
o
C for 3-5 days, with shaking.  

 

E. coli Bl21 Star™ (DE3) cells (Invitrogen) Strains harboring plasmids encoding ampicillin 

resistance were cultivated in liquid LB- 

medium supplemented with 50 µg/ml 
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ampicillin, with shaking at 30 
o
C or on LB-

agar plates supplemented with 100 µg/ml 

ampicillin at 37 
o
C. For optimal expression of 

CelS2 mutants, the cells were cultured in either 

BHI or TB-medium supplemented with 50 

µg/ml ampicillin at 30 
o
C for 16 h, with 

shaking. For optimal expression of Jden1381 

variants, the bacteria were cultured in either 

M9, 2xTY or LB media supplemented with 50 

µg/ml ampicillin at 30 
o
C for 3-5 days, with 

shaking.  

 

E. coli JM109 cells (Invitrogen) Cells harboring plasmids encoding ampicillin 

resistance were cultivated in liquid LB- 

medium supplemented with 50 µg/ml 

ampicillin, with shaking, at 37 
o
C, or on LB-

agar plates supplemented with 100 µg/ml 

ampicillin, at 37 
o
C.   

 

E. coli Rosetta
 TM

 cells (Merck Millipore) Transformants carrying plasmids encoding 

ampicillin resistance were cultivated in liquid 

LB-medium supplemented with 50 µg/ml 

ampicillin with shaking, at 30 
o
C, or on LB-

agar plates supplemented with 100 µg/ml 

ampicillin, at 37 
o
C.   

 

E. coli TOP10 cells (Invitrogen) Transformants carrying plasmids encoding 

ampicillin resistance were cultivated in liquid 

LB-medium supplemented with 50 µg/ml 

ampicillin with shaking, at 37 
o
C, or on LB-

agar plates supplemented with 100 µg/ml 

ampicillin, at 37 
o
C.   

 

 

 

 

3.1.3 Long-term storage of bacterial strains 

Glycerol enables bacterial strains to be stored frozen for a long time without harming the 

cells. Thus, bacterial strains harboring different constructs were preserved as follows: 

 1 ml overnight bacterial culture  

 300 µl glycerol (85 % (v/v), sterile) 

 

Bacterial stains were carefully mixed with glycerol in cryo-tubes and stored at-80
o
C. 
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3.2 Molecular biology methods  

 

3.2.1 Plasmid isolation using the NucleoSpin
®

 Plasmid kit 

The NucleoSpin
®
 Plasmid kit was used to purify plasmids from E. coli TOP10 cells in the 

molecular biological work related to mutagenesis of the CelS2 gene.   

Materials 

 Overnight grown bacterial culture containing the plasmid of interest 

NucleoSpin® Plasmid/Plasmid (NoLid) kit (Macherey-Nagel) 

 NucleoSpin® Plasmid/Plasmid (NoLid) Column 

 Collection tubes (2 ml) 

 Resuspension buffer A1 

 Lysis buffer A2 

 Neutralization buffer A3 

 Wash buffer A4 

 Wash buffer AW 

 Elution buffer AE 

Procedure 

Plasmids were isolated from E. coli TOP10 cells following the protocol for plasmid DNA 

preparation supplied with the NucleoSpin® Plasmid/Plasmid (NoLid) kit.  All reaction steps 

were carried out at room temperature and all centrifugations were done at 11,000 x g using a 

bench top centrifuge (Eppendorf 5415R).   

An overnight culture of E. coli TOP10 harboring the plasmid of interest was prepared starting 

with a glycerol stock. The overnight culture (1 ml) was transferred to 1.5 ml eppendorf tube 

and cells harvested by centrifugation for 30 seconds.  The medium was completely removed 

before resuspending the pellet in 250 µl resuspension buffer A1.  For cell lysis, 250 µl lysis 

buffer A2 (SDS/alkaline lysis) was mixed into the sample by inverting the tube 6-8 times.   

The sample was then incubated until the lysate appeared clear.  Maximum incubation time 

was 5 minutes. The lysis method used here is based on the alkaline SDS method developed by 

Birnboim and Doly (Birnboim et al., 1979). The method separates plasmid DNA from other 

cellular components such as protein and chromosomal DNA by taking advantage of the 

differences in size and nature of these components. Plasmid DNA is relatively small, 
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supercoiled while bacterial chromosomal DNA is much larger and less supercoiled. This 

topological variation allows selective precipitation of chromosomal DNA and proteins from 

plasmid DNA. When the cells are lysed under alkaline conditions, nucleic acids and proteins 

will denature.    

The lysis reaction was stopped and the lysate neutralized by adding 300 µl neutralization 

buffer A3 and inverting the tube 6-8 times before the lysate was centrifuged for 5 minutes. 

During this step, proteins and chromosomal DNA will remain denatured and precipitated 

while plasmids will renature and stabilize in the solution. Buffer A3 creates appropriate 

conditions for binding of plasmid DNA to the silica membrane of the NucleoSpin® 

Plasmid/Plasmid (NoLid) column.  

Precipitated proteins, cell debris and genomic DNA were then pelleted by a centrifugation 

step. The clear supernatant (750 µl) was loaded onto a column placed in a 2 ml collection tube 

and spun down for 1 minute.  The flow-through was discarded. Contaminations like salts, 

metabolites and soluble cellular components were removed by washing the column with 600 

µl wash buffer A4 containing ethanol followed by 1 min centrifugation.  

The flow-through was discarded. For a better clean up and for obtaining good sequencing 

results, the column was washed with an additional 600 µl of wash buffer AW (pre heated at 

50
o
C) followed by centrifugation for 1 min.  

The flow-through was discarded and remaining liquid was removed by an additional 2-minute 

centrifugation.  The pure plasmid DNA was then eluted from the column under low ionic 

strength conditions with 50 µl of the slightly alkaline Buffer AE (5 mM Tris/HCl, pH 8.5) 

using a 1 minute  centrifugation step. The plasmid was stored at -20 
o
C.    

 

3.2.2 Plasmid purification from E.coli using the Wizard® Plus SV miniprep DNA purification 

system  

The Wizard® Plus SV miniprep DNA purification system was used to isolate and purify 

plasmids from chemically competent E. coli JM109 cells and electro competent E.coli 

C2566H cells in the molecular biological work related to cloning of the Jden1381 gene. 
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Materials   

 Overnight culture of JM109 cells containing the plasmid of interest  

 Cell Resuspension Solution (CRA) 

 Cell Lysis Solution (CLA) 

 Neutralization Solution (NSB) 

 Column Wash Solution (CWA) 

 Wizard® SV Mini-columns 

 Collection Tubes (2ml) 

 Alkaline Protease Solution 

 Nuclease-Free Water 

Procedure  

All reaction steps were carried out at room temperature and all centrifugations were done 

using an Eppendorf 5415R centrifuge operated at maximum speed.   

 

An overnight culture of E. coli JM109 harboring the expression vectors (1 ml) was transferred 

to 1.5 ml eppendorf tubes and cells harvested by centrifugation for 5 minutes.  The medium 

was poured off and excess media was completely removed by blotting the inverted tube on a 

paper towel. The pellet was thoroughly resuspended in 250 µl Cell Resuspension Solution by 

vortexing or pipetting.  For cell lysis, 250 µl Cell Lysis Solution was mixed into the sample 

by inverting the tube 4 times and incubated until the cell suspension cleared (1-5 minutes).  In 

order to inactivate endonucleases or other proteins and improve the quality of isolated DNA, 

10 µl of Alkaline Protease Solution was added and mixed by inverting the tube 4 times. The 

mixture was incubated for 5 minutes. It is important not to exceed 5 minutes of incubation as 

nicking of the plasmid may occur. For neutralization of the reaction, 350µl of Neutralization 

Solution was added and mixed immediately by inverting the tube 4 times. The bacterial lysate 

was spun down for 10 minutes at maximum speed (14,000 x g). The cleared lysate 

(approximately 750 µl) was transferred to the prepared Spin Column inserted into a 

Collection Tube by decanting and spun down for 1 minute. The Spin Column was removed 

from the tube and the flow-through was discarded from the Collection Tube. The Spin 

Column was then reinserted into the Collection Tube and the plasmid was washed by adding 

750 µl of Column Wash Solution (which was pre-diluted with 95% ethanol) followed by  a 1 

minute centrifugation. After discarding the flow-through from the collection tube, the washing 

step was repeated by adding an additional 250µl of Column Wash Solution. For complete 
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removal of the washing solution, the column was spun down for 2 minutes.  For elution of the 

plasmid, the spin column containing the plasmid was transferred to a new, sterile 1.5 ml 

eppendorf tube and 100µl of Nuclease-Free Water was added and incubated for 2-5 minutes 

in order to let the Nuclease-Free Water distribute through the column. Finally the plasmids 

were eluted by centrifugation for 1 min. After eluting the plasmid, the assembly was removed 

from the 1.5ml eppendorf tube and the Spin Column was discarded. The isolated plasmid was 

stored at -20
o
C until further use. 

 

 

3.2.3 Polymerase Chain Reaction-based methods 

Polymerase chain reaction (PCR) is an in vitro technique used for amplification of specific 

nucleotide sequences.  The reactions require both sequence specific oligonucleotide primers 

complementary to the sequence of interest or template, dNTPs, and a thermo-stable DNA 

polymerase.  In this study PCR was used for four purposes:  

 Gene amplification 

 Gene truncation  

 Site directed mutagenesis  

 Verification of transformants  

 

 

3.2.3.1 Gene amplification  

 

PCR was used for amplifying the Jden1381 gene from Jonesia denitrificans DSM 20603 as 

well as the pET32 b vector in which Jden1381 was inserted using Gibson assembly (for more 

details, see section 3.2.8.2) The Jden1381 gene used in this study was codon optimized to 

express in E. coli (Appendix F).  

 

 

       Materials 

 Template DNA 

 Phusion® High-Fidelity DNA Polymerase kit (NEB): 

- dNTP mix, 10 mM 

- 5x Phusion® GC Buffer 

- Phusion® DNA polymerase (2 U/µl) 
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- DMSO (100%) 

 Primers (See Table 2.2 & 2.3)  

 Nuclease-free dH2O 

Procedure 

PCR reaction mixes (50µl) were set up on ice in 0.2 ml PCR tubes according to Table 3.2.  

Reaction mixes were placed in a Master cycler gradient 120V (Eppendorf) and amplification 

was carried out using the cycling parameters in Table 3.3. Amplification and linearization of 

the pET32b expression vector was carried out using the cycling parameters in Table 3.4. 

Table 3.2. Reaction setup for PCR using Phusion® High-Fidelity DNA Polymerase 

Reagents Volume (Final concentration) 

dNTPs 10 mM 1 µl (2 mM) 

5x GC buffer 10 µl 

DMSO 0.5 µl 

DNA Template 2 µl (approximately 80 ng) 

Forward primer 0.5 µl ( 1 pmol) 

Reverse primer 0.5 µl (1 pmol) 

dH2O 35.5 µl 

Phusion® DNA Polymerase 0.5 µl (1 U) 
 

 

Table 3.3.  Cycling parameters for PCR-amplification of Jden1381 using Phusion ® High-Fidelity DNA Polymerase. 

Step Temperature Time (minutes:seconds) Number of cycles 

Initial denaturation 98°C 1:30  1 

Denaturation 98°C 0:10  

25 Annealing 60°C 0:30  

Elongation 72°C 3:00  

Final elongation 72°C 5:00  1 
 

 

 

 

Table 3.4. Cycling parameter used for PCR-amplification of the pET32b vector 

Step Temperature Time (minutes:seconds) Number of cycles 

Initial denaturation 98°C 5:0 1 

Denaturation 98°C 0:30 

25 Annealing 60°C 1:0  

Elongation 72°C 7:0 

Final elongation 72°C 10:00  1 

 

 

After amplification, the PCR products were analyzed by agarose gel electrophoresis, 

described in section 3.2.4. The appropriate DNA band was cut from the gel and the DNA 

fragment purified as described in section 3.2.5. 
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3.2.3.2 Gene truncation  

Gene truncation is a method used to trim genes at defined regions. A gene can be truncated 

from its  ’- , 3’- or both ends simultaneously. Deletion of N- or C-terminal regions from 

proteins is used to determine the functionality of these regions, e.g. in substrate-binding or 

protein-protein interactions. In this study, truncations were performed on the Jden1381 gene 

(see Fig. 4.1 for domain description) from Jonesia denitrificans for four purposes: i) to assess 

relative contribution of the individual domains (the N-terminal LPMO and CBM5/12) on both 

substrate binding and catalytic activity of the chitinase (C-terminal GH18 domain), ii) for 

individual characterization of  the LPMO and GH18 domains, iii) to simplify purification 

procedures (for C-His6 versions) and iv) to solve encountered complications on expression of 

the full length Jden1381. 

 

The mature full length Jden1381 contains 620 residues divided into three domains (see 

section 1.9). The first residue of mature LPMOs is histidine (His32 in this case) (Westereng et 

al., 2011). Residue numbering in this thesis starts from these histidine. This means residue 

number one is His 32 in all Jden1381 variants.   Table 3.5 shows overview over all constructs 

made for expression of Jden1381 variants. The table contains information of number of amino 

acids starting from His32, features of each construct (i.e., presence or absence of signal 

peptide and 6xHis tags) and target proteins from each construct.  

 

 

Table 3.5. Overview of constructs for expression of Jden1381 variants.  

Constructs Amino 

acids 

Tags SP Expected soluble 

protein 

pET32b/Jden1381fl 1 - 626 His6, N-

terminal 

No LPMO-CBM5/12-

GH18 

pUCBB/Jden1381 fl 1-620 No Yes LPMO-CBM5/12-

GH18 

pUCBB/Jden1381fl_C-

His6 

1-626 His6, C-

terminal 

Yes LPMO-CBM5/12-

GH18 

pUCBB/Jden1381-LPMO 1-142 No Yes  LPMO 

pUCBB/Jden1381-

LPMO_C-His6 

1-148 His6, C-

terminal 

 Yes LPMO 

pUCBB/Jden1381-

LPMO-CBM5/12 

1-245 No Yes  LPMO-CBM5/12 

pUCBB/Jden1381-

LPMO-CBM5/12_C-His6 

1-251 His6, C-

terminal 

Yes  LPMO-CBM5/12 

pUCBB/Jden1381-

CBM5/12 

1-103 No No CBM5/12 

pUCBB/Jden1381- 1-106 His6, C- No CBM5/12 
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CBM5/12_C-His6 terminal 

pUCBB/Jden1381- 

CBM5/12-GH18 

1-478 No  No  CBM5/12-GH18 

pUCBB/Jden1381- 

CBM5/12-GH18_C-His6 

1-484 His6, C-

terminal 

No  CBM5/12-GH18 

pUCBB/Jden1381-GH18 1-375 No No  GH18 

pUCBB/Jden1381-

GH18_C-His6 

1-381 His6, C-

terminal 

No   GH18 

 

 

Procedure  

Truncation of genes was performed by PCR based amplification. Accordingly, region specific 

primers (see Table 2.2 & 2.3) were designed for all truncations. Gene fragments encoding 

truncated proteins were amplified by Phusion® High Fidelity DNA polymerase (NEB) using 

the same procedure described above (section 3.2.3.1; Tables 3.2 and 3.3). 

 

3.2.3.3 Site Directed Mutagenesis  

 

To introduce a specific amino acid substitution in a gene, the QuickChange
TM

II Site- Directed 

mutagenesis kit (Agilent) was used.  The kit is based on a method that uses PfuUltra HF DNA 

polymerase and a PCR cycler to introduce point mutations or insertions/deletions in DNA. 

The mutagenic primers are complementary to opposite strands of the vector and they are 

extended by pfuUltra DNA polymerase by thermal cycling thereby incorporating the 

mutation. The PCR product is then treated with DpnI, which is an endonuclease that 

specifically digests dam-methylated DNA. Since DNA from E.coli is dam-methylated, the 

enzyme will digest the parental DNA leaving the mutated PCR product intact. See section 

1.12.1.2 and Fig 1.19 for more details. 

 

 

Material 

 QuickChangeII Site-Directed Mutagenesis Kit  

              Pfu Ultra HF DNA polymerase (2.5 U/µl) 

              10x reaction buffer 

              Dpn I restriction enzyme (10U/µl)               

              dNTP Mix 

              XL1-Blue supercompetent cells  
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 DNA template: 

- N-terminal domain from CelS2 (CelS2-N) (Fig.1.15) 

 E.coli Top10 competent cells 

 Primers (See Table 2.2 & 2.3)  

 

 

Procedure  

 

The parental DNA harboring the celS2 gene (nucleotide sequence of celS2is shown in 

Appendix G) was prepared from an overnight culture of transformed E.coli Top10 cells 

(section 3.2.1). The concentration of plasmid DNA was determined using a Biophotometer (at 

260nm) (Eppendorf). The PCR reactions were set up by following the instructions provided 

by the supplier.   

 

The PCR reactions (50 µl) were set up in 0.2ml PCR tubes on ice by mixing the reagents 

listed in Table 3.6 and amplification was achieved using the cycling parameters listed in Table 

3.7. After the PCR reaction, the parental DNA was digested by adding 1 µl DpnI and 

incubating at 37 
o 

C for 1 hour. After digestion, the DNA was transformed into chemically 

competent cells; either E. coli Top10 or XL1-Blue super-competent cells (see section 3.2.9.1). 

150 µl and 25µl of the transformation mixtures were spread on separate pre-warmed LB-agar 

plates supplemented with 100 µg/ml Ampicillin and the plates were incubated overnight at 

37
o
C. The introduction of mutation was evaluated by DNA sequencing (see section 3.2.10) 

 

  
Table 3.6. PCR mix setup for  QuickChangeII Site-Directed Mutagenesis   

Reagents  Amount  

10x reaction buffer 5 µl (1x) 

DNA template  25 ng 

Forward primer
* 

125 ng 

Reverse primer
* 

125 ng 

dNTP mix 1 µl 

dH2O to 50 µl 

Pfu Ultra HF DNA polymerase  1µl (2.5U) 
*See section 2.7; Table 2.2 and 2.3 
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Table 3.7. Cycling parameters used in the QuickChange procedure 

Step Temperature  Time Number of cycles 

Initial 

denaturation 

95°C 30 seconds 1 

Denaturation 95°C 30 seconds  

16 Annealing 55°C 1 minute 

Elongation 68°C 3.5 minutes 

 

 

  

3.2.3.4 Transformant verification  

  

GoTaq® Green DNA Polymerase (Promega) is a premixed ready-to-use solution containing 

bacterially derived Taq DNA polymerase, dNTPs, MgCl2 and reaction buffers at optimal 

concentrations for efficient amplification of DNA templates by PCR. The GoTaq® Green 

Master Mix contains two dyes (blue and yellow) that allow real-time monitoring of progress 

during electrophoresis. Reactions assembled with GoTaq® Green Master Mix can be directly 

loaded onto agarose gels. In 1 % agarose gels, the blue dye migrates at the same rate as 3-5 

Kb DNA fragments, and the yellow dye migrates at a rate faster than the primers (<50bp). In 

this study, the GoTaq® Green Master Mix was used to verify transformed E. coli BL21 

(DE3), E. coli C2566H, E. coli JM109 harboring various plasmids with (parts of) the 

Jden1381 gene (see section 3.2.3.2). Template DNA for these reactions was prepared by 

suspending a small amount of transformant colony in sterile water.  

Materials 

 GoTaq® Green Master Mix (2x) (Promega) 

- Taq DNA polymerase  

- MgCl2 (3 mM) 

- dNTP (400µM) 

- Green GoTaq® reaction buffer (pH 8.5) (2x)  

 DNA template 

 Primers (See Table 2.2 & 2.3) 
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Procedure  

PCR reactions (approximate volume = 10µl) were set up on ice in 0.2 ml PCR tubes 

according to Table 3.8. Reaction mixes were placed in a Master cycler gradient 120V 

(Eppendorf) and amplification was carried out using the settings shown in Table 3.9. 

Table 3.8. PCR reactions set up using GoTaq® Green Master Mix. 

Reaction Component Volume (final concentration) 

Forward primer  0.3 µl (3 pmol) 

Reverse primer  0.3 µl (3 pmol) 

Template DNA
 

2 µl of culture suspension  

dH2O
 

2.4 µl 

GoTaq® Green Master Mix  5 µl 

Final volume 10 µl 

 
 

Table 3.9. Program for the thermal cycler when using GoTaq® Green DNA polymerase Master Mix. 

Step Temperature Time (minutes:seconds) Number of cycles 

Initial denaturation 95
°
C 5:00 1 

Denaturation 95
°
C 0:45 

25 Annealing 60
°
C 0:45 

Elongation 72
°
C 2:10 

Final elongation 72
°
C 7:00 1 

 

 

 

3.2.4 Agarose gel electrophoresis 

PCR products were analyzed by running electrophoresis on 1% agarose gels.  Linear DNA 

molecules are negatively charged and, when subject to an electric field in a gel matrix they are 

separated according to size.  For DNA visualization, ethidium bromide was added to the gel.  

Ethidium bromide intercalates between the stacked nucleotide bases and because of its 

fluorescent properties, DNA binding ethidium bromide can be visualized with UV light.  The 

size of the DNA molecules is determined by comparison to a DNA ladder comprised of DNA 

fragments of known size.   

Materials 

 Agarose 

 1x TAE-buffer:  

- 4.85 g Tris-base 

- 1.14 ml Acetic acid, 99.8% (v/v) 

- 2 ml 0.5 M EDTA, pH 8.0 
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 Dissolved and mixed in 1 liter dH2O, yielding a final pH of 8.5. 

 Ethidium bromide, 10 mg/ml 

 10x loading buffer (Takara)  

 1 kb DNA ladder (Fermentas) or GeneRuler
TM

 1Kb plus DNA ladder 

(Thermoscientific) (Appendix H) 

Procedure 

1 % (w/v) agarose gels were made by dissolving 0.5 g agarose in 50 ml 1xTAE-buffer by 

careful heating in a microwave-oven.  The solution was cooled to below 60
°
C before 1 µl 

Ethidium bromide solution was added.  The gel solution was poured into the gel-chamber of a 

Mini-Sub Cell GT cell with a UV-transparent gel casting tray (Bio-Rad) with a 15-wells 

comb, and left to solidify. After 30 minute, the comb spacer was removed and the gel 

transferred to an electrophoresis chamber. 1xTAE- buffer was added to the chamber covering 

the gel completely.  After adding 0.1 volume 10x loading dye to both the 1 kb ladder and each 

of the samples, the sample were applied to the gel. The gel was run for 40 minutes at 90 volt 

using a PowerPac Basic™ power supply (Bio-Rad) and DNA-bands were visualized by UV 

light. 

 

3.2.5 Extraction and purification of DNA fragments from agarose gels 

DNA extraction from agarose gel has at least two advantages;  i) it is useful to recover DNA 

generated by restriction enzymes digestion from agarose gel, and ii) for purification of PCR 

products (i.e., removing of enzymes, primers or undesirable products resulting from the 

thermocycling). The method which was used in this study is based on the use of silica matrix 

to bind DNA in the presence of chaotropic agent (a substance with ability to denature proteins 

and breakdown the polymeric structure of agarose). The matrix bound DNA is washed with 

an ethanolic buffer to remove the impurities, salts and other contaminations, and the purified 

DNA are then eluted in a low ionic strength buffer. 

Materials 

 1% Agarose gel containing DNA fragments of interest  

 Illustra
TM

 GFX
TM

 PCR DNA and Gel Band Purification Kit 

- illustra
TM  

GFX
TM

 MicroSpin
TM

  GFX columns  
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- 2 ml collection tubes 

- Color-coded bottles of capture buffer 

- Wash buffer  

- Elution buffer
 
(sterile water) 

 Scalpel 

Procedure 

All centrifugations were carried out at room temperature for 1 minute at 11,000 x g using a 

Centrifuge 5415R (Eppendorf). 

