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ABBREVIATION AND GLOSSARY 
AA  Amino acid 
Amp  Ampicillin 
APS  Ammonium persulfate 
AQP4  Aquaporin-4  
BN-PAGE Blue-Native Polyacrylamide gel electrophoresis 
CNS  Central Nervous system 
CSF  Cerebrospinal fluid 
DDM  Dodecyl-β-D-maltoside 
DMEM Dulbecco's Modified Eagle Medium 
DMEM(++-) Dodecyl-β-D-maltoside with BSA and glutamine and without antibiotics 
DNA  Deoxyribonucleic acid 
ds RNA Double- stranded RNA 
E.coli  Escherichia coli 
EDTA  Ethylene-diamine-tetra-acetic acid 
EM  Electron microscopy 
FCS  Fetal calf serum 
FFEM  Freeze-fracture electron microscopy 
G250  Commassie G-250 
GAPDH Glyceraldehyde-3-phosphate dehydrogenase 
HeLa  Cervical cancer cells from Henrietta Lacks 
HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
kDa  Kilodalton 
KIR4.1 Inwardly rectifying potassium channel 4.1 
LB  Luria Bertani medium 
mRNA  Messenger RNA 
MUPP-1 Multi-PDZ Domain Protein 1 
OAP  Orthogonal arrays of particles 
OD  Optical density 
ON  Over night 
PBS  Phosphate-buffered-saline 
PCR  Polymerase chain reaction 
RE  Restriction enzyme 
RNA  Ribonucleic acid 
RPM  Revolutions per minute 
RT  Room temperature 
RT-PCR Reverse transcriptase-PCR 
SDS-PAGE Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis 
TAE  (Trisbase, acetic acid, EDTA)-buffer 
TEMED  N,N,N',N'-Tetramethylenediamine  
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ABSTRACT 
Aquaporin 4 (AQP4) is a membrane protein, and also the main water channel in the brain. 

AQP4 is distributed with highest density in the perivascular end-feet domain of astrocytes, the 

supporting cells of the neurons in the central nervous system. This protein has been involved 

in water and potassium homeostasis, and in several neurologic conditions, such as e.g brain 

edema.  

Square arrays are large scale structures which are present in high consentrations in the same 

locations as AQP4, and it has been shown that AQP4 is a main contributor in the assembly of 

square arrays. It has been hypothesized that the ratio of different AQP4 isofoms regulates the 

size, structure and numerical distribution of square arrays. While square arrays so far has been 

studied exclusively by freeze-fracture electron microscopy, our group recently demonstrated a 

biochemical technique that can be used to analyze square arrays. This technique, BN-PAGE, 

has been used in this thesis, to test several hypotheses about how to destabilize square array 

assembly. This technique has also been used in order to test protein-protein interactions 

between AQP4 isoforms and hypothetical binding partners, e.g the inwardly rectifying 

potassium channel 4.1 (Kir4.1), α-syntrophin and the tight junction protein, PatJ. 

 

There has recently been uncertainty about the specificity of immunolabelling using 

commercially available anti Kir4.1 antibodies in detection of Kir4.1 proteins. In the BN-

PAGE assay, the use of antibodies is crucial for the detection of protein presence. To 

investigate a hypothetical protein interaction of any protein, a possible cross reaction of 

antibodies has to be controlled for. In order to test the specificity and crosslabelling of 

antibodies, a Kir4.1 expression construct was made. The plasmid was later expressed in two 

different cell lines, HeLa and HEK 293, alone or together with AQP4 isoforms, α-syntrophin 

or PatJ. In addition, a mutation study of the isoform AQP4c was tested in the same BN-PAGE 

assay to investigate the possible protein-protein binding residues between adjacent AQP4-

tetramers. 

 

The plasmid made was verified by sequencing and restriction enzyme analysis, and the HeLa 

expressed construct was also tested with different antibodies against Kir4.1. Since labelling 

was obtained, we concluded that the construction of Kir4.1 plasmid was successful. In the 

cross-labelling tests, different antibodies against AQP4 and Kir 4.1 were used. In conclusion, 

no crosslabelling between AQP4 and Kir4.1 was seen in the assay tested. In the coexpression 
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studies of AQP4 and its potensial binding partner, we were not able to detect any interaction 

between these proteins using the BN-PAGE assay. 

 

As part of a larger study, single, double and triple mutations of AQP4 were tested in the BN-

PAGE assay to test if the mutations could destroy square array assembly of AQP4 (Strand, 

Moe, Solbu, Vaadal and Holen, Biochemistry, 2009). In addition, five N-terminal mutations 

of AQP4c where tested. We were not able to reveal any loss of square array assembly in any 

of these mutations in the BN-PAGE assay.  

 

How the structure of square arrays relates to the isoforms of AQP4, or even what purpose the 

organization of water channels into these structures serves, is still not understood. 
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SAMMENDRAG  
Aquaporin 4 (AQP4) er et membranprotein som danner vannkanaler i hjernen. AQP4-kanaler 

er normalt konsentrert i perivaskulære membraner i endeføtter til astrocytter, som er 

støtteceller for nevroner i det sentrale nervesystemet. AQP4 har også en viktig rolle i vann og 

kalium homeostase, og det er vist at vannkanalen AQP4 spiller en sentral rolle i utviklingen 

av hjerneødem etter for eksempel hjerneslag. 

 

”Square arrays” er store, regulære strukturer som finnes i høye konsentrasjoner i astrocyttenes 

endeføtter og som kolokaliserer med AQP4. Det har vist seg at flere AQP4 isoformer er 

byggesteiner i disse strukturene. Det er gjort spekulasjoner rundt hvorvidt mengden av de 

ulike AQP4 isoformene bestemmer hvor store strukturene skal bli og hvordan de blir 

organisert. Elektronmikroskopi av frysesnitt har i mange år vært den eneste tilgjengelige 

metoden for å analysere ”square-array” strukturene. I 2008 publiserte vår gruppe en artikkel 

hvor et nytt molekylær-biologisk verktøy (BN-PAGE) ble verifisert for bruk i forskningen 

rund oppbygningen av ”square arrays. BN-PAGE metoden har også blitt brukt i denne 

masteroppgaven, men da for å teste ulike hypoteser som er publisert rundt oppbygningen av 

disse strukturene. Metoden har også blitt brukt til å undersøke protein-protein interaksjoner 

mellom AQP4 isoformer, og mellom AQP4 og andre potensielle bindings partnere, for 

eksempel en kalium kanal (Kir4.1), α-syntrophin og det cytosolisk proteinet, PatJ. 

 

I det siste har det hersket tvil om hvorvidt enkelte Kir4.1 antistoffer er spesifikke nok for å 

kunne brukes i kolokalisasjons studier med blant annet AQP4. Antistoff spesifisitet er 

grunnleggende viktig for å kunne verifisere tilstedeværelse av et bestemt protein i flere 

analytiske metoder, deriblandt BN-PAGE. Derfor var det viktig å kunne verifisere 

antistoffene som skulle brukes i oppgaven. Det ble derfor laget et Kir4.1 konstrukt, som ble 

uttrykt i ulike cellelinjer, og deretter testet med antistoffene som skulle brukes videre. Etter 

verifiseringen av antistoffene ble det gjort ekspresjonsforsøk hvor Kir4.1 konstruktet ble 

uttrykt alene eller sammen med en AQP4 isoform, eller en av de andre potensielle bindings 

proteinene som allerede er nevnt. Det ble ikke gjort resultater som kan bekrefte interaksjoner 

mellom noen av disse proteinene. 

 

Som en del av en større studie, ble single, doble og triple mutasjoner testet i BN-PAGE 

systemet i håp om å bryte ned de allerede påviste ”square arrays” av AQP4 (Strand, Moe, 
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Solbu, Vaadal and Holen, Biochemistry, 2009). Det ble i tillegg gjort en mutasjonstudie hvor 

isoformen AQP4c ble undersøkt ved hjelp av den samme metoden for å se om det var mulig å 

påvise protein interaksjoner mellom bestemte aminosyrer i to AQP4 tetramer komplekser. 

Heller ikke her ble det vist noen nedbrytning av square array strukturene. 

 

Det er fortsatt uklart hvordan de ulike isoformene av AQP4 bidrar til oppbyggingen av square 

array strukturene, og man har heller ikke forstått hensikten med å organisere AQP4 vann-

kanalene på en slik måte.  
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1 INTRODUCTION 

1.1 The origin of Aquaporins 

A long standing question in medical physiology is how water is transported over the cell 

membrane. This lipid bilayer separates the interior of the cell from the world outside and 

maintains gradients of ions and nutrition. For a long time simple diffusion across the 

membrane was the only known mechanism for water transport. However, this mechanism 

could not explain how large amounts of water could cross membranes in for example kidneys. 

To account for this water transport, there were suggestions about the existents of channels or 

pores that allowed fast and selective passage of water (Orci et al., 1977). 

 

Peter Agre and co-workers (1987) discovered another water-transport system. In the study by 

Agre and co-workers, they describe what happened when they tried to isolate an Rh- antigen 

from erythrocytes (Agre et al., 1987). Their samples were contaminated with a very 

hydrophobic protein. In their experiment, cDNA from this protein was isolated and injected 

into Xenopus laevis oocytes. An interesting observation was made; the oocytes injected with 

cDNA started to swell and bursted when placed in destilled water. The hydrophobic protein 

they had discovered was named CHIP 28 (channel-like integral protein of 28 kDa), and 

renamed later as Aquaporin nr 1 (AQP1). The first aquaporin was found. For the discovery of 

aquaporins, Peter Agre received the Nobel Prize in chemistry in 2003. 

 

1.1.1 Aquaporins  
A general BLAST search on “Aquaporin-1” show that all aquaporins are members of the 

“Major intrinsic protein” (MIP) superfamily. Proteins in this family function as membrane 

channels and are able to selectively transport water and small neutral molecules in and out of 

the cell. These proteins have a tree-dimensional structure building a pore and they also share a 

common fold: the N-terminal cytosolic part of the protein is followed by three transmembrane 

helices, and a semi-helix, a pattern that is repeated, which thus most probably have arisen 

through gene duplication (Murata et al., 2000). 

 

The aquaporin family can be divided into two major sub-groups according to their 

permeability characteristics and sequence similarity. The “Aquaporins” are water-selective 
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channels and can only transport water-molecules. The “Aquaporin” group includes AQP0, 

AQP1, AQP2, AQP4, AQP5, AQP6 and AQP8. AQP6 forms an anion channel and AQP8 are 

permeable to urea, thus they only belong to this group based on sequence similarity and 

homology (Ma et al., 1997; Yasui et al., 1999). 

 

 The other sub-group is glycerol uptake facilitators (GlpFs), also called “Aquaglyceroporin”. 

AQP3, AQP7, AQP9 and AQP10 are members of this group, which are selective for water 

and small, neutral solutes like glycerol (Ishibashi et al., 1994). 

 

AQP11 and AQP12 also belong to the aquaporin-family but no water permeability has been 

shown in experiments in vitro. 

 

So far, 13 different aquaporins have been reported, and our own research group have 

identified new isoforms of AQP4 (Moe et al., 2008). The different aquaporins have distinct 

cellular and sub-cellular localizations, and aquaporins can be found in all kingdoms of life. 

However, GlpFs have only been characterized in microorganisms (Tanghe et al., 2006). 

 

1.1.2 Evolution and function of aquaporins  
The cell interior is separated from the matrix outside by a membrane consistent of two layers 

of phospholipids. Many proteins, vital for the cell, are embedded in the membrane. These 

proteins are responsible for structural integrity, maintaining electric and osmotic gradients and 

provide energy for physiological processes in the cell (Hibino et al., 2010). A cell`s interior is 

mostly water, which can diffuse through the cell membrane but only at a limited rate. Now we 

know that cells that exhibit higher water permeability than others, most probably have 

proteins intergraded in the lipid bilayer, which facilitates conductance of water. 

 

All the 13 mammalian aquaporins vary in their water permeability, where AQP0 is the poorest 

conductor and AQP4 is the most efficient water pore (Yang et al., 1997). The large number of 

aquaporins in the genome of humans, plants and vertebrates, reflects the importance of these 

proteins and their regulations of the water homeostasis.The bacteria E.coli contains both a 

specific water pore (AQPZ) and a glycerol facilitator (GlpF) (Fu et al., 2000).Since bacteria 

contains two paraloge aquaporins, duplications appears to have occurred early in the evolution 

(Borgnia and Agre, 2001). Aquaporins are also found in plants, one example is a protein in 

 11



spinach, SoPIP2 belonging to the the PIP-family. Since these proteins share sequence identity, 

all the aquaporins also share common conserved motifs, suggested to be important for the 

function of the protein (Fraysse et al., 2005). When comparing all the aquaporin proteins, the 

similarity varies from 25 % - 40 % between the different aquaporins (Pao et al., 1991). 

 

1.1.3 Structure of the aquaporin family 
Some of the aquaporins have got their structure determined, by using electron crystallography 

on double-layered, two-dimensional crystals. Other structural information has been obtained 

from the amino acid sequence alone. By using hydropathy plots to localize α-helical 

membrane-spanning segments in the amino acid sequence, some of the 2D-structure can be 

predicted. The first structure of a water-channel (for AQP1), was made using this last 

mentioned method, and revealed an AQP-fold that now is known to be common for all 

aquaporins (Murata et al., 2000). AQP4 is described in detail below as one example, as all 

aquaporins share a common secondary, tertiary and to some degree also the quaternary 

structure. 
 

1.2 Aquaporin 4 (AQP4) 

AQP4 is the predominant water channel in the mammalian brain (Jung et al., 1994). The 

proteins are found in high concentrations around blood vessels, and are mainly localized 

around astrocyte endfeet and in retinal Müller cells (Nielsen et al., 1997) (see appendix 1) 

Astrocytes surround neurons and support them by suppling nutrition and oxygen. They 

insulate one neuron from the other as well as destroying pathogens and removing dead 

neurons when necessary. 

 

AQP4 is expressed as two major isoforms of 32 kDa and 30 kDa (Jung et al., 1994). AQP4a 

(M1) and AQP4c (M23) differ in length of the primary sequence and their capacity of 

transporting water (Jung et al., 1994; Hasegawa et al., 1994). These are splice variants 

resulting from different translational initiation points. Translation initiation at the amino acid 

methionin in position one produces the longest isoform M1 (323aa), while initiation at 

position 23 produces the shortest isoform M23 (Jung et al., 1994; Lu et al., 1996). Both 

isoforms are present in the brain but it seems that M 23 is at least three-fold more commonly 

expressed (Neely et al., 1999). Neely and collaborators claimed in 1999 that M1 and M23 had 
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the same ability to transport water. In 2004 Silberstein and co-workers demonstrated an eight-

fold higher water permeability for the isoform M23 compared to M1 (Silberstein et al., 

2004).This statement has not yet been fully explored, and at present time no different 

functions of the two isoforms have been found. 

Our group has recently demonstrated that AQP4 has at least four other isoforms than AQP4a 

and AQP4c (Moe et al., 2008). The new isoforms, AQP4b, AQP4d, AQP4e and f, were found 

in rat brain and kidney tissue and show different ability to transport water (Fig.1). One of the 

new isoforms (AQP4e) was shown to transport water like M1 and M23 while the other 

isoforms did not. In addition, AQP4e was transported to the plasma membrane, while AQP4b, 

-d and -f were retained in intracellular areas when transfected into HeLa cells and CRL 2006 

astrocytes. It was also found that AQP4d was concentrated in the cis-Golgi area. AQP4b, d, 

and f only have four- and five-transmembrane α-helixes, and this can be of importance for the 

lack of water transport ability. AQP4e (Mz) is most probably also part of the assembly of 

square arrays (Sorbo et al., 2008). 

 

  

 

 

 

 

 

 

 
 

Figure 1. Model of six AQP4-isoforms. Different start codons have different colours. A new codon was found in 
the new exon Z, giving rise to AQP4e, later called Mz. This protein has the longest mRNA and the largest 
protein size, with a novel N-terminal (Reprinted from Moe et al 2008). 
 

1.2.1 Secondary structure of AQP4 
Early in this centuary, the resolution of the electron crystallographic analyses was improved, 

and a new density map could be used for modelling a new atomic structure of AQP4. 

Fujiyoshi and collaborators published in 2006 an atomic structure with 3.2 Ångstrom 

resolutions (Hiroaki et al., 2006). This is the structure we based our experimental set-up on in 

both the article published by Strand and coworkers and for this thesis (Strand et al., 2009). 
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Figure 2 is a topographic diagram of an AQP4-molecule, and shows the main element of the 

protein. The six α-helixes (rods) are denoted H1-H6, and the loops A-E. All helixes are 

transmembrane helices, except for two shorter, 3-10 α-helixes that are responsible for building 

the pore. Both the C- and N-terminal of the protein is on the cytoplasmic side of the 

membrane. The transmembrane helix nr 1(H1) and H2 are close to the N-terminal  They are 

connected on the extracellular side through loop A. Loop B which connects H2 and H3, folds 

back into the membrane and here the first conserved NPA-motif  were identified (Yong J.and 

TongHui M., 2007). 

 

 

 

 

 

 

 

 
 

Figure 2. Secondary arrangement of AQP4 with six helixes (rods), loops (black) 
and the NPA motif. See text for details. (Reprinted from Ma TongHui et al.2007). 

 
 
One hallmark of the structure of the aquaporin family is the conserved, tree amino acid 

sequence NPA (asparagine-proline-alanine), which is quite common in proteins. The first 

NPA-motif is placed midway through the membrane in loop B. The second one is located in 

the extracellular loop E but the motif itself is located in the membrane. The two highly 

conserved NPAs are structural domains that play an important role for the water-selectivity. 

In the secondary structure the motifs are far apart, but when the protein coil into its tertiary 

structure, asparagine residues in the motif come close to each other making a hydrophobic 

environment in the pore. Inside the pore, a constriction site is located right under the NPA-

motif. The channel is narrowed and only one water molecule can pass through this slit at one 

time, helped by the bonding with one of the Asparagine residues. This area is called the ar/R 

constriction site because of a conserved aromatic/arginine residue found at the same site in 

AQP1. The channel is narrowed because of sterical hindrance from an aromatic histidin 

residue, and will limit the permeation of molecules bigger than water, including hydrated ions 

(Gonen and Walz, 2006; Tani et al., 2009). In addition, other functions of NPA motifs in 

AQP4 have been suggested. It has been shown by mutating different amino acids in the NPA 
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motif, that AQP4 `s expression pattern on the plasma membrane can change, indicating an 

important role of NPA motifs in AQP4 plasma membrane targeting (Guan et al., 2010). 
 

1.2.2 Tertiary- and quaternary structure of AQP4  
Most proteins are made of more than one polypeptide chain. According to the nomenclature 

of Schellman and Lindström-Lang, all proteins have a quaternary structure (Linderstrøm-Lang 

KU, 1952). Primary structure and the amino acid sequence means the same, secondary 

structure correspond to the α-helixes and β-sheets, and tertiary structure the chain fold. 

 

AQP4`s tertiary structure corresponds to a monomeric subunit, where each subunit consist of 

the six α-helixes described previously which together make up the pore (see appendix 2). In 

the native state the AQP4 protein consists of four monomers together forming a tetramer (the 

quaternary structure). It is not clear how the interactions between the monomers in the 

tetramer are formed but the subunit in the tetramer is believed to interact with each other 

through the cytoplasmic loop D, connecting helices four and five involved in tetramer-

interaction (Hiroaki et al., 2006). In the literature one can find more than one suggestion about 

which residues are important for the stabilization of the tetramer complex of AQP4, and there 

are different research-groups testing out series of current hypotheses in this field (see section 

1.7). 

1.2.3 AQP4 and square array formation  
Perivascular membranes of astrocyte end-feet contain regular arrays of intramembrane 

particles (IMPs). The intramembrane particles are visible on EM in FFEM preparation  

images. In freeze fracture electron micrographs, Wolburg and coworkers showed that >50% 

of the total surface of end-feet could be covered by these structures (Wolburg, 1995). These 

structures have been referred to as square arrays or orthogonal arranged particles (OAP`s) 

(Landis and Reese, 1981)  Many IMP`s together corresponds to one tetramer, and four 

tetramers together correspond to one square array (Fig.3). 

 

Square arrays are large protein complexes, and AQP4 is a main component of these arrays 

(Furman et al., 2003). They also demonstrated that both isoforms (M1 and M23) contributed 

to the assembly of the square arrays but with different fractions. By transfecting Chinese 

hamster ovary (CHO) cells with the two AQP4 isoforms confocal immunoflorescence 

indicated that transfection with M23 alone or together with M1 gave arose to square array 
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assemblies. Cells transfected with the isoform M1 alone exhibited none or few detectable 

assemblies. In addition, CHO cells transfected with M23 had large, raft-like square arrays 

with uniform lattice pattern. These arrays varied in size, but generally contained >100 IMPs. 

However, the average square array seen in astrocytes, contains 17 IMP (Furman et al., 2003). 

Many of these rafts appeared to be formed from side-to-side associations of smaller square 

arrays. By labelling of the rafts with immunogold particles they observed that M23 isoform 

predominantly existed within square arrays, and was rarely observed in other areas of the 

plasma membrane, indicating this isoform as important for the organizing of the square 

arrays. They concluded that the isoform M23 is the only one able to form square arrays alone, 

and attendance of isoform M1 destabilized the assembly to some degree. In addition, Yang 

and coworkers showed that square arrays disappeared in AQP4 knock-out mice (Ma et al., 

1997). 

 

Our group has discovered that the internal composition of square arrays contains not only M1 

and M23 but also one novel AQP4 isoform, Mz (Sorbo et al., 2008). M1 and Mz can interact 

with M23 and be incorporated into higher order structures. Higher order structures are AQP4- 

complexes containing 4 X, 12 X, 16 X, 20 X and so on tetramers. By using two-dimensional 

blue native polyacrylamide gel electrophoresis (BN-PAGE) (section 3.17), we have managed 

to visualize these higher order structures isolated from transfected HeLa cells and CLR 2006 

cells (Strand et al., 2009). The function of these square arrays is still not known. 

 

 

 

 

 

 

 

 
 
 
Figure 3. Panel A shows the pattern of square arrays in vivo by a electron micrograph. Under left, the tetramer 
band from AQP4a (M1) is shown. No higher order band visible. On the left, the pattern of AQP4c with higher 
order bands is shown. A hypothetical “ladder” of complexes is shown. The higher order bands in vitro indicate 
the square arrays in vivo (red arrow) (Fig. 3A is from Furman, Rash et al 2003. M1 and M23 are from Sorbo et 
al 2008). 
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Aquaporin 4 is not the only membrane protein expressed in the endfeet of astrocytes.The 

potassium channel Kir4.1 has shown to colocalize with AQP4, in different membrane 

domains (Nagelhus et al., 1999), giving rise to speculations of an possible collaboration 

between these two proteins. 

 

1.3 Inwardly rectifying potassium channel nr 4 (Kir 4.1) 

The inwardly rectifying potassium channel nr 4 (Kir4.1) is like AQP4, a transmembrane 

protein expressed in astrocytes facing blood vessels, in the central nervous system (CNS), and 

in the retinal Müller cells (Kofuji et al., 2000). The Kir4.1 protein has also been demonstrated 

in oligodendrocytes, which is another kind of glia cells (Butt and Kalsi, 2006). There have 

been contradictory reports concerning Kir4.1 in oligodendrocytes, since some research groups 

have not been able to detect Kir4.1 in these cells (Higashi et al., 2001). There are four main 

groups of Kir channels: 1) The classical Kir channels (Kir2) contribute to set the resting 

membrane potential (RMP) and to repolarise the cell after a nerve impulse; 2) G protein-gated 

Kir channels (Kir3) which are regulated by G protein-coupled receptors and 3) ATP-sensitive 

Kir channels (Kir6) which play an important role in cellular metabolism .The last member is 

4) Kir transport channels (Kir1, Kir4, Kir5, Kir7) which is coupled to the process potassium 

spatial buffering (1.3.1). 

The Kir channels can be activated by phospholipids, ions and through binding proteins. The 

Kir channel is made up of two transmembrane α-helixes, with both the NH2- and COOH- 

terminals at the cytoplasmic side of the membrane. In addition, an extracellular loop folds 

back outside the membrane and contributes in creating the selectivity filter in the pore. The 

Kir channels are tetrameric structures and can be formed by coassembly of homomeric or 

heteromeric sub-structures. The different assembly of structures gives them characteristic 

properties (Hibino et al., 2010). It has been shown that the heteromeric co-assembly of Kir4.1 

and Kir5.1 generates channels with strong rectifying capacity. In contrast will a homomeric 

Kir5.1 protein not be functional and a homomeric Kir4.1 protein will be just weakly rectifying 

(Casamassima et al., 2003).

