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Preface

This master thesis was carried out at the Institute for Chemistry, Biotechnology and Food Sci-

ence of the Norwegian University of Life Sciences. The master thesis accounts for 60 credits and

was carried out in the period from January to December 2013 at Nofima AS.

The master thesis is structured in a different way than regular master theses. It consists

mainly of an introduction and a scientific journal paper. The chapter with the scientific journal

paper is meant to be self-contained and ready for submission to a scientific journal in the field

of sensory and consumer science. Hence, the statistical methods used in this part are referenced

as usual and explained only briefly to the reader in order to obey journal specific requirements

for the format of the manuscript. What the scientific journal paper chapter lacks in coverage

regarding sensory and statistical methods is then elaborated in more detail the introduction.

This thesis was accomplished as a part of my daily work at Nofima where I work as research

scientist doing amongst other data analysis on sensory and consumer data. Not very surprising,

when working full time as a research scientist and taking part in many different research and

client projects it has been a struggle at times to get enough time to prioritise work and writing

of the thesis. With my diploma degree in bio process engineering in 1998 in Germany and my

Dr. scient. degree in gas-sensor array technology in 2004 here in Norway I felt I had all time I

needed to fully concentrate on the writing. This time, however, things were a little bit different.

I had to find the right balance between with my daily work, my work with this thesis while trying

to spend also quality time with my wife and two small children.

I would like to thank Tormod Næs at Nofima and Trygve Almøy at the Norwegian University

of Life Sciences for being my supervisors. Through a number of discussions I got valuable ad-

vice regarding the work presented in this thesis. I guess I haven’t been a typical master student to

them given my situation and I am very thankful that they gave me a lot of freedom while work-

ing with this thesis and being patient when progress has been slow. I am also very thankful to

Øydis Ueland, who is the research director of the department for sensory and consumer science
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at Nofima where I work, for letting me attend statistics courses at UMB during work time. I am

utmost thankful to my wife Heidi and my children Nina and Thomas for being patient with me

during the busy times of my studies in statistics when it was time for exams and the writing of

this thesis needed priority. Heidi has done a tremendous job in taking care of the children and

keeping our house in order while I was occupied with completing this master. I promise I am

done studying now!

Ås, December 2013

Oliver Tomic
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Summary

Rapid sensory methods have become very popular in food science and especially the interna-

tional food industry. Their major appeals are that they are more cost effective and quicker to

carry out than some of the traditional sensory methods that are usually applied to get infor-

mation about the consumer preferences. One method that has gained particular popularity is

projective mapping where consumers place a number of products on a sheet or map according

to their similarities or dissimilarities. Each consumer can use their own criteria to decide what

makes some product similar or not and where to place them on the projective mapping sheet.

In order to get valuable information out of these individual product placings on the projec-

tive mapping sheets one needs to apply suitable statistical methods that can handle that type of

data. Two methods that have established themselves for analysis of projective mapping data are

generalised procrustes analysis and multiple factor analysis. Both of them take quite different

approaches to handle and analyse the data, which triggers the question whether results from

the two methods will be different or not. In addition, a combination of the two methods has

been tested in order to see whether this could provide better results than generalised procrustes

analysis and multiple factor analysis by themselves.

This thesis attempts to give some insight into what differences in results there may be by

testing out generalised procrustes analysis, multiple factor analysis and the combination of the

two on three types of data: random data in Monte Carlo simulations; on constructed or de-

signed data that were manipulated in controlled ways to check what kind of isolated situations

the methods can handle or not; on nine sets of real world data where different types of products

were tested by varying number of individuals.

Analysis results give no clear answer to which method should be preferred over the other

since in some cases generalised procrustes analysis performed better than multiple factor anal-

ysis and vice versa. The combination of the two methods gave the least satisfying results.
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Sammendrag

Raske sensoriske metoder har blitt veldig populære i matvitenskap og spesielt i internasjonal

matindustri. De er appelerende fordi de er kostnadseffektive og raskere å gjennomføre enn noen

av de tradisjonelle sensoriske metoder som vanligvis anvendes for å få tak i informasjon om for-

brukere. En metode som har blitt spesielt populær er projective mapping hvor hver forbruker

plasserer et antall produkter på et ark basert på deres likheter og forskjeller. Hver forbruker

bruker sine egne kriterier for å avgjøre hva som gjør at produkter er lignende eller ikke og hvor

de skal plasseres på arket.

For å få nyttig informasjon fra disse individuelle produktplasseringene på projective map-

ping arket trengs det en passende statistisk metode som kan håndtere denne type data. To

metoder som har etablert seg for analyse av projective mapping data er generalised procrustes

analysis og multiple factor analysis. Begge benytter seg av veldig forskjellige tilnærminger for

å håndtere og analysere dataene, noe som gjør at man stiller spørsmål om resultatene fra disse

to metodene vil være forskjellige eller ikke. I tilllegg ble det testet en kombinasjon av disse to

metodene for aa undersøke om dette kan gi bedre resultater enn generalised procrustes analy-

sis og multiple factor analysis hver for seg.

Denne masteroppgaven prøver å gi noe insikt i hvilke forskjeller i resultatene det kan opp-

stå ved å teste ut generalised procrustes analysis, multiple factor analysis og kombinasjonen av

disse to på tre type data: tilfeldige data i Monte Carlo simuleringer; konstruerte eller desginete

data som ble manipulert på kontrollerte måter for å kunne undersøke hva slags isolerte situ-

asjoner metodene kan håndtere; ni reelle datasett hvor forskjellige type produkter ble testet av

et varierende antall individer.

Resultatene av analysene ga ingen kart svar om hvilken metode skulle foretrekkes framfor

den andre siden i noen tilfeller generalised procrustes analysis fungerte bedre enn multiple fac-

tor analysis og omvendt. Kombinasjonen av de to metodene ga minst tilfredstillende resultater.
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Chapter 1

Introduction

Sensory and consumer science - measuring, analysing and inter-

preting the responses of humans

Sensory and consumer science (Lawless and Heymann, 2010; Lawless, 2013) has been tradi-

tionally an integral part in the field of food science, but in the past decade it has been increas-

ingly embraced also by other non-food related fields that involve evaluation of consumer prod-

ucts such as cars, cosmetics, entertainment electronics, services, etc. The aim of sensory and

consumer science is to measure, analyse and understand human responses to external stimuli

that are perceived by the senses of sight, smell, taste, touch and hearing (Martens and Martens,

2001). Many different sensory methods exist for measuring human responses generating mea-

surement data of various kinds, most of them multivariate. Sensometrics (Næs et al., 2010), a

small branch within the field of statistics, is dedicated to the statistical analysis of the sensory

and consumer data, providing both univariate and multivariate statistical tools for exploration

of the data as well as extraction of important and relevant information. In this regard senso-

metrics has become an nonexpendable complementary tool to sensory and consumer science

and as sensory and consumer science keeps evolving the importance of sensometrics will only

increase.

2
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Emergence of new rapid sensory methods

Food industry, just as any other industry, is under increasing pressure to innovate itself and

come up with new food products that will immediately appeal the consumer and provide new

ways of making profits in a market that traditionally has low margins. At the same time costs for

product innovations need to be cut and food industry is compelled to develop and apply new

methods that yield more relevant information or data about the consumer at a lower price tag.

Therefore, in recent years there has been a strong development of new so-called rapid sensory

methods that fulfill these requirements. A number of these rapid sensory methods have gained

attention in recent years (Dehlholm et al., 2012; Valentin et al., 2012; Varela and Ares, 2012), but

this thesis will focus on only one specific method, which is projective mapping (Risvik et al.,

1994). Projective mapping generates multiblock data, i.e. multiple data matrices, that require

an adequate statistical method for analysis and information extraction. There are a number of

multiblock methods available that could be used for analysis of projective mapping data, but the

two most commonly used are generalised procrustes analysis (GPA) and multiple factor analysis

(MFA).

Aim of the study: which multi-block method should one use?

Even though both MFA and GPA are conceptually very different (see details on each method in

section 1.4 and 1.5) both are used regularly for analysis of projective mapping data. To the au-

thor’s knowledge there exists no study that discusses in detail the differences between the two

methods in general, and for projective mapping data in particular. Only one study (Nestrud and

Lawless, 2008) briefly mentions that both methods have been tested on the same data set and

reports that results were very similar. Without having any facts to prove it, through attendance

at conferences and conversations with international colleagues within the field, the author gets

the impression that many of those who analyse projective mapping data do not really reflect

over which of the two methods they should use. Instead, it seems, they rather use the method

they know or they were exposed to first or the one that is provided in the data analysis software

they use regularly.
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Therefore, in an attempt to give some attention to this issue, the aim of this study is to test

both MFA and GPA extensively on projective mapping data and provide some new insight re-

garding differences between the two methods in the special case of projective mapping.

Limitations of this thesis

The amount of work needed to compare two statistical methods extensively is considerable. In

order keep the volume of this thesis within limits some restrictions needed to be made. Main

focus in this thesis has therefore been the similarity of the consensus configurations acquired

by GPA and MFA and uncovering potential differences that might influence interpretation of the

product related information.

1.1 Projective Mapping

Development of new food products is a very challenging task considering that it is a costly and

time consuming process and the fact that most new products do not survive on the market for

very long. It is without doubt the consumers who decide whether a new product will be a failure

or a success. It is therefore of utmost importance for the product developer to get insight into

consumer’s preferences, i.e. finding out which products he or she likes or dislikes, and actively

use this information in the further product development process.

Traditionally, consumer tests are the main tool to learn more about the consumers’ prefer-

ences. Consumer tests are carried out in such a way that each consumer is served a number of

products where he or she rates each product on a 5-, 7- or 9-point scale (Lawless and Heymann,

2010). As an example, a typical 5 point scale would be distributed like this: 1 - dislike the product

very much; 2 - dislike the product; 3 - neither like nor dislike the product; 4 - like the product; 5 -

like the product very much. With this type of data the product developer gains some insight into

which products the consumers prefer the most or the least, but no information is provided ex-

plaining why they prefer one product over another. This information, the knowledge about the

drivers of liking of a product, needs to be acquired in another way. The standard sensory method
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Figure 1.1: Example of a projective mapping sheet where one user placed 9 brands of beer ac-
cording to own criteria. This is the individual product configuration of this user and describes
how the products relate to one another. The data for each individual are created from the prod-
uct coordinates, as illustrated by the figure.

to get this information is called preference mapping (Lawless and Heymann, 2010) and requires

that a trained sensory panel provides a descriptive profile of the tested products and that their

data is linked to the consumer ratings by use of a suitable statistical method. The problem is,

however, that using a trained sensory panels is costly and that the food industry with their low

profit margins are rather reluctant to use them in their product development. So the problem

is the following: how can the food industry get trained sensory panel type of information at a

lower price?

One option is to use projective mapping (Risvik et al., 1994, 1997), a sensory method that

was developed in the early nineties at Nofima (called Matforsk at that time) and that aims to

have untrained consumers do the profiling of the products. In projective mapping a number

of individuals place the tested products on a sheet of paper according to their similarities and

dissimilarities. Products that are similar are placed close to one another and products that are

very different are placed far from one another. See Fig. 1.1 for an example of how one individual

placed nine beers on a projective mapping sheet according to some sensory criteria.