 

DNA fragments or pcr products were excised from the agarose gel by cutting carefully around 

the band with a clean scalpel.  The weight of the gel piece was determined and for every 100 

mg of agarose gel, 500 µl Color-coded capture buffer containing chaotropic agent were 

added, followed by incubation at 65
°
C while shaking at 550 rpm until the gel slice was 

completely dissolved.  After the gels were dissolved, approximately 750 µl of the samples 

were transferred to Illustra
TM  

GFX
TM

 MicroSpin
TM

  collection columns which were placed 

into 2 ml collection tubes and incubated for 1 minute to let the DNA bind  to the membrane. 

After 1 minute of incubation, the bound DNA was separated from the dissolved gel and other 

impurities by centrifugation for 10 minutes. This let the impurities to pass through the 

membrane. The flow-through was discarded and column containing the bound DNA was 

washed with 750 µl wash buffer containing ethanol, using centrifugation to collect the flow 

through. After removing the wash buffer, the column was centrifuged for a second time for 

removing residual wash buffer from the column. The dry column was then placed in a sterile 

1.5 ml eppendorf tube and the PCR product was eluted with 40 µl Elution buffer (or sterile 

water). The concentration of extracted DNA was measured at 260 nm using a NanoDrop 

2000/2000c Spectrophotometer (Thermo Scientific). 

 

 

3.2.6 Restriction digestion  

Restriction endonucleases are sequence-specific enzymes that cleave DNA molecules at 

specific sites, producing a double-stranded break in the DNA strand.   Cleavage may form 

blunt ends, meaning that both strands are cut at the same position, or overhanging (cohesive) 

ends, meaning that the two strands are cut at slightly different positions.  Different restriction 
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enzymes may require different reaction conditions for optimal activity. Under non- standard 

conditions, restriction enzymes may cut at sites similar to their defined recognition sequences. 

This phenomenon is known as star activity. In order to avoid exhibition of such activities, 

some enzymes are designed by mutational modification, for instance BamHI
HF

 and NotI
HF

 

(HF =high fidelity), to cleave with higher fidelity. Such HF versions of endonucleases have 

the same recognition sequence as their corresponding wild types.    

 

3.2.6.1 Double restriction digestion of Jden1381 fragments and pUCBB-eGFP  

The expression vector pUCBB-eGFP (Appendix E) and Jden1381 (full length and truncated 

genes; see Table 3.5 for more details on the truncated domains) were double digested using 

BamHI and NotI or BamHI
HF

 and NotI
HF

 (NEB). For the Jden1381 variants, the recognition 

sequences for these enzymes were inserted at the  ’ and 3’ ends of by PCR amplification (see 

section 3.2.3.2).  

The optimal NEBuffer for both BamHI and NotI is NEBuffer 3. The optimal buffer for both 

and is NEBuffer 4.  

Recognition sites: 

 BamHI:  ’ ….GGATCC….3’ 

                          3’….CCTAGG…. ’ 

 

 NotI:      ’ ….GCGGCCGC….3’ 

                          3’….CGCCGGCG…. ’ 

 

Materials 

 pUCBB-eGFP (50µg)  and DNA fragments containing Jden1381 variants (50 µg) 

 Restriction enzymes  

 BamHI, 20U/µl (NEB) or BamHI
HF

, 20U/µl (NEB) 

 NotI, 20U/µl (NEB) or NotI
HF

, 20U/µl (NEB) 

 NEBuffer 3 (10x)  
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 NEBuffer 4 (10x) 

 Sterile water 

Procedure 

A 50 µl reaction mixture was set up on ice with 5 µl 10x buffer mixed with 2.5 µl BamHI or 

BamHI
HF

 and 2.5µl NotI or NotI
HF

. A total of 1 µg DNA was diluted with 39 µl of sterile 

water. The reaction was incubated at 37 
O
C for 16 h for optimal digestion. The digested 

fragments were verified by agarose gel electrophoresis (see section 3.2.4) and purified by gel 

extraction (see section 3.2.5) 

 

3.2.7 Ethanol/EDTA Precipitation of DNA  

 

Ethanol/EDTA precipitation is a method used to purify and concentrate DNA or RNA. 

Ethanol precipitation allows contaminants to be removed along with excess liquid while the 

DNA will precipitate and form a solid pellet at the bottom of the tube. EDTA helps to 

stabilize DNA during precipitation.  Ethanol precipitation is a recommended DNA cleaning 

method used to obtain material that has sufficient quality for further manipulations and that 

gives high quality and consistent signals in sequencing (see section 3.2.10).  

 

Materials 

- 125 mM EDTA 

- 96% (v/v) ethanol 

- 70 % (v/v) ethanol 

 

Procedure 

For precipitation, 20 µl of DNA solution were transferred to sterile 1.5 ml eppendorf tubes. 

Precipitation of DNA was accomplished by adding 2µl 125 mM EDTA and 62.5 µl 96 % 

ethanol, followed by incubation at room temperature for 15 minutes. After incubation, the 

precipitate was pelleted by centrifugation at 16,000 rpm, 4 
o
C for 30 minutes. The ethanol and 

EDTA mixture was then removed by vacuum suction. In order to wash the DNA pellet, 60 µl 
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70 % ethanol was added followed by centrifugation at 16,000 rpm, 4 
o
C for 15 minutes. After 

centrifugation, the ethanol was immediately removed. To dry the DNA, the eppendorf tubes 

were left open in an activated laminar flow cabinet for 30 minutes. 

 

3.2.8 Cloning  

3.2.8.1 Cloning of Jden1381-gene fragments into pUCBB-eGFP  

Double-restriction digests of Jden1381 variants and the pUCBB-eGFP expression vector were 

performed in order to obtain fragments with cohesive ends (see section 3.2.6). For ligating the 

Jden1381 variants into pUCBB-eGFP vectors a T4 DNA ligase kit (Invitrogen) was used. T4 

DNA ligase is an enzyme that catalyzes formation of phosphodiester bonds between double-

stranded DNA ends with 3’-hydroxyl and  ’-phosphate termini. This reaction requires the 

presence of ATP. The T4 DNA ligase kit contains T4 DNA ligase reaction buffer that 

supplies ATP and stabilizes the ligation reaction. To achieve optimal ligation, the molar ratio 

of insert vs. vector in the reactions was approximately 3:1. The cloning of Jden1381variants 

in pUCBB-eGFP vector was designed so that they are incorporated right after BamHI 

recognition site that is located 39 bp downstream from the lac_promoter. Schematic 

illustration of the cloning steps of Jden1381 into pUCBB-eGFP vector is shown in Appendix 

I. 

Materials  

  pUCBB-eGFP restriction digested vector 

 Jden1381 restriction digested insert 

 T4 DNA ligase kit (Invitrogen) 

- T4 DNA ligase (5U/µl) 

- 5 x T4 DNA ligase reaction buffer  

 Sterile dH2O 

Procedure 

Reactions, 20 µl were set up according to Table 3.10 and incubated for 24 hours at 16
°
C.  The 

DNA ligase was subsequently inactivated by incubating the reactions at 65
°
C for 10 minutes. 
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Table 3.10. Reaction set up for cloning of Jden1381 variants into pUCBB-eGFP expression vector. 

Reaction Component Cloning Reaction Negative Control 

Restriction digested Jden1381 

variants 

5.5 µl (248ng of 

Jden1381fl, 67ng of 

Jden1381-LPMO, 95ng of 

Jden1381-LPMO-

CBM5/12, 41 ng of 

Jden1381-CBM5/12, 184ng 

of Jden1381-CBM5/12-

GH18 and 145.5 ng of 

Jden1381- GH18) 

- 

Linearized vector, pUCBB-

eGFP 

4 µl (100 ng) 4 µl 

5 x T4 DNA ligase reaction 

buffer 

2 µl 5 µl 

T4 DNA ligase 1.5 µl 2 µl 

Nuclease-free dH2O 7 µl 13,5 µl 

 

 

3.2.8.2 Cloning of Jden1381-full length into pET32b  

The pET-32b expression vector is designed for high level protein expression. The vector 

allows constructs where the protein of interest is expressed with a 109-residue N-terminal 

theoredoxin tag (Trx.Tag
TM

) followed by a His-tag. The Trx.Tag coding sequence is located 

89bp downstream from a T7 promoter and is following by a 6-residue His tag starting 21bp 

down stream from the TRX.Tag. Following the His tag (93 bp downstream) there is an 

enterokinase cleavage site. The intention for cloning Jden1381 in pET-32b was to utilize the 

beneficial effect of the TRX.Tag on protein expression and solubility, the N-terminal His tag 

for one step protein purification and the enterokinase cleavage site for cleavage of the enzyme 

to obtain mature protein. The pET-32b vector map is shown in Appendix C. 

Mature full-length Jden1381 has an N-terminal LPMO. Since residue number 1 of the mature 

protein is a catalytically crucial conserved histidine (Westereng et al., 2011) the cloning of 

Jden1381full length in pET-32b was designed so that cleavage of the enterokinase site would 

lead to the mature protein starting with this histidine, i.e.,His32 (this means the signal peptide 

of the protein was not included). The sequence around the cleavage site looks like this (arrow 

indicates cleavage site):  
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  ….. GACGACGACGACAAG CATGGTTGGGTG…… 

         Asp  Asp   Asp  Asp Lys    His   Gly  Trp  Val  

Cloning of Jden1381 into pET32b expression vector was done using the Gibson Assembly 

strategy. Gibson Assembly is a one step enzyme dependent DNA assembly developed by Dr. 

Daniel Gibson in 2009 (Gibson, D. et al. 2009 & 2011). Gibson assembly requires the 

presence of three enzymes, a  ’ exonuclease, a DNA ligase and a DNA polymerase. The 

principle is shown in Figure 3.1.  In this study, the Gibson method was slightly modified 

based on previous experiences; i.e, in order to increase amount of DNA, the ratio of DNA to 

Gibson reaction mix (see below) used in this study was 1:1 whereas the original Gibson 

protocol suggests 1:3 ratio (Dr. Soojin Yeom, personal communication). Both pET32b and the 

Jden1381 fragment had previously been linearized by running a PCR amplification and 

overlapping sequence had been incorporated on both the 3’ and  ’ ends of the vector and the 

gene, using specifically designed primers (see Table 2.2 & 2.3 & section 3.2.3.1). The PCR 

products were treated with DpnI in order to remove the parental DNA (discussed in section 

3.2.6) and purified by DNA Gel extraction (see section 3.2.5).  

 

  

Fig 3.1. Principle of Gibson assembly. The gene and the vector are amplified with primers containing 25-27 

nucleotides of overlapping sequence introduced at the  ’ ends of the primers. The amplified and linearized 

dsDNA will be digested from their  ’ ends by  ’ exonucleases, thereby enhancing annealing of overlapping 

sequences of the vector and the gene. A DNA polymerase extends the sequences and closes the gaps while DNA 

ligase seals nicks and complete the cloning process. Note that construction of a vector involves two such 
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ligations; both fragments have overlapping extensions at both ends. (Source: New England Biolabs Japan; 

http://www.nebj.jp/products/detail/1238)   

 

Materials  

 Isothermal buffer (5x) 

- 1M Tris-HCl pH 7.5 (3 ml) 

- 2M MgCl2 (150 µl) 

- 100 mM dGTP (60 µl) 

- 100 mM dATP (60 µl) 

- 100 mM dTTP (60 µl) 

- 100 mM dCTP (60 µl) 

- 1M DTT (300 µl) 

- PEG-8000 (1.5 g) 

- 100 mM NAD (300µl) 

 

Gibson Master Mix 

The composition of the Gibson Master Mix is shown in Table 3.11.  

Table 3.11. Components and amount of Gibson Assembly master mix  

Component  Amount 

5x Isothermal Buffer  

 

2µl 

0.1U/µl T5 Exonuclease 0.4 µl 

 

Taq DNA Ligase 1µl 

 

Phusion Taq polymerase 0.125µl 

 

Procedure 

After  preparation of the appropriate solutions (Table 3.11 & 3.12) for Gibson assembly they 

were stored in aliquots of 3.5 µl at -80 
o
C in PCR tubes. One reaction tube was thawed on ice 

and a total volume of 6.5µl containing equimolar amounts of the to-be ligated DNA fragments 
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(10 ng for pET32b and 3.27 ng for Jden1381) was added. After mixing, the tubes were 

immediately placed in thermocycler and incubated at 37 
O
C for 5 minutes followed by 

incubation at 50 
o
C for 1 hour.  Subsequently, the reaction mixture was immediately 

transformed to Escherichia coli T7 express C2566H electro-competent cells (NEB) (see 

section 3.2.13.2). 

 

3.2.9 Competent cells for transformation  

Competent cells have the ability to take up foreign DNA. There are two main types of 

competent cells, chemically competent and electro-competent cells. These two types of cells 

differ in their transformation efficiency, which is expressed as the number of transformants 

per microgram of plasmid DNA. The most commonly used strain for transformation is E. coli. 

Chemically competent cells are treated with CaCl2 in order to facilitate attachment of plasmid 

DNA to the cell membrane. To open the cell membrane and allow entrance of plasmid DNA, 

the cells are given a heat-shock.  

Rapidly growing cells (those on log phase) are made competent easier than cells in other 

growth stage. Electro competent cells are prepared from cells which are brought to the log 

phase. Transformation into electro-competent cells is facilitated by creating pores in the cells 

with an electrical pulse. Both transformation techniques include a cell recovery step after the 

actual transformation. A common medium used for post transformational recovery is Super 

Optimal Broth (SOC) medium.    

 

3.2.9.1 Chemical transformation in E. coli competent cells    

Materials 

 Super Optimal Broth (SOC) medium 

- 20g Bacto Tryptone 

- 5g Bacto Yeast Extract  

- 2ml of 5M NaCl. 

- 2.5ml of 1M KCl. 
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- 10ml of 1M MgCl2  

- 10ml of 1M MgSO4  

All chemicals were dissolved in or mixed with dH2O to a total volume of 900 ml before 

autoclaving. After cooling to room temperature 10 ml of 2 M glucose (sterile filtered) was 

added and the medium was stored at 4
°
C. 

 OneShot® TOP10 chemically competent E. coli cells (Invitrogen) 

 OneShot® BL21 Star
TM

 (DE3) chemically competent E. coli cells (Invitrogen) 

 JM109 chemically competent E. coli cells (Stratagene) 

 XL1-blue chemically competent E. coli cells (Agilent) 

 Rosetta 
TM

  chemically competent E. coli cells (Merck Millipore) 

JM109 and OneShot® TOP10 chemically competent E. coli cells were used for plasmid 

amplification of pUCBB-eGFP and pRSET-B respectively. OneShot® BL21 Star (DE3) 

chemically competent E. coli cells were used for periplasmic expression of Jden1381 variants 

and the  R212A, D214A, S215A and E217A mutants of CelS2, while E. coli XL1- blue cells 

were used for expressing the  F219A and F219Y mutants of CelS2.  

For transformation, a 2.5 µl ligation-mixture was added to 25 µl competent cells in sterile cell 

culturing tubes followed by incubation on ice for 30 minutes. After a heat-shock at 42
°
C for 

30 seconds the cells were cooled on ice for 1 minute. For cell recovery, 250 µl SOC medium 

heated to room temperature was added and the transformation mixture was incubated for 1 

hour at 37
°
C with shaking at 220 rpm.   Following centrifugation at 4000 rpm for 5 minutes, 

the cells were resuspended in 100 µl SOC medium and spread out on preheated LB-agar 

plates supplied with ampicillin.  After overnight incubation of the plates at 37
°
C, pre-cultures 

of clones were made by inoculation of small liquid with transformants.  Glycerol stocks of the 

transformed cells were made according to section 3.1.3. 

To verify that the transformation was successful, PCR reactions using GoTaq Green DNA 

Polymerase Master Mix and appropriate primer sets were set up according to section 3.2.3.4.   
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3.2.9.2 Plasmid transformation by electroporation   

 

Material 

 SOC medium (see 3.11.1) 

 T7 express (C2566H) electro competent E. coli (discussed above) 

 

Procedure 

 

T7 express (C2566H) electro competent E. coli cells were used for maintaining 

pET32/Jden1381 constructs. (3.2.3.2)  For transformation of the Gibson-assembled DNA, 10 

µl of cloned gene was mixed with 25 µl T7 express competent E. coli cells in a sterile 2 mm 

gap electroporation cuvette (Bio-Rad) and incubated for 5 minutes. Transformation was 

enhanced by using a Micopulser (Bio-Rad) giving 2kV for 5.4 milliseconds.  Control cells, 

without added plasmid, were treated in the same way.   After the pulse, 250 µl SOC medium 

was gently mixed and the cells followed by incubation at 37 
o
C for 1 hour with shaking at 220 

rpm.   Following centrifugation at 4000 rpm for 5 minutes, the cells were resuspended in 100 

µl SOC medium and spread out on preheated LB-agar plates supplied with ampicillin.  After 

overnight incubation at 37
°
C, pre-cultures of clones were made by inoculation of overnight 

liquid cultures with transformants.  Glycerol stocks of the transformed cells were made 

according to section 3.1.3.  

 

To verify that the transformations were successful, PCR reactions were set up using GoTaq 

Green DNA Polymerase Master Mix and appropriate primers, according to section 3.2.3.4.  

The primers used are described in Table 2.2 &2.3.   

 

3.2.10 DNA sequencing   

The success of the mutagenesis reactions according to section 3.2.3.3 was verified by 

sequencing the complete gene for every CelS2 mutant. In addition, all Jden1381 fragments 

prepared for cloning according to section 3.2.3.1 and 3.2.3.2 were sequenced to check for the 

introduction of undesirable mutations. For all mutants of CelS2 the in-house sequencing 

service was used. Sequencing reactions were prepared using the BigDye® Terminator v3.2 
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Cycle Sequencing Kit (Applied Biosystems) and especially designed sequencing primers (see 

Table 2.2).  For all Jden1381 variants, the plasmids were sent to ACGT (including sequencing 

primers) INC (www.acgtinc.com) for sequencing. All data analysis of sequences was 

performed using the GENtle software suite for sequence analysis (Manske 2003). 

BigDye® Terminator v3.1 Sequencing PCR 

During DNA sequencing by chain-termination, the same principle as for PCR is used, only 

with the addition of dideoxynucleotides (ddNTPs).  ddNTPs lack the 3’ hydroxyl group and 

addition of a ddNTP instead of a dNTP to the growing DNA strand results in termination of 

the elongation.  The four different ddNTPs have different fluorescent tags, absorbing light at 

different wave-lengths.  After amplification, every base from the DNA-strand can be 

visualized by separating all possible sequence lengths and measuring the fluorescence for 

each amplicon. An ABI Prism 3100- genetic analyzer and the BigDye® Terminator Cycle 

Sequencing Kit v3.1were used for dye terminator sequencing.    

Materials 

 pRSET-B plasmids harboring CelS2 mutants  

 BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) 

 Ready Reaction Premix 

 BigDye Terminator v1.1/3.1 Sequencing Buffer (5x) 

 Sequencing primers (See Table 2.2 & 2.3)  

 dH2O 

For each plasmid, two reactions were set up for sequencing, one with the forward pRSET-B-

primer and one with the reverse pRSET-B-primer.  Both reactions were set up on ice in 0.2 ml 

PCR tubes according to Table 3.12.  The reaction tubes were placed in a Master cycler 

gradient 120V (Eppendorf) and the PCR reactions were carried out using settings shown in 

Table 3.13. 

Table 3.12. Reaction mixture for DNA sequencing. 

Reagent Quantity 

Template 250 ng 

Primer 3.2 pmol 

BigDye Sequencing Buffer 2 µl 

dH2O To a final reaction volume of 20 µl 

Ready Reaction Premix 1 µl 

http://www.acgtinc.com/
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Table 3.13. Thermal cycling conditions for DNA sequencing. 

Reaction step Temperature Time 

(minutes:seconds) 

Number of cycles 

Initial Denaturation 96
°
C 1:00 1 

Denaturation 96
°
C 0:10 

25 Annealing 50
°
C 0:05 

Elongation 60
°
C 4:00 

 

 

 

 

3.3 Protein Expression 

  

3.3.1  Cultivation of BL21 (DE3) cells for optimal expression 

For optimal expression of  E. coli BL21 Star™ (DE3) strains encoding each of the CelS2-N 

mutants and each of the Jden1381 variants, were cultivated in different media (LB, TB, BHI 

and M9 section 3.1.1 and Table 3.1), and different cultivation conditions (temperature and 

length of cultivation) were tested.   

3.3.2 Stimulation of transcription by IPTG induction  

Transcription of the gene of interest in pET32b constructs is controlled by the strong phage 

T7 promoter that drives transcription of downstream genes (see map in Appendix C).  The T7 

promoter is transcribed by T7 RNA polymerase and the transcription of this polymerase is 

controlled by an isopropyl β-D-thiogalactoside (IPTG)-inducible promoter.  Therefore, for 

optimal expression of the inserted gene, T7 RNA polymerase production was induced by 

addition of 0.4 mM IPTG.   

Materials 

 1 M IPTG, sterile filtered 

  

Procedure 

5 ml overnight culture was transferred to a culture flask containing 300 ml medium 

supplemented with 50 µg/ml ampicillin, followed by incubation at 37
°
C with shaking at 220 

rpm until the OD600 reached 0.6.  OD600 was measured using Biophotometer (Eppendorf).  
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Then, gene expression was induced by adding IPTG to a final concentration of 0.4 mM. After 

cultivation for 4 more hours, the culture was harvested and a cytoplasmic extract was made 

according to section 3.4.2 

In the pRSET-B vector gene expression is also supposed to be controlled by the T7 RNA 

polymerase promoter (see map in Appendix D). However, due to the leakiness of the 

promoter, the pRSET-B vectors did not require IPTG induction for expressing the CelS2 

mutants.   

 

3.4 Protein extraction  

3.4.1 Periplasmic extracts of E. coli  

The CelS2-encoding gene was previously cloned into pRSET-B where it was linked to the 

signal peptide of CBP21 in order to enhance translocation of the LPMO to the periplasmic 

space. (Forsberg et al., 2011)  The Jden1381 variants were cloned into pUCBB-eGFP vector 

as described in section 3.2.8.1 These cloned Jden1381 variants carry their native signal 

peptide. These signal peptide drive the translocation of all expressed LPMOs to the 

periplasmic space in E. coli and the LPMOs can thus be extracted by lysing the cells’ outer 

membranes using cold osmotic shock, as described below. (Nb. This applies to all proteins in 

this study, except the full length Jden1381 cloned in pET32b that lack signal peptide (see 

section 3.2.8.2)  

Materials 

 Spheroplast buffer:  

- 50 µl 0.5 M EDTA, pH 8.0  

- ml 1 M Tris, pH 8.0 

- 8.55 g sucrose 

- 125 µl 50 mM PMSF  

- All ingredients were carefully mixed and dissolved in dH2O to a final volume of 50 

ml, and kept on ice. 

 Sterile dH2O 

 20 mM MgCl2 
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Procedure 

150 ml overnight culture was transferred to 250 ml centrifuge bottles and incubated on ice for 

20 minutes before centrifuging at 5500 x g for 10 minutes, using a Beckman coulter Avanti J-

25 centrifuge with a JA-14 rotor, at 4
°
C.  After centrifugation the pellet was resuspended in 15 

ml ice-cold spheroplast buffer and kept on ice for 5 minutes.  After another centrifugation, 

this time at 10,000 x g, the pellet was resuspended in 12.5 ml ice-cold dH2O and left on ice 

for 45 seconds. 625 µl 20 mM MgCl2 was then added to the suspension, followed by another 

centrifugation as above.  The final supernatant, the periplasmic extract, was filtered through a 

0.22 µm sterile filter and stored at 4
°
C. 

3.4.2 Cytoplasmic extract of E. coli 

The full length Jden1381 gene was cloned into the pET32b expression vector without its 

signal peptide and transformed to E. coli BL21 (DE3) cells for expression (see section 

3.2.9.1). Due to the lack of signal peptide, the expressed protein will be located in the 

cytoplasm of E. coli BL21 (DE3) cells and can be extracted by disrupting the cells. In this 

study BugBaster®Protein Extraction Reagent (Novagene®) was used for preparing 

cytoplasmic extracts.  