1.3.1 Potassium spatial buffering  

Inwardly rectifying K+ channels allow potassium to move more easily into the cell than out. 

These channels are involved in the process of spatial buffering. This process helps to regulate 
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the extracellular K+ concentration. During action potential in the axons of neurons, potassium 

is released into the extracellular space. Astrocytes will absorb potassium from the 

surroundings via strongly rectifying Kir channels, in order to reset the membranes potential. 

Potassium is extruded from glia cells where the concentration of potassium is high and 

redistributed through the astroglia network to areas with low potassium concentration 

(Connors et al., 2004). 

 

1.3.2 Localization of AQP4 and Kir4.1 

AQP4  has been shown, by postembedding immunogold labeling, to colocalize with Kir4.1 in 

retinal Müller cells (Nagelhus et al., 1999). Both proteins are enriched in plasma membrane 

domains facing the blood vessel. Astrocytic uptake of potassium after neural activity causes 

the osmolarity in the extracellular space to change (Dietzel et al., 1980). This change 

facilitates shrinkage of the intermolecular space indicating removal of water (Sykova, 1991). 

Nagelhus and collaborators (1999) suggested that removal of water is mediated by AQP4 to 

specific extracellular compartments, indicating AQP4 and Kir4.1 to have a functional 

interaction. 

The subcellular distribution of Kir4.1 and AQP4 in glia cells gave rise to a theory of 

extracellular proteins contributing to the organization of Kir4.1 proteins in the membrane. 

Both AQP4 and Kir4.1 contains the PDZ binding motifs SXV (Jung et al., 1994; Takumi et 

al., 1998) (section 1.5). These domains are responsible for protein-protein interactions 

between many molecules within the CNS (Hung and Sheng, 2002). Kir4.1 contains, as 

already mentioned, a PDZ domain-binding region at its C terminus, and in vitro studies have 

shown that Kir4.1 can connect by interactions with proteins that possess these domains. One 

specific group of proteins shown to include this motif are the syntrophins, which are found as 

part of a multiprotein complex known as the dystrophin-glycoprotein complex (DGC) (Adams 

et al., 1993). 

1.4 Alpha syntrophin 

The dystrophine associated protein complex (DAPC) is a huge assembly of proteins expressed 

in several organs, e.g. brain and muscle tissue (Adams et al., 1993). The dystrophine gene is 

the biggest in the genome and localized on the X-chromosome. Mutations in the dystrophine 
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gene can lead to muscular dystrophies in male offspring. In this complex, another membrane 

associated protein is found: α-syntrophin is a scaffolding protein expressed in astrocytes and 

skeletal muscle, and an important contributor to the formation of the DAPC complex. α-
syntrophin has a PDZ domain (section 1.5) on its C- terminal end. It has been suggested that 

the C-terminus of the α-syntrophin binds to dystrophin via the PDZ domain, while the PDZ 

domain also can recruit other proteins to the dystrophin complex, like e.g. Kir4.1 (Neely et al., 

2001; Amiry-Moghaddam et al., 2004).. 

 

AQP4 has a SSV (serine-serine-valine) sequence thought to bind to the PDZ domain of α-

syntrophin, however this has not been shown experimentally. 

 

1.5 PDZ domains  

The Postsynaptic density protein-95 (PSD-95), Discs large protein, Zonula occludens -1 

(ZO-1)) (PDZ), domain is a conserved domain with ability to bind other proteins by 

recognizing and binding short peptide sequences situated at the C-terminal of the ligand 

protein (Ranganathan and Ross, 1997). This sequence differ in different PDZ domains but for 

syntrophin and some types of  K + channels, PDZ binds to the short T / S-X-V (T is threonine, 

S is serine, X is any amino acid, V is valine) sequence. The ligand binds to an extended 

groove formed by six β-strand and two α-helixes. The strands form an open barrel structure 

with one α-helixe in each end forming a lid. Proteins can have multiple PDZ domains, varying 

from two to ten in certain proteins, thus the binding affinity can vary from weak to strong 

(cooperative binding) (Grootjans et al., 1997). 

 

PDZ domains are often associated with other interactions domains, which can hold receptors 

and signalling proteins together, forming big scaffold proteins. In the CNS, at the postsynaptic 

density, a PDZ scaffold protein (PSD-95) is located near the postsynaptic membrane. It has 

been demonstrated that PSD-95 (which contain three PDZ domains) can be labelled with 

antibodies from both the extracellular and the cytoplasmic side of the protein (Petersen et al., 

2003). It is therefore likely that the protein is associated with the membrane and is in a good 

position to interact with both receptors, membrane ion channels and cytoplasmic proteins.  
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PDZ domains do more than connecting different proteins together. They can direct molecular 

complexes to specific sites, thereby contributing to e.g. synaptic plasticity. This is often done 

by indirect interaction via another protein, recruited to the membrane by the PDZ domain 

(Kang et al., 2000). This can indicate that binding to lipid membranes is another general 

property of PDZ domains (Wu et al., 2007a; Wu et al., 2007b), which is also found in the 

protein PatJ. 

 

1.6 PatJ 

Tight junctions are the areas where two cell membranes join together. The junctions make a 

barrier and regulate the passage of ions and molecules between cells, forcing them to enter the 

cell, in order to move in the tissue. Another function of the junctions is physical support to the 

cell and preventing lateral diffusion of integral proteins in the membrane. Tight junctions also 

form channels and pores and can consist of different combinations of proteins according to 

the tissue or organ where the junctions are situated (Gonzalez-Mariscal and Nava, 2005). 
 

In epithelial cells, the tight junctions are composed of three main types of transmembrane 

proteins: occludin, claudin and junctional adhesion molecules (JAM). In addition, large 

protein complexes are associated with the junctions, consisting of different proteins. One of 

the complexes contains the tight junction protein, PatJ. PatJ is an evolutionarily conserved 

protein that regulates tight junction formation and epithelial polarity (Shin et al., 2005).  

 

PatJ also contains ten PDZ domains. A study from Shin et al , shown that by mutating PDZ 

domains of PatJ, loss of interaction with a wound healing protein, Par 3, was observed (Shin 

et al., 2007). With ten PDZ domains, PatJ has the possibility to organize multimeric protein 

complexes at the plasma membrane, where it is located (Storrs and Silverstein, 2007) ( Fig.4). 

 

PatJ have highly homologues molecular structures, as the paralog protein Multi-PDZ Domain 

Protein 1 (MUPP-1). They also co-express in many tissues, e.g. kindeys .Both have the ability 

to interact with other junction associated protein and their share a common expression rate 

(Adachi et al., 2009). Sindic and group showed in 2008, that the rectifying potassium channel 

Kir4.2 co-expressed with the tight junction protein MUPP-1. A Kir4.2 construct lacking the 

SSV domain on its N-terminal, showed no co-immunoprecipitation with MUPP-1. They also 

saw that MUPP-1 reduced Kir4.2 expression on the cell surface, and they concluded that 
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MUPP-1 and Kir4.2 participated in a protein complex regulating transport of potassium 

(Sindic et al., 2009). This is the background for our hypothesis of a possible protein 

interaction between PatJ and Kir4.1 

  

 
Figure 4. Diagrammatic representation of protein similarities between MUPP-1 and PatJ.Their binding partners, 
where known, are indicated with arrow-head. The number of amino acids is indicated at the right. (Reprinted 
from Adachi et al 2009). 
 

 

1.7 Statements of protein-protein interaction with AQP4 

The study of square arrays started in the early 1970s and the link between AQP4 and square 

arrays was established by Rash and co-workers in 2003, (Furman et al., 2003). No 

physiological reason is known for the precens of the square arrays, but it is no doubt that this 

massive structure plays an important role, thus many research groups are interested in these 

issues. The main statements used as background information for square array assembly in this 

study are summarized below. 
 

1.7.1 Statement 1: Arginines, R8 and R9 in N-terminal of AQP4a, 
block tetramer-tetramer binding sites 
As mentioned above, Hiroaki and collaborators demonstrated that the crystal structure of rat 

AQP4c isoform was reconstituted into lipid bilayers (Hiroaki et al., 2006). Furman and group  

suggested that the N-terminal of AQP4a interfered with the array formation (Furman et al., 

2003). Hiroaki and co-workers generated a peptide corresponding to a native N-terminal of 

AQP4 (Hiroaki et al., 2006). All the Arginine residues in the peptide were mutated into 

Lysine residues. While native AQP4 N- terminal destroyed the formation of arrays, their 

mutated N-terminal showed no sign of influence on the formed square arrays. They therefore 

proposed that the conserved, positively charged residues R8 and R9 in the N-terminal of 

AQP4a, blocked the formation of square arrays by interacting with the tetramer-tetramer 
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binding site seen in the crystal, and special the residues Arginine (R)108, Glycine (G)157, 

Tryptophan (W)231 and Tyrosine (Y) 250 (Fig.5). 

 

 

 

 

 

 

 

 

 

 
Figure 5. This figure shows the hypothetical bindingsites between two adjacent AQP4 tetramers. The target 
aminoacids are shown in ball-and stick model. (Figure from Hiroaki et al 2006). 
 
 

In the study be Strand and coworkers (Strand et al., 2009) this hypothesis was tested by 

mutating arginine residues (R8K and R9K), and the effect of these mutations were evaluated 

in a BN-PAGE assay. No effect was found when mutating R8 and R9, indicating that these 

residues, included another mutation (W10K), was not the sites blocking the tetramer-tetramer 

formation of AQP4. 

 

1.7.2 Statement 2: Palmitoylation of C13 and C17 inhibit square 
array formation  
Suzuki and collaborators constructed a series of N-terminal deletion mutants in order to 

investigate why the N-terminus of AQP4a interfered with the formation of square arrays 

(Suzuki et al., 2008). Nine different mutant deletions were made, including two cysteins at 

residue no. 13 and 17 of the N-terminal of AQP4a. The mutants were expressed in CHO cells, 

and transfectants were confirmed by immunoblotting. It was shown that the cysteine (C) 

mutants interrupted the formation of square arrays, and two palmitylated N-terminal cysteins 

were revealed by biochemical analysis. These cysteines have been posttranslational modified 

through a thioster bond.  

These findings were then tested in Strand and coworkers (Strand et al., 2009) by the use of 

BN-PAGE assay. The results indicated that if one cystein was mutated, no destabilized effect 

on square array assembly was detected. However, with a C13A/C17A double mutation 
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introduced, a clear change occurred in the pattern of bands, and a the higher order band 

disappeared, indicating no formation of square arrays. These results supported the Suzuki 

model and validated the use of BN-PAGE as an assay suitable for protein-protein interactions. 

 

1.7.3 Statement 3: N-terminal residues of AQP4c (V24, A25 F26) is 
responsible for determination of square array formation 
Verkman and coworkers used single molecular tracking to follow movement induced by 

fluorescently labelled AQP4 mutants in cell membranes in vivo, establishing the molecular 

determinants of square arrays assembly (Crane et al., 2008). They observed that unmutated 

M1(AQP4a) moved freely, while unmutated M23( AQP4c) was immobile indicating square 

arrays presence. Cotransfection of myc-tagged M1 and M23 were performed in different cell 

line (COS-7, MDCK and CHO-cells), but no slowing of diffusion where observed. 

To isolate the role of specific domains within the AQP4 isoforms, N-terminal mutants of 

AQP4c were made and transfected into COS7-cells. The diffusion patterns by the single 

molecular tracking system were then observed. It was found that square arrays disappeared by 

downstream deletions of specific residues of M23, Valine24, Alanine25 and Phenylalanine26. 

The formation of square arrays was also prevented by introducing Proline residues at specific 

sites downstream from the N-terminus of M23. It was concluded that M23 assembly of square 

arrays is stabilized by hydrophobic interactions involving some of these residues tested, and 

that M1 destabilization of square arrays resulted from blocking of this interaction by seven 

residues upstreams from Metylene 23. 

The same mutations of AQP4c have been tested in the BN PAGE assay described in this 

study.  
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1.8 Aims of this study 

The aim of this study was to investigate protein-protein interactions of AQP4 and AQP4 

isoforms using a biochemical assay (BN-PAGE) developed by our group for the purpose of 

visualizing square arrays .Other biology, biochemistry and anatomical tools, have also been 

used. 

 

Since it already exist preliminary data showing interactions between the best known isoforms 

of AQP4a and AQP4c, we hypothesized possible interactions between other AQP4 isoforms 

visualized by the BN- PAGE system. 

 

There have been several reports, based on indirect data, that AQP4 might be a molecular 

binding partner for several other proteins (Amiry-Moghaddam and Ottersen, 2003). In 

additions to testing AQP4 isoform protein-protein interactions, the hypothesis of AQP4 

binding to α-syntrophin, Kir4.1 and PatJ were tested using the same BN-PAGE assay 

developed to investigate AQP4 isoforms. In this section, the PDZ binding motif is common in 

both AQP4, syntrophin and PatJ. PDZ domain is interesting in this thesis for three reasons: 

 

• AQP4 is thought to be interacting with α-syntrophin via a PDZ domain located at C-

terminal of syntrophin (Amiry-Moghaddam et al., 2004). 

•  AQP4 and Kir4.1 colocalize in glia cells, and the subcellular distribution of Kir4.1 is 

thought to be influenced by a possible anchoring complex, suggesting PDZ containing 

protein (Leonoudakis et al., 2004). 

• PatJ, which is a paralog to another protein containing PDZ domain, Multi-PDZ 

domain protein-1 (MUPP-1), have demonstrated interaction with the inwardly 

rectifying potassium channel Kir4.2 (Sindic et al., 2009). 

 

The work in this thesis was divided into three parts, where each part to a certain degree 

depended on successful results from the preceding part: 

 

1. Initially, as an introduction to learn and use the BN-PAGE-system, different AQP4-single, 

double and –triple mutations already made for an ongoing project in the laboratory, were 
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analyzed using this system. Later N-terminal mutations of AQP4c was analysed in purpose of 

testing the hypothesis in section 1.7.3 

 

2a. Next step was to review and test antibodies against the potential AQP4 partners, Kir4.1, 

syntrophin and PatJ. This included cloning a Kir4.1 construct, used for investigating antibody 

specificity.  

 

2b. In addition myc-tagged versions of interesting AQP4- interactions candidates were made, 

since there are not specific antibodies available for all candidates. 

 

3. If successful detection of all the interesting AQP4-interaction partners could be obtained by 

the use of antibodies, the next step would be to co-express Kir4.1, α-syntrophin and Pat-J with 

AQP4 isoforms in a HeLa cell and HEK 293 cell system, to investigate potential protein 

interactions between these candidates by the use of the BN-PAGE system. 
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2 MATERIALS  

2.1 Reagents used in different sections 
Table 1. Reagents and equipment used in section 3.1 
Items Specification Manufacturers 
Dissection tool ***** American Tools 
High capacity cDNA Reverse 
Transcription Kit 

7368813 Applied Biosystem 

Kontes® Microtube Pellet 
Pestle® 

Size 16 Sc-Ed Warehouse USA 

RNAlater RNA Stabilization 
Reagent 

76106 Qbiogene 

RNeasy-kit 75114 Qiagen 
 
Table 2 . Reagents used in section 3.1.2 
Items Specification Manufacturers 
10 X  RT buffer 10 μL QBiogene 
100 mM dNTP 4 μL QBiogene 
10 X Random primer 10 μL QBiogene 
Nuclease free water up to a total volume of 50 μL QBiogene 
500 U Reverse 
Transcriptase 

5 μL Q-BioTag (5 U/μL) 
 

 
Table 3. Reagents and equipment used in section 3.3 
Items Specification Manufacturers 
Agarose 15510-027 Invitrogen 
Sybr-Green S7585 Invitrogen 
Loading dye  See table 16 Self made 

TrackIt
. 
1 Kb DNA Ladder   10488-072 Invitrogen 

PCR mastermix: Volume Final concentration 
10 X Incubation buffer 5.0 μL 1 X 
MgCl 2 (25 mM) 
 

5.0 μL 5 mM 

dNTP(2.5 mM each) 2.0 μL 200 uM 
Primer F 20M each/stock 1.5 μL 1 pmol 
Primer R 20M each/stock 1.5 μL 1 pmol 
Templat DNA 1.0 μL 100-1000 ng 
DNA 
polymerase 

0.2 μL 5U 

MQ H2O To 50 μL  
 
Table 4. Reagents and equipment used in section 3.4 For bacteria strain see table 26. 
Items Specification Manufacturers 
Topo TA cloning ®- kit 10486-378 Invitrogen 
S.O.C media 15544-034 Invitrogen 
 
Table 5. Reagents and equipment used in section 3.5 
Items  Specification Manufacturers 
LB-media with ampicillin 100 μg/ml Sigma 
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Table 6. Reagents and equipment used in section 3.6.1 
Items  Specification Manufacturers 
Qiaprep Miniprep-kit 
 

27106 Qiagen 

 
Table 7. Reagents and equipment used in section 3.6.2 
Items Specification Manufacturers 
Endofree plasmid Maxi-kit 12362 Qiagen 
 
Table 8.Reagents and equipment used in section 3.7 
Items Specification Manufacturers 
Restriction buffers C and D 100 mM NaCl, 50 mM Tris-

HCL, 100 mM DTT (pH=7.9) 
Sigma 

BSA 10 mg/mL, 10270 Gibco 
Restriction enzymes 10000 units/mL New England Biolabs 
 
Table 9.Reagents and equipment used in section 3.15.1  
Items Specification Manufacturers 
Bio-Rad DC-kit 1479-563 Bio-Rad 
 
Table 10.Reagents and equipment used in section 3.9  
Items Specification Manufacturers 
1X Quick ligase buffer 136-456 BioLabs 
Quick ligase enzyme 10000 u/ mL BioLabs 
pcDNA/Zeo+ plasmid ***** Invitrogen 
 
Table 11.Reagents and equipment used in section 3.10 
Items Specification Manufacturers 
ABI PRISM® Big Dye 
terminator V.3.1 Sequencing 
kit 

4336919, Big dye 3.1 
enzyme, 5 X buffer 

Applied Biosystems 

 
Table 12.Reagents and equipment used in section 3.12.2 
Items Specification Manufacturers 
Biowhittaker ® EDTA trypsin 200 mg/L EDTA, 1700000 

u/L trypsin 
Lonza 

DMEM medium With added glucose 4.5 g/L 
and L-glutamin, 11960 

Gibco 

PBS (working solution 
pH=7.4) 
 

137 mM NaCl, 2.7 mM KCl, 
4.3 mM Na2HPO4×7H2O 1.4 
mM KH2PO4
 

Self made 

 
Table 13. Reagents and equipment used in section 3.12.5 
Items Specification Manufacturers 
Biowhittaker ® EDTA trypsin 200 mg/L EDTA, 1700000 

u/L trypsin 
Lonza 

Fuchs-rosenthal counting 
chamber 

15170-230 VWR 

Tryptophan Blue 302643 Sigma 
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Table 14. Reagents and equipment used in section 3.13.1 
Items  Specification Manufacturers 
DMEM With added glucose 4.5 g/L 

and L-glutamin, 11960 
Gibco 

Fugene 6 transfection 
Reagents 

124-33 Roche 

Opti-MEM®  Reduced-serum with L-
glutamin,  31985-047 

Invitrogen 

 
Table 15. Equipment used for Western blot and BN-PAGE 
Items Specification Manufacturers 
SDS-PAGE   
    

***** ***** 

• Criterion PVDF 
membrane 0.2μm 
pore size m cassette    

BR-162-0170 Bio-Rad 

• Criterion precast gels   345-0006 Bio-Rad 
• Criterion build up 

system 
345-1086 Bio-Rad 

• Coomassie 161-0787 Bio-Rad 
BN-PAGE ***** ***** 
Native PageTM Novex®Bis-
Tris Gel system, 4-16 % 
 

BN-1002BOX Invitrogen 

Criterion PVDF membrane 
0.2μm pore size  

BR-9127018 Bio-Rad 

ECF Western blotting 
Detection Reagens 
 

1067873  GE Healtcare 

 

2.2 Buffers and gels 

 
Table 16.Buffers used in section 3.3  
Items Specification Manufacturers 
0.5 X TAE 242 g TRIS base, 

 57.1g glacial acetic acid 
 100 ml 0.5 M EDTA pH=8.0 

Sigma  

2 % agarose  6 g Agarose in 300 mL 0.5 X 
TAE buffer 

Invitrogen 

0.6 X Loading dye 0.25 % Brompehenol blue 
30 % glycerol  
10 mM Tris-HCL pH 8.0  

 Sigma 

 
Table 17. Buffers  used in section 3.16 (Western blot). All reagents from Sigma. 
Items Specification Method / technique  
Acrylamid:bisacrylamide 
(40%T. 2.6%C) 100 ml 
 

38.96 g acrylamide 
1.04 g bisacrylamid 
 

Add dH2O to a final volume 
of 100 ml. Filter through a 
0.45 µm filter 

4x resolving gel buffer 200 
ml 
 

36.3 g Tris base 
170 ml dH2O  
 

Adjust pH to 8.8 with 6 M 
HCl. Cool the solution to 
room temperature and 
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  readjust to pH 8.8 with 6 M 
HCl. 
Add dH2O to a final volume 
of 200 ml and store at 4°C. 
 

4x stacking gel buffer 200 
ml 
  
 
. 
 
 

12.1 g Tris base  
170 ml dH2O 
 

Adjust pH to 6.8 with 6 M 
HCl. Cool the solution to 
room temperature and 
readjust to pH 6.8 with 6 M 
HCl. 
Add dH2O to a final volume 
of 200 ml and store at 4°C 

10% SDS 100 ml 
 

10 g. SDS 
 

 
Add dH2O to a final volume 
of 100 ml and store at RT.  
 
 

10% APS 
 

1 g. APS 
 
 

Add dH2O to a final volume 
of 10 ml and make 100 or 
500 µl aliquots and store in 
the freezer. 

Urea  9M ***** Sigma 
Loading buffer 8 ml 
 

1.6 ml 1.5 M Tris-HCl pH 6.8 
0.42 g. SDS 
2.4 ml glycerol 
Trace amount of bromphenol 
blue 
0.4 ml β-mercaptoethanol    
(if you use DTT instead, use 
10% of total volume) 
3.6 ml dH2O 
 

 

1.5 M Tris-HCl 200 ml 
 
 

36.342 g. Tris 
150 ml dH2O 
 

Adjust pH with HCl and add 
dH2O to a final volume of 
200 ml. 
 

Towbin blotting buffer 3 L 
 

300 ml 10x Towbin blotting 
buffer 
600 ml MetOH 
2100 ml dH2O 
 

pH should be 8,3 without 
adjustments (pKa of Tris is 
8,3). Do not adjust pH. 
Store at 4°C 
 

Electrophoresis buffer 
(Laemmli buffer) 10X 
 

To 800ml of dH2O add 
 30,3g Tris 
(Mm=121,14g/mol) 
144,1g Glycine 
(Mm=75,07g/mol) 
10,0g SDS 
(Mm=288,38g/mol) 
 

pH should be 8,3 without 
adjustments (pKa of Tris is 
8,3). Do not adjust pH. 
Add dH2O to 1000ml 
Store at 4°C 
 
 
 

Milk solution 1 L 
 
 

50 g. non-fat dried milk 
powder, 0.5 g. NaN3
 

Add TBST buffer to a final 
volume of 1 L. 