It is important to note that the individuals participating in the test use their own criteria for
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how products are placed on the sheet. The criteria may vary somewhat from individual to indi-

vidual since consumers are known to perceive sensory sensations quite differently (Lawless and

Heymann, 2010). An important question a product developer could ask is: what is the overall

perception of the products across all individuals? Note that the overall perception may also be

called consensus product configuration as opposed to the individual product configuration from

one person as displayed in Fig. 1.1. Other important questions a product developer might ask:

how are individuals different from the consensus?; how should the product placing of all indi-

viduals be analysed? To get answers to these questions one needs to convert individual product

placing into quantitative data. Here, the first step is to record the positions of each product on

the sheet, i.e. their x- and y-coordinates, and collect them in own data tables or blocks as illus-

trated by Fig. 1.1. Then these data blocks need to be analysed with a suitable statistical method

such as GPA and MFA, whose analysis results will provide answers to the questions above.

1.2 Notations and Preliminaries

Before the statistical methods used in this master thesis are introduced in the following sections

some notations and preliminaries need to be considered. Generalised Procrustes Analysis and

Multiple Factor Analysis, the two main statistical methods compared in this study, are both so-

called multi-block methods. In general, both handle k = 1, . . . ,K data matrices (also referred to

as blocks or individual configurations from now on in this thesis), where each block X[k] is of

dimension I × J[k]. This means that the objects I are the common axis across all blocks X[k] and

that the number of variables J[k] may vary across the blocks. Thus, the total number variables

across all blocks is J =∑
J[k]. Moreover, blocks X[k] may be concatenated horizontally into larger

blocks X of dimension I × J formalised as follows:

X = [
X[1]| . . . |X[k]| . . . |X[K ]

]
. (1.1)

Note that the data collected from projective mapping tests represent a special case of multi-

block data where the number of variables in each block X[k] is exactly two. Hence, for the typical

projective mapping data there are a total of K blocks X[k], one for each individual who partici-
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pated in the test, where all blocks are of dimension (I ×2).

1.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) (Martens and Næs, 1989; Abdi and Williams, 2010) is a

multivariate statistical method and standard tool for explorative analysis of a single data block

X. The main goals of PCA are:

• to find and summarise systematic variation or patterns in the data

• to investigate the object configuration, i.e. to visualise how matrix objects or rows relate

to one another based on the variance from the measured variables

• to understand how variables in X are correlated to one another and how much each vari-

able contributes to the variance in the data

• to reduce dimensionality, i.e. keep important information in a few latent variables instead

of all variables in X

• to separate noise from information.

There are several ways of doing PCA for a data block X, but in this study focus will be on singu-

lar value decomposition (SVD) and generalised singular value decomposition (GSVD). Section

1.3.1 and 1.3.2 describe in detail how factors or principal components are acquired with SVD

and GSVD, respectively, how the amount of variance they explain is computed as well as how

factor or PCA scores, factor or PCA loadings are obtained. Even though SVD and GSVD appear

to be very similar at first glance there are some essential differences. It is therefore important to

describe them separately. Both approaches are integral parts of separate computation steps in

MFA (see details in 1.4). An excellent and detailed review of PCA based on SVD is provided in

a recent paper (Abdi and Williams, 2010) and this study provides a brief summary of the most

important features used in this study.
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1.3.1 Singular Value Decomposition (SVD)

When applying singular value decomposition to a matrix X of dimension (I× J ) it is decomposed

the following way:

X = UΓVT (1.2)

where U is an orthonormal matrix of dimension (I ×L) holding normalised left singular vectors

and L is the rank of matrix X; Γ is a diagonal matrix of L singular values with [γ1,γ2, . . . ,γL] =
di ag {Γ} with ` = 1, . . . ,L; V is an orthonormal matrix of dimension (J ×L) holding normalised

right singular vectors. Since both U and V are orthonormal, it is true that

UT U = VT V = I (1.3)

where each column u` in U and v` in V represent the `th principal component (PC) in PCA. The

first PC, typically abbreviated PC1, finds the direction of the largest variance in the multivariate

space spanned by the variables of X. The second PC, i.e. PC2, is orthogonal on PC1 and takes the

direction of the second largest variation, etc.

Factor or PCA scores

Information on the measured objects of X is provided by the factor scores or so-called PCA scores.

They are obtained by

G = UΓ (1.4)

with G being of dimension (I ×L). When plotting two columns of G in a scatter plot one gets a

PCA scores plot that visualises the relation between the objects for these two specific principal

components. If two objects are located close to each other in the PCA scores plot they are very

similar within the space spanned by the two PC’s and vice versa.

Factor or PCA loadings

Information on how the variables of X contribute to the variance in the data can be gained from
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V, the factor loadings or so-called PCA loadings. When plotting two columns of V in a scatter

plot one gets a PCA loadings plot that visualises the relation between the variables for these two

specific principal components. If located close to each other two variables are highly correlated

for the selected PC’s and vice versa. Furthermore from the PCA loadings plot one can also vi-

sualise how much the variables contribute to the variation relative to each other for the two

specific PC’s. The further away from the origo, the more a variable contributes to variation for

those PC’s.

Explained variances

The amount of calibrated explained variance by the`th PC can be acquired from the the squared

singular values γ2
`

(Wall et al., 2003) by computing:

explV ar` =
γ2
`∑L

`=1γ
2
`

(1.5)

which provides a measure for how much systematic variance in the data has been captured

by each PC. Note that the calibrated explained variances are non-negative and that their sum

across all L PC’s equals 1. Validated explained variances are discussed in section 1.6.1.

1.3.2 Generalised Singular Value Decomposition (GSVD)

Generalised singular valued decomposition (GSVD) is a generalisation of SVD that incorporates

constraints to the singular vectors of X under the decomposition. When applying GSVD to a

matrix X of dimension (I x J ) it is decomposed the following way:

X = P∆QT (1.6)

where P is a matrix of dimension (I × L) holding normalised left generalised singular vectors

and L is the rank of matrix X; ∆ is a diagonal matrix of L generalised singular values such that

[δ1,δ2, . . . ,δL] = di ag {∆}; Q is an matrix of dimension (J ×L) holding normalised right gener-

alised singular vectors. Now similarly to Eq. 1.3 as in SVD the following is given for GSVD:

PT MP = QT AQ = I. (1.7)
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Here, however, two new matrices are included, i.e. M and A that implement some metric on the

rows and columns of X, respectively, that are incorporated into the decomposition of X. M is a

positive definite matrix of dimension (I × I ) which is almost always diagonal (Abdi et al., 2013)

and where each diagonal element holds a mass mi for the corresponding object or observation

i in X. The masses mi are non-negative and their sum equals one. By changing the values of

the masses mi it is possible to assign an individual mass or “weight” to each object and influ-

ence its importance in the decomposition. This is, however, rarely of interest and most often all

masses are set to mi = 1
I . A is also a positive definite matrix of dimension (J × J ) that is often, but

now always diagonal (Abdi et al., 2013). A may contain weights for the columns or variables in X

allowing for weighting of those as part of the decomposition. Multiple Factor Analysis (see sec-

tion 1.4) for example makes use of this feature when analysing multiple blocks of data. Similar

to SVD in Eq. 1.3 column p` in P and q` in Q in Eq. 1.7 represent the `th principal component

(PC) in PCA. Note that when M = A = I GSVD reduces to SVD.

Factor or PCA scores

Each column in P and Q represents a principal component in PCA. Information on the measured

objects of X is provided by the factor scores or so-called PCA scores. They are obtained by

F = P∆. (1.8)

Factor or PCA loadings

Information on how the variables of X contribute to the variance in the data can be gained from

Q, the factor loadings or so-called PCA loadings.

Explained variances

In GSVD the amount of calibrated explained variance by the `th PC can be acquired from the

the squared singular values δ2
`

by computing:

explV ar` =
δ2
`∑L

`=1δ
2
`

(1.9)

Note that the calibrated explained variances are non-negative and that their sum across all L
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PC’s equals 1. Validated explained variances are discussed in 1.6.1.

1.4 Multiple Factor Analysis (MFA)

An excellent and very detailed review of MFA is given in a recent paper (Abdi et al., 2013) and

this thesis provides a brief summary of the most important features of MFA used for analysis of

the data described below in section 2.2.2.

Multiple Factor Analysis (Escofier and Pagès, 1994) was developed for analysis of multiple ta-

bles or blocks X[k] that hold data from various measurements on the same objects I . Since these

measurements may be of different origin (e.g. using different types of instruments to measure

objects I ) the blocks are of dimension (I × J[k]) where each bock can consist of a unique num-

bers of variables J[k]. As a special case all X[k] may consist of an equal number of variables by

measuring the same objects with the same instrument at different points of time. MFA assumes

all block X[k] to be standardised, i.e. the variables J[k] have zero mean and a standard deviation

that equals one. More concretely, the original x- and y-coordinates from projective mapping

were stored in individual matrices Z[k] (see Fig. 1.1) and their standardised values are stored in

X[k], which is then used by MFA. MFA can be described as a two-step procedure.

STEP 1

First each block X[k] is decomposed using SVD as described in Eq. 1.2 which results in:

X[k] = U[k]Γ[k]V
T
[k] (1.10)

with

UT
[k]U[k] = VT

[k]V[k] = I[k] (1.11)

where the left and right singular vectors of X[k] are stored in U[k] and V[k], respectively. The

singular values γ`,k are stored in Γ[k] such that
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[γ1,k ,γ2,k , . . . ,γ`,k , . . . ,γL,k ] = di ag {Γ[k]}. (1.12)

The main objective of STEP 1 is to compute weights for each block X[k] which are then used in

STEP 2 for normalisation of each X[k]. The weight αk for a block X[k] is computed from its first

singular value acquired from SVD in the following way:

αk = 1

γ2
1,k

= γ−2
1,k . (1.13)

Now all weights αk can be collected in a vector a of dimension (J ×1) such that each variable in

a block X[k] is assigned to its corresponding weight αk . This is summarised in

a = [α11T
[1], . . . ,αk 1T

[k], . . . ,αK 1T
[K ]] (1.14)

where 1[k] is a vector of ones representing the J[k] variables in each block X[k]. Eventually, the

weights can be stored in a diagonal matrix A of dimension (J × J )

A = di ag {a} = di ag {[α11T
[1], . . . ,αk 1T

[k], . . . ,αK 1T
[K ]]}. (1.15)

This matrix A can now be used in STEP 2 in GSVD as described in Eq. 1.7.

STEP 2

First all blocks X[k] are concatenated horizontally into a grand matrix X

X = [
X[1]| . . . |X[k]| . . . |X[K ]

]
(1.16)

then GSVD is applied to X according to Eq. 1.6. Now matrix A from STEP 1 is used in Eq. 1.7 to

impose MFA related constraints to the variables in grand matrix X, i.e. weighting each block X[k]

by its corresponding weightαk as part of the decomposition. Using Eq. 1.6 and Eq. 1.8 the GSVD

decomposition can be rewritten as

X = FMF AAQT
MF A. (1.17)
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now, however, based on PCA scores FMF A and PCA loadings QMF A. The PCA scores FMF A are

used to visualise the compromise or consensus configuration, i.e. the configuration of the objects

based on information from all X[k]. Eq. 1.17 can be rearranged into

FMF A = XAQMF A (1.18)

and QMF A can be re-expressed as

QMF A =



Q[1]

...

Q[k]

...

Q[K ]


=

[
QT

[1], . . . ,QT
[k], . . . ,QT

[K ]

]
(1.19)

where each Q[k] is a matrix of dimension (J[k]×L) holding the right singular vectors correspond-

ing to the variables of X[k] and where L is the rank of the grand matrix X. By using Eq. 1.19 one

can rewrite Eq. 1.18 the following way:

FMF A = XAQMF A

= [
X[1]| . . . , |X[k]| . . . , |X[K ]

]×A×



Q[1]

...

Q[k]

...

Q[K ]


= ∑

k X[k]A[k]Q[k]

= ∑
k αk X[k]Q[k].