Material 

 BugBuster® Protein Extraction Reagent (Novagen®) 

 

Procedure  

50 ml overnight culture was transferred to 250 ml a centrifuge bottle and incubated on ice for 

20 minutes before centrifuging at 8000 x g for 10 minutes, using a Beckman Coulter Avanti J-

25 centrifuge with a JA-14 rotor, at 4
°
C.  For cell lysis, the pellet was resuspended in 5 ml of 

BugBuster® Protein Extraction Reagent and incubated on ice for 10 minutes. For checking 

protein expression in the whole cell lysate, an aliquot was kept aside. The remaining cell 

lysate was spun down as before and the supernatant that contains the released proteins was 

filtered through a 0.22µl µm sterile filter and stored at 4
°
C. 
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3.5 Protein purification 

For protein characterization it is important to work with purified proteins.  In this study, 

different techniques for protein separation and purification were used, depending on the 

protein. The successfully expressed, CelS2 mutants (R212A, S215A, F219A and F219Y) and, 

the Jden1381 variants (the N-terminal single domain Jden1381-LPMO and the N-terminal 

double domain Jden1381-LPMO-CBM5/12 were purified by a combination of ion exchange 

chromatography and gel-filtration. The 6xHis-tagged variants; the C-terminal 6xHis tagged 

N-terminal single domain Jden1381-LPMO and the C-terminal 6xHis-tagged N-terminal 

double domain Jden1381-LPMO-CBM5/12_C-His6 were purified by the use of a His-trap 

column. See Table 3.5, below, for a closer description of the various Jden1381 variants. 

3.5.1 Ion-Exchange Chromatography 

Ionic exchange chromatography (see section 1.11.1) is frequently used for purification of 

proteins, polypeptides, nucleic acids and other charged biomolecules. The technique separates 

proteins based on their surface ionic charge using beads modified with positively or 

negatively charged groups.  Proteins with low binding-affinity to the column material are 

washed off the column by using low-salt buffer.  To elute the proteins that bind strongly to the 

column, a high-salt buffer is used.  The salt masks the charged groups on the column material 

allowing the protein to be eluted.  Since each protein has a different charge on the surface, 

proteins are eluted at varying salt concentrations and may thus be separated in different 

elution fractions. This method was used for purification of CelS2 mutants; R212A (pI = 4.41), 

S215A (pI = 4.50), F219A (pI = 4.50) and F219Y (pI = 4.50) and the Jden1381 variants; 

Jden1381-LPMO (pI = 4.57) and Jden1381-LPMO-CBM5/12 (pI = 4.12). 

Materials 

 Periplasmic extract containing CelS2 mutants and Jden1381 variants (12.5 ml)  

- Binding buffer: 50 mM Tris- HCl pH 7.5 

- Elution buffer: 1 M NaCl in 50 mM Tris- HCl pH 7.5 

All buffers were filtrated through a 0.45 µm sterile- filter (Millipore) 

 10 mM Tris-HCl pH 7.5 

Procedure 

The ion exchange column, HiTrap™ DEAE FF,   ml (GE Healthcare), was connected to an 

Äkta purifier chromatographic system (GE Healthcare), a fully automated liquid 



Methods 

71 
 

chromatography system, and washed with elution buffer, to remove any contamination on the 

column, and then equilibrated using the binding buffer.  The purification steps used in this 

study varied slightly from time to time depending on the amount of protein prepared for 

purification or on the gradient of elution buffer.  

The pH of the sample was adjusted to 7.5 by adding 37.5 ml of 50 mM Tris-HCl and the 

sample (50 ml) was loaded onto the column.  Unbound proteins were eluted over 

approximately 25 minutes (2 column volumes) at 4ml/min flow rate. The protein of interest 

was eluted by a gradient from 0 % to 50 % elution buffer, over approximately 10-15 minutes 

at 4 ml/min flow rate.  Eluted proteins were detected by online monitoring of absorption at 

280 nm and collected using a fraction collector (approximately 3 ml per fraction). Fractions 

were analyzed using SDS-PAGE (see section 3.7). Fractions containing the (partially purified) 

protein of interest were pooled and concentrated to 1 ml using Amicon Ultra-15 Centrifugal 

Filter Units with a 3 kDa cut-off cellulose membrane (Millipore), while at the same time 

changing the buffer to 10 mM Tris-HCl pH 7.5 (see section 3.6.1). Further purification was 

done using size exclusion chromatography (see section 3.5.2).  See Fig. 18a & Appendix J; 

Fig. J-1 & J-2 for examples of obtained chromatograms. 

3.5.2 Size Exclusion Chromatography (SEC) 

Size exclusion chromatography separates proteins on the basis of size and shape.  The column 

matrix is composed of beads with pores in different sizes, where small proteins enter all the 

pores, thereby using longer time passing through the column and eluting after the larger 

proteins.  See section 1.11.2 for more details. 

 

Materials 

 Running buffer (50 mM Tris-HCl, pH 7.5; 200 mM NaCl): 

50 ml 1 M Tris-HCl, pH  8.0 

11.6 g NaCl 

Dissolved in 900 ml dH2O, regulated to pH 7.5 with 6 M HCl before the volume was 

brought up to 1 liter by addition of dH2O. 
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Procedure 

A HiLoad 16/60 Superdex G-75 column (GE Healthcare) was connected to an Äkta purifier 

chromatographic system (GE Healthcare).  Concentrated protein (1 ml) obtained from the first 

step of purification (ion exchange chromatography; see section 3.5.1) was applied through a 2 

ml loading loop at 0.3 ml/min flow rate, followed by application of 3 column volumes of 

running buffer.  Protein elution was monitored by recording absorbance at 280 nm. The eluate 

was collected in fractions of 5 ml.  Fractions putatively containing the protein of interest were 

analyzed by SDS-PAGE according to section 3.7.  Since the over-expressed proteins yielded a 

highly visible band in the starting material, we considered it sufficient to determine protein 

identity in the chromatographic fractions by comparison with the periplasmic extract. See Fig. 

4.18b & Appendix J; Fig. J-3 for examples of obtained chromatograms.  

3.5.3 Protein purification by immobilized metal ion affinity chromatography  

HisTrap™ HP is a ready-to-use column for preparative purification of His-tagged 

recombinant proteins by immobilized metal ion affinity chromatography (IMAC).  The 

column is pre-packed with charged Ni Sepharose™ High Performance beads.  Histidines form 

complexes with nickel ions and both Jden1381-LPMO_C-His6 and Jden1381-LPMO-

CBM5_C-His6 will bind strongly to the column material.   

Materials 

 Binding buffer (20 mM Tris-HCl, 5 mM imidazole, 250 mM NaCl): 

2.4 g Tris  

0.34g Imidazole 

14.6 g NaCl 

All chemicals were dissolved in dH2O. The pH was adjusted to 7.5 with 6 M HCl, the 

total volume was adjusted to 1 l and the buffer was sterile-filtered through a 0.22 µm 

membrane and degassed by sonication for 30 minutes. 

 Elution buffer (20 mM Tris, 250 mM Imidazole, 250 mM NaCl,): 

17.02 g Imidazole 

14.6 g NaCl 

2.4g Tris  
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All chemicals were dissolved in dH2O.  The pH was adjusted to 7.5 with 6 M HCl, the 

total volume was adjusted to 1 l, and the buffer was sterile-filtered through a 0.22 µm 

membrane and de-gassed by sonication for 30 minutes. 

 Stripping buffer (0,02 mM sodium phosphate, 500 mM NaCl, 50 mM EDTA):   

3.28 g sodium phosphate 

29.2 g NaCl 

100 ml 0.5 M EDTA, pH 8.0 

All ingredients were mixed and dissolved in 500 ml dH2O and the pH was adjusted to 7.4 

with 6 M HCl before dH2O was added to a final volume of 1 liter.  The buffer was sterile-

filtered through a 0.22 µm membrane and degassed by sonication for 30 minutes. 

 dH2O 

 1 M NaCl 

 20 % Ethanol 

 

Procedure 

The pH of the sample (typically 30 ml of binding buffer) was adjusted to 7.5 through a buffer 

exchange with 3 x the sample volume of binding buffer using an Amicon Ultra-15 Centrifugal 

Filter Unit with a 10 kDa cut-off (Millipore).  Prior to loading, the sample was filtered 

through a 0.22 µm filter, to remove any particles that could clog the column. 

A His-Trap™ HP 1 ml (GE Healthcare) pre-packed column was connected to an Äkta purifier 

chromatographic system (GE Healthcare).  The column was prepared for binding by washing 

with 5 column volumes of distilled water before equilibration using 5 column volumes of 

binding buffer.  The sample (approximately 30 ml) was then loaded onto the column and 

binding buffer was run at 4ml/min flow rate.  The binding buffer contained imidazole at a low 

concentration to prevent unspecific binding.  The protein of interest was eluted by applying a 

linear gradient of 20 column volumes from 0% to 100% elution buffer.  His-tagged protein 

was eluted at approximately 10 % of elution buffer and collected in fractions of 1 ml. For 

letting all non-binding proteins had passed through the column, elution and fraction collection 

were continued until the absorbance at 280 nm had reached the baseline. After elution, the 

column was washed with 20 column volumes of 1 M NaCl to remove all bound proteins, 

followed by washing with 20 column volumes of dH2O and application of 20 % ethanol for 

storage. The purified protein was analyzed by SDS-PAGE according to section 3.7 and stored 

at 4°C. See Appendix J; Fig. I-4 for examples of obtained chromatograms. 
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If the column was to be used for purification of other proteins, a “stripping” step was 

performed to remove all bound molecules.  The column was washed with 10 column volumes 

of stripping buffer, followed by 10 column volumes of binding buffer and, finally, 10 column 

volumes of dH2O.  The column was recharged using 0.5 ml 0.1 M NiSO4 solution followed 

by a 5 column volume wash with dH2O and application of 20 % ethanol before storage. 

 

3.6 Protein concentration and concentration measurement  

3.6.1  Protein concentration  

Amicon® Ultra-15centrifugal Filter Unit is used for fast ultra-filtration and protein 

concentration. The device has a capacity for high concentration factors and easy concentrate 

recovery from both dilute and complex protein samples. The device is composed of a cup, a 

filter unit containing cellulose membrane with varied Molecular Weight Cutoff, MWCO and a 

centrifuge tube (for collection of filtrates).  In this study, Amicon® Ultra-15 was used for 

concentrating purified protein and buffer change. 

Materials  

 Amicon®-15 Centrifugal Filter Unit, 10, 000 MWCO (Millipore) 

 Purified protein  

- CelS2 mutants: CelS2R212A, CelS2S215A, CelS2F219A CelS2F219Y,  

- Jden1381 variants: Jden1381-LPMO, Jden1381-LPMO_C-His6, Jden1381-LPMO-

CBM5/12, Jden1381-LPMO-CBM5/12_C-His6 

 Micro-centrifuge -  centrifuge 5430R (eppendorf)  

 10 mM Tris-HCl buffer  

Procedure 

Purified protein was added to Amicon®-15 Unit and the device was spun down at 4500 rcf at 

4
o
C. When buffer change is needed, the filtrate was discarded and 10 mM Tris-HCl was 

added to the purified protein, 3 times every 10 minutes. The processing time was 15-60 

minutes depending on the volume of the sample.  

 



Methods 

75 
 

3.6.2  Concentration measurement 

Quick Start ™ Bradford Protein Assay is a method for determining the concentration of 

proteins in a sample, which is based on the binding of Coomassie Brilliant Blue G-250 dye to 

proteins (Bradford 1976).  When the dye binds to protein it is converted from the cationic 

form (Amax = 470 nm) to the stable unprotonated blue form (Amax = 595 nm), and this change 

can be detected using a spectrophotometer.  Protein concentration is calculated by using a 

standard curve. 

Materials 

 5x Dye Reagent, Protein Assay (BioRad) 

- Commasie Blue G250 (100 mg) 

- 95% ethanol (95%) 

- 85 % phosphoric acid (85%) 

- Distilled water (up to 1 L) 

 Sample buffer:  

- 10 mM Tris-HCl pH pH 8.0  

 BSA Standard protein (2 mg/ml) 

 Polystyrene cuvettes, 1 ml (Brand) 

 Bovine serum albumin (BSA) for calibration 

 Spectrophotometer (eppendorf) 

Procedure 

2 µl of sample was diluted in 798µl sample buffer and mixed with 200 µl 5x Dye Reagent.  

After 5 minutes incubation at room temperature, the sample absorbance at 595 nm was 

measured using spectrophotometer. 

The spectrophotometer, a BioPhotometer from (Eppendorf), was calibrated with a standard 

curve for bovine serum albumin (BSA) with the concentrations 2, 1.5, 1, 0.75, 0.5, 0.25 and 

0.125 mg/ml.  Triplicates of the standards incubated in 5x Dye Reagent for 5 minutes were 

analyzed. 

When measuring samples, a reference containing 800 µl sample buffer was mixed with 200 µl 

5x Dye Reagent and incubated for 5 minutes.  After the photometer was zeroed using the 
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reference, samples were analyzed in triplicates.  Protein concentrations were calculated as the 

mean value of three replicates.    

 

3.7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)  

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is a widely used 

technique for separation of proteins according to their mass.  The addition of anionic 

detergents like SDS or LDS (lithium dodecyl sulphate) and a reducing agent like -

mercaptoethanol (for reducing disulphide bridges) to the sample denatures the protein and 

provides each protein with a uniform negative charge.  The proteins are then separated based 

on size only by using electrophoresis and can be visualized by protein specific staining, e.g. 

with Coomassie brilliant blue.  A molecular marker containing proteins with known masses is 

used to estimate the mass of the sample proteins.   

Materials 

 NuPage® LDS sample buffer 4x (Invitrogen) 

 NuPage Sample reducing agent 10x (Invitrogen) 

 20x MES-SDS Running buffer pH 7.3:  

97.6 g MES 

60.6 g Tris Base 

10 g SDS 

3.0 g EDTA 

All chemicals were dissolved in dH2O and the final volume was adjusted to 500 ml. 

Before use, the buffer was diluted 20 times in dH2O. 

 1x wash solution:  

23.5 ml 85% (w/v) Phosphoric acid  

Diluted in 976.5 ml dH2O 

 1x fixer solution:  

300 ml 96% (v/v) Ethanol 

23.5 ml 85% w/v) Phosphoric acid  

Diluted in dH2O to a final volume of 1 liter 

 Coomassie staining solution:  
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200 ml 96% (v/v) Ethanol 

            117.6 ml 85% (w/v) Phosphoric acid 

           100 g Ammonium sulphate 

           1.2 g Coomassie Brilliant Blue R 250 

All ingredients were dissolved in dH2O to a final volume of 1 L. 

 Bench Mark™ Protein Ladder (Invitrogen) (Appendix K) 

 

Procedure 

To 18 µl protein sample, 2 µl NuPage® LDS sample buffer was added and the sample was 

boiled for 10 minutes.  A NuPage® polyacrylamide gel, Bis-Tris 10 % (Invitrogen) was 

installed in the XCell SureLock™ Mini-Cell Electrophoresis System (Invitrogen) and the 

chamber was filled with 1x MES-SDS running buffer.  In the first well, 5 µl of the protein 

ladder was applied, followed by application of 15 µl of each sample in the remaining wells.  

After running the gel using a Power supply (BioRad) for 35 minutes at 200V, the gel was 

released from the plastic plates and fixed in 1x fixer solution for 1 hour and washed in 1x 

washing solution for 2 x 10 min.  For visualization of proteins, the gel was treated with the 

Coomassie Brilliant Blue R-250 staining solution for 2 hours.  Coomassie blue binds non-

specifically to all proteins.  Destaining of the gel was done by washing in dH2O for 3-5 hours. 

 

3.8 Analysis of enzyme activity  

 

3.8.1 Matrix-Assisted Laser Desorption and Ionization Time of Flight- mass spectroscopy 

(MALDI-TOF MS)  

MALDI-TOF is non-quantitative technique used for determination of the masses of small 

molecules and proteins. MALDI-TOF MS is based on soft ionization and transportation of 

analytes in vacuum by using a laser. Ionized molecules are accelerated by a strong magnet 

field through an analyzer tube which has a mass analyzer in the end; ions are being separated 

based on their mass to charge ratios (m/z). The Time-of- flight (TOF) analyser measures the 

time the ions use to reach the detector, reflecting the molecular mass of the ions.  Smaller ions 

travel at the highest speed (Walsh 2002).  
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The activities of Jden1381-LPMO, Jden1381-LPMO_C-His6, Jden1381-LPMO-CBM5/12 

and Jden1381-LPMO-CBM5/12-C_His6 towards β-chitin were analyzed (qualitatively) using 

MALDI-TOF MS for product analysis. As control CBP21was used as control. The activity of 

Jden1381 variants boosted when copper and ascorbic acid were added, therefore, 1µM copper 

and 1mM ascorbic acid were included in all reactions containing Jden1381 variants 

Materials 

 Matrix:   

- 4.5 mg DHB (2,5-Dihydroxybenzoic acid) 

- 150 µl acetonitrile 

- 350 µl dH2O 

DHB and acetonitrile were mixed thoroughly by vortexing until the DHB was completely 

dissolved; then dH2O was added.  The DHB solution was stored at 4
°
C for no more than a 

week. 

 MALDI target- plate 

 Enzymes; Jden1381-LPMO, Jden1381-LPMO_C-His6, Jden1381-LPMO-CBM5/12,  

Jden1381-LPMO-CBM5/12-C_His6  and CBP21 

 Substrates: β-chitin  

 Buffer: 50 mM Tris-HCl pH 8 

 0.5 mM copper chloride  

 0.1M ascorbic acid  

 MALDI-TOF Mass spectrometer, Ultraflex 

 

Procedure 

All reactions (200 µl), were set up with 1 mM reducing agent, 20 mM buffer, 1µM enzyme 

and  mg/ml β-chitin and  1µM CuCl2 in cryo-tubes. The reaction mixtures were incubated 

horizontally in a shaker for 16 hours but at 37°C and 900 rpm. All reactions were run in 

triplicate. 
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A negative control, i.e. a reaction without added enzyme was set-up to account for the 

presence of chitooligosaccharides in the substrate solution. For a positive control, β-chitin was 

treated with purified CBP21 from Serratia marcescens, in a reaction with 1 mM ascorbic acid 

as reducing agent and 1µM CuCl2 in Tris buffer pH 8 at 37 
o
 C. 

Samples (1 µl) were taken out from each sample and applied to a spot on the pre-cleaned 

MALDI plate and 2 µl of DHB-matrix was applied on top of the sample.  The sample/DHB-

matrix- spot was completely dried by a warm stream of air before the MALDI plate was 

inserted into the MALDI-TOF analyzer.  The software FlexControl version 3.3 was used for 

controlling the system and FlexAnalysis version 3.3 was used for analysis and processing of 

data.  Most samples were analyzed using laser beam intensities between 20% - 30% of 

maximum capacity. 

 

3.8.2 High Performance Liquid Chromatography (HPLC) 

HPLC is a chromatographic technique used for separation, identification, quantification and 

purification of individual compounds from sample mixtures. An HPLC set-up consists of a 

column containing the stationary phase, one or more pumps to drive the mobile phase and the 

samples through the column and a detector. 

The column can contain different stationary phases. The retention time is calculated as the 

time it takes from the sample is injected until the compound is detected. HPLC delivers high 

performance (high resolution) because the systems run at high pressure, which again allows 

the use of stationary phases with very low particle sizes. 

 

3.8.2.1 Analysis of oligomeric products from chitin by UHPLC 

The activity of full length Jden1381 on different chitin substrates was analyzed by examining 

the production of both oxidized and native chito-oligosaccharides.  

Materials 

 Reaction buffer 

- 100 mM Tris-HCl pH 8 

 Reducing agent  
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- 0.1 M ascorbic acid 

 Substrate 

- - chitin, squid pen   

- α-chitin, shrimp  

- Colloidal chitin (produced in house by G. Vaaje-Kolstad according to Shimahara 

et al., 1988) 

 1 mM CuCl2 

 Enzyme: Periplasmic extract from E. coli BL21(DE3) containing full length Jden1381  

 100% (v/v) 5mM H2SO4 

 dH2O 

 Standard solutions containing 200 µM of native DP 1 and 6 (Megazyme). 

 Column: Rezex RFQ-Fast Acid H+ (8%) column, size: 100 x 7.80 mm  

 

Procedure 

Reactions (200 µl) were set up in triplicates in cryo-tubes with 5 mg/ml substrate, 10 µl 

periplasmic extract in 20 mM reaction buffer, with 1 mM ascorbic acid and 1 µM CuCl2. All 

samples were incubated for 16 hrs at 37
°
C with shaking at 990 rpm. After 16 hrs of 

incubation, the insoluble products from all the samples were separated from the soluble 

products by centrifugation at maximum speed and 20µl of the soluble products was 

transferred to a HPLC vial containing 20 µl of 50mM H2SO4 to stop the reaction. A negative 

control was generated by incubating 5 mg/ml all chitin substrates in separate reactions with 10 

µl of periplasmic extract from a BL21 (DE3) transformant harboring the pUCBB/empty 

construct, in a reaction with 1 mM ascorbic acid as reducing agent and 1µM CuCl2
 
in Tris-

HCl buffer pH 8 at 37 
o
 C.   

The samples were analyzed using an UHPLC system equipped with Rezex RFQ-Fast Acid 

H+ (8%) column. The samples were applied to the column by injecting 8 µl and the 

oligosaccharides were separated using 85 
O
C column temperature and a flow rate of 1ml/min. 

A mix of native chito-oligosaccharides with a degree of polymerization (DP) between 1 and 6 

(200 µM of each) was used as standard. The recorded chromatograms were analyzed using 

with Chromeleon 7.0 software. 
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3.8.2.2 Analysis of oxidized oligomeric products from cellulose by HPAEC 

For determination of optimal substrate for CelS2, the activity of CelS2WT was tested on 

Avicel and PASC (see section 2.5). The soluble products, i.e. released oxidized and native 

cello-oligomers were analyzed.  

The activity of CelS2 mutants R212A, S215A, F219A and F219Y on PASC was analyzed by 

examining soluble products. For in depth analysis, the formation of oxidized products 

generated over time by CelS2S215A and CelS2WT on PASC were assessed (See Fig. 4.19 

bellow). For monitoring the time course of product formation from the action CelS2S215A and 

CelS2WT on PASC, soluble products (native and oxidized oligomers), those released to the 

solvent and remain trapped in the solid fraction, were analyzed (for simplicity, here and after, 

the later are referred as “trapped” products). To permit HPAEC analysis and quantification of 

the products, both products generated by the CelS2 variants were further degraded with 

Cel5A, an endoglucanase from Thermobifida fusca (Jung et al., 2001) 

The addition of copper to the reaction containing CelS2 variants, decreased activity. 

Therefore, further analyses of CelS2 were made without addition of copper.  

Materials 

 Reaction buffer 

- 50 mM Bis-Tris pH 6.5  

 Reducing agents  

- 0.1 mM ascorbic acid 

 30 mM EDTA 

 Other reducing agents used for optimization 

- 0.1 M L-Reduced glutathione 

- 0.1 M Gallic acid  

- 0.1 M Gluconic acid  

- 0.1 M D-Glucose amine  

- 0.1 M Tartaric acid 

 Purified enzymes  

- CelS2WT 

- CelS2R212A 
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- CelS2S215A 

- CelS2 F219A  

- CelS2 F219Y 

 

 Substrates (see section 2.5) 

 Column: CarboPac PA1, 2x250 mm  

- Pre column:  CarboPac
TM

 PA1, 2x50 mm  

 HPLC Buffer:  

- Buffer A  0.1 M NaOH (Degassed) 

- Buffer B 0.1M NaOH, 1M NaOAc (Degassed) 

 dH2O 

 Standards: Mixture of (Glc4, Glc5, GlcGlc-ox, Glc2Glc-ox, Glc3Glc-ox), varied 

concentration  

- Native standards were purchased from Megazyme  

- Oxidized standards were prepared by enzymatic (LPMO) degradation.  