TBST 8 L 
 

400 ml 20x TBS buffer 
40 ml 10% v/v Tween 

***** 
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7560 ml dH2O 
Stripping solution 100 mM 2-Mercaptoethanol 

2% SDS 
***** 

 
Table 18. Buffers used in section 3.17 (BN-PAGE). All reagents from Invitrogen.  
Items Stock solution Volume Total 

consentration 
Dark catodebuffer Running buffer (20X) 10 mL ~1X (50mM BisTris, 

50mM Tricine, pH 
6,8) 

 Cathode additive 
(20X) (0.4 % 
Coomassie G-250) 

10 mL ~1X (0.02 % 
Coomassie G-250) 

 MQ H2O Add up to total 
volume of 200 mL 

***** 

Light catodebuffer 
 

Running buffer (20X) 10 mL ~1X (50mM BisTris, 
50mM Tricine, pH 
6,8) 

 Cathode additive 
(20X) (0.4 % 
Coomassie G-250) 

1 mL ~0.1X (0.002 % 
Coomassie G-250) 

 MQ H2O Add up to total 
volume of 200mL 

 

Anode buffer Running buffer 
(20X) 
 

50 mL ~5X (250mM 
BisTris, 250mM 
Tricine, pH 6,8) 

 MQ H2O Add up to a total 
volume of  200 mL 

***** 

Transfer / BN -
blotting buffer 

Transfer buffer(20 
X) 

50 mL 1 X 

 Methanol (96 %) Add up to a total 
volume of 1000 mL 

~22 % 

 MQ-H2O 750 mL  
 

 

2.3 Ladders and primers 

 
Table 19. Ladders used in this thesis. Volumes correspond to ~2g protein. 
Ladder Volume used Manufacturers 
Gene RulerTM 1 kb DNA 
ladder 

3 μL Fermentas 

Lambda-HindIII-EcoRI  1 μL Promega 

Magic Marker   2 μL Invitrogen 
Native Marker (unstained) 3 μL Invitrogen 
Presicion Plus Protein Std. 5 μL Bio-Rad 
See Blue 5 μL Invitrogen 
TrackIt 1kb DNA ladder 
(0.1μg/μL) 

2 μL Invitrogen 
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Table 20.Primers used in this thesis 
Name Description 
Fen 1-1314 Reverse primer used as control on sportP-plasmid in the 

amplification of Kir4.1 gene 
Fen1-897 Forward primer used as control on sportP-plasmid in the  

amplification of Kir4.1 gene 
Kir4.1-1367 Reverse primer for amplification of  Kir4.1gene 
Kir4.1-KE2 Forward primer for amplification of Kir4.1 gene 
Kir4.1-KE243 Forward primer for amplification of Kir4.1 gene used 

together with a reverse primer with myc- tag 
Kir4.1-kh2 Forward primer for amplification of Kir4.1 gene 
Kir4.1-Kh243 Forward primer for amplification of Kir4.1 gene 
Kir4.1-myc X2 Reverse primer for amplification of Kir4.1 gene with myc-

tag 
Kir4.1-mycX1 Reverse primer for amplification of Kir4.1 gene with myc 

tag 
Kir4.1-X2 Reverse primer for amplification of Kir4.1 gene 
BHG reverse primer Sequencing primer 
T7  primer Sequencing primer 
 
Table 21.PCR primer sequences used in this thesis 

Name Sequence 

Restriction 
site in 
sequence 

Fen 1-
897_forward 

GGCTACCGAGGACATGGACT 
 

***** 

Fen1-
1314_reverse 

TTCGCTCCTCAGAGAACTGC 
 

***** 

Kir4.1-
KE2_forward 

GAATTCGCCACCATGACGTCGGTCGCTAAGGTC ***** 

Kir4.1-KE243 
_forward 

GAATTCGCCACCATGACGTCGGTCGCTAAGGT 
 

***** 

Kir4.1-
kh2_forward 

AGCTTGCCACCATGACGTCGGTCGCTAAGGTC ***** 

Kir4.1-
Kh243_forward 

AAGCTTGCCACCATGACGTCGGTCGCTAAGGT Has HindIII 
site and Kozak 
at 5' end.  

Kir4.1-myc X2 
_reverse 

5`-CTCGAGCTACAGATCCTCTTCTGAGATGAGTTTTTGTTC 
TCCGACGTTGCTGATGCGCACACT-3 
 

***** 

Kir4.1-mycX1 
_reverse 

CTCGAGCTACAGATCCTCTTCTGAGATGAGTTTTTGTTC 
TCC GACGTTGCTGATGCGCACAC 
 
 
 

***** 

Kir4.1-
X1367_reverse 

CTCGAGATATCAGACGTTGCTGATG 
 

Has XhoI site 
at 5' end, for 
pcDNA3.1/Zeo 
cloning 
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Kir4.1-X2_ 
reverse  CTCGAGATATCAGACGTTGCTGATGC 

***** 

 
 

2.4 Antibodies, proteins and enzymes 

 
Table 22. Primary antibodies used in this thesis. 
Primary antibodies Description Manufacturers 
AQP4 (C-19) sc-9888 
 
AQP4 LS-C3805 

Anti-goat, 200 μg/mL 
 
Anti-rabbit, 1 mg/ml 
 

Santa Cruz Biotechnology, 
Inc. 
LifeSpan Biosciences   

 Kir 4.1 APC-035 
 
 Kir 4.1 K1864 
 
 Kir 4.1 ab55380 
 

Anti-rabbit, 0.8 mg/ml 
 
Anti-rabbit,0.3 mg/ml 
 
Anti-mouse monoclonal 
1 mg/ml (only used for 
comparison) 
 

Alomone labs 
 
Nordic Biosite 
 
Abcam 

c-Myc (A-14) sc-789 Anti-rabbit, 200 μg/mL Santa Cruz Biotechnology, 
Inc. 

Syntrophin alpha 1 ab 11187  
 

Anti-rabbit, 7.7 mg/ml Abcam  

GFP rabbit polyclonal  
ab6556 

Anti-rabbit , 0.5 mg/ml 
 
 

Abcam 

GAPDH antibody 
ab9484 

Anti-mouse, 1 mg/ml 
 

Abcam 

 
Table 23. Secundary antibodies used in this thesis ( 1:10 000 dilution). 
Secundary antibodies Description Manufacturers 
Anti-rabbit A2556 
(Alkaline-phospathase) 

Produced in mouse (whole 
molecule), monclonal 

Sigma 

Anti-goat IgG A4187 
Alkaline-phospathase 

Produced in rabbit (Whole 
molecule) 

Sigma 

Anti-mouse IgG A3563 
(Alkaline-phospathase ) 

Produced in sheep (Whole 
molecule) 

Sigma 

 
Table 24. Enzymes used in this thesis. 
Name Description Manufacturers 
Complete Protease Inhibitor 
coctail   

***** Roche 

DNA ligase Mo202L New England BioLabs 
Phusion® High-Fidelity DNA 
Polymerase 

F53011 New England BioLabs 

Taq DNA polymerase 
 

Mo267L New England BioLabs 

Trypsin-EDTA     
C10H16N2O8 Lonza 

Topoisomerase 1 In the TOPO-kit Invitrogen 
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Table 25. Plasmids used in this thesis. 
Plasmid Description and use Source of referance 
Mx1pCl-Neo-M23-R86A-G135A-
I217A 

Expression plasmid used as 
vector for transfection of 
trippelmutations 

Made by a group member 

Mx22pCl-Neo-M23-I217-Y228 Expression plasmid used as 
vector for transfection of 
doublelmutations 

Made by a group member 

Mx35pCl-Neo-M23-R86A-
W209A-I217A 

Expression plasmid used as 
vector for transfection of 
trippelmutations 

Made by a group member 

Mx5pCl-Neo-M23-G135A-
I217A-Y228A 

Expression plasmid used as 
vector for transfection of 
trippelmutations 

Made by a group member 

Mx9-Kir4.1/pcDNA(Zeo)+ Expression plasmid used as 
vector for transfection of 
Kir4.1 

Made by a group member 

Mx9pCl-Neo-M23_W209A-
I217A-Y228A 

Expression plasmid used as 
vector for transfection of 
trippelmutations 

Made by a group member 

pcDNA3.1/Zeo(+) Expression plasmid Invitrogen V860-20 
pCR®2.1-TOPO Cloning plasmid Invitrogen K4500-01 
pHIV_mAQP4_shRNA_mirGFP Lenthi construct (RNAi) with 

GFP ( used as control in 
transfections assay of HeLa 
and HEK293 cells) 

Made by a group member 

pSport1 Expression plasmid used as 
vector for transfection of 
both Kir4.1 and Kir4.1-myc 

Open biosystem /Image id 
3088116 

pXOOM-AQP4 Expression plasmid  Made by a group member 
 

 

2.5 Bacterial strains, tools and instruments 

Table 26. Bacterial strains used in the thesis. 
Strain Specification Manufacturers 
Library Efficiency® 
DH5alpha™ competent cells  
 

18263-012 Invitrogen 

Subcloning Efficiency™ DH5 
alpha™ competent cells 

18265-017 Invitrogen 

 
Table 27 Analytical tools used in this thesis. 
Software Manufacturers 
Chromas Lite /Share-It! Digital River GmbH, Australia 
ImageQuant Tools UiO 
Photoshop Microsoft 
        
 
 
 

 33



Table 28. Instruments used in this thesis. 
Instruments Spesifications Manufacturers 
ABI prism 3100 DNA 
sequencer 

Sequencing Applied Biosystem 

Bechmark Reader Protein consentration 
estimation 

Bio-Rad 

Electrophoretic power supply  EPS 3500 xc Bio-Rad 
Gene Amp® PCR system 
9700 

Conventional PCR Applied Biosystem 

Magnetic stirrer ***** Lational Labnet 
Microscope light 
 

Axiovert 25 Zeiss 

ND-1000 full spectrum 
UV/VIS Nanodrop 

Measuring of DNA 
consentration 

Nanodrop 

pH Meter With Ph And 
Conductivity Expansion Units 

S47K Mettler-Toledo 

Table top centrifuge with 
cooling 

Rotina 35 R Hettich , Germany 

UV transmitter 
 

Uvitech Bio-Rad 

Cell incubation chamber Sanyo IR Sensor Bergman 
 
Table 29. Other laboratory equipment. 
Laboratory equipment Manufacturers 
Cell containes Corning 
Eppendorp tubes Axygen Quality 
Glass equipment Meszansky 
Pippettes (automatic and regular) BioHit 
Sterile filters; 0.22 μm pore size Millipore 
Strippettes1, 10 ml and 50 ml Costar 
Syringes 2 mL Omniflyx, Brauns 
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3 METHODS 
All materials used in chapter 3 are listed in chapter 2. 

3.1 Preparation of cDNA for Kir.4.1 analyses  

This is the first step towards making a Kir4.1construct, which was used to test antibody 

specificity for Kir4. RNA and protein extracts were obtained from adult, wildtype, female 

C57/129/AQP4 KO-mice. The mouse was sacrificed by elevated CO2 and decapitated. The 

tissue dissected was stored in chilled RNA-later to inhibit RNAases, before homogenized in a 

clean Kontes Homogenizer, size 16. 

 

Protocol 

• Remove the skin carefully from the scull by using forceps and scissors. 

• Cut the scull mid-sagittal from behind of the brain. 

• Remove the brain from the scull carefully, and put it on a clean tinfoil. 

• Localize cerebral cortex and cerebellum. 

• ~20 mg of tissue from cerebral cortex and from cerebellum is dissected as thin slices by 

using a common dissection tool-kit. 

• Put the slices in 500 μL of RNAlater, and label “cortex” or “cerebellum”. 

• Put one slice at a time in the Kontez Homogenizer and drain off RNAlater. 

• Add 350 μl of lysis-buffer (RNeasy-kit, Qiagen) to 20 mg of tissue.  

• Homogenate by 20 strokes and pipette the homogenate into a RNeasy column (RNeasy 

mini-kit spin columns (Qiagen)) that has been prepared according to the protocol in the 

kit, or a tube for storage. 

 

The homogenate obtained was purified using RNeasy mini-kit spin columns (Qiagen) ( section 

3.1.1) for making cDNA (section 3.1.2). The homogenate was frozen at -20 °C until needed. 

 

3.1.1 Total RNA-isolation and purification 
When working with RNA is it very important not to contaminate the sample with any RNAses. 

The bench-coat was changed, as well as gloves, and the use of tips with filter when performing 

RNA work to prevent degradation of RNA from RNAses. 
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For RNA extractions the “RNeasy mini kit-spin columns” (Qiagen) was used according to the 

maufacturers instruction. All steps were performed at room temperature, and it is important to 

ensure that the centrifuge does not cool below 20°C. This can affect the conditions for binding 

of RNA to the membrane in the columns. Result can be reduced RNA yield. 

 

Protocol 

• Transfer the homogenate into a RNAeasy mini spin-column placed in a collection tube. 

Centrifuge for 15 sec at >8000 g.  

• Discard the flow-trough. (Reuse the collection tube). 

• Add 700 uL of buffer RWI to the column. Centrifuge for 15 sec at >8000 g to wash the 

spin column-membranes. Discard the flow-trough. 

• Before the next step, change to a new collection tube. 

• Add 500 µL of buffer RPE to the column. Centrifuge for 1 min. at >8000 g to wash the 

spin column membrane. Discard the flow-trough. 

• Add 500 μL of buffer RPE to the column and spin again for 2 min. Discard the flow-

trough. 

• Centrifuge one  more time for 1 min. (This centrifugation step dries the membrane, 

ensuring that no ethanol is carried over during RNA elution). 

• Place the column in a marked 1.5 ml RNase free collection tube. Add 50 µL RNAse-

free water directly to the membrane. Incubate for 1 min and centrifuge for 1 min at 

>8000 g to elute the RNA.  

The RNA should be stored at -80 °C. (In this case the RNA was stored at -20° C until next 

day). 

 

3.1.2 cDNA synthesis by reverse transcription 
Complementary DNA (cDNA) is DNA synthesized from a fully spliced mRNA template in a 

reaction catalyzed by the enzyme reverse transcriptase (RT). The enzyme operates on a single 

strand of mRNA, and makes its complementary DNA by base paring between RNA (A,U,G,C) 

and DNA (A,T,G,C). Introns are non-coding sequences that have to be removed from the 

primary transcript of RNA before translation into proteins can start. In this thesis cDNA 

synthesis has been used for the creation of a cDNA library from mouse cortex and cerebellum, 

in order to get material for the amplification of the coding sequence of Kir.4.1 by using 

conventional PCR.  
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To generate cDNA,”High capacity cDNA Reverse Transcription kit” from Applied Biosystems 

was used (for primers see table 20). The procedure was performed according to the protocol 

included in the kit. Before starting, RNAse-free eppendorf-tubes were labelled, the buffers used 

in the master mix were thawed in a water bath at RT, and the enzyme was placed in a cold-box. 

  

Protocol 

• 50 μL of total RNA (obtained in the RNA extraction step, see 3.1.1) is mixed 1:1 with a 

master mix-solution described in table 2. The reagent was added in the order shown. 

Before adding the enzyme to the master mix, vortex and spin the mix very shortly. 

• Incubate the mix for 10 minutes at  room temperature. 

• Place the samples in 37 °C (water bath) for 1 h. 

• Spin the samples down and freeze at -20°C until proceeding with conventional PCR. 

 

3.2 PCR (Polymerase chain reaction) 

PCR is a method that allows the production of more than ten million copies of target DNA- 

sequences from only a few molecules. To amplify the desired DNA sequence, specific primers, 

DNA polymerase and dNTP are added. After denaturation of the DNA at high temperature, the 

primers anneal to a complementary sequence in the DNA when lowering the temperature. This 

makes it possible for the polymerase to initiate DNA replication of the sequence located 

between the primers (extension step). By exposing the reaction mixture to different thermal 

cycles, DNA synthesis of the target sequence is repeated in every cycle, giving an exponential 

synthesis of new copies of the template sequence. 

 

For PCR amplification of DNA fragments used in cloning steps, the Pfu(sion) DNA polymerase 

(Fermentas) and in conventional PCR the Taq-DNA polymerase (Invitrogen) was used to 

ensure correct amplification. Taq DNA Polymerase catalyzes the incorporation of dNTPs into 

DNA. All PCRs were performed in the Gene Amp® PCR system 9700 (Applied Biosystems). 

Primers used in the different PCR setups are listed in table 20. 
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Protocol 

• The PCR reaction was prepared in thin walled PCR tubes on ice. A mastermix was 

made according to the table 3 and multiplied with the number of samples +1     

 

• The reaction mixture was placed in a thermal cycler and the settings described below 

were applied (Table 30). 
     Table 30. Temperature, length and cycles of the different steps in the PCR reaction. 

Temprature Action Time Number of cycles

 Initial   

94°C Denaturation 3min  

95°C Denaturation 30sec 35 

56°C Annealing 45sec  

72°C Elongation 90sec  

72°C Extension 2 min 1 

4° C storage Until program is 

stopped 

 

 

The PCR products were analyzed by gel electrophoresis as described in 3.3 to confirm correct 

amplification. 

 

3.3 Agarose gel electrophoresis  

Agarose-gel electrophoresis is an easy and fast method for verifying the quality and quantity of 

DNA. This is a separation method used to visualize and identity DNA according to size. When 

adequate migration has occurred, DNA fragments are visualized by a staining-procedure. In our 

laboratory, we use the nucleic acid gel stain; SYBR Green ( S7585, Invitrogen).This fluorescent 

dye bind efficient to both double and single-stranded DNA. It is less mutagenic than ethidium-

bromide, and five times more sensitive (data sheet Invitrogen ). The gel can be stained prior to 

electrophoresis or after. In general the gel was stained by soaking in a dilute solution of SYBR 

Green and running buffer (1:10000) after electrophoresis. Incubation period was 45-60 min. 

This procedure gave the sharpest and strongest fluorescing signal. To visualize DNA, the gel 

was placed under an ultraviolet transilluminator, or a photo was taken by using a laser scanner 

(Typhoon). The DNA will diffuse within the gel over time, so examination of the gel should 
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take place shortly after the incubation time. In order to determine the molecular size of DNA, a 

DNA ladder is always run on the gel. 

 

Protocol 
Normally, DNA electrophoresis was performed at room temperature using 2 % agarose gel in 

0.5 X TAE buffer (table 16). 

 

• Mix agarose and 0.5 X TAE buffer. Heat the solution in the microwave until the agarose 

is dissolved completely. 

• Cool the agarose solution to approximately 70° C. Pour the solution into a tray (BioRad) 

where it can harden as the temperature drops. A well-comb with 10 or 15 wells was 

placed in the agarose gel during hardening. 

• The solid gel was transferred to an electrophoresis chamber filled with 0.5 X TAE 

buffer. 

• Samples were diluted to 1 X with 6 X loading dye before loading. 2 μg TrackIt 1Kb 

DNA ladder from Invitrogen was used as a molecular marker. 

• Electrophoresis was carried out for 45 min at 70 Volt. 

• When electrophoresis is done, stain the gel in SYBR Green solution for 45-60 min. 

• Scan gel using Typhoon scanner or proceed with purification (section 3.3.1). 

 

3.3.1 Purification of PCR products 
PCR products were excised from the electrophoresis gel using the GFX purification kit 

(Qiagen).The DNA fragment was cut out with a sharp, clean scalpel, after running a new 2 % 

agarose gel with minimized UV exposure time. The size of the gel slice was minimized by 

removing extra agarose. 

 

Protocol  

• The gel slice is transferred to a pre-weighed clean tube.  

• 1μL of capture buffer is added for every mg of gel slice.  

• The tube is incubated at 60 ° C until the gel slice completely dissolved. To help 

dissolving the gel slice, the tube is gently mixed every 3rd min during the incubation. 
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• After the gel slice is dissolved completely, a spin column is placed in a provided 

collection tube. The sample mixture is applied and incubated for 1 min at room 

temperature.  

• After a centrifugation step (13000 RPM for 1 min), the flow through is discarded.  

• 500 μL of wash buffer is added to the column, followed by a new centrifugation step for 

30 sec.The flow through is discarded  

• The GFX-column is placed in a clean 1.5 ml microsentrifuge tube. To eluate DNA, 20 

μL MQ-H 2O is added to the center of the GFX-column membrane and the column is 

centrifugated for 1 min 

• All centrifugation steps are performed at 13000 RPM and RT. DNA is stored at -20 °C. 

 

3.4 Preparation of pCR2.1-TOPO plasmid  
3.4.1 Sticky end ligation into plasmid by using TOPO TA cloning-kit 
This is a method used for insertion of a Taq-polymerase amplified DNA product into a plasmid 

vector (pCR 2.1-TOPO plasmid). Plasmid with DNA-insertion can then be introduced for cells 

that are able to incorporate this plasmid/DNA and express it on its surface. The enzyme DNA 

topoisomerase I, is important in this cloning assay. Topoisomerase I functions as a restriction 

enzyme and as a ligase, so other DNA ligases for this cloning are not needed. The biological 

role of the enzyme is to cleave and rejoin DNA when replicated. 

 

In the kit, (TOPO TA cloning, Invitrogen) TOPO-vectors are provided with a topoisomerase I 

covalent attached to each 3´-phoshate. Topoisomerase I in this assay recognizes a specific 

sequence 5´--CCCTT found in one strand of the plasmid, and can cleave the phospodiester-

bond behind the last thymine and the strand can unwind. Taq polymerase is used for the 

amplification in the PCR reaction, and has the ability to add a singel deoxyadenosine (A) to the 

3`end of the PCR product. The TOPO-vector has an overhanging 3`thymine-residue, and is 

then compatible to the PCR product. The TOPO-vectors are designed in such a way that they 

carry this specific sequence (CCTT-3') which can be recognized by the topoisomerase enzyme. 

The enzyme ligates the compatible ends of the plasmid and DNA insert, and releases it self 

from the complex.  
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The vector pCR®2.1-TOPO contains DNA coding sequences for both ampicillin and 

kanamycin. This is used to select transformed E.coli grown on agar with the appropriate 

antibiotics. The vector also occupies a restriction site for EcoRI, which makes it possible to cut 

out the PCR product after ligation. The T7-promotor in the vector indicates the start sequence 

for the T7-polymerase used for in vitro translation (see appendix 4) 

The manual included with the kit was generally followed when using the TOPO TA Cloning kit 

(Invitrogen). This utilizes bacteria competent for chemical transformation. 

  
     Table 31. Reaction mix for TOPO-cloning  

Reagent  Volume 

ds DNA 4 μL 

Diluted TOPO-vector (2 μL TOPO-

vecto r + 2.3 μL MQ-H 2O ) 

1 μL 

MQ -H 2 O 1 μL 

 

Protocol 

• Incubate the reaction mixture for 15 min at RT (table 31). During the incubation period, 

the vial with competent DH5α-bacteria can be thawed on ice.  

• Spin the vial briefly and apply 3 μL of the reaction mixture (table 31). Keep everything 

on ice during a 30 min incubation period. 

• Heat-shock the bacteria-vial for exactly 35 sec at 42°C (use a water bath). Rotate the 

vial every third second.  

• After 35 sec, immediately transfer the tube to ice. Add 200 μL S.O.C medium and 

incubate on a shaker for 45 min at RT. 

• After the incubation period, plate out each transformation on pre-warmed selective LB 

plates. The vector used contains an ampicillin-resistant gene, and ampicillin (50μg/mL) 

is used as a selective in the agar-plates. Only colonies containing the correct plasmid 

will grow on the selective plates. 

• To avoid too dense colonies, two different volumes were spread using glass-beads 

prewashed in alcohol and dried. The agar plates are incubated at 37 °C for 12-16 h 

before proceeding picking colonies and perform miniprep, maxiprep and sequencing ( 

see 3.6 and 3.10) 
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Figure 6. A flow sheet diagram of the TOPO-cloning reaction. (From Invitrogen .com) 

 

3.4.2 Growth of Escherichia coli strain  
E.coli cells were grown as overnight cultures in open to air liquid LB media. The incubation 

was carried out at 37 ° C and with shaking at orbit 160. The DH5-alpha- E. coli strain was used 

as a second vector for harbouring of plasmids. The concentration of the antibiotic (kanamycin 

or ampicillin) used in liquid agar was 100 μg/mL and in solid agar 50 μg/mL. LB medium and 

LB agar were made by workers at “Substratlaboratoriet”, Rikshospitalet. 

 

3.4.3 Bacterial strains  
E.coli bacteria strains arrived from the manufacturers as glycerol stocks and were stored at -

80°C. The bacteria vials where thawed on ice when needed for experiments. 

Subcloning Efficiency™ DH5 alpha™ competent cells (White cap) (Invitrogen) where used for 

sub cloning and easy transformation of plasmids. DH5 α-cells are very robust, and this method 

is well established in our lab. 
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3.5 Overnight (ON) cultures 

To make overnight cultures for use in plasmid purification, one bacteria-colony from a LB-

plate with appropriate selective antibiotics (ampicillin (50 μg/mL) or kanamycin) was grown in 

100 mL LB-agar. The master plate containing all the different colonies was kept at 4 °C for 

retesting if necessary. The tubes were placed in a table-top incubator with shaking movements 

(orbit: 250) at 37 °C for approximately 16 h before plasmid preparation.  

