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Abstract

Bioinformatics and Applied Statistics

Institutt for kjemi, bioteknologi og matvitenskap.

Master of statistics

by Ólafur Hjörtur Kristjánsson

Knowledge of fat in salmon is extremely important to salmon breeder and the whole

salmon industry. By monitoring fat in salmon fillet, huge amount of money will be saved.

Several methods are available to determine fat in salmon fillets. Stofnfiskur Iceland

decided to buy the NIR instrument Qmonitor which was installed in there slaughter

line. When applying existing prediction model to results obtained by Qmonitor the

prediction of fat was wrong. Aim of this thesis is to develop a new valid prediction

model which will be applied to results obtained by the NIR instrument Qmonitor when

measuring fish from all families in the nucleus of Stofnfiskur for breeding purposes. This

thesis will provide background of NIR, breeding and problems of modeling fat in salmon

fillet. Main goal is to discuss methods needed to explore the data, develop prediction

model and validate the prediction model obtained. Use of recently developed CPLS

will then be introduced in order to reduce the prediction error of existing methodology

when creating prediction model. All methods will be compared and there qualities and

drawback discussed. Three datasets are presented in the thesis were two of them where

made for this thesis and one comes from paper defining methods used when modeling

QMonitor data.

In the paper where the method of picking out five 14 mm plugs from the fillet to capture

the variation of fat in the fillet a RMSEP value reported was 1.96. By using Canonical

Partial Least Squares with the additional response a location of the plug, the RMSEP

of the same dataset was 1.75. On the dataset made for this thesis to develope prediction

model for the QMonitor in Iceland CPLS had the best performance obtaining RMSEP

value of 1.8. Additional values which improved the prediction model where additional

information about the plugs such as thickness of the plug, moisture in the plug and

weight of the plug.
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Chapter 1

Introduction

Statistics play a big role in the worlds development. It is a powerful tool to gather

information from observations made on resources and determine future observations.

One aspect of statistics is the use in agriculture, specially in animal breeding.

The objective of this thesis is to develop and validate a prediction model for a Near

Infrared Spectroscopic (NIR) instrument used to predict fat and color of salmon fillets

in the breeding company Stofnfiskur in Iceland. The results from the NIR machine will

be used for animal breeding. Discussion of prediction and validation methods when

modeling data from NIR machines will be carried out.

1.1 Stofnfiskur

Stofnfiskur is a breeding company located in Iceland. The company emphasis on selec-

tive breeding on Atlantic salmon (Salmo salar), Arctic charr (Salvelinus alpinus) and

Atlantic cod (Gadus morhua). Stofnfiskur was established in 1991 using brood stock

of Atlantic Salmon imported from Norway to Iceland around 1980. Breeding of Arctic

charr was added to the production in the late 90’s in collaboration with Holar Agricul-

ture University. Atlantic cod breeding program was established in the year 2003 [1]. In

Stofnfiskur, implementation of animal breeding is used to improve the brood stock in

the nucleus in order to sell improved eyed salmon, arctic carr and cod eggs and fryes.

Main emphasis of Stofnfiskur production is on salmon eggs. Stofnfiskur is one of few

breeding companies in the world who is capable of selling salmon eggs all year round

1



Chapter 1. Introduction 2

from disease free environment produced in land based breeding stations using water

from geothermal and freshwater boreholes. The breeding stations are at six locations in

Iceland, distributed in the southwest of Iceland.

Figure 1.1: Stofnfiskur brood stock farm in Vogar Iceland

Stofnfiskur has exported salmon eggs mainly to Canada, Chile, Faroe Islands, Denmark,

Ireland and Norway since 1996. Stofnfiskur main markets are showed in figure 1.2 [2].

Figure 1.2: Main markets were Stofnfiskur sells their production
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This thesis is supported by Stofnfiskur and results will be used for further studies carried

out in Stofnfiskur using the technology and methods described in this thesis.

1.2 Animal breeding

The farmer has the goal to find the best animals in the herd which will be mated to

create next generation. He could select his animals based on knowledge about the herd

or visual properties of the animals. To maximize his profit he should hire an animal

breeder. Theory of animal breeding provide the breeder with a tool where statistical

methods can be applied to find the best individuals among the heard. By implementing

statistics in animal breeding the grading of the animals, referred as breeding value will be

estimated closer to the animals true performance when all effects have been accounted

for which can affect the breeding value, referred as true breeding value. Correlation

between the predicted breeding value and the true breeding value is referred as accuracy

[3].

Before statistics were applied in breeding of animals, accuracy and genetic gain, which

is a measure of genetical improvement between generations, was lower than today. The

reason for lower genetic gain was mainly because the individuals were selected based

on their phenotype value. Usually without regarding any other informations, such as

relation among the herd and additional effects which have an impact on the observed

phenotype value. An example of a trait in animal breeding is the weight of an animal.

Selecting the heaviest animal without help of statistics for next generation, would rec-

ommend selecting biggest individual. This individual could be the only big individual

among its family and could have gained their size due to additional effects in the en-

vironment which result in higher growth. Offspring from such animals are likely to be

small, because they will inherit genes which provide less growth in average environment

qualities [4].

Several statistical methods are practiced in breeding when next generation of breeding

candidates are selected. First application of statistics in breeding was done by Fairfield

Smith 1936 in plant breeding by using selection index procedure (SIP) [4]. Lanoy Nelson

Hazel developed the SIP method for selecting animals to next generation in 1945. In

SIP method individuals receive score for each measured trait, which weight is put on
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according to genetic gain and economic importance, which defines vector of parameters

in linear regression [4].

In 1950 Charles Roy Henderson developed the best linear unbiased estimates (BLUE)

for fixed effects and best linear unbiased prediction (BLUP) for random effects in mixed

model. Mixed model equation was applied into animal breeding when enough computer

power was available around 1970’s. Relationship matrix was developed which describes

kinship of the herd and the covariance of the breeding values. Mixed model solved couple

of problems which could effect the measure obtained (history of breeding values taken

from this book) [4].

For example, group of fish measured at different time has usually different mean value

of the trait measured within each measure date, then other days during the measuring

season, the time affects the measure obtained from each fish. Fixed effects in the mixed

model contains information about additional effects, which are not relevant when selec-

tion for measured trait is done. Results from the BLUP equation in animal breeding

is refferd as breeding value. Breeding value calculations using BLUP increased the ac-

curacy of the breeding value of each trait measured which was a huge step forward in

selecting animals when producing a population for next generation [4].

The main goal of breeding is to move the mean value of the characteristic measured in

a population to desired direction based on economic importance [4].

1.3 Breeding of Norwegian Atlantic Salmon

Breeding of Atlantic salmon started in Norway 1971 when Akvaforsk started their genetic

research with Atlantic Salmon. First they gathered wild salmon from 40 Norwegian river

strains all around Norway and one river in Sweden to form a base population. Research

station was build in Sunndalsøra 1971 were the main activity of breeding in Norway still

takes place [5].

First problem in salmon breeding was to find which fish manage to survive and grow

in domestication. When stable population was establish selection started by calculating

individuals selection index. When enough computer power was available to calculate

BLUP the combination of breeding values on each trait, family breeding values and
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selection index are combined based on genetic gain, accuracy and economic importance

[4].

Akvafork did comparison of salmon selected for 5 generations and wild salmon from the

Namsen river to measure how much has been accomplished by breeding. The improve-

ment of selected salmon against wild is shown in table 1.1 [3].

Trait Improvement in selected over wild (%)

Growth rate +113
Feed consumption +40
Protein retention +9
Energy retention +14

Table 1.1: Genetic gain in Atlantic salmon over five generations

1.4 Traits in salmon breeding

Traits which selection of individuals for next generation is based on in salmon breeding

programs today are mainly, body size at harvest, disease resistance, early sexual maturity

and quality traits [6].

Selection by body weight is done by measuring the breeding candidates when the average

size of the population is around 3 kg, which is a usual slaughter size.

Selection against sexual maturity has the goal to delay the maturation. If maturation

appears before slaughter the fillets are less saleable. When fish matures and prepares

spawning, he stops eating, then growth stops and the fillets get lean because the fish is

saving energy (fat) to produce eggs. In addition the color of the fillet reduces because

the salmon eggs retains their color from the fillets.

Selection against diseases is also practiced. Diseases selected against is Furunculosis,

Infectious Salmon Anemia (ISA) and Infectious Pancreatic Necrosis (IPN). Selecting

individuals for disease resistance is by done exposing 10− 20 individuals, which are full

sips of the breeding candidates and measure performance of families. By the family

means individuals for next generation are selected [4].

Quality traits in a breeding plan are color of the fillet and fat in the fillet. Color is mea-

sured as % of astaxanthin in total chemicals of the fillet. Average value of astaxanthin

is 7% today. The aim of breeding is to select individual with dark colored flesh. Fish
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having dark flesh will give possibilities to reduce amount of added color to the feed.

Astaxanthin is the most expensive part of feed [6].

Fat in fillet is measured as % fat of all chemicals in the fillet. Average fat in 4 kg fish is

17% [6]. Depending on markets, selection is used to reduce or increase the fat in fillet.

To reduce production cost it is favorable to reduce fat in the fillet. Leaner fish needs less

feed to retain the energy needed to live and uses more of the feed to grow [6]. Increased

demand for salmon fillets in sushi demands fish with high fat to get the raw fillet soft

to bite. Therefore selection of fish to increase fat is also done. In addition, a selection

against deformities is under constant inspection.

All those traits can be inherited from parent to offspring. All at different level but in-

heritance has been found in most traits, which is expected when quantitative geneticists

are selecting breeding candidates for next generation [3].

1.5 Methods to measure fat and pigment in salmon fillets

In this paper the focus is on application of multivariate statistic methods to measure

the trait fat in fillet. Fat in fillet has been measured through the years with different

methodologies. Six instruments exist today to measure fat in fish. Three of them

measure the exterior on live fish and three of them the fillet of slaughtered fish.

First method which measures on live fish is the Near Infrared Spectroscopy (NIR) probe

called QPoint [7] produced by the company QVision, which sends light 1 cm into the

skin. In the middle of the machine is a NIR detector which collect light in the infrared

range of the electromagnetic spectrum. Based on the values from the NIR detector fat

is predicted in the whole fillet. Only a prototype has been made by QVision. Results

published have shown inaccurate results [8].

Second machine that measures fat on live fish is Torry Fat meter [9]. Torry fat meter

is small hand-helt equipment which is easy to operate. Torry Fat meter is based on the

Nuclear Magnetic Resonance (NMR) technique. Torry fat meter obtains quite different

results when measurements are done on same fish at same spot repeatedly. It has been

the experience in Stofnfiskur.
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Third machine is a low field Nuclear Magnetic Resonance (LF-NMR) which measures

conductive of electric waves sent into the sample, coming from a magnetic and predicts

fat based on the conduciveness. It has been showing quite good results which need to

be confirmed [10].

Best result obtained for breeding purposes would to measure fat and color on living

fish where the values would be obtained directly on the individuals among which the

breeding candidates are selected. The problem of measuring fat on live fish is the impact

of the skin color which changes the light reflectance when methods using light reflectance

are used. When magnetic methods are used the problem is a thick fat layer under the

skin which is not of interest when fat is measured in the fillet. To obtain more reliable

breeding estimates of fat and pigment, a measure is done among full sibs of the breeding

candidates after slaughtering and filleting. Based on value of sibs, family means are

obtained which selection is based on when selecting breeding candidates.

Figure 1.3: Predicted fat in the whole fillet [7]

First out of three instruments used where the fish needs to be slaughtered is Computed

Tomograph (CT) which is very expensive instrument. It is impossible to use CT in the

field, but it gives good results [11]. Second instrument used to measure fat in fillet is

PhotoFish developed by Nofima Marin. PhotoFish is a box with a good camera in the

top which collects values of Red, Green and Blue (RGB). PhotoFish predicts both fat

and color in the fillet based on these RGB values [8]. Third machine measuring fillet
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is QMonitor, developed by Nofima Mat and TiTech. QMonitor uses Near Infrared

Spectroscopy (NIR) to measure fat in the fillet and another detector in the visible

electromagnetic spectrum to measure pigment in the fillet. The NIR scanner transmits

light to the sample and back scatter of the illuminated light is measured by the two

detectors in the instrument. Based on the result image fat and color are predicted in

the whole fillet as shown in figure 1.3 [7].

Results from QMonitor has been published showing quite good estimates of fat and color

in salmon fillets [12]. Only the last two instruments are capable of measuring color in

the fillet which is one of the main demand of buyers when they buy salmon fillet in a

shop [13]. Therefore color has to be obtained when selecting breeding candidates.

1.6 Comparison of equipment to measure fat and pigment

In fall 2010 a comparison on available instruments methods to measure fat and pigment

was conducted at Nofima Ås to determine which is the best available instrument to

predict fat and color in Salmon. A total of 45 fish from Stofnfiskur were filleted and

measured in Nofima Ås. Fat and color values were obtained from PhotoFish and QMoni-

tor based on existing prediction equations for both machines. After measuring the fillets

using these two instruments the skin was removed of each fillet and they minced. Out

of the minced 30 gr. samples were collected and sent to Nofima Sundalsøra to obtain

fat and color values by chemical method [8]. Values obtained at the lab in Sunndal

are considerate as the true fat and color value for the whole fillet. These true values

were compared to the values predicted from the machines to determine their quality.

Values predicted by QMonitor were closer to the chemical values. Similar results have

been published [8]. Based on this trial Stofnfiskur decided to invest in QMonitor from

Qvision which was installed in Stofnfiskur.

Quality of NIR machines is how cheap it is to obtain explanatory variables. Compared to

the lab method where the sample has to be destroyed and expensive dangerous solvents

are used to determine the fat in the fillet. PhotoFish require all observed values to be

sent to Nofima Marin in order to get fat values from the fillets. Usually the only cost of

NIR machine is the startup cost which includes buying the machine and obtain chemical

values from a few samples to build a prediction model. NIR machines are capable of
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measure a lot of material without preparation, dangerous solvent, labor and additional

cost [14, 15].

1.7 Problems

The QMonitor in Iceland which Stofnfiskur bought did not have the same light strength

and is not calibrated the same way as the QMonitor standing in Nofima. The lamps in

the QMonitor in Iceland are 15 years younger and the mirrors which reflects the light

to the sample and in the light detector are new. In the fall of 2011, 2500 fish were

measured at Stofnfiskur using the new Qmonitor in Iceland. Values predicted using

prediction model developed for the QMonitor standing in Norway, are far to high and

not likely to be true based on literature [4]. It is very important for Stofnfiskur’s breeding

work to know the results from the new QMonitor.

Several methods have been used to create prediction model for Qmonitor spectral image,

which contains approximately 16.250 pixels (259 pixels × 65 pixels), depending on fillet

size. Each of the 15 channels in the light detector inside the instrument capture one

image each on different light strength. The first method when the instrument was first

developed 2005 was to obtain one average spectra image over each channel resulting in

15 values as the explanatory variables. Average chemical fat values obtained in lab by

chemical extraction of fat for the whole fillet was used as a response. The weakness of

that method is information about fat variation in the fillet is terminated.

Variation of fat in fillet is high. In the belly area fat is high and in the backbone fat is

low. Solution to this weakness is described in paper from 2009 [12] where the idea is to

create prediction model which predicts fat for every pixel (where each pixel contains one

value on each channel of the machine) of the spectral image obtained from the QMonitor

and average all the predicted fat values of each pixel is obtained and reported as the

fat value of the whole fillet. The model is developed by picking out 5 − 6 plugs which

are, 15 mm in diameter from the fillet and measure the fat content using LF-NMR as

a response. Corresponding pixels are selected from the spectral image and prediction

model for each pixel is developed using multivariate calibration. Development was done

on this method to determine salt content of salmon in paper published 2009 [11] by

measuring water in the plugs instead of fat which is highly negatively correlated to salt.



Chapter 1. Introduction 10

1.8 Datasets

Three dataset are used in this thesis to understand the method published [12] and

develop prediction model for the QMonitor in Iceland.

The first dataset contains of the data collected by the authors of the paper where the

method used to create model to predict fat in salmon fillet was described [11]. It contains

fat measures of five plugs from both fillets of 15 fishes weighting 2−5 kg. Spectra values

are from images captured by the QMonitor standing in Nofima in Norway. The spectral

image values were preprocessed by Standard Normal Variate (SNV) preprocessing. This

dataset is used to learn the methods of predicting fat in each pixel of the fillet.

Dataset 2 was recorded in Nofima Norway on fish from Stofnfiskur to see how the existing

model performed using fish from Stofnfiskur. More weight and size variation was of the

fish measured than in the paper [12]. In total of 43 fish weighing from 1 − 8 kg were

measured. Six plugs were collected from the right fillet of each fish. Because lack of time,

fat values using LF-NMR were obtained for all plugs in three fish and two randomly

selected plugs from the remaining fish. Data was collected using QMonitor standing in

Nofima. Spectra values were collected on same location as the plug were taken from the

fish and SNV preprocessing applied on each observation.

Creators of the paper which describes the modeling method [12] assisted when collecting

the data. When the fish was measured, 13 additional measures under guidance of expe-

rienced scientist were conducted which is possible to use in recently developed prediction

method which have not been tried before on spectral image from QMonitor.

Using the knowledge from the sampling of Dataset 2, Dataset 3 was created based on

measurements from the new QMonitor standing in Iceland and plugs collected in Iceland.

In total of five plugs from left fillet of 24 fish weighing 1 − 6 kg were measured using

LF-NMR in Nofima Norway. To improve prediction model 8 additional responses were

collected.
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1.9 Objective

The main objective of this thesis is using multivariate statistics to translate the results

from QMonitor to fat values which is possible to use with confidence for future breeding

work in Stofnfiskur. In addition main prediction and validation methods will be dis-

cussed. Method described in the paper [12] will be discussed and were used to create

usable dataset, to develop a prediction model for the QMonitor in Iceland.

Descriptive statistics will be carried out on all datasets to explore their limits. Principle

Components Analysis (PCA) will be tried on the preprosessed spectra values obtained

from QMonitor. Multivariate prediction methods such as Principle Component Regres-

sion (PCR) and Partial Least Squares Regression (PLSR) will be explored and recently

developed method using Canonical correlation denoted Canonical Partial Least Squares

(CPLS) will be tried. Validation on the results obtained and the ability to predict will

be calculated using root mean square error of prediction using leave one out cross val-

idation and K-fold cross validation. Different test and calibration sets will be defined

based on the data to explore the prediction ability of the data.

Main purpose of this thesis will be to develop prediction model for a NIR instrument

QMonitor located at Stofnfiskur in Iceland by multivariate method which has not been

used before on QMonitor data to improve published methods.

1.10 Software used

In this thesis calculations were carried out in R 2.14 [16], Matalb 7,5 student version

and written using LATEX.



Chapter 2

Multivariate Statistics

The main objective of this thesis is to address most of the topics needed to model NIR

data for prediction.

The importance of multivariate statistics has been increasing with increased computer

power and development of machinery which can retrieve more advanced results. These

complicated measurements can be translated with help of multivariate statistics to sim-

ple values.

Example of a problem which NIR technology solves, could be a factory that needs to

know the amount of chemicals in their products to monitor the production and report

key figures of the product to buyer. Measuring amount of chemicals at lab on every

product is very expensive and demands trained personnel which use dangerous solvents.

Determining amount of chemicals in a lab is also destructive to the product and it can

not be sold after measuring. This problem can be solved by using NIR technology. NIR

instrument reports large datasets which without help of multivariate statistics would be

hard to translate into preferred values.

Notations are given in the symbols table in the beginning of the thesis.