(1.20)

Now based on Eq. 1.20 the partial factor scores F[k] for each X[k]are computed as follows:

F[k] = K ×αk ×X[k]Q[k]. (1.21)

These scores are projections of the individual configuration of a block X[k] into the space of the

compromise or consensus configuration. By having both projected scores F[k] and and con-
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sensus scores FMF A in the same space one can create PCA scores plots to visualise differences

between the consensus configuration and individual configurations and to compute the relative

distance between them as it is done with the similarity ratios SRk discussed in section 2.2.3.5.

Fig. 1.2 shows a graphical illustration of the MFA computation process that is slightly differ-

ent from the one that is described above. Both approaches obviously produce the same statisti-

cal results. In section 2.2.3.2 of the scientific paper a third alternative is presented for computing

MFA results. Also this one produces the same results as the two prior mentioned.

1.5 Generalised Procrustes Analysis (GPA)

Generalised procrustes analysis (Gower, 75) is the other multiblock method discussed in this

thesis. Similar to MFA, GPA was designed for analysis of K blocks Z[k] of dimension (I × J[k]) that

hold data from measurements on the same objects I . In the same way as MFA, also here the goal

is to find a consensus configurations Y and their PCA scores FGPA based on all individual con-

figurations Z[k], PCA loadings QGPA and projected scores F[k] of the individual configurations

into the space of the consensus configuration. GPA, though, takes a quite different statistical

approach to compute these results compared to MFA. In brief, the main steps of GPA are the

so-called Procrustes transformation of blocks Z[k] to make them all as similar as possible be-

fore PCA is applied on their average matrix. An excellent and detailed review of GPA in sensory

science context is given in a book chapter (Dijksterhuis, 1996) and this thesis provides a brief

summary of the content.

STEP 1 - Procrustes transformation

The GPA procedure starts with Procrustes transformation of the blocks Z[k] to make them as

alike as possible. The Procrustes transformation itself consist of several data transformations:

(I) translation; (II) rotation and reflection; (III) isotropic scaling. Fig. 1.3 illustrates how these

three transformations are carried out exemplified by two simple configurations with three ob-

jects.
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Figure 1.2: A graphical illustration of the MFA computation process (taken from (Abdi et al.,
2013)).
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In statistical terms the procedure is described by the following. After all three transformation

steps are carried out the distances between the transformed individual configurations of Z[k] can

be written as

K∑
k<l

‖τ(Z[k])−τ(Z[l ])‖ (1.22)

where τ(Z[k]) represents the transformed version of block Z[k]. One important restriction of the

Procrustes rotation is that it keeps intact the relative distances between the objects within a

configuration. As it will be shown later, MFA does not preserve these relative distances between

objects (see section 2.3.2). Minimising Eq. 1.22 is equivalent to

K∑
k=1

‖τ(Z[k])−Y‖ (1.23)

where Y is the consensus matrix computed as the average across all transformed blocks τ(Z[k])

as described by

Y = K −1
K∑

k=1
τ(Z[k]). (1.24)

The three transformations steps in Procrustes transformation of a block Z[k] can be summarised

in

τ(Z[k]) = ρk Z[k]H[k] +T[k] (1.25)

where T[k] represents the translation step (going from a) to b) in Fig. 1.3). Practically, this means

that the variables in Z[k] are zero mean centered. The rotation and reflection transformation

(going from b) to c) in Fig. 1.3) is represented by the orthonormal rotation matrix H[k] which is

of dimension (J × J ). Since H[k] is orthonormal it is true that

HT
[k]H[k] = H[k]H

T
[k] = I. (1.26)

The last step in Procrustes transformation, i.e. isotropic scaling (going from c) to d) in Fig. 1.3),

is represented by the isotropic scaling factor ρk , which is a non-negative scalar. These three

steps in Procrustes transformation minimise the sum of all squared distances between the trans-
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formed blocks τ(Z[k]) such that Eq. 1.23 can be reformulated as

K∑
k<l

‖ρk Z[k]H[k] −ρl Z[l ]H[l ]‖ = K
K∑

k=1
‖Y−ρk Z[k]H[k]‖. (1.27)

In order to prevent a trivial solution where ρk minimises to zero the following constraint is im-

posed on Eq. 1.27

K∑
k=1

‖ρk Z[k]H[k]‖ = K (1.28)

where the constraint scales the total variance to K , i.e. the total number of blocks Z[k] included

in the computation.

Through the Procrustes transformation the total variance across the individual configura-

tions Z[k] are minimised. In order to evaluate the contribution of each transformation to the

reduction of the total variance a PANOVA (Procrustes ANOVA) table is computed (Gower, 75)

using approximate F-tests for each of the three transformations. Table 1.1 shows an example of

a PANOVA table produced from the commercial XLSTAT software for real world data set 3 which

is described in section 2.2.2.4. From this example it can be observed that the largest reduction

in variance is due to the rotation transformation (p < 0.0001). Reduction in variance through

translation is considerable (p = 0.034), however, it is about 4.6 times smaller than for rotation.

Isotropic scaling contributes the least to variance reduction (p = 0.540).

Table 1.1: Example of PANOVA table generated by the statistical software XLSTAT.

Source DF Sum of squares Mean squares F Pr > F

Residuals after scaling 204 17711.084 86.819
Scaling 17 1372.461 80.733 0.930 0.540
Residuals after rotation 221 19083.545 86.351
Rotation 17 21137.916 1243.407 14.322 < 0.0001
Residuals after translation 238 40221.461 168.998
Translation 34 4580.865 134.731 1.552 0.034
Corrected Total 272 44802.326 164.714

STEP 2 - PCA on consensus matrix Y
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The second main step in GPA is to apply PCA to the average matrix Y from Eq. 1.24 by means of

SVD as described in Eq. 1.2. Note that since Y is an average across K individual blocks Z[k], Y is

of the same dimension as the blocks Z[k], i.e. (I × J[k]). With this Y is decomposed the following

way

Y = UΓVT . (1.29)

From this the PCA scores of the consensus configuration FGPA can be computed by

FGPA = G = UΓ (1.30)

and the PCA loadings QGPA are represented by V in Eq. 1.29. Finally, the projected PCA scores

Fk,GPA of the individual blocks X[k] into the consensus space of FGPA can be computed by

Fk,GPA = τ(Z[k])QGPA. (1.31)

By having both projected scores F[k] and and consensus scores FGPA in the same space one can

create PCA scores plots to visualise differences between the consensus configuration and indi-

vidual configurations and to compute the relative distance between them as it is done with the

similarity ratios SRk discussed in section 2.2.3.5.

1.6 Validation

The PCA scores FGPA and FMF A hold the consensus information on the tested products com-

puted with GPA and MFA, respectively. By plotting the first two columns of either FGPA or FMF A

in a scatter plot usually most of the systematic variance in the data is visualised, thus providing

the product developer valuable insight into how the products relate to one another. This infor-

mation is then used for further development or refinements of the products. The question now

is whether the acquired statistical results are really valid and not only a random outcome? Can

the product developer really trust them enough to base his or her decisions on them regarding

the further development of a new product? Therefore, it is necessary to apply some suitable
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validation tools as part of the computations with GPA and MFA

1.6.1 Cross validation in PCA

Since both GPA and MFA do a PCA as the last step of computations obvious tools for validation

would be test set validation and cross validation (Martens and Næs, 1989). With test set valida-

tion one needs to create a training set and a test set. The training set then would consists of the

products tested by consumers and would be used to build or train the PCA model from. The test

set should contain new untested products which would then be used to validate the PCA model.

This approach is not feasible when working with consumers, since consumers would have to

participate in a second trial testing the new products. This would be very costly and too time

consuming for the product development process. The more suitable option would be to apply

cross validation (sometimes also called internal validation), i.e. only the products tested by the

consumers are used for training and testing the PCA model.

When cross validating a PCA model that was built from all I objects in a matrix X of dimen-

sion (I × J ), a number N objects are left out and then a new PCA model is calibrated with the

remaining I −N objects. N may consist of one or more objects and making the right choice for

which samples should be left out each time depends on the relationship between the objects.

The matrix of left out objects can be denoted Xout and is of dimension (N × J ). The N objects

that were left out are then projected into that new PCA model space based on I −N objects and

PCA scores are obtained for those N left-out objects. These projected PCA scores are then used

to predict or reconstruct the matrix Xout . This reconstructed matrix is named X̂[`]
out and is com-

puted using the first ` PC’s. The whole process is then repeated a number of times until each

object has been left out once. Note that if the number of left out objects is N = 1, it means that

there are I such repetitions. The cross validation then becomes a full cross validation, which is

also known as leave-one-out cross validation. Eventually, when all repetitions are done the X̂[`]
out

from all repetitions can be utilised to construct X̂ and compute PRESS (PRediction Error Sum of

Squares), also called residuals

PRESS = ‖X− X̂‖2. (1.32)
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From PRESS the mean square error of cross validation (MSECV) can be acquired by computing

MSECV = PRESS/I for each PC. This MSECV can then be used to compute the validated ex-

plained variance (Martens and Næs, 1989), a measure that provides information on the validity

or robustness of the PCA model based on all I objects. In general terms, the closer the validated

explained variance to the calibrated explained variance (see Eq. 1.5 and 1.9 for SVD and GSVD,

respectively), the more robust the PCA model.

In case of the projective mapping data, which are the main focus of this thesis, full cross

validation was used in MFA for where the grand matrix X from Eq. 1.16 is decomposed by GSVD.

For GPA, full cross validation was used where projective mapping data the consensus matrix Y

(see Eq. 1.24) was decomposed by SVD.

1.6.2 Permutation testing for Procrustes transformation consensus

As part of the GPA process all individual matrices Z[k] are transformed using Procrustes trans-

formations (see section 1.5 and Fig. 1.3) and a consensus matrix Y is acquired by averaging

across these transformed individual configurations τ(Zk ) (see Eq. 1.24). But this consensus ma-

trix or consensus configuration Y also needs to be subjected to validation in order to determine

whether the consensus is real or if it a product of chance. Earlier research has shown that even

by using random numbers for individual configurations Z[k] GPA may obtain a consensus that

is in close agreement with the individual configurations (King and Arents, 1991). The authors

suggest that the level of agreement can be measured with the Rc statistic which represents the

proportion of the total variance explained by the consensus Y. This Rc statistic may then be

utilised in a permutation test (Wakeling et al., 1992) to determine the validity of the consensus.

In the permutation test the rows in each individual matrix Z[k] are permuted before Pro-

crustes transformations are applied to the permuted data and a new consensus Yper m is com-

puted. In this way all information regarding the objects or products is lost, yet the original con-

figuration of the data points is preserved. By running a Monte Carlo simulation and doing these

permutations a high number of times (e.g. 10 000 times) a distribution of Rc is found. By com-

paring for example the 95th percentile of this distribution with the Rc of the original data it is
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Figure 1.4: Histogram showing the Rc distribution from 1000 permutations. The Rc value of the
original data is 0.527 which is higher than any of the Rc values from permutation.

possible to determine whether the consensus of the original data has been acquired by chance

or not. Fig. 1.4 shows an example of such an permutation test with 10000 permutations for the

real world data set 3. The distribution suggests that the consensus matrix Y is not acquired by

chance and that the reduction in variance by Procrustes transformation is significant.
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Scientific Journal Paper

Abstract

Generalised procrustes analysis and multiple factor analysis are multivariate statistical meth-

ods that belong to the family of multiblock methods. Both methods are often used for analysis

of data from projective mapping (a.k.a. Napping®), a method from sensory science where un-

trained individuals are asked to place products on a sheet according to product similarities or

dissimilarities. In this study generalized procrustes analysis, multiple factor analysis as well as

a combination of the two were applied on a number of data sets and their statistical results

were compared with one another. The type of data used in this study were (I) random data from

Monte Carlo simulations; (II) constructed data that were manipulated according to different cri-

teria; (III) real world data from nine Napping® experiments. Results have shown that in some

cases due to somewhat different outcomes interpretation problems may arise and that the user

faces a difficult decision where one statistical method should be preferred over the other. Some

simple guidelines are suggested that may help making this decision.