 

3.6 Plasmid purification from ON cultures  

3.6.1 Miniprep protocol 
QIAprep® Miniprep protocol (Qiagen) was generally used for small scale plasmid purification 

when screening for plasmid inserts. This protocol is designed to give high-copy plasmid DNA 

from over night cultures of E.coli in LB medium.The procedure is based on lysis of bacterial 

cells by using alkaline buffers, neutralization, followed by adsorption of DNA onto a silica 

membrane. 

 

Protocol 

• 3 mL of an overnight bacterial culture grown in selective LB/antibiotics medium was 

pelleted by a table-top centrifugation-step at >8000 rpm for 5 min at RT. 

• The supernatant was removed and the pellet resuspended in 250 μL of buffer P1 with 

RNase added.  

• The resuspend pellet was transferred to a microcentrifuge tube and 250 μL of buffer P2 

(lysis) was added and mixed by inverting the tube eight times.  

• The lysis reaction was allowed to proceed for exactly 4 min and 30sec. 

• After lysis, 350 μL of buffer N3 (neutralization) was added, and mixed by inverting the 

tube eight times. Centrifuge the mix at 13000 rpm for 10 min in a tabletop 

microcentrifuge 

• The supernatant from the previous step was decanted into a spin column, and 

centrifuged at 13000 rpm for 60 sec. The flow-through was discarded.  

• All bound DNA was washed by adding 750 μL buffer PE and centrifuged for 60 sec. 

The flow-troughs were discarded.  
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• An additional centrifugation step was performed to remove the residual wash buffer, 

since ethanol in the buffer can inhibit upcoming enzymatic reactions. 

• The bound DNA is eluated in a clean eppendorf-tube by adding 50 μL EB-buffer (10 

mM Tris-Cl, ph 8.5), incubating for 1min, and centrifuged for 1 min at 13 000 RPM.  

• The pure plasmid DNA can be stored at 4 °C for a short period of time, or -20°C. 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Flowchart of miniprep procedure from www.qiagen.com

 

 

3.6.2 Endotoxin-free Maxiprep 
Big batches of bacterial plasmid purification were performed using the EndoFree® Plasmid 

Maxi purification kit (Qiagen). Using this protocol up to 500 μg endotoxin-free plasmid DNA 

can be purified. Endotoxins, also known as lipopolysaccharids, are cell membrane components 
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of bacteria e.g.from E.coli. Small amount of endotoxins are released into bacteria- surroundings 

when they die, thus during lysis these molecules are released into the lysate and can influence 

transfection efficiencies of DNA into cultured cells later. The procedure is based on an alkaline 

lysis reaction, followed by binding of plasmid- DNA to an QIAGEN Anion-Exchange Resin, in 

the presence of low salt and pH conditions. 

 

Before starting 

• Buffer P3 should be pre-chilled at 4 °C. 

• Make 70 % endotoxin-free ethanol by adding 40 mL of 96 % ethanol to the endotoxin-

free water supplied in the kit. 

• Make sure that tubes and plastic- wear are endotoxin-free. 

 

Protocol 

• Harvest the bacterial cells from the overnight-cultures by centrifugation at 5000 rpm for 

10 min in a table top centrifuge at 4 °C.  

• Resuspend the bacterial pellet in 10 mL of cold Buffer P1 by using a pipette to activate 

lysis.  

• Add 10 mL Buffer P2 (wash step) to the bacterial lysate. Mix by inverting the tube six 

times. Let the tube incubate at RT for exactly 4 min 45 sec. 

• Prepare the QIAfilter cartridge; lock the cartridge with the cap and place it in a rack 

with the nozzle down. 

• Add 10 mL of chilled Buffer P3 to the lysate. The lysate will be less viscous. Mix by 

inverting the tube six times, or until the lysate appears clear again. A precipitate will 

form at the bottom of the tube, containing genomic DNA, proteins and cell debris.  

• Transfer the lysate to the QIAfilter cartridge, and incubate at RT for 10 min. Tap 

carefully on the tube to avoid the precipitate clogging the filter.  

• Insert the piston after the incubation period, and remove the cap on the nozzle. Filter the 

lysate into a 50 mL falcon tube, by pushing the piston down. 

• Add 2.5 mL of Buffer ER (endotoxin removal buffer) to the lysate and invert the tube 

10 times. Incubate the mix on ice for 30 minutes. 

• Prepare a Qiagen-tip filter column by adding 10 mL of the equilibrate-buffer QBT. Let 

the column empty by gravity. 
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• After the 30 min incubation step, apply the filtered lysat to the column, and let it flow 

through by its own gravity. 

• Wash by adding 30 mL Buffer QC to the column, twice. The buffer moves by gravity 

through the column. 

• Elute DNA by adding 15 mL of Buffer QN.  

• Precipitate the DNA by adding 11 mL of isopropanol (2-propanol) at RT to the eluate. 

Mix and centrifuge at 13000 for 30 min at 4 °C to prevent overheating. Mark the outside 

of the tube for more easily visualization of the pellet, before centrifugation. Remove the 

supernatant by decanting.  

• Wash the DNA pellet with 5 mL of endotoxinfree 70 % ethanol and centrifuge at 13 000 

g for 10 min. The ethanol removes precipitated salt and replaces isopropanol with 

ethanol, which evaporates more easily. This will make the DNA easier to redissolve. 

Remove the supernatant by using a 500 μL pipette. 

• Remove any drops of ethanol by using a small pipette, and air dry the pellet for 5 min. 

• Redissolve the pellet with 500 μL of TE buffer and rinse the wall with a pipette for good 

recovery of DNA.   

• Determine the DNA yield by spectrophotometric measuring at 260 nm. (section 3.8)  

 

3.7 Restriction enzyme digestion of DNA, pCR2.1-TOPO 
plasmid and expression plasmid pcDNA3.1/Zeo(+) 

A restriction enzyme is an enzyme able to cut a DNA strand within a specific sequence in a 

nucleotide. They produce a double-stranded cut in the DNA. These specific recognition sites 

differ for each restriction enzyme, and can therefore produce segments with different length, 

sequence and orientation. All plasmid used in this thesis contain a "multiple cloning site" that 

contains many restriction enzyme recognition sequences within its DNA. This allows for 

insertion of a specific fragment of DNA into a plasmid.  

Restriction enzyme digestion was performed by incubating double stranded DNA or plasmid, 

with an appropriate amount of restriction enzymes, in a buffer (recommended by the supplier) 

and at the optimal temperature for the specific enzyme. Every tube contains plasmid/DNA, 

buffer C or D (Sigma), BSA, enzyme and water (table 8). 
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Protocol 

Incubate the “digestion mixture” for 1.5 hours at 37 °C (optimal temperature for HindIII/EcoRI/ 

XhoI). 

 

Digestion mixture 
5 μg DNA or plasmid DNA 

3 μl 10X Buffer C or D (Sigma) 

3 μl 10X BSA 

1 μl restriction enzyme (HindIII, EcoRI and XhoI, 10000 units/mL) 

Add MQ H2O up to a volume of 30 μL. 

 

After digestion the samples are frozen at -20 °C for further evaluation.  

The result is examined by agarose- gel electrophoresis as described in section 3.3 

 

3.8 DNA concentration measurements 

Samples were measured at 260 nm against a blank (MQ-H 2 O or elution buffer), to determine 

DNA concentration. For measurements the Nanodrop 1000 (Thermo Scientific) was used.  

OD (optical density) 1.0 correspond to approximately 40 μg/mL and 50 μg/mL of single 

stranded RNA and double stranded DNA, respectively (Sambrook.J and Russel, 2001). 

 

To determine the purity of the DNA, the calculated ratio between OD 260: OD 280 was used. A 

ratio of 1.8 is acceptable. A ratio <1.8 will indicate significant contamination of i.e phenol or 

trizol. A ratio of ~2.0 indicates RNA contamination. 

 

3.9 Sticky end ligation of Kir4.1 into expression plasmid 
pcDNA3.1/Zeo(+) 

After the digestion step, DNA fragments contain 5`-3`overhanging ends. These single stranded 

overhangs were created by digestion of the vector and target DNA with a restriction enzyme 

(section 3.7). When the overhanging ends from the plasmid and the DNA fragment are 

compatible, they can anneal to each other and form a hybrid molecule. Annealing brings the 

5`phosphate and the 3`hydroxyl residues on both vector and DNA fragment close together, 
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allowing for the two parts to anneal. The process of ligation is performed by the enzyme DNA 

ligase, forming a phosphodiester-bond between the compatible base-pair. 

The DNA was eluated with 30 μL or 50 μL of nuclease-free water, depending of the expected 

yield. The concentration of vector and DNA fragment, respectively, was measured by using the 

Nanodrop1000 (Thermo Scientific) ( section 3.8). 

 
Reaction mixture 
120 ng DNA fragment  

10 μL 1X Quick ligase buffer (BioLabs) 

8 μg plasmid pcDNA3.1/Zeo(+)  

1μL Quick ligase enzyme (10000 units/mL) (BioLabs) 

 MQ- H 2 O up to 30 μL 

 

Protocol 

• Add the different components of the reaction mixture in the order described above. 

• Let the mixture incubate in room temperature for 15 min and then put the vial on ice. 

• The ligation mixture is then  transformed into competent DH5-alpha bacteria (section 

3.4.1)  and plated out on LB agar plates with the appropriate antibiotics (section 3.5) 

• Incubate the plates at 37 °C for 16 h before proceeding picking colonies and perform 

miniprep, maxiprep and sequencing as describes previous (section 3.6 and 3.10)) 
     

3.10 Sequencing  

DNA sequencing is a method by which the precise order of the nucleotides in a piece of DNA 

can be determined. A PCR reaction is carried out with only one primer and a mixture of deoxy- 

nucleotides (dNTPs) and labeled dideoxy-nucleotides (ddNTPs). The dideoxynucleotides can 

be incorporated into the growing polynucleotide strand just as efficiently as the normal 

nucleotide. When a ddNTP is incorporated into a growing strand, further synthesis stops. The 

results are many DNA fragment with various lengths, each ending with a labeled ddNTP. A 

capillary electrophhoreis analyzer can separate and detect the different labeled nucleotides. 

Each dideoxynucleotide correspond to different colores (ex. all ddATP are green, ddCTP`s are 

red..) in the diagram showing the sequence. This means that every DNA fragment terminated 

by a specific ddNTP, can be detected. The shortest DNA fragment will be detected first 
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(moving fastest), and this will be the first nucleotide in the sequence. The second fastest 

nucleotide will be detected and so on……(Sambrook.J and Russel, 2001). 

 

Sequencing mixture 
150-300 ng template (double stranded) 

1μL (3.2 pmol) primer  

MQ- H 2 O added up to a total volume of 15uL 

All the sequencing reactions were performed on a ABI 3100 Automated Capillary DNA 

Sequencer at the Centre for Molecular Biology and Neuroscience, Institute of Medical 

Microbiology at Rikshospitalet. The sequencing diagrams are analyzed using the software 

“Chromas” from the University of Oslo. 

 

3.11 The cellular model system 

3.11.1 HeLa -cells  
In this study HeLa cells were used as a cellular model for production of AQP4-isoforms, Kir4.1 

protein, PatJ protein, α-syntrophin protein and protein variants with myc-tag, using transfection 

assays.HeLa cells are human epithelial cells from cervical carcinoma transformed by human 

papillomavirus 18. The cells were originally taken from Henrietta Lacks, who died from cancer 

in 1951. The HeLa cell line is a classic example of an immortalized cell line and is often used 

in medical research. They are adherent and maintain contact inhibition in vitro. HeLa cells 

grow in monolayer, and will not grow on top of each other when they touching the adjacent 

cell. Loss of contact inhibition is a sign of oncogenic cells, so in vitro HeLa cells are not 

oncogenic but can be by transformed by an oncogen virus (Van Valen, 1991). 

 

3.11.2 Human Embryonic Kidney (HEK) 293-cells 
HEK 293 is a cell line that is easy to grow. The cells transfect well and is a widely used in both 

research and industry. The cell line is derived from embryonic kidney cells grown in tissue 

culture. If you compare growth-velocity of this cell line with the HeLa cell line more rapid 

growth is observed. 
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3.12 Culture and maintenance of cell cultures  

Different cell types and different bacterial strains have different nutritional needs. For optimal 

growth, we have to ensure that each type of organism have a medium that fulfils its biological 

needs. 

3.12.1 HeLa cells and HEK 293 cells 
Both HeLa- and HEK 293- cells were cultured in DMEM medium (Gibco) supplemented with 

10 % foetal calf serum (FSC) and 2 mM L-glutamine. DMEM medium contains phenyl red as a 

pH indicator. The cells were incubated in a incubation chamber at 37 ° with 5 % CO2 and 

saturated humidity and passaged when ~ 70 % confluent (two-three times a week). Confluence 

refers to the percent coverage of the dish or the flask by the cells. When no open space is 

observed between the cells, total confluence is obtained. In the beginning, confluence was 

determined by counting cells (see section 3.12.5) but after a while confluence was determined 

by microscopy.  When performing a transfection, cells were split into ~ 50 % confluence with 

no antibiotics in the media.  

 

3.12.2 Splitting cell lines 
Splitting or passaging cells is important to obtain healthy and optimised conditions for 

experiments. Cell culture medium was heated to 37 °C using a water bath prior to cell culture 

work, and all cell-work was performed under sterile conditions. HeLa- and HEK293 cells were 

cultured until they reached ~70 % confluence. 

 

The purpose of washing the cells is to remove rest medium and dead cells. Serum in the 

medium can inhibit the enzyme trypsine (see below), and influence the amount of cells after the 

passage. PBS must be free from Ca2+ and Mg2+ in order to not inhibit the effect of trypsin. All 

DMEM used in the cell work has no antibotics added. 

 

Protocol 
PBS washing 

• Remove media. 

• Add PBS and wash gently using a 500 μL pipette. 

• Remove excessive fluid. 

• Repeat the previous steps three times. 
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Trypsination 

Trypsin is a serine protease who predominantly cleaves peptide bonds at the carboxylside of the 

amino acids lysine and arginin. When used for detaching cells, bonds between cells and the 

container will be broken. For optimal function of the enzyme, the container is placed in 37 °C 

for five to ten min, depending on the cell type and effect of the enzyme. 

   

• Add trypsin (1 mL) to the container with cells to be splitted. 

• Make sure the fluid covers the entire surface of the container. 

• Leave it at 37 °C for 5-10 min. 

• Before proceeding, cells must have detached from the surface indicated by sphere- 

shaped morphology. To enforce loosening, knock container one time on the bench. 

 
Dilution and distribution off cells        

• Prepare 1 new container – make sure to label sufficiently  

• Add appropriate volume of DMEM with serum and L-glutamin to the container. 

• Add appropriate volume of DMEM with serum and L-glutamin to the container with the 

cells to be split. 

• Mix well by pipetting hard 4-6 times to separate cells from each other 

• Check in microscope for single cells. If there are sheets, pipette hard a couple of times 

more. 

• Distribute appropriate volume of cell (after counting) suspension into the new container 

(175 000 cells/flask) 

• Make sure cells are well spaced and non-accumulated before leaving in incubator. 

• Place the cells in the incubator at 37 °C until passage or use. 

3.12.3 Cell thawing 
Whenever a new batch with HeLa or HEK 293 cells were needed, a cryo-tube containing a 

stock with cells was taken from the liquid nitrogen tank, and thawed as fast as possible using a 

water bath at 37 °C. The whole content (1 mL) was after thawing pipetted into a T-75cm2 

container with 14 mL DMEM with 5 % serum, glutamine added and no antibiotics under sterile 

conditions. The flask was then swirled gently and the cell solution was distributed into a new 

container after cell counting (section 3.12.5) to obtain the correct dilution of cells. The cells 

were maintained as described in section 3.12. 
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3.12.4 Cell freezing 
To generate frozen stocks of cells, one confluent T-75 cm2-culture flask was trypsinated as 

described in section 3.12.2, washed twice with PBS (phosphate-buffered-saline (pH 7.4) to 

remove dead cells and serum,  and mixed with freezing medium (DMSO) using the following 

protocol under sterile conditions 

The dimetylsulfoxid (DMSO) used for preservation of cells, prevents formation of water 

crystals which can leed to cell disruption. DMSO also protects the cells from further damage 

during the storage period.  

 

Protocol 

• Resuspend cell-suspension in 9 mL DMEM with serum and L-glutamin, and transfer to 

a 15 mL tube 

• Centrifugate at 160 g at 4 °C, for 10 min 

• Remove supernatant and resuspend the pellet obtained, in 500 μL DMEM with serum 

and L-glutamin, using a 500 μL pipette. 

• Mix cell solution with 500 μL of cold freezing medium (40 % DMEM with serum and 

glutamine added and 20 % DMSO) and transfer to a cryo-tube. Make sure the lid is 

properly tightened. 

• Equilibrate the cells in a polystyrene-box at -80 °C for 24 h. 

• Freeze down cells for long-term storage in liquid nitrogen (-178 °C). 

3.12.5 Counting cells 
Counting cells were done on a regular basis, when splitting cells, to obtain comparable 

conditions when analysing the results. 

 

 

 

 

 
 

 

Figure 8. The pattern of the Fuchs-Rosenthal counting chamber. (Figure taken from hausserscientific.com). 

 

The cells were first detached using Trypsine as described in section 3.12.2 .For counting, a 

“Fuchs-Rosenthal counting chamber” (cell-depth 0.2 mm) with two cover-slips, was used. 

 52



The pattern in the chamber consists of 16 one square millimetre areas (A-squares) orientated by 

triple lines, and each such area sub-divided into 16 squares (Fig.8). Four A squares were 

counted for each chamber. The volume of one A-square is 0.1 μL. The optimal amount of cells 

for performing a good transfection is ~175.000 cells in each flask. 

 

Protocol 

• Mix a 1:1 solution of cell-suspension and tryptophan-blue. Vortex and spin. 

• Add 5 μl of the mix to each chamber in the “Fuchs-Rosenthal counting chamber”. Count 

four A-squares in each chamber and calculate the average number of cells.  

 

Calculation 
The example is given to calculate a concentration of 175.000 cells / flask. The average from 

four squares is 20 cells. 

 

X    : 20 cells x 2 (dilution factor) = 40 cells pr. A-square 

40 cells / 0.1 μL suspension  400 cells/uL  400.000 cells/mL 

 175.000 cells/400.000 cells/mL = 0.44 mL  

 

In this specific calculation, 440 μL of cell-suspension is plated in each flask to obtain ~175.000 

cells. 

3.13 Transfection of plasmids into cultured cells  

Cationic (+) lipid-based transfection is a method for the introduction of genetic material into a 

cultured cell. Most lipids are negatively charged (anionic) but positively charged (cationic) 

lipid was first introduced for medical research in 1987 (Felgner et al., 1987). Cationic lipid can 

interact electrostatic with the negatively charged DNA and make condensed lipid/DNA 

complexes. The condensed aggregates of lipid/DNA are allowed to fuse with the hydrophobic, 

and negatively charged cell-membrane in e.g. cultured cells, and the DNA/plasmid is then 

introduced to the target cell by endocytosis (Sambrook.J and Russel, 2001). 

 

3.13.1 Transfection with Fugene 6 
In our lab the reagents Fugene 6 (Roche) is used for the transfection-reaction. The ratio of DNA 

(μg): Fugene 6 (μL) should be approximately 1: 3. Usually we use 6.6 μg DNA and 19.5 μL 
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Fugene 6, for a container with area 75 cm2. When cotransfecting plasmids, total amount of 

DNA is 6.6 μg. Plasmid/DNA complex is prepared by using serum-free Opti-MEM 

(Invitrogen), since serum disturbs the complex formation for Fugene 6. 

 

Protocol 
Complex preparation 

• Add 200 μl serum-free Opti-MEM into two different, clean tubes. 

• Add 20 μL of Fugene 6 into the first tube, and 6.6 μg plasmid to the other. (DNA 

prepared from maxiprep). Mix gently by pipetting six times with a 500 μL pipette and 

incubate in room temperature for five min.  

• Mix the two solutions ( plasmid and Fugene 6-solution) 

• Incubate at room temperature for 20 min (complexion step). 

• Add 9 mL of serum free DMEM in a new tube. Mix the complexion solution (1mL) 

with 9 mL of prewarmed DMEM containing serum. Total volume is 10 mL. 

 
Transfection  

• Remove the media in the cell culture container .Wash the cells with PBS a couple of 

times to remove dead cells and debris. 

• Add the complex/ DMEM solution from the complexion step into the cell flask, and 

incubate for 24 h at 37 °C before harvesting. 

 

3.13.2 Harvesting of DNA from 75cm2 cell-culture containers 
This is a method describing how to get a cell pellet from cultured cells containing your DNA of 

interest. It is important to count the cells harvested, to not exceed the yield limit of the 

purifications column .Count the cells in the control container prior to harvesting. A maximum 

of 175.000 cells / flask should be used according to our transfection procedure (section 3.13.1). 

 

After 24 h. of growth, the cells were washed and trypsinated as described in section 3.12.2 
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Protocol  

Add appropriate amount volume of DMEM with serum and glutamine, to the trypsinated cells. 

Transfer the suspension into a 15 mL falcon tube, and pellet by centrifugation at 160 RCF for 

10 min at 4 °C. 

• Decant off the supernatant  

• Resuspend the pellet in a clean eppendorf by adding 1 mL PBS. 

• Pellet by a new centrifugation step. 

• Remove the last drop of supernatant with a pipette.  

• Homogenize the pellet (section 3.14) for performing Western blot/BN-PAGE or store at 

-20°C until use. 
 

3.14 Preparing protein homogenate from cultured cells 

In order to prepare protein extracts for use in Blue Native-Page or SDS-PAGE, a 

homogenization protocol established in the laboratory was used. The cells were harvested from 

75cm2 container as described in section 3.13.2 and frozen cell pellets were thawed on ice before 

proceeding. 

 

Protocol 

• Add 200 μL lysis buffer (0.32 mM sucrose, 10 mM Hepes pH 7.4, 2 mM EDTA, 4 μL 

PIC (Protease inhibitor cocktail (Roche)) to the thawed pellet.  

• Resuspend the pellet and transfer to a Kontez Homogenizer (size16). 

• Homogenize with 20 strokes. Lysate is transfered to a clean eppendorf tube 

• Spin the samples at 1000g, 4 °C, for 10 min 

• Transfer the supernatant (S1) to a new eppendorf-tube and freeze both S1 and pellet 

(S2) at -20 °C. 

• Protein yield estimation was performed as described in section 3.15.1 
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3.15 Preparing of samples for SDS-PAGE and Western blot 

3.15.1 Total protein concentration determination   
The detergent compatible (DC) protein assay (Bio-Rad) was used for total protein concentration 

determination of cell extracts lysed in homogenization buffer. This assay is based on a 

colometric reaction of protein with an alkaline copper tartrate solution. By adding a Foline 

reagent color development will occur. The colour development is primarily due to the 

appearance of amino acid tyrosine (V) and tryptophan (W). When protein react with the Folin 

reagens, a reduction by loss of one to three oxygen atoms occur. These reduced species have a 

blue colour which can be measured by absorbance (405-750 nm). In general, samples were 

diluted ( setup below), and a standard curve of BSA ranging from 0-2 g/L was prepared in MQ-

H 2 O. 5μL of each standard and samples were measure in triplicate at 655 nm with the Bio-Rad 

Benchmark reader. The protein content in the samples was estimated against the Bovine Serum 

Albumin (BSA) standard curve. 

 

Protocol 

• Thaw the protein lysate samples and take out BSA standards (0-2000 μg/ml) from the 

fridge. Prepare one eppendorf tube per sample subjected to total protein measurement 

and make a dilution series of each sample. Calculate with 20 μl for each sample as the 

samples are measured in triplicates. 

• Prepare reagent “A” from the kit: Mix 2 ml reagent A and 40 μl reagent S (the small 

bottle) in a 15 ml tube. Mix. The reagent S is only added when you have membrane 

protein (not liquid soluble). 

• Pipette 5 μl of each diluted sample, and BSA standards into a 96 well plate. See table 

32) 

• Pipette 25 μl of reagent A into each well. 

• Pipette 200 μl of reagent B into each well. 

• Incubate for 15 min at RT. 

• Measure absorbance at 655 nm with the Bio-Rad Benchmark reader and save file/print 

reports. 

 

 

 
 

 56



Table 32. Setup of the protein dilution series  

 1 2 3 4 5 6 7 8 9 10 11 12 

A 2000 2000 2000 1500 1500 1500 1000 1000 1000 750 750 750

B 500 

 

500 500 250 250 250 125 125 125 25 25 25 

C Lysis 

buffer 

Lysis 

buffer 

Lysis 

buffer 

         

D Sp. 1:1 Sp. 1:1 Sp. 1:1 Sp. 