2.1 Statistical model

To describe outcome from a sample, a statistical model is used. Response of n samples

are stored in n × 1 response vector y. Explanatory variables are stored in an n × p

12
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matrix X, where p is number of columns in X, where each column contains measure

obtained from samples 1 · · ·n. The relationship of y and X is described with an unknown

parameter vector θ. The regression model is stated in equation 2.1 [17].

y = g(X, θ) + ε (2.1)

The term ε in equation 2.1 is referred as error. Usually the expectation of the error

is assumed to by 0, denoted E(ε) = 0. Variance of the error describes the covariance

structure between samples in the response vector y. If there is no covariance between the

samples and they all have equal variance the variance of the error is denoted var(ε) =

Σ = σ2I. Where I is n× n identity matrix.

Usually for prediction modeling the relation of the n × 1 vector y and n × p matrix X

is assumed linear. The parameter vector θ will be referred as p× 1 vector β. The linear

relation of y and X defined in equation 2.2.

y = Xβ + ε (2.2)

In a linear model the error is defined as the difference between Xβ and y, denoted

ε = y−Xβ. Expectation of y is defined as E(y) = Xβ giving the definition ε = y−E(y)

of the error.

NIR instrument can not report exact value of y. What can be reported is likely result of

y if the true value of y would be accessible. This likely result reported of y is referred as

a prediction of y, denoted ŷ. The result is not predicted out of nowhere, it is predicted

after firmly estimating β in equation 2.2 by β̂. To estimate β̂ true values of y are used

along with its explanatory values stored in X obtained from the NIR machine.

The main difference between prediction and estimation is, in estimation, values of the

response vector and the explanatory matrix are needed in order to estimate the model

parameters. In prediction only explanatory variables and the estimated parameters are

needed, but to evaluate the prediction, response values are also needed. After estimating
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β̂ using the explanatory variables and the response, the estimated parameters obtained

are used without modification for prediction. When new explanatory variables of a

sample is introduced, new prediction for the sample are obtained using the estimated

parameters. Prediction model is given by equation 2.3.

ŷ = ȳ + β̂′ (x0 − x̄) (2.3)

Where x0 is p× 1 explanatory vector obtained from new sample. x̄ is vector of column

means of the explanatory matrix from the calibration dataset, ȳ is mean of response in

the calibration dataset and β̂ obtained from the calibration dataset.

2.2 Criteria for model validation

There exist many criteria to validate prediction model. The two main criteria used are

root mean square of prediction (RMSEP) and coefficient of determination for prediction

denoted R2
pred.

2.2.1 Root Mean Squared Error of Prediction (RMSEP)

When creating a prediction model, the aim is to create a robust model which is capable

of meeting explanatory variables in the future and predict response close to what will be

observed if the true future response of the future explanatory variables will be obtained.

One measure to quantify the quality of prediction model when it meets the future ex-

planatory variables is by calculating the distance between future predicted response ŷ

and future true responses y. It is impossible to know the future distance but it can be

estimated. The average future distance is defined as θ2 and is given by equation 2.4.

θ2 = E(y − ŷ)2 (2.4)
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Main interest is in the distance between y and ŷ in the future. It does not matter if

the distance between y and ŷ is negative or positive. Effect of negative and positive

difference is removed by squaring the distance. When squaring the distance, outliers have

huge influence on the distance measure obtained by θ2 which is not of main interest.

By taking square root of the squared estimated difference between y and ŷ outliers do

not have as much influence on our quantification of prediction quality of the prediction

model. Definition of θ is given by equation 2.5

θ =
√
E(y − ŷ)2 (2.5)

Observations are then in original scalar by taking the square root. To know θ would be

nice and would solve the evaluation problem, but it is not possible to obtain because

there is no access to future explanatory variables to determine ŷ. If it would be possible

to know future explanatory variables, a knowledge of future values of y would also be

needed. Then it is impossible to calculate θ directly. Example, if there exist fat values

of salmon fillets in the future there would be no need for NIR technique to determine

it. Only data available is the current data. Therefore quantification of the prediction

quality of the model can only be quantified on the current data. The prediction model is

expected to meet explanatory variables similar to those who are already in the dataset,

in the future. Therefore an estimation of θ̂ is done by eliminate part of the dataset.

Create prediction model based on remaining data. Address new prediction model to the

eliminated explanatory variables, predict ŷ based on those explanatory variables and

calculate the average distance between the predicted ŷ and the eliminated y. Estimation

of θ̂ is defined in equation 2.6.

RMSEPk = θ̂k =

√√√√ 1

n

n∑

i=1

(yi − ŷ(i),k)2 (2.6)

In equation 2.6, n is number of samples, yi is observation i from the response vector

y and ŷ(i),k is the prediction of the eliminated response i using model estimated with-

out information from explanatory and response variables in row i of our dataset using
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method k. Batch i containing more then one observation and corresponding explana-

tory variables can also be removed instead of only one observation from y and X if it is

appropriate. When RMSEPk is plotted, it is usually plotted against some complexity

factor k of the method used to create the prediction model. Estimation of θ̂k is referred

as RMSEPk which stands for root mean square error of prediction using special method

k (will be defined later). This is the most common measure for validation of prediction

model. RMSEPk estimates the average distance between y and ŷ based on our current

data. RMSEPk sums all the square distances between yi and ŷ(i),k, divides by number

of samples to know the average distance between y and ŷ(i),k.

2.2.2 R2
pred(k)

Another measure of quality of prediction commonly used is R2
pred(k) reffered as coefficent

of determination which gives an idea how much of the variation can be expected to be

explained in the new data by the model. Which is given by equation 2.6 [18].

R2
pred(k) =

(
1−

∑n
i=1

(
yi − ŷ(i),k

)2
∑n

i=1 (yi − ȳ)2

)
(2.7)

Where k is method dependent factor and is defined along with method used. If R2
pred(k)

is low we should rather report ȳ as our prediction then using our prediction model to

predict ŷ because it is performing equally good as ȳ. If R2
pred(k) is close to 1 it indicates

that our prediction model is performing better than reporting ȳ as our prediction. Note,

that there is one to one correspondence between RMSEPk and R2
pred(k). Therefore it is

not considerate necessary to report both. In this thesis results obtained from RMSEPk

will be reported and used as quality criteria for prediction models. If comparing pre-

diction quality of datasets containing different variation among the response variables,

R2
pred(k) gives comparable prediction quality among the datasets because it eliminates

the variation differences.

2.3 Validation of prediction quality

To measure the quality of a prediction model, a validation is done. In order to predict

new response, the prediction model will be subjected to new set of explanatory variables.
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Hopefully the new explanatory variables will be similar to the explanatory variables used

to create the prediction model. It is hard to measure how well the new model will predict

the new sample, because there does not exist any true response to compare the predicted

response and estimate the difference. Solution to this problem is to eliminate responses

and corresponding explanatory variables. Predict new response based on the eliminated

explanatory variables, and compare the predicted response to the eliminated response

and estimate their deviation. Then quality of the prediction has been quantified to some

extent.

2.3.1 Leave one out Cross validation

Leave one out cross validation aims to quantify the quality of the prediction model by

predicting the response i when the sample i has been removed from the dataset. This

is done for all samples.

Algorithm of leave one out cross validation is as following [19]:

1. Response and explanatory variables of sample i are eliminated from the dataset.

Creating (n−1)×1 explanatory vector y(i) which is the original response vector y

without sample i and (n−1)×p response matrix X(i) without row i of the original

explanatory matrix.

2. Estimate β̂(i),k by using y(i) and X(i) which are the original dataset without sample

i, using method k.

3. Predict response of sample i, denoted ŷi using the model in equation 2.3 and

introduce the equation to row i of the original explanatory matrix X.

4. Repeat the algorithm for i = 1 · · ·n until every predicted value of n × 1 vector ŷ

has been obtained.

When the algorithm has obtained every value of ŷ the distance between y and ŷ is

calculated in order to quantify the quality of the model.
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2.3.2 K-fold cross validation

Leave one out cross validation can underestimate the prediction error when the predic-

tion model will be exposed to more than one row of explanatory variables at once. Leave

one out cross validation does underestimate the prediction error because the eliminated

sample belongs to batch where other samples are already included in the dataset. Then

some information is already in the dataset about the eliminated sample which will not

happen in the real world if the model would get exposed to new observation. Solution

to the problem of underestimation in leave one out cross validation is to divide the n

observations into K batches were K ≤ n ( K used for number of batches because of

tradition. K here is not he same as the method dependent parameter k). By eliminating

batches of the responses and explanatory variables in each step of the estimation algo-

rithm defined in chapter 2.4.1 instead of one line at a time (if K < n). Then estimate

the prediction ability of the prediction model for those batches. If the dataset does not

constrain the K to be a constant it gives better idea of model quality to let K vary and

see how our prediction quality measures develops.

Example of a K-fold cross validation is when measuring a fish fillet with NIR machine.

Each fillet contains five plugs. When new fish is measured the prediction model will

be exposed to five measurements at time. The five plugs on the same fish are regarded

as one batch which is more realistic because the NIR machine will get exposed the

whole fish, not only one plug out of the whole fillet. The other four plugs also contain

information about the fifth plug. The n observations will be divided to K batches,

defined by number of fish where each fish consist of j observations.

2.3.3 Calibration and test sets

Dividing the dataset to a calibration and a test set is well known method in order to

quantify quality of a prediction model. Best predictor is estimated from the calibration

set using leave one out or k-fold cross validation. By development of RMSEPcal,k in

the calibration dataset in relation to increasing level of complexity level k the optimal

prediction model is chosen. The parameter β̂cal,k is estimated for each complexity level

k. Usually β̂cal,k is chosen by the lowest RMSEPcal,k in combination to complexity
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parameter k. Which complexity level k should exactly be choosen can be decided by dif-

ferent methodologies which are available. It is common to chosen the level of complexity

where value of RMSEPcal,k starts to flatten out when it is plotted against complexity.

There also exist some penalty methods where the goal is to keep the complexity as low

as possible in relation to RMSEPcal,k. Relation of complexity and estimation error is

illustrated in figure 2.2 and should be kept in mind when level of complexity is decided.

When β̂cal,k is found we expose it to the explanatory variables Xtest of the test set and

predict ŷtest by equation 2.8.

ŷtest = Xtestβ̂cal (2.8)

Quality of the prediction model made by the calibration set is quantified by estimating

RMSEPtest which measures the deviation of ŷtest and the response values of the test

set ytest by equation 2.6. RMSEPcal is compared to the RMSEPtest found when the

optimal β̂cal(k) was used for explanatory variables of the test set. If value of RMSEPcal

and RMSEPtest are far from each other, the prediction model estimated by the cali-

bration set is not robust. The model is not capable to get exposed to new data and

predict values close to true response values or highly influent outliers are among the

test or calibration set. If those outliers are due to error when obtaining the values, they

should be eliminated. If no outliers are detected and the deviations between RMSEPcal

and RMSEPtest is large the model is not capable of getting exposed to new explanatory

variables and predict them sufficiently.

2.4 Least square estimation

The classical method to estimate β̂ in order to predict ŷ is least square estimation.

Estimation of β̂ is defined in equation 2.9 [17].

β̂ = (X′X)−1X′y (2.9)

In a NIR instrument are many channels, each measuring at its own light strength. Dif-

ference in light strength between adjacent channels is usually rather low. Resulting in
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correlation between adjacent channels to be rather high. For one response can be many

different channels explaining each response. Explanatory variables obtained as a mea-

sure of light reflectance are on small interval and are then close to each other. When

noise and other errors have been removed and the measurements have been standard-

ized by prepossessing the data, the shape of each wave look similar. Each channel of

the instrument measure more information about certain chemicals than other channels

resulting in low spread of observations. If similar samples are measured, the waves after

prepossessing should more or less have similar appearance. [20]

Figure 2.1: Average NIR transflectance spectra (log(1/T)) from the 70 dried salted
coalfish [21].[22]

Result from a NIR instrument is a explanatory matrix, which has many highly correlated

columns of data. When such explanatory matrix is used in multiple linear regression it is

regarded as multicollinearity. Consequence of trying to invert nearly linearly dependent

explanatory matrix containing NIR data in order to obtain least square estimation of

β̂ in equation 2.8 becomes unstable or impossible. Another problem with least square

estimation of β̂ is that sometimes are more columns in the explanatory matrix than

observations. Example is when NIR machine has thousands of channels each measuring

at different light strength. Calibration dataset will essentially contain fewer observations,

then n < p. When n < p it is impossible to invert X′X which makes least square

estimation impossible to use in order to estimate β̂.
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2.5 Reduction in dimensions

In order to estimate β̂ it is recommended to reduce number of explanatory variables,

without losing much information. Then the problem when n < p is solved. Then it will

be possible to have better estimate of β̂. A general problem when each response is ex-

plained by many explanatory variables, is the complexity of regression model. The com-

plexity is rather high if all components/variables of the regression model are included. It

is possible to reduce complexity in ordinary regression models by an elimination of com-

ponents/variables of the model by several methods, but then information is removed.

By no reduction on the regression model, the regression model will be complex, which

will most likely include a lot of estimation errors as can be seen in figure 2.2 [20].

Figure 2.2: Cumulative model error

Figure 2.2 shows that too complex model introduce problems when to many parameters

have to be estimated. Estimating to many parameters has many sources of estimation

errors. Reducing complexity to much, reduced number of parameters estimated, which

introduce increased model error. Then the prediction model will predict poorly. The

aim is to find optimal complexity were the prediction error is in the lowest point. In this

point optimal number of parameters are estimated and the model is complex enough to

give reasonable prediction.

Problem of finding a optimal complexity level of our model without eliminating too

much informations can be solved by Principle Component Regression (PCR), Partial

Least Square Regression (PLSR) and finally a new development of PLSR a Canonical
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Partial Least Squares Regression (CPLSR). They all tend to create a few components

which capture most of the variation in the explanatory matrix X or the covariation

between the explanatory matrix X and response matrix y. Still the prediction model

will be complex enough without introducing to much model error. These methods can

help to come close to the point A in figure 2.2.

2.5.1 Eigenvectors, eigenvalues and coliniearity

If we have the k× k matrix A and k× k identity matrix I . The solutions λ1, λ2, · · · , λk
of the polynomial equation |A − λI| = 0 are defined as eigenvalues. Let’s assume that

there exists nonzero vector e such that

Ae = λe (2.10)

then we define e as eigenvector of the matrix A for corresponding eigenvalue λ.

We define A = X′X where each value of X is centered by subtracting its columns means.

Multicollinearity of the X can be measured by eigenvalues of A. A is a symmetrical

and positive definite, hence all the eigenvalues are positive. If some of the eigenvalues

are small, then there is dependences among some columns of X. One measure which

has been used to verify the dependence is condition number of A. Which is defined as

Ξ =
λmax

λmin
(2.11)

where Ξ is measure spread in the eigenvalue spectrum of A. If Ξ is less than 100 there

is no problem with multicollinearity. Number between 100 and 1000 indicates some

multicollinearity, and above 1000 indicates high level of multicollinearity [18]. Value of

Ξ is strongly dependent on value of p. If p > n then λmin = 0 which is impossible to

divide by.

2.5.2 Principle Components Analysis (PCA)

In order to reduce the size of the explanatory matrix X we can use Principle Com-

ponent Analysis (PCA). If our n × p explanatory matrix is a set of n × 1 vectors
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X = [x1,x2, · · ·xp], then a smaller set of n × 1 vectors T = [t1, t2 · · · tg] where g < p

can replace our original X with out of loosing much information. The first principle

t1 component spans the direction of highest variation in X. The next component t2 is

orthogonal on the first one spanning the most of remaining variation of X. This goes

on until all variation has been explained by the components. Then g = p. Usually

most of the variation is explained only be few components, then g < p. An important

property of T are that the columns are orthogonal to each other. This gives a more

stable estimate of the model parameters because of lower variance without introducing

bias. Also problems of multicollinearity has then been reduced or removed. Number of

error sourced will also reduce in modeling the data as shown in figure 2.2. Relation of

our explanatory variables X and set of principle components T is described by equation

2.12 [20].

X = TE′ + F (2.12)

Where E is a p× g matrix referred as loadings. Loadings are defined as the eigenvectors

of the covariance matrix X′X were X has been centered. Principle component is then

defined in equation 2.13.

T = XE (2.13)

The loadings reveal the correlation among components and their contribution to the

columns of X. Value of loadings is between 1 and −1 because they are scaled to unit

length. The n× p matrix F in equation 2.12 is the residual matrix. If g = p then F = 0.

In that situation all covariation of X is explained by TE′. When g < q then F exist and

contains residual which is not explained by TE′. Figure 2.3 show main ideas of Principle

Components where two components are used to replace n×3 explanatory matrix X [23].

Result from the principle components are the scores, which are stored in the n×g matrix

T and will replace X. Scores are distance from values of X projected on the component

to the center of the component.
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Figure 2.3: Main parts of PC

Decision on how many components to retain to replace X is based on how many com-

ponents are needed to capture most of the variation of X. There exists few methods to

evaluate number of components. One is to look at proportion between eigenvalues of

X′X which is the covariance matrix of X. The ratio is defined in equation 2.14

ψg =
λ1 + λ2 + · · ·+ λg
λ1 + λ2 + λ3 + · · ·λp

(2.14)

The ratio ψg is referred as the conditional number and is the ratio between explained

and unexplained variation of X by g number of components. When value of ψ is close

to one and value of ψ does not increase by increasing g the number of components is

found. In the R-Code in appendix A the method of calculating all p eigenvectors of the

covariance matrix of X to estimate β̂ and number of components to reatain is decided

depending on prediction quality evaulated by RMSEP or R2
pred.

2.5.3 Principle Component Regression (PCR)

This thesis aims to predict new values based on complex explanatory matrix X. With

help of regression of y on the principle components retained using methods of chapter

2.5.2 an estimation of β̂ is done in order to predict ŷ. Regression using Principle

Components is referred as Principle Component Regression (PCR). Estimation of β̂ is

done by equation 2.15 [20]
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β̂ = Eq (2.15)

where E is the loading of X found by methods in chapter 2.5.2 and q are the loadings

of y is found by least square regression of y on the scores. The least square solution of

the y loadings is given with equation 2.16.

q = (E′X′XE)−1E′X′y (2.16)

It is known that T = XE = diag(λi). Using that the estimation of β̂ given in equation

2.17.

β̂ = Eq

= E(E′X′XE)−1E′Xy (2.17)

= E(T′T)−1T′y

= E(diag(λi))
−1T′y

Prediction ŷ is done by using equation 2.2. Usually more components are retained then

needed when using PCR because PCR only focus on the variation of X when predicting

ŷ. RMSEP is estimated by equation 2.6 and based on the prediction ability decision on

number of components to retain is decided.

2.6 Partial Least Squares (PLS)

Using PCR finds small set T of vectors replacing X by finding maximum covariance

only of X and don’t regard the information in y which is the goal to predict. There is

no guarantee that major variation in X is connected to the variation in y. Retaining

components T using information both from X and y is done in partial least squares

which similar to principle component but uses the maximum covariance of X and y

and maximizes their shared variance. There exist many methods to calculate partial
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least squares which calculate the scores of X and loadings of X and y from centered

X and centered y and its deflated versions. Method used in this thesis will be based

on algorithm given in the book Multivariate Calibration [20]. In the appendix is the R

code for the algorithm.

2.6.1 The Partial Least Square algorithm

This algorithm is done over components k, where k = 0 means no method is used, only

the data is centered. The k = 1 · · · p is number of components calculated and the number

of deflation rounds on X and y. The algorithm is as following [20].