Keywords: projective mapping, Napping®, generalized procrustes analysis, GPA, multiple fac-

tor analysis, MFA, consumer test, combination GPA MFA
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2.1 Introduction

In recent years rapid sensory methods have gained a lot of interest in the field of sensory sci-

ence (Dehlholm et al., 2012; Valentin et al., 2012; Varela and Ares, 2012). An important method

that belongs to this category is projective mapping (Risvik et al., 1994), also known as Napping

(Pagès, 2005), where untrained individuals are asked to place a number of products on a two-

dimensional sheet according to their similarities or dissimilarities using their own criteria (i.e.

different types of sensory sensations) they consider to be important. Despite being documented

to be less precise than descriptive sensory analysis (Valentin et al., 2012) projective mapping has

gained much popularity especially with the food industry because it is less time consuming and

more cost effective than traditional methods.

By placing products on a sheet each individual generates a two-dimensional data matrix

holding the coordinates of all placed products. Projective mapping is carried out with a number

of individuals typically ranging from 10 to 100, meaning that a multiblock or multimatrix situa-

tion is given after all data are collected. These data need to be analysed with a suitable statistical

method where analysis results will provide important information about the tested products

and where this information can be utilised for further product development or product optimi-

sation.

For the analysis of projective mapping data the two most established statistical methods are

generalised procrustes analysis (GPA) (Gower, 75) and multiple factor analysis (MFA) (Escofier

and Pagès, 1994). Even though both GPA and MFA are conceptually very different (see details on

each method in section 2.2.3.1 and 2.2.3.2) both belong to the family of the so-called multiblock

methods (Abdi et al., 2013). They provide amongst other information regarding the consensus

product configuration which is derived from product placing of all individuals, contribution of

each block and its variables to the variation in the data, etc. In general, both GPA and MFA can

be applied on blocks or data coming from any type of measurement (sensory, chemical, physi-

cal, etc.) when carried out on the same objects, since they allow for the numbers of variables in

each block to be different. This is an important property when different types of measurement
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are available for analysis. In this study focus will be on analysis of data acquired from projective

mapping, i.e. data blocks with only two variables holding x- and y-coordinates of product plac-

ings, which defines a special case of multiblock situation.

To the author’s knowledge there exists no study that discusses in detail the differences be-

tween the two methods in general, and when applied on the same set of projective mapping

data in particular. Only one study (Nestrud and Lawless, 2008) briefly mentions that both meth-

ods have been tested on the same data set and reports that results were very similar. In this

study GPA and MFA were applied on data that were generated from a single experiment where

13 citrus juices were evaluated by a group of experienced chefs and a group of untrained con-

sumers. Configurations within each group acquired from GPA and MFA were compared using

the RV coefficient (Robert and Escoufier, 1976) and found to be similar (see section 2.2.3.4 for

details on RV coefficient).

This study attempts to give more insight into differences in results acquired with GPA and

MFA in the case of projective mapping. This is done through comparisons of results from GPA

and MFA computed from: (I) random data in Monte Carlo simulations; (II) constructed data

that were manipulated using some specific criteria; (III) real world data from nine Napping ex-

periments. Furthermore, for case (II) and (III) a combination of the two methods will be inves-

tigated, where Procrustes rotation is carried out first for all data matrices followed by MFA.

2.2 Materials and Methods

2.2.1 Projective Mapping

Projective mapping is a method where individuals evaluate the overall perception of a number

of products and place them on a sheet according to the products similarities or dissimilarities

(Risvik et al., 1994; Pagès, 2005). Placement can be done either by putting products directly on

a sheet of paper or by indicating their position on a computer screen sheet. Individuals are in-

structed to place products close to each other if they are perceived to be similar and vice versa
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using their own criteria they consider being important for the products. Other than that individ-

uals are not given further instructions. If the placement of the products needs to be refined, the

individuals may taste the products again (provided that they are food products) until placement

is considered to be satisfying. Optionally, individuals may be asked to write down sensory de-

scriptors on the sheet close to the tested products, that best describe each group of products. By

doing so the projective map is turned into an Ultra Flash Profile method as described previously

(Perrin et al., 2008). In this study, however, focus will be only on the product sheet coordinates

(two-dimensional data blocks in form of x- and y-coordinates) coming from each individual.

These multiblock data are then transformed into a consensus product configuration using GPA,

MFA and a combination of the two, representing the all individuals.

A well know critique regarding projective mapping worth mentioning is that complex mul-

tidimensional products may be difficult to place on the two-dimensional sheet since the two

dimensions of the sheet may not be enough to distinguish the products properly and may the

leave the user with a non-satisfying placement of the products. Recent research (Nestrud and

Lawless, 2011), however, refutes this criticism by claiming that subsampled dimensions and

configurations could be recovered using MFA and multidimensional scaling.

2.2.2 Projective Mapping data used in study

This section describes the data that were used in this study and served the purpose for compar-

ison of outcomes from GPA and MFA. Three types of data were used: (I) random data generated

with different settings to simulate a specific number of consumers evaluating a specific number

of products; (II) constructed data that simulate certain situations and that allow for checking

how GPA and MFA handle translations, rotations and scaling of configurations; (III) real world

data from nine Napping experiments. The aim was to compare statistical results provided by

GPA and MFA in these three specific situations and gain insight into potential differences. How-

ever, before going into detail regarding the three data types it is important to understand the

general structure of projective mapping data. This will be done briefly in the next section 2.2.2.1.
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2.2.2.1 General Structure of Projective Mapping Data

Since every individual taking part in the projective mapping trial is supposed to place a number

of products on a projective mapping sheet the resulting individual data block Zk is of dimen-

sion (I × J ) with J = 2. Here I represents i = 1, . . . , I number of objects or products tested by

the individuals and j = 1,2 represent the two variables represent the x- and y-coordinates of

the products on the projective mapping sheet. Provided that a total number of k = 1, . . . ,K in-

dividuals have participated in the projective mapping trial there are K individual data blocks

Zk . This is a special case of multi-block data where all blocks are yielded from the same type of

measurement and are of type “short thin” consisting of many objects compared to the number

of variables. The consensus product configurations from GPA, MFA and PrMFA (details on the

methods provided in section 2.2.3.1, 2.2.3.2 and 2.2.3.3) are always computed from the same

set of individual data blocks Zk and are named YGPA, XMF A and XPrGPA, respectively. The PCA

scores of these three consensus configurations are named FGPA, FMF A and FPrGPA, respectively.

The final product maps that provide information on how the tested products relate to one an-

other, i.e. the PCA scores plots, are based on them. When speaking of PCA scores of consensus

product configuration in general, i.e. independent of the used statistical method used to com-

pute the consensus configuration, they will be referred to as Fc with c = GPA, MF A,Pr MF A.

When comparing the product maps from GPA, MFA and PrMFA using the RV coefficient, only

the first two components of FGPA, FMF A and FPrGPA were considered. This restriction was im-

posed on the MFA and PrMFA data in order to have a common base with the GPA scores which

only have two components (details in section 2.2.3.1)

2.2.2.2 Random data for Monte Carlo simulations

The main objective in this part of the study was to investigate the similarity of consensus prod-

uct configurations FGPA and FMF A over a large number of simulations. For each fictive indi-

vidual taking part in the projective mapping trial random data were generated that fell within a

standard projective mapping sheet of size 60 x 40 cm. The amount of random data used in each

Monte Carlo simulation depended on the number of individuals k = 20,40,60 taking part in the

trial and the number of products i = 4, . . . ,16 simulated for all blocks Zk . The random data were
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generated using a uniform distribution. The upper limit of 16 products was chosen based on

one of the real world data sets used in section 2.2.2.4 that compared 16 products (data set 4 in

Table 2.1). The upper limit of 100 consumers was also chosen based on another real world data

set (data set 7 in Table 2.1) from section 2.2.2.4 using 97 consumers to evaluate the products.

Using all possible pair-wise combinations of number of individuals and number of prod-

ucts a total of 39 Monte Carlo simulations (3 levels of individuals x 13 levels of products) were

carried out. For each of the 39 Monte Carlo simulations 1000 runs were carried out, i.e. 1000

consensus product configurations FGPA and FMF A were computed and for each run their sim-

ilarity was measured using the RV coefficient. The average across the 1000 RV coefficient was

then computed and applied as an indicator for general similarity between FGPA and FMF A.

2.2.2.3 Constructed data

In this part of the study the aim was to investigate in a controlled setting how GPA, MFA and

PrMFA would handle individual product configurations Zk from a number of fictive individuals

that were initially identical (see Fig. 2.1) before they were subject to one or more targeted ma-

nipulations. These targeted manipulations included off-sets from the projective mapping sheet

centre, different degrees of rotations and reflections, and variation of relative product distances.

Those are exactly the types of situations that GPA can handle with its Procrustes transforma-

tions to make individual product configurations as similar as possible. The question at hand

was whether MFA could handle such situations and whether a combination of GPA and MFA

would produce a consensus configuration that better represents all individuals. The PCA scores

FGPA, FMF A and FPrGPA of the resulting consensus product configurations were then compared

with one another using the RV coefficient to make a statement regarding their similarity. For

this purpose five scenarios were created with manipulated data sets for 8 fictive individuals.

The data in each scenario were manipulated by applying at least one or a combination of the

three manipulations mentioned above.

As mentioned above, a constructed individual product configuration of five products (see

Fig. 2.1), from now on called initial product configuration, was used as a starting point for all in-
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dividuals before controlled manipulation. This initial configuration represents a triangle shape

and is centred in the middle of the projective map (600 mm x 400 mm) pointing “north”. Product

4 is located exactly in the middle of the projective map. The distance between products 1 and

2 was set to 121 mm and is identical to the distance between products 2 and 3. The distance

between products 2 and 4 was set to 95 mm and is identical to the distance between products

4 and 5. The axis formed by products 1, 2 and 3 is orthogonal to the axis formed by products 2,

4 and 5. In order to avoid numerical computation problems with MFA, 1 % random noise was

added to each of the individual configurations after they were manipulated according to the five

constructed data situations as described below.

Constructed data 1: rotation only

For all 8 fictive consumers the initial individual product configuration (see Fig. 2.1) was used as

a starting point. Before and after rotation all configurations were centred in the middle of the

projective map, i.e. product 4 kept its position on the projective map. No translation or reflec-

tion took place and distances between all objects were preserved, meaning there was neither

isotropic scaling nor deformation of the triangle shape. The only manipulation undertaken was

clock-wise rotation of the initial individual product configuration in fixed steps of 45 degrees

with each individual. More specifically the rotations were the following: fictive individual 1 (0°,

pointing north); fictive individual 2 (45°, pointing north-east); fictive individual 3 (90°, pointing

east); fictive individual 4 (135°, pointing south-east); fictive individual 5 (180°, pointing south);

fictive individual 6 (225°, pointing south-west); fictive individual 7 (270°, pointing west); fictive

individual 8 (315°, pointing north-west).

Constructed data 2: translation only

For all 8 fictive consumers the initial product configuration (see Fig. 2.1) was used as a start-

ing point. Before and after translation all product configurations pointed “north”. No rotation

or reflection took place and distances between all objects were preserved meaning there was

neither isotropic scaling nor deformation of the triangle shape. The only manipulation each

individual product configuration underwent was 40 mm translations away from the projective

mapping sheet centre. More specifically translation directions were the following: fictive indi-
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vidual 1 (south); fictive individual 2 (south-west); fictive individual 3 (west); fictive individual

4 (north-west); fictive individual 5 (north); fictive individual 6 (north-east); fictive individual 7

(east); fictive individual 8 (south-east).