1:10 

 Sp. 

1:10 

Sp. 

1:100 

Sp. 

1:100 

     

 

3.15.2 Preparation of lysate from cultured cells 
The lysate is mixed with 1 x SDS loading buffer and reducing agent (DTT or β-

mercaptoethanol, 0.1M).The reducing agent reduces sulphur bridges in proteins and contributes 

to protein denaturation. 

 

Protocol 

• Estimate 10-50 μg of protein in each lane in the gel. One well in a 10 well /1.5 mm gel, 

have a volume of 60 μL. Equal volumes should be loaded in each well. 

Tip; dilute the 6 X loading buffer to 1 X and prepare a sample stock of 1 g/L protein. 

Use the diluted 1 X loading buffer. 

• Heat the samples containing water soluble proteins (not membrane proteins) in a heating 

block at 60 °C for 5 min   

• Set up a gel rig  

 

3.15.3 Making SDS-PAGE gels 
• 1.5 mm thick gels were made by using an arrangement from MINI Protean (Bio-Rad). 

All parts used in the arrangement were clean. 

• A resolving gel (Table 17) was made and transferred to the chamber made of two glass 

covers in the arrangement.  

• When adding TEMED, the gel polymerizes and it is important to work fast. Butanol was 

overlaid the resolving gel to straighten the edge.  
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• The gel was allowed to polymerize in room temperature for at least 30 min. When the 

gel was polymerized, the stacking gel was made and applied on top.  

• A plastic comb was put between the two glass covers, making wells into the stacking 

gel.  

 

3.16 Western Blots and SDS polyacrylamide gel 
electrophoresis (SDS-PAGE)  

SDS-PAGE followed by Western Blotting (section 3.16.2) is a method for separation and 

detection of specific proteins from in this case, a transfected cell culture- or brain- homogenate, 

using electrophoresis. Electrophoresis (section 3.17.3) is a process where charged particles 

migrate through a solid gel in response to an electric field. The rate of movement is influenced 

of frictional resistance (pore size) and the charge: mass ratio of the protein. 

The SDS-PAGE system uses a discontinuous buffer system with two gel types with different 

pore sizes. In this case migration is influenced of both size and shape of the protein. Smaller 

proteins are retained less than bigger, and thus move faster. 

 In SDS-PAGE the influence of charge on protein migration is eliminated by providing all 

proteins a negative net charge. Sodium dodecyl sulphate (SDS) is an anionic detergent that 

binds to proteins. SDS is added for at least two reasons. One action is to denature the protein by 

braking non-covalent bonds in the proteins. This destroys the tertiary structure (not the 

primary), giving each protein similar shape. The other one is to give proteins a negative charge. 

This also blocks the possibility for the protein to interact with other anionic polymers, such as 

lipid or nucleic acids, which give rise to a different protein shape affecting electrophoretic 

migration.  

 

The gel matrix used in this protocol is polyacrylamide. These gels are formed when monomeric 

acrylamide is polymerised by use of two forming agents, ammonium persulfate (APS) and 

tetramethylethylenediamine (TEMED). Acrylamide polymerize to long linear products and for 

the formation of a three-dimentional gel, a cross linker is added (bisacrylamide). The pore size 

can be varied by changing the ratio between acrylamide and bisacrylamide. 

 

Most of the gels used in the SDS-PAGE protocol, are hand made in the laboratory. The self 

made gels consist of 1/3 part stacking gel and 2/3 part resolving gel. Stacking gel is used to 
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increase the resolution of the protein bands during electrophoresis. The stacking gel contains 

chloride ions, which migrate faster through the gel than the protein sample applied. In the 

electrophoresis buffer, glycine is added, and these ions migrate slower than the protein sample. 

In the stacking gel, the protein molecules will therefore be trapped as a sharp band between 

these two ions.(Sambrook.J and Russel, 2001) 

 

The resolving gel is a separating gel underlying the stacking gel. When the protein sample 

enters the resolving gel, which has a smaller pore size, the glycine is ionized because of higher 

pH and a different salt concentration. This leads to no voltage gradient in the system and the 

proteins can be separated based on size only (Table 17). 

 
 
 
 
 
 

 

 

 

 

Figure 9. An figure showing the SDS-PAGE set up with stacking gel and resolving gel (here: separation 

gel).Picture from www.bioon.com. 

 

3.16.1 Electrophoresis on SDS-PAGE gels  
The proteins were separated on SDS-PAGE gel electrophoresis (MINI PROTEAN II, Bio Rad) 

containing 12-14 % polyacrylamide, and in some cases urea (Table17). 

• All samples were thawed on ice and diluted to the concentration 1 g/L with loading 

buffer (section 3.15.2). 

• 10 μg-50 μg proteins were loaded in each well.  

• Electrophoresis was run at 150 V for one h or to the proteins ridge the bottom of the gel, 

by the use of diluted Laemmli buffer. Diluting the samples to the same protein 

concentrations made it possible to load equal amount of proteins in each lane.  

• To enable identification of protein mass, 5 μL of prestained Dual color Protein Standard 

(Bio-Rad ) were run alongside the samples.  
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• Glyceraldehyde-3-phosphate dehydrogenase (GAPH) was used as a loading control. 

• MagicMark XP (Invitrogen) or Presicion Plus Protein Standard (BioRad) was used as 

molecular weight marker. 2 μL MagicMark XP was applied in the first lane (only 

visible on the membrane), together with 5 μL of SeeBlue Plus –marker (Invitrogen) 

added in lane number two (only visible in the gel). The MagicMarkXP is a molecular 

weight marker with a IgG binding site. This is the reason why the marker is not visible 

before the immunodetection is completed.  

 

3.16.2 Western Blotting  
Western blotting is a teqnique that use antibodies for protein detection. The proteins are 

resolved by SDS-PAGE electrophoresis, and made available for antibody hybridization, by 

transfer from a gel to a polyvinyldiene fluoride (PVDF) membrane. Blotting is performed by 

applying an electric current that transfers the protein from the gel to the membrane. 

The electrophoretic transfer of proteins from the gel to the membrane was performed in cold, 

diluted, transfer / Towbin buffer with 20 % w/v methanol, by using a gel ridge (Criterion 

blotting system). A blotting sandwich was made consisted of pads, filters, the gel and a PVDF 

membrane (Fig.10). 

 

Protocol 

• The PVDF membranes are hydrophobic and must be activated in methanol for 10 sec 

prior to blotting. 

• All sponges and filters used in the sandwich must be wetted with Towbin buffer. 

• Assemble the Criterion blotting cell and fill up with Towbin buffer. 

• Set up the blotting sandwich according to figure 10. 

• Insert the blotting sandwich and add a magnetic stirrer into the cold buffer. 

• Blot at 100 V for 30 min. 

• After blotting, rinse the membrane in MQ-H 2 O, briefly. Label the membrane. 

 

The efficiency of the protein transfer from the gel to the membrane was checked by incubation 

with Coomassie G-250 staining (Bio-Rad) for 12-24 hour prior to scanning in a table top 

scanner. 

 

 

 60



 

 3 pads 

Filter 

 5 pads PVDF 

Filter Gel 

 

 

 

 

 

 

 

 
Figure 10. This figure shows the assembly of the SDS-PAGE blotting sandwich. 

 

3.16.3 Immunolabelling and detection of proteins in SDS-PAGE 
Antibodies bind to the target protein with a certain affinity. Nor the target protein or primary 

antibodies are visible on the PVDF membrane. To visualize the protein of interest, secondary 

antibodies couples to the enzyme alkaline phospathase (AP) are used. These antibodies are 

raised against one specific specie. E.g. if the primary antibody is raised in rabbit, the secondary 

antibody should be anti-rabbit. 

 

AP is a phosphatase/enzyme that cleaves off a phosphate-group from the AP substrate (ECF- 

substrate (GE Healtcare), which will be added for immuno-detection. This substrate reacts with 

the secondary antibody and produces a light signal at approximately 630 nm. The light signal 

from the membrane is scanned by a detector and the resulting image shows whether the protein 

of interest has been detected.  

 

Protocol 
Before immunodetection, membranes were blocked for at least one hour in 5 % milk solution 

with w/v 0.05 % NaN 3, to avoid unspecific labeling of the primary antibody. 

• The membranes were washed in TBS-T for one hour and incubated ON with primary 

antibody at 4°C in a roller-drum. For mini-gels a 50 mL falcon tube was used as 

incubation chamber (concentrations and dilutions of primary antibodies are listed in 

table 22 and 23). 

• After ON incubation with primary antibody diluted in block solution, the membrane is 

washed for three times for 10 min in TBS-T.  
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• The membrane was then incubated at room temperature for one hour in secondary anti-

specie conjugated alkalic phospathase AP (Sigma) diluted in TBST (1:10000) 

• After incubation with secondary antibody, the membrane is washed in TBS-T for at 

least two h with frequent changes of TBS-T. 

•  Immunodetection was carried out by adding 1 mL of ECF-substrate on the membrane, 

put folio-coated lid over and incubate at exactly 5 min. Wrap the membrane in a 

transparent plastic sheet, after pouring off excessive substrate.  

• Blots are scanned using “Typhoon-scanner” and software settings are as followed:  

 

1. Acquisition mode: Fluorescence 

2. PMT: 400-600V 

3. Sensitivity: Normal 

4. Press sample activated 

 

• Membranes were either scanned dry or wet. For storage, the membranes were dried and 

kept at 4 °C. If membranes needed to be reprobed, a stripping protocol was used ( 3.16.4 

and Table 17). 

• In some cases, urea was added to the SDS-PAGE gel. Urea is supposed to improve 

resolution of membrane protein, such as AQP4 (Neely et al, 1999), and is commonly 

used as a reagents which disrupt the three-dimensional structure in proteins. Urea 

interferes with stabilizing intra-molecular interactions, such as hydrogen bonds and 

hydrophobic effects. 

 

3.16.4 Membrane stripping 
• Prior to stripping, membranes were washed in 40 % methanol, and then stripped in β-

mercaptoethanol (7 μL / 1 mL stripping buffer) and strippingbuffer at 60 °C for 1.5 

hour. 

• Wash briefly in distilled water and block in 5 % milk solution with w/v 0.05 % NaN3 

for one hour. 

•  The membrane is now ready for reprobing with primary antibody ON. 
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3.17 Blue Native PAGE (BN-PAGE) gel electrophoresis 

BN-PAGE is a technique for electrophoretic separation of proteins with their native structure 

and activity intact. In standard SDS-PAGE, SDS denatures proteins and gives them a net 

negative charge by binding to the protein. This allows the protein to migrate in one direction 

towards the positive anode. SDS is present in both sample and buffers (section 3.16). 

However, in BN -PAGE, the charge-shift molecule used is the dye Coomassie G-250, 

developed by Schagger & von Jagow in 1991(Schagger and von, 1991). The dye binds to the 

hydrophobic areas of the proteins and gives them a negative charge while still maintaining their 

native state. No denaturation will occur. The G-250 is present in the cathode buffer and the 

running buffer, but not in the gel itself.  

 

A common problem when performing Blue Native Page with membrane proteins is 

solubilisation of the proteins and how to avoid aggregates. For good separation, membrane 

proteins require a mild detergent that does not disrupt the higher order structures of the protein. 

If the solubilisation is just partial, or the detergent has damaging effects on the three 

dimensional structure, this could influence the results in a negative way. Our group have 

investigated 55 different detergents in order to find the best solubilisation reagents (6 detergents 

published in Sorbo et al 2007), and in this protocol the detergent n-dodecyl-Beta-D maltoside 

(DDM) is the chosen one.  

 

AQP4 
tetramer 

Coomassie G-250 Mild non-ionic detergent 

Figure 11. This figure shows a membrane protein surrounded with detergent and commasie G-250. (Reprinted 
from J.G Sørbø). 
 
 

3.17.1 Collection of samples for BN-PAGE  
Samples for BN-PAGE were collected by harvesting cell cultures as described in section 3.13.2 

followed by homogenization.  Protein determination was carried out using the Bio-Rad DC kit 

and a microplate reader as described in section 3.15.1. 
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3.17.2 Sample preparation for BN-PAGE 
Protocol 

• 5-10 μg of protein is mixed with 1 % DDM (Invitrogen) total, ready made Native-

PAGE 4 X sample buffer (Invitrogen) and MQ H2O according to the table 18. 

•  The prepared samples should incubate at RT for 10 min 

• Spin down on a table top centrifuge for 10 min at 4°C (10000 RCF). Transfer 

supernatant to a new tube. 

• Set up a gel ridge (X Cell Sure Lock Mini-Cell) and continue with section 3.17.3 

 

3.17.3 Electrophoresis on BN-PAGE assay 
The electrophoresis is performed in a XCell Sure Lock Mini-Cell ridge from Invitrogen. 

The buffer system used in BN-PAGE assay, involves different ions. The gel matrix is added 

with chloride ions, which serves as a leading ion due to mobility and move fastest.  

 

Protocol 

• Samples from section 3.17.2 are loaded on a pre-cast 4-16 % NativePage Novex Bis-

Tris Gel (Invitrogen). Prior to loading the samples are mixed with 1 μL Coomassie G-

250, and the wells are washed with water and 1X “Dark blue”- cathode running buffer 

(Table 18) three times.  

• Fill up the wells with “Dark blue”-catode-buffer and displace air bubbles before loading 

samples with a Hamilton syringe (20 μL). 

• All samples are handled quickly in room temperature, because of easy aggregation.  

• To provide easy visualizations when loading samples, do not fill up the inner chamber 

of the gel rigde with cathode buffer prior to loading 

• 3 μL of NativeMark Unstained Protein Standard (Invitrogen) is loaded in lane 1. 20 uL 

of protein-solution is loaded in the other wells. 

• After loading samples, fill up the inner chamber (covering the wells) of the gel-rigde 

with dark cathode buffer. The outer chamber contains 1 X anode buffer. 

• The electrophoretic separation of proteins is run at 150 V for 160 min. Change from 

dark to light running buffer after 1/3 migrated distance (after~ 20 min) with constant 

current. The dark catode buffer contains more negative charge, and will help the big 

protein complexes in entering the gel.  

• Make Anode buffer /BN-running from 20 X stock-solutions according to table 18.  
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3.18 Protein transfer (blotting) and immunolabelling 
in BN-PAGE  
3.18.1 Blotting 
Protocol  

• Make Transfer/ BN-blotting buffer according to table 18.  

• When the electrophoresis run is finished, let the gels rest in transfer / BN-blotting buffer 

for 5 min.  

• In the meantime, sponges are prepared by soaking in transfer buffer. PVDF membrane 

used for the immuno detection must be activated in methanol, and the XCell II Blot 

Module (Invitrogen) are used for building up a blotting sandwich (as for SDS-PAGE, 

Fig.10) 

• Blotting is performed at 50 V for 60 min. Tap water is used as a cooler in the outer 

compartment in the blot module. 

• When the run is done, the membranes are washed in methanol for three times. The gels 

are discarded. Visualize the marker (and protein) by staining with Ponceau S Acid red 

112, for 10 min. Revers the stain by washing with tap water.  

• The membranes are cut at one edge for easy identification. 

 

3.18.2 Immunolabelling and detection for BN-PAGE 
 
Protocol 

• The membranes are blocked for at least 30 minutes in 5 % milk solution with w/v 0.05 

% NaN3, to avoid unspecific labelling of the primary antibody.  

• Incubation with primary antibody was performed in the cold room ON (constant 

rotating). Concentrations and dilutions of primary antibodies are listed in table 22. 

Before proceeding with secondary antibody- incubation the following morning, the 

membranes are washed in TBS-T for 10 min, three times.  

• Incubation with 1:10000 dilution of secondary anti-specie conjugated AP (Sigma) 

antibody in TBS-T, is performed in room temperature for one hour.  

• Remove unbound antibody with frequently changes of TBS-T buffer for 2-3 h. 

• Remove excess TBS-T (use clean bench paper) before applying 1 mL of ECF-substrate 

(GE Healtcare) for immuno-detection.  
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• Incubate the membranes in the dark for exactly 20 min between to plastic sheets. Dry 

the membranes at 37 °C for 10 min and use the “Typhoon 9410 Scanner” for signal 

detection. 

 

Analytical tools for processing images; “Image Quant TL version 2003.02” (Amersham) 

 

Software settings on “Typhoon 9410 scanner” are as followed:  

1. Acquisition mode: Fluorescence 

2. PMT: 400-600V 

3. Sensitivity: Normal 

4. Press sample activated 

5. Laser; Blue 1457nm, Filter: 560LP Gen Purple 
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4 RESULTS 
The results are divided into three different parts. The first part (I) is a step-by step section 

where the construction of the Kir4.1 expression plasmid is described. The different section in 

part I was to a certain degree dependent on successful results from the proceeding section. 

Therefor part I contains some discussion of the challenges each step in the plasmid 

construction procedure had to overcome. The second part (II) contains the different studies of 

Kir 4.1 as a possible interaction partner, and the third part (III) comprises the assembly of 

square arrays and protein-protein interactions in isoforms of aquaporin 4. 

 

Part I 

4.1 Construction of Kir4.1 expression plasmid  

There has recently been uncertainty about the specificity of anti Kir4.1- antibodies in the 

detection of Kir4.1 protein in vivo. Since specificity is crucial in studies where antibodies are 

involved, it was decided to generate a system to test whether the Kir4.1 antibody really binds 

Kir4.1 protein and whether the binding is specific. To do so, we decided to express Kir4.1 in a 

cell line and test the available antibodies against Kir4.1 in this system. At first a plasmid for 

expressing Kir4.1 was constructed, as described in chapter 3. 

 

4.1.1 Designing primers and PCR amplification of the Kir4.1 gene 
BLAST-analysis of the Kir4.1 mRNA (NM_001039484) showed that cDNA from mouse 

could be used as starting material in a PCR amplification of Kir4.1. The coding sequence 

(CDS) of Kir4.1gene is from nucleotide 243 to nucleotide 1382 in the mRNA. This 

corresponds to a Kir4.1 protein of 379 amino acids and 42 kDa size. 

 

The PCR primers were designed to amplify the area on both sides just outside the CDS 

region. Two forward-primers and two reverse primers were made, as PCR sometimes can fail 

or can be unspecific (Table 20). In the primer design, restriction enzyme sites were added to 

each primer. Furthermore, an optimal Kozak sequence was added to the 5’ primers, which is 

important for the initiation of the translation by the ribosome. The PCR was carried out on 

both mouse cDNA template and a SPORT-Kir4.1- plasmid from Open Biosystem (Bc 
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099932). Four combinations of primers were tried and two different hybridization 

temperatures were tested. The enzyme used was “Taq DNA polymerase (New England 

Biolabs). 

 

Figure 12 shows a stained 2 % agarose gel after electrophoresis, where the amplified DNA 

obtained in the PCR is visualized. The gel shows that all combinations of primers gave  

product on the pSPORT1_Kir4.1-plasmid (Fig.12 A). The size of the bands  correspond to the 

correct size (1139 bp), as it is larger than the 1018 bp band and smaller than the 1636 bp band 

of the TrackIt 1kb ladder.  

 

There are some minor extra bands visible, indicating that the primers used are not perfectly 

specific to the target area. At the bottom of the lanes, primer-dimer bands are visible, 

indicating that primers interact. This might be a result of PCR conditions being not optimal 

due to the constrained positioning of the primers at start and stop of the CDS. 

 
Figure 12. Agarose gel electrophoresis of primers tested on pSPORT_Kir4.1-plasmid and mouse cDNA. Lane 1 
in both panels contains 1Kb DNA ladder (Invitrogen). Panel A: Lane 2-5 show four different combinations of 
Kir4.1-Kh2 and Kir4.1-Kh243 (forward primer) and Kir4.1-X2 and Kir4.1_X1367 (reverse primers) on 
pSPORT_Kir4.1- plasmid. The expected product of Kir4.1 is 1139 bp. Panel B: Lane 2-5 has same combinations 
of primers as in panel A, but the template is mouse cDNA. No bands visible when using cDNA. Lane 6 shows 
the positive control with Fen-1-897 and Fen-1-1314 primers on Fen1-plasmid. Expected product is 517bp (417bp 
+ primers). Negative control with MQ water did not show any bands and is not shown. 
 

 

Figure 12 B shows that the reactions with mouse cDNA were not successful .The failure of 

PCR on mouse cDNA might indicate problems with the synthesis or degraded RNA. RNA 

easily degrades and should always be stored at – 80 ° C, and not at -20 ° as in this case. 

Unfortunately the RNA was not analyzed for degradation prior to cDNA synthesis.  Still, our 

strategy with multiple primers tested on two different templates and at different annealing 

temperatures was successful, since a PCR product at the expected size of 1139 bp was 

obtained. 
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The PCR product was then purified from an agarose gel (not shown), and cloned into a 

TOPO-vector for further amplifications and sequencing, as described below. 

Figure 13 shows stained and purified DNA from figure 12. Visible bands on the control-gel 

(Fig.13) indicated enough yield of DNA for proceeding with the next step. 

 
Figure 13. An 1% agarose gel electrophoresis of stained and purified DNA. Lane 1-4 contains GFX purified 
PCR product with expected size of 1139 bp. 
 
 

4.1.2 Cloning of Kir4.1 PCR-products into a pCR2.1TOPO plasmid 
The amplified Kir4.1 fragment was cloned into a plasmid vector called 2.1-TOPO plasmid. 

By using the TOPO TA cloning kit (see section 3.4.1) the PCR fragment can be directly 

incorporated into the vector without use of ligases. 

 

Purified DNA from the PCR amplification was mixed with the pCR2.1-TOPO plasmid, 

incubated at room temperature and then DH5α E.coli bacteria where chemically transformed. 

The TOPO vector contains genes coding for ampicillin- and kanamycin resistance, so bacteria 

with vector, with or without insert, can grow on agar plates containing these antibiotics. 

Bacterial colonies obtained after 24 h of growth, should contain a TOPO-vector. After 16 

hours, the colonies were counted and the results are shown in table 33. 

 

  

 69



 
 

Table 33. Number of colonies obtained after TOPO-cloning. The table shows the results from four different              
transformations with different inserts (i.e the four different PCR products shown in lane 2-5 in Fig. 12A, and , in      
purified form, in lane 1-4 of Fig. 13). Cells were grown at 37° C for 16 h before counting. 

Sample Number of colonies 

TOPO 1_243_1367 75 

TOPO 2_243_X2 116 

TOPO 3_Kh2_1367 121 

TOPO 4_Kh2_X2 200 

 

The plasmid sometimes religates without target insert, so the plasmid in the growing cells 

could be empty. However, the number of colonies for the ligation reaction, compared with 

previous control experiment where no insert DNA was added, was approximately ten times 

higher, indicating successful cloning of the PCR products. 

 

4.1.3 Purifying and analyzing the pCR2.1-TOPO-Kir4.1 plasmids 
 

4.1.3.1 Purifying plasmids from bacterial colonies using Miniprep and quantifying DNA 
yield using NanoDrop spectrometry 

From each transformation, four colonies were picked and cells were grown for plasmid 

isolation, as described in section 3.5. Simultaneously, the selected colonies were inoculated 

on a masterplate for storage and later control. After the isolation of plasmid using the 

MiniPrep method (section 3.6.1), DNA concentration were measured, as this is helpful for 

subsequent restriction enzyme analysis, insert sequencing and further sub-cloning. The DNA 

yield was good, varying from ca. 3.5 to ca. 7 microgram of DNA. These amounts were 

sufficient for all subsequent steps. 

 
4.1.4 Restriction analysis of plasmid to demonstrate KIR4.1 inserts 
In order to demonstrate Kir4.1 insert presence in the TOPO-Minipreps, restriction analysis 

with the enzymes HindIII and EcoRI was performed. To visualize the cutting fragments, 

samples were run on 1% agarose gel electrophoresis (for plasmid chart see appendix 4).  

 

Figure 14 contains the different digested Minipreps. Two bands are present in all lanes. Bands 

with molecular weight of 4281 bp (3931bp + 950 bp), correspond to the pCR2.1-TOPO 
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plasmid with insert. The Kir4.1 insert with restriction sites will here have a molecular weight 

of 950 bp since an internal HindIII site in Kir4.1 cut close to ends of CDS. According to the 

molecular weight marker, correct sizes on insert have been detected, and we have successfully 

demonstrated presence of Kir4.1 insert 

 
 

 
 
 
 
 
 
                           4281 bp      
 
 
                           
                              947 bp 
 
 
 
 
 
 
 
Figure 14.  Picture showing the digested plasmid. Lane 1 contains the Lambda-HindIII-EcoRI ladder. Lane2-4 
contains digested plasmid where the upper band in every lane corresponds to the plasmid. The lower band 
corresponds to the Kir4.1 insert. 
 