1. In order to deflate X and y we find the maximum covariance of Xk−1 and yk−1

and normalize it to unit length. Which is given in formula 2.18.

wk =
Xk−1yk−1√

wkw
′
k

(2.18)

Result of equation 2.18 is p × 1 vector which is referred as loading weights and

contains weight of each variable on the covariance of X and y. Normalisation of

wk is by dividing
√

wkw
′
k and it sets wk to unit length. All covariation of yk−1

and Xk− has then been moved to the scores.

2. Next step is to calculate the scores of Xk−1 which is the projection of Xk−1 onto

wk which compress Xk−1 to fewer components. The scores are given with the

formula 2.19

tk = Xk−1wk (2.19)

The score vector in 2.19 is of size n× 1.

3. Calculation of the X loadings is used to deflate X. X-loadings are calculated by

project Xk onto tk. The formula is given in 2.20

pk =
X′k−1tk

t′ktk
(2.20)
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Size of the X-loading vector is p × 1 and contains information of the covariance

between Xk−1 and yk−1 due to each variable. Dividing by t′ktk normalizes pa.

4. To deflate yk−1 the yk−1-loadings are calculated. Here similarly yk−1 is projected

onto tk and normalize it by same method as was used for pk. Formula obtained

for yk−1 loadings is 2.21

qa = y′0ta
1

t′ata
(2.21)

Now everything is in place to deflate Xk−1 and yk−1.

5. Deflating Xk−1 by removing values in the direction of the highest covariance of

yk−1 and Xk−1 in Xk−1 space as follow

Xk = Xk−1 − tkp
′
k (2.22)

Now the n×p Xk matrix is prepared for next round of the algorithm if there exist

any more information from y left.

6. Deflation of y is by removing values in the yk−1 space in direction of the highest

covariance between Xk−1 and yk−1. That is done by equation 2.23

yk = yk−1 − tkq
′
k (2.23)

For next round of the algorithm a deflated y is created which can be deflated again

if there exist any variation to deflate on.

2.6.2 Partial Least Square Regression (PLSR)

Predicting new observation using components obtained by the algorithm in chapter

2.6.1 is by defining regression model which regresses y onto the components obtained.

Estimation of β̂ is done in order to predict the new value by equation 2.2. Difference

between estimating β̂ using PLSR compared to PCR is that we have a access to more

exact loadings for y and we also have obtained the loading weights. Equation to estimate

β̂ using results from PLS algorithm is described by equation 2.24 [20].
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β̂ = W(P′W)−1q (2.24)

where W is p × k matrix of loading weights for each component retained. The p × k
matrix P containing loadings of X for each number of component 1 · · · k and 1×k vector

q containing the loadings of y for each component 1 · · · k. Solution of β̂ in equation 2.24

is used to predict y by equation 2.2.

2.7 Choosing number of Components

For both PLSR and PCR, number of components to retain is evaluated by RMSEPk in

equation 2.6. Values of RMSEPk is plotted against k number of components retained.

The point where value of RMSEPk is low compared to other values of RMSEPk in

the graph and the value of RMSEPk is not lowered significantly by retaining one more

component, number of components to retain is found. Nature of the prediction error is

that it decreases faster using PLS because it has to take into account covariation between

y and X which is of interest, and therefore prediction ability of principle components

obtained by PLS is expected to perform better.

2.8 Using additional information

In this thesis the emphasis is mainly on using prediction models containing one response.

When there exist additional responses within the dataset used for predicting, they should

be used to obtain better prediction. Additional responses can be included with several

developed PLS methods, such as multiresponse PLS (PLS2). Prediction model devel-

oped by using PLS2 will be capable of predicting a response which are not of interest.

Running the PLS2 algorithm is similar to the PLS algorithm only the components are

defined by the maximum variance between X and Y.

Another method is Least Square Partial Least Squares (LS-PLS) where the additional

responses are included as a column of the explanatory matrix. LS-PLS will still not serve

the purpose of being able to apply the developed prediction model to the explanatory
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matrix from a instrument in order to predict singe response, because this additional

explanatory variables have to be measured when an object is measured by the NIR

instrument. Then qualities of NIR machine will be dismissed.

2.8.1 Canonical Partial Least Squares (CPLS)

One solution of using additional responses to improve the prediction model, when there is

only access to them when the model is developed, is by Canonical Partial Least Squares

(CPLS). CPLS uses the additional data through Canonical correlation to adjust the

prediction model.

The main idea behind Canonical correlation is to find two vectors a and b which maxi-

mizes the correlation between the matrices Y and X [24].

Before defining CPLS, the matrix Y and Z will be defined.

The matrix Y is a n × (q + 1) matrix containing the original n × 1 response vector y

and the q additional n × 1 vectors y of responses. The matrix Z is n × (p + 1) matrix

containing the product of n × p explanatory matrix X and n × (q + 1) loading weight

matrix W. Definition of Z is given in equation 2.25

Z = XW (2.25)

When applying CPLS in this thesis our response used is one dimensional vector. The

additional responses are varying from being n × 1 vector of additional response up to

n× q number of additional responses.

In the Canonical Partial Least Square Regression the properties of Canonical correlation

are applied to adjust the loading weights in the PLSR algorithm. The element a and

the n × (q + 1) vector b where q is number of additional responses are defined such

they maximize the correlation between Ya and Zb. This b is used to define the loading

weights in the PLSR algorithm [25].
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2.8.2 Modification on the PLS algorithm for CPLS

The main modification on the partial least square algorithm defined in equations 2.18−
2.23 is regarding the calculations of covariance between Xk−1 and yk−1 which gives the

loading weights which was given with equation 2.18. Modification on the PLS algorithm

in order to use CPLS is as following [26]

1. First modification is to define p× (q+ 1) loading weight matrix W0 where loading

weight for every pair of Xk−1 and y ∈ Yk−1 is calculated. The number q + 1

defines number of responses in Yk−1 where 1 is number of ordinary response and

q is number of additional responses. p is number of columns in Xk−1.

2. Defining n × (q + 1) projection matrix Zk−1 were Xk−1 is projected in smaller

space W0. Then Xk−1 has been reduced without losing any characteristics.

3. Concept of Canonical Correlation is then used by finding value a and n× (q + 1)

vector b which maximizes the correlation of Yk−1a and Zk−1b.

max (corr (Yk−1a,Zk−1b)) (2.26)

4. Solution vector b of the maximizing problem in equation 2.26 is then used to

calculate new loading weights.

wk = W0b (2.27)

5. The PLS algorithm cointinues as described in equations 2.19 to 2.23 until next

vector of loading weights need to be calculated.
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Measurements

Response values used in this thesis were obtained from 15 mm plugs removed from a

salmon fillet. Fat value of those plugs were obtained using Low Field Proton Nuclear

Magnetic Resonance (LF-NMR)(Shown in image 3.1). Explanatory values were obtained

using the Near Infrared (NIR) instrument QMonitor. Aim of this chapter is to explain

how those machines works and how the values they report are obtained and preprocessed.

3.1 Low Field proton Nuclear Magnetic Resonance (LF-

NMR)

Response values reported in this thesis are fat values. Fat value is measured as % of fat

out of all chemicals in the sample. Fat was measured on cylindrical plugs taken from

the fillets without skin using core sampler on five or six predefined locations (locations

defined in figure 4.1 and 4.8). Size of each plug was 15 mm in diameter. Length of each

plug was according to thickness of the fillet where the plug was taken. Locations defined

are supposed to span the variation of fat in the fillet. The plugs were measured using Low

Field Proton Nuclear Magnetic Resonance (LF-NMR) with a Maran Ultra Resonance

0.5 Tesla equipped with a gradient probe (Oxford Instruments, Abingdon, UK). The

calibration of the instrument is done by fish oil which is 100% fat. No preparation is

needed to measure the fat in the plugs other than storing them in teflon box made for

the LF-NMR scanner. If the sample did not fit the box it was cut longitudinally until

it fit. Each sample was warmed in a thermostat for ten minutes at 40◦C to get the

31
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fat into a liquid form. Temperature of the magnetic is set to 40◦C. Weight of every

plug is measured to retain fat and moisture value from the instrument. Method used

for measuring is called “The one shot method” which was developed by Anved Teknolog

As(Harstad Norway)[27]. Measurement time on each plug is three minutes. Error in

measuring fat using LF-NMR is approximately ±0.2% fat which is good compared to

hazardous chemistry methods on both fish and meat [28]. Quality of this method in

addition to its accuracy is that no hazardous solvents and skills are needed to measure

the fat and moisture using LF-NMR.

Figure 3.1: The LF-NMR machine in Nofima

Fundamental theory of NMR is based up on protons which have a spin, charge and

a magnetic dipole. When they are subjected to a magnetic field they start to follow

the magnetic field and reorient. The reorientation of the protons causes them to give

out radio waves which can be detected and are measured [28]. By using multivariate

statistical models the measures are translated to fat and moisture values.

3.2 Near Infrared Spectroscopy (NIR)

Near Infrared spectroscopy is a quite new technology even though Isaac Newton found

out in 1665 that all colors in the electromagnetic spectrum are compressed in white

light. He managed to separate them with a prism. There was not until in 1800, when

William Herchel discovered that temperature increases towards red light in the electro-

magnetic spectrum. Herchel realization revealed that light contains more information
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than only a color [29]. After the discovery of William Herchel there was no activity

in the spectroscopic field until 1950. In 1950 Karl Norris, developed the technology to

analyze agricultural goods [30]. Near Infrared radiation which has an harmonic motion

has the length wavelength 760 − 2500 nm in the electromagnetic spectrum. Figure 3.2

[31] shows the electromagnetic spectrum.

Figure 3.2: Electromagnetic spectrum [31]

Before defining wavelength, a vibration frequency has to be defined. Definition of vibra-

tion frequency is number of times the wave pattern in the electromagnetic spectrum is

repeated in 1 second. Wavelength is defined by equation 3.1 [31].

Wavelength =
Velocity of light

Frequency
(3.1)

Atoms of chemicals are held together by chemical bounds which vibrate. Frequency of

the vibration is a function of the strength k between atoms and mass of the atoms m1

and m2. Each chemical has its inter-atomic distance. When the vibration frequency

matches the inter-atomic distance there will be a transfer of energy which is plotted

against wavelength. This plot is referred to as a spectrum. Relationship of potential

energy and inter-atomic distance of those two atoms are parabolic [31]. When matching

vibration frequency of a molecule it is referred to as overtone of chemical containing the

molecules. The overtones appear on a precise location in the electromagnetic spectrum as
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seen in figure 3.2[31]. When main interest of a measure in a sample is fat and water, the

useful information in the electromagnetic spectrum is at wavelength range 760−1040 nm

which is centered around the second overtone of water. When fat in sample is of interest

it can be measured through water because fat and water are negatively correlated. Main

information about fat in NIR spectrum is at 920− 930 nm [27].

Near Infrared spectroscopy (NIR) is a commonly known technique when information is

needed about amount of ingredients in food, animal feed, wool, textiles, chemicals and

petroleum [29]. Main cost of measuring by using NIR technology is to buy the machine

and the development of prediction model to use along with the measures obtained. Main

maintenance cost is to replace the lamps when the are burnt out. After calibration and

creation of prediction model the NIR machine is capable of measuring a huge amount

of material [15]. Main advantage of NIR technology is that no special chemicals or

dangerous solvents are needed when operating the machine. Usually no preparation is

needed on the measured sample. NIR scanners have saved the industry a huge amount

of money by being quick to measure, reducing lab work and by not requiring experienced

worker to operate it. Main NIR methods for optics sampling are shown in figure 3.3.

Figure 3.3: Main NIR methods [7, 33]

When installing a NIR machine to a production line the ideal setup is to use remote

interactance ((A) 3.3). When using remote interactance it becomes possible to place the

machine above the sample to measure. In remote reflectance is no information about

the interior of the sample which is a drawback when determination of quantity of fat

within salmon fillet. Solution could be interactance measure ((B) 3.3). It is hard to
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implement interactance measure onto a conveyor belt which is a drawback. Interactance

also only retrieve information from inside of the sample. Using transmission ((D)3.3)

to measure NIR is difficult when thickness of sample vary. Then strength of the NIR

light have to vary also which can be complicated when sample has unequal thickness.

Measuring using remote contact free interactance ((C)3.3) is the optimum setup of NIR

machine when measuring fat and color of salmon fillets. Having the aim to develop such

a machine the product QMonitor was created.

3.2.1 QMonitor

In the year 1996 the company TiTech was established. TiTech is a company that makes

NIR scanners to sort waste in order to recycle. In the year 2003 TiTech, Sintef and

Matforsk started a project named QVision. Aim of the project was to make a scanner

that could scan food products and report useful values for the industry. In the year

2005 the NIR scanner QMonitor was ready as a product for the food industry and the

company QVision was established as a subsidiary company of TiTech [7]. One of the food

products QMonitor was developed to scan where salmon fillets. The spectral images from

QMonitor have been deciphered in order to report fat, [12], water [27] and salt content

[11] in salmon fillets. In addition pigment is measured with a visible light detector in

the region 460 − 760nm which also inside the QMonitor. QMonitor is also used for

meat, crabs, dried salted coalfish [21] and french fries. In 2012 the name of QVision was

change to Odenberg when the TiTech company was bought by Odenberg.[15].

When QMonitor managed to scan salmon fillets and predict fat based on developed

prediction model a problem appeared. The method used to develop the prediction

model did not take into account the high variation of fat in the fillet. The whole spectra

image was averaged for modeling and then information about the fat variation was

determinated. A suggestion of solution to the problem was published 2009 and was

described in a paper[12]. The solution aims to capture the variation of fat by measuring

fat on predifined locations of every fillet and retain the spectral image values from same

location when developing a prediction model. The prediction model developed is then

applied to every pixel of the spectral image and mean fat value for the whole fillet is

reported.
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Figure 3.4: Setup of QMonitor [22]

QMonitor is an online imaging scanner shown in figure 3.4 which measures the backscat-

ter of light from the sample. The scanner is placed 11.4 cm above a conveyor belt which

the salmon fillet is laid on with the skin facing down. Light source in the machine con-

sists of eight 35W , 12◦ Reflecto industry halogen lamps. Each having light illuminating

in same direction as the conveyor belt, horizontally within the Scanner. The light illumi-

nates onto a mirror which change the direction of the light vertically on to the conveyor

belt. The light goes 15 − 20 mm into the salmon fillet. A cylindrical lens collects the

light and is separated from the light source by 2 cm metal plate which also shield the

detector from unwanted reflected light from the fish surface [11].

A Charged Couple Device (CCD) detector (Imaging spectrometer) translates the backscat-

ter from the lens to spectral values. Speed of the conveyor belt can be up to 1, 5 ms−1

but when the data was collected in this thesis the speed was approximately 0, 2 ms−1.

Size of each spectral image depends on the speed of the conveyor belt. With the speed

of 0, 2 ms−1 the size of the image is about 60 pixels in perpendicular direction of the

conveyor belt movement were each pixel is 1.2 cm and 300− 400 pixels in the direction

of the conveyor belt movement with pixel size of 0.5 cm [11].

The CCD consist of 15 channels who all capture spectral image with 20 nm between-

from 760 nm to 1040 nm resulting in 15 spectral images shown in figure 3.5 which the

multivariate statistics are used to translate.
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Figure 3.5: Spectra values obtained from salmon fillets [32]

3.3 Preprocessing of NIR data

Measuring chemical using NIR technology need preprocessing before applying multi-

variate statistics. The preprocessing removes unwanted information and standardizes

the measures. Main preprocessing methods used on QMonitor data are calculation of

absorbance values (ABS) and Standard Normal Variate value (SNV).

3.3.1 Raw value of spectra

Measure of reflectance of light is defined as raw value in spectroscopic data. Raw value

is a ratio between the measure obtained and a known reference value. Reflectance is

stated in equation 3.2

R =
I

I0
(3.2)

where I is the measure obtained by NIR machine. I0 is a known reference value. During

calibration of NIR machine a piece with known value is placed under the NIR detectors

and reported values from the machines are adjusted to the values they are supposed to
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report when this kind of standardized piece is measured. Calibration value is contained

by the variables I0. Reflectance value is non-linear which can introduce problems.

3.3.2 Absorbance (ABS) value

Using nonlinear observations can introduce problems which are not of inters. Solution

is to make the reflectance values linear by equation 3.3.

ABS = −log10

(
I

I0

)
(3.3)

Equation 3.3 is a linear function of the measure obtained which multivariate statistics

can be applied to.

3.3.3 Standard Normal Variate (SNV) of spectra

The Standard Normal Variate (SNV ) preprocessing applies to individual spectra and

can therefore be done on the dataset before cross validation. SNV removes slope vari-

ation of the spectral waves, which contains non useful information [34]. In this thesis

SNV correction is used to remove offset due to light scattering [27]. Calculation of

SNV for every sample is stated in equation 3.4.

SNV (xik) =
xik − x̄i√∑n
k=1(yik−ȳi)2

n−1

(3.4)

Each value of the explanatory matrix is standardized using SNV. Equation 3.4 retrieves

the SNV of sample number i containing n wavelengths. Wavelength number k is within

sample i [34]. Comparison of absorbance values and SNV values are shown in figure 3.6.
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Figure 3.6: Raw and SNV preprocessed data from QMonitor

After applying SNV as in figure 3.6 the mean of the waves is 0 and values of the waves

is centered at 0.

3.4 How NIR data is collected from QMonitor spectral

images

During the master studies followed by this master thesis, different programs and data

format have been used to measure salmon fillets using the NIR machine QMonitor. The

first year .udp files were collected using program written in C + + by QVision and

Nofima Mat. The udp. files are rather big compared to other data files. They contain

a lot of data which is not used when fat and color values are obtained from QMonitor.

To calculate the fat and pigment values a program which converts the .udp files to

.bin files was made by Nofima Mat. Using Matlab the obtained regression coefficients

are multiplied by observed values coming from the .bin image. Second program used

published by QVision is QAnalaysis, version 2.1 which is used to calibrate the QMonitor

and adjust the QMonitor according to .XML file which is loaded into the program.

QAnalysis is capable of analyze individual value in the images and use existing prediction

model to predict fat and color of the salmon fillet. The program was also capable of

converting .udp files to .bin files. Version 2.2 was published were useless buttons and

bugs in the first program were fixed. Finally the current version 2.3 was published which

is capable of record data. All Matlab scripts which have been made for the QMonitor
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came also in a folder included in version 2.3. The scripts included in versions 2.3 in

combination to special made scripts were used to obtain the explanatory variables used

in this thesis. The QAnalysis tools are built using Matlab compiler.

When measuring each salmon fillet, each measure is stored in .udp or .bin file. The file

is loaded into a Matlab program made by Nofima Mat and QVision which allows the

user to pick out values from selected locations in the spectral image. The raw, abs and

SNV values are calculated and retrieved for those locations, shown in figure 3.7.

Figure 3.7: Program to pick out information from Spectral Image

Using this program in figure 3.7 and images captured by digital camera the explanatory

variables in datasets 2 and 3 were created. Where result is n× 15 matrix of SNV values

from the selected points on the spectral image.
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4.1 The datasets

Three datasets are used in this thesis. The first dataset used is originated from the paper

describing the most recent sampling and calibration strategy when developing model for

QMonitor measuring fat in fillet [12]. It is used to learn the methods when predicting

fat in salmon fillet and understand how the NIR data samples and preprocessed, prior to

model development. The NIR values from the spectral image in dataset 1 were obtained

using the prototype of the NIR instrument QMonitor standing in Nofima, Ås Norway.

The second dataset was part of an experiment where Stofnfiskur and Nofima conducted

a trial to find the best available method to measure fat and pigment in salmon fillets.