 Purified Cel5A from Thermobifida fusca (2.5mg/ml) 

 

Procedure  

For determination of the substrate preference of wild-type CelS2, reactions (200 µl) were set 

up in triplicates in cryo-tubes with 5 mg/ml Avicel or 2 mg/ml PASC, 1 µM enzyme in 20 

mM reaction buffer, with 1 mM ascorbic acid.  All samples were incubated at 50
°
C with 

shaking at 990 rpm. The products generated after 16 h were analyzed by using a Dionex-Bio-

LC equipped with a CarboPac PA1 column as described below. 

 

For analyzing the time course of product formation by CelS2WT and the CelS2S215A mutant, 

reactions (600 µl) were set up in triplicates in cryo-tubes with 2 mg/ml PASC, 1 µM enzyme 

in 20 mM buffer, with 1 mM ascorbic acid in 20 mM Bis-Tris PH6.5.  All samples were 

incubated at 50
°
C with shaking at 990 rpm. At appropriate times, 30 µl samples were taken by 

transferring 30 µl of the reaction to sample tubes that were centrifuged at maximum speed. 

The supernatant (containing the soluble products) was separated from the pellet (containing 

the trapped products). Before HPAEC, Cel5A was added to both the supernatant and the 

pellet (resuspended in 30 µl of 20 mM buffer containing 1µl of 30 mM EDTA) for 
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depolymerization of all poly- and oligosaccharides present. The final concentration of Cel5A 

used for soluble and trapped products was 8µMand 16 µM respectively. The reaction 

mixtures for the soluble products were incubated for 30 minutes at 50
°
C with shaking at 990 

rpm, while reactions for the trapped products were incubated at similar conditions for 16 hrs. 

The reaction of Cel5A was stopped by adding 41µl 0.1M NaOH and the products were 

analyzed by using a Dionex-Bio-LC system equipped with a CarboPac PA1 column. The 

amount of sample applied to the column was 2.0µl and application was done using a flow rate 

of 0.25 ml/min with 0.1 M NaOH at a column temperature of 30 
o
C. Cello-oligosaccharides 

were eluted at flow rate of 0.25 ml/min at a column temperature of 30 
o
C by applying a 

stepwise linear gradient with increasing amounts of sodium acetate (NaOAc) by changing 

from 0.1M NaOH to 0.1M NaOH/0.1M NaOAc in 10 minutes, then to 0.1 M 

NaOH/0.3MNaOAc in 35 minutes following by 0.1M NaOH and 1.0M NaOAc in 40 minutes. 

Before application of the next sample, the column was reconditioned with 0.1 M NaOH for 9 

minutes. Eluted cello-oligosaccharides were monitored using an electrochemical detector (ED 

1) equipped with a disposable gold (Au) working electrode, silver /silver chloride (Ag/AgCl) 

reference electrode and a titanium auxiliary electrode (http://www.dionex.com). Both running 

and elution buffers were degassed for 15 minutes and kept under pressure (N2, approximately 

5 psi) to prevent adsorption of atmospheric carbondioxide. The recorded chromatograms were 

analyzed using Chromeleon 7.0. 

A negative control, i.e. a reaction without added enzyme was set-up to account for the 

presence of cellulose oligomers in the substrates. For a positive control, PASC (2mg/ml) or 

Avicel (5mg/ml) were treated with purified CelS2WT (1µM) with 1 mM ascorbic acid as 

reducing agent in 20 mM Bis-Tris pH 6.5. Both the positive and negative controls were 

incubated at 50
°
C with shaking at 990 rpm. Both control samples were incubated for 

corresponding incubation times as the main samples. For accuracy of data analysis, reaction 

buffer was run as blank and any noise resulted from the buffer were subtracted from the main 

peaks (those generated from chitooligosaccharides).  

 

3.9 Bioinformatics methods  

All genomic and proteomic computational analyses were done by using publicly available 

bioinformatics tools. Table 3.10 show a list of bioinformatics tools used in this study. 
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Table 3.14. Overview of bioinformatic tool used in this study.  

Bioinformatics tools Purpose Web address 

Expasy ProtParam To compute the 

physical and chemical 

parameters of CelS2 

and Jden1381 

http://web.expasy.org/protparam/ 

CAZy For annotation of 

carbohydrate active 

proteins 

http://www.uniprot.org/ 

pfam For annotation of 

domain structures of 

Cels2 and Jden1381 

http://pfam.sanger.ac.uk// 

Expasy SwissModel For structural 

prediction of CelS2 

http://swissmodel.expasy.org/ 

T-coffee server For sequence alignment 

of CelS2 with 

homologous LPMOs 

http://www.ebi.ac.uk/Tools/msa/tcoffee 

ClustalW For sequence alignment 

of CBP21 and the 

LPMO domain of 

Jden1381 

http://www.ebi.ac.uk/Tools/msa/clustalw 

http://web.expasy.org/protparam/
http://pfam.sanger.ac.uk/
http://swissmodel.expasy.org/
http://www.ebi.ac.uk/Tools/msa/tcoffee
http://www.ebi.ac.uk/Tools/msa/clustalw
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4 RESULTS 

4.1 Bioinformatic analysis of CelS2 and Jden1381 

4.1.1 Domain structure and physiochemical properties 

CelS2 is one of the seven putative CBM33-type LPMOs encoded in the genome of S. 

coelicolor. Analysis of the domain structure of the enzyme using the Pfam database 

(www.pfam.org) showed that it consists of a signal peptide, an N-terminal CBM33-type 

LPMO domain and a C-terminal CBM2 cellulose binding domain (Fig 4.1A). Jden1381 

encoded in the genome of J. denitrificans contains signal peptide followed by a CBM33-type 

LPMO domain, a CBM5/12 chitin binding domain and a GH18 chitinase domain (Fig 4.1B). 

The amino acid sequences of CelS2 and Jden1381 are shown in Appendix L and M 

respectively.  

                      

  

Fig 4.1. Modular structure of CelS2 (A) and Jden1381 (B) Abbreviations: SP, signal peptide; LPMO, Lytic polysaccharide 

monooxygenases (CBM33-type in both cases); CBM2, family 2 carbohydrate binding domain; CBM5/12, family 5 or 12 

carbohydrate binding domain and GH18, family 18 glycoside hydrolase. Nb. The family 5 and 12 CBMs are separated in 

CAZy but are one class in Pfam.  

 

Using the Expasy ProtParam tool the physiochemical properties of the N-terminal LPMO 

domain of CelS2 (CelS2-N), the full length proteins and the truncated variants of Jden1381 

were calculated (Table 4.1).  

 
Table 4.1. Physico-chemical properties of CelS2-N and of Jden1381 variants. The physical and chemical parameters of 

CelS2-N and Jden1381 were computed using the Expasy ProtParam tool. Calculations do not include the signal peptide 

(except for bp), nor possible tags, but only the mature proteins and their truncated forms. Note that all work with CelS2 was 

done with a truncated form of CelS2 comprising only its N-terminal LPMO domain and referred to as CelS2-N (see Fig. 4.1) 

Protein  Uniprot bp Amino acids Mw (kDa) pI 

CelS2-N Q9RJY2 684  

 

1 - 93 21.9 4.48 

Jden1381, full 

length 

C7R4I0 1956 1 - 620 66.3 4.26 

Truncated variants  

Jden1381-LPMO - 522 1 - 142 15.5 4.57 

Jden1381-LPMO-

CBM5/12 

- 831 1 - 245 25.8 4.12 

 A) 

 B) 

http://www.pfam.org/
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CelS2-N from Streptomyces coelicolor 

 

4.1.2 Multiple sequence alignment (MSA) 

The amino acid sequence of 13 bacterial LPMOs were compared with the N-terminal domain 

of CelS2 (Uniprot accession Q9RJY2) in a multiple sequence alignment made using the T-

coffee server (http://www.ebi.ac.uk/Tools/msa/tcoffee) (Fig. 4.2) in order to identify highly 

conserved residues. The sequence alignment shows considerable sequence conservation 

including the histidines responsible for copper binding (Figs. 4.2 and 4.3). Conserved amino 

acids targeted in this study were selected by combination of results from this multiple 

sequence alignment and inspection of a model of the active site of CelS2 obtained using 

homology modeling (see section 4.1.3).  

tr|A4X9B3|A4X9B3_SALTO    MSSYRART-AALLTAATTLLAA-AAV-LTVRSEPAAAHGAAMVPGSRTFL 46  

tr|A8LVV7|A8LVV7_SALAI    MSY-RSRT-AALLTAAATLLVA-VVA-LTARSEPAAAHGAAMVPGSRTFL 45 

tr|B1VNK5|B1VNK5_STRGG    MARR-KKLLTSLVAVLATLLGG-IGL-TLMGQDNAQAHGVTMTPGSRTYL 47 

tr|C4RK97|C4RK97_9ACTO    -----------MLIAAATLAAG-AAT-LVASPNPAAAHGAAMTPGSRTYL 37 

tr|D2BFT3|D2BFT3_STRRD    MSKWR-SI--AVAAA-VALMST-LLA-VVLVPGQASAHGAMMVPGSRTFF 44 

tr|D5ZX22|D5ZX22_9ACTO    MTLR-SRF-VSLAAVLATLLGG-LGL-SFLWQNNAQAHGVAMVPGSRTYL 46 

tr|D6ESG8|D6ESG8_STRLI    MVRR-TRL-LTLAAVLATLLGS-LGVTLLLGQGRAEAHGVAMMPGSRTYL 47 

tr|D6Y7U3|D6Y7U3_THEBD    MGRLRRSTSKTTVSISAAALAA-LVA-SVLPSSPAAAHGAMMMPGSRTYL 48 

tr|D8I1M0|D8I1M0_AMYMU    MTR-R-RS--TILAAVTVLLAS-LTA-ILLNTGTAEAHGAMMKPGSRTFL 44 

tr|D9T4V8|D9T4V8_MICAI    MHR--SRT-AALLTAAATLALG-AFA-LATNSGPAAAHGAAMTPGARTYL 45 

tr|E4N0M0|E4N0M0_KITSK    MTRR-T-T-PTLLAALATAVAT-LCA-LLVGQPPAQAHGVAVVPGSRTYL 46 

tr|E8W5Y2|E8W5Y2_STRFA    MARG-KRLLVSLTAVFATLLGG-IAL-TLFGQGNAQAHGVTMTPGSRTYL 48 

tr|F4FFD8|F4FFD8_VERMA    MA--------AMFFAAVTLAASAVVA-VTASPDPAAAHGAAMTPGARTYL 42  

tr|Q9RJY2|Q9RJY2_STRCO    MVRR-TRL-LTLAAVLATLLGS-LGVTLLLGQGRAEAHGVAMMPGSRTYL 47 

                                          ..                * ***. : **:**:: 

 

tr|A4X9B3|A4X9B3_SALTO    CWQDGLSPTGEIQPYNPACSAAVDQSGANSLYNWFSVLRSDADGRTVGFI 96 

tr|A8LVV7|A8LVV7_SALAI    CWKDGLTPSGEIQPNNPACSAAVAQSGANSLYNWFSVLRSDADGRTVGFI 95 

tr|B1VNK5|B1VNK5_STRGG    CMLDARTGTGALDPTNPACKAALDESGANALYNWFAVLDSNAGGRGAGYV 97 

tr|C4RK97|C4RK97_9ACTO    CWKDGLAPTGEIKPNNPACSAAVAQNGPNSLYNWFSVLRSDAGGRTVGFI 87 

tr|D2BFT3|D2BFT3_STRRD    CWQDGLSSTGQIIPINPACGAAVAQSGPNSLYNWFSVLRSDGAGRTRGFI 94 

tr|D5ZX22|D5ZX22_9ACTO    CQLDAITGTGALNPTNPACRDALNKSGSSALYNWFAVLDSRAAGRGPGYV 96 

tr|D6ESG8|D6ESG8_STRLI    CQLDAKTGTGALDPTNPACQAALDQSGATALYNWFAVLDSNAGGRGAGYV 97 

tr|D6Y7U3|D6Y7U3_THEBD    CWKDGLTPQGNIVPNNPACAAAVAQSGTNALYNWFAVLRSDGAGRTRGYI 98 

tr|D8I1M0|D8I1M0_AMYMU    CWQDGLSSTGEIKPINPACAAAVGVSGANSLYNWFAVLRSDGAGRTRGFI 94 

tr|D9T4V8|D9T4V8_MICAI    CWKDGLTGTGEIRPNNPACSSAVAANGANSLYNWFSVLRSDAGGRTVGFI 95 

tr|E4N0M0|E4N0M0_KITSK    CYQDGRTSTGALDPTNPACRAALAQSGTTPLYNWFAVLDSNAGGRGQGYV 96 

tr|E8W5Y2|E8W5Y2_STRFA    CWLDAKTSTGSLDPTNPACKAALSESGSNALYNWFAVLDSNAGGRGAGYV 98 

tr|F4FFD8|F4FFD8_VERMA    CWRDGLSPTGEIRPQNPACSAAVAQSGANSLYNWFSVLRSDAGGRTTGFI 92 

tr|Q9RJY2|Q9RJY2_STRCO    CQLDAKTGTGALDPTNPACQAALDQSGATALYNWFAVLDSNAGGRGAGYV 97 

                          *  *. :  * : * ****  *:  .*...*****:** * . **  *:: 

 

tr|A4X9B3|A4X9B3_SALTO    PDGQLCSGGNP---GFLGYDLARIDWPLTHLTAGQNIEFRYSNWAHHPGT 143 

tr|A8LVV7|A8LVV7_SALAI    PDGQLCSGGNP---GFLGYDLARTDWPLTHLTAGRTMEFRYSNWAHHPGT 142 

tr|B1VNK5|B1VNK5_STRGG    PDGTLCSAGDRSPYDFTGYNAPRSDWPRTHLTAGKTIQVKHSNWAAHPGS 147 

tr|C4RK97|C4RK97_9ACTO    PDGKLCSGGNP---GFSGYDAARTDWPLTHLTAGARFDFKYSNWAHHPGT 134 

tr|D2BFT3|D2BFT3_STRRD    PDGQACSGGNP---GYSGFDLPRADWPVTHLTAGAGIQFKYNKWAAHPGW 141 

tr|D5ZX22|D5ZX22_9ACTO    PDGTLCSAGDRSPYDFSAYNAARADWPRTHLTSGATVKVQYSNWAAHPGD 146 

tr|D6ESG8|D6ESG8_STRLI    PDGTLCSAGDRSPYDFSAYNAARSDWPRTHLTSGATIPVEYSNWAAHPGD 147 

tr|D6Y7U3|D6Y7U3_THEBD    PDGKLCSADAK-VYDFSGFDLARDDWPVTHLTAGATIQIRYNMWAHHPGT 148 

tr|D8I1M0|D8I1M0_AMYMU    PDGKLCSGGNP---NYAGFDGV-GAWPLTHLTSGAQFDFSYNAWAAHPGW 140 

tr|D9T4V8|D9T4V8_MICAI    PDGKLCSGGNP---GFSGYDAARNDWPITHLTAGRSMEFRYSNWAHHPGT 142 

tr|E4N0M0|E4N0M0_KITSK    PDGTLCSAGNKSPYDFSAYNAPRDDWPRTHLTAGAAIEVDYSNWAAHPGE 146 

tr|E8W5Y2|E8W5Y2_STRFA    PDGKLCSAGDRSPYNFTGYNAARSDWPRTHLTAGRTIQVKHSNWAAHPGS 148 

tr|F4FFD8|F4FFD8_VERMA    PDGQLCSGGAT---GFRGFDLARDDWPLTHLTAGRTMEFRYSNWAHHPGT 139 

tr|Q9RJY2|Q9RJY2_STRCO    PDGTLCSAGDRSPYDFSAYNAARSDWPRTHLTSGATIPVEYSNWAAHPGD 147 

                          ***  **..     .: .::     ** ****:*  . . :. ** ***  

 

tr|A4X9B3|A4X9B3_SALTO    FYFYVTKDSWSPTRPLAWSDLEEQPFLTVTNPPQRGGPGTDDGHYYFAGT 193 

tr|A8LVV7|A8LVV7_SALAI    FSFYITKDSWSPTRPLAWSDLEEQPFLTVTNPPQRGAVGTNDGHYYFTGT 192 

tr|B1VNK5|B1VNK5_STRGG    FRVYLSKPGYSPSTELGWDDLEL--IETVTDPPQSGGPGTDGGHYYWNLD 195 

tr|C4RK97|C4RK97_9ACTO    FYFYVTKDSWSPTRALAWSDLETQPFLTVTNPPQNGPVGTNEGHYYFSGN 184 

tr|D2BFT3|D2BFT3_STRRD    FYLYVTKDGWNPNQALTWDDLESQPFHTADHPQSVGSPGTNDAHYYWNAT 191 

http://www.ebi.ac.uk/Tools/msa/tcoffee)%20(Fig
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tr|D5ZX22|D5ZX22_9ACTO    FRVYLTKPGWSPTSPLGWNDLEL--IQTVTNPPQQGSPGTNGGHYYWDLK 194 

tr|D6ESG8|D6ESG8_STRLI    FRVYLTKPGWSPTSELGWDDLEL--IQTVTNPPQQGSPGTDGGHYYWDLA 195 

tr|D6Y7U3|D6Y7U3_THEBD    FRLYVTKDSWDPNRPLSWDDLEPTPFSEVTDPPSVGSPGNEDAYYYWNAK 198 

tr|D8I1M0|D8I1M0_AMYMU    FYTYVTKDGWNPNQPLTWDSLEDQPFLTVDHPPVTGQVGTVDGQYKWSGA 190 

tr|D9T4V8|D9T4V8_MICAI    FYFYVTKDSWSPNRPLAWSDLEEQPFLQVTNPPQRGAVGTNDGHYYFTGN 192 

tr|E4N0M0|E4N0M0_KITSK    FRIYLTRQGWSPTTPLAWADLGL--LTTVANPPQVGSPGADGGHYYWNLT 194 

tr|E8W5Y2|E8W5Y2_STRFA    FRVYLSKPGYSPSTELGWDDLEL--IETVTNPPQTGSPGTDGGHYYWNLD 196 

tr|F4FFD8|F4FFD8_VERMA    FYFYVTKNSWSPNRALAWSDLEEQPFLTVTNPPQRGAVGTNDGHYYFTGT 189 

tr|Q9RJY2|Q9RJY2_STRCO    FRVYLTKPGWSPTSELGWDDLEL--IQTVTNPPQQGSPGTDGGHYYWDLA 195 

                          *  *::: .:.*.  * * .*    :  . .*   *  *   . * :    

 

 

tr|A4X9B3|A4X9B3_SALTO    LPADKSGRHLIYSRWVRSDSPENFFGCSDVTFDGGNGEVTGIGPG-GT-- 240 

tr|A8LVV7|A8LVV7_SALAI    LPADKSGRHLIYSRWVRSDSPENFFGCSDVTFDGGNGEVTGVGPG-GT-- 239 

tr|B1VNK5|B1VNK5_STRGG    LPSGRSGDAVMFIQWVRSDSQENFFSCSDIVFDGGNGEVTGIRGS-GG-- 242 

tr|C4RK97|C4RK97_9ACTO    LPSGKSGRHIIYSRWVRSDSQENFFGCSDVTFDGGNGQVTGIGG---T-- 229 

tr|D2BFT3|D2BFT3_STRRD    LPSGKSGRHIIYSVWQRSDSNETFYNCSDVVFDGGNGEVTGVGRP-GP-- 238 

tr|D5ZX22|D5ZX22_9ACTO    LPSGRSGDALIFMQWVRSDSQENFFSCSDIVFDGGNGEVTGIRNP-GG-- 241 

tr|D6ESG8|D6ESG8_STRLI    LPSGRSGDALIFMQWVRSDSQENFFSCSDVVFDGGNGEVTGIRGS-GS-- 242 

tr|D6Y7U3|D6Y7U3_THEBD    LPENKSGRHIIYSIWQRSDSQETFYNCSDVVFDGGNGEVTGIGPGSGG-P 247 

tr|D8I1M0|D8I1M0_AMYMU    LPSNKSGRHIIYSVWKRSDSAETFYGCSDVTFDGGHGEVTGVKDP-GTGT 239 

tr|D9T4V8|D9T4V8_MICAI    LPSNKSGRHIIYSRWVRSDSQENFFGCSDVTFDGGNGEVTGIGSG-GS-- 239 

tr|E4N0M0|E4N0M0_KITSK    LPSGRSGNALVFIQWVRSDSQENFFSCSDVVFDGGHGEVTGIHQP-SA-- 241 

tr|E8W5Y2|E8W5Y2_STRFA    LPSGRSGDAVMFIQWVRSDSQENFFSCSDVVFDGGNGEVTGIRGS-GS-- 243 

tr|F4FFD8|F4FFD8_VERMA    LPANKSGRHIIYSRWVRSDSQENFFGCSDVTFDGGNGEVTGIGNG-GT-- 236 

tr|Q9RJY2|Q9RJY2_STRCO    LPSGRSGDALIFMQWVRSDSQENFFSCSDVVF--------------- -- 227 

                          ** .:**  :::  * **** *.*:.***:.*        

 

Fig 4.2. Multiple sequence alignment of the N-terminal domain of CelS2 with 13 bacterial CBM33-type LPMO 

domains. The degree of residue conservation is indicated under the sequences with: and *, based on standard settings in T-

coffee. Residues marked with * are fully conserved. Two conserved metal binding histidines are highlighted grey. The five 

conserved amino acid that are predicted to be located in the catalytic site of CelS2 (see Fig. 4.4) and that were targeted in the 

present study are highlighted blue. The red rectangle indicates CelS2. Note that the first of the two conserved histidines is 

residue number 1 in the mature, secreted proteins. According to normal practice, residue numbering in this thesis is according 

to this sequence alignment; this means that the mature protein starts with His35.  

 

 

 
 
 

4.1.3 Homology modeling  

The structure of CelS2-N was predicted by using Swiss-model, an automated homology 

modeling server that is accessible via the Expasy web server (http://swissmodel.expasy.org/). 

The CelS2-N structure was predicted using CBP21 (pdb code 2BEM), a chitin-active LPMO 

from Serratia marcescens, as template. A sequence alignment of CelS2 and CBP21 is shown 

in figure 4.3. The overall sequence identity between the two proteins (excluding their signal 

peptides) is 22 %. Because of the low sequence identity and the presence of various large 

insertions and deletions in the sequence alignment (Fig. 4.3) the model of CelS2-N is 

expected to contain major errors. However, the model did produce a plausible active site (with 

several conserved residues), and this part of the model was considered sufficiently reliable for 

further work. 

 

 

http://swissmodel.expasy.org/
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CBP21    MNKTSRTLLSLGLLSAAMFG--------VSQQANAHGYVESPASRAYQCK 42 

CelS2-N  MVRRTRL-LTLAAVLATLLGSLGVTLLLGQGRAEAHGVAMMPGSRTYLCQ 49 

         * : :*  *:*. : *:::*         . :*:*** .  *.**:* *: 

 

CBP21    LQLNTQCGSVQYEPQSVEGLKGFPQAGP---------------------- 70 

CelS2-N  LDAKTGTGAL--DPTNPACQAALDQSGATALYNWFAVLDSNAGGRGAGYV 97 

         *: :*  *::  :* .     .: *:*. 

 

CBP21    ADGHIASADKSTFFELD--QQTPTRWNKLNLKTGPNS-FTWKLTARHSTT 147 

CelS2-N  PDGTLCSAGDRSPYDFSAYNAARSDWPRTHLTSGATIPVEYSNWAAHP-G 116 

         .** :.**.. : :::.  : : : * : :*.:*..  . :.  * *. 

 

CBP21    SWRYFITKPNWDASQPLTRASFDLTPFCQFNDGGAIPAAQV---THQCNI 164 

CelS2-N  DFRVYLTKPGWSPTSELGWDDLELIQTVTNPPQQGSPGTDGGHYYWDLAL 196 

         .:* ::***.*..:. *   .::*          . *.::      :  : 

 

CBP21    PADRSGSHVILAVWDIADTANAFYQAIDVNLSK----------------- 197 

CelS2-N  PSGRSGDALIFMQWVRSDSQENFFSCSDVVF------------------- 227 

         *:.***. :*:  *  :*: : *:.. ** :                    
 

Fig 4.3. Pairwise alignment of CelS2-N and CBP21. The conserved metal binding histidines are highlighted grey. Among 

the five highly conserved residues of CelS2 that were selected for mutation (Fig 4.2) the two that are identical to residues in 

the catalytic site of CBP21 are highlighted green (see Fig. 4.4), whereas the other three residues are highlighted red. 