4.1.5 Sequencing results from cloning of Kir4.1 into TOPO plasmid  
The 16 purified plasmids with insert were sent for sequencing, to see if the Kir4.1 insert had 

any mutations before sub-cloning was performed. In general, the sequences were aligned with 

the mouse mRNA sequence NM_001039484, using the online alignment tool 2BLAST from 

NCBI. The sequence matched nicely in four overlapping alignments, thus we concluded that 

we had managed to clone Kir4.1 into the TOPO- plasmid successfully. 

 

However, there were two persistent changes at position 380 bp and 820 bp in all four clones ( 

Fig.15 for alignment). Since the changes were present in different PCR products, the changes 

probably originated from the plasmid template and not in the PCR process or the TOPO-

cloning. Furthermore, translation analysis in Vector NTI hardware on pCR2.1-TOPO-

mKir4.1- and NM_001039484 files show that the two mutations present in position 380 bp 

and 820 bp are silent, with no change from the amino acids lysine and histidine. This indicates 

that the mutations in position 380 and 820 might be natural occurring polymorphisms. 
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Query  244   TGACGTCGGTCGCTAAGGTCTATTACAGTCAGACGACTCAGACAGAGAGCCGCCCCCTAG  303 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  37    TGACGTCGGTCGCTAAGGTCTATTACAGTCAGACGACTCAGACAGAGAGCCGCCCCCTAG  96 
 
Query  304   TGGCCCCAGGAATACGCCGGAGGAGGGTCCTCACGAAAGACGGCCGGAGCAATGTGAGAA  363 
             ||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  97    TGGCCCCAGGAATACSCCGGAGGAGGGTCCTCACGAAAGACGGCCGGAGCAATGTGAGAA  156 
     polymorphism 
Query  364   TGGAGCACATTGCTGACAAACGTTTCCTCTACCTCAAGGATCTATGGACGACCTTCATTG  423 
             ||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||| 
Sbjct  157   TGGAGCACATTGCTGACAAGCGTTTCCTCTACCTCAAGGATCTATGGACGACCTTCATTG  216 
 
Query  424   ACATGCAATGGCGCTACAAGCTTCTGCTCTTCTCTGCAACCTTTGCAGGCACGTGGTTCC  483 
             ||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||| 
Sbjct  217   ACATGCAATGGCGCTACAAGCTTCTGCTCTTYTCTGCAACCTTTGCAGGCACGTGGTTCC  276 
 
Query  484   TCTTTGGTGTGGTGTGGTATCTGGTAGCTGTGGCCCATGGGGACCTGTTGGAGCTGGGAC  543 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  277   TCTTTGGTGTGGTGTGGTATCTGGTAGCTGTGGCCCATGGGGACCTGTTGGAGCTGGGAC  336 
 
Query  544   CTCCTGCCAACCACACGCCTTGTGTGGTGCAGGTGCACACGCTCACCGGAGCCTTCCTCT  603 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  337   CTCCTGCCAACCACACGCCTTGTGTGGTGCAGGTGCACACGCTCACCGGAGCCTTCCTCT  396 
 
Query  604   TCTCCCTGGAATCCCAGACCACCATCGGCTATGGCTTCCGCTACATCAGTGAGGAATGCC  663 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | 
Sbjct  397   TCTCCCTGGAATCCCAGACCACCATCGGCTATGGCTTCCGCTACATCAGTGAGGAATGYC  456 
 
Query  664   CACTGGCCATCGTGCTTCTTATTGCGCAGCTGGTGCTCACCACCATTCTGGAAATCTTCA  723 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  457   CACTGGCCATCGTGCTTCTTATTGCGCAGCTGGTGCTCACCACCATTCTGGAAATCTTCA  516 
 
Query  724   TCACAGGTACCTTCCTTGCAAAGATTGCCCGGCCTAAGAAGAGGGCCGAGACGATCCGCT  783 
             |||||||||||||||||||||||||||||||| |||||||||||| |||||||||||||| 
Sbjct  517   TCACAGGTACCTTCCTTGCAAAGATTGCCCGGYCTAAGAAGAGGGYCGAGACGATCCGCT  576 
 
        Polymorphism 
Query  784   TCAGCCAGCATGCCGTTGTGGCTTCCCATAACGGGAAGCCTTGCCTTATGATCCGGGTTG  843 
             |||||||||||| ||||||||||||||| |||||||||| ||||||||||||| |||||| 
Sbjct  577   TCAGCCAGCATGYCGTTGTGGCTTCCCACAACGGGAAGCYTTGCCTTATGATCYGGGTTG  636 
 
Query  844   CCAATATGCGGAAGAGTCTCCTCATTGGATGCCAGGTGACA-GGCAAACTGCTTCAAACG  902 
              |||||||||||||| ||||||||||||||||||||||||| ||||||||| |||||||| 
Sbjct  637   YCAATATGCGGAAGAKTCTCCTCATTGGATGCCAGGTGACAGGGCAAACTGYTTCAAACG  696 
 
Query  903   CACCAGACAAAGGAGGGTGAGAATATTCGGCTCAAC-CAGGTCAACGTGACTTTCCAAGT  961 
             |||||||||||||||||||||||||||||||||||| |||||||||||| |||||||||| 
Sbjct  697   CACCAGACAAAGGAGGGTGAGAATATTCGGCTCAACYCAGGTCAACGTGWCTTTCCAAGT  756 
 
Query  962   AGACACAGCCTCAGACAGCCCCTTTCTCATCCTACCCCTGACTTTCTACCACGTGGTAGA  1021 
             |||||||| |||||||  |  ||| |||||||||| ||||||||||||||  |||||||| 
Sbjct  757   AGACACAGYCTCAGAC-RCYYCTTKCTCATCCTACYCCTGACTTTCTACCWTGTGGTAGA  815 
 
Query  1022  TGAGACCAGCCCCTTAAAAGATCTCCCGCTCCGCAGTGGGGAGGGGGACTTTGAGCTGGT  1081 
             |||||  || | |||||| ||||||||||| |||| ||||||||||||  |||||||||  
Sbjct  816   TGAGAGYAGYCYCTTAAARGATCTCCCGCT-CGCA-TGGGGAGGGGGAM-TTGAGCTGGK  872 
 
Query  1082  GCTGATC  1088 
             ||||||| 
Sbjct  873   GCTGATC  879 
 
Figure 15: Multiple alignment of sample sequence form Miniprep from TOPO 1 (upper sequence), with 
mKir4.1 NM_001039484 (CDS = 243-1382) (lower sequence). Sequence mistakes labelled in red, which 
increase strongly at end of sequence. Possible polymorphisms in position 380 and 820 indicated in purple. 
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The sequencing results revealed four clones with the right insert. There was one positive clone 

from every set of TOPO reaction.  

 

We successfully amplified the restriction enzyme sites inserts into the PCR primers (data not 

shown). At the 5`end of the CDS we identified the EcoRI site, and the optimal Kozak 

sequence. At the 3`end of the CDS we identified the XhoI restrictions site. Since our Kir4.1 

insert contained the correct sequence, the next step was subcloning of the Kir4.1 insert into 

the expression vector pcDNA3.1/Zeo(+) utilising the EcoRI and Xhol restriction enzyme sites. 

 

4.1.6 Sub-cloning Kir4.1 insert from pCR2.1-TOPO to pcDNA3.1/Zeo(+) 
The Kir4.1/Topo plasmid prep was excised from the TOPO vector with EcoRI and XhoI 

restriction enzymes and analyzed on agarose gel (Figure16 A and B). 

  

As shown in figure 16, two bands in every lane, with different sizes were observed when 

digesting with EcoR1 and XhoI. The main band (plasmid) is around 4000 bp.The second band 

is around 1000 bp which corresponds to the correct size of the DNA insert (1139 bp). The 

pCR2.1-TOPO plasmid is 3.9 kb and the insert has a size of 1139 bp, the expected ratio 

between digested plasmid band and insert band is in this case1:3.4. In lane 2, 834 ng of 

plasmid is loaded. The 1139 bp band should then contain ~245 ng of plasmid. The yield is 

important for the subsequent ligation reaction setup. Here, with 50 % yield in purification, and 

elution in total volume of 20 μL, we would expect 6.1 μg/L concentration of purified insert 

DNA. 

 

The bands in lane 7 and 8 (Fig.16) are slightly higher than in lane 3-6. In lane 7, the band 

correspond to the plasmid digested with EcoRI, with the expected size 3923 bp (vector) plus 

1139 bp (insert) for a total of 5062 bp. In all lanes, small bands < 100 bp in size were 

observed (but not visible in figure 16). These small fragments are probably fragments of the 

TOPO-plasmid itself, as it contains several restriction sites for EcoRI and XhoI. 

 

In conclusion, these data shows successful amplification and cloning of Kir4 into the TOPO 

vector. The next step was cloning of Kir4.1 into the expression plasmid, pcDNA3.1/Zeo(+), 

by the use of the same restriction enzymes. 
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Figure 16. Digested plasmid fragments separated on an agarose gel. In Fig.16A, lane 1 contains the 21kDa 
Lambda DNA ladder. In lane 2 the upper band corresponds to the cut plasmid of ~4000 bp. The lower band 
corresponds to the DNA insert of ~1000 bp. In panel B, lane 1 contains the same ladder as in panel A. Lane 3-6 
contains different eluates digested with both restriction enzymes. The same patters as in panel A are seen. Lane 
7-8 contains eluate digested with only one restriction enzyme, EcoRI and XhoI, respectively. 
 
 

4.1.7 Digest of the expression plasmid pcDNA3.1/Zeo(+) with EcoRI and XhoI 
The expression plasmid (pcDNA3.1/Zeo(+) will act as an carrier for the Kir4.1 insert when  

transfected into cells. The plasmid contains a CMV-promotor driving the expression of the 

Kir4.1 mRNA and protein.The vector also contain a T7 promotor region which could make an 

in vitro transcription / translation possible by indicating the start sequence for a T7 

polymerase in the transformation E.coli assay. 

 

The pcDNA3,1/Zeo(+) plasmid was cut with EcoRI and XhoI, as shown in Figure 17.Lane 2 

and 3 show the plasmid digested with both EcoRI and XhoI. The band size corresponds to the 

expected size of the plasmid (5015 bp), according to the molecular weight marker in lane 1. 

The small fragment of ~40bp (position 912-953, which corresponds to the fragment between 

the two restriction enzyme sites), is not be visible on the agarose gel. GFX purified plasmid 

digested with only one restriction enzyme at a time and undigested plasmid, were used as 

controls of the digest reaction (not shown). 

 

The bands from lane 2 and 3 were excised from the gel and purified. The control gel in figure 

18 show the expected size of the plasmid, and indicates enough yield for the next step, which 

was ligation of Kir4.1 insert and pcDNA3.1/Zeo (+) plasmid. 
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Figure17. Digested eluate of plasmid pcDNA3.1/Zeo(+) separated in an agarose gel.Lane 1 contains the Lambda 
DNA ladder and the sizemarker 5148 kDa is indicated. Lane 2-3 contains plasmid digested with both EcoRI and 
XhoI. The bright band at ~5000 bp has the correct size. 
 
 
 

Figure 18. Control gel of purified plasmid pcDNA3.1/Zeo(+)- plasmid digested with EcoRI and XhoI. Lane 1 
contains  Lambda DNA ladder. With sizemarker 5148 kDa indicated. Lane 5-8 contains purified plasmid with 
size ~5000 kDa. 
 

4.1.8 Ligation of Kir4.1-insert and expression plasmid pcDNA3.1/Zeo(+) 
The Kir4.1 insert and the expression plasmid now had complementary end junctions. When 

mixed together, along with ligation buffer and the T4 DNA ligases, some of the DNA 

fragments will be ligated into a complete plasmid. Transformation into bacteria and selection 

for ampicillin resistance will identify the bacterial colonies containing the successful 

ligations, along with some mistaken ligations. Four different ligation reactions were made 

where purified Kir4.1 digested with XhoI and EcoRI, were mixed with the vector 
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pcDNA3.1/Zeo(+). After several unsuccessful attempts to ligate various Kir4.1 fragments 

resulting from different restriction enzyme digests and purifications, into the expression 

plasmid pcDNA3/Zeo(+),we finally obtained a few colonies after Dh5alpha transformations 

(Table 35). 
 

Table 35. Number of colonies obtained from ON cultures after transformation reaction of Kir4.1 fragment and 
expression vector  

 Fragment (1uL) Vector (9uL) Number of colonies 

1 Kir4.1/19.12.07 Mp1 119ng/uL pcDNA3.1 /6.3ng/uL _1 4 

2 Kir4.1/19.12.07 Mp1 119ng/uL pcDNA3.1/ 6.3ng/uL _2 5 

3 Kir4.1/19.12.07 Mp4 69.5ng/uL pcDNA3.1 /6.3ng/uL _1 3 

4 Kir4.1/19.12.07 Mp4 69.5ng/uL pcDNA3.1/ 6.3ng/uL _2 6 

5 Nothing/ Negative control pcDNA3.1 /6.3ng/uL _1 0 

6 Nothing/ Negative control pcDNA3.1/ 6.3ng/uL _2 2 

 

The number of colonies is low (3 to 6 colonies in ligation 1-4) but higher than the background 

level seen in the control ligation without fragmen (ligation 5-6). This can indicate a few 

successful ligations. Two colonies arose from one of the ON negative controls (no fragment 

added) (ligation 6). This is probably colonies from plasmids with no insert. Since the 

probability of empty plasmids was present, we had to purify DNA from colonies by Miniprep, 

and check the DNA by sequencing. 

 

4.1.9 Sequence analysis and Maxiprep purification of pcDNA3.1/Zeo(+)-Kir4.1  
 

4.1.9.1 Sequencing results of plasmid after performed ligation assay 

The purpose of sequencing the plasmids was to verify correct amplification and cloning of the 

Kir4.1 insert into the pcDNA3 vector. Two different primers (T7 and reverse primer BGH) 

where used. The sequencing output was analyzed with “Cromas Lite”, and a multiple 

alignment using 2BLAST (http://www.ncbi.nlm.nih.gov), were performed. Four different 

clones contained the correct insert (table 36), containing the Kir4.1 insert, ATG start codon, 

Kozak-sequence (GCCACC), XhoI restriction site (AAGCTT), EcoRI restriction site 

(GAATTC) and Topo-vector sequence (GCCCTT) (Appendix 5). 
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As these four plasmids had the correct sequence, their corresponding bacteria from the 

MiniPrep Masterplate were used for the final large-scale purification of plasmid by the use of 

Qiagen Endotoxin-free MaxiPrep, according to section 3.6.2. 
 

4.1.10 Yield and quality of Endotoxin-Free MaxiPrep 
After the purification step, DNA yield were measured. The concentrations in the eluates were 

too low for proceeding with transfection of plasmid into the cell lines, so new fresh colonies 

for ON cultures had to be made. The reason for the purification failure might have been 

clogged columns or loss of plasmids in bacterial Masterplate colonies. New bacteria 

containing the plasmids were prepared by bacterial transformation. The second large-scale 

purification was successful. Results and yield from the new transformation of Kir.4.1 in 

competent cells are shown in table 36. 
 

        Table 36.DNA concentration after Endo-MaxiPrep eluation 
Endo-maxiprep eluat  Concentration 

Mx 8 815 μg /μL 

Mx 9 1421 μg /μL 

Mx 24 901 μg /μL 

Mx 25 1364 μg /μL 

 

Since the plasmids were reconstituted in 500 uL total volume, the total yield varied from ca 

400 to 710 μg, which was more than enough for the subsequent transfection into HeLa cells.  

 

The four Maxiprep eluated from table 36 were again sequenced. The result files where 

analyzed with “Cromas Lite” hardware, and a multiple alignment using 2BLAST 

(http://www.ncbi.nlm.nih.gov), where performed as in section 4.4.1. All alignments contained 

the insert (Kir4.1) and had no mutations. 

 

In conclusion, the cloning of Kir4.1 into the pcDNA3.1/Zeo(+)-expression plasmid was 

successful, and the plasmid could be transfected into cell lines. 
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4.1.11 Transfection of Kir4.1- pcDNA3.1/Zeo(+)- plasmid into HeLa cells 
As the first transfection experiments failed, we decided to run a control experiment to verify 

the transfection efficiency of the HeLa cells. In the second transfection experiment, two 

MaxiPreps (MX 8 and MX 9) were transfected into the HeLa cells. As a control of the 

transfection assay, a control plasmid (pHIVmAQP4shRNAmir) containing a green fluorescent 

protein (GFP) was used. Cells expressing the control plasmid exhibits bright green 

fluorescence when exposed to blue light. Images of cells transfected with the control plasmid 

were taken, showing cells expressing the GFP protein (Fig.19). In figure 19 white cells 

corresponds to green cells. 
 

By counting the transfected cells (Fig.19A) and comparing this with the count of total number 

of cells present (Fig. 19 B) the transfection efficiency can be computed.  

• 35 green cells / 235 non-green cells * 100 % = 15 % transfection efficiency 

 

15% transfection efficiency was lower than expected, however thought to be sufficient for the 

experiment. It was assumed that the transfection reaction of HeLa cell with Kir.4.1/pcDNA 

plasmid would the same or a better efficiency than the control transfection. The control 

plasmid is larger in size than the Kir.4.1/pcDNA plasmid, and therefore more difficult to 

transfect. In addition, the control plasmid also uses the same promoter, CMV and has only 

been exposed for the same conditions as the pcDNA3.1/Zeo(+)-Kir.4.1 plasmid.  
 

 
Figure 19. Panel A shows transfected HeLa cells expressing GFP control plasmid exposed to blue light. Bright 
cells express GFP protein. Panel B shows s picture taken by light microscope of the same cells as in panel A. 
Pictures taken 24h after transfection by a laser Olympus camera and visualized by “Wasabi” software. Round 
cells are dead cells. 
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PART II 

4.2 Testing antibodies against Kir4.1 and AQP4 in SDS- 
PAGE and BN-PAGE assay  

 

The next aim of this thesis was to test and validate Kir4.1- and AQP4-antibodies in the SDS-

PAGE- and the BN-PAGE system, as the Kir4.1 construct was made to test possible cross 

reaction of AQP4 and Kir4.1 with the antibodies available in our laboratory. After 

homogenization of harvested HeLa cells transfected with the Kir4.1 construct, samples were 

prepared for Western blot analysis.  

 

4.2.1 Kir4.1 labelling in SDS-PAGE 
Self made polyacrylamide gels were used in this experiment. For the determination of 

molecular weight of the appearing bands “Precisions Plus Protein Standard, Dual Colour was 

used. Homogenates from mouse brain were used as positive control for all antibodies, and 

untransfected HeLa cells were used as negative control. The samples containing AQP4, were 

oocyte sample Aqp4a-3d or the AQP4 isoform M23 expressed in HeLa cells. In table 37, the 

results of labelling from different antibodies tested in the SDS-PAGE system are listed.   

 

According to the scientific literature (see discussion part) the anti-Kir4.1 antibody from 

Abcam, has been widely used as antibody for determination of Kir4.1 presence in SDS-PAGE 

assays and light microscope (LM) assays. The results listed in table 37 have been compared 

with labelling using the Abcam antibody. 
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Two different antibodies against Kir4.1 (Kir4.1 “NordicBiosite” and Kir4.1 “Alomone labs,  

 

Figure 20. Panel A, B, C and D are labelled with different antibodies. Molecular weight marker is indicated in 
every panel. Panel A, lane1 and 2 contains homogenate from wild type Kir4.1 mouse-brain and heterozygote 
Kir4.1 mouse brain respectively. Panel B, lane 2 contains homogenate from HeLa cells transfected with Kir4.1. 
Lane 3 contains untransfected HeLa cells. Panel C, lane 2 contains Kir4.1 transfected HeLa cells. Panel D, lane 
1-4 contains homogenate from heterozygote Kir4.1 mouse, KO-Kir4.1 mouse, homogenate from mouse-brain 
and HeLa cells transfected with Kir4.1 construct, respectively. Heterozygote and KO-mouse material from 
E.Nagelhus (unpublished). 
 

Jerusalem Israel”), were available for use at present time. In addition the results were 

compared to SDS-PAGE labelling with another Kir 4.1 antibody (Abcam).The results from 

labelling with Abcam antibody is from an unpublished study by other group members 

(N.Nabil Haj Yasein and E. Nagelhus) when this antibody was available in the lab.  

 

Figure 20 A shows the protein bands detected using the antibody purchased from Abcam. 

Lane 1 and 2 show a previous, unpublished study from another group member. (N.Nabil Haj 

Yasein and E. Nagelhus).The ~50 kDa band in lane 1 corresponds to the Kir4.1 monomer (43 

kDa). Another band with size ~200 kDa is also visible, and is possibly a Kir4.1 tetramer. Lane 

2 shows the same ~50 kDa band as in lane 1, indicating the presence of the Kir4.1 monomer. 

No tetramer band with molecular weight ~200 kDa is visible in lane 2, and is consistent with 

no Kir4.1 tetramer formation in a heterozygote Kir4.1 mouse. 

 

In Fig.20 B, the proteins are labelled with anti Kir4.1 from the Alomone laboratory. Two 

bands are visible in lane 2, corresponding to 37-50 kDa, which also are visible in lane 2, 
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Fig.20 C. There are no bands visible corresponding to Kir4.1 dimer or unspecific labelling as 

in lane 2, panel C. No bands indicating labelling of Kir4.1 tetramer is present in lane 2. The 

protein samples in Fig.20 B are heated to 95 °C, as opposed to the samples in Fig.20 D which 

were unheated. 

 

In Fig.20 C the anti Kir4.1 from Nordic Biosite has been used. In lane 1, the molecular weight 

marker is indicated. Three or four bands are visible in lane 2. Two of these appear in the 

region corresponding to molecular weight 37-50 kDa. The upper band in this region possibly 

corresponds to a Kir4.1 monomer of 43 kDa. The lower band might be a posttranslational 

modified Kir4.1 protein. The bands with molecular weight between 75-100 kDa may 

correspond to a Kir4.1 dimer (86 kDa) or an unspecific band as shown in lane 4, panel D. No 

bands indicate presence of Kir4.1 tetramer. 

 

In Fig.20 D, the antibody from Alomone lab is used. In lane 1-4, a band with size ~75 kDa is 

present. This is probably unspecific binding, as the same band appears in lane 2 (extract from 

KO mouse). Lane 3 and 4 show the ~200 kDa band corresponding to Kir4.1 tetramers .Protein 

loaded in lane 1-4 are not heated, so the unspecific bands with size 75 kDa are not due to 

membrane protein aggregation ( see discussion part). 

 
Table 37.  Summary of labelling of Kir4.1 and AQP4 with different antibodies in SDS-PAGE. “Yes” means strong labelling. 
“No” means no visible labelling. “Weak” means visible but not strong labelling, or unspecific labelling 
Samples Antibodies against Kir 4.1 Antibodies against AQP4
SDS-PAGE Kir4.1 

Abcam 
Kir4.1 
 NordicBiosite 

Kir4.1 
Alomone lab  

AQP4  
SantaCruz 

AQP4  
LifeSpan  
Biotech 

Dual colour 
marker 

Weak Weak Weak Yes No 

Homogenate 
cerebellum 
Kir4.1  200kDa 

Yes Yes  
 

Yes No No 

Homogenate 
cerebellum 
Kir4.1 43 kDa 

Yes Yes Yes 
 ( when heated) 

No No 

Unspesific 
labelling Kir4.1 
75kDa 

No Yes Yes  No No 

HeLa cells 
Kir4.1  200 kDa 

N/A Yes /BN PAGE 
No / SDS PAGE 

Yes /BN PAGE 
No / SDS PAGE 

No Weak 

HeLa cells 
Kir4.1 45 kDa 

N/A Yes  Yes No Weak 

AQP4a and 
AQP4c 

N/A Weak No Yes Weak 

HeLa negative No No No No Weak 
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To summarize figure 20 in light of my experiments, these results are important: 

1. The Kir4.1 construct work 

2. We have demonstrated that some Kir4.1 antibodies work and others do not. In 

conclusion the Alomone antibody is the only antibody labelling both Kir4.1 monomer 

and tetramer. A disadvantage is a unspesific labelling at ca. 75 kDa. 