Stofnfiskur did send fish to Nofima Norway where the fish was measured using the old

QMonitor. Based on the results obtained, Stofnfiskur decided to buy QMonitor.

The third dataset was collected in Iceland at Stofnfiskur specially for this thesis in order

to develop prediction model for their New QMonitor. NIR spectra values were obtained

by the QMoinitor which will be referred as the New QMonitor. The fish in dataset three

was a part of a larger experiment where additional measurements were conducted. The

additional measures are stored in the dataset.

Each QMonitor measure consist of 15 images shown in figure 3.5 measuring light back

scattering in 15 different light regions from 760 nm to 1040 nm. The point where the

plug was collected is picked out on all 15 spectral images and used as an explanatory

41
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variable in the regression. Preprocessing was to convert the raw values to abs values

which were converted to SNV values.

The idea behind the locations of the plugs removed from the fillet is to span the fat

variation in the fillet. Each plug is 15 mm in diameter and the thickness of each plug

is according to the thickness of the fillet where the plug was collected. The plugs in all

datasets which are used as a response were measured using LF −NMR machine located

in Nofima. In order to retain fat and moisture, weight of each plug had to be measured.

Number of observations are summarized in table 4.1.

Nr of Dataset 1 Dataset 2 Dataset 3

Fish 15 43 24
Round weight 2− 5 kg 1− 8 kg 1− 6 kg
Fillets per fish 2 1 1
Plugs per fillet 5 2− 6 5
Observations 150 98 120
Broken observations 5 10 13

Total # observations 145 88 107
Fat range 3.84− 26.22 0.23− 32.84 0.23− 32.8
Average 13.85 14, 25 14.24
StDev 6.12 6, 6 6.6

Table 4.1: Overview of the datasets

In table 4.1, the broken observations are values which are not likely to be true. Example

of broken value are negative fat value in a plug or spectra values far from its neighbors.

Broken observations were removed in analysis which is a common rule and is done

commonly in NIR publications [12].

In PCR and PLSR the main interest is on eigenvalues and eigenvectors of X′X to get

an idea of how many components are needed and to see if it is possible to reduce the

complexity of the prediction model by using subset of component to replace X. When

prediction of response ŷ is of interest the covariance and correlation between X, y need

to be illustrated. Also is it faverable to look at the covariance between the principle

components and y.

The dataset are made by different groups of people and companies, recorded at different

time and on different locations in the world.
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4.2 Dataset 1

Martin Høy and Jens Petter Wold are authors and co-authors of many papers concerning

NIR technology [8, 12, 21, 22, 27]. They are the main source of information concerning

Near Infrared Spectroscopy in this thesis. They have many years of experience and a

Phd degree which comes into play when sampling data using the equipment needed to

create the prediction model published. Martin Høy and Jens Petter Wold among others

were involved when the machines were developed and the computer programs made to

obtain the measures from the machine.

As seen in table 4.1 dataset 1 consists of 15 fish weighing from 2 to 5 kg round body

weight. Both fillets from each fish were used, in total 30 fillets. The fish were machine

filleted with skin still intact by a Norwegian salmon company (Bremnes Seashore AS)

[12].

Figure 4.1: Plug locations [12]

Five plugs were collected from

each fillet on the locations in fig-

ure 4.1 [12]. They were mea-

sured by LF-NMR at Nofima

by Frank Lundby, which is one

of the most experienced person

at Nofima Mat using LF-NMR

scanners. Franks has conducted

calibration studies in order to de-

velop the best method on how to

calibrate LF-NMR scanner on a

standard way across labs [28].

From the 30 fillets, 5 plugs, in to-

tal 150 plugs were collected. Out

of 150 plugs collected from the 15

fish only 5 of them were broken.
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4.2.1 Statistics of Dataset 1.

To understand the variance structure of X the eigenvalues are obtained from the covari-

ance matrix of X which is the product XX′ and their main properties evaluated.

i Eigenval. Variance ratio Total Cov(Pc,y) Corr(X,y) Cov(X,y)

1 3.92 0.77 0.77 137.50 -0.18 -0.05
2 1.07 0.21 0.98 -8.57 -0.52 -0.11
3 0.06 0.01 0.99 -0.91 -0.81 -0.16
4 0.02 0.00 1.00 0.89 -0.92 -0.16
5 0.02 0.00 1.00 0.86 -0.92 -0.17
6 0.00 0.00 1.00 0.17 -0.75 -0.18
7 0.00 0.00 1.00 0.13 -0.09 -0.02
8 0.00 0.00 1.00 0.04 0.86 0.29
9 0.00 0.00 1.00 -0.04 0.95 0.64
10 0.00 0.00 1.00 0.04 0.92 0.39
11 0.00 0.00 1.00 -0.04 -0.62 -0.11
12 0.00 0.00 1.00 -0.01 -0.89 -0.29
13 0.00 0.00 1.00 0.00 -0.92 -0.20
14 0.00 0.00 1.00 0.02 0.12 0.01
15 0.00 0.00 1.00 0.00 0.40 0.11

Table 4.2: Covariance and correlation structure of dataset 1

In table 4.2 size of eigenvalue i in relation to other eigenvalues of XX′ shows how much

variation principle component i contains and is referred to as variance ratio. To see how

much variation may be explained by the first i components. The ratio between the first i

eigenvalues divided by sum of all eigenvalues is calculated. In table 4.2 it is referred to as

Total and shows how much total variation may be explained by the first i components.

When the predicted response is of main interest the covariance between the principle

component i and y is calculated. It is defined as the inner product of eigenvector i of

the covariance matrix XX′ and Xy given in equation 4.1

Cov(Pci,y) = e′iX
′y (4.1)

Where ei in equation 4.1 is eigenvector i of the covariance matrix XX′. When X is

going to be used to predict y it is also good to look at the correlation and covariation

between y and the columns of X which is also shown in table 4.2.
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To illustrate how much variation may be explained by the first i components the Scree

plot is made. The Scree plot is shown in figure 4.2.
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Figure 4.2: Scree plot of the eigenvalues of XX′ in dataset 1

When estimating β̂ in prediction a the choise of method depends on the correlation

among the variables in X. The correlation among the X variables is shown in table 4.3.

s760 s780 s800 s820 s840 s860 s880 s900 s920 s940 s960 s980 s1000 s1020 s1040
s760 1.00 0.92 0.63 0.36 -0.09 -0.44 -0.91 -0.59 -0.18 0.01 0.80 0.44 0.14 -0.85 -0.88
s780 0.92 1.00 0.88 0.69 0.29 -0.09 -0.76 -0.86 -0.53 -0.36 0.93 0.74 0.49 -0.75 -0.91
s800 0.63 0.88 1.00 0.94 0.68 0.34 -0.43 -0.99 -0.84 -0.73 0.90 0.94 0.81 -0.52 -0.77
s820 0.36 0.69 0.94 1.00 0.88 0.61 -0.12 -0.95 -0.95 -0.89 0.78 0.97 0.94 -0.33 -0.60
s840 -0.09 0.29 0.68 0.88 1.00 0.91 0.36 -0.74 -0.96 -0.98 0.46 0.84 0.95 0.06 -0.21
s860 -0.44 -0.09 0.34 0.61 0.91 1.00 0.70 -0.42 -0.79 -0.88 0.09 0.57 0.80 0.39 0.16
s880 -0.91 -0.76 -0.43 -0.12 0.36 0.70 1.00 0.35 -0.13 -0.31 -0.61 -0.16 0.16 0.77 0.74
s900 -0.59 -0.86 -0.99 -0.95 -0.74 -0.42 0.35 1.00 0.88 0.77 -0.89 -0.95 -0.85 0.47 0.73
s920 -0.18 -0.53 -0.84 -0.95 -0.96 -0.79 -0.13 0.88 1.00 0.97 -0.63 -0.93 -0.98 0.12 0.41
s940 0.01 -0.36 -0.73 -0.89 -0.98 -0.88 -0.31 0.77 0.97 1.00 -0.47 -0.87 -0.99 -0.04 0.25
s960 0.80 0.93 0.90 0.78 0.46 0.09 -0.61 -0.89 -0.63 -0.47 1.00 0.84 0.59 -0.81 -0.94
s980 0.44 0.74 0.94 0.97 0.84 0.57 -0.16 -0.95 -0.93 -0.87 0.84 1.00 0.93 -0.45 -0.70

s1000 0.14 0.49 0.81 0.94 0.95 0.80 0.16 -0.85 -0.98 -0.99 0.59 0.93 1.00 -0.10 -0.39
s1020 -0.85 -0.75 -0.52 -0.33 0.06 0.39 0.77 0.47 0.12 -0.04 -0.81 -0.45 -0.10 1.00 0.93
s1040 -0.88 -0.91 -0.77 -0.60 -0.21 0.16 0.74 0.73 0.41 0.25 -0.94 -0.70 -0.39 0.93 1.00

Table 4.3: Correlation between the X variables in dataset 1

The nature of the fat in a fillet is that there is more fat in the belly and less fat

in the backbone. Locations where the plugs were collected is displayed in figure 4.1.

Distribution of fat within each location is shown in figure 4.3.
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Figure 4.3: Fat in plug versus location of plug in dataset 1

In figure 4.3 the plugs from the belly flaps are plug D and E, referred to as 4 and 5 in

figure 4.1 which contains the highest fat in the fillet and the plugs from the backbone

are plugs A, B and C referred to as 1,2 and 3 in figure 4.1. In order to explore the

explanatory matrix further, scores and loadings are retained and plotted in figure 4.4
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Figure 4.4: Score and loadings in dataset 1.
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The loading plot in figure 4.4 show how much impact the first two components retain

information from X. Main information about fat is located in the columns of X where

measures from the spectral images around 930 nm are located. The scores show if any

grouping is among the data in X. In figure 4.4 grouping among the locations of the plug

appear. The observations are colored, according to where they were taken from the fillet

in figure 4.1.

4.3 Dataset 2

In fall 2010 a comparison of fat and pigment measurement methods available in salmon

breeding was done in cooperation with Nofima and Stofnfiskur which the author of this

thesis was in charge of. Dataset 2 was recorded as a part of this comparison. A quality

test was also done on fish from Stofnfiskur which is stored as additional responses. The

fish was selected from 3 year old fish in Iceland. It was selected within a weight interval

that spans likely weights of fish. The fat and pigment measurement instrument will get

exposed in Stofnfiskur’s nucleus. The fish was from seven different weight classes, 1− 2

kg, 2 − 3 kg up to 7 − 8 kg. Between 2 to 8 fish were in each weight class. Stofnfiskur

did send in total 45 gutted fish to Nofima in Ås as seen in table 4.1. Length, ungutted

and gutted weight were measured in Iceland.

Figure 4.5: Measuring using old QMonitor at Nofima
Ås.

After measuring the fish in Ice-

land it was put into styrofoam

box on ice and sent to Norway by

air on Monday in the first week

of November 2010. On Thursday

morning the fish arrived in Nofia

Marin Ås. On the first day the

fish was filleted and quality mea-

sures obtained. Example of qual-

ity measures are the gaping of the

fillet, texture in the meat of the

fillet and and value of Ph in the

fillet after filleting. Then the fil-

lets were measured using QMonitor standing in Nofima Mat. After measuring the fillets,
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the plugs were removed from the fillets. Thickness of each plug was measured by mea-

suring average thickness of the fillet where the plug was collected. Figure 4.6 shows

these measures.

Figure 4.6: Bjarne and Målfrid measuring plug thickness

The skin was removed from the fillets and they were minced and samples sent to Sun-

dalsøra to determine the chemical values of fat and pigment in the fillets in order to see

the prediction performance of the machines.

Figure 4.7: Mincing the fillet in order to take 30 gr sample.

In quality measures and filleting, two fillets were dismissed. Total number of plugs

measured with LF-NMR was therefore 98. Fat is measured as % of total chemicals of

the plug. Main statistics of the dataset are listed in table 4.4.
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Max Min Mean Std. deviation #

Ungutted weight of whole fish 7.46 1.44 4.59 1.75 43
Gutted weight of whole fish 6.8 1.32 4.19 1.6 43
Length of whole fish 83 49 69.28 9.22 43
Plug thickness 36 10 19.81 8.0 98
Plug weight 3.68 1.14 2.34 0.60 98
Plug Moisture % 78.48 -0.1 65.7 8.27 98
True Fat from whole fillet 21.59 6.84 16.63 3.00 98
Astataxthin from whole fillet 11.12 4.41 7.1 1.45 98

Table 4.4: Main statistics of additional responses in dataset 2

In table 4.4, value of fat and pigment in the fillets is measured as % of total chemicals,

and amount of Astataxthin in mg out of total chemicals in 30 gr sample taken from

whole minced fillet without skin.

The author of this thesis did measure the fat in the plugs with LF-NMR machine. The

LF-NMR machine was calibrated using standardized fat samples for meat. Reason for

using meat for calibration was because a student in Nofima Mat was asked to start up

the LF-NMR scanner and he was used to use the meat standard samples for calibration.

Calibration of LF-NMR scanner should be done using fish oil. The machine is supposed

to report 100% fat in the calibration.

Figure 4.8: Cylindrical plugs removed from the fillet.

Only one fillet out of two were selected because of the high correlation between fillets.

Decision was made to gather six 15 mm cylindrical plugs from each fillet to span the

variation of fat in the fillet. The location are show in figure 4.9.
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Figure 4.9: Position of plugs in dataset 2

Every plug from first three fish were measured. Thereafter only two plugs were mea-

sured from each fish at random in total 98 plugs out of 270 plugs, because of how time

consuming it is to measure each plug. After measuring the plugs the author selected

the corresponding pixels from the spectral image on the locations where the plugs were

supposed to be from using a Matlab function created by QVision that retrieved SNV

values for each location of the plug.

4.3.1 Statistics of Dataset 2

When PCR and PLSR is utilized relation of y and X is of most interest in addition to

variation structure of X. Using same methods as in chapter 4.2.1 the results in table

4.5.

i Eigenval. Variance ratio Total Cov(Pc,y) Corr(X,y) Cov(X,y)

1 3.51 0.94 0.94 89.70 -0.48 -0.09
2 0.18 0.05 0.99 3.15 -0.83 -0.17
3 0.02 0.01 1.00 0.02 -0.90 -0.23
4 0.01 0.00 1.00 -0.17 -0.91 -0.21
5 0.00 0.00 1.00 0.42 -0.92 -0.15
6 0.00 0.00 1.00 0.48 -0.85 -0.09
7 0.00 0.00 1.00 -0.03 0.80 0.11
8 0.00 0.00 1.00 -0.03 0.90 0.39
9 0.00 0.00 1.00 -0.02 0.92 0.61

10 0.00 0.00 1.00 0.01 0.92 0.38
11 0.00 0.00 1.00 0.02 -0.78 -0.14
12 0.00 0.00 1.00 -0.03 -0.88 -0.33
13 0.00 0.00 1.00 0.00 -0.90 -0.24
14 0.00 0.00 1.00 0.01 0.00 0.00
15 0.00 0.00 1.00 0.00 0.69 0.17

Table 4.5: Covariance and correlation structure of Dataset 2
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To understand to which degree the variation is explained the first eigenvalues are dis-

played using scree plot in figure 4.10.
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Figure 4.10: Scree plot of the eigenvalues of XX′ in dataset 2

When choosing method to estimate β̂ the information about the correlation among the

columns of X is needed. The correlation is shown in table 4.6.

s760 s780 s800 s820 s840 s860 s880 s900 s920 s940 s960 s980 s1000 s1020 s1040
s760 1.00 0.84 0.62 0.53 0.41 0.13 -0.81 -0.62 -0.58 -0.55 0.78 0.69 0.55 -0.66 -0.89
s780 0.84 1.00 0.94 0.90 0.84 0.63 -0.99 -0.95 -0.92 -0.91 0.95 0.97 0.91 -0.35 -0.94
s800 0.62 0.94 1.00 0.99 0.96 0.83 -0.95 -1.00 -0.99 -0.99 0.92 0.99 0.98 -0.13 -0.84
s820 0.53 0.90 0.99 1.00 0.99 0.88 -0.91 -0.99 -0.99 -0.99 0.88 0.97 0.98 -0.06 -0.79
s840 0.41 0.84 0.96 0.99 1.00 0.94 -0.84 -0.96 -0.98 -0.98 0.83 0.93 0.97 0.06 -0.70
s860 0.13 0.63 0.83 0.88 0.94 1.00 -0.63 -0.84 -0.88 -0.88 0.61 0.77 0.88 0.34 -0.44
s880 -0.81 -0.99 -0.95 -0.91 -0.84 -0.63 1.00 0.95 0.92 0.90 -0.97 -0.97 -0.91 0.36 0.94
s900 -0.62 -0.95 -1.00 -0.99 -0.96 -0.84 0.95 1.00 1.00 0.99 -0.92 -0.99 -0.99 0.10 0.83
s920 -0.58 -0.92 -0.99 -0.99 -0.98 -0.88 0.92 1.00 1.00 0.99 -0.89 -0.98 -0.99 0.03 0.79
s940 -0.55 -0.91 -0.99 -0.99 -0.98 -0.88 0.90 0.99 0.99 1.00 -0.85 -0.97 -1.00 -0.00 0.77
s960 0.78 0.95 0.92 0.88 0.83 0.61 -0.97 -0.92 -0.89 -0.85 1.00 0.95 0.86 -0.46 -0.96
s980 0.69 0.97 0.99 0.97 0.93 0.77 -0.97 -0.99 -0.98 -0.97 0.95 1.00 0.97 -0.23 -0.90

s1000 0.55 0.91 0.98 0.98 0.97 0.88 -0.91 -0.99 -0.99 -1.00 0.86 0.97 1.00 0.01 -0.77
s1020 -0.66 -0.35 -0.13 -0.06 0.06 0.34 0.36 0.10 0.03 -0.00 -0.46 -0.23 0.01 1.00 0.61
s1040 -0.89 -0.94 -0.84 -0.79 -0.70 -0.44 0.94 0.83 0.79 0.77 -0.96 -0.90 -0.77 0.61 1.00

Table 4.6: Correlation of X in dataset 2

Plugs 1,2 and 4 where collected from the backbone which is leaner than the belly flaps

were plug 3 and 5 were collected. Tail of a salmon also have low fat where plug 6 was

collected. Distribution of fat within location is displayed in figure 4.11.
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Figure 4.11: Fat in plug versus plug location in, dataset 2

To see the impact on the first two components on the columns of X the loading plot is

retained. Main information about fat is located in the columns of X where measures

from the spectral images around 930 nm are located. The Loadings are retained as

descried in chapter 4.2.1. Loadings are plotted for dataset 2 in figure 4.12.
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Figure 4.12: Score and loadings in dataset 2.

The scores are colored according to where the plugs come from the fillet the measures

are retained from in figure 4.12.
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4.4 Dataset 3

After the instrument comparison at Nofima Ås, Norway, Stofnfiskur decided to buy a

QMonitor to measure fat and pigment in the nucleus. The new instrument was installed

at Stofnfiskur in Iceland. The predicted values retained using existing prediction model

on the data obtained from the New QMonitor were wrong according to literature.

Dataset 3 was created in Iceland using the new QMonitor. A number of 2300 fish were

measured in fall of 2011 where predicted fat values are needed. Selection of fish to create

the next generation will be done in summer 2012 which is the aim to use the results

from this thesis to select. Out of these 2300 fish a sample of 24 fish were selected.