 

 

Based on the MSA (Fig 4.2), the pairwise alignment of CelS2-N and CBP21 (Fig 4.3) and 

analysis of the predicted CelS2-N structure, the conserved region of the metal binding site 

was mapped for potentially important residues (Fig 4.4).  Five conserved residues (Fig. 4.3) 

located in close vicinity to the metal binding histidines (R212, D214, S215, E217 and F219) 

were selected for site-directed mutagenesis in order to probe their function. Three of these 

otherwise conserved residues differ between chitin-active CBP21 and cellulose active CelS2-

N. Of these, Arg212, which corresponds to Ile180 in CBP21 caught special attention. In 

CBP21 this residue defines the wall of a small “hole” close to the metal binding site (Fig. 5.2) 

The arginine in CelS2-N seems to fill this hole (see Ch. 5 for further Discussion).  
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Fig 4.4. Comparison of CBP21 and CelS2-N active sites. (A) Model of CelS2-N obtained by homology-modelling using 

CBP21 (PDB code 2BEM) as template. (B) Active site of CBP21. The metal binding histidines are labeled and shown as red 

sticks, i.e His35 and His144 for CelS2-N and His28 and His114 for CBP21. The five amino acids selected for mutagenesis in 

CelS2-N and their equivalents in CBP21 are also labeled and shown as sticks with varying colors: Arg 212= blue; Asp214 = 

cyan; Ser215 = pale-green; Glu217 = yellow and Phe219 = purple. The corresponding residues in CBP21 are: Ile180 = 

orange; Asp182 = cyan; Thr183 = pale-green; Asn185 = yellow and Phe187 = purple) The figures were made using PyMOL 

(DeLano, W. L. et al., 2005) 

 

 

 

Jden1381 from Jonesia denitrificans 

 

4.1.4 Sequence alignment 

The two catalytic domains of Jden1381 were aligned with relative enzymes (CBP21 from S. 

marcescens for the LPMO domain and ChiC from S. coelicolor for the GH18 domain; Fig. 

4.5 and 4.6).  Jden1381-LPMO has 32 % sequence identity with CBP21 while Jden1381-

GH18 has 69 % sequence identity with ChiC. The presence of conserved catalytic motifs 

essential for activity (metal binding histidines for the LPMOs and the DXDXE motif 

containing the catalytic glutamate for the GH18 chitinases) was detected in the respective 

Jden1381 domains. 

 

 

 

 

  A)   B) 
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Jden1381-LPMO    HGWVTDPPSRQALCASGETSFDCGQISYEPQSVEAPKG--------ATTC 73 

CBP21            HGYVESPASRAYQCKL-QLNTQCGSVQYEPQSVEGLKGFPQAGPADGHIA 76 

                 **:* .*.**   *   : . :**.:.*******. **        .  . 

 

Jden1381-LPMO    SGGNEAFAILDDNSKP-WPTTEIAS-TVDLTWKLTAPHNTSTWEYFVDG- 120 

CBP21            SADKSTFFELDQQTPTRWNKLNLKTGPNSFTWKLTARHSTTSWRYFITKP 126 

                 *..:.:*  **::: . * . :: : . .:****** *.*::*.**:    

 

Jden1381-LPMO    ------QLHQT---------FDQKGQQPPTSLTHTLTDLP--TGEHTILA 153 

CBP21            NWDASQPLTRASFDLTPFCQFNDGGAIPAAQVTHQCNIPADRSGSHVILA 176 

                        * ::         *:: *  *.:.:**  .  .  :*.*.*** 

 

Jden1381-LPMO    RWNVSNTNNAFYNCMDVVVS------------------------------ 173 

CBP21            VWDIADTANAFYQAIDVNLSK----------------------------- 197 

                  *::::* ****:.:** :*  

Fig. 4.5. Sequence alignment of the Jden1381 LPMO domain and CBP21. The Jden1381 LPMO domain contains several 

large inserts relative to CBP21, but shows strong sequence conservation near the conserved crucial histidines (yellow). Signal 

peptides are not included in the alignment. The alignment was generated by ClustalW2. 
 

 

 

 

 

 

Jden1381-GH18   DTPGTGDERIVGYFTNWGVYGRDYHVKNIKTSGAADHLTHIMYAFGNVQGGKCTIGDAYA 336 

ChiC            -NPGTGAEVKMGYFTNWGVYGRNYHVKNLVTSGSADKITHINYAFGNVQGGKCTIGDSYA 292 

                 .**** *  :***********:*****: ***:**::*** ***************:** 

 

Jden1381-GH18   DYDKAYTAAQSVDGVADTWDQPLRGNFNQLRKLKAEYPHIKVVWSFGGWTWSGGFGQAAQ 396 

ChiC            DYDKAYTADQSVDGVADTWDQPLRGNFNQLRKLKAKYPNIKILYSFGGWTWSGGFPDAVK 352 

                ******** **************************:**:**:::*********** :*.: 

 

Jden1381-GH18   NPEAFAQSCRDLVEDPRWADVFDGIDIDWEYPNACGATCD-TSGRDAYRDLLAALRTEFG 455 

ChiC            NPAAFAKSCHDLVEDPRWADVFDGIDLDWEYPNACGLSCDETSAPNAFSSMMKAMRAEFG 412 

                ** ***:**:****************:********* :** **. :*: .:: *:*:*** 

 

Jden1381-GH18   DD-LVTSAIPADATDGGKIDAANYAGGAEYLDWIMPMSYDYFGAWDKNGPTAPHSPLTSY 514 

ChiC            QDYLITAAVTADGSDGGKIDAADYGEASKYIDWYNVMTYDFFGAWAKNGPTAPHSPLTAY 472 

                :* *:*:*:.**.:********:*. .::*:**   *:**:**** ************:* 

 

Jden1381-GH18   QGIPIQGYDTTSTINKLTGLGIPADKILLGIGFYGRGWTGVTDPTPGSSATGAAPGTYEA 574 

ChiC            DGIPQQGFNTADAMAKFKSKGVPADKLLIGIGFYGRGWTGVTQSAPGGTATGPATGTYEA 532 

                :*** **::*:.:: *:.. *:****:*:*************:.:**.:***.*.***** 

 

Jden1381-GH18   GIEDYKVLAQRCPATGQVAGTSYGFCDGQWWSYDTPQDIIHKMNYANTENLGGAFFWELS 634 

ChiC            GIEDYKVLKNSCPATGTIAGTAYAHCGSNWWSYDTPATIKSKMDWAEQQGLGGAFFWEFS 592 

                ******** : ***** :***:*..*..:*******  *  **::*: :.********:* 

 

Jden1381-GH18   GDTADGDLITAIATGLQ------------------------------------------- 651 

ChiC            GDTTNGELVSAIDSGLK------------------------------------------- 609 

                ***::*:*::** :**: 

 

Fig 4.6. Sequence alignment of the Jden1381-GH18 domain (residues 277 – 651) and ChiC domain (residues 234 - 609) 

from Streptomyces coelicolor. The catalytic DXDXE motif diagnostic for GH18 chitinases is shaded yellow. ChiC from S. 

coelicolor has been shown to be highly up-regulated when S. coelicolor is induced by chitobiose (1Saito 2000) Signal 

peptides and other domains are not included in the alignment. 
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4.1.5 Gene optimization 

The full length Jden1381 gene was codon optimized for expression in E. coli using the 

OptimumGene
TM

 Gene Design software (http://www.genscript.com/codon_opt.html) prior to 

gene synthesis. The sequence identity of the codon optimized gene with the original 

nucleotide sequence is 76 %. Furthermore, the GC- content (Guanine-Cytosine content) of the 

codon optimized gene decreased by 7 % (from 58% to 51 %) compared to the original 

nucleotide sequence (Appendix F). The synthetic gene displayed in Appendix F was used as 

starting point for all Jden1381-constructs. 

 

 

4.2 Mutagenesis, molecular cloning and transformation 

4.2.1  Site Directed Mutagenesis of CelS2  

PCR products for all mutations (see section 3.2.3.3 for details) were analyzed by agarose gel 

before transformation (see Fig 4.7 for examples). Identification of correct transformants and 

introduction of correct mutations were verified by DNA sequencing. Plasmids were isolated 

from four transformants, on average, per mutant for gene sequence verification according to 

section 3.2.1. Gene sequencing confirmed all mutants to be correctly inserted without any 

PCR-generated errors in the sequence. 

  

 

Fig 4.7. Agarose gel showing results of PCR amplifications for site-directed mutagenesis of CelS2. The left lane shows a 

1 Kb DNA ladder. The sizes (bp) of some markers are indicated. The lanes containing the PCR genes are labeled by the type 

of mutant that was made; the lane labeled pWscript shows the result of a control reaction using ingredients supplied with the 

Quick-Change kit. The expected fragment sizes are 4500 bp for pWscript and 3500 bp for D214A and E217A.  
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4.2.2 Gene cloning of Jden1381 and gene truncation  

Expression of Jden1381 variants caused several problems and, therefore, a large series of 

approaches was tested, using different truncations, different tags, different expression systems 

and different host strains. An overview over all successfully constructed expression vectors is 

provided in Table 4.2. A schematic overview over truncated versions of Jden1381 is also 

provided in Fig. 4.8 

 

 

Fig 4.8. Simplified illustration showing the truncated forms of Jden1381 that were generated in this study. The 

constructs labeled 1 – 5 are referred in the main text and in Table 4.2 as:1, Jden1381-LPMO; 2, Jden1381-LPMO-CBM5/12; 

3, Jden1381-CBM5/12; 4, Jden1381-CBM5/12-GH18; 5, Jden1381-GH18. Note that there are linker peptides connecting the 

CBM5/12 domain to the rest of the protein and that these linker peptide, referred to as N-terminal or C-terminal, respectively, 

are included in some of the constructs. 

 

 

Table 4.2. Overview of constructs for expression of Jden1381 variants. For expression all constructs were transformed to 

chemically competent E.coli BL21(DE3). Of the 13 constructs, six expressed as soluble proteins. See also Fig. 4.8 for a 

graphical representation of the truncated Jden1381 variants and Table 3.5 for overview of all expected soluble proteins. 

Constructs Amino 

acids 

Tags SP Soluble protein 

pET32b/Jden1381fl 1 - 626 His6, N-

terminal 

No LPMO-CBM5/12-

GH18 

pUCBB/Jden1381 fl 1-620 No Yes LPMO-CBM5/12-

GH18 

pUCBB/Jden1381fl_C-

His6 

1-626 His6, C-

terminal 

Yes - 

pUCBB/Jden1381-LPMO 1-142 No Yes  LPMO 

pUCBB/Jden1381-

LPMO_C-His6 

1-148 His6, C-

terminal 

 Yes LPMO 

pUCBB/Jden1381-

LPMO-CBM5/12 

1-245 No Yes  LPMO-CBM5/12 

pUCBB/Jden1381-

LPMO-CBM5/12_C-His6 

1-251 His6, C-

terminal 

Yes  LPMO-CBM5/12 

pUCBB/Jden1381-

CBM5/12 

1-103 No No - 

pUCBB/Jden1381-

CBM5/12_C-His6 

1-106 His6, C-

terminal 

No - 
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pUCBB/Jden1381- 

CBM5/12-GH18 

1-478 No  No  - 

pUCBB/Jden1381- 

CBM5/12-GH18_C-His6 

1-484 His6, C-

terminal 

No  - 

pUCBB/Jden1381-GH18 1-375 No No  - 

pUCBB/Jden1381-

GH18_C-His6 

1-381 His6, C-

terminal 

No   - 

 

Since we expected expression and/or purification problems two variants of each truncated 

protein were generated, one with no tag and one with a C-terminal 6xHis tag (indicated by    

“-C-His6” in the construct name). To minimize the chances of misplacing domain borders, 

linker peptides (Fig. 4.8) were generally included in the truncated versions (except for 

Jden1381-LPMO). All methods and strategies used for cloning are described in detail in 

section 3.2.8. Progress in cloning steps was monitored using agarose gel electrophoresis and, 

where appropriate, DNA sequencing. Examples of agarose gel-based verifications of cloning 

steps are shown in Figures 4.9, 4.10 and 4.11. Transformants were usually verified by colony 

PCR (see section 3.2.3.4) and an example of colony PCR verification is shown in Fig. 12. 

 

 

Fig 4.9. Agarose gel electrophoresis of the double restriction digested expression vector pUCBB-eGFP. The left lane 

shows the 1 Kb DNA ladder. The sizes (bp) of some marker fragments are indicated. The vector was digested with BamHI 

and NotI restriction enzymes. The expected sizes of the generated fragments are 2374 bp and 700 bp where the 2374 bp 

fragment represents the vector backbone used for generation of pUCBB/Jden1381fl, pUCBB/Jden1381_C-His6, 

pUCBB/Jden1381-LPMO, pUCBB/Jden1381-LPMO_C-His6, pUCBB/Jden1381-LPMO-CBM5/12, pUCBB/Jden1381-

LPMO-CBM5/12_C-His6, pUCBB/Jden1381-CBM5/12 pUCBB/Jden1381-CBM5/12_C-His6, pUCBB/Jden1381- 

CBM5/12-GH18, pUCBB/Jden1381- CBM5/12-GH18_C-His6, pUCBB/Jden1381-GH18 and pUCBB/Jden1381-GH18_C-

His6 
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Fig 4.10. PCR amplification of the Jden1381gene and pET32b visualized on an 1% agarose gel. These amplifications 

were done for the generation of pET32b/Jden1381 by Gibson assembly (section 3.2.8.2). The left lanes show a 1 kb ladder. 

The sizes (bp) of some marker-fragments are indicated. The left and right gels show PCR products for Jden1381 and 

pET32b, respectively. The expected PCR product sizes are 1956 bp for Jden1381 and 5955 bp for pET32b. 

 

 

 

 

 

Fig 4.11. Agarose (1 %) gel electrophoresis PCR-generated fragments for generation of Jden1381-LPMO-CBM5/12. 

The left lane shows a 1 Kb DNA ladder and the size (bp) of some marker fragments is indicated. The gel shows two 

fragments, one with (left) and one without (right) C- terminal His tag, labeled Jden1381-LPMO-CBM5/12_C-His6 and 

Jden1381-LPMO-CBM5/12, respectively. The expected sizes for these fragments are 831 bp and 849 bp respectively.    

 

 

 

 

Jden1381      pET32b 

1500 bp 

1000 bp 

500 bp 



Results  

95 
 

 

Fig. 4.12. Agarose (1 %) electrophoresis  of products from colony PCR. The pictures show PCR fragments genereated 

according section 3.2.3.4. directly fom selected E.coli transformants putatively containing expression constructs. The left 

lanes show a 1 kb ladder and the sizes (bp) of some marker-fragments are indicated. The left gel demonstrates successful 

construction of the full length Jden1381 (size = 1956 bp; pUCBB/Jden1381) and full length Jden1381 and C-terminally His 

tagged full length Jden1381 (size = 1974 bp; pUCBB/Jden1381_C-His6). The right gel demonstrates construction of 

truncated versions: the left two lanes show two PCR amplifications of the insert in Jden1381-LPMO-CBM5/12 (expected 

size = 831bp) and the right two lanes show PCR amplifications of Jden1381-CBM5/12-GH18 (expected size =1131 bp).  

 

 

4.3 Protein expression and purification 

 

4.3.1  Protein expression of CelS2-N mutants 

All constructs encoding CelS2-N mutants (R212A, D214A, S215A, E217A, F219A and 

F219Y) were transformed into chemically competent E. coli BL21 (DE3) for expression. SDS 

PAGE analysis of periplasmic extracts revealed that E. coli BL21 (DE3) expressing the 

CelS2-N mutants: R212A, S215A, F219A and F219Y produced considerable amounts of 

protein, and that a substantial fraction was soluble (Fig. 4.13a, & 4.15). Furthermore, 

CelS2D214A and CelS2E217A, a product with a ~5 kDa larger size than expected could be 

observed in cell pellets fractions, which most likely is the recombinant protein with an non-

cleaved signal peptide (Fig. 4.13b). The SDS analysis for D214A and E217A (Fig 4.13b) 

revealed that these mutants were expressed as inclusion bodies in the cytoplasm.  For 

comparison, the CelS2-N wild type was expressed following the same standard procedure and 

analyzed on SDS PAGE gel. Comparisons showed that all expressed soluble mutant proteins 

had similar production yields and migration distances as the wild type. As an example, the 

comparison between periplasmic extracts from a strain producing CelS2-N wild type and a 

strain producing CelS2R212A is shown in figure 4.13a.   
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Fig 4.13. SDS-PAGE gels illustrating production of CelS2 variants.  A): Coomassie stained SDS-PAGE gel with a protein 

standard (left lane), a negative control [periplasmic extract of non-transformed BL21 (DE3)] and periplasmic extracts from 

cells producing CelS2WT and CelS2R212A.  Some of the markers are labeled by their masses indicated in kDa. The band 

representing the CelS2-N enzymes is indicated by white arrow. B) Coomassie stained SDS-PAGE gel with a protein standard 

(right lane), The left four lanes show periplasmic extracts from BL21(DE3) transformed with pRSET-B/CelS2D214A (the first 

two lanes)and pRSET-B/CelS2E217A (the next two lanes). The right four lanes show proteins in the cell pellets obtained when 

preparing these periplasmic extracts for CelS2D214A (the first two lanes) and CelS2E217A (the next two lanes)  The gel picture 

demonstrates that these two mutants expressed in enormous amount and aggregated as insolubel proteins. The expected size 

for unprocessed CelS2 is 25 kDa; the expected size for correctly processed CelS2 is 21.9kDa. 

 

 

4.3.2 Expression of Jden1381  

All thirteen plasmid constructs containing the Jden1381 full length and truncated versions 

were successfully transformed into E.coli BL21 (DE3) cells for expression (see Table 3.5 or 

4.2 for detail). For one of the constructs, pET32b/Jden1381fl, the protein was expected to be 

expressed in the cytoplasm and protein production was analyzed in cell-free extracts and 

whole cell lysate (section 3.4.2). For twelve of the constructs, proteins were expected to be 

exported to the periplasm and protein production was analyzed in the same way as for the 

CelS2-N mutants. 

The result, illustrated for pET32b/Jden1381fl in Fig. 4.14, showed that soluble intracellular 

protein of the correct size was obtained for Jden1381fl. Furthermore, soluble protein with the 

correct size was observed in periplasmic extracts for these variants: Jden1381fl, Jden1381-

LPMO, Jden1381-LPMO_C-His6, Jden1381-LPMO-CBM5/12 and Jden1381-LPMO-

CBM5/12_C-His6 (Fig. 4.15 & 4.17). For the following variants no protein was obtained: 

 

 

25 kDa 

20 kDa 

A)   B) 

  CelS2D214A  CelS2E217A 
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Jden1381fl_C-His6, Jden1381-CBM5/12, Jden1381-CBM5/12_C-His6, Jden1381-CBM5/12-

GH18, Jden1381-cbm5/12-GH18_C-His6, Jden1381-GH18 and Jden1381-GH18_C-His6. This 

is summarized in Table 4.2. As illustrated by Fig 4.14, IPTG induction was not always needed 

to obtain reasonable protein amounts (compare lanes 3 and 4 in Fig, 4.14). Furthermore, for 

pET32b/Jden1381fl, expressing longer Jden1381 variants, we observed proteolytic processing 

of the protein as demonstrated by the presence of truncated protein forms in the abstracts (see 

Fig. 4.14). 

 

 

   

                        

Fig 4.14. SDS-PAGE analysis of expression of Jden1381fl from pET32b/Jden1381. Cell-free extracts obtained from 

cultures with and without IPTG induction for construct pET32b/Jden1381. The size of the full length protein (including the 

Trx, 6xHis and Enterokinase tags) is approximately 83 kDa (indicated by a red arrow).  Lanes 2-5 show cell free extracts, 

lanes 6-8 show whole cell lysates. Lane1, protein standard with masses indicated in kDa. Lane 2, pET32b/empty induced 

with 0.4 mM IPTG. Lane 3, pET32-b/Jden1381 without IPTG induction. Lane 4, pET-32b/ Jden1381induced with 0.4 mM 

IPTG; cell free extract made three hours after induction (expected protein size 83 kDa). Lane 5, pET32b/Jden1381induced 

with 0.4 mM IPTG; cell free extracted made 4 hours after induction. Lane 6, Cell lysate from culture harboring pET32-

b/Jden1381 without IPTG induction. Lane 7, cell lysate from culture harboring pET-32b/ Jden1381 induced with 0.4 mM 

IPTG; cell free extract made 3 hours after induction. Lane 8, cell lysate from culture harboring  pET32b/Jden1381induced 

with 0.4 mM IPTG; cell free extract made 4 hours after induction. Note that all lanes, apart from showing a faint band 

possible corresponding to the full-length protein (red arrow) show at least two more prominent bands that are absent in the 

negative control, including bands at approximately 33kDa (marked with red rectangle) and 43kDa (marked with black 

rectangle). The sizes of these bands match the calculated molecular weights of N-terminally truncated variants of the full 

length tagged protein, containing only the LPMO domain (33 kDa) or the LPMO and the  CBM5/12 domain (43 kDa). In 

addition, lane 7 reveals a prominent band (indicated by arrow) corresponding the expected size of the full length protein 

indicating a possible aggregation of the protein in the cytoplasm.  
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Fig 4.15. SDS-PAGE analysis of expression of Jden1381fl from pUCBB/Jden1381fl. The expected size of Jden1381fl is 

66 kDa. Lane 1, protein standard with masses indicated in kDa. The SDS-gel shows periplasmic extract from cultures for 

constructs pUCBB/empty (Lane 2) and pUCBB/Jden1381fl (Lane 3). Lane 3 shows a prominent band of approximate size of 

70 kDa (indicated by arrow). The size of this band matches the expected size of unprocessed Jden1381fl (69kDa) 

 
 

4.3.3 Protein purification  

Both the CelS2-N mutants (R212A, S215A, F219A and F219Y) and the non-His tagged 

Jden1381 variants (Jden1381-LPMO and Jden1381-LPMO-CBM5/12) were purified to 

approximately 90% purity using a two step purification procedure comprising an ion 

exchange (DEAE) (section 3.5.1) and a size exclusion step (section 3.5.2). Example of 

chromatograms illustrating these two types of purification steps is provided in Fig. 4.18 

(showing purification steps for CelS2R212A). SDS-PAGE gels illustrating these purification 

steps are shown in Fig 4.16a-b, respectively.  The C-terminally His- tagged variants 

Jden1381- LPMO_C-His6 and Jden1381-LPMO-CBM5/12_C-His6 were purified to 

approximately 97 % purity by His-Trap affinity chromatography (section 3.5.3). SDS-PAGE 

gels showing the final purified proteins used for further work are shown in figures. 4.16b-d & 

4.17. Chromatograms of ion exchange, size exclusion and His-Trap affinity chromatography 

obtained from purification steps of Jden1381-LPMO, Jden1381-LPMO_C-His6 and 

Jden1381-LPMO-CBM5/12 are shown in Appendix J; DEAE, (Fig. J-1 & J-2), Size exclusion 

chromatography (Fig. J-3) and His-Trap affinity chromatography (Fig. I-4)  
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Fig 4.16. SDS-PAGE analysis of protein purification steps of CelS2 mutants. The left lanes of all (except for D) SDS gels 

contain protein standard with masses indicated in kDa and the approximate protein sizes are indicated by arrows. The 

expected size for CelS2-N is 21.9kDa. A) Coomassie stained SDS gel showing fractions from DEAE purification step of 

CelS2R212A mutant protein.  Lanes containing fractions of the purification step are labeled with fraction number. Fractions 27-

34 contain considerable amount of CelS2R212A thus collected for further purification step. B) Protein fractions from size 

exclusion chromatography of CelS2R212A. The fraction numbers are labeled. The SDS gel reveals that fraction 71-76 contain 

pure CelS2R212A thus collected for further use. Chromatograms from DEAE and size exclusion chromatography of CelS2R212A 

are shown in Fig. 4.18. C) Purification steps for CelS2S215A mutant Lane 2, DEAE purified CelS2S215A Lane 3, periplasmic 

extracts from BL21(DE3) transformed with pRSET-B/CelS2S215A. Lane 4, CelS2S215A purified with size exclusion 

chromatography. D) Purification steps for CelS2F219A and CelS2F219Y. Lane1, Periplasmic extract from BL21(DE3) 

transformed with pRSETB/CelS2F219A. Lane 2, DEAE purified CelS2F219A. Lane 3, SEC purified CelS2F219A. Lane 4, 

Periplasmic extract from pRSETB/CelS2F219Y. Lane 5, SEC purified CelS2F219Y. Lane 6, protein standard with masses 

indicated in kDa.  