3. Kir4.1 can be expressed along with AQP4 to test an interaction. 
 

4.2.2 AQP4 labelling in SDS-PAGE assay  
In order to test a possible interaction between Kir4.1 and AQP4, optimisation of AQP4 

antibodies was necessarry. Two different AQP4 antibodies were available; the AQP4 

antibody from Santa Cruz, was used in the experiments of Strand and coworkers (2009), and 

the other AQP4 antibody was from LifeSpan Biotech. In addition, we wanted to investigate 

whether there was cross reaction between AQP4 antibodies and the Kir4.1 protein expressed 

in HeLa cells (see also table 37) 

 

Fig.21A, lane 1 contains mouse brain homogenate from cerebellum and the main band 

corresponds to the ~32 kDa AQP4 monomer. The weaker bands just above indicates presence 

of other AQP4 isoforms. Lane 2 contains untransfected HeLa cells shows no signal. Lane 3 

contains homogenate of AQP4 (M23 isoform) transfected HeLa cells, and the band 

corresponds to a AQP4 monomer. 

 

Fig.21 B and C are probed with two different antibodies. Panel B, lane 1 shows signal of what 

probably is the AQP4 monomer (32 kDa) from a cotransfection with Kir4.1 and AQP4. Lane 

2, panel C shows the Kir4.1 monomer band (42 kDa). There is some weak background 

labelling in this lane, but no labelling where an expected AQP4 band should be. Thus, the 

Alomone Kir4.1 antibody does not seem to bind to AQP4 using Western blot detection.  

 

Another anti-AQP4 antibody from LifeSpan Scientific was also tested for cross reaction with 

Kir4.1. This antibody was discarded because of unspecific binding on the membrane and with 

very weak labelling of AQP4-protein (results are not shown). 
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In conclusion, the anti- AQP4 antibody from Santa Cruz shows no cross labelling with Kir4.1 

and usually gave strong signal for the AQP4 protein in both homogenate and HeLa cells using 

SDS-PAGE. Thus, this antibody was used for the work described this thesis. 
 

 

Figure 21. This figure shows SDS-PAGE assay of AQP4 and Kir4.1. Panel A is labelled with anti-AQP4 and 
molecular weight marker is indicated on the right. Lane 1 contains mouse-brain homogenate, lane 2 contains 
untransfected HeLa cells and lane 3 contains AQP4-transfected HeLa cells. Panel B contains molecular weight 
marker in lane 1, and lane 2 contains lysate from cotransfection of AQP4 and Kir4.1 in HeLa cells labelled with 
anti-AQP4. Panel C is the same membrane as in panel B. reprobed with anti-Kir4.1 
 

 

4.2.3 Cotransfection of AQP4 and Kir4. in BN-PAGE assay 
Another important aim in this thesis was to investigate a possible protein-protein interaction 

between AQP4 and Kir4.1. In Sorbo and collaboraters (2008), BN-PAGE was used to detect 

AQP4 isoform interactions in square arrays. The same series of anti-Kir4.1 antibodies tested 

in the SDS-PAGE assay (Fig.20) were tested on AQP4a- and AQP4c protein co-expressed 

with Kir4.1protein  in HeLa cells (Table 37). 

 

Figure 22 A shows a typical pattern of AQP4a and AQP4c on BN-PAGE. AQP4c contains 

higher order bands as expected (section 1.2.3). Fig. 22 B, lane 1 and 2 are negative controls, 

with isoforms AQP4a and AQP4c loaded. When scanning this picture, only weak, background 

labelling was seen in a region above 242 kDa. In lane 3 and 4, homogenate from cotransfeced 

Kir4.1 and AQP4 give rise to one bright, wide band which was detected between 242 kDa and 

480 kDa. A Kir4.1 tetramer is ~310 kDa, thus the main band corresponds to the size of a 
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Kir4.1 tetramer. The small band above the main band in lane 3 and 4 is also weakly present in 

lane 1 and 2, and is thus probably unspecific labelling.  

 

Since the Kir4.1 labelling did not overlap with the AQP4 isoform bands (Fig.22 A), we 

concluded that Kir4.1 does not seem to interact with AQP4 in our BN-PAGE assay. 

Furthermore, since we saw no shift in the size of AQP4 bands when cotransfected with 

Kir4.1, there is no indication of interaction. No molecular weight marker was used on these 

membranes, since problems occurred when using secondary antibody from goat for 

visualization. The result was a smear where the marker was loaded. Many different conditions 

where tried for better resolution and results. After several attempts, we decided to run BN-

PAGE without molecular marker when labelling with primary antibody against AQP4. 

However, since it was not certain whether the Kir4.1 and AQP4-antibodies signal was specific 

enough in the BN-PAGE assay we decided to design a myc-tagged version of the Kir4.1-

construct for use in Kir4.1/AQP4 cotransfections.  

 

Figure 22. This figure shows cotransfection of AQP4 and Kir4.1. Panel A, labelled with anti-AQP4, shows in 
lane 1 and 2 AQP4a and AQP4c coexpressed with Kir4.1 respectively. In panel B, lane 1 and 2 contains AQP4a 
and AQP4c, respectively. Lane 3 and 4 is the same lanes as in panel A, lane 1 and 2, reprobed with anti-Kir4.1. 
Homogenate from two different transfections are shown. 
 

 

 4.2.4 Cotransfection of AQP4c-myc and Kir4.1 
An AQP4c-myc construct was already available in the laboratory. The Kir4.1-AQP4 

interaction hypothesis using another set of antibodies were therefore tested.The AQP4c-myc 

protein was already verified by Strand and coworkers (2009) (Strand et al., 2009). C-myc tag 

is a polypeptide protein tag of 10 amino acid which can be added to ether the N- or C-terminal 
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of the protein. In this case, the tag is on the C-terminal of both AQP4 and Kir4.1 (see 

appendix 3 for AQP4- myc tag). By the use of the well tested primary c-myc antibody (Santa 

Cruz), one hoped to observe a protein-protein interaction of Kir4.1 and AQP4, in the BN-

PAGE system.  

 

AQP4c and Kir4.1 were cotransfected into HeLa cells to test protein-protein interaction. Fig. 

23 A shows a BN-PAGE blot using the primary antibody against AQP4. Control lanes 1 and 2 

contain AQP4a and AQP4c. The AQP4 antibody can still detect AQP4-protein with myc-tag 

(lane 3), and the myc tag does not seem to influence the assembly of AQP4 higher order 

bands, since the bands forms normally. The bands in lane 3 shows a higher molecular weight 

compared to the bands in lane 2, and is due to the additional myc-tag added.  

 

  
Figure 23. In this figure cotransfection of AQP4c-myc and Kir4.1 is shown. All lanes in all panels contain the 
same homogenates, respectively. Lane 1 contains AQP4a, lane 2 contains AQP4c, lane 3 contains AQP4c-myc, 
lane 4 contains Kir4.1, lane 5 contains cotransfection of AQP4a and Kir4.1, lane 6 contains cotransfection of 
AQP4c and Kir4.1 and lane 7 contains AQP4c-myc and Kir4.1. Lane 8 contains untransfected HeLa cells. Panel 
A is developed with anti-AQP4, panel B with anti-Kir4.1 and panel C with anti-cmyc antibody. 
 

 

In figure 23 C the membrane is reprobed with anti c-myc primary antibody. Lane 3 and 7 

contains AQP4c-myc alone and together with Kir4.1, respectively. The myc signal is also 

detected in the higher order bands. The loss of expression of AQP4 protein in Fig.23A lane 5 
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and 6 due to incomplete transfection, was experienced occasionally for unclear reasons, and 

emphasized the need for multiple controls in these experiments. The negative data in lane 5 

and 6 is included since whole membranes in this case gives more information. Figure 22 

shows coexpression without the myc-tag. 
 

However, cotransfection and expression of Kir4.1 and AQP4c-myc were successful, as shown 

in lane 7, Fig 23 C.  In addition, higher order bands are assembled, despite of Kir4.1 presence. 

Figure 23B shows the membrane probed with anti Kir4.1 (Alomone lab). Lane 4, 5, 6 and 7 

show wide bands corresponding by size to Kir4.1 tetramers, similar to those seen in Fig. 22. 

The intensity of the bands differs. The signal in lane 6 is more intense, for reasons which are 

unclear. All the transfections are done with similar cell concentrations and should not give 

rise to a higher expression of Kir4.1 protein in the HeLa cell system.  

 

Importantly, lane 7 has no signals above the main band a ~302 kDa, in the area to expect 

higher order bands. This indicates no protein-interactions between AQP4 and Kir4.1 using 

this assay. In conclusion, these data show no protein-protein interaction between AQP4-myc 

and Kir4.1 by the use of BlueNative-PAGE assay 
 

 4.2.5 Cotransfection of AQP4 and Kir.4.1 c-myc 
A myc tagged version of Kir4.1 construct was designed and synthesized by the same methods 

as for the Kir4.1 construct. Unfortunately, the Kir4.1- myc version failed as no labelling using 

anti-myc antibody was seen in cotransfection with AQP4 (results not shown). The transfection 

worked well, since AQP4c with higher order band were visible using the anti AQP4 antibody. 

Kir4.1 was present with anti-Kir4.1 antibody, but when stripping and reprobing the membrane 

with anti-cmyc antibody, no signal was detectable. Due to the time limitations of this work 

this problem has not been solved yet.  
 

4.2.6 Cotransfection of Kir4.1 and α-syntrophin 
In order to test protein-protein interactions between Kir4.1 and α-syntrophin, cotransfection 

into the HeLa cell system was performed according to sections 3.13. The syntrophin plasmid 

was a gift from a collaborating laboratory, and the transfections were performed as for the 

Kir4.1 plasmid. The anti-syntrophin antibody and transfectants were tested in the SDS-PAGE 

and BN-PAGE system.The transfection lysates in figure 24 A were also tested in the native 
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BN-PAGE system in order to investigate if the syntrophin antibody would recognize the 

target protein under non denaturating conditions. No labelling of α-syntrophin protein was 

observed (not shown), but the presence of Kir4.1 was verified (Fig. 24 B). 

 

Figure 24. This figure shows cotransfection of α-syntrophin and Kir4.1. Panel A is a SDS-PAGE assay probed 
with anti-syntrophin. Lane 1 contains Kir4.1. Lane 2 contains mouse brain homogenate. Lane 3 and 4 contain α-
syntrophin and cotansfection of α-syntrophin and Kir4.1, respectively. Panel B shows and BN-PAGE labelled 
with anti- Kir4.1. Lane 1 and 4 contains Kir4.1 alone. Lane 2 contains α-syntrophin alone, and lane 3 contains 
the coexpression of Kir4.1 and α-syntrophin. Lane 5 and 6 contains AQP4a and AQP4c. Lane 7 contains 
untransfected HeLa cells and lane 8 is empty. 
 

 

One interesting observation was a possible shift of band size in the cotransfection with Kir4.1 

and syntrophin (Fig.24 B, lane 3). This could indicate an interaction of Kir4.1 with α-

syntrophin, since the protein complex in this transfection is larger and retained in the gel. This 

can not be verified since α-syntrophin not has been detected using the available α-syntrophin 

antibody. 

 

In conclusion, no protein interaction between Kir4.1 and α-syntrophin could be revealed in 

these experiments. Since only transfections in HeLa cells were performed, HEK293 cell 

transfections could have been tested to exclude the possibility of an unsatisfactory cell 

system. However, the possible band shift in Fig.24 B might be a sign of an interaction, and 

further investigation has to be performed in order to test this hypothesis. 
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4.2.7 Cotransfection of AQP4 and α –syntrophin 
Cotransfection of AQP4c and α –syntrophin was performed in HeLa cells as described in 

section 3.13. Despite of two attempts to co-express the proteins, no results were obtained. 

AQP4 was present and detected with anti-AQP4 in the SDS-PAGE assay (data not shown), 

however no signal of α- syntrophin could be detected. No further investigations were 

performed due to lack of time. 

 

4.2.8 Cotransfection of Kir4.1 and PatJ c-myc 
PatJ is a large protein associated with interaction to other proteins through the PDZ domain.  

PDZ domains often organize multimeric complexes at the plasma membrane. A resent study 

(Sindic et al., 2009) has shown an interaction between a protein complex, MUPP1, which is 

an paralog to PatJ, with inwardly rectifying potassium channels in the kidney, Kir4.2.  

 

In order to test for interactions between PatJ and Kir4.1, a myc tagged version of the PatJ-

expression plasmid was used and cotransfected with the Kir4.1 expression plasmid into two 

different cell lines, HeLa and HEK 293. HEK293 cells were used in the study by Sindic and 

coworkers (2009). The PatJ construct was a gift from a collaborating laboratory, and made 

from the full-length CDS of PatJ protein. The construct should give rise to at least one 

isoform with molecular weight 200 kDa. According to Lemmers and coworkers, known 

isoforms in HEK 293 cells have the approximate size of ~200kDa, ~100kDa and ~55 kDa 

(Lemmers et al., 2002). 

 

4.2.8.1 SDS -PAGE on PatJ-myc and Kir4.1 cotransfection 

Figure 25 A and B, show two SDS-PAGE membranes with PatJ protein and Kir4.1 protein in 

two different cell lines. The Kir4.1 monomer (43 kDa) and PatJ monomer (55 kDa + 2 kDa 

myc-tag) are quite similar in size, thus can be hard to distinguish. 

 

Figure 25 A, lane 1 and 2 contains HEK 293 cells transfected with PatJ-cmyc alone and 

detected using the Kir4.1 antibody (Alomone lab). Lane 1 and 2 depict samples with boiled 

and unboiled protein, respectively. No difference is seen. The signals in lane 1 and 2 are due 

to background staining of the secondary antibody. Lane 3 and 4 contain protein from 

cotransfection of PatJ-myc and Kir4.1, boiled and unboiled respectively, no difference is 

observed. Both show bands in the area of 200-250 kDa and 55 kDa.The two bands in the area 
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of 50 kDa are most probably monomers of Kir4.1 (43 kDa). Additional modified proteins can 

also be present, but no interaction with PatJ is seen when comparing with figure 25 B. 

 

Figure 25 B, lane 1-4 have the same lysates as lane 1-4 in panel A. The antibody used for 

detection is anti-myc. In lane 1 and 2 the different isoforms of PatJ are present. Patj-cmyc 

protein is stronger expressed when transfected alone than when cotransfected. The isoform of 

55 kDa is only present when PatJ-cmyc is transfected alone.  Lane 3 and 4 show lysate from 

the cotransfection, and shows weak bands in the area of PatJ-isoform ~200 kDa and ~100 

kDa. The lower band can be another isoform of PatJ, expressed from endogenous mRNA 

coding for this isoform. In the cotransfection, Kir4.1 gives more signal than the PatJ-cmyc 

protein. The weak upper bands (200 kDa) in lane 3 and 4 have the same localization as PatJ in 

lane 1 and 2 and Kir4.1 in panel A.  

 

A band of AQP4 in mouse cerebellum homogenate is present in lane 2, figure 25 C. It 

functions as a molecular weight marker in addition to Prescision Plus Protein standards from 

BioRad. Since the transfer efficiency of the Prescision Plus marker has been varying, AQP4 

was added for better protein size identification.     

 
Figure 25. This figure shows HEK 293 cells transfected with Kir4.1 and PatJ-cmyc in a SDS-PAGE assay. 
Panel A is labelled with anti-Kir4.1 antibody. Lane 1 and 2 contains PatJ-cmyc alone, heated and non-heated 
respectively. Lane 3 and 4 contains protein from the cotransfection of PatJ-cmyc and Kir4.1, heated and non-
heated .Panel B, lane 1 and 2 contains the same lysated as in panel A, labelled with anti-cmyc. Panel C shows 
mouse brain homogenate labelled with anti-AQP4 antibody. 
 

In figure 26 the same transfections as described above have been carried out in HeLa cells. 

The same patterns as in figure 25 A is visible when staining with anti Kir4.1 antibody. The 
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expression of Kir4.1 is weaker in HeLa cells than HEK 293 cells. Lane 4 shows unheated 

lysates and has three visible weak bands with size ~200 kDa, ~100 kDa and ~55 kDa. The 

heated lysate in lane 5 lacks signal in the ~200 kDa area. In HeLa cells a weak band has 

appeared in the 75 kDa area. This band could correspond to the unspesific labelling of Kir4.1 

protein according to table 37. This band is not visible in the HEK 293 transfections. The 

corresponding membrane developed with anti-c myc is unfortunately not available due to 

failure with the scanner.

Figure 26.  This figure shows HeLa cells transfected with Kir4.1/PatJ-myc in a SDS-PAGE assay stained with 
anti-Kir4.1 (Alomone). Lane 1 contains the weight marker. Lane 4 and 5 contains PatJ-myc alone and 
lane 4 and 5 contains cotransfection of Kir4.1/PatJ, unheated and heated respectively. 
 

 

4.2.8.2 BN PAGE test of PatJ – Kir4.1 interaction 

All the transfection lysates tested in the SDS-PAGE system were also run for the BN-PAGE 

assay to detect a possible interaction between the cytosolic protein PatJ and the membrane 

protein Kir4.1. Figure 27A and B shows lysates of PatJ-myc and Kir4.1 cotransfected in 

HEK293 cells and run in the BN-PAGE assay. In lack of a suitable protein weight marker, the 

Kir4.1 band is the guide towards protein size estimation. The Kir4.1 tetramer band in cell 

lysates is ~ 302 kDa. 

  

Detection with the c-myc antibody in figure 27 A, reveals two PatJ-cmyc complexes with 

different size. Since there is no literature on how PatJ complexes will appear in a Blue Native 

Page system, it is difficult to estimate a protein size for the complexes. It was assumed that 

the protein size in BN-PAGE assay is overestimated by a factor of 1.8 ± 10% according to 

Sorbo and collaborators (Sorbo et al., 2008). The upper band in lane 1 corresponds to a 

protein complex with size approximately ~302 kDa (a Kir4.1 tetramer expressed in HEK293 

cells), see Fig.27 B, lane 1.  A hypothetical PatJ-dimer or tetramer can have different sizes 
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according to which isoform contributes to build the complex.  A hypothetical protein complex 

of PatJ and Kir4.1 will also be difficult to estimate in this assay. Therefore, only the 

migrations patterns in the BN-PAGE assay will be evaluated. The two bands from PatJ-cmyc 

protein have the same localization in lane 1 and 2. If a complex of Kir4.1 and PatJ was 

present in lane 3, a band shift was expected, no shift was observed. 

In figure 27 B, lane 1-2, no shifts in protein size was revealed between PatJ expressed with 

and without Kir4.1. One interesting observation is that there is only one band present in lane 

5. This means that Kir4.1 do not follow the pattern of PatJ migrations in a co-transfection 

(panel A , lane 3) indicating possible interaction between these proteins. Another possibility is 

that the lowest band in Fig.27 A, lane 3 is not from PatJ protein.  

Figure 27. Panel A shows a BN:PAGE membrane probed with anti-cmyc antibody. In lane 1 a smear from PatJ 
expressed in HEK293 cells is seen. Three bands are slightly visible. In lane 2 Kir4.1 is loaded. Lane 3 contains 
the co-expression  of Kir4.1 and PatJ-cmyc and only two bands are visible but located at the same size as in lane 
1. Panel B is probed with anti-Kir4.1 and only one band is visible when Kir4.1 is expressed alone (lane 1-2). In 
lane 4-5 Kir4.1 is expressed together with PatJ-cmyc. Lane 3 is empty. 
 
 

Fig. 27 C (see next side) shows the same as Fig. 27 A but with better transfer of protein. Lane 

1-2 and 3 contains PatJc-myc, Kir4.1 and Kir4.1/PatJc-myc cotransfection, respectively. Four 

PatJ protein complexes are visible when this protein is expressed alone. When cotransfecting 

with Kir4.1-protein (lane 3), the two smallest PatJ-complexes disappear. One possibility is 

that a hypothetical protein complex of PatJ and Kir4.1 will always be bigger in size than a 

PatJ dimer or trimer, indicating that smaller complexes will not be formed. No evidence for 

this speculation is found in the literature. Another possibility is that the two smallest bands in 

lane 1 are unspesific staining of another protein. 

 

The Kir4.1 bands in figure 27 D, lane 2 and 3 are wider than seen on other coexpression 

experiments. The bands indicate Kir4.1 (lane 2) and PatJ (panel C, lane 3) overlap in one 
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small area. If an interaction occurred, a smearier band would be expected for PatJ in panel C, 

lane 3. 

 

Figure 27. Panel C and D are the same BN-PAGE membranes developed with different antibodies. Lane 1,2 and 
3 contains PatJ-cmyc, Kir4.1 and the coexpression of PatJ and Kir4.1, respectively. 
 

 

In summary, no certain conclusions about protein-protein interactions can be drawn from the 

previous experiment on BN-PAGE assay. Difficulties about protein size estimation make the 

interpretation of the protein bands unclear, but one could argue that no clear shift in the signal 

distribution could be seen in the cotransfection compared to the single transfections.  
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PART III 

4.3 Square arrays and protein-protein interactions in 
isoforms of AQP4 

A part of the work of this thesis was to test the statement of Hiroaki and coworkers (2006), in 

which five specific interactions between adjacent AQP4 tetramer is the key to regulation of 

the orthogonal arrays, also called square arrays.  

 

The hypothesis of Hiroaki and collaborators (2006) was tested by mutating critical amino 

acids in AQP4 and assaying the effects using BN-PAGE. Residues arginine (R)108, glycine 

(G)157, tryptophan (W)231, isoleucine (I)239 and  tyrosine (Y)250 from the AQP4a,  Hiroaki 

and group’s (2006) crystal structure (see Fig. 5 for explanation) were mutated to alanine (A), 

and tested in the BN-PAGE system. Residue R108 from the Hiroaki and coworkers’ (2006) 

crystal structure corresponds to residue R86 in the AQP4c amino acid sequence. Since the 

sequence of AQP4 (M1) and AQP4c (M23) differ by the length of 22 amino acids, the 

residues mutated in the AQP4c sequence are R86, G135, W209, I217 and Y228, which is the 

annotation that will be used in this thesis. 

 
A part of the project was to test and optimize various experimental parameters of the BN-

PAGE system. Much work on this issue was already done (Sorbo et al 2008), thus one main 

focus was to obtain easily reproducible transfer and visualization of the proteins. Specific 

conditions of the system were changed and tested. Amount of protein that were loaded, 

temperature of the buffers, different gel types, time and voltage of the protein transfer and 

antibody concentrations are some of the conditions that are of importance for the results. 

 
The results obtained from the experiment described above were published by Strand and 

coworkers (2009), and parts of the results specific for this thesis work are presented here. All 

AQP4 mutations were expressed in HeLa cells as described in section 3.13. Some mutants 

were also tested in another cell line, HEK 293. 

 

4.3.1 Single mutations in AQP4c 
In order to investigate the presence of square arrays with AQP4c-single mutations,  BN-

PAGE analysis on AQP4c with an alanine substitution in one of the following  amino acids, 
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Arginine (R)6, Glycine (G)135, Tryptophan (W)209 or Tyrosine (Y)228 and Isoleucine (I)239 

was performed (Table 38). 
 
Table 38. This table shows loading in figure 28A, and number of bindingsites affected by the different mutaions 
in AQP4c. 
 
  

Lane Sample 

Number of binding 

sites affected 

2 AQP4a (M1) control - 

3 AQP4c (M23)  control - 

4 Single mut. R86A 1 binding site 

5 Single mut. G135A 1 binding site 

 6 Single mut. W209A 1 binding site 

7 Homogenat from thalamus - 

8 Single mut._ Y228A 1 binding site 

 

 

 

 

 

 

 

 

 
 
Lane 2 and 3 in fig 28, shows extracts and detection of AQP4a and AQP4c respectively, that 

were used as controls for formations of square arrays in this assay. AQP4a show no higher 

order bands above the 8 X band, as expected. AQP4c shows higher order band above the 8 X 

band. All the single mutations show higher order bands like AQP4c, indicating no effect by 

the mutations of the different tetramer-tetramer binding sites. The single mutation in I239 is 

not shown in this figure, due to problems with this spesific transfection. The pattern for the 

single mutation I239 is the same as for the other single mutations (Fig. 29, lane 10). I239 will 

give rise to two amino acid substitutions in one binding site (Table 39). The mutation does not 

influence the assembly of higher order band and the same pattern and results are as for the 

other single mutations.  