After learning the procedure of sampling in Norway the author did all the sampling in

Iceland. After removing the plugs the skin was removed and the fillet was minced and 30

gr. samples collected which were sent to Sunndalsøra to determine the fat and pigment

in the fillets. Sunndalsøra reported an error when mincing the fillets. The error was the

fillets were not minced enough. In order to create new prediction model, 24 fish were

collected from weight classes 1 − 2 kg, 2 − 3 kg, 3 − 4 kg, 4 − 5 kg and 5 − 6 kg. The

weight interval 1 − 6 kg which is similar to the weight of the fish the machine will get

exposed to in the future when fat and pigment will be measured. When filleting the fish

additional measures were retained.

Figure 4.13: Collecting Salmon, measuring round body weight and length

Additional measures were conducted on the fish which are shown in table 4.8 which were

used in order to improve the prediction ability of the model. Main summaries of the

additional measures are shown in table 4.7.
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Max Min Mean Standard dev #

Fillet weight, kg 1.95 0.22 1.52 0.30 48
Ungutted weight, kg 6.444 0.8 4.32 1.32 24
Length of whole fish, cm 83 0 69.0 15.7 120
Sex of fish, 1=male, 2=female 2 1 1.37 0.46 24
Intestine weight, gr 460 48 251.25 92.1 24
Plug weight 4.69 1.27 3.42 0.79 120
Plug moisture 79.3 -0.07 69.2 8.0 120

Table 4.7: Main statistics of additional responses in datset 3

Sex of the fish is recorded with 1 for male fish which has not matured, and 2 for female

fish which has not matured. Most of the fish in this dataset were males, as can be seen

in table 4.7. Intestine weight is weight of intestine without liver and heart.

Figure 4.14: Measuring weight of fillet

From each fish one fillet out of two were selected randomly. Ungutted weight and length

of each fish was measured. Intestine weight without liver and heart was measured. In

addition fillet weight was measured.

One fillet of each fish was used and five plugs were collected according to figure 4.1,

further informations are in table 4.1 about the sampling. Visual image was captured of

each fish in order to improve collection of the data on the spectral images.

Each fillet was measured using the QMonitor standing in Iceland seen in figure 4.15.
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Figure 4.15: Measuring the fat using QMonitor in Stofnfiskur, Iceland

4.4.1 Statistics of Dataset 3

In order to explore the variation of X and the relation of X and y and the components

made of X same methods are used as in chapter 4.2.1 to obtain the results in table 4.8.

XX ′i Eigenval. Variance ratio Total Cov(Pc,y) Corr(X,y) Cov(X,y)

1 2.29 0.92 0.92 87.97 -0.69 -0.11
2 0.13 0.05 0.97 -0.12 -0.91 -0.17
3 0.05 0.02 0.99 0.96 -0.93 -0.18
4 0.02 0.01 1.00 0.01 -0.92 -0.15
5 0.01 0.00 1.00 0.54 -0.93 -0.13
6 0.00 0.00 1.00 -0.04 -0.87 -0.09
7 0.00 0.00 1.00 -0.05 0.82 0.08
8 0.00 0.00 1.00 0.05 0.93 0.30
9 0.00 0.00 1.00 -0.04 0.94 0.53

10 0.00 0.00 1.00 -0.06 0.91 0.28
11 0.00 0.00 1.00 -0.01 -0.76 -0.13
12 0.00 0.00 1.00 -0.01 -0.94 -0.24
13 0.00 0.00 1.00 0.01 -0.89 -0.14
14 0.00 0.00 1.00 0.00 0.30 0.03
15 0.00 0.00 1.00 0.00 0.68 0.12

Table 4.8: Covariance and correlation structure of Dataseat 3

In order to see the proportion of the variance the first eigenvalues explain scree plot of

the eigenvalues is displayed in figure 4.16.
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Figure 4.16: Scree plot of X in dataset 3

To select a method to estimate β̂ the correlation among the columns of X is needed

which is shown in table 4.9.

s760 s780 s800 s820 s840 s860 s880 s900 s920 s940 s960 s980 s1000 s1020 s1040
s760 1.00 0.88 0.73 0.65 0.59 0.41 -0.90 -0.77 -0.73 -0.68 0.69 0.76 0.69 -0.38 -0.72
s780 0.88 1.00 0.96 0.92 0.88 0.75 -0.96 -0.97 -0.96 -0.93 0.76 0.95 0.93 -0.28 -0.73
s800 0.73 0.96 1.00 0.99 0.96 0.86 -0.92 -0.99 -0.98 -0.96 0.76 0.97 0.96 -0.25 -0.72
s820 0.65 0.92 0.99 1.00 0.98 0.88 -0.87 -0.97 -0.97 -0.93 0.78 0.96 0.93 -0.29 -0.72
s840 0.59 0.88 0.96 0.98 1.00 0.96 -0.79 -0.96 -0.97 -0.92 0.78 0.96 0.90 -0.29 -0.66
s860 0.41 0.75 0.86 0.88 0.96 1.00 -0.60 -0.86 -0.91 -0.85 0.70 0.87 0.82 -0.23 -0.52
s880 -0.90 -0.96 -0.92 -0.87 -0.79 -0.60 1.00 0.92 0.87 0.85 -0.74 -0.89 -0.86 0.31 0.77
s900 -0.77 -0.97 -0.99 -0.97 -0.96 -0.86 0.92 1.00 0.99 0.94 -0.81 -0.98 -0.93 0.30 0.72
s920 -0.73 -0.96 -0.98 -0.97 -0.97 -0.91 0.87 0.99 1.00 0.96 -0.77 -0.98 -0.95 0.25 0.67
s940 -0.68 -0.93 -0.96 -0.93 -0.92 -0.85 0.85 0.94 0.96 1.00 -0.60 -0.92 -0.99 0.03 0.53
s960 0.69 0.76 0.76 0.78 0.78 0.70 -0.74 -0.81 -0.77 -0.60 1.00 0.85 0.58 -0.79 -0.91
s980 0.76 0.95 0.97 0.96 0.96 0.87 -0.89 -0.98 -0.98 -0.92 0.85 1.00 0.91 -0.42 -0.80

s1000 0.69 0.93 0.96 0.93 0.90 0.82 -0.86 -0.93 -0.95 -0.99 0.58 0.91 1.00 -0.02 -0.56
s1020 -0.38 -0.28 -0.25 -0.29 -0.29 -0.23 0.31 0.30 0.25 0.03 -0.79 -0.42 -0.02 1.00 0.80
s1040 -0.72 -0.73 -0.72 -0.72 -0.66 -0.52 0.77 0.72 0.67 0.53 -0.91 -0.80 -0.56 0.80 1.00

Table 4.9: Correlation of X in dataset 3

To see which columns of X the components are retaining, information from the loading

plot is retained. Loading is plotted in figure 4.17.

In figure 4.17 the scores are also plotted and grouping among plugs within locations is

found.
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Figure 4.17: Score and loadings in dataset 3.

Distribution of fat within each plug location is also important and is shown in figure

4.18.
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Figure 4.18: Fat in plug versus location of plug, Dataset 3

Where high fat is seen in the plugs from the belly and low fat in the plugs from the

backbone.
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4.5 General comments about the dataset prior to predic-

tion

In all the dataset the first eigenvalue of X′X is much larger than the other eigenvalues

which means that the first component will explain much of the variation in X. Correla-

tion between y and the first component is also rather high for all the datasets which is

a good quality when the aim in prediction is to predict y using principle components.

High correlation among the columns of X supports that using least square to estimate

β̂ will give a unstable estimates, which supports usage of other methods to estimate β̂.

4.5.1 Box plot of fat within location of plug

Box plot of fat within location reveals higher fat values in the belly area and lower

fat in the backbone and the tail. In dataset 1 and 3 where 5 plugs where collected

from each fillet, a clear difference is between fat within locations. In dataset 2 are the

plugs collected at 6 locations. Then the difference between fat within locations does not

become as clear. The box plot reveals the fat variation within fillet which was terminated

when the whole spectral image was averaged in earlier methods. Taking as many plugs

as possible should give more information about the variation of fat in the fillet. How

many are needed to capture most of it is unknown. In addition, knowing the optimal

location to pick the optimal number of plugs to create a prediction model with as low

prediction error as possible is a study that should be carried out and is publishable

material if the solution exist. No significant difference were seen between using five or

six plugs from each fillet.

4.5.2 Score and loadings

Information about fat is located in 920− 930 nm in the electromagnetic spectrum. The

first component in all datasets had rather high positive loading value on the columns

where this information about fat is located. Grouping of plug locations is also seen in

the score plot of all datasets. The grouping is most clear in dataset 1 because the fillets

have the smallest weight interval and two fillets are measured from each fish which are

highly correlated. Also a highly educated scientist did the measures with fewer mistakes.
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Reason for less grouping in figure 4.17 could be that the weight of the fish was more

equally distributed among the weight classes in the 1− 6 kg fish than among the weight

classes of the 1 − 8 kg fish in dataset 2. Distribution of weight of a fillet among the

weightiness in Dataset 1 is unknown. Judging by the score the weight of the fillets in

dataset 1 have probably been equally distributed.

Correlation among the first component and y was high for the first component in all

datasets. First component explained from 77− 94% of the total variation of X which is

a good quality when the aim is to keep the complexity level as low as possible without

losing information. Correlation and covariance between X and y was highest in the

region in the spectrum where the information about fat was located. All this results

support a prediction model using two or fewer components, because they are explaining

most of the variation in X. The scores of dataset 2 are most condense with one plug

location further from the others. These few plugs from this other location have probably

been too few in contrast to the other because of a bad random function in Excel that

was supposed to select two plugs randomly from each fillet, but did not do a better work

as shown. Grouping is detectable in the score plot of dataset 3.

Correlation of among the columns of X in all datasets is rather high. Due to this high

level multicollinearity a X−1 does not exist. Therefore it is not possible to obtain as

good estimator by least square estimation. Other estimation methods of β̂ should be

considerate.
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Results

The dataset were created using Matlab. Matlab scripts are not in the Appendix be-

cause they were borrowed from Martin Høy[33]. Calculations were carried out using

the statistical program R [16]. Functions were made to calculate Principle component

regression. The function used leave one out cross validation and K-fold cross validation.

The cross validation could use batches containing all measures on each fish, or batches

where all plugs from each location were stored. Based on PLS algorithm, in this thesis

a PLS program was written which uses the same cross validation arguments as the PCR

function.

Function was written to try test and calibration sets. Arguments which can be passed

into this function is how; big part of the observations, how many fishes, or how many

plug locations should be stored in the calibration set or stored in the test set. Ratio

between test and calibration set is passed into the function. The calibration set is cross

validated by the same methodology as used in the PCR function.

Function was made that tried all combinations of additional variables trough CPLS and

found which combination gave the lowest prediction error.

5.1 PCR

Using the principle component regression function a RMSEP value was calculated for

the first five components for all datasets shown in figure 5.1.

60
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Figure 5.1: PCR on all dataset using Cv with different segmentation.

In figure 5.1 CvMethod indicates the method used for cross validation. The colors in

5.1 are, ”line” means leave one out cross validation, ”fish” means K-fold cross validation

where all plugs from each fish are stored in seperate segments, and ”plug” stands for

K-fold cross validation where each location of plugs is put into one segment. This

notation is used through the result chapter. Because of the zero component model in

figure 5.1 predicts worse than other models zero component model is excluded in further

calculations. By excluding the zero component model the figure 5.2 is obtained.
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Figure 5.2: PCR on all dataset using Cv with different segmentation.

In figure 5.2 K-fold cross validation using plug segments performs poorly. The other

cross validations methods performs better and similar to each other.
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5.2 PLSR

Using the PLSR function in appendix A giving the following results which was obtained

on the three datasets using the first five components with same cross validation as in

chapter 5.1.
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Figure 5.3: PLSR on all dataset using Cv with different segmentation.

Cross validating with plug in each segment seems a bad idea in figure 5.3. Cross vali-

dation segmented by plug is therefore excluded in further analysis. Comparison of PCR

against PLSR using the leave one out cross validation, referred as a line in the plots,

and K-fold cross validation storing each fish in one segment is done in figure 5.4.
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Figure 5.4: PLSR vs PCR on all dataset using Cv with different segmentation.

In figure 5.6 the PLSR has a lower RMSEP values. Something strange is happening

in dataset 2. The RMSEP value in all datasets reduces when more components are
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retained.Looking closer at PLSR using the leave one out cross validation the figure 5.5

was obtained.
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Figure 5.5: PLSR on all dataset leave on out Cv.

In order to investigate the prediction performance further plot of y against the new

predicted ŷ using the leave one out cross validation gives the figure 5.6. Linear model

was fitted by ŷ and y in order to estimate the slope and the intercept of the model to

understand how the model will predict lean and fat plugs. A 1 : 1 line was plotted to

compare to the line defined by the model. To get a comparison across datasets the R2
pred

value was also obtained.
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Figure 5.6: y vs ŷ with lowest RMSEP, using leave on out Cv.

Even though the RMSEP values for the datasets using the leave one out cross validation

are different the plot of y against ŷ are similar with almost the same R2 values. The

RMSEP values are all similar, but four components are needed in dataset 2 which should

be kept in mind when figure 5.6 is evaluated.
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RMSEP value using PLSR were calculated using K-fold cross validation where segmen-

tation of the data is defined by a fish. The result is shown in figure 5.7.
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Figure 5.7: PLSR on all datasets using fish as segment for Cv.

In order to know more about the prediction performance a plot of y versus ŷ was made

where linear model were fitted using ŷ and y. Also the R2
pred was calculated as in figure

5.6. Then figure 5.8 was obtained.
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Figure 5.8: y vs ŷ with lowest RMSEP using fish as segmentation Cv.

In figure 5.8 the models seem to perform similar as seen on the RMSEP and R2
pred

values. Dataset 2 needed 4 components to optain this result.

In most cases the PLSR performed better, therefore PCR is excluded from further

calculations. Cross validation by K-fold cross validation where the segments are defined

by fish and the leave one out cross validation seems to perform similarly. In this thesis

it is considered most reasonable to use K-fold cross validation in cross validation. Then

the leave one out cross validation will be excluded from further calculations for PLSR.
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5.3 Calibration and Test set

By using the test function which is stored in appendix A the data was divided up to

calibration and test set where β̂ corresponding to the lowest value of RMSEP was chosen

and exposed to the test set. Values of ŷ were obtained using the β̂ from the calibration

set and the data from the test set. Then prediction error was estimated by equation 2.6.
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Figure 5.9: Calibration set containing first 25 − 75% of the data, using fish for seg-
mentation of the Cv.

In graph 5.9 the first 25− 75% of the dataset is used as calibration set. RMSEP values

are calculated for all number of components. The test set is the remaining 75− 25% of

the dataset.
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Figure 5.10: Test set containing first 25 − 75% of the data, using segmentation by
fish for the Cv.

Then the opposite was tried in figure 5.10. First 25 − 75% of the datasets are used as

the test set and the remaining 75− 25% are used as the calibration set.
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When K-fold cross validation is done where the batches are defined by fish it can happen

that one fish gets divided between the test and the calibration set. In following graphs

the calibration set was defined as the first 25 − 75% of the fish in the dataset and the

calibration set as the remaining 75− 25% fish in the dataset.
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Figure 5.11: Calibration set containing first 25− 75% of the fish, using segmentation
by fish for the Cv.

In figure 5.11 the devision of data was by fish. The opposite devision is calculated in

graph 5.12.
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Figure 5.12: Test set containing first 25− 75% of the fish, using segmentation by fish
for the Cv.

First 25−75% of the fish was defined as the test set and remaining 75−25% was defined

as the calibration set where the β̂ was retained from and introduced to the first 75−25%

fishes in the dataset and the RMSEP value evaluated based on the ŷ and y from the

test set.
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5.4 CPLSR

Additional responses were tried to improve the prediction performance. The leave one

out cross validation was introduced again since it has larger influence using CPLSR.

5.4.1 Dataset 1

In dataset 1 was only one addition response, the location of the plug. By supplying the

CPLS with the plug location the following RMSEP values were obtained in contrast to

the RMSEP values obtained by PLSR.
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Figure 5.13: PLSR vs CPLSR using plug location as additional response on dataset
1.

In figure 5.13 the RMSEP is lower for one component using CPLS.
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5.4.2 Dataset 2

In dataset 2 13 additional variables exist. A program was made in R which is located in

the appendix which tried all possible combinations of additional responses and calculated

all RMSEP values using the first five components. The combination containing the

lowest RMSEP values were retained.
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Figure 5.14: CPLSR, All RMSEP dataset 2, using segmentation by fish for the Cv

In figure 5.14 all the RMSEP values are plotted for the additional responses with the

lowest RMSEP value when K-fold cross validation using fish as the segments was used.
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Figure 5.15: Lowest RMSEP using segmentation by fish for the Cv, Dataset 2
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In plot 5.15 the left side is development of the lowest RMSEP value when variables are

added and on the right side is the plot of how many components were needed to obtain

the RMSEP value displayed on the left side of the plot.

PlugThick
PlugW PlugMoust
PlugThick PlugMoust Temp
GutW PlugMoust Ph Temp
UngW PlugThick TrueF Cant Ph
Length PlugMoust TrueF Asta Ph Temp
UngW GutW PlugMoust TrueF Asta Ph Temp
UngW GutW Length PlugMoust Idoxan Asta Cant Ph

Table 5.1: Combination of additional responses containing the lowest RMSEP value
using segment defined by fish for Cv, dataset 2

The first 8 combinations of additional responses which had the lowest RMSEP value is

shown in table 5.1. PlugThick is the thickness of the plug. PlugMoust is the moisture in

the plug optained by the LF-NMR scanner. Temp is the temperature of the fillet after

filleting. PlugW is weight of the plug.
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Figure 5.16: CPLSR, All RMSEP dataset 2 using leave on out Cv

All combinations of additional data was tried where the leave one out cross validation was

tried. Best combinations were retained which contained the lowest RMSEP among all
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combinations for given number of added variables. In plot 5.16 development of RMSEP

for those optimal combinations is plotted in contrast of PLSR.
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Figure 5.17: Lowest RMSEP using leave on out Cv Dataset 2

In plot 5.17 development of the lowest RMSEP value was plotted against number of

added variables. On the right side number of principle components needed to obtain

these lowest RMSEP values when the leave one out cross validation was used on dataset

2.

Posit
PlugMoust Idoxan
PlugMoust Ph Temp
UngW PlugMoust Ph Temp
UngW PlugThick TrueF Cant Ph
UngW Length PlugW Asta Ph Temp
UngW GutW PlugW TrueF Asta Ph Temp
UngW GutW Length PlugThick PlugW Asta Cant Ph

Table 5.2: Combinations containing the lowest RMSEP value using leave one out CV,
dataset 2

The first 8 combinations containing the lowest RMSEP values using CPLSR when using

the leave one out cross validation are shown in table 5.2 where Posit is the position of

the plug and Idoxan is a chemical in the fillet. Ph is the ph value in the fillet when it

was filleted.
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5.4.3 Dataset 3

Best combinations were calculated by trying all combinations of the 8 additional re-

sponses and choosing the optimal combination by the lowest RMSEP, when the K-fold

cross validations was used and the segments were defined by fish. Result is displayed in

figure 5.18
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Figure 5.18: CPLSR, All RMSEP using segmentation by fish for the Cv, dataset 3

In figure 5.19 the development of the lowest RMSEP value is plotted against no. of

additional responses retained. On the right side is the number of components needed to

retain this RMSEP value.
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Figure 5.19: Lowest RMSEP using segmentation by fish for the Cv, Dataset 3
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The additional responses which contained the lowest RMSEP values are shown in table

5.3 when K-fold cross validation was used.