 

 

 

 

 

 

 

 

 

 

C) 
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Fig 4.17. SDS-PAGE analysis of protein purification steps of Jden1381 variants. The left lanes of all (except for D) SDS 

gels contain protein standard with masses indicated in kDa.  A) SDS gel analysis for step wise purification steps for 

Jden1381-LPMO (15 kDa) and Jden1381-LPMO-CBM5/12_C-His6 (27 kDa). Lane 2, periplasmic extract from cultures for 

constructs pUCBB/empty. Lane 3, periplasmic extract from cultures for constructs pUCBB/Jden1381-LMPO. Lane 4, 

Jden1381-LPMO purified with anion exchange chromatography (DEAE). Lane 5) Jden1381-LPMO purified with size 

exclusion chromatography. Lane 6:  periplasmic extract from cultures for construct pUCBB/Jden1381-LPMO-CBM5/12_C-

His6 (DE3). Lane 7:  Jden1381-LPMO-CBM5/12_C-His6 purified with HisTrap affinity chromatography. Note that a 

prominent band of approximate size of 15 kDa is observed, suggesting the separation of a certain amount of the LPMO and 

CBM5/12 domains.  B) SDS gel image revealing purified Jden1381-LPMO-CBM5/12 and Jden1381-LPMO_C-His6. Lane 2:  

Periplasmic extract from cultures for pUCBB/Jden1381-LPMO-CBM5/12. Lane 3, DEAE purified Jden1381-LPMO-

CBM5/12. Lane 4: SEC purified Jden1381-LPMO-CBM5/12. Lane 5: HisTrap affinity chromatography purified Jden1381-

LPMO_C-His6. Examples of chromatograms for purification steps of Jden1381-LPMO, Jden1381-LPMO-CBM5/12  and 

Jden1381-LPMO-CBM5/12_C-His6 are shown in Appendix J. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) B) 
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Fig 4.18. Chromatogram for ion exchange (A) and size exclusion (B) of CelS2R212A. Fraction numbers are shown in red. 

The x-axes show volume (ml) of buffer passed through the column. The Y-axes show measurement of UV absorbance at 

280nm (blue). The chromatogram show eluted proteins detected by online monitoring of absorption at 280 nm and collected 

in 5 ml fractions. In panel A; light blue line, measurement of conductivity used to follow column equilibration and salt 

gradient formation; green line, concentration measurement of elution buffer. Peaks containing CelS2R212A are indicated by 

arrows.   

 

Protein concentrations were measured using the Bradford protein assay as described in section 

3.6.2. Protein concentrations in the samples of purified protein were typically 1 to 5 mg/ml. 

When necessary, protein solutions were concentrated using Amicon® Ultra centrifugal filter 

device, 10,000 MWCO (Millipore) as described in section 3.6.1. Purified proteins were stored 

at 4 
o
C. To get an impression of yields, Table 4.3 shows an overview over of the yield of 

purified protein expressed in mg per liter culture.  

 

 

 

 

 

A) 

B) 
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Table 4.3. Overview of protein yields expressed as mg purified protein per liter culture medium. The other protein 

variants targeted in this study were not purified because they were not produced in sufficient amounts (Jden1381fl, 

Jden1381fl_C-His6, Jden1381-CBM5/12, Jden1381-CBM5/12_C-His6, Jden1381-CBM5/12-GH18, Jden1381-CBM5/12-

GH18_C-His6, Jden1381-GH18 and Jden1381-GH18_C-His6) or they were produced as insoluble protein (CelS2D214A and 

CelS2E217A). 

Protein Yield (mg/L) 

CelS2R212A 5.2 

CelS2S215A 1.3 

CelS2F219A 5.0 

CelS2F219Y 3.2 

Jden1381-LPMO 1.3 

 Jden1381-LPMO_C-His6 1.0 

Jden1381-LPMO-CBM5/12 0.9 

Jden1381-LPMO-CBM5/12_C-His6 1.2 

  

 

4.4 Enzyme characterization - CelS2-N 

 

Table 4.4. Concentration of enzyme and substrate in reaction set up to screen the effect of CelS2 mutations  

Substrate Enzyme concentration 

Cel5A CelS2-

WT 

CelS2-

R212A 

CelS2-

S215A 

CelS2- 

F219A 

CelS2-

F219Y 

CelS2-

H144A 

Avicel 5 

mg/ml 

- 1µM 1µM 1µM - - 1µM 

Pasc 

2mg/ml 

 1µM 1µM 1µM 1µM 1µM 1µM 

8µM - - - - - - 

16µM - - - - - - 

 

 

 

 

4.4.1  Choice of substrate 

For determination of the optimal substrate for CelS2-N, the wild type enzyme activity was evaluated 

on both Avicel-PH101 and phosphoric acid swollen cellulose (PASC). For evaluation of substrate 

preferences, the amounts of soluble sugar products released from both substrates were compared using 

HPAEC for product analysis and quantification as described in section 3.8.2.2.  The results (Fig. 4.19) 

indicated that CelS2-N is more active on PASC compared to Avicel, hence PASC was chosen as 

substrate for determining the activity of CelS2 wild type and CelS2-N mutants.  
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Fig 4.19. Catalytic activity of CelS2 on Avicel and PASC. Soluble products were analyzed with high pressure 

anion exchange chromatography (HPAEC), using a mix of native (DP4-DP5) and oxidized (DP2ox-DP4ox) 

cello-oligosaccharides as standards (pink chromatogram). Here the standards were used for qualitative analysis 

hence varied amount of standards was used. The figure shows chromatograms representing products generated 

from the action of CelS2WT on Avicel-PH101 (grey line) and PASC (purple line). The reactions (200 µl) were 

prepared by mixing 1µM CelS2 with 5mg/ml Avicel-PH101 or 2mg/ml PASC in 20 mM BisTris buffer pH 6.5 

(at 50 
o
C) with 1mM Ascorbic acid. The reactions were incubated 50 

o
C over night with shaking at 990 rpm.  

 

 

 

4.4.2  Mapping of enzymatic activity of CelS2- R212A, S215A, F219A and F219Y mutants by 

HPAEC  

In order to investigate the effect of the mutations, CelS2 mutants (including an inactive H144A mutant 

made and purified by Z. Forsberg) were screened for activity on PASC and compared with the wild 

type (Fig. 4.20). These assays indicated that the S215A and the F219A mutants are active, but less 

active than the wild type, whereas the R212A and F219Y mutants appeared to be inactive as they did 

not release oxidized cellooligosaccharides from the substrate (similar to CelS2H144A). Tables 4.5 & 4.6 

show estimates of the relative amounts of products, which indicate that the activities of S215A and 

F219A amount to approximately 50 % and 15 % of the wild type activity, respectively. The products 

generated from both wild type and active mutants were identified as native and oxidized products by 

comparison of their retention times to those of the corresponding available standards, Glc4, Glc5, 

GlcGlc-ox, Glc2Glc-ox, Glc3Glc-ox and Glc4Glc-ox. 
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Fig 4.20. HPAEC analysis of products generated by CelS2-wild type and CelS2 mutants. . The reactions (200 µl) 

were prepared by mixing 1µM enzyme with 2mg/ml PASC in 20 mM BisTris buffer pH 6.5 (at 50 
o
C) with 

1mM ascorbic acid. The reactions were incubated at 50 
o
C for 16 h with shaking at 990 rpm. Chromatograms 

representing the different enzymes have different colors. A mixture known oligomers (varied amount), 

containing native (Glc4 and Glc5) and oxidized (GlcGlc-ox - Glc4Glc-ox) sugars was used to identify cello-

oligomers produced by the enzymes. Panel A: black, standard mixture; blue, CelS2 WT; pink, CelS2R212A; brown, 

CelS2-S215A and green, CelS2H144A. Note that active CelS2 variants produce both native and oxidized products. 

Panel B: grey, CelS2WT; blue, CelS2F219A; pink CelS2F219Y.   

 

Table 4.5. Concentrations of native and oxidized products generated by CelS2WT and CelS2S215A, as estimated from HPAEC 

chromatograms. 

Cello-oligomers Retention time 

(min) 

Peak area from 

CelS2WT/PASC 

Peak area from 

CelS2S215A/PASC 

Ratio of 

released sugar; 

CelS2WT 

:CelS2S215A 

Glc4 14.3 0.89 0.49 1.8 

Glc5 16.01 0.65 0.40 1.6 

GlcGlc-ox 16.69 0.96 0.53 1.8 

Glc2Glc-ox 18.9 2.21 1.17 1.8 

Glc3Glc-ox 21.3 3.37 1.80 1.8 

Glc4Glc-ox 23.4 1.4 0.7 2 

A) 

B) 
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 Table 4.6. HPEAC chromatogram based concentration of native and oxidized products generated by CelS2WT and CelS2 

F219A  

Cello-oligomers Retention time (min) Peak area from 

CelS2WT/PASC 

Peak area from 

CelS2F219A/PASC 

Ratio of released 

sugar from 

CelS2WT:CelS2F219A 

Glc3Glc-ox 21.3 1.07 0.16 6.6 

Glc4Glc-ox 23.4 0.88 0.12 7.3 

 

 

 

4.4.3  Analysis of initial rates of CelS2WT and CelS2S215A  

There is currently no good assay for proper determination of the catalytic rates of LPMOs and 

the activity data presented in the previous section are rough estimates. In attempt to obtain 

more insight into one of the mutational effects, we used a time series of HPAEC 

chromatograms (section 3.8.2.2) to compare the initial rates of CelS2WT and CelS2S215A acting 

on PASC. To do so, we assessed the generation of oxidized reaction products over time, both 

products released from the substrate into solution and soluble products remaining attached to 

the substrate. The latter were obtained by spinning down the tubes and removing most of the 

supernatant. Quantification was simplified by degrading the complex product mixtures (the 

soluble and the trapped products, separately) to Glc, Glc2 and Glc-GlcA with a cellulase 

(Cel5A from T. fusca) prior to analysis. Figure 4.21, shows the time courses for production of 

oxidized chitobiose (Glc-GlcA/ DP2-ox) from PASC. The Figure shows that the data have 

limited accuracy and that the curves do not look linear.  The results do confirm that 

CelS2S215A yield less products than CelS2 wild-type; at 360 min, it is estimated that wild type 

CelS2-N produces approximately two-fold more soluble products and four-fold more trapped 

products compared to CelS2S215A (Fig. 4.18 & Appendix N ).  
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Fig 4.21. Time course for product formation by CelS2WT and CelS2S215A. Phosphoric acid swollen cellulose (PASC) was 

treated with 2 µM CelS2WT or CelS2S215A in a reaction containing 2mg /ml substrate, 1mM Ascorbic acid and 20 mM BisTris 

buffer (pH 6.5 at 50 oC). The reactions were incubated at 50 oC in ThermoMixer while shaking at 900rpm.  Both products 

released from the substrate into solution and soluble products remaining attached to the substrate taken at various time points 

were further degraded with Cel5A as described in section 3.8.2.2. The figure shows the peak areas for the peak representing 

oxidized chitobiose (see the text above for more details).  

 

4.5 Enzyme characterization - Jden1381  

 

Table 4.7. Concentration of enzyme and substrate in reactions set up to analyze the activity of Jden1381 variants on chitin. 

Substrate Enzyme concentration 
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(periplasmic 

extract) 

Jden1381-
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(purified) 
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(purified) 
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(purified) 

α-chitin 

5mg/ml 

10 µl of 

periplasmic 

extract 

1 µM - 1µM - - 
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5mg/ml 

10 µl of 
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1µM 1µM 1µM 1µM 1µM 

Collidal 
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4.5.1 Analysis of chitooligosaccharides released by full length Jden1381  

The activity of full length Jden1381, produced using construct pUCBB/Jden1381was tested 

on α-chitin, β-chitin and colloidal chitin; product formation was analyzed by chromatography 

using an UHPLC with UV detection, as described in section 3.8.2.1 Reactions were carried 

out with addition of reductant (ascorbic acid). Adding a reductant was necessary to promote 

LPMO activity. The activity of Jden1381-LPMO boosted when copper was added, therefore 

copper was added in further enzymatic assays. The results (Fig. 4.22) showed that Jden1381 

produces native chito-oligosaccharides from all chitin variants tested, although product ratios 

differed. The reaction with α-chitin generated predominantly (GlcNAc)2 and GlcNAc, the 

reaction with β-chitin gave products ranging from GlcNAc to (GlcNAc)6 and the reaction 

with colloidal chitin gave products ranging from (GlcNAc)2 to (GlcNAc)6. For control 

reactions, crude extract from BL21 (DE3) cells containing the pUCBB/empty construct was 

treated with α-chitin, β-chitin and colloidal chitins and products were analyzed, using the 

same conditions as Jden1381. All such reactions do not show any detectable product 

formation. An example of such control reaction (from α-chitin) is included in figure 4.22. 

Comparison with chromatograms obtained from substrates incubated without enzyme showed 

that all these products were enzyme-generated (results not shown). Although these data are 

insufficient to make firm quantitative conclusions about the activity of Jden1381 on the 

various substrates, they do seem to suggest that full length Jden13 1 hydrolyzes α-chitin more 

efficiently than β- and colloidal chitin.   
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Fig. 4.22. UHPLC analysis of products generated by full length Jden1381 upon incubation with various forms of chitin 

chitin. Standards (200 µM of GlcNAc & DP2-DP6) are labeled by their degree of polymerization (DP). The figure shows 

aligned chromatograms with elution time on the X-axis and detector signal on the Y-axis. The chromatograms are labeled 

with the enzyme and substrate names. A negative control showing the action of a crude extract from BL21 (DE3) cells 

containing the pUCBB/empty construct on α-chitin is labeled as “negative control”.   

 

 

 

4.5.2  MALDI-TOF MS analysis of oligosaccharides released by the Jden1381 LPMO 

domain. 

Activities of Jden1381-LPMO, Jden1381-LPMO_C-His6, Jden1381-LPMO-CBM5/12 and 

Jden1381-LPMO-CBM5/12 were tested on β-chitin and soluble products were analyzed by 

MALDI-TOF MS as described in section 3.8.1. For positive control, CBP21was treated with 

β-chitin under the same condition as Jden1381 variants. These analysis shows that all tested 

Jden1381-LPMO variants produced oxidized chito-oligosaccharides (Fig. 4.23; Table 4.7). 

Generally, the mass spectra of products generated by the LPMO-containing Jden1381 variants 

(Fig. 4.23a-c) looked similar to the mass spectrum generated by CBP21 (Fig. 4.23d). Product 

generation by Jden1381-LPMO-CBM5/12_C-His6 was detected on MALDI-TOF MS and did 

not show any product formation (result not included).  
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For analysis product type (specifically products length) generated by Jden1381-LPMO 

variants, β-chitin was treated with Jden1381-LPMO and Jden1381-LPMO-CBM5/12. The 

reaction setups were prepared as described in section 3.8.1 and the reaction was extended for 

72 hours, taking samples at 16 hr and 72hr. The products were analyzed on MALDI-TOF MS. 

The results for both enzymes show that the maximum size of product generated is an oxidized 

tetramer, DP4ox (Fig. 4.24).  Products from Jden1381-CBM5/12 include at least one glucose 

amine moiety, GlcN (deacetylated sugar) bearing tetramer (Fig. 4.24, lower panel).  
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Fig 4.23. MALDI-TOF MS analysis of products release by various Jden1381 variants from β-chitin.  Peaks appear in 

clusters due to the formation of various adducts (M + Na+; M + K+; M – H + 2K+; (M – H + Na+ + K+); they are labeled by 

their degree of polymerization, while oxidation is indicated by “ox”. Table 4.7 provides a list of masses. A, Jden13 1-LPMO; 

the products are mainly observed as (M + K+) and (M -H + 2K+) adducts; B, Jden1381-LPMO_C-His6; the products are 

mainly observed as (M + K+) or (M + Na+). C, Jden1381-LPMO-CBM5/12; the products are mainly observed as (M + K+) or 

(M + Na+) adducts. D, CBP21 from Serratia marcescens (positive control); the products are mainly observed as (M + K+), 

(M + Na+) and (M – H + Na+ + K+) adducts. 
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Fig 4.24. MALDI-TOF MS analysis of products release by Jden1381-LPMO and Jden1381-LPMO-CBM5/12 from β-

chitin.  Peaks appear in clusters due to the formation of various adducts (M + Na+; M + K+; M –H + 2K+); they are labeled by 

their degree of polymerization, while oxidation is indicated by “ox”. Note that only two types of products are observed in 

both types of Jden1381-LPMO variants. Upper panel, Jden1381-LPMO; the products are mainly observed as (M + Na+) 

adducts; Lower panel, Jden1381-LPMO-CBM5/12; the products are mainly observed as (M + Na+), (M + K+) and (M -H + 

2K+). Note that the lower panel contains a spectra at m/z = 827.4 which may indicate the presence of one deacetylated sugar 

moiety containing product, DP4ox variant. In the zoom in picture, peaks are labeled with observed atomic mass. Table 4.7 

provides a list of masses. 
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Table 4.7. Overview of m/z values   
Products and their 

adducts 

Observed m/z Theoretical m/z 

DP3-ox+ Na 666.3 643.4 

DP4-ox+ Na 869.7 846.8 

DP4-ox + K 885.4 or 885.7 846.5  

DP5-ox + Na 1072.8 1049.9 

DP5-ox + K 1088.7 1049.8 

DP6-ox + Na 1275.5 or 1275.8 1252.6 

DP6-ox + K 1291.5 or 1291.8 1252.6 

DP6-ox –H+2K 1329.4 1252.6 

DP6-ox –H + K + Na 1313.5 1252.6 

DP7-ox + Na 1478.9 1456 

DP7-ox + K 1494.5 or 1494.8 1456 

DP8-ox + Na 1682.0 1659.1 

DP8-ox + K 1698.0 1659.1 

Dp8-ox–H + 2K 1735.5 1659.1 

DP9-ox + K 1885.1 1846.2 

DP10-ox + Na 2087.7 or 2088.2 2064.8 

DP10-ox + K 2103.7 2064.8 
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5 DISCUSSION 

 

Complete degradation of cellulose and chitin requires the synergistic action of glycoside 

hydrolases (GHs). Today, it is well known that efficient degradation by these enzymes is 

promoted by LPMOs, which carry out oxidative cleavage of chains in the crystalline regions 

of the substrate (Horn et al 2012). The majority of LPMOs remains uncharacterized and the 

present study therefore aimed at studying two LPMOs, a cellulose active LPMO from S. 

coelicolor called CelS2 and an LPMO-containing multi-domain protein called Jden1381 from 

J. denitrificans.  

 

CelS2 

Forsberg et al. (2011) have previously shown that CelS2 cleaves cellulose into mixed 

population of reducing-end oxidized (aldonic acid bearing end) and native cello-oligomers in 

a reaction that depend on the presence of a reductant. The reaction mechanism of this 

oxidative cleavage remains elusive and requires extensive investigation. In order to obtain 

more insight into catalysis, detailed studies of the roles of individual catalytic site residues are 

necessary. Accordingly, in this study, attempts were made to assess the significance of 

conserved surface exposed catalytic site residues for activity. This was done by creating six 

mutants: R212A, D214A, S215A, E217A, F219A and F219Y.  

The six residues were selected for mutation through combination of multiple sequence 

alignment and prediction of their orientation on the catalytic site using CBP21 as template 

(section 4.4). Since these residues are surface exposed, it was anticipated that removing 

solvent reactive side chains would give hints about the function of these residues. Therefore, 

all of these residues were substituted to alanine.  

Judged by its predicted structure, the position of Phe219 of CelS2 is replaced with Tyrosine 

(Tyr) in many cellulose active LPMOs. This phenomenon is particularly common in GH61 

type LPMOs such as, Thermoscus aurantiacus (TaGH61A), Phenerochaete chrysosporium 

(pcGH61D), Hypocrea jecorina (HjCel61B). Interestingly, Tyr 160, a corresponding residue 

of Phe219 in CelS2, of pcGH61D interacts with binding metals and it seems that this residue 

is essential metal coordination (Westereng et al., 2011 and Fig. 5.4). In order to assess the 
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functional differences between these two residues within these types of LPMOs, F219Y 

mutant was constructed.  

All the six residues selected for mutation were successfully mutated. However, obtaining 

soluble protein from pRSETB/CelS2D214A and pRSETB/CelS2E217A harboring cells was 

challenging. Attempts for expression of these mutants resulted in formation of protein 

aggregates (Fig 4.13). This type of protein aggregate was not observed during expression of 

either the wild type or the other mutants (R212A, S215A, F219A and F219Y). Formation of 

protein aggregate in D214A and E217A mutants may be an indication for alteration of protein 

structure caused by the mutants, which led to formation of misfolded or partially folded 

proteins. If this is the case, it seems that D214 and E217are essential for protein stability. 

Interestingly, D182 and N185 of CBP21, the corresponding residues of D214A and E217A of 

CelS2, have shown minor binding effects when they are substituted by alanine (Vaaje-Kolstad 

et al., 2005b).  

Mutants R212A, S215A, F219A and F219Y could be produced in soluble form and during 

expression and purification; they showed similar behavior as the wild-type enzyme. Two 

mutations (R212A and F219Y) led to complete loss of activity, whereas the other two 

mutations, S215A and F219A, resulted in reduced activity. 

The arginine at position 212 was chosen for mutation because it seems to make a major 

difference between cellulose-active and chitin-active LPMOs. Figure 4.4 show that chitin-

active LPMOs, with an Ile at this position (Fig. 5.2a), have a small pocket on their surface that 

could be adapted to binding an N-acetyl group in chitin. This pocket is expected to be absent 

if Ile is replaced by Arg. Arginine is large and basic residue and its substitution to a small 

amino acid like alanine cause changes in the chemical environment of the active site and may 

also have structural effects. The predicted structure for CelS2 (Fig 4.4) indicates that R212 is 

situated in close proximity to the metal coordinating site; so, the R212A mutation may also 

affect metal-binding directly. The model also suggests that several potentially important 

intramolecular interactions are lost when Arg is replaced by Ala. On the other hand, it is not 

uncommon for LPMOs to have an Ala in this position, as is the case for e.g. E7 from 

Thermobifida fusca (Fig. 5.1 and Moser et al., 2007), which has been shown to be active on 

both cellulose and chitin (Z. Forsberg, pers. com.).  However, mutation of Arg to Ala may 

have been too drastic for CelS2 and mutation to Ile would in retrospect have been a more 

conservative choice for assessing the effect of Arg in substrate binding or specificity.  
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E7                 1 MHRYSRTGKHRWTVRALAVLFTALLG-----LTQWTAPASAHGSVINPAT     45 

                     |.|.:|       :..||.:...|||     |......|.|||..:.|.: 

CelS2              1 MVRRTR-------LLTLAAVLATLLGSLGVTLLLGQGRAEAHGVAMMPGS     43 

 

E7                46 RNYGCWL--RWGHDHLNPNMQYEDPMCWQAW-QDNPNAMWNWNGLYRDWV     92 

                     |.|.|.|  :.|...|:|.    :|.|..|. |....|::||..:..... 