Constructed data 3: translation and rotation

These constructed data are a combination of constructed data 1 and 2, where all individual

product configurations were moved away 40 mm from the projective map centre and rotated

clock-wise in 45 degrees steps. The product configurations of fictive individual 2, as an example,

was moved away 40 mm southwest from the projective map centre and was rotated 45 degrees

clock-wise such that the vertex pointed north-east.

Constructed data 4: translation, rotation and reflection

These data are constructed in the same way as constructed data 3, however, the product con-

figuration of fictive consumer 2, 4, 6 and 8 (those whose product configurations were moved

away diagonally from the centre) are pointing away from the projective map sheet centre and

product configuration being mirrored along the axis formed by products 2, 4 and 5. Fig. 2.2 vi-

sualises schematically what the individual product placements of the 8 fictive consumers would

look like if they were placed on the same projective mapping sheet.

Constructed data 5: changing relative distances between products

For all 8 fictive individuals the initial product configuration (see Fig. 2.1) was used as a start-

ing point. Before and after stretching and shrinking all individual product configurations were

centred in the middle of the projective map and pointing north, meaning that no translation, ro-

tation or reflection took place. This time distances between products were changed by stretch-

ing and shrinking the individual product configurations in different ways and combinations.

Stretching and shrinkage were applied along either the axis spanned by product 1, 2 and 3 or

the axis spanned by product 2, 4 and 5 or both. Changes applied to distance between product 1

and 2 were identical to those of distance between product 2 and 3. Furthermore, changes of the

distance between product 2 and 4 were identical to those of distance between products 4 and 5.

This resulted in 8 differently shaped isosceles triangles.
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2.2.2.4 Real world data

In this part of the study nine Napping data sets from real experiments were analysed. Table 2.1

provides a short summary over what kind of and how many products were used in each exper-

iment, how many individuals tested the products and whether there is a connection to any of

the other data sets. Note that data set 1 and 2 were acquired through experiments carried out

at Nofima and that the remaining data sets were kindly provided by Husson on his own web

site. The tested products are of varying sensory complexity ranging from relative low complex-

ity products like apple and orange juices to relatively high complexity products such as wine.

From experience it is know that sensory-wise complex products generate more variation across

consumers and experts than products of rather low sensory complexity would do.

Table 2.1: Overview over the real world data sets used in this study.

Data set # Product type # of products # of individuals Remarks

1 apple juices 8 16 Same products as in data set 2
2 apple juices 8 11 Same products as in data set 1
3 biscuits 8 18
4 cocktails 16 10
5 orange juices 12 20 same products as in data set 6
6 orange juices 12 28 same products as in data set 5
7 perfumes 12 97 same products as in data set 8
8 perfumes 12 23 same products as in data set 7
9 wines 10 18

2.2.3 Statistical methods and measures

GPA and MFA have in common that they are multivariate statistical methods designed for anal-

ysis of multiple blocks of data measured on the same set of objects. Both methods allow the

number of variables across data blocks to vary; a feature that makes them suitable to incorpo-

rate any kind of measurements in the analysis. GPA and MFA are both known to be used for

analysis of projective mapping data, a special case of multiblock data. Both methods provide

many of the same types of results as for example consensus scores, loadings, block loadings,

contribution of each block to the total variance, etc. But despite these similarities regarding

their general frameworks the way results are computed are very different. In the following sec-
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tions GPA and MFA will be introduced briefly in order to emphasise the differences between

their computational approaches. A combination of GPA and MFA, named PrMFA in this study,

was also applied to the data in section 2.2.2.3 and 2.2.2.4 to investigate whether the combination

of the two methods would bring any additional benefits beyond what is provided by GPA and

MFA.

2.2.3.1 Generalised Procrustes Analysis (GPA)

GPA (Gower, 75; Dijksterhuis, 1996) is a multivariate statistical method that is applied for anal-

ysis of multiple data blocks. The main goal is to acquire a consensus from those blocks after

they have undergone Procrustes transformations that reduce individual differences by means

of translation, rotation and reflection as well as isotropic scaling. GPA is therefore well suited for

analysis of projective mapping data given our goal to find a consensus product configuration

from all individuals who took part in the mapping. Note that GPA consists of two steps: (I) Pro-

crustes transformation followed by (II) Principal Component Analysis (Martens and Næs, 1989)

on those transformed data blocks.

A data block Zk contains the individual product configuration of individual k based on how

this individual places the tested products on the projective mapping sheet and the resulting

product x- and y-coordinates. Clearly, there will always be differences across individuals how

individuals place the products on the sheet. This might be because of individuals perceiving

the products differently, but also due to their different ways of placing products on the mapping

sheet. Regarding the former, these are the sensory differences that are relevant for computation

of the consensus product configuration since they contain important sensory information re-

garding the products. For the latter these differences arise because of individuals using more or

less space on the mapping sheet; individual product configurations may be very similar but mir-

rored and/or rotated against one another; they may have varying degrees of shift off the origo

(middle of mapping sheet). These are the differences one would like to eliminate from the indi-

vidual data since they are not really product related but merely a result from individuals using

the mapping sheet in different ways. GPA accounts for these non-sensory related differences

through its Procrustes transformation.
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In general, the three steps of Procrustes transformation can be summarised like this: (a)

translation, meaning that all individual configurations are moved to the middle of the mapping

sheet. In statistical terms this is the mean-centring of the x- and y-coordinates; (b) rotation and

reflection of individual configurations until they are in best possible agreement with one an-

other; (c) isotropic scaling, i.e. shrinking or stretching of individual configurations until they are

alike as possible but, however, without changing the relative distances between the products in

each configuration.

Statistically, the three steps of Procrustes transformation may be summarised in the follow-

ing way:

τ(Z[k]) = ρk Z[k]H[k] +Tk (2.1)

where τ(Zk ) represents the Procrustes transformation of block Zk , Tk is the matrix of transla-

tion constants (step (a)), Hk represent the rotation matrix (step (b)) and ρk represents the scalar

from isotropic scaling (step (c)). Note that Hk is an orthogonal matrix HT H = HHT = I . Hk and

ρk of each data block are obtained by minimising:

K∑
k=1

‖ρk Z[k]H[k] −YGPA‖ (2.2)

where YGPA represents the mean or so-called consensus matrix across all transformed blocks

τ(Z[k]). YGPA is of dimension (I × 2), i.e. exactly the same dimension as the individual data

blocks Z[k]. As a final step YGPA is then analysed with PCA where the scores plot represents

the final consensus sensory map containing the consensus product configuration based on the

placements of all individuals.

Note that since YGPA is of dimension (I × 2), only two principal components (PC) may be

extracted from the data. As a consequence all information in the resulting consensus product

configuration FGPA, which also is of dimension (I ×2), will be contained in the space spanned

by these two PC’s (PC1 and PC2 will cumulatively always reach 100% explained variance). This
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property of GPA may be regarded as a major drawback since most products are usually more

than only two-dimensional when seen from a sensory perspective and therefore the resulting

consensus product configuration FGPA may provide an oversimplified picture of the situation.

2.2.3.2 Multiple Factor Analysis (MFA)

There are several ways to describe mathematically how MFA (Escofier and Pagès, 1994) works.

A thorough review of the alternatives is provided elsewhere (Abdi et al., 2013). To keep this sec-

tion brief MFA is presented as a ‘simple PCA’, one of three alternatives mentioned above (Abdi

et al., 2013). Note that for the computation of the consensus matrix X̃MF A the variables of each

individual block Z[k] are standardised such that they become X[k]. The following steps are car-

ried out: (I) singular value decomposition (SVD) for each individual block X[k] separately where

amongst other the first singular value γ1,k of each X[k] is acquired; (II) new blocks X̃[k] are com-

puted, i.e. normalised versions of X[k] that were divided by their respective first singular value

γ1,k acquired in step (I). This is formalised the following way:

X̃[k] = γ−1
1,k X[k] (2.3)

(III) All X̃[k] are concatenated horizontally forming the consensus matrix X̃MF A

X̃MF A = [X̃[1]| . . . |X̃[k]| . . . |X̃[K ]] (2.4)

(IV) PCA is applied on X̃MF A which results in consensus product configuration FMF A. Note that,

unlike with GPA, more components are available for visualisation the consensus product con-

figuration in MFA, since FMF A is of dimension (I × L) where L represents the number of PC’s

extracted by PCA. Typically, the first two components will be the most relevant to look at since

they explain most of the systematic variance in the data. But one can also investigate com-

ponent 3 and further, which is not possible in GPA. With MFA it is therefore possible that for

complex products each component could be related to a sensory perception or modality. This

is not possible with GPA since there are always only two dimensions in the sensory consensus

map available.
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2.2.3.3 Combination of Generalised Procrustes Analysis and Multiple Factor Analysis (PrMFA)

In addition to applying GPA and MFA on the projective mapping data it was of interest to in-

vestigate whether a combination of the two methods would bring any benefits. In the com-

bined approach the data were first treated by Procrustes transformation as with GPA followed

by MFA on the transformed data. This results in the consensus product configuration FPr MF A.

This approach was applied only on the constructed and the real world data from section 2.2.2.3

and 2.2.2.4, respectively.

Note that the combined approach mentioned above is not to be confused with another ap-

proach called Procrustes Multiple Factor Analysis (Morand and Pagès, 2006) which applies the

two methods in reverse order. In that study first MFA was applied on the individual data X[k]

followed by Procrustes transformations of individual data Fk,MF A to make them as similar as

possible to the MFA consensus FMF A for the purpose of interpretation.

2.2.3.4 RV coefficient

The variance across all variables (columns) in a data matrix X provides information on the con-

figuration of its objects (rows), i.e. describing how the objects relate to one another in the mul-

tidimensional space spanned by the variables. In our case with projective mapping, the object

configuration is a result of how an individual has placed the products on the two-dimensional

sheet. Now If one needs to determine the degree of similarity of how two individuals have placed

the products on their respective sheets one needs to analyse their data matrices X1 and X2. The

similarity of two object configurations can be measured with the RV coefficient (Robert and Es-

coufier, 1976). It is computed as follows:

RV = (X1,X2) = tr [X1XT
1 X2XT

2 ]√
tr [X1XT

1 X1XT
1 ]tr [X2XT

2 X2XT
2 ]

(2.5)

Note that both X1 and X2 are assumed to be column centred. The RV coefficient is a scalar that

varies between 0 and 1. The higher the RV coefficient, the more similar are the object configura-

tions in X1 and X2. Important properties of the RV coefficient are scale and rotation invariance

which is very convenient when analysing data from projective mapping. Individuals may place
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the products in a similar manner, yet they might use more or less space on the projective map-

ping sheet. The RV coefficient accounts for this type of individual difference through its scale

invariance. Furthermore, individuals’ placements of the products may be similar, yet rotated in

relation to one another or mirrored in either one or both sheet coordinate axis. Also this prob-

lem the RV coefficient accounts for through its rotation invariance. In general, when computing

the RV coefficient for two data matrices X1 and X2 the number of variables in each matrix may

be different. However, with the projective mapping data dealt with in this study all data matrices

have only two variables, i.e. the first two columns of FGPA, FGPA and FGPA.