Length
FillW IntW
FillW Sex IntW
UngW Sex IntW PlugW
FillW UngW Sex PlugW PlugMo
FillW UngW Length Sex IntW PlugW
FillW UngW Length Sex IntW PlugW PlugMo
FillW UngW Length Sex IntW PlugW PlugMo Posit

Table 5.3: The sets of additional responses containing the lowest RMSEP value when
using segmentation by fish for Cv, Dataset 3

In table 5.3 Length is the length of the fish un gutted, FillW is the weight of the fillet,

IntW is the weight of the intestine of the fish. Sex is the sex of the fish where 1 is male

and 2 is female.

Best combinations were calculated by trying all combinations of the 8 additional re-

sponses and choosing the optimal combination by the lowest RMSEP among the com-

binations when the leave one out cross validations was used.
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Figure 5.20: CPLSR, All RMSEP using leave on out Cv, dataset 3
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In figure 5.21 the development of the lowest RMSEP value is plotted against number

of additional responses retained. On the right side is number of components needed to

retain this RMSEP value.
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Figure 5.21: Lowest RMSEP using leave one out Cv, Dataset 3

The pairs who had the lowest RMSEP values are shown in table 5.4 when leave the one

out cross validation using CPLSR was used in figure 5.21.

PlugMo
FillW IntW
FillW UngW IntW
Length Sex IntW PlugW
FillW UngW Length PlugMo Posit
UngW Length Sex IntW PlugMo Posit
FillW UngW Length Sex PlugW PlugMo Posit
FillW UngW Length Sex IntW PlugW PlugMo Posit

Table 5.4: The combination of additional responses containing the lowest RMSEP
value using leave one out CV, dataset 3

In table 5.4 PlugMo is moisture in the plug, FillW is the weight of the fillet, IntW is

the weight of the intestines.
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5.5 Developed Models

The aim is to develop a model for the QMonitor in Iceland which dataset 3 is made by.

In figure 5.22 optimal combination of additional variables when the leave one out cross

validation and K-fold cross validation are used.

Regression vector to predict fat in pixel of NIR image 
 in Datset 3 using three additional variables and one principle component Cv by fish vs line
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Figure 5.22: β̂ in dataset 3 with the lowest RMSEP using CPlSR

In figure 5.22 information about fat located in 920− 930 nm is weighted up and infor-

mation about water is weighted down because of its high negative correlation.

The old beta obtained by PLSR using one component in dataset 1 compared to the new

model obtained using CPLSR supplied with three additional responses and retaining

one component is displayed in figure 5.23.

Regression vector to predict fat in pixel of NIR image 
 comparison of the Old model and the New model obtained by CPLSR using three additional variables both using one component
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Figure 5.23: β̂ in dataset 3 with the lowest RMSEP using CPlSR

Plot of y from dataset 3 against the ŷ, predicted using the old PLSR model is shown in

figure 5.24
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Figure 5.24: β̂ in dataset 3 with the lowest RMSEP using CPlSR

Plot of y against ŷ predicted using the new prediction model developed by CPLSR using

three additional responses and retaining one component is shown in figure 5.25.
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Figure 5.25: β̂ in dataset 3 with the lowest RMSEP using CPlSR

The model used in figure 5.25 will be used in Stofnfiskur breeding work in the future,

where the CPLS were supplied with the additional responses weight of fillets, ungutted

weight and intestines weight.
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Discussion

6.1 Discussion.

In this thesis three datasets were of interest. Several summary statistics were carried out

to fully understand the behavior of the dataset and the variation structure. The variation

structure was explored among the explanatory matrix and the covariation between the

components and the explanatory matrix before modeling were carried out. Several

prediction methods were tried on the data and their quality evaluated using several

validation methods that are capable of measuring prediction performances. Hopefully,

close to an optimal model was developed and compared to existing model which will be

used for predicting fat in salmon fillet of the salmon in the breeding work of Stofnfiskur

in Iceland.

6.1.1 General comments about the data

In dataset 1 the weight interval of the fish was rather small. Choosing fish from such

a small interval will not be as in the real world where the fat measuring instrument is

designed to be used in the future. Weight of a fish is normally distributed. In a fish

farm the whole tank of fish is slaughtered when the mean weight is around 4 kg. Among

that group will be fish smaller and larger than 2 − 5 kg. Therefore the RMSEP value

tends to be underestimated when it is reported as 1.96. The model developed in this

paper [11] was applied on the measures obtained on the fish in dataset 2. The weight

of the fish in dataset 2 is ranging from 1 − 8 kg which is more realistic. The original

76
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idea when collecting dataset 2 was to challenge the instruments available because most

of the published papers obtaining fat values from fish on a small weight interval which

is not realistic. The RMSEP between the predicted fat values from dataset 2 using the

model from the paper [11] and the chemical values obtained on the fish in dataset 2 was

2.5. Calculations were not carried out within this thesis, but were done when deciding

which instrument Stofnfiskur should invest.

In dataset 1 both fillets of 15 fishes were used. Correlation of fat in fillets within the

same fish is considerably high when breeding work is done. In previous fat measurement

methods only fat value from one fillet of each fish is reported. Measure can almost be

introduced as a repeated record for that fish. Then 75 plugs should only be needed to

report the prediction quality. This correlation between fillets should be calculated to

estimate leak of information between fillets.

Because of correlation between plugs and the small weight interval of the fish the score

plot in the principle component analysis has a nice look regarding grouping of plug

location. It has more grouping compared to the other datasets.

6.1.2 Broken observation

In this thesis outlier detection has not been discussed. There exist several methods

to detect outliers. No outlier detection calculations were done. The data reported as

broken was removed because of unrealistic values. The LF-NMR scanner sometimes

reported zero fat or negative fat. When measuring with LF-NMR scanner the sample is

not destroyed after measuring so measuring the sample many times should give similar

results. When minus or zero value was obtained the calibration sample, a fish oil was

measured. Result from the fish oil was always 100% fat. Then the broken sample was

measured again and still a negative or zero value was obtained.

After collecting the spectra values from the spectral images a model was fitted and new

fat values were predicted using cross validation for all datasets. After prediction a plot

of y versus ŷ was obtained. Values which were extremely far from the straight line were

removed. Reason for they were far from a straight line is the wrong fat values or the

spectra values has a high probability of being wrong. Either the spectral image was

broken or the spectral values were obtained on wrong place on the image.
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6.1.3 Cross validation methods

Three cross validation methods were tried on all datasets. A classical leave one out

cross validation, a K-fold cross validation were the batches were defined by fish and the

third cross validation method was to use leave one plug out. Then all plugs from same

location of each fish were put into each batch.

K-fold cross validation where the batches were defined by plug did not perform well.

The ŷ were unstable. It can be seen from the box plot of fat values in all the datasets

the average fat in each location vary. When a plug with high fat is removed in cross

validation, leaner plugs are used to predict it. Same applies for lean plugs. After seeing

how badly a K-fold cross validation performed using batches defined by plug the K-fold

cross validation were considerated irrelevant and were not used in further analysis.

The leave one out cross validation was then used. The problem of using the leave one

out cross validation is information of other plugs originated from the same fish as the

removed plug. The information leaks from the remaining plugs and prediction of the

removed plug will be too good compared to what will be observed in the real world.

RMSEP will underestimate the prediction error.

The third cross validation method used was K-fold cross validation where each batch

contains all plugs from each fish. Number of batches were the same as number of fish

in the dataset and number of samples within a batch were the same as number of plug

from each fillet. When predicting values of the removed batch in the cross validation,

no information were in the dataset about the removed fillet which is more like the real

world than the leave one out cross validation when the prediction model will be exposed

to salmon fillet in the future.

In the paper [12] where the methodology of how to create a prediction model is de-

scribed, the cross validation methods used is the leave one out because the K-fold cross

validation where each batch contained fish did perform equally when using PLSR. In

this thesis K-fold validation where batches contained plugs from each fish performed

similarly as the leave one out cross validation for the PCR and PLSR. Using CPLSR, a

significant difference between RMSEP values obtained were observed. The leave one out

cross validation for CPLSR were lower in most cases and did recommend to use other

additional responses to obtain lowest prediction error than using K-fold cross validation
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where batches were defined by plugs of each fish. To decide to use the leave one out

cross validation in stead of K-fold cross validation is a dangerous conclusion and would

underestimate the prediction error.

Conclusion of this paper is that using K-fold cross validation where each segment con-

tains all plugs from one fish should be used when prediction model is developed and

evaluated.

6.1.4 Calibration and test sets

To estimate the quality of the prediction model the dataset was divided into calibration

and test set. That is a good method to see how our prediction model will perform in the

future when it meets new explanatory variables where the model was created without

information about this future observation.

After revealing the high correlation among the first components and y, and the scree

plot of all the datasets only first five components were considerated when looking at the

calibration and test set.

Dividing the data irrespective of fish, had lower RMSEP values than dividing the data

by fish. Dividing by fish is more realistic because that situation is more like the real

world. The model will get exposed to whole fillets, not only some plugs out of the fillet.

Information is then leaking between the test and calibration set. Therefore dividing the

data irrespective of fish underestimates the prediction error.

Using only 25% of the fish or the dataset irrespective of fish obtains unstable ˆβcal

resulting in unstable ŷ values. The RMSEP values change much in most cases when

components were retained in all the datasets. Quality of having small calibration set, the

test set gets big which results in good estimate of the model performance. Estimating

prediction performance of very unstable ˆβcal retained from a small calibration set reveals

the upper bound of the prediction quality.

Having the first 50% of the data or the fish results in more stable estimate of ˆβcal than

only using 25% of the data or the fish for calibration. The test set gets smaller resulting

in poorer estimate of the prediction quality of the model when it will get exposed to

new explanatory matrix in the future. Using 50% of the data gave more stable estimate

of ˆβcal in all the datasets in this thesis.
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When using 75% of the data the most stable ˆβcal were obtained. Most of the data is

then used to develop the model and very little data is left to estimate the model quality.

Using the first 25− 75% of the data or fillets as a calibration set gives more stable ˆβcal

than using the first 25−75% of the data or fish as a test set. To understand why, a larger

dataset should be recorded. It could also be evaluated by letting the division between

prediction and test set vary more in order to make conclusion of why the robustness of

ˆβcal is so dependent which 25− 75% of the dataset are used for calibration.

When only 25% of the data was used, the RMSEP was unstable and poor because 25%

of the data are too few observations. Then each observation has a huge effect on the

RMSEP value. When 50% of the data was used for calibration similar for of the RMSEP

curve appeared as when CV was used indicating good quality. In dataset 1 when 75%

of the data was used for calibration the new RMSEP value obtained when the ˆβcal was

introduced to the test set, the RMSEP value obtained were rather far from where the

ˆβcal was selected. It indicates that last 25% of the data are quite different from the first

75% of the data.

To use the idea of creating test and calibration set the aim is to create same situation

as when measuring fillets in the future. Therefore test and calibration sets were tried

where 25− 75% first fish in the dataset was used for calibration of the model.

Highest RMSEP value of all datasets was close to 2.6 compared to 3.5 when the division

on the data was by fish. In dataset 1 a 25% of fish are only four fishes which reveals

why the model is unstable when it meets calibration set containing other eleven fishes.

When first 25 − 75% of the fish were used for calibration higher values were obtained,

indicating that the last part of the dataset contains fish that is different from the first

part of the fish in dataset 1.

In all situations quality of the prediction model varies a lot when devision of the data to

test and calibration is done indicating that the prediction error obtained by usual cross

validation is underestimating the prediction error.
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6.1.5 Prediction methods

Three methods where tried to estimate β̂. The first method was to use Principle Com-

ponent Regression. Then Components are defined by the highest variation within the

explanatory matrix. Variation of y is not taken into account which can be bad when

the correlation to the response is of main interest. In figure 5.1 a zero component model

is shown to ensure that using PCR to estimate β̂ instead of reporting the average will

perform better. The zero component model obtained higher prediction error than other

models. In figure 5.2 a development of RMSEP is revealed when the zero component

model is excluded. In dataset 1 the RMSEP reduces when components are added to the

model. In dataset 2 there is a minor change in value of RMSEP when components are

retained. Change of RMSEP when components are added in dataset 3 is almost none.

Possible reason for flat RMSEP curve in dataset 2 and 3 is how much of variation is

captured by the first component. By adding components to the model not much more

is captured of the variation of the explanatory matrix.

To include the covariation between X and y, a PLSR is used to estimate β̂. Then

components are defined by the highest covariation between y and X. A PLSR is shown

in figure 5.3 for all datasets. Appearance of the RMSEP curve looks similar as for PCR

just with lower values because of better estimation of β̂. The difference can be seen

clearer between PLSR and PCR figure 5.4 where cross K-fold validation with segments

defined by plug location is excluded because of its poor ability to estimate the prediction

error. PLSR performs better showing lower RMSEP value for all number of components.

Difference between PLSR and PCR is not high in dataset 1 at component 2, in dataset

2 when component 1 and component 1 and 2 are retained. In dataset 3 there is small

difference between PLSR and PCR when 1 component is retained.

In order to know more about the prediction ability of the models, a plot of y against

ŷ was made for every datasets least square. Line was fitted to the plotted values. If

this fitted line has the same slope and offset as a 1 : 1 line, the model would predict

the observations perfectly without bias. All the models have a slope of the fitted line

0.9 meaning that if predicted value is high it will be lower than the true y and if the

predicted value is low it will probably be higher than the true y. If it would be possible

to observe fat value as 0 from the spectral image the model would predict fat value

of 1.4%. If the slope would be higher than 1 and the intercept higher than 0 a high



Chapter 6. Discussion 82

predicted value would be higher than true y and low predicted value would be lower than

true y. Even though the RMSEP is different between the datasets, the value of R2
pred

is the same for all of them. In R2
pred the effect of variation in RMSEP value has been

terminated by dividing the standard deviation of the difference between ŷ and y. Then

assessment has been done on how well the model will predict, not exactly the value of

the average distance between y and ŷ values.

6.1.6 Including additional responses

To improve the estimation of β̂ the Canonical Partial Least Squares were applied using

additional data. The CPLS seems to reach the lower bound of the RMSEP obtained

by PLSR using fewer components. Then complexity is decreased which is favorable.A

model developed by PLSR seems to need more components than the CPLS model which

creates more sources of error. The additional responses supplied tends to explain the

variables which are contained in the residual in the PLSR model, resulting in that not

as many components are needed to span the variation between y and X.

In this thesis a function in R was made that tried all combinations of additional responses

in order to find if there was something connecting the additional responses which ob-

tained the lowest RMSEP values. What connected the additional responses was that

they were all giving more information about the plug. Main responses obtaining the

lowest RMSEP were moisture in the plug, weight of the plug and location of the plug.

In order to try methods using additional responses it would be better to have more

measures included in dataset 1 to see if similar additional responses are having effect

on the prediction obtained. A study of finding the optimal additional response could be

carried out. In this thesis number of 13 additional responses are stored in dataset 2 and 8

additional responses for dataset 3. Result from this thesis gives idea of which additional

responses obtained. In this thesis additional responses which gave more information

about the plug are removed.

In dataset 1 the only additional data was location of the plug. By using the location

of the plug the RMSEP value obtained using one component was the same as when

PLSR uses four components. In figure 5.13 it can be seen that the cross validation

method has more effect in CPLSR that in PLSR. The cross validation by line in CPLSR
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is underestimating the prediction error. By using CPLSR the model published in the

paper [11] has been improved. The RMSEP value reported was 1.96 which can be

lowered using CPLSR to 1.76.

In dataset 2 existed more additional variables. Best combination of additional variables

was found by a function which selected the combination having the lowest prediction

error. Using 6 additional variables gave the lowest prediction error, only using one

component model. Traditional PLSR reached similar values using 4 component model.

The CPLSR method is more sensitive for cross validation method than PLSR and PCR.

Reason for that could be that the additional responses introduce higher level of leaking

between batches of data. The leave one out cross validation gave lower prediction error

in all cases. The function that found the additional response which resulted in the

lowest prediction error, gave different additional responses depending on cross validation

method. The use of K-fold cross validation is considered as the optimal cross validation

method in this thesis. Then leaking between batches is removed, which seems to has a

higher magnitude when the additional responses are present.

For Dataset 3 existed 8 additional responses for the fish. When K-fold cross validation

where segments were defined by fillet, the lowest RMSEP value were obtained in one

component model using three additional responses. Traditional PLSR did not show as

good result as the CPLSR method for the first five components.

The additional responses which improved the prediction model were information about

the location of the plug, moisture in the plug and thickness of the plug.

If there had been time, a calculation of CPLSR should also had been done on the test

and calibration set to investigate the behavior of β̂ when using CPLSR.

6.2 Main Results

Conclusion from this thesis is that when modeling pixel values in a NIR image by

collecting plugs from the fillet, measure its fat value and retaining corresponding spectral

values is to use CPLSR when developing the model. CPLSR demands fewer components

than PLSR and PCR. K-fold cross validation should be used to estimate the prediction
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quality in stead of the leave one out cross validation. The data used should be divided

up to test and calibration set to know how much variation in β̂ may be expected.

The model developed for the NIR scanner in Iceland, developed by using CPLSR, puts

weights on the regions where information of fat is contained in the explanatory matrix.

The used additional responses were weight of the fillets, ungutted weight and intestines

weight.

The RMSEP value when using the β̂ developed by PLSR on dataset 1 on the explanatory

variables of dataset 3 obtained was 2.023. By using the model obtained by CPLS using

dataset 3 the RMSEP value was 1.858. When the prediction of the old model was plotted

against the true value of fat in dataset 3 a offset of a fitted line with intercept 2.59 and

slope 0.8 meaning that low predictions are to high and high predicted values are to low

in the real world. The slope was 0.9 and the offset was 1.24 of using the new model on

the data obtained from the QMonitor in Iceland.

It was found, when developing CPLSR model as many additional variables should be

collected as possible. There was not much consistence between datasets when looking

at the cross validation methods. For a QMonitor with same configurations as the one in

Iceland the additional responses weight of fillets, ungutted weight and intestines weight

should be used to improve the prediction model.

6.3 Further studies

Variation of fat in fillet is rather high. Plugs for modeling are picked out of the fillet by

a system that the person who makes the model thinks capture the variation of fat the

best. In this paper two systems are tried. To pick six plugs or pick five plugs on different

locations but over all on similar places. It is not knowng if more or less plugs are needed

to improve or obtain same prediction quality. There is also no knowledge of where to

take the plugs. One solution would be to obtain a chemical value for the whole fillet.

Then divide the fillet once, and by variable selection find which part of the fillet is more

representative. When that is found, the fillet is divided again and by variable selection

selects the most representative region on the fillet. This is repeated until the fillet has

been divided such that each grid contains only one pixel. In the beginning of this thesis,

this was the topic to solve, with the aim to publish the solution. The problem which
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needes to be solved is how to divide the fillet into graph. The division has to be the

same for every size and shape of the fillet. The goal is to find where to pick the plugs

and optimum number of plugs needed to create a good prediction model.

There exist a lot of programs around, that have been made for the QMonitor machine.

Main purpose of these programs is to capture data and analyses. There is not much

programming needed to combine those programs to similar programs I’m using in this

thesis.

Understanding why Canonical Partial Least squares tends to use fewer components

to retain same prediction quality as the PLSR reports using more components. The

datasets presented in this thesis would be useful to try, because they have different

background data included. To find out which background data would be ideal to record

when making a model for QMonitor and why this data is better than other data.

To somehow estimate the effect of quality of the measures would be nice to quantify.

There are many sources of error when doing the measures on the samples, and when

the data is collected from the spectral images. The fourth dataset was included in this

thesis to get a better knowledge about which observations were broken by nature, and

which were broken by wrong collection of the spectral values. The dataset was excluded

because if kept in too much data would than be included in this thesis. The data was

also predicting very poorly. One reason was because the program used to collect the

spectral image is quite new and containins some bugs.