CelS2             44 RTYLCQLDAKTGTGALDPT----NPACQAALDQSGATALYNWFAVLDSNA     89 

 

E7                93 GGNHRAALPDGQLCSGGLTEGGRYRSMDAV-GPWKTTDVNN--TFTIHLY    139 

                     ||.....:|||.|||.|......:.:.:|. ..|..|.:.:  |..:... 

CelS2             90 GGRGAGYVPDGTLCSAGDRSPYDFSAYNAARSDWPRTHLTSGATIPVEYS    139 

 

E7               140 DQASHGADYFLVYVTKQGFDPTTQPLTWDSLELVHQTGSYPPAQ------    183 

                     :.|:|..| |.||:||.|:.||:: |.||.|||: ||.:.||.|       

CelS2            140 NWAAHPGD-FRVYLTKPGWSPTSE-LGWDDLELI-QTVTNPPQQGSPGTD    186 

 

E7               184 --NIQFTVHAPN-RSGRHVVFTIWKASHMDQTYYLCSDVNFV........    222 

                       :..:.:..|: |||..::|..|..|...:.::.||||.|. 

CelS2            187 GGHYYWDLALPSGRSGDALIFMQWVRSDSQENFFSCSDVVFD........    228 

 

Fig 5.1. Pairwise alignment of E7 (T. fusca) and Cels2. Signal peptides are highlighted blue. Arg212 in CelS2/Ala206 in 

E7 are highlighted yellow. Arg212 is thought to eliminate a small pocket in the surface of CelS2, close to the catalytic site 

(see Fig 5.2). 

 

 

 
 

 

 
 

 B) 

 A) 
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Fig. 5.2. Surface structure of CBP21. The figures show the presence of a small pocket on the surface of CBP21.  Ile 180 

(A), colored orange and Thr183 (B) colored yellow are two of the residues that make the small pocket. This small pocket is 

assumed to be adapted to bind the N-acetyl group of chitin. The two conserved histidines are labeled red are labeled. The 

figure was made by using PyMOL. (DeLano, W. L. et al., 2005) 

.    

Ser215 was chosen for mutation because this residue is a relatively conserved polar side chain 

close to the active site (Fig. 4.4). The position of Thr183 of CBP21, the corresponding residue 

of Ser215 of CelS2, is on the small surface pocket that is assumed to have a function in 

substrate binding (discussed above) (Figure 5.2B). Mutation of Ser215 to Ala only had a 

modest effect on activity (~ 50 % reduction; Fig. 4.20a & 4.21), suggesting that the hydroxyl 

group on Ser215 has a role in catalysis, but is not essential. For in depth analysis, the 

formation of oxidized products generated over time (30-360 minutes) by CelS2S215A and 

CelS2WT on PASC was assessed (Fig. 4.21). In this analysis both soluble products released to 

the solvent and those remained trapped in the insoluble fractions were analyzed. The latter 

were obtained by spinning down the tubes and removing most of the supernatant. For simpler 

quantification of products, both soluble products (those released to the solvent and remain 

trapped in the solid fraction) were degraded by endoglucanase Cel5A from Thermobifida 

fusca (section 4.4.3) and the time course of formation of oxidized chitobiose (Glc-GlcA) was 

analyzed.  

The results, which generally showed high standard deviations and uncertainty, showed that 

the S215A mutant had lower product yields but, perhaps, a slightly higher initial rate. This 

indicates a possible effect on substrate accessibility (the mutant works better but can access 

less of the substrate). After 360 minutes, the formation of soluble products released to the 

solvent by CelS2WT was approximately two fold higher compared with the S215A mutant, 

while the production of soluble products that were trapped in the insoluble fraction by 

CelS2WT was approximately four fold higher compared to S215A mutant (Fig 4.21).   

The substitution of S215 of CelS2 with Thr183 in CBP21 indicates the importance of having 

a polar residue at this position for catalytic activities of these LPMOs. Interestingly though, 

several LPMOs contain hydrophobic residues at this position (Fig 5.3). The CBM33-type 

putatively cellulose-active LPMO E7 from Thermobifida fusca has a Met at this position. The 

GH61-type fungal LPMO TtGH61E from Thelavida terrestris has a Val at this position. This 

indicates that S215 may not be directly important for activity in CelS2 and that the minor 

mutational effect observed here is due to (minor) local structural effects that may have an 

effect on substrate binding.  
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 As described in section 1.7, some cellulose active GH61s generate more than one product 

type. In addition to, or perhaps instead of, C1 oxidized sugars they may generate C4 or C6 

oxidized sugars (Phillips et al., 2011). Sequence and structural comparison between LPMOs 

demonstrates the presence of conserved hydrophobic residues at the position equivalent to 

Ser215 in many cellulose active GH61 type LPMOs and in some CBM33-type LPMOs such 

as E7 (Fig 5.1). Perhaps this residue affects the oxidation pattern. 

 

 

 

 

 

Fig 5.3 Catalytic site comparison between CBM33-type LPMOs from Serratia marsescens (CBP21) and Thermobifida 

fusca [TfCBM33A (E7)] and a GH61-type cellulose-active LPMO from Thelavida terrestris (TtGH61E). Upper panel: 

The catalytic sites of CBP21 (A) and TtGH61 (C) are from crystal structures, whereas the catalytic site of  TfCBM33A (E7) 

is from a homology model.  Note that T183 in CBP21 (equivalent to S215 in CelS2) is replaced by the hydrophobic residues 

Met and Val in TfCBM33A and TtGH61E, respectively. These residues are highlighted by red arrow. (Source: World 

Intellectual property Organization; International publication number WO 2012/019151 A1) All figures were made using 

PyMOL (DeLano, W. L. et al., 2005). 

 

The F219A mutation caused partial reduction in enzymatic activity while the F219Y mutation 

caused complete deactivation. The activity of F219A is reduced to approximately 15% of the 

activity of CelS2WT. It is remarkable that complete removal of the phenyl ring of Phe219 

leaves the enzyme active, whereas addition of just a hydroxyl group inactivates the enzyme. It 
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is not surprising that mutation of Phe219 has effects, since the residue is in close proximity   

(approximately 4 Å from His144) of the catalytic center (see Fig. 4.4). Looking at the 

catalytic center one would assume that the F219A mutation has effects beyond not that 

dramatic reduction in activity. Clearly, a more in-depth enzymatic characterization of this 

mutant is needed to understand the role of the phenylalanine, which is highly conserved (see 

below for further discussion).   

As mentioned earlier, the F219Y mutation was made because Tyr is observed at this position 

in several (putatively) cellulose-active LPMOs (see Fig. 5.3; Phe187 in CBP21, which is 

analogous to Phe219 in CelS2, is replaced by Tyr213 in E7,Tyr171 in TtGH61E and Tyr175 

in TaGH61A), where it aids in coordinating the copper ion essential for LPMO activity (Fig. 

5.4). The most plausible explanation for the inactivating effect of the F219Y mutation is that 

the extra hydroxyl group displaces the copper ion instead of aiding in binding the metal as is 

suggested role for this residue in GH61-type LPMOs (see fig 5.4; Quinlan et al., 2011 and  Li 

et al., 2012). Another explanation for the loss of activity is that the introduction of the 

hydroxyl group creates steric hindrance at the catalytic site which might cause catalytic site 

distortion and hinder substrate binding. Alternatively, the addition of a hydroxyl group close 

to the active site may disturb H-bonding networks or active site electrostatics as eluded to 

above.  

 

Fig 5.4. Copper ion coordination by TaGH61A (PDB ID: 2YET; Quinlan et al). Residues shown are His86 (left in 

figure), Gln173 (top in figure), His1 (right in figure) and Tyr175 (bottom in figure). Please note that the signal sequence has 

not been taken into account when numbering the residues. It should also be noted that His1 is modified by post translational 
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modification by methylation of a nitrogen atom on the imidazole ring. Two water molecules are shown as red spheres. The 

copper ion is shown as a gold colored sphere. All distances are in Å. The figure was made by using PyMOL. (DeLano, W. L. 

et al., 2005) 

 

 

The distance between Phe187 of CBP21 and the two metal binding histidines is 3.8 Å (for 

His28) and 4.2 Å (for His114). Interestingly, when analyzing the distances between these 

residues in the other CBM33-type LPMOs with structures that are available, the Phe is 

equally close to the N-terminal histidine (Fig. 5.5). Thus, changing the Phe to Tyr and thereby 

increasing the “reach” of the Phe residue by ~1.4Å would indeed require some adjustment of 

the catalytic site residues, especially the N-terminal histidine (given the CelS2 catalytic site is 

very similar to that of CBP21, EfCBM33A and GbpA).  It is not possible to conclude about 

these possible explanations in the absence of structural information for both wild-type and 

mutant. Even if phenylalanine is substituted to tyrosine in many other LPMOs, the result of 

this study shows that this single substitution is not appropriate for CelS2 and that additional 

mutations would most likely be required. Hopefully will future structures of CBM33-type 

LPMOs with tyrosines in the catalytic site be of help in understanding why the CelS2 

Phe212Tyr is devoid of activity.   

 

Fig 5.5. Distances between the active site Phe (Phe219 in CelS2) and the closest atom of the catalytic histidines in CBP21 

(green colored carbon atoms, His114 on the left, His28 on the right and Phe187 at the top), EfCBM33A (yellow colored 
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carbon atoms, His114 on the left, His29 on the right and Phe185 at the top) and GbpA (cyan colored carbon atoms; His121 

on the left, His24 on the right and Phe193 at the top). The figure was made by using PyMOL. (DeLano, W. L. et al., 2005) 

 

It is important to note that the enzyme characterizations carried out so far are rather 

preliminary and that much more work is needed to fully characterize and understand the 

mutational effects. The work on CelS2 has many weaknesses which could be improved. For 

instance, due to lack of quantified cello-oligomer standards, the study lacks a true quantitative 

assay.  Furthermore, the analyses rely on single substrate type (PASC) and limited analytical 

methods were used. In addition to improving the mentioned weaknesses, additional methods 

and work cold be included. For instance, pH-activity curves could have been constructed for 

analysis of the catalytic activity of mutants compared to the wild type at different pHs.  Due 

to its accuracy, it would also be interesting to include oxidized chito-oligomer generation by 

the mutants and wild type using MALI-TOF MS, however, this method can not be used for 

quantification of chitooligosaccharides (MALDI-TOF MS is a qualitative method not 

quantitative). 

 

Jden1381  

 

The unique modular structure of the multi-domain LPMO from Jonesia denitrificans encoded 

by Jden1381caught interest when selecting enzymes for characterization in this study (Fig 

4.1). The gene was successfully cloned and expressed in full length and truncated versions in 

pUCBB-eGFP and pET32b expression vectors (section 4.2.2). So far, there has not been 

published any work on cloning or characterization of multi-domain LPMOs that contain a 

glycoside hydrolases on the same gene. The current study shows that Jden1381 indeed is an 

enzyme with multiple catalytic activities, since the full-length enzyme showed both LPMO 

and GH18 activity. 

 

In this study, a total of 13 constructs were made for expressing Jden1381both in full length 

and truncated versions because of four reasons:  i) to assess relative contribution of the 

individual domains (the N-terminal LPMO and CBM5/12) on both substrate binding and 

catalytic activity of the chitinase (C-terminal GH18 domain), ii) for individual 

characterization of  the LPMO and GH18 domains, iii) to simplify purification procedures 
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(for C-His6 versions) and iv) to solve encountered complications on expression of the full 

length Jden1381.  

Of the 13 constructs, five were able to provide considerable amount of soluble proteins 

(pUCBB/Jden1381fl, pUCBB/Jden1381-LPMO, pUCBB/Jden1381-LPMO_C-His6, 

pUCBB/Jden1381-LPMO-CBM5/12 and pUCBB/Jden1381-LPMO-CBM5/12_C-His6) while 

pET32b/Jden1381fl showed weak expression. The rest of the constructs 

(pUCBB/Jden1381fl_C-His6, pUCBB/Jden1381-CBM5/12, pUCBB/Jden1381-CBM5/12_C-

His6, pUCBB/Jden1381-CBM5-GH18, pUCBB/Jden1381-CBM5/12-GH18_C-His6, 

pUCBB/Jden1381-GH18 and pUCBB/Jden1381-GH18_C-His6) did not show expression of 

the recombinant protein. A number of reasons and speculations can be discussed concerning 

the lack of success in expressing these constructs, however, I would like to highlight possibly 

main reason; since most of these constructs bear truncated versions, there may be error or 

inaccuracy on the annotated domain prediction (section 4.1.1)  

Two different clones were made for expressing the full length protein of which the 

pUCBB/Jden1381fl clone worked. The pET32b/Jden1381 did not yield a considerable 

amount of protein. The success of pUCBB/Jden1381 was probably due to, among many tested 

conditions, a change in the growth media from LB to 2xTY (see Table 3.1). The 

pET32b/Jden1381 construct was generated using the Gibson Assembly cloning method as 

described in section 3.2.8.2. Combination of pET32b expression vector together with the 

Gibson Assembly cloning method was anticipated to be beneficial to obtain high level of 

soluble and mature Jden1381fl (discussed in section 3.2.8.2). In order to achieve this, a 

restriction free cloning method with a potential of assembling large DNA fragments (as 

pET32b) was required. The method is efficient and worked well. During expression of full 

length Jden1381 we repetitively observed conversion of the protein to smaller fragments; 

possibly representing the protein’s individual domains or combinations thereof (an example is 

shown in figure 4.14). Bands possibly representing full length Jden1381 were generally weak, 

but in some cases, overnight cultures of BL21(DE3) transformant harboring 

pUCBB/Jden1381fl construct 
 
grown in 2xYT media

 
at 30 

o
C gave better yield; see Fig.4.15 

& Table 3.1. For unclear reasons, attempt to purification of this Jden1381fl was not 

successful, therefore, the activity of full length Jden1381 was tested using samples from 

periplasmic extract obtained from a culture of BL21(DE3) harboring pUCBB/Jden1381fl.  
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Periplasmic extracts containing full length Jden1381 showed activity towards collidal chitin, 

β-chitin and α-chitin from which they produce native chito-oligosaccharides (Fig. 4.22). This 

clearly shows that Jden1381 contains chitinase activity. The result shows the production of 

more native chitobiose from Jden13 1 acting on α-chitin compared to collidal chitin or β-

chitin. This may indicate that the enzyme preference for α- chitin, which would be interesting 

since chitinases generally have lower activity on-chitin than on other chitin forms. The 

products observed from collidal and β-chitin are mixtures of native chitooligosaccharides 

(DP1-DP6). Due to lack of time, no effort to analyze the presence of products from LPMO 

(oxidized chitooligosaccharides) in this product mixture was made thus, it is not certain 

whether the activities measured in this assay include a possible “boosting” effect of the 

LPMO domain. The different product profiles obtained for the different substrates may be 

simply due to differences in catalytic efficiency, as discussed above and in section 4.5.1. 

However, it is tempting to speculate that the other two domains are involved in orienting the 

GH18 module on the substrate and that this orientation varies between substrates. 

 

Truncated and well-purified versions of Jden1381 containing the LPMO domain generated 

oxidized products when acting on β-chitin in the presence of copper ion and ascorbic acid, 

similar to what has been observed for other chitin-active LPMOs (Fig 4.23 & 4.24). It would 

have been interesting to do similar analysis on the other two chitin forms, especially -chitin, 

since the full length enzyme seems to be particularly active on this highly recalcitrant chitin 

form. 

 

Judged by its sequence, the C- terminal GH18 domain resembles the well studied endo-acting 

chitinases ChiC from Streptomyces coelicolor (69 % sequence identity) and endochitinase 

Chi21702 from Sanguibacter antarctiucs (74 % sequence identity) (Park et al., 2009, Saito, et 

al., 1999), which may imply that Jden1381-GH18 is an endo-acting chitinase that contains an 

N-terminal LPMO domain.  

 

The results of these two studies are preliminary which gave general insights. The results gave 

inspiration for further deep investigation of LPMOs. Therefore, further work on Jden1381is 

planned while the work on CelS2 will continue by Zarah Forsberg (the supervisor for CelS2 

work).  
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In order to study these cellulose and chitin active LPMOs, huge amount of time, effort and 

work were invested. More characterization work on both CelS2 for Jden1381 could not be 

done because of the huge amount of effort was spent on cloning and purification. In this 

study, 13 genes were cloned (Jden1381 variants) and six mutations were made (CelS2 

mutants) and the relative catalytic activity/effect of the expressed enzymes were assessed. 

However, even though some very interesting data was generated, there is room for 

improvement in our methods which should be marked for advanced further work.  

 

For optimal characterization of Jden1381, sufficient amount of enzyme is required, thus 

attempts will be made to solve challenges in protein expression. For optimizing expression of 

Jden1381variants, attempts will be made to clone these genes in expression vectors derived 

from Gram positive bacteria (Bacillus subtilis, for instance). If expression of all Jden1381 

variants succeeded, synergetic effects between the N-terminal LPMO domain, the CBM12/5 

domain and the C-terminal GH18 domain will be assessed and the LPMO and GH18 domains 

will be characterized individually. It will be of interesting to investigate the possible effect of 

the sub-domains in substrate binding on GH18. The current study in particular shed light on 

substrate preference of Jden138, that α-chitin is favored over β-and colloidal chitin, which is 

not a common behavior of most chitinases (discussed above). This may indicate that this 

chitinase have even more unique features beyond its domain structure for its enzyme family.   

 

Outlook 

 

For the past decades, biomass has become significant resource for production of biofuel. 

Biomass conversion requires biochemical transformations such as fermentation of sugar to 

ethanol. Enzymatic conversion of biomass into simple sugars is preferable over chemical 

conversion due to the potential of enzymes in preserving the structure of carbohydrates (Horn 

et al., 2012).  

 

Chitinases and cellulases are among promising candidates to be utilized for processing 

continuously growing amount of renewable biomass. The presence of recalcitrance 

polysaccharides in biomass is the key challenge for process acceleration and efficient 

degradation by these enzymes. In addition, enzymatic hydrolysis is the primary process 

bottleneck with respect to cost and yield in biomass conversion; as a result, having a deep 

understanding of the hydrolytic activities of enzyme candidates is crucial to making biomass 
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to biofuel transformation cost competitive. Decades of research have been dedicated in 

developing advanced enzymatic technology addressing this issue. The discoveries of LPMOs 

and GH61s may open an opportunity to solve this challenge, although we are just starting to 

understand how these enzymes work. The geographical diversity of these enzymes indicates 

the presence of many LPMOs with wide variety in substrate specificities, functions and 

potential.  

 

Many laboratory studies are performed by “artificial” substrates (e.g. purified cellulose/chitin, 

filter paper etc.) that are convenient for characterizing these enzymes. However, this might 

not show the whole picture about the enzymes’ behavior unless “real” activities are assessed 

with natural substrates (e.g. intact plant cell walls or crustacean shells). Furthermore, it will be 

interesting to compare possible behavioral changes by LPMOs when acting on natural 

substrates rather than “artificial” substrate.  

 

LPMOs are important for bio-economy. Today LPMOs are already being used in multi-

enzyme cocktails such as Cellic CTec3, the most cost-efficient enzyme cocktail which 

decreases the required enzyme dose for biomass conversion by 4/5 (Novozymes) and it is 

probably only getting better because much potential is still untapped.   
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APPENDICES 

Appendix A) Genomic data for glycoside hydrolases and related proteins of 

streptomyces coielicolor A3(2) (data taken from CAZy database) 

List Of Proteins 
Protein Name Family Reference Accession 

α-L-arabinofuranosidase  

(AbfB;SCO5932) 
CBM13,GH62 CAA16189.1  

Branching enzyme 

(GlgBI;SC6A11.16c;SCO5440) 
CBM48,GH13 CAA58314.1  

branching enzyme II 

(GlgBII;SC4G10.11c;SCO7332) 
CBM48,GH13 CAB92878.1  

Cel1 (SCO0765 or SCF81.24c) CBM4,GH9 CAB61539.1  

cellulose-active enzyme 

(SCO1188;SCG11A.19;CelS2) 
CBM33,CBM2 CAB61600.1  

chitin-binding protein 

(Chb3;SCO0481;SCF80.02) 
CBM33 CAB57190.1  

chitinase A 

(ChiA;Chi18bA;SCK15.05c;SCO5003) 
CBM16,GH18 CAB92596.1  

chitinase B 

(ChiB;Chi18bB;SCO5673;SC8B7.05c) 
CBM16,GH18 CAA20216.1  

chitinase C 

(ChiC;Chi18aC;2SC6G5.20c;SCO5376) 
CBM2,GH18 CAB94547.1  

chitinase E 

(ChiE;Chi18aE;SCO5954;SC7H1.24) 
CBM2,GH18 CAA16211.1  

chitinase F 

(ChiF;SC5H1.29c;SCO7263) 
CBM12,GH19 CAB42954.1  

chitinase L 

(ChiL;Chi18cL;SCO2799;2SCC13.07c) 

CBM2,GH18 CAC10108.1  

GlgX (SCO7338;SC4G10.17) CBM48,GH13 CAB92884.1  

SCO0284 or SCF85.12 GH27,CBM51 CAB54169.1  

SCO0335 CBM32,CBM32 CAB56140.1  

SCO0505 or SCF34.24 CBM35 CAD55445.1  

SCO0535 or SCF11.15 CBM3,GH16 CAB59592.1  

SCO0545 or SCF11.25 CBM32,CBM32,GH55 CAB59602.1  

SCO0554 (ManA;SCF11.34c) GH5,CBM2 CAD55266.1  

SCO0643 or SCF91.03c CBM33 CAB61160.1  

SCO0674 or SCF91.34c (XlnA;XysA) GH10,CBM2 CAB61191.1  

SCO0764 or SCF81.23c CBM13 CAB61540.1  

SCO0787 or 3SCF60.19 GH16,CBM13 CAC14352.1  

SCO0829 or SCF43A.19 CBM12 CAB48906.1  

SCO1061 / SCG22.07c GH93,CBM13 CAB95280.1  

SCO1187 (CelB;SCG11A.18) 
GH12,CBM2 CAB61599.1  

SCO1226 or 2SCG1.01c CBM12 CAD55167.1  

SCO1734 (SCI11.23) CBM33 CAB50949.1  

SCO2226 or SC10B7.21c GH13,CBM41,CBM48,GH13 CAB90874.1  

SCO2291 (AxeA) CE4,CBM2 CAB61737.1  

SCO2292 (XlnB) GH11,CBM2 CAB61738.1  

SCO2383 or SC4A7.11 
CBM13 CAB62715.1  

SCO2833 (Chb) CBM33 CAB65563.1  

SCO3842 or SCH69.12 CBM12 CAB45209.1  

SCO4117 CBM51 CAB92370.1  

SCO4257 or SCD8A.30 CBM13 CAB77351.1  

SCO4258 or SCD8A.31 CBM13 CAB77352.1  

SCO4481 or SCD65.24 CBM13 CAD55485.1  

SCO4488 or SCD69.08 (putative 
protein kinase) 

CBM13 CAB92109.1  

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA16189.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA58314.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB92878.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61539.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61600.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB57190.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB92596.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20216.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB94547.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA16211.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB42954.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC10108.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB92884.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB54169.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB56140.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAD55445.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB59592.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB59602.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAD55266.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61160.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61191.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61540.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC14352.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB48906.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB95280.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61599.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAD55167.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB50949.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB90874.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61737.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61738.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB62715.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB65563.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB45209.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB92370.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB77351.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB77352.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAD55485.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB92109.1
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SCO4670 or SCD40A.16c CBM12 CAB81861.1  