Below in section 2.3.1 the RV coefficient will be used to compute similarity of consensus

product configurations that were acquired with GPA and MFA from the same set of individual

data. In section 2.3.2 and 2.3.3 the RV coefficient will be applied to compute similarity of con-

sensus product configurations that were acquired with GPA, MFA and PrMFA from the same set

of individual data. Note that the value of the RV coefficient is dependent on the number of ob-

jects and variables in X1 and X2 (Smilde et al., 2009) and that it may be subject to a centering

effect (Tomic et al., 2013). This is especially true for “short fat” matrices with few objects and

many variables. In this study, however, these problems are of less relevance since all matrices

are of type “long thin”. This means typically that in X1 and X2 there will be many more objects

(products on the sheet) relative to the two variables (x- and y-coordinates).

2.2.3.5 Similarity ratio for projected individual data

When applying GPA, MFA or PrMFA on a projective mapping data set each method computes

PCA scores Fc from a consensus product configuration. The validity of the consensus product

configuration can be evaluated by measuring how well Fc represents each individual product

configuration. This can be done by inspecting the PCA scores of the consensus product config-

uration Fc and the sub-space it spans together with the PCA scores F[k],c of individual product

configurations projected into that same sub-space. Differences between the consensus scores

Fc and the individual projected scores F[k],c can be utilised to compute a measure of how well

the particular individual is represented by the consensus. This measure, named similarity ratio

SRk,c in this study, may be computed for each individual i in the following way:
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SRk,c =
K∑

k=1

‖Fc −F[k],c‖2

‖Fc‖2
(2.6)

where k = 1, . . . ,K represents the individuals participating in the projective mapping; c =
GPA, MF A,Pr MF A represents the method the ratio is computed for; F[k] represents projected

scores of an individual k. Note that only the first two columns for each F[k] and Fc are used.

Computing the similarity ratio SRk,c in this way is convenient, since it is independent of the

scores units provided by each GPA, MFA and PrMFA and thus makes comparisons across the

three methods possible. From Eq. 2.6 can be seen that the larger the difference between the

projected scores F[k] and the consensus product configuration Fc is, the higher is SRk,c for that

particular individual. There is no upper limit for the similarity ratio; however for the real world

data used in this study the highest value reached was about 4.5. If the projected scores F[k] are

exactly the same as the consensus scores Fc then SRk,c will be zero since the nominator in Eq 2.6

will be zero. To get a measure of how well the consensus product configuration Fc represents the

whole group of individuals one can compute the total sum of all individual similarity indices.

This is done as follows:

SRtot ,c =
K∑

k=1
SRk,c (2.7)

The sum and the standard deviation of the similarity ratio then allow for comparison of the

methods, where one would prefer the method with: (I) the lowest SRtot ,c , meaning that overall

individuals are represented by the consensus in a best possible manner in combination with;

(II) lowest possible standard deviation across SRk,c meaning that the consensus product config-

uration is representative for most individuals.

2.2.4 Data Analysis Software

Monte Carlo simulations of random data in subsection 2.2.2.2 were carried out in a Python pro-

gramming language environment using the numerical package Numpy (Oliphant, 2007). From

the Python environment GPA and MFA functions were called to do the computations on the

random projective mapping data. The GPA and MFA functions are part of the FactoMineR pack-

age (Lê et al., 2008) coded in R and were accessed through PypeR (Xia et al., 2010), an interface
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between the Python and R programming languages.

For the constructed and real world data of subsection 2.2.2.3 and 2.2.2.4 the commercial XL-

STAT software was used for computation of results. Both GPA and MFA are part of the XLSTAT-

MX add-on package for market research and sensory analysis. In particular, the Gower imple-

mentation of GPA in XLSTAT was used for analysis.

For all three types, random, constructed and real world data, a Python implementation of

the RV coefficient was used to compute values for configuration similarities from GPA, MFA and

PrMFA where applicable.

2.3 Results and Discussion

2.3.1 Monte Carlo simulations with random data

Fig. 2.3 summarises results from Monte Carlo simulations on generated random data as de-

scribed in section 2.2.2.2. The figure shows three box plots visualising the distribution of RV

coefficient computed for FGPA and FMF A with 20, 60 and 100 individuals, respectively. In each

box plot simulation results from 4 to 16 products are shown for 1000 simulation runs each. In

general one may conclude that on average similarity between FGPA and FMF A is high and that

the distribution of the RV coefficients is quite similar whether computations were done for 20,

60 and 100 individuals.

Fig. 2.4 is based on the same data, however, this time only the average RV coefficient is shown

for each individuals-product combination. Each data point represents the average across RV co-

efficients from 1000 simulations for a specific combination of number of individuals and num-

ber of products. As can be seen on average the highest similarities between the scores FGPA and

FMF A from GPA and MFA are present with a low number of products. For all tested numbers

of individuals, i.e. 20, 60 and 100 individuals, RV coefficients are the highest for 4 products and

decreasing with an increasing number of products. The only exception is a slight increase taking
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Figure 2.3: Box plots are shown summarising the distribution of the RV coefficients for 20, 60 and
100 consumers for a given number of products. Each column in the box plots is based on 1000
simulations. The RV coefficients were computed for the PCA scores (first two PC’s) FGPA and
FMF A of the consensus product configurations acquired with GPA and from MFA, respectively.
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Figure 2.4: These are the same data as shown in Fig. 2.3. Here, however each data point displays
average across 1000 simulations of a specific consumer-product combination.

place between 14 and 15 products for 60 consumers where the average RV coefficient is 0.7715

and 0.7733, respectively. As can be seen the decrease of RV coefficient value by adding another

product to simulations is larger when the number of products is low. From what can be seen

in Fig. 2.4 in general is that the changes are getting continuously smaller when the number of

products is high. Furthermore, it seems that GPA and MFA consensus product configurations

are less similar when the number of consumers increases.

The simulations have been computationally extremely expensive, mainly because GPA took

a very long time to compute. As an example, using a standard 4-core processor laptop it took

GPA between 9 and 10 minutes to compute one single simulation out of 1000 for 4 products and

100 consumers. For this particular consumer-product combination GPA computation times

were longer than for any other combinations and about 120 longer than for one single MFA sim-

ulation. With a higher number of products GPA computation time typically decreased.

Although RV coefficients on average were relatively high (with RV > 0.7) it must be noted that
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the consensus product configurations FGPA and FMF A may be different to such a degree that

interpretation regarding the tested products vary to some extent. An example of this is given in

section 2.3.3 and Fig. 2.6 for real world data set 5 (see Table 2.1).

2.3.2 Constructed data

For constructed data 1 to 4 (as described in section 2.2.2.3) GPA, MFA and PrMFA returned al-

most identical results, which indicates that in such a simple setting the three methods handle

translation, rotation and reflection very similarly. The resulting consensus configurations and

their PCA scores FGPA and FMF A are practically identical considering that RV coefficients never

fall below 0.9985 for any comparison (see Table 2.2). Note that an RV = 1 would indicate that

the configurations are identical and that almost all of the computed RV coefficients in Table 2.2

are very close to this value. At this point it is of interest to take into account individual product

configurations F[k],c from the 8 fictive consumers, project them into the consensus configura-

tion space and investigate how closely they fit FGPA of their respective consensus configuration.

The closer an individual product configuration is to the consensus configuration, the better it is

represented by the consensus configuration. The closeness can be measured by the similarity

ratio SRk,c , which was described above in section 2.2.3.5. The lower SRk is, the closer the indi-

vidual product configuration is to the consensus product configuration. Table 2.2 shows SRtot ,c

for GPA, MFA and PrMFA for the constructed data 1 to 5.

Since constructed data 4 (see Fig. 2.2) is the most complex of the first four, containing trans-

lation, rotation and reflection, this one will be discussed here in more detail. Fig. 2.5 shows the

PCA scores FGPA, FMF A and FPr MF A three consensus product configurations acquired with GPA,

MFA and PrMFA as well as their respective projected scores F[k],GPA, F[k],MF A and F[k],Pr MF A.

The plots clearly visualise how all three methods succeeded in handling translation, rotation

and reflection of the individual product configurations. In each case the individual product

configurations are very close to their respective consensus product configuration. Although

very small one can observe that the projected individual product configurations of product 1

and 3 are somewhat more scattered for in case of MFA than they are for GPA and PrMFA. This is

reflected by SRtot ,c for each method c, where SRtot ,MF A is about 23 times higher than SRtot ,GPA
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Table 2.2: Numerical results for each of the five constructed data scenarios as described in sec-
tion 2.2.2.3. The middle part of the table shows RV coefficients for the first two PC’s of con-
sensus configurations from GPA, MFA and PrMFA in each scenario. The right part of the table
summarises computations of the similarity ratio SRtot ,c and SRk,c from the projected individual
product configurations compared to the consensus configuration.

Data set RV SR

construtced data 1 GPA MFA PrMFA SRtot ,c std(SRk,c )
rotation only GPA 1 0.9997 0.9987 GPA 5.04E-04 3.21E-05

MFA 0.9997 1 0.9997 MFA 1.17E-02 7.96E-04
PrMFA 0.9987 0.9997 1 PrMFA 4.73E-04 1.39E-05

constructed data 2 GPA MFA PrMFA SRtot ,c std(SRk,c )
translation only GPA 1 0.9985 0.9985 GPA 5.09E-04 2.90E-05

MFA 0.9985 1 1.0000 MFA 7.32E-04 7.38E-05
PrMFA 0.9985 1.0000 1 PrMFA 7.11E-04 7.08E-05

constructed data 3 GPA MFA PrMFA SRtot ,c std(SRk,c )
translation and GPA 1 0.9997 0.9987 GPA 5.04E-04 3.21E-05
rotation MFA 0.9997 1 0.9997 MFA 1.17E-02 7.96E-04

PrMFA 0.9987 0.9997 1 PrMFA 4.73E-04 1.39E-05

constructed data 4 GPA MFA PrMFA SRtot ,c std(SRk,c )
translation, rotation GPA 1 0.9997 0.9988 GPA 4.63E-04 1.26E-05
and reflection MFA 0.9997 1 0.9997 MFA 1.08E-02 5.87E-04

PrMFA 0.9988 0.9997 1 PrMFA 5.10E-04 2.18E-05

constructed data 5 GPA MFA PrMFA SRtot ,c std(SRk,c )
changing relative GPA 1 0.9994 0.9994 GPA 4.07E-01 4.66E-02
distances between MFA 0.9994 1 1.0000 MFA 1.45E-03 1.65E-04
products PrMFA 0.9994 1.0000 1 PrMFA 1.32E-03 1.70E-04
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and SRtot ,Pr MF A (see Table 2.2).

Note that GPA, MFA and PrMFA provide very similar results for SRtot ,c for constructed data

2 where only translation is taking place. GPA provides the highest SRtot ,c in constructed data 5

where the initial configuration used for all 8 fictive individuals were “deformed”. This is due to

the fact that GPA preserves the relative distance between the products while MFA is changing

relative distances between the products during computation. Intuitively, one would like the rel-

ative distances between the products to remain the same which makes interpretation of how the

products relate to one another much simpler. MFA, though, transforms the individual configu-

rations of all 8 fictive individuals in such a way, that they are practically identical when looking

at FMF A and F[k],MF A together in a PCA scores plot. This makes interpretation of the relationship

between the products more difficult.