To fix up the programs made in this thesis would be nice. Because of lack of time they

could not been made more publishable. They should be able to cope whith any kind of

segmentation and be usable in more analysis than only in analysis of salmon fillets.
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R-code

# Set the working d i r e c t o r y to where the Excel Sheets are l o ca t ed .

setwd (”C: / Users / o l a f u r /Documents/ OliMaster ”)

# The packages used to get a c e s s to :

# R. oo The func t i on trim which i s done on the e x c e l data

# RODBC Used to import Excel s h e e t s conta in ing data

# p l s Gives a c e s s to the CPLSR func t i on .

# Packages used to obta in n i c e p l o t s are u t i l s , ggp lot2 and geor

# Before us ing the packages they need to be i n s t a l l e d by the command

# i n s t a l l . packages ( ’ packages name ’ )

l i b r a r y (R. oo )

l i b r a r y (RODBC)

l i b r a r y ( p l s )

l i b r a r y ( u t i l s )

l i b r a r y ( ggp lot2 )

l i b r a r y ( geoR )

# The s c r i p t e s used to read in the data from the da ta s e t s . The data was

# s t o r r e d in Excel s h e e t s conta in ing the spec t ra value and a l l r e sponse s .

# In a l l the read ing s c r i p t s the pat in setwd ( ) have to be s e t to the

# f o l d e r where the f i l e s are l o ca t ed . After read ing in the data the

# l o c a t i o n o f the p lugs i s s e t as f a c t o r s Then reduced da ta s e t s

# are c rea ted f o r a l l da ta se t where broken obs e rva t i on s are removed .

#−−−−−−−−−−−−−−−−−−−−−−−−−−− Plug 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

setwd (”C: / Users / o l a f u r /Documents/ o l iMas te r /Plug1 ”)

channel <− odbcConnectExcel (” plug1 . x l s ”)

86
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plug1 <− sqlQuery ( channel , ” s e l e c t ∗ from [ plug1$ ] ” )

c l o s e ( channel )

rm( channel )

row . names ( plug1 )<−plug1$name

plug1<−data . frame (NIR=I ( as . matrix ( plug1 [ , 2 5 : 3 9 ] ) ) , Fat=plug1$Fat , PlugPos=f a c t o r (

p lug1$Pos i t i on ) )

plug1$Pos it<− I ( model . matrix (˜y−1, data . frame ( y=f a c t o r ( plug1$PlugPos ) ) ) )

plug1$PlugPos<−NULL

###### Removing broken data from datase t 1 .

rem<−c (”34−L−NE”,”45−L−NE”,”39−L−ND”,”44−L−ND”,”34−L−NC”)

which . rem<−which ( ! i s . na ( match ( row . names ( plug1 ) , rem) ) )

new . plug1<−plug1 [−which . rem , ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−− Plug 2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

setwd (”C: / Users / o l a f u r /Documents/ o l iMas te r /Plug2 ”)

channel2 <− odbcConnectExcel (” plug2 . x l s ”)

plug2 <− sqlQuery ( channel2 , ” s e l e c t ∗ from [ plug2Best$ ] ” )

c l o s e ( channel2 )

rm( channel2 )

row . names ( plug2 )<−plug2$name

plug2<−data . frame (NIR=I ( as . matrix ( plug2 [ , 5 : 1 9 ] ) ) , Fat=plug2$fat , PlugPos=f a c t o r (

plug2$plug ) ,UngW=plug2$ungw ,GutW=plug2$guttW , Length=plug2$length , PlugThick=

plug2$plugTh , PlugW=plug2$plugW , PlugMoust=plug2$plugMo , TrueF=plug2$TrueF ,

Idoxan=plug2$Idox , Asta=plug2$Asta , Cant=plug2$Cant , Ph=plug2$Ph ,Temp=plug2$Temp

)

plug2$Pos it<− I ( model . matrix (˜y−1, data . frame ( y=f a c t o r ( plug2$PlugPos ) ) ) )

plug2$PlugPos<−NULL

###### Removing broken data from datase t 2

rem<−c

(”85−2” ,”79−3” ,”77−3” ,”597−3” ,”87−3” ,”593−3” ,”122−5” ,”81−5” ,”593−6” ,”599−3”)

which . rem<−which ( ! i s . na ( match ( row . names ( plug2 ) , rem) ) )

new . plug2<−plug2 [−which . rem , ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−− Plug 3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

setwd (”C: / Users / o l a f u r /Documents/ o l iMas te r /Plug3 ”)

channel3 <− odbcConnectExcel (” plug3 . x l s ”)

plug3 <− sqlQuery ( channel3 , ” s e l e c t ∗ from [ Plug3AllCorr$ ] ” )

c l o s e ( channel3 )

rm( channel3 )

row . names ( plug3 )<−plug3$name

plug3<−data . frame (NIR=I ( as . matrix ( plug3 [ , 7 : 2 1 ] ) ) , Fat=plug3$Fat , PlugPos=f a c t o r (

plug3$Plug ) , FillW=plug3$FillW ,UngW=plug3$UngW , Length=plug3$Length , Sex=

plug3$Sex , IntW=plug3$Inte s t , PlugW=plug3$PlugW , PlugMo=plug3$PlugMo )

plug3$Pos it<− I ( model . matrix (˜y−1, data . frame ( y=f a c t o r ( plug3$PlugPos ) ) ) )



Appendix A. R-code 88

plug3$PlugPos<−NULL

setwd (”C: / Users / o l a f u r /Documents/ OliMaster ”)

###### Removing broken data from datase t 3

rem<−c

(”1726−3” ,”1838−5” ,”1832−5” ,”1980−5” ,”1784−5” ,”1784−4” ,”1784−3” ,”1828−5” ,”1663−4” ,”1814−4” ,”1860−5” ,”1860−4” ,”1685−4”)

which . rem<−which ( ! i s . na ( match ( row . names ( plug3 ) , rem) ) )

new . plug3<−plug3 [−which . rem , ]

#−−−−−− Al l datase t ready f o r a n a l y s i s .

rm( rem)

rm( which . rem )

#−−−−−−−−−−− F i r s t a n a l y s i s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Function which takes Y and X data .

# Ca l cu l a t e s the e i g e n v a l u e s o f X’X and i t s q u a l i t i e s and

# the covar iance between Pc and Y. Then the covar iance and

# c o r r e l a t i o n between comlumns o f X and y

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Example : F i r s tAna ly s e s (new . plug1$NIR , new . plug1$Fat )

F i r s tAna lyses<−f unc t i on (X,Y) {
res<− l i s t ( )

r a t i o<−matrix (0 , nrow=dim (X) [ 2 ] , nco l =6,dimnames<− l i s t ( c ( ) , c (” Eigenvalue ” ,”

Ratio o f var i ance ” ,” Total r a t i o ” ,” Covariance o f Pc and Y” ,” Cor r e l a t i on

o f X and Y” ,” Covariance between X and Y”) ) , byrow=T)

# F i r s t do s c a l i n g

CentX<−s c a l e (X, s c a l e=F)

CentY<−s c a l e (Y, s c a l e=F)

# Cor r e l a t i on o f Y and X.

s<−t (CentX)%∗%CentY

# Cor r e l a t i on o f p r i n c i p l e component and Y

E<−e i gen ( t (CentX)%∗%CentX)

f o r ( i in 1 : dim (X) [ 2 ] ) {
r a t i o [ i ,1]<−E$value [ i ]

r a t i o [ i ,2]<−E$value [ i ] / sum( E$value )

r a t i o [ i ,3]<−sum( E$value [ 1 : i ] ) /sum( E$value )

r a t i o [ i ,4]<− t ( E$vector [ , i ] )%∗%s

}
r a t i o [ ,5]<− cor (CentX , CentY)

r a t i o [ ,6]<− cov (CentX , CentY)

res<−r a t i o

re turn ( r e s )

}
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#−−−−−−−−−− P r i n c i p a l components r e g r e s s i o n −−−−−−−−−−−−−−−−−
# Function which takes Y and X data and r e t r i e v e s Scores ,

# load ings , b hat and y hat . Also i t r e t r i v e s the va lue s

# used in the s c r e e p l o t . ncom i s number o f component p r e f e r e d .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Example Pc( plug2$Fat , plug2$NIR , ncom=5)

Pc<−f unc t i on (Y,X, ncom) {
res<− l i s t ( )

y<−as . matrix (Y)

x<−X

score s<−matrix ( nrow=dim ( y ) [ 1 ] , nco l=ncom)

y hat<−matrix ( nrow=dim ( y ) [ 1 ] , nco l=ncom)

b hat<−matrix ( nrow=dim ( x ) [ 2 ] , nco l=ncom)

in t e r<−c ( )

rmsep<−c ( )

sc ree<−c ( )

f o r ( b in 1 : ncom) {
P<−e i gen ( t ( s c a l e (x , s c a l e=F) )%∗%s c a l e (x , s c a l e=F) ) $vec to r s [ , 1 : b , drop

=FALSE]

s c r e e [ b]<−e i gen ( t ( s c a l e (x , s c a l e=F) )%∗%s c a l e (x , s c a l e=F) ) $va lues [ b ] /

sum( e igen ( t ( s c a l e (x , s c a l e=F) )%∗%s c a l e (x , s c a l e=F) ) $va lues )

s co re s<−s c a l e (x , s c a l e=F)%∗%P[ , 1 : b ]

b hat [ , b]<−P%∗%s o l v e ( t (P)%∗%t ( s c a l e (x , s c a l e=F) )%∗%s c a l e (x , s c a l e=F)

%∗%P)%∗%t (P)%∗%t ( s c a l e (x , s c a l e=F) )%∗%(y−mean( y ) )

l<−1

f o r ( k in 1 : l ength ( y ) ) {
y hat [ k , b]<−mean( y )+t ( b hat [ , b ] ) %∗%(x [ l , ]− colMeans ( x ) )

l <− l+1

}
}

r e s$ l od ing<−P

r e s $ s c o r e s <−s c o r e s

r e s $ s c r e e <−s c r e e

r e s $ i n t e r <−mean( y )

res$beta<−b hat

res$y hat<−y hat

re turn ( r e s )

}

#−−−−−−−−−−−P a r t i a l Least Square Regres s ion −−−−−−−−−−−−−−
# Function which takes Y and X data and c a l c u l a t e the

# par t s o f PLS us ing the which i s de s c r ibed in the

# chapter ” P a r t i a l Least Square Regres ion a lgor i tm ”

# ncom i s number o f component p r e f e r e d .

# Then method i s what i s going to be
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Example Pls ( plug2$Fat , plug2$NIR , ncom=5)

Pls<−f unc t i on (Y,X, ncom) {
res<− l i s t ( )

y<−as . matrix (Y)

x<−X

y hat<−matrix ( nrow=dim ( y ) [ 1 ] , nco l=ncom)

b hat<−matrix ( nrow=dim ( x ) [ 2 ] , nco l=ncom)

in t e r<−c ( )

rmsep<−c ( )

y i<−y

x i<−x

out y<−y

out y2<−y−mean( y )

out x<−x

out x2<−s c a l e (x , s c a l e=F)

P<−W<−matrix ( nrow=dim ( out x ) [ 2 ] , nco l=ncom)

T<−matrix ( nrow=dim ( out x2 ) [ 1 ] , nco l=ncom)

Qa<−c ( )

f o r ( b in 1 : ncom) {
w a<−t ( out x2 )%∗%out y2

cc<−c (1/ s q r t ( t ( out y2 )%∗%out x2%∗%t ( out x2 )%∗%out y2 ) )

w a<−cc ∗w a

W[ , b]<−w a

t a<−out x2%∗%w a

T[ , b]<− t a

p a<−t ( out x2 )%∗%t a %∗%(1/( t ( t a )%∗%t a ) )

P[ , b]<−p a

q a<−t ( out y2 )%∗%t a %∗%(1/( t ( t a )%∗%t a ) )

Qa [ b]<−q a

out x2<−out x2−t a%∗%t ( p a )

out y2<−out y2−t a%∗%q a

b hat [ , b]<−W[ , 1 : b , drop=FALSE]%∗%s o l v e ( t (P [ , 1 : b , drop=FALSE] )%∗%W

[ , 1 : b , drop=FALSE] )%∗%Qa [ 1 : b ]

l<−1

f o r ( k in 1 : l ength ( y ) ) {
y hat [ k , b]<−mean( out y )+t ( b hat [ , b ] ) %∗%(x i [ l , ]− colMeans (

out x ) )

i n t e r [ k]<−mean( out y )

l<−l+1

}
}

re s$y hat<−y hat

res$ymean<−mean( y )

res$xmean<−colMeans ( x )

res$b hat<−b hat
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res$LoadWei<−W
res$Score s<−T

res$xLoad<−P

res$yLoad<−Qa

return ( r e s )

}

#−− Cross v a l i d a t i o n us ing P r i n c i p l e componet Regres s ion −−−−−−−−−−−−−−−−−−−
# Function which takes Y and X data and c a l c u l a t e s rmsep

# between y and hat ( y ) where hat ( y ) was c a l c u l a t e d us ing

# leave one out CV leave one segment out . Parameters

# used are :

# method : Takes the va lue s l i n e f o r l eave on out CV,

# f i s h us ing segmetns de f ined by f i s h and

# plug us ing segments de f ined by plug .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PcCv<−f unc t i on (Y,X, ncom , method=” l i n e ”) {
res<− l i s t ( )

y<−as . matrix (Y)

x<−X

y hat<−matrix ( nrow=dim ( y ) [ 1 ] , nco l=ncom)

in t e r<−c ( )

rmsep<−c ( )

s co re s<−matrix ( nrow=dim ( y ) [ 1 ] , nco l=ncom)

b hat<−matrix ( nrow=dim ( x ) [ 2 ] , nco l=ncom)

scree<−c ( )

i f ( method==”l i n e ”) {
nn<−dim ( y ) [ 1 ]

numbers<−1:nn

}
i f ( method==”f i s h ”) {

numbers<−match ( gsub (”− .∗” ,”” , rownames (X) ) , unique ( gsub (”− .∗” ,”” ,

rownames (X) ) ) )

f i s h <−unique ( trim ( gsub (”− .∗” ,”” , rownames (X) ) ) )

nn<−l ength ( f i s h )

}
i f ( method==”plug ”) {

numbers<−match ( tr im ( gsub (”.∗ −” ,”” , rownames (X) ) ) , unique ( trim ( gsub

(”.∗ −” ,”” , rownames (X) ) ) ) )

f i s h <−unique ( trim ( gsub (”.∗ −” ,”” , rownames (X) ) ) )

nn<−l ength ( f i s h )

}
f o r ( i in 1 : nn) {

l i n e <−numbers == i

y i<−y [ l i n e , ]

x i<−x [ l i n e , , drop=FALSE]

out y<−y [ ! l i n e , ]
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out y2<−y [ ! l i n e ,]−mean( y [ ! l i n e , ] )

out x<−x [ ! l i n e , ]

out x2<−s c a l e ( x [ ! l i n e , ] , s c a l e=F)

l i n e s <−which ( l i n e )

f o r ( b in 1 : ncom) {
P<−e i gen ( t ( out x2 )%∗%out x2 ) $vec to r s [ , 1 : b , drop=FALSE]

s c r e e [ b]<−e i gen ( t ( out x2 )%∗%out x2 ) $va lues [ b ] / sum( e igen (

t ( out x2 )%∗%out x2 ) $va lues )

s co re s<−s c a l e (x , s c a l e=F)%∗%P[ , 1 : b ]

b hat [ , b]<−P%∗%s o l v e ( t (P)%∗%t ( out x2 )%∗%out x2%∗%P)%∗%t (

P)%∗%t ( out x2 )%∗%out y2

l<−1

f o r ( k in l i n e s ) {
y hat [ k , b]<−mean( out y )+t ( b hat [ , b ] ) %∗%(x i [ l , ]− colMeans

( out x ) )

i n t e r [ k]<−mean( out y )

l <− l+1

}
}

}
re s$y hat<−y hat

res$b hat<−b hat

r e s$ l od ing<−P

res$varRat io<−s c r e e

r e s $ s c o r e s <−s c o r e s

r e s $ i n t e r <−s q r t (mean ( ( y−i n t e r ) ˆ2) )

res$rmsep <−s q r t ( apply ( ( matrix (y , dim (X) [ 1 ] , ncom)−y hat ) ˆ2 ,2 ,mean) )

res$Rsqrt <−1−(apply ( ( matrix (y , dim(X) [ 1 ] , ncom)−y hat ) ˆ2 ,2 , sum) / apply ( (

matrix (y , dim (X) [ 1 ] , ncom)−mean( y ) ) ˆ2 ,2 , sum) )

re turn ( r e s )

}

#−−Cross v a l i d a t i o n us ing P a r t i a l Least Square Regres s ion −−−−−
# Function which takes Y and X data and c a l c u l a t e s rmsep

# between y and hat ( y ) where hat ( y ) was c a l c u l a t e d

# us ing l eave one out CV leave one segment out . Parameters

# used are :

# method : Takes the va lue s l i n e f o r l e ave on out

# CV, f i s h us ing segmetns de f ined by

# f i s h and plug us ing segments de f ined by plug .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Example : PlsCv (new . plug2$Fat , new . plug2$NIR , ncom=5,method=” f i s h ”)

PlsCv<−f unc t i on (Y,X, ncom , method=”no ”) {
res<− l i s t ( )

y<−as . matrix (Y)

x<−X
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i f ( method==”no ”) {
f o r ( i in 1 : ncom) {

Pc<−e i gen ( t ( s c a l e (x , s c a l e=F) )%∗%s c a l e (x , s c a l e=F) ) $va lues

res$X<−c ( res$X , sum(Pc [ 1 : i ] ) /sum(Pc) )

}
} e l s e {
y hat<−matrix ( nrow=dim ( y ) [ 1 ] , nco l=ncom)

b hat<−matrix ( nrow=dim ( x ) [ 2 ] , nco l=ncom)

in t e r<−c ( )

rmsep<−c ( )

i f ( method==”l i n e ”) {
nn<−dim ( y ) [ 1 ]

numbers<−1:nn

}
i f ( method==”f i s h ”) {

numbers<−match ( gsub (”− .∗” ,”” , rownames (X) ) , unique ( gsub (”− .∗” ,”” ,

rownames (X) ) ) )

f i s h <−unique ( trim ( gsub (”− .∗” ,”” , rownames (X) ) ) )

nn<−l ength ( f i s h )

}
i f ( method==”plug ”) {

numbers<−match ( tr im ( gsub (”.∗ −” ,”” , rownames (X) ) ) , unique ( trim ( gsub

(”.∗ −” ,”” , rownames (X) ) ) ) )

f i s h <−unique ( trim ( gsub (”.∗ −” ,”” , rownames (X) ) ) )

nn<−l ength ( f i s h )

}
f o r ( i in 1 : nn) {

l i n e <−numbers == i

y i<−y [ l i n e , ]

x i<−x [ l i n e , , drop=FALSE]

out y<−y [ ! l i n e , ]

out y2<−y [ ! l i n e ,]−mean( y [ ! l i n e , ] )

out x<−x [ ! l i n e , ]

out x2<−s c a l e ( x [ ! l i n e , ] , s c a l e=F)

P<−W<−matrix ( nrow=dim ( out x ) [ 2 ] , nco l=ncom)

T<−matrix ( nrow=dim ( out x2 ) [ 1 ] , nco l=ncom)