SCO5456 or SC3D11.13c CBM48,GH13 CAB76010.1  

SCO5685 or SC5H4.09c GH3,CBM6 CAB91121.1  

SCO5786 or SC4H2.07c CBM2 CAA18323.1  

SCO6078 or SCBAC1A6.02c CBM48,GH13 CAC33923.1  

SCO6082 (GlgX3) CBM48,GH13 CAC33927.1  

SCO6234 (ManA2;SC2H4.16) 
GH5,CBM10 CAA20610.1  

SCO6345 or SC3A7.13 CBM33,CBM5 CAA20076.1  

SCO6348 / SC3A7.16c GH101,CBM32 CAA20079.1  

SCO6377 CBM13 CAA20165.1  

SCO6428 or SC1A6.17c GH92,CBM6 CAA18915.1  

SCO6456 or SC9B5.23c CBM13 CAA22765.1  

SCO6546 (SC5C7.31c) CBM2,GH48 CAA20643.1  

SCO6548 (SC5C7.33) CBM2,GH6 CAA20645.1  

SCO6572 or SC3F9.07 
CBM6 CAA19630.1  

SCO6596 or SC8A6.17 GHnc,CBM32 CAA19789.1  

SCO6665 or SC5A7.15C GH16,CBM6 CAA19944.1  

SCO7015 or SC1H10.04c CBM32,CBM32,CBM32,GH87 CAB88148.1  

SCO7019 (Aml) CBM25,CBM25,GH13 CAB88152.1  

SCO7037 or SC4G1.03 CBM32,CBM32,GH87 CAC01535.1  

SCO7170 or SC9A4.32 
CBM6 CAC01659.1  

SCO7211 or SC2H12.10c CBM13 CAB94634.1  

SCO7212 or SC2H12.11c CBM6,CBM13 CAB94635.1  

SCO7225 / SC2H12.24 (ChiM) CBM33,CBM5 CAB94648.1  

SCO7228 or SC2H12.27c CBM35,PL9 CAB94651.1  

SCO7406 or SC6D11.02c GH30,CBM13 CAB76325.1  

SCO7637 or SC10F4.10c CBM2,GH5 CAC16970.1  

SCO7774 or SC5E9.22 
CBM13 CAC14502.1  

SCO7775 or SC5E9.23 CBM13 CAC14503.1  

Xylanase A 

(XlnA;SCO5931;SC10A5.36c) 
GH10,CBM13 CAD55241.1  

xyloglucan-specific endo-β-1,4-
glucanase (SCO6545) 

GH74,CBM2 CAA20642.1  

 

List Of CBM33 type LPMOs  

Protein Name Family Reference Accession 

cellulose-active enzyme (SCO1188; 

SCG11A.19; CelS2) 
CBM33,CBM2 CAB61600.1 

chitin-binding protein (Chb3; 

SCO0481; SCF80.02) 
CBM33 CAB57190.1 

SCO0643 or SCF91.03c CBM33 CAB61160.1 

SCO1734 (SCI11.23) CBM33 CAB50949.1 

SCO2833 (Chb) CBM33 CAB65563.1 

SCO6345 or SC3A7.13 CBM33,CBM5 CAA20076.1 

SCO7225 / SC2H12.24 (ChiM) CBM33,CBM5 CAB94648.1 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB81861.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB76010.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB91121.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA18323.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC33923.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC33927.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20610.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20076.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20079.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20165.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA18915.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA22765.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20643.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20645.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA19630.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA19789.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA19944.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB88148.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB88152.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC01535.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC01659.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB94634.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB94635.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB94648.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB94651.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB76325.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC16970.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC14502.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAC14503.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAD55241.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20642.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61600.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB57190.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB61160.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB50949.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB65563.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAA20076.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=CAB94648.1
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Appendix B) Putative Carbohydrate-active enzymes detected in the genome 

Jonesia denitrificans DSM 20603 (data taken from CAZy database) 

List Of Proteins 

Protein Name Family Reference Accession 

   
Jden_0062 CBM42 ACV07738.1  

Jden_0324 GH64,CBM13 ACV07995.1  

Jden_0329 CBM13,PL3 ACV08000.1  

Jden_0385 GH53,CBM61 ACV08054.1  

Jden_0538 CBM2,GH6 ACV08202.1  

Jden_0731 GH74,CBM2 ACV08395.1  

Jden_0732 GH10,CBM2 ACV08396.1  

Jden_0733 GH10,CBM2 ACV08397.1  

Jden_0734 GH5,CBM2 ACV08398.1  

Jden_0735 GH6,CBM2 ACV08399.1  

Jden_1134 GH48,CBM2 ACV08790.1  

Jden_1381 CBM33,CBM5,GH18 ACV09037.1  

Jden_1648 CBM22,CBM22,GH10,CBM9 ACV09296.1  

Jden_1726 CBM48,GH13 ACV09372.1  

Jden_1729 CBM48,GH13 ACV09375.1  

Jden_1926 GH13,CBM25,CBM25 ACV09568.1  

Jden_1927 GH13,CBM25,CBM25,CBM25 ACV09569.1  

Jden_1928 CBM22,GH43,CBM6 ACV09570.1  

Jden_2228 (fragment) GH5,CBM10,CBM10 ACV09865.1  

Jden_2229 GH5,CBM2 ACV09866.1  

Jden_2383 GH11,CBM2,CBM2 ACV10017.1  

Jden_2447 CBM33,CBM2 ACV10079.1  

 

LPMOs 

Jden_1381          CBM33,CBM5,GH18 

Jden_2447          CBM33,CBM2 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV07738.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV07995.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08000.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08054.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08202.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08395.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08396.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08397.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08398.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08399.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV08790.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09037.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09296.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09372.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09375.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09568.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09569.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09570.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09865.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV09866.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV10017.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=ACV10079.1
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Appendix C ) Map and features of expression vector pET32-a(+)  

 

 

Fig x. Map and features of pET32a+. pET32 type expression vectors contain three versions, pET32a(+), pET32b(+) and 

pET32c(+). pET32b(+) and pET-32c(+) are the same as pET-32a(+) (shown) with the following exceptions: pET-32b(+) is a5899bp 

plasmid; subtract 1bp from each site beyond BamH I at 198. pET-32c(+) is a 5901bp plasmid; add 1bp to each site beyond BamH I at 198 

except for EcoR V, which cuts at 209. (Novagen, http://www.emdmillipore.com) 
 

 

 
 

 

 

http://www.emdmillipore.com/
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Appendix D)  Plasmid construct of pRSETB-CelS2-N 

(Plasmid map was made using CloneManager6) 
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Appendix E) Map of the pUCBB-eGFP expression vector (data taken from 

http://www.addgene.org) 
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Appendix F) Gene optimization for Jden1381 from Jonesia denitrificans 

DSM 20603 

Original Gene, G-C content 58 % 
 

 
>Jden_1381 

ATGAAAAAGCGGAAACTCCGCGCAAGTGCTGCCATCGCAGTACTCCTCGGTGCTGGCCTCGTACCCGCACTGAGCGCAACACC

CGCAGCAGCTCACGGCTGGGTCACCGATCCACCAAGCCGCCAAGCTCTCTGCGCATCAGGAGAAACGTCCTTTGACTGCGGGC

AGATCTCTTACGAACCGCAAAGCGTCGAAGCACCAAAAGGCGCAACAACATGCTCCGGAGGTAACGAAGCATTCGCTATTCTC

GACGACAACTCCAAACCCTGGCCTACCACCGAGATCGCCTCAACTGTCGACCTCACCTGGAAACTCACCGCACCCCACAACAC

AAGCACGTGGGAATACTTCGTTGATGGCCAGCTCCACCAAACCTTTGACCAAAAGGGTCAGCAACCCCCCACCTCACTGACCC

ATACCTTGACTGATCTGCCAACCGGCGAGCACACCATCCTTGCCCGGTGGAACGTGTCCAACACAAACAACGCGTTCTACAAC

TGCATGGACGTCGTTGTCAGCAACAATGGCGGGAATACAGGAGGCGACGACAGTGACCCCGGCGATGGCAATACAGACAGTGA

CACCCCTGCCACACCGCAATGCCCGCCGGCCTACTCCCCCAGCGCCGTATACACCCAAGGCAACCAAGTAACCCATGAGGGCC

ACATCTGGAAAGCCAAATGGTGGACCCAAGGCCAAGCACCAGGAACCACCGGGCAATGGGGCCAATGGGAAGATCTCGGCCCC

TGCTCAACTGACCCCGGTGACGGCGACGGCGACGGCGACCCAGGTGACGGCAACCCAGGTGAGGGAGGCACCCCACCACCGGA

CACACCCGGCACTGGAGACGAACGCATCGTCGGCTACTTCACCAACTGGGGCGTCTACGGACGTGACTACCATGTCAAAAACA

TCAAAACGTCCGGGGCCGCCGACCACCTCACCCACATCATGTACGCCTTCGGGAACGTCCAAGGCGGCAAATGCACCATTGGT

GACGCCTACGCAGACTACGACAAGGCCTACACTGCCGCACAGAGCGTTGACGGCGTCGCTGACACCTGGGACCAACCACTGCG

CGGAAACTTCAACCAACTACGCAAGCTCAAAGCCGAATACCCGCACATTAAAGTCGTATGGTCCTTTGGTGGATGGACCTGGT

CTGGCGGGTTTGGGCAAGCAGCACAAAACCCAGAAGCGTTCGCACAATCATGCCGCGACCTTGTGGAAGATCCACGGTGGGCT

GACGTATTTGATGGCATCGACATCGACTGGGAATACCCCAACGCATGCGGCGCCACCTGTGACACCTCAGGACGCGACGCCTA

TCGTGACCTCCTTGCCGCCCTGCGTACAGAGTTCGGTGACGACCTCGTCACCTCTGCAATCCCCGCGGACGCGACTGACGGCG

GAAAAATCGATGCAGCGAACTACGCGGGAGGCGCAGAGTACCTCGACTGGATCATGCCTATGTCCTACGACTACTTCGGCGCA

TGGGACAAAAACGGTCCCACCGCACCGCACTCACCGCTGACCAGTTACCAAGGCATTCCCATCCAGGGGTATGACACCACCTC

AACAATCAACAAACTCACCGGACTGGGAATCCCCGCAGACAAAATTCTGCTCGGCATCGGCTTCTACGGCCGCGGGTGGACCG

GGGTCACCGACCCCACCCCAGGCTCCTCAGCAACCGGTGCTGCACCAGGAACATACGAGGCAGGAATCGAAGACTACAAAGTC

CTCGCCCAACGTTGCCCCGCAACCGGACAGGTCGCAGGAACTTCGTACGGCTTCTGTGACGGTCAATGGTGGAGCTACGACAC

CCCGCAAGACATCATCCACAAGATGAACTATGCCAACACGGAAAACCTCGGCGGCGCGTTCTTCTGGGAACTGTCCGGCGACA

CCGCAGATGGTGATCTCATCACCGCGATTGCCACCGGCCTGCAATAA 

 

Jden1381 synthetic gene; G-C content 51 % 
 

 

>Jden_1381 synthetic gene  

ATGAAGAAGAGAAAGTTGAGAGCGTCAGCCGCCATTGCCGTATTACTGGGTGCCGGTCTGGTGCCTGCGTTATCTGCCACTCC

TGCGGCTGCACATGGTTGGGTGACAGATCCACCGTCCAGACAAGCCTTATGTGCGTCCGGCGAAACCTCGTTTGATTGCGGTC

AAATTAGCTATGAACCGCAGAGTGTCGAAGCTCCTAAAGGTGCAACCACTTGTTCAGGTGGCAACGAAGCCTTCGCGATTTTG

GATGACAATAGCAAACCATGGCCGACAACGGAAATCGCAAGTACAGTAGATCTGACGTGGAAGTTGACCGCCCCACATAATAC

CTCCACTTGGGAATATTTTGTTGATGGCCAATTGCACCAGACATTCGACCAAAAAGGTCAACAGCCTCCAACGTCGCTGACAC

ATACGTTAACCGATTTGCCGACTGGTGAACACACAATCTTAGCACGCTGGAATGTTTCTAACACCAATAACGCCTTTTACAAC

TGTATGGATGTTGTGGTCTCAAATAACGGTGGCAATACAGGTGGCGATGACTCTGATCCTGGTGACGGCAACACGGATTCAGA

CACTCCGGCAACACCTCAGTGCCCGCCTGCCTATAGCCCAAGTGCGGTATACACTCAAGGCAATCAGGTTACACATGAAGGTC

ACATTTGGAAAGCGAAGTGGTGGACCCAAGGCCAGGCTCCAGGTACCACTGGCCAATGGGGCCAGTGGGAAGATCTGGGTCCA

TGCTCTACTGACCCTGGCGATGGCGACGGCGATGGCGACCCTGGCGATGGTAACCCAGGTGAAGGTGGCACTCCACCTCCTGA

TACGCCTGGTACCGGCGACGAACGTATTGTGGGTTATTTTACAAATTGGGGCGTGTATGGTAGAGATTACCATGTCAAAAACA

TTAAGACTTCTGGTGCCGCGGACCATCTGACACACATCATGTATGCCTTCGGCAATGTTCAAGGTGGCAAATGTACAATCGGC

GATGCTTATGCAGATTACGACAAGGCGTACACCGCTGCACAGTCAGTGGATGGCGTCGCTGATACTTGGGACCAACCTCTGCG

CGGTAATTTTAACCAGCTGCGTAAATTAAAGGCGGAATATCCACACATTAAAGTAGTTTGGTCCTTTGGTGGCTGGACTTGGT

CGGGTGGCTTCGGTCAAGCCGCGCAGAATCCAGAAGCCTTTGCGCAGTCTTGCAGAGATCTGGTAGAAGACCCGCGCTGGGCT

GATGTTTTCGACGGTATTGATATCGACTGGGAATATCCAAACGCTTGTGGCGCAACTTGCGATACAAGCGGTCGTGATGCATA

CAGAGACCTGTTAGCTGCACTGCGTACGGAATTTGGCGATGACTTAGTTACCAGTGCCATTCCGGCTGATGCAACTGACGGTG

GCAAAATCGATGCCGCGAATTATGCCGGTGGCGCGGAATACTTGGACTGGATTATGCCTATGAGCTATGATTACTTCGGCGCA

TGGGACAAGAACGGTCCAACGGCCCCGCATTCTCCTCTGACCTCATATCAAGGCATTCCAATCCAGGGTTACGATACAACGAG

TACGATTAACAAATTGACCGGTCTGGGCATCCCGGCAGATAAGATTTTGCTGGGTATCGGCTTTTATGGTCGTGGTTGGACGG

GTGTGACCGATCCTACTCCAGGTTCTTCAGCGACGGGCGCTGCACCGGGTACCTATGAAGCTGGTATTGAAGATTACAAAGTG

CTGGCTCAACGTTGTCCTGCAACTGGCCAGGTCGCCGGTACATCCTATGGCTTCTGCGATGGTCAATGGTGGTCGTACGATAC

CCCGCAGGACATTATCCACAAAATGAATTACGCGAACACTGAAAATCTGGGTGGTGCTTTCTTTTGGGAACTGAGTGGCGATA

CTGCCGATGGCGACTTGATTACAGCGATTGCTACTGGTTTACAATGA 
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Alignment of the two genes; 76 % sequence identity 

 

 

 

 

 

 



Appendices 

 

Appendix G) Nucleotide sequence of celS2 (data obtained from Uniprot database) 

The start and stop codon are underlined. The sequence coding for the signal peptide is black. 

The red sequence represents the coding sequence for the mature N-terminal LPMO domain of 

CelS2. The codons for the five conserved residues selected for mutations are colored blue. 

The sequence coding for the C-terminal CBM2 domain is colored green.  

        1 atggttcgac gcaccagact cctcaccctc gcggcggtac tggccaccct gctcggctcg 

       61 ctcggcgtga cccttctgct cgggcagggg cgggccgagg cgcacggcgt ggcgatgatg 

      121 cccggctccc gcacctacct gtgccagctg gacgccaaga ccggcaccgg cgccctcgac 

      181 ccgacgaacc ccgcctgcca ggccgccctc gaccagagcg gggcgacggc cctgtacaac 

      241 tggttcgccg tgctcgactc caacgcgggg ggccgcggcg ccggttacgt gccggacggc 

      301 accctgtgca gcgccggcga ccgttccccg tacgacttct ccgcctacaa cgccgcccgc 

      361 tcggactggc cccgcacgca cctgacgtcg ggtgcgacga tcccggtgga atacagcaac 

      421 tgggcggccc accccgggga cttccgggtg tacctgacca agccgggctg gtcgcccacg 

      481 tccgagctgg gctgggacga cctggagctg atccagacgg tgaccaaccc gccccagcag 

      541 ggctcgccgg gcaccgacgg gggccactac tactgggacc tcgcgctgcc ctcgggccgc 

      601 tcgggcgacg cgttgatctt catgcagtgg gtgcgttcgg acagccagga gaacttcttc 

      661 tcctgctcgg acgtcgtctt cgacggcggc aacggagagg tcaccggcat ccgcggttcc 

      721 gggagcaccc cggacccgga cccgacaccg accccgacgg acccgaccac cccgcccacg 

      781 cacaccggct cctgcatggc cgtgtactcg gtggagaact cctggagcgg cggcttccag 

      841 gggtcggtcg aggtgatgaa ccacggcacc gagccgctga acggctgggc cgtgcagtgg 

      901 cagccgggcg gcgggaccac gctcggcggg gtgtggaacg gttcgctgac cagcggctcc 

      961 gacggtacgg tcacggtccg caacgtggac cacaaccgcg tcgtaccacc ggacgggagc 

     1021 gtgaccttcg gcttcaccgc cacttcgacg ggcaatgact tcccggtcga ctcgatcggc 

              1081 tgcgtggcac cctga 
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Appendix H) DNA ladders 

1 Kb DNA ladder (Fermentas)  

   

 

 

 

 

 

 

 

Fig H-1. 1 Kb DNA ladder used to identify DNA fragments. This DNA ladder is useful to determine DNA fragments from 

of size (250-10000) (Source; Fermentas). 

GeneRuler
TM 

1Kb Plus ladder  

 

Fig H-2. 1Kb plus DNA ladder used to identify DNA fragments. This DNA contains DNA bands (75-20000bp), hebnce is 

useful to identify both small and large DNA fragments. (Source; Thermoscientific)   
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Appendix I) Cloning steps for Jden1381 in pUCBB vector (Plasmid map was 

made using CloneManager6) 

                                             

                                                

 

                                                                             

                                                                                    

eGFP 

Digestion with 

BamHI, NotI 

BamHI   NotI 

Ligation with T4 

DNA ligase  

PCR sub-cloning, linearization and 

insertion of BamHI and NotI sites 

DNA purification 

Digestion with 

BamHI and NotI 

Jden1381 

Jden1381 
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Appendix J) Examples of chromatograms obtained during protein 

purification.  

 

Fig. J-1 Ion exchange chromatography used for purification of Jden1381-LPMO. Fraction numbers are shown in red. 

The x-axes show volume of buffer passes through the column. The Y-axes show measurement of elution buffer 

concentration. The chromatogram show eluted proteins detected by online monitoring of absorption at 280 nm and collected 

in 3 ml fractions.  Light blue line; measurement of conductivity used to follow column equilibration and salt gradient 

formation; green line, concentration measurement of elution buffer. Peak containing Jden1381-LPMO is indicated by arrow.   

 

 

Fig. J-2 Ion exchange chromatography used for purification of Jden1381-LPMO-CBM5/12. Fraction numbers are 

shown in red. The x-axes show volume of buffer passes through the column. The Y-axes show measurement of UV 

absorbance at 280nm (blue). The chromatogram show eluted proteins detected by online monitoring of absorption at 280 nm 

and collected in 3 ml fractions.  Light blue line; measurement of conductivity used to follow column equilibration and salt 

gradient formation; green line, concentration measurement of elution buffer. Peak containing Jden1381-LPMO-CBM5/12 is 

indicated by arrow.   
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Fig.J-3. Size exclusion purification for Jden1381-LPMO. Fraction numbers are shown in red. The x-axes show volume of 

buffer passes through the column. The Y-axes show measurement of UV absorbance at 280nm (blue). The chromatogram 

show eluted proteins detected by online monitoring of absorption at 280 nm and collected in 5 ml fractions. Light blue line; 

measurement of conductivity used to follow column equilibration and salt gradient formation. Peak containing Jden1381-

LPMO is indicated by arrow.   

 

 

 

Fig. J-4. Chromatogram from HisTrap purification of Jden1381-LPMO-CBM5_C-His6. Fraction numbers are shown in 

red. The x-axes show volume of buffer passes through the column. The Y-axes show measurement of UV absorbance at 

280nm (blue). The chromatogram show eluted proteins detected by online monitoring of absorption at 280 nm and collected 

in 5 ml fractions. Brown line, concentration of elution buffer; green line, measurement of pressure. Peak containing 

Jden1381-LPMO-CBM5/12_C-His6 is indicated by arrow.   
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Appendix K) Protein marker used in this study. 

In this study,, protein identification was performed by SDS-Gel analysis using Banch marker 

protein ladder from Bio.Rad. 

250 kDa protein ladder (Bio-Rad) 
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Appendix L) Amino acid sequence of CelS2, full length  

 

Fig x Amino acid sequence of celS2, full length . Residues 1-34 signal peptide; 35-227, mature CBM33 type LPMO and   

265-360, CBM2 domain. (Source: uniprot and pfam databases, accession number: Q9RJY2) 
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Appendix M) Amino acid sequence of Jden1381  

 

Fig. x Amino acid sequence of Jden1381, full length. Amino acid residues 1-31 Signal peptides, 32-171 CBM33 type 

LPMO domain, 202-244 CBM5/12 domain and 284-636 GH18 domain. (Source: pfam database, accession number: C7R4I0) 
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Appendix N) Raw data from experiment for determination the time course 

for oxidized product generation by CelS2S215A and CelS2WT 

Table N-1. The table shows the detected oxidized chitobiose (Glc-GlcA/DP2-ox) generated by CelS2S215A and CelS2WT 

from three parallel reactions. Both soluble products; those released to the solvent and those remain trapped in the solid 

phase (referred as “trapped”) were quantified. The area of the peak is used for quantification. The mean value for the three 

parallel reactions was for all products and standard deviation (St.dev) was calculated for all reactions. Fig 21 was constructed 

based on this data. (See Section 4.4.3 for more detail) 

 Soluble Trapped  Soluble Soluble Trapped 

CelSWT 

  
Mean St.dev Mean  St.dev 

Minutes/parallel  

Peak 
area 

(nC*min) 
Peak area 
(nC*min) 

Peak 
area 

(nC*min)  

Peak 
area 

(nC*min)  

0 0 0 0 0 0 0 

30-1 0,4608 8,788 0,258533 0,175906 9,0217 0,728815333 

30-2 0,1413 8,4384 
    30-3 0,1735 9,8387 
    60-1 0,8699 5,3152 0,565967 0,290408 6,089833 2,558564149 

60-2 0,2913 8,9462 
    60-3 0,5367 4,0081 
    120-1 0,7352 9,663 0,514233 0,224479 9,020333 1,086652761 

120-2 0,2864 7,7657 
    120-63 0,5211 9,6323 
    240-1 5,7682 10,9173 3,494867 2,032675 11,542 0,774376504 

240-2 1,8525 11,3003 
    240-3 2,8639 12,4084 
    360-1 6,3432 16,518 5,418833 0,810435 18,30947 3,099274691 

360-2 5,083 21,8882 
    360-3 4,8303 16,5222 
    

        Soluble Trapped 
    CelS2S215A 

  
Mean  Stdev  Mean  Stdev  

Minutes/parallel 

Peak 
area 

(nC*min) 
Peak area 
(nC*min) 

Peak 
area 

(nC*min)  

Peak 
area 

(nC*min)  

0 0 0 0 0 0 0 

30-1 0,8878 4,0379 0,7813 0,096088 3,573767 1,427940073 

30-2 0,7011 1,9715 
    30-3 0,755 4,7119 
    60-1 3,4624 7,5844 2,188767 1,104726 5,673633 1,66313284 

60-2 1,4902 4,5517 
    60-3 1,6137 4,8848 
    120-1 3,6672 3,363 3,186467 0,765762 2,604467 0,781806129 

120-2 2,3034 1,8013 
    120-63 3,5888 2,6491 
    240-1 3,8993 6,4221 3,091533 0,705473 5,118767 1,261875578 

240-2 2,7789 5,0313 
    240-3 2,5964 3,9029 
    360-1 2,7857 6,1484 2,9849 0,546161 4,848667 1,442985954 

360-2 2,5663 5,1017 
    360-3 3,6027 3,2959 
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