2.3.3 Real World Data

It is important to mention that the nine data sets (see Table 2.1) discussed in this section are of

varying degree of complexity and size. The degree of complexity is mainly attributed to sensory

dimensionality of the tested products and the possibility that the individuals perceive the prod-

ucts may vary greatly. It was expected that there would be less agreement across individuals

for complex products such as perfume (data set 7 and 8) and wine (data set 9) than for exam-

ple apple juice (data set 1 and 2). Table 2.3 confirms this assumptions with the Rc values from

the GPA permutation tests (Wakeling et al., 1992). Rc describes the proportion of total variance

explained by the found consensus YGPA after Procrustes transformations. While for the sim-

pler products in sensory context, as for example the apple juices in data set 1 and 2 the Rc is as

relatively high with 0.713 and 0.577 respectively, the Rc for the wine data set (data set 9) is the

lowest with 0.304. This is a clear indication that there is far less agreement across individuals

for complex products as in the wine data than there is for less complex products as in the apple

juice data. The percentiles next to the Rc in Table 2.3 are computed from permutation tests with

10000 permutations and indicate at which level the Rc of the original value is compared to the

distribution of 10000 Rc from the permutation test. The Rc from the wine data indicates that the

found consensus configuration YGPA might have been a product of chance if level of significance
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at the 95th percentile. Note that for the first eight data sets the consensus configuration YGPA

is considered significant with each of their Rc being at the 100th percentile, which means that

none of the Rc from permutations is larger than Rc from the found consensus configurations.

Table 2.3: Overview over the Rc values for each of the nine real world data sets and their per-
centile from 10000 permutations.

Data set Rc Quantile

1 0.713 100.000
2 0.577 100.000
3 0.527 100.000
4 0.524 100.000
5 0.492 100.000
6 0.427 100.000
7 0.335 100.000
8 0.326 100.000
9 0.304 91.210

The middle part of Table 2.4 shows the RV coefficients between the first two PC’s of FGPA,

FMF A and FPr MF A for consensus product configurations from GPA, MFA and PrMFA for the nine

data sets. The RV coefficients in general are relatively high indicating that very often GPA, MFA

and PrMFA compute very similar consensus configurations. Many of the RV coefficients across

the nine data sets are well above 0.9, some of them closer to 1. The lowest single RV coefficient

is given for data set 9 for the wine products with RV = 0.838 between the consensus configura-

tions from GPA and PrMFA which is still relatively high considering that RV = 1 indicates perfect

agreement between the two.

The next important step is to investigate how well individuals are represented by the consen-

sus product configurations from GPA, MFA and PrMFA. As in section 2.3.2 similarity ratios SRk,c

will be used to investigate which one represents individuals in the best manner. The right part

of Table 2.4 shows SRtot ,GPA, SRtot ,MF A and SRtot ,Pr M A as well as standard deviation of SRk,c for

each of the nine data sets. It can be seen that for data set 1 to 7 GPA achieves the lowest SRtot ,c

values and lowest standard deviation across SRk . Although differences between the three SRtot ,c

are small, differences between the standard deviation of SRk appear to be relatively large. With
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Table 2.4: RV coefficients for consensus configurations from GPA, MFA and PrMFA and sum-
maries of computations of the similarity ratio SRtot ,c and SRk,c .

Data set RV SR

Data set 1 GPA MFA PrMFA SRtot ,c std(SRk,c )
apple GPA 1 0.966 0.996 GPA 5.740 0.128
juices MFA 0.966 1 0.979 MFA 6.802 0.195

PrMFA 0.996 0.979 1 PrMFA 7.427 0.358

Data set 2 GPA MFA PrMFA SRtot ,c std(SRk,c )
apple GPA 1 0.983 0.985 GPA 6.513 0.109
juices MFA 0.983 1 0.986 MFA 8.115 0.180

PrMFA 0.985 0.986 1 PrMFA 9.676 0.468

Data set 3 GPA MFA PrMFA SRtot ,c std(SRk,c )
biscuits GPA 1 0.974 0.981 GPA 12.822 0.092

MFA 0.974 1 0.994 MFA 13.259 0.198
PrMFA 0.981 0.994 1 PrMFA 13.953 0.405

Data set 4 GPA MFA PrMFA SRtot ,c std(SRk,c )
cocktails GPA 1 0.975 0.978 GPA 7.508 0.046

MFA 0.975 1 0.973 MFA 8.787 0.537
PrMFA 0.978 0.973 1 PrMFA 9.405 0.677

Data set 5 GPA MFA PrMFA SRtot ,c std(SRk,c )
orange GPA 1 0.874 0.878 GPA 17.758 0.052
juices MFA 0.874 1 0.974 MFA 21.437 0.382

PrMFA 0.878 0.974 1 PrMFA 21.607 0.386

Data set 6 GPA MFA PrMFA SRtot ,c std(SRk,c )
orange GPA 1 0.947 0.963 GPA 32.612 0.071
juices MFA 0.947 1 0.980 MFA 33.069 0.306

PrMFA 0.963 0.980 1 PrMFA 34.296 0.517

Data set 7 GPA MFA PrMFA SRtot ,c std(SRk,c )
perfumes GPA 1 0.953 0.957 GPA 162.589 0.357

MFA 0.953 1 0.989 MFA 165.853 0.633
PrMFA 0.957 0.989 1 PrMFA 177.018 0.816

Data set 8 GPA MFA PrMFA SRtot ,c std(SRk,c )
perfumes GPA 1 0.900 0.911 GPA 44.420 0.440

MFA 0.900 1 0.953 MFA 39.706 0.385
PrMFA 0.911 0.953 1 PrMFA 43.710 0.375

Data set 9 GPA MFA PrMFA SRtot ,c std(SRk,c )
wines GPA 1 0.875 0.838 GPA 38.004 0.576

MFA 0.875 1 0.917 MFA 29.327 0.446
PrMFA 0.838 0.917 1 PrMFA 34.520 0.539
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GPA achieving a standard deviation across its SRk that are up to 11 and 14 times smaller than

those of MFA and PrMFA (see Table 2.4 for data set 4) it seems that the GPA consensus product

configuration provides the best representation of the individuals.

Fig 2.6 shows a typical problem that may arise when analysing projective mapping data with

different statistical methods. In the figure three consensus product configurations are shown,

i.e. from GPA, MFA and PrMFA left, middle and right side of the figure, respectively. The RV co-

efficients between the three consensus product configurations indicate high similarity (0.874,

0.878 and 0.974; see Table 2.4) but there is no doubt that conclusions regarding the products

may be different depending on which statistical method is used for analysis of the projective

mapping data. All three consensuses separate the products in a very similar manner along the

first component. Products 4, 7, 8, 9 and 12 are on one side of the plot, while products 1, 2, 3,

6, 10 and 11 are found on the opposite side along component 1. Product 5 is placed about in

the middle in each of the consensus maps. RV coefficients comparing the similarity of the three

are high because the first component is responsible for a large part of the explained variance.

Problems however arise when the placement of the products are compared along component

2. One can see substantial differences, as for example the placing of product 1 and 11. In the

GPA consensus the two products may be considered quite different regarding the second com-

ponent whereas in the MFA and PrMFA consensuses they may be interpreted to be very similar

overall. The position of product 9 is another example of where interpretation is obviously very

dependent on the choice of statistical method. If a user should decide to compare the consen-

suses from GPA and MFA, which in practise is quite unlikely, he or she may face a dilemma of

how to properly interpret the findings. One solution that may help to pick one of the methods is

to investigate the residuals for each individual, i.e. the SRk computed from each method.

Fig. 2.7 shows an example of what the SRk,c look like for each of the discussed methods.

They are computed from data set 5 where 20 consumers tested 12 orange juice products. The

plot clearly illustrates that GPA finds a consensus product configuration that represents all in-

dividuals well. It is important to remember that from permutation tests the GPA consensus

configuration can be considered valid. The SRk,GPA of GPA vary very little compared to SRk,MF A
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and SRk,MF A computed from MFA and PrMFA which means that for GPA every individual the

difference or distance between the consensus product configuration and individual product

configurations is relative similar. One could claim that every individual is about equally well

represented by GPA. For SRk,MF A of MFA one can observe that the individual product config-

urations of consumer 3 and 4 are relatively different from the MFA consensus product config-

uration because SR3,MF A and SR4,MF A are very high compared to the other individuals. So are

those of consumer 9 to 14, however, to a somewhat lesser degree. It is obvious that for the MFA

consensus product configuration there are much stronger variations across the SRk,MF A, which

is reflected by its standard deviation (0.052 for GPA compared to 0.382 for MFA and 0.386 for

PrMFA). The combination of the fact that SRtot ,c and the standard deviation of SRk,c for GPA are

smaller than those of MFA and PrMFA suggests that the GPA consensus product configuration

may be the best choice for this data set in particular. A mixed model two-factor ANOVA was

carried out to investigate whether differences between SRk,c from the three methods are signif-

icant or not. One of the two main factors represents the multiblock methods (GPA, MFA and

PrMFA) and was set to be fixed. The other main factor represented the individuals (consumer

1 to 20) and was set to random. The ANOVA table (not shown) reports that the method factor

is significant (p=0.033). A Tukey’s test reveals, however, that differences are only close to being

significant at 5% level (comparison between SRk,c of GPA and MFA: p=0.066; comparison be-

tween SRk of GPA and PrMFA: p=0.052). Even though the differences between GPA, MFA and

PrMFA are not significant one may argue that because of the lower SRtot ,c and far lower stan-

dard deviation of SRk,GPA the GPA consensus product configuration might be the best choice for

interpretation of the products. For the other data sets the effect of method was non-significant.

2.4 Conclusion

When analysing data from projective mapping experiments it is necessary to use a suitable sta-

tistical methods that provides answers regarding how products relate to each other and how the

consensus product configuration fits overall across all consumers that were involved in the test-

ing of the products. Projective mapping data is often analysed by either GPA or MFA, both being

multiblock methods that handle data from many individuals. To the author’s knowledge, there
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are no studies comparing the outcomes of the two methods in the special case of projective

mapping and its typical two-variable multiblock data. This study attempts to provide insight

into how results may vary when using one method or the other.

Monte Carlo simulations with random data suggest that GPA and MFA provide very similar

consensus product configurations when only few products are tested. An average RV > 0.93 for

1000 simulations with only 4 products suggests that findings and interpretations may be very

similar and that the choice of statistical method matters less. But with an increasing number

of products the average RV coefficient drops and similarities decrease. This is where the choice

of statistical method may lead to a different interpretation regarding the investigated products

and problems arise. Furthermore, the simulations indicate that differences grow even larger the

more consumers are included in the simulations.

Constructed data that were manipulated in specific ways gave insight to how GPA, MFA and

PrMFA (a combination of GPA and MFA) handle different situations. In these simple cases GPA,

MFA and PrMFA handled translation, rotation and reflection as well as the combination of these

equally well. One important difference between GPA and MFA is that GPA obeys a restriction

to keep relative object distances constant for each individual whereas MFA does not have such

a restriction. This is an important difference between the two methods that may be responsi-

ble for varying outcomes of the respective consensus product configurations. In worst case this

may lead to different conclusions regarding the tested products.

Analysis of nine real world data sets indicate that there is no clear conclusion regarding

which methods is to be preferred over the other. GPA provided in 7 out of 9 data sets the consen-

sus product configuration that best fit individual product configurations. For all of these 7 data

sets the consensus configurations from GPA has been validated with a permutation test. Fur-

thermore it must be noted that the similarity ratios SRk between the consensus configuration

and individual configurations were significantly smaller for GPA in only one out of these 7 cases.

Tukey’s test however showed that in this one case the pair-wise comparisons did not show a sig-

nificant effect of method with p values just above 0.05. For two out of 9 data sets, MFA provided
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a consensus product configuration that best fit the individuals product configurations. Here for

only one (wine data) out of the two cases the effect of methods was significant at 5% level. It

important to mention that this was the case where the consensus configuration of GPA was not

significant. PrMFA was least effective in finding a consensus configuration that represents all

individuals in a best possible manner, although differences from GPA and MFA were never large

or significant.

Since it is important to make the correct interpretation of the tested products, one may sug-

gest to run both GPA and MFA and pick the method that provides the significantly lowest SRk,c .