Qa<−c ( )

l i n e s <−which ( l i n e )

f o r ( b in 1 : ncom) {
w a<−t ( out x2 )%∗%out y2

cc<−c (1/ s q r t ( t ( out y2 )%∗%out x2%∗%t ( out x2 )%∗%out y2 ) )

w a<−cc ∗w a

W[ , b]<−w a

t a<−out x2%∗%w a

T[ , b]<− t a

p a<−t ( out x2 )%∗%t a %∗%(1/( t ( t a )%∗%t a ) )

P[ , b]<−p a

q a<−t ( out y2 )%∗%t a %∗%(1/( t ( t a )%∗%t a ) )
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Qa[ b]<−q a

out x2<−out x2−t a%∗%t ( p a )

out y2<−out y2−t a%∗%q a

b hat [ , b]<−W[ , 1 : b , drop=FALSE]%∗%s o l v e ( t (P [ , 1 : b , drop=FALSE] )

%∗%W[ , 1 : b , drop=FALSE] )%∗%Qa [ 1 : b ]

l<−1

f o r ( k in l i n e s ) {
y hat [ k , b]<−mean( out y )+t ( b hat [ , b ] ) %∗%(x i [ l , ]− colMeans

( out x ) )

i n t e r [ k]<−mean( out y )

l<−l+1

}
}

}
re s$y hat<−y hat

res$ymean<−mean( y )

res$xmean<−colMeans ( x )

res$b hat<−b hat

res$LoadWei<−W
res$Score s<−T

res$xLoad<−P

res$yLoad<−Qa

r e s $ i n t e r <−s q r t (mean ( ( y−i n t e r ) ˆ2) )

res$rmsep <−s q r t ( apply ( ( matrix (y , dim (X) [ 1 ] , ncom)−y hat ) ˆ2 ,2 ,mean) )

res$Rsq<−1−(apply ( ( matrix (y , dim(X) [ 1 ] , ncom)−y hat ) ˆ2 ,2 , sum) / apply ( (

matrix (y , dim (X) [ 1 ] , ncom)−mean( y ) ) ˆ2 ,2 , sum) )

}
r e turn ( r e s )

}
#−−−−−−−−−−− Test Set Function −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Function which d iv id e the X and Y data in to two dataset s ,

# dev leopes Beta ca l and s e l e c t s the one with the lowest

# value and int roduce i t to X tes t and c a l c u l a t e

# y hat and r e t a i n the RMSEP. Parameters are :

# S i z e Values between 0 and 1 d e f i n i n g

# the r a t i o n between c a l and t e s t s e t

# va l Takes p l s and pc . S e l e c t s v a l i d a t i o n

# method on the c a l i b r a t i o n s e t .

# va l . cv . meth Takes l i n e , f i s h og plug . I s the

# CV method o f the c a l i b r a t i o n s e t .

# t e s t . meth Takes f i s h and part . Divide data

# by f i s h or i r r e s p e c t i v e o f content .

# Test Takes c a l and t e s t . De f ine s what the

# f i r s t part o f data i s used as .

# remo Takes F and T. I f va lue i s T va lue s

# o f y vs y hat i s p l o t t ed from the

# c a l i b r a t i o n s e t and s e l e c t e d va lues r e t a i n ed .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Appendix A. R-code 95

# Test (new . plug1$Fat , new . plug1$NIR , ncom=5, s i z e =0.5 , va l=”no ” , va l . cv . meth=” l i n e ” ,

t e s t . meth=”part ” , Test=”t e s t ” , remo=”F”)

Test<−f unc t i on (Y,X, ncom=”no ” , s i z e =0.5 , va l=”p l s ” , va l . cv . meth=” l i n e ” , t e s t . meth=”

f i s h ” , Test=”c a l ” , remo=”F”) {
res<− l i s t ( )

y hat<−c ( )

i f ( t e s t . meth==”part ”) {
c a l . l i n e s <−1:round ( l ength (Y) ∗ s i z e )

e l imin <−1:dim (X) [1]== c a l . l i n e s

}
i f ( t e s t . meth==”f i s h ”) {

numbers<−match ( gsub (”− .∗” ,”” , rownames (X) ) , unique ( gsub (”− .∗” ,”” , rownames

(X) ) ) )

f i s h <−1: l ength ( unique ( ( tr im ( gsub (”− .∗” ,”” , rownames (X) ) ) ) ) )

c a l . l i n e s <−round ( l ength ( f i s h ) ∗ s i z e )

e l imin<−numbers<=c a l . l i n e s

nn<−l ength ( f i s h )

}
i f ( t e s t . meth==”plug ”) {

numbers<−match ( tr im ( gsub (”.∗ −” ,”” , rownames (X) ) ) , unique ( trim ( gsub

(”.∗ −” ,”” , rownames (X) ) ) ) )

plugs <−1: l ength ( unique ( trim ( gsub (”.∗ −” ,”” , rownames (X) ) ) ) )

c a l . l i n e s <−round ( l ength ( p lugs ) ∗ s i z e )

e l imin<−numbers<=c a l . l i n e s

}
i f ( Test==”c a l ”) {

e l imin <−! e l im in

#browser ( )

}
i f (ncom==”no ”) {

ncom<−dim (X) [2]−1

}
i f ( va l==”pc ”) {

pc . res<−PcCv(Y[ e l im in ] ,X[ e l imin , ] , ncom , va l . cv . meth )

#browser ( )

i f ( remo==”T”) {
res$remov<−p l o t t (Y[ e l im in ] , pc . re s$y hat ,X[ e l imin , ] )

}
res$RsqCal<−cor ( pc . r e s$y hat [ , 1 ] ,Y[ e l im in ] ) ˆ2

re s$pc . r e s . ca l<−pc . res$rmsep

best<−which . min ( pc . res$rmsep )

E<−e igen ( t ( s c a l e (X[ e l imin , ] , s c a l e=F) )%∗%s c a l e (X[ e l imin , ] , s c a l e=F) )

$vec to r s [ , 1 : bes t ]
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b hat<−E%∗%s o l v e ( t (E)%∗%t ( s c a l e (X[ e l imin , ] , s c a l e=F) )%∗%s c a l e (X[ e l imin

, ] , s c a l e=F)%∗%E)%∗%t (E)%∗%t ( s c a l e (X[ e l imin , ] , s c a l e=F) )%∗%s c a l e (Y[ e l im in ] ,

s c a l e=F)

}
i f ( va l==”p l s ”) {

p l s . res<−PlsCv (Y[ e l im in ] ,X[ e l imin , ] , ncom , va l . cv . meth )

i f ( remo==”T”) {
res$remov<−p l o t t (Y[ e l im in ] , p l s . r e s$y hat ,X[ e l imin , ] )

}
r e s $ p l s . r e s . ca l<−p l s . res$rmsep

res$RsqCal<−cor ( p l s . r e s$y hat [ , 1 ] ,Y[ e l im in ] ) ˆ2

best<−which . min ( p l s . res$rmsep )

out x2<−s c a l e (X[ e l imin , ] , s c a l e=F)

out y2<−s c a l e (Y[ e l im in ] , s c a l e=F)

P<−W<−matrix ( nrow=dim (X) [ 2 ] , nco l=best )

T<−matrix ( nrow=length (Y[ e l im in ] ) , nco l=best )

Qa<−c ( )

f o r ( b in 1 : bes t ) {
w a<−t ( out x2 )%∗%out y2

W[ , b]<−w a

t a<−out x2%∗%w a

T[ , b]<− t a

p a<−t ( out x2 )%∗%t a %∗%(1/( t ( t a )%∗%t a ) )

P[ , b]<−p a

q a<−t ( out y2 )%∗%t a %∗%(1/( t ( t a )%∗%t a ) )

Qa [ b]<−q a

out x2<−out x2−t a%∗%t ( p a )

out y2<−out y2−t a%∗%q a

}
b hat<−W%∗%s o l v e ( t (P)%∗%W)%∗%Qa

}
f o r ( i in 1 : l ength (Y [ ! e l im in ] ) ) {

y hat [ i ]<−mean(Y[ e l im in ] )+t ( b hat )%∗%(X [ ! e l imin , ] [ i , ]− colMeans (X[

e l imin , ] ) )

}
re s$Test . beta . hat<−b hat

r e s$y hat . from . Test<−y hat

res$y f rom . Test . set<−Y [ ! e l im in ]

res$RsqTest<−cor ( y hat ,Y [ ! e l im in ] ) ˆ2

r e s $ c o e f f i c <−lm( y hat ˜Y [ ! e l im in ] )

r e s $ c o r r e l <−Fi r s tAna ly s e s (X[ e l imin , ] ,Y[ e l im in ] )

res$ncom . from . t e s t s e t <−best

res$new . rmsep<−s q r t (mean ( (Y [ ! e l im in ]−y hat ) ˆ2) )

r e s$e l im in<−e l im in

re turn ( r e s )

}
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#−−−−− S e l e c t i o n o f bes t a d d i t i o n a l r e sponse s in CPLSR−−−−−−−−−−−−−−−−−−−−−−−−−
# Warning : The func t i on needs long time f o r datase t with

# many a d d i t i o n a l r e sponse s ! !

#

# Function which c a l c u l a t e s RMSEP f o r a l l combinat ions

# o f a d d i t i o n a l r e sponse s and f i n d s the lowest rmsep

# f o r each nr o f a d d i t i n o a l r e sponse s . The best combinat ions

# are re ta ined , the Beta , RMSEP va lue s are r e t a i n ed

# from that combination . Parameters taken in :

# plug : The datase t used

# maxcom : Maximum nr o f components

# met : Values f i s h , l i n e , plug . De f ines what

# i s s t o r r e d in the CV segments .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Example CpplsOnAllComp (new . plug1 , maxcom=3,met=” l i n e ”)

CpplsOnAllComp<−f unc t i on ( plug , maxcom , met ) {
a l l . data<−names ( plug ) [ 3 : dim ( plug ) [ 2 ] ]

res<− l i s t ( )

Best . Rmsep<− l i s t ( )

Where . Best . Rmsep<− l i s t ( )

Best .Comb<− l i s t ( )

a l l . com<− l i s t ( )

Best . Coeff<− l i s t ( )

Al l . Coeff<− l i s t ( )

a l l . Rmsep<− l i s t ( )

f o r ( i in 1 : l ength ( a l l . data ) ) { a l l . com [ [ i ]]<−combn( names ( plug ) [ 3 : dim ( plug )

[ 2 ] ] , i ) }
f o r ( l in 1 : l ength ( a l l . com) ) {

a l l . Rmsep [ [ l ] ] <− matrix (0 , nrow=maxcom+1, nco l=dim( a l l . com [ [ l ] ] ) [ 2 ] )

f o r ( b in 1 : dim ( a l l . com [ [ l ] ] ) [ 2 ] ) {
plug$addY<−as . matrix ( plug [ a l l . com [ [ l ] ] [ , b ] ] )

modell<−cpp l s ( Fat˜NIR , data=plug , segments=segme ( plug , met ) ,ncom=

maxcom ,Y. add=addY , v a l i d a t i o n=”CV”)

a l l . Rmsep [ [ l ] ] [ , b]<−RMSEP( model l ) $va l [ 1 , 1 , ]

}
}
f o r ( i in 1 : l ength ( a l l . Rmsep) ) {

Best . Rmsep [ [ i ]]<−min( a l l . Rmsep [ [ i ] ] )

pos . o f . best<−which ( a l l . Rmsep [ [ i ]]==min ( a l l . Rmsep [ [ i ] ] ) , a r r . ind=

TRUE)

Where . Best . Rmsep [ [ i ]]<−pos . o f . bes t

Best .Comb [ [ i ]]<− a l l . com [ [ i ] ] [ , pos . o f . bes t [ , 2 ] ]

}
f o r ( i in 1 : l ength (Where . Best . Rmsep) ) {
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plug$addY2<−as . matrix ( plug [ Best .Comb [ [ i ] ] ] )

Best . Coe f f [ [ i ] ] <− matrix (0 , nrow=15, nco l =1)

Al l . Coe f f [ [ i ] ] <− matrix (0 , nrow=15, nco l=maxcom)

ExtraModel<−cpp l s ( Fat˜NIR , data=plug , segments=segme ( plug , met ) ,ncom=

maxcom ,Y. add=addY2 , v a l i d a t i o n=”CV”)

Best . Coe f f [ [ i ]]<−E xt r a Mo d e l $ c o e f f i c i e n t s [ , , Where . Best . Rmsep [ [ i

] ] [ 1 ] − 1 ]

Al l . Coe f f [ [ i ]]<−E xt r a Mo d e l $ c o e f f i c i e n t s

}

res$al lRmsep<−a l l . Rmsep

res$BestCoe f f<−Best . Coe f f

r e s$A l lCoe f f<−Al l . Coe f f

r e s $ a l l . comb<−a l l . com

res$Where . Best . Rmsep<−Where . Best . Rmsep

res$Best . Rmsep<−Best . Rmsep

res$Best .Comb<−Best .Comb

return ( r e s )

}

#−−− Segments d e f i n i t i o n func t i on used in CpplsOnAllComp funct ion−−−−−−−−−−−−−−−
# Function used in CpplsOnAllComp which d iv ided the data in to

# segments where segments are de f ined by f i s h ,

# l i n e and plug . Parameters are :

# plug : The datase t as a dataframe

# met : The segmentat ion d e f i n i t i o n .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

segme<−f unc t i on ( plug , met=” f i s h ”) {
segments<− l i s t ( )

i f ( met==”l i n e ”) {
nn<−dim( plug ) [ 1 ]

numbers<−1:nn

f o r ( i in 1 : nn ) {
segments [ [ i ]]<−which ( numbers==i )

}
}
i f ( met==”f i s h ”) {

numbers<−match ( gsub (”− .∗” ,”” , rownames ( plug ) ) , unique ( gsub (”− .∗” ,”” ,

rownames ( plug ) ) ) )

f i s h <−unique ( numbers )

sequ<−1: l ength ( numbers )

f o r ( i in 1 : l ength ( f i s h ) ) {
segments [ [ i ]]<−which ( numbers==i )

}
}

i f ( met==”plug ”) {
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numbers<−match ( tr im ( gsub (”.∗ −” ,”” , rownames ( plug ) ) ) , unique ( trim ( gsub

(”.∗ −” ,”” , rownames ( plug ) ) ) ) )

plug<−unique ( numbers )

sequ<−1: l ength ( numbers )

f o r ( i in 1 : l ength ( plug ) ) {
segments [ [ i ]]<−which ( numbers==i )

}
}

r e turn ( segments )

}

#−−−−−−−− Example o f the p l o t t i n g s c r i p t s used −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# ggplot2 package was used f o r p l o t t i n g . This i s one

# example out o f a l l s c r i p t s used to p l o t the r e s u l t s in the t h e s i s .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Cal Test p l s l i n e

umm<−c ( 0 . 2 5 , 0 . 5 , 0 . 7 5 )

TestCalPlsLine<−data . frame ( )

newRmsep<−data . frame ( )

names<−c (”RMSEP” ,” Dataset ” ,” CalS ize ” ,” NrofCompoentsRetained ”)

named<−c (”RMSEP” ,” NrofCompoentsRetained ” ,” Dataset ” ,” CalS ize ”)

f o r ( i in umm) {
temp<−data . frame ( )

temp2<−data . frame ( )

temp<−data . frame ( Test (new . plug1$Fat , new . plug1$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv .

meth=” l i n e ” , t e s t . meth=”part ” , Test=”t e s t ” , remo=”F”) $p l s . r e s . ca l , rep (” Dataset1

” ,5) , paste ( rep ( i ∗100 ,5) ,”%” , sep =””) , c ( 1 : 5 ) )

temp2<−data . frame ( Test (new . plug1$Fat , new . plug1$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv

. meth=” l i n e ” , t e s t . meth=”part ” , Test=”t e s t ” , remo=”F”) $new . rmsep , Test (new .

plug1$Fat , new . plug1$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv . meth=” l i n e ” , t e s t . meth

=”part ” , Test=”t e s t ” , remo=”F”)$ncom . from . t e s t s e t , ” Dataset1 ” , paste ( i ∗100 ,”%” ,

sep =””) )

names ( temp2 )<−named

names ( temp )<−names

TestCalPlsLine<−rbind ( TestCalPlsLine , temp )

newRmsep<−rbind<−rbind (newRmsep , temp2 )

}
colnames (newRmsep)<−named

colnames ( TestCalPlsLine )<−names

f o r ( i in umm) {
temp<−data . frame ( )

temp2<−data . frame ( )
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temp<−data . frame ( Test (new . plug2$Fat , new . plug2$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv .

meth=” l i n e ” , t e s t . meth=”part ” , Test=”t e s t ” , remo=”F”) $p l s . r e s . ca l , rep (” Dataset2

” ,5) , paste ( rep ( i ∗100 ,5) ,”%” , sep =””) , c ( 1 : 5 ) )

temp2<−data . frame ( Test (new . plug2$Fat , new . plug2$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv

. meth=” l i n e ” , t e s t . meth=”part ” , Test=”t e s t ” , remo=”F”) $new . rmsep , Test (new .

plug2$Fat , new . plug2$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv . meth=” l i n e ” , t e s t . meth

=”part ” , Test=”t e s t ” , remo=”F”)$ncom . from . t e s t s e t , ” Dataset2 ” , paste ( i ∗100 ,”%” ,

sep =””) )

names ( temp2 )<−named

names ( temp )<−names

TestCalPlsLine<−rbind ( TestCalPlsLine , temp )

newRmsep<−rbind<−rbind (newRmsep , temp2 )

}
colnames (newRmsep)<−named

colnames ( TestCalPlsLine )<−names

f o r ( i in umm) {
temp<−data . frame ( )

temp2<−data . frame ( )

temp<−data . frame ( Test (new . plug3$Fat , new . plug3$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv .

meth=” l i n e ” , t e s t . meth=”part ” , Test=”t e s t ” , remo=”F”) $p l s . r e s . ca l , rep (” Dataset3

” ,5) , paste ( rep ( i ∗100 ,5) ,”%” , sep =””) , c ( 1 : 5 ) )

temp2<−data . frame ( Test (new . plug3$Fat , new . plug3$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv

. meth=” l i n e ” , t e s t . meth=”part ” , Test=”t e s t ” , remo=”F”) $new . rmsep , Test (new .

plug3$Fat , new . plug3$NIR , ncom=5, s i z e=i , va l=”p l s ” , va l . cv . meth=” l i n e ” , t e s t . meth

=”part ” , Test=”t e s t ” , remo=”F”)$ncom . from . t e s t s e t , ” Dataset3 ” , paste ( i ∗100 ,”%” ,

sep =””) )

names ( temp2 )<−named

names ( temp )<−names

TestCalPlsLine<−rbind ( TestCalPlsLine , temp )

newRmsep<−rbind<−rbind (newRmsep , temp2 )

}
colnames ( TestCalPlsLine )<−names

colnames (newRmsep)<−named

windows (10 ,4 )

ok<−ggp lot ( TestCalPlsLine , aes ( x=NrofCompoentsRetained , y=RMSEP, co l our=CalS ize ) )+

geom l ine ( )+geom point ( )+face t wrap (˜ Dataset )+opts ( t i t l e =”P a r t i a l Least

Square Regres s ion Cross Val idated By Line with 25−75% of the data f o r

c a l i b r a t o i n ”)+xlab (”Nr o f components r e t a i n ed ”)

ok + geom point ( data = newRmsep , s i z e = 2 , l a b e l=c ( ’ 25 , 50 , 75 ’ ) )+geom text ( data=

newRmsep , l a b e l=”NewRmsep” , s i z e =3, h ju s t =1.1)

ggsave ( f i l e =”CalTestPlsLine . pdf ”)
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