If SRk,c from each method are not significant different from each other, one may go for the

method that has the lowest total SRtot ,c across individuals combined with the lowest standard

deviation of SRk,c . If none of the two described situations is given it is difficult to decide which

statistical method to choose. For the nine real world data sets analysed in only one case none of

the two above described situations was given. Eventually, due to practical reasons, computing

time for each method might be decisive. During the Monte Carlos simulations it became ap-

parent that GPA computations took substantially longer than MFA. In the most extreme cases it

took about up to 120 times longer to compute the consensus product configuration for GPA (up

to 10 minutes) than for MFA (approx. 5 seconds).
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Chapter 3

Code for Computations

Python and R code for Monte Carlo simulations with random

data linked through PypeR

# -*- coding: utf-8 -*-

#==============================================================================

# Author:

# Oliver Tomic

#

# Purpose:

# 1. Generate random projective mapping data for different situations:

# - different number of products

# - different number of consumers

#

# 2. Compute consensus with GPA and MFA (with R FactoMineR via PypeR)

#

# 3. Check with RV coefficient how consensus from GPA and MFA are alike or

# different for different situations

#==============================================================================

#==============================================================================

# Import necessary modules

#==============================================================================

import numpy as np

import random as rd

import statTools as st

import pyper

import time

import datetime

55
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#==============================================================================

# Clock in starting time

#==============================================================================

startTime = time.time()

#==============================================================================

# Set parameters for generating random napping data for a number of individuals

# and a number of products.

#==============================================================================

# Set range of products (min to max)

minProd = 4

maxProd = 16

# Set range of consumers (min to max)

minConsum = 20

maxConsum = 100

# Print out for convenience

print 'minimum number of consumers: ', minConsum

print 'minimum number of products: ', minProd

print

print 'maximum number of consumers: ', maxConsum

print 'maximum number of products: ', maxProd

# Set number of simulation runs

numRuns = 1000

#==============================================================================

# Set up pyper (Python - R interface) and load R packages

#==============================================================================

# Set up Pyper accessing R packages and their functions

r = pyper.R()

# Import R FactoMineR

r('library(FactoMineR)')

print r('sessionInfo()')

#==============================================================================

# STEP 1: Run simulation for varous numbers of products and consumers

#==============================================================================

# Define lists with range of how many consumers and products are to be used in
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# simulation. Later the script goes systematically through all possible

# combinations between these two lists.

consumRange = range(minConsum, maxConsum + 1)

prodRange = range(minProd, maxProd + 1)

# Initiate zero-arrays that will hold all average RV-coefficients across

# chosen number of simulations for each product-consumer combination

rv_coeffArr = np.zeros((len(consumRange), len(prodRange)))

totalSims = np.size(rv_coeffArr)

# Loop through all possible combiantions of products and consumers.

for ind, element in np.ndenumerate(rv_coeffArr):

print; print

print ind, 'consumers', consumRange[ind[0]], '- products', prodRange[ind[1]]

# Generate column names for R data frame

colNamesList = []

for cons in range(consumRange[ind[0]]):

xName = 'X{0}'.format(cons+1)

yName = 'Y{0}'.format(cons+1)

colNamesList.append(xName)

colNamesList.append(yName)

# Generate specific strings for R command that will be run through pyper

# Make string for group

comma = ','

tempGroup = '2' * consumRange[ind[0]]

group = comma.join(tempGroup)

# Make string for group and name.group (used later in R command)

nameGroup = '"Gc1"'

sGroup = '"s"'

for con in range(2,consumRange[ind[0]]+1):

partStr = ',"Gc{0}"'.format(str(con))

nameGroup += partStr

sPartStr = ',"s"'

sGroup += sPartStr

# Collect GPA and MFA results

gpaConsList = []

gpaRVList = []

mfaConsList = []

mfaRVList = []

# Collect RV coefficient from all simulation runs so that average RV

# coefficient across all runs can be computed and stored in rv_coeffArr.
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rvSimList = []

# Do 100 runs to get a representative number of coefficients.

for run in range(numRuns):

arrList = []

for cons in range(consumRange[ind[0]]):

arr = np.zeros((prodRange[ind[1]], 2))

for prod in range(prodRange[ind[1]]):

x = rd.uniform(1,59)

y = rd.uniform(1,39)

arr[prod,0] = x

arr[prod,1] = y

arrList.append(arr)

#==============================================================================

# STEP 2: compute consensus with GPA and MFA via R and pyper

#==============================================================================

# First stack data from all consumers into one array

data = np.hstack(arrList)

# Construct data frame in R. GPA and MFA only take data frames as

# input, not matrices.

r['data'] = data

r['varNames'] = colNamesList

r('dataDF <- as.data.frame(data)')

r('colnames(dataDF) <- varNames')

# Run GPA

r('resGPA <- GPA(dataDF, group=c({0}), \

name.group=c({1}))'.format(group, nameGroup))

GPA_cons = r['resGPA$consensus']

GPA_RV = r['resGPA$RV']

gpaConsList.append(GPA_cons)

gpaRVList.append(GPA_RV)

# Run MFA

r('resMFA<-MFA(dataDF, group=c({0}), type=c({1}), ncp=5, \

name.group=c({2}), num.group.sup=c(), \

graph=FALSE)'.format(group, sGroup, nameGroup))

MFA_cons = r['resMFA$ind$coord']
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MFA_RV = r['resMFA$group$RV']

mfaConsList.append(MFA_cons)

mfaRVList.append(MFA_RV)

#==============================================================================

# STEP 3: compute RV coefficient between GPA and MFA consensus

#==============================================================================

# Compute RV coefficient between GPA and MFA consensus

res_RV = st.RVcoeff([GPA_cons,MFA_cons[:,:2]])

rvSimList.append(res_RV[0,1])

np.savetxt('rv_simlist.txt', np.array(rvSimList), fmt='%.7f', \

delimiter='\t')

# Store average RV in array for different combinatios and consumers

meanRV = np.average(rvSimList)

rv_coeffArr[ind] = meanRV

# Compute how far computations have progressed

currentSims = float(ind[0] * (maxProd - minProd + 1) + ind[1]+1)

progress = currentSims / totalSims * 100

print 'PROGRESS: ', progress

# Save rv_coeffArr after finishing one simulation in case of crash. In

# this way at least the computed results are preserved.

np.savetxt('RESULT.txt', rv_coeffArr, fmt='%.3f', delimiter='\t')

#==============================================================================

# Clock in end time and compute total time used

#==============================================================================

endTime = time.time()

totalTime = endTime - startTime

print 'Total time used:', totalTime
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Python Code for Computation of Similarity Ratios SRk,c and SRtot ,c

# -*- coding: utf-8 -*-

#==============================================================================

# Author:

# Oliver Tomic

#

# Purpose:

# Compute individual similarity ratios SRk, their sum SRtot and STD for GPA,

# MFA and PrMFA. Plot SRk and SRtot.

#==============================================================================

#==============================================================================

# Import necessary modules

#==============================================================================

import numpy as np

import pandas as pd

import statTools as st

import matplotlib.pyplot as plt

#==============================================================================

# Set parameters for number of products and consumers and load data from file

#==============================================================================

# Set parameters for number of products and number of users

numProds = 10

numUser = 18

# Load consensus product configurations data from text file

df_cons_GPA = pd.read_table('GPA_cons.txt', sep='\t', index_col=0)

cons_GPA = df_cons_GPA.values

df_cons_MFA = pd.read_table('MFA_cons.txt', sep='\t', index_col=0)

cons_MFA = df_cons_MFA.values

df_cons_PrMFA = pd.read_table('PrMFA_cons.txt', sep='\t', index_col=0)

cons_PrMFA = df_cons_PrMFA.values

# Compute RV for all consensus arrays

rv = st.RVcoeff([cons_GPA, cons_MFA, cons_PrMFA])

# Load individual GPA factor scores text file and store in a list

df_ind = pd.read_table('GPA_ind.txt', sep='\t', index_col=0)

temp_ind = df_ind.values

tempArr = np.hstack(np.split(temp_ind, numProds))

indArrList = []
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for userInd in range(numUser):

indArr = tempArr[userInd,:].reshape(numProds,2)

indArrList.append(indArr)

indArrList_GPA = indArrList[:]

# Load individual MFA factor scores text file and store in a list

df_ind = pd.read_table('MFA_ind.txt', sep='\t', index_col=0)

temp_ind = df_ind.values

tempArr = np.hstack(np.split(temp_ind, numProds))

indArrList = []

for userInd in range(numUser):

indArr = tempArr[userInd,:].reshape(numProds,2)

indArrList.append(indArr)

indArrList_MFA = indArrList[:]

#==============================================================================

# Import individual projected scores, reorganise for further computations

#==============================================================================

# Load individual PrMFA factor scores from text file and store in a list

df_ind = pd.read_table('PrMFA_ind.txt', sep='\t', index_col=0)

temp_ind = df_ind.values

tempArr = np.hstack(np.split(temp_ind, numProds))

indArrList = []

for userInd in range(numUser):

indArr = tempArr[userInd,:].reshape(numProds,2)

indArrList.append(indArr)

indArrList_PrMFA = indArrList[:]

# Now compute ratios between consensus and individual product configurations

ss_cons_GPA = np.sum(np.square(cons_GPA))

ss_cons_MFA = np.sum(np.square(cons_MFA))

ss_cons_PrMFA = np.sum(np.square(cons_PrMFA))

# for GPA

ratioList = []

for userInd in range(numUser):

indRatio = np.sum(np.square(cons_GPA - indArrList_GPA[userInd])) / \

ss_cons_GPA

print userInd, indRatio

ratioList.append(indRatio)
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ratioList_GPA = ratioList[:]

# for MFA

ratioList = []

for userInd in range(numUser):

indRatio = np.sum(np.square(cons_MFA - indArrList_MFA[userInd])) / \

ss_cons_MFA

print userInd, indRatio

ratioList.append(indRatio)

ratioList_MFA = ratioList[:]

# for PrMFA

ratioList = []

for userInd in range(numUser):

indRatio = np.sum(np.square(cons_PrMFA - indArrList_PrMFA[userInd])) / \

ss_cons_PrMFA

print userInd, indRatio

ratioList.append(indRatio)

ratioList_PrMFA = ratioList[:]

#==============================================================================

# Plot results

#==============================================================================

# Plot individual SRi ratios in matplotlib

ratioArr_GPA = np.array(ratioList_GPA)

ratioArr_MFA = np.array(ratioList_MFA)

ratioArr_PrMFA = np.array(ratioList_PrMFA)

fig = plt.figure()

ax = fig.add_subplot(111)

ax.plot(ratioArr_GPA, 'b', label='GPA', linewidth=2)

ax.plot(ratioArr_MFA, 'r', label='MFA', linewidth=2)

ax.plot(ratioArr_PrMFA, 'g', label='PrMFA', linewidth=2)

ax.legend()

ax.set_ylim(0)

plt.show()

# Plot SRtotals in matplotlib

total_GPA = np.sum(ratioList_GPA)

total_MFA = np.sum(ratioList_MFA)

total_PrMFA = np.sum(ratioList_PrMFA)

totalList = [total_GPA, total_MFA, total_PrMFA]
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std_GPA = np.std(ratioList_GPA)

std_MFA = np.std(ratioList_MFA)

std_PrMFA = np.std(ratioList_PrMFA)

stdList = [std_GPA, std_MFA, std_PrMFA]

fig = plt.figure()

ax = fig.add_subplot(111)

methods = ('GPA', 'MFA', 'PrMFA')

y_pos = np.arange(len(methods))

performance = np.array(totalList)

error = np.random.rand(len(methods))

plt.barh(y_pos, performance, xerr=stdList, align='center', alpha=0.4)

plt.yticks(y_pos, methods)

plt.xlabel('sum of ratios')

plt.title('Sum and STD of ratios')

plt.show()
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