 
Figure 28.The figure show two BN-PAGE assays of AQP4c single mutations. Panel A, lane 1 and 2 shows 
AQP4a and AQP4c, respectively. Lane 1 and 2 functions as controls. Lane 3-6 shows the single mutations R86, 
G135, W209 and Y228 respectively. Lane 7 contains mouse homogenate from cortex and cerebellum. Lane 8 is 
empty. Panel B shows the single mutation I239 from another membrane. Antibody used in panel A and B is anti-
AQP4 ( Santa Cruz). 
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4.3.2 Double mutations in AQP4c 
Since the single mutations in AQP4c had no effect on higher order band assembly, it was 

reasoned that perhaps the binding strength between the AQP4 tetramers was too high to be 

affected by just one mutation. The next step was then to test both double and triple mutations 

of AQP4c in the BN-PAGE assay. 

 
Table 39: Loading in figure 29 and number of bindingsites affected by the different mutaions in 
AQP4c. 

Well Sample 

Number of binding sites 

affected 

 1 Native Marker - 

2 M1 control - 

3 M23 control - 

4 Triple mutations :R86A+G+I 5 binding sites 

5 Double mutation : R+G 4 binding sites 

6 Double mutation R+I  3 binding sites 

7 Double mutation: G+I 3 binding sites 

8 Single mutation: R 1 binding site 
9 Single mutation: G 1 binding site 
10 Single mutation: I 1 binding site 

 

In the figure 29, lane 5 to 7 shows the detection of the extracts were double mutations of 

AQP4c, R108/G157, R108/I228 and G157/I228 respectively were used. All the double 

mutations show higher order bands indicating no break down of square arrays, despite of three 

to four binding sites affected. Single mutations are also shown with the same pattern of higher 

order bands as double mutations. The signal in lane 6 is very weak, due to difficult loading 

and loss of material. Lane 4 and 10 shows a weaker signal than the other lanes. This can be 

because of difficulties with transfection (lane 4) or weaker transfer of protein, which were 

observed for lane 10 in many blots. This effect is most probably caused by the looser or 

tighter stacking on the membrane edge.  
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Figure 29. This figure shows a BN-PAGE assay with AQP4c single- and double mutations. Lane 1 contains the 
“Native Marker” (Invitrogen). Lane 2 and 3 show AQP4a and AQP4c, repectively. Lane 5-7 shows double 
mutations loaded according to table 39.Lane 8-10 contains single mutations. Lane 6 is almost empty. Lane 4 
contains the RGI triple mutation. Antibody used in anti-AQP4 (Santa Cruz) 
 

4.3.3 Triple mutations in AQP4c 
According the structure of AQP4 in the article by Hiroaki and coworkers (2006), five binding 

sites are responsible for the interaction between tetramers of AQP4 building up square arrays. 

Five mutations were made for the purpose of destroying the tetramer-tetramer interactions, 

and the assembly of square arrays. 

 
Table 40. The triple mutations should influence all the interactions between two tetramers and should 
theoretically be seen as break down of higher order bands in the BN-PAGE system. Loading of figure 30. 

 

Lane Sample Number of binding sites affected 
1 M1 control - 
2 M23 control - 
3 R86A-W209A_I217A  5 binding sites 
4 W209A_I217_Y228A 5 binding sites 
5 R86A_G135_I217A 5 binding sites 
6 G135A_I217A_Y228A 5 binding sites 
7 I217A_Y228A 5 binding sites 
8 Kir 4.1 transfected 30/1008 - 

In figure 30, lane 3-6 contains triple mutations of AQP4c, R86A-W209A_I217A, 

W209A_I217_Y228A, R86A_G135_I217A and G135A_I217A_Y228A respectively. All the 

triple mutations show higher order bands indicating no break down of square arrays. It was 

expected that all interactions between tetramers should be affected by these mutations. Lane 7 

contains a double mutation with higher order bands intact, as also seen in figure 29. In lane 8, 

Kir4.1 is added to test if binding with anti-AQP4 occurred. The weak band visible in lane 8 is 
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probably due to carry over from lane 7, and not cross reaction with anti. Kir4.1. The addition 

of Kir4.1, results in a different pattern than the AQP4c in the BN-PAGE system (Fig.22B). 
 

Figure30. This figure shows a BN-PAGE assay of AQP4c double and triples mutations. Panel A shows the 
“Native Marker” (Invitrogen). Panel B, lane 1contains AQP4a and lane 2 contains AQP4c, respectively. Lane 3-
6 contains triple mutations according to table 40. Lane 7 contains a double mutation. Lane 8 contains eluate from 
Kir4.1 transfected HeLa cells. Antibody used is anti-AQP4 (Santa Cruz) 
 

 

4.3.4 AQP4c N-terminal mutations 
Verkman and group (2009) proposed a theory that the N-terminal in AQP4c is a part 

necessary for square array assembly (Crane and Verkman, 2009). It was claimed that square 

arrays disappeared upon downstream deletions of AQP4 amino acids, from the amino acid 

methionin nr 23. To test this theory different amino acids in the N-terminal of AQP4c , Valine 

(V) nr 24, Alanine (A) nr 25, Phenylalanine (F) nr 26 , Lysine (K) nr 27 and Glycine (G) nr 

28 were mutated. This is the amino acids Verkman and collaborators (2009) concluded were 

responsible for interactions in square array assembly and destabilization. As can be see in 

table 41, amino acids valine, alanine and phenylanlanine were mutated to glutamine (Q). 

Lysine (K) nr 27 was mutated to both alanine and phenylalanine (P) , and this was also the 

case for Glycine nr 28. 
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Table 41. Loading of samples in figure 31 

Lane  Sample 

1 AQP4c (M23) 

2 V24Q 

3 A25Q 

4 F26Q 

5 K27A 

6 K27P 

7 G28A 

8 G28P 

 

In figure 31 the N-terminal mutations in AQP4c are shown. The N-terminal mutations showed 

no effect on the disruption of the higher order bands.  The higher order bands in the mutations 

V24Q, A25Q and G23P had weaker appearances. All lanes (including lane 2,3 and 8) are 

loaded with 5 μg of protein each, so the lanes with weak signal should contain as much 

protein as the stronger lanes. These results are not quantified. The signal for the 8 X band is 

weaker in all the mutations compared to the AQP4 c control. All samples are from the same 

transfection, so difference in band strength can not be related to unequal properties in the 

transfection assay. 
 

 Figure 31.This figure shows a BN-PAGE assay of AQP4c N-terminal mutations.Lane 1 show AQP4a as 
control. Lane 2-8 contains different N-terminal mutations according to the loading in table 41. Antibody used is 
anti-AQP4 (Santa Cruz). 
 

 

In conclusion, the N-terminal mutations of AQP4c showed no effect of destabilization of the 

assembly of the higher order bands.  
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5 GENERAL DISCUSSION AND CONCLUCION 
The background for this thesis is to test several hypotheses proposing AQP4 as a molecular 

binding partner of another membrane protein (Kir4.1) and the cytosolic proteins (α-syntrophin 

and PatJ), as conclusive evidence for such interactions have not yet been published. AQP4 has 

been shown to be organized into big assemblies of square arrays, thus AQP4 protein-protein 

interactions must occur, at least with AQP4 isoforms themselves. Thus, investigation of 

protein interactions between AQP4 isoforms in square arrays is another main topic pursued in 

this thesis.

 

5.1 Specificity of antibodies against Kir4.1 protein 

To investigate a hypothetical protein interaction of any protein, a possible cross reaction of 

antibodies has to be invalidated. Thus, an important starting point and theme of this thesis was 

to test the commercially available Kir4.1- antibodies. 

 

In 2000, Kofuji and group generated a mouse line where they disrupted the Kir4.1 gene in 

order to prove the presence of Kir4.1 protein in retinal Müller cells (Kofuji et al., 2000). 

Kofuji and coworkers (2000) raised antibodies against the potassium channel Kir4.1, and 

demonstrated a lack of detection in the Kir4.1 knock out mice in contrast to the wild-type 

Kir4.1 mice, which was seen as a strong indication for the localization of Kir4.1 protein in the 

Müller cells. The Kir4.1 knockout mouse died at postnatal day 16-20. 

 

The Kir4.1antibody from Kofuji and coworkers (2000) was raised against a synthetic peptide 

corresponding to the amino acid sequence 8-30 in the C-terminus of the mouse-Kir4.1 protein. 

In a later study by the same group, this antibody was used to visualize interactions between 

Kir4.1 and proteins in the dystrophin-glycoprotein complex (Connors et al., 2004). Kofuji 

claimed to prove that Kir4.1 dissapearing in AQP4-KO mice and α-syntrophin KO mice, 

suggesting an interaction between these proteins.  

 

Another group of researchers (Djukic et al., 2007) generated in 2007 a conditional Kir4.1 

knock-out mouse, in order to study the role of Kir4.1 channel according to spatial buffering of 

potassium in astrocytes. In this study the commercially available Alomone antibody 

(Jerusalem, Israel), which we also have depended upon, was used for detection of Kir4.1 
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protein in different tissues. By making a conditional KO-mouse (a tissue-spesific inactivation 

of the Kir4.1 gene), they hoped to circumvent the premature lethality which was observed in 

the Kofuji KO-mouse. McCarthy and group (2007) observed a complete absence of Kir4.1 

labeling in brain tissue of Kir4.1 KO mouse, where strong labeling was seen in kidney tissue 

from the same mouse  (Djukic et al., 2007). In western blot, they show the presence of Kir4.1 

(tetramer) as a ~200 kDa band, when using the Alomone antibody. No labeling of Kir4.1 

monomer has been shown by this group when using Alomone antibody. 

 

A research group in our department has several times tried to verify the Kir4.1 labeling results 

from McCarthy and coworkers, by the use of antibody from “Alomone Laboratories” as well 

as others (E.Nagelhus unpublished). By the use of KO-mouse brain tissue from McCarty`s 

lab, no endfoot labeling in astrocytes was shown. The antibody was also tested in Western 

blot and only the Kir4.1 tetramer (~200 kDa) was detected. No labeling of Kir4.1 monomer 

was seen. Another band with size ~75 kDa was detected in all brain tissues, also the KO tissue 

(personal communication). These results coincide with results of this thesis, when using the 

Alomone” antibody for visualization of Kir4.1 presence in SDS-PAGE assay. 

 

Our laboratory had a couple of years ago the opportunity to test the Kir4.1 antibody made by 

Kofuji and coworkers in EM experiments. In this experiment labeling in Kir4.1 KO mouse 

was seen. This antibody also gave signal in AQP4 liposomes, and this could indicate a 

possible cross labeling of Kir4.1 and AQP4. Unfortunately this antibody is no longer available 

for the lab, thus there was a need to validate the Alomone Kir4.1 antibody by expressing the 

Kir4.1 protein in a cell line and evaluating the level of background labeling. 

 

The Kir4.1 construct made in this thesis was verified, thus when expressing the Kir4.1 protein 

into HeLa cells, a slightly different pattern was found in SDS PAGE Kir4.1 labeling when 

compared with labeling of rat brain homogenate. The Alomone antibody revealed an 

additional band under the expected ~42 kDa Kir4.1 monomer band. According to Takumi  

(1995), Kir4.1 possesses an N-glycosylation motif in its extracellular domain (Takumi et al., 

1995). A glycosylated Kir4.1 protein can alter its mobility in the gel, resulting in an 

additional, minor band.   

 

Post-translational modifications (PTM) are processes which can change the properties of a 

protein by adding or cleaving amino acid residues after translation of protein. These 
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modifications can change localization, protein interactions and thus binding by antibodies. It 

is possible that HeLa cells glycosylate the Kir4.1 protein differently than in astrocytes in the 

brain. Also, in this study the construct used to verify labeling of Kir4.1 antibody is not made 

from full-length cDNA Kir4.1 (missing the 5’ and 3’ untranslated regions (UTR). However, it 

is unclear, whether translation of the exogenous expressed cDNA in a cell system is 

dependent of untranslated regions, and thus could change post-translational modifications and 

give rise to other patterns in Western assays compared to endogenously expressed proteins. 

 

All Kir4.1 antibodies used to study cross-reactivity in this study are polyclonal. Among these 

antibodies, only one of them have been verified in other assays than immuno-histochemistry 

(Connors and Kofuji, 2002). The specificity of an antibody can be changed in different assays, 

and it essential to test and characterize the antibody in the assay system which they are to be 

used. Most techniques involving electrophoresis will imply a certain degree of denaturation of 

the proteins, even in assays with native proteins. Only epitopes resistant to denaturations can 

therefore be detected. The antibodies against Kir4.1 used by Kofuji (2000) (Kofuji et al., 

2000), McCarthey (2007) (Djukic et al., 2007) and Kurachi (2004) (Hibino et al., 2004) have 

been used on embedded tissues in LM and EM techniques. Insufficient data on embedding 

procedures make it very difficult to reason the ambiguous results of different labelling of 

Kir4.1 and a possible cross-reactivity. Western blot is a commonly used validation tool for 

confirming antibody specificity, thus there is often disagreement between results from 

Western and other assays. These results are seldom presented in the literature and non-

agreeing data are rarely explained. 

 

According to the results obtained in this study and unpublished results from other group 

members, there is a discrepancy between labelling results obtained in fixed tissue and in 

Western blot. The antibody from the Alomone laboratory used in Western blot analyses gives 

rise to an unspecific band of size 75 kDa. However, the staining of the ~200 kDa band is 

specific to a Kir4.1 tetramer. Another issue is the possible cross-reactivity of the Kir4.1 

antibody labelling AQP4. In this study, it seems like the Alomone antibody is specific to 

Kir4.1 protein and no signals from AQP4 have been made from AQP4 construct transfected 

into cell systems. However, it is not known whether this conclusion can be applicable for 

detection of proteins in tissue samples, which can differ due to modified protein, isoforms and 

fixative used on the tissue. 
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The Abcam antibody (which is not available anymore) worked nicely in Western blots, but 

was not effective in LM and EM experiments. Antibody made by Kofuji (2000), worked 

nicely for some LM and EM experiment. This antibody show now batch-to-batch differences 

in labelling and a cross-reactivity of AQP4 in LM and EM experiment (Anna Thoren, 

personal communication).The Kurachi antibody against Kir4.1 is the best candidate for 

labelling Kir4.1 in both Western and fixed tissue. However, several attempts to receive a new 

batch with this antibody have failed.  

 

In conclusion, the best antibody available to distinguish between AQP4- and Kir4.1 protein is 

the Kir4.1 antibody from Alomone (Jerusalem). However, this conclusion will only be valid 

for the Western assay. A thorough review of factors possibly influencing antibody specificity 

in different assays, are needed. 

 

5.2 Possible protein-protein interaction between AQP4 and 
Kir4.1 

Nagelhus and coworkers (1999) showed an precise co-localization between AQP4 and Kir4.1 

in retinal Müller cells (Nagelhus et al., 1999). Postembedding immunogold labelling was used 

to investigate the distribution of these two proteins, and revealed almost identical patterns of 

AQP4 and Kir4.1 immunofluorescence on EM. The colocalization of these proteins suggested 

a physiological collaboration where waterflux (AQP4) and potassium siphoning (Kir4.1) were 

correlated.  

The fact that AQP4 and Kir4.1 have close spatial relation (Nagelhus et al., 1999) and that they 

have a common consensus PDZ domain-motif (Hung and Sheng, 2002), and in addition  are 

expressed in almost identical amounts in the endfeet membranes (Nagelhus et al., 1999; 

Kofuji et al., 2000), opened for speculations about a possible protein-protein interaction of 

AQP4 and Kir4.1. 

Verkman and co-workers (2007) claimed to have evidence against a functional interaction 

between AQP4 and Kir4.1 (Ruiz-Ederra et al., 2007). They had investigated the Kir4.1 

channel function in Müller cells from both wild type- and AQP4 KO-mice by using patch 

clamp techniques and immunocytochemistry. They found no differences on the Kir4.1 

expression pattern or function between AQP4 KO- mice or wild type mice. 
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All data presented from the literature, shows only indirect evidence of an interaction between 

AQP4 and Kir4.1. No evidence for a direct protein-protein connection has been published. 

It was decided to test the hypothesis of a possible interaction by using the biochemical assay 

BN-PAGE, which was validated for protein interactions of AQP4 isoforms in Strand et al 

2009. A Kir4.1 construct previously tested in co-expression studies, were used in the 

transfection assays together with AQP4. The hypothesis was that an interaction between 

AQP4c and Kir4.1 would be seen as Kir4.1 signals incorporated into the pattern of higher 

order complexes of AQP4c, in a similar manner to the myc-tagged isoforms AQP4a and 

AQP4e (Strand et al., 2009). 

 

As discussed previously, only one suitable antibody-candidate for labelling Kir4.1 in BN 

PAGE and Western assays was available. The antibody from Alomone Lab (Jerusalem) is the 

one used in all BN-PAGE assays where presence of Kir4.1 protein should be detected. From 

the results obtained in section 4.2.1 it was concluded that Alomone antibody could be used for 

detection of native Kir4.1 complexes, since a specific labelling of Kir4.1 tetramer was shown. 

After disqualifying results from the cross-reactivity tests, another Kir4.1 antibody from 

Nordic Biosite was discarded. 

Cotransfection of AQP4 and Kir4.1 was successful, since both AQP4 and Kir4.1 were present 

when using immunolabelling in both SDS-PAGE- and BN-PAGE assays. Higher order bands 

of AQP4c were seen in the co-expression with Kir4.1, even when AQP4 was myc-tagged. It is 

known from previous findings that presence of a myc tag does not influence the expression of 

protein or the assembly of higher order bands (Strand et al., 2009). When cotransfecting 

AQP4 and Kir4.1 there was no evidence of protein interactions by the use of the BN-PAGE 

assay. No signal from Kir4.1 was incorporated into the higher order bands of AQP4c, nor 

were coinciding signal from the Kir4.1 complex present in areas where signal from AQP4 was 

expected. 

When cotransfecting AQP4 and Kir4.1, a weakening of higher order bands were seen. 

However, the 4X band of AQP4 showed the same intensity when expressed as one isoform 

and when coexpressed with another isoform. This is consistent with previous finding in 

Strand (2009), where they saw that a difference of expression ratios where influenced by the 

amount of AQP4 isoforms transfected into cells (Strand et al., 2009). 
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Since the weakening of the higher order bands arose when cotransfecting AQP4 and Kir4.1, a 

possible explanation can be retention of protein complexes intracellular. A hypothetical 

complex of AQP4 and Kir4.1 would be a large molecule. The size of the complex can 

influence expression in the cell system and result in intracellular retention, with subsequent 

lower expression of higher order bands. Another possibility is that the cell system doesn’t 

support expression of complexes with this size. 

 

BN-PAGE is a method especially useful for investigation of native protein complexes 

enabling a potential protein-protein interaction (Reisinger and Eichacker, 2008). To obtain a 

good resolution of complexes, the solubilization of membrane proteins are an important and 

difficult task. Solubilization conditions suitable for one protein cannot be generalized. A 

common artefact when working with membrane proteins in both SDS- and BN-PAGE, is the 

aggregation of protein, influencing both mobility and size estimation. Thus, differences in the 

solubilisation conditions could influence the hypothetical Kir4.1-AQP4 protein complex in 

such a way that a possible interaction could be concealed.   

 

In addition, a Kir4.1 construct labelled with a myc tag where constructed, in order to avoid 

uncertainty of a possible cross labelling between AQP4 and Kir4.1 when using Kir4.1 

antibody. Unfortunately, no results where obtained when the myc tagged version of Kir4.1 

where used in co-expression studies.  

 

In conclusion, no protein-protein interaction between AQP4 and Kir4.1 could be observed by 

the use of BN-PAGE assay. This could be interpreted as evidence against a direct interaction 

between Kir4.1 and AQP4. However, there are several factors that could influence the results 

in this section, such as detergent solubilisation choice mentioned above. Furthermore, only 

one cell line has been tested in the cotransfection study of AQP4 and Kir4.1.There is a 

possibility that another cell line can offer different conditions important for migration and 

assembly of complexes, affecting and contribute to another results. Cautions must be applied 

when interpreting the data achieved, and further analyses with other approaches would be 

required to obtain conclusive evidence against Kir4.1 and AQP4 interaction.  
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5.3 Possible protein-protein interaction between α-
syntrophin and Kir4.1 and α-syntrophin and AQP4 

As discussed previously, a precise co-localization between AQP4 and Kir4.1 has been shown 

in retinal Müller cells (Nagelhus et al., 1999). Kir4.1 helps to regulate the extracellular 

potassium concentration of glia cells by the process called spatial buffering (Kofuji, 2007). 

Kir4.1 harbors a PDZ binding-domain on its C terminal, and has been associated with proteins 

in the dystrophin-glycoprotein (DGC) complex which contains multiple PDZ domains. 

Possible candidates for a possible Kir4.1- interaction partner, which also possess a PDZ 

binding motif, are the syntrophins, which are found as part of the DCG complex (Adams et 

al., 1993).  

 

Claudepierre and collaborates, (Claudepierre et al., 2000a; Claudepierre et al., 2000b), 

characterized the DGC complex in retinal Müller cells, and the localization patterns of AQP4 

and Kir4.1 (Kofuji, 2007), indicating a possible dependence of the dystrophin Dp71 in the 

DGC complex. Astrocytes contain both α-dystrobrevin, β-dystroglycan, α-syntrophin and Dp 

71 in the DGC complex (Neely et al., 2001). 

 

In vivo tissue experiments of Kofuji and group has suggested, by the use of immunolabelling, 

that Kir4.1 is associated with the DGC. They also showed by in vitro immunoprecipitation 

assays, that Kir4.1 can bind directly to α-syntrophin, through the SSV sequence of the PDZ 

binding domain. It was concluded that the Kir4.1 was localized in glia cells via a link 

dependent of the syntrophins, since Kir4.1 failed to associate with the DGC complex in α-

syntrophin KO mice (Connors et al., 2004). In a later experiment they showed that Kir4.1 

failed to associate with the DGC complex, in the absence of α-syntrophin. 

 

Another study by the same research group (Connors and Kofuji, 2006), claimed to prove that 

Kir4.1 could form a stable complex with dystrophin, syntrophin and dystrobrevin , which are 

all members of the DGC complex in mouse retina. In addition, a possible co-association with 

AQP4 and proteins in the DGC complex, links AQP4 and Kir4.1 together. 

 

Since there have been suggestions of possible interactions between both Kir4.1 and α-

syntrophin, and AQP4 and α-syntrophin, testing these hypotheses by a biochemical assay, 

could help describing these interactions. Cotransfections of Kir4.1 and α-syntrophin in HeLa 
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cells were tested in the BN-PAGE assay. The same procedure was performed for the 

contransfection of AQP4 and α-syntrophin. In this testing, results where obtained for the 

Kir4.1 protein which was expressed and detected by the Alomone antibody (Jerusalem). No 

results were obtained from the transfection of α-syntrophin. The antibody used for detection 

of α-syntrophin worked nicely on rat-brain homogenate, and one specific band indicating 

presence of α-syntrophin was obtained. In theory this antibody should manage to detect α-

syntrophin in a cell system, if expression of protein is satifactory. Unfortunately, no detection 

of α-syntrophin where seen in any of the co-expression studies. 

 

In this assay, there are several issues important for a satisfactory result. The reasons behind 

the observed results are therefore difficult to explain.  

 

Fuentes-Mera and group, reported the identification of endogenous proteins of the DGC 

complex in the nucleus of HeLa cells (Fuentes-Mera et al., 2006). They found mRNA coding 

for both dystrophin Dp71 and syntrophins in the nucleus, and by the use of co-

immunoprecipitation revealing complexes of DGC-proteins in situ. An existence of nuclear 

syntrophins in HeLa cells raise questions about the use of HeLa cells for expression of 

syntrophins. Small molecules under 45 kDa can freely move across the nuclear membrane 

(Akey and Goldfarb, 1989). A bigger molecule, as e.g. syntrophin, requires the presence of a 

localization signal assembled by a stretch of basic aminoacids. In Fuentes-Mera et al 2006, no 

such stretch of amino acids was found in α-syntrophin, maybe influencing the expression of 

the protein. 

 

Other issues influencing the results can be the plasmid itself. Correct amplification of the 

cDNA was verified by sequencing and multiple alignments using BLAST.  In one of the two 

transfections, cells were growing slowly, which may indicate problems with toxicity. No 

results were obtained in the co-expression study of AQP4 and α-syntrophin.  This transfection 

was performed twice, but because of limitations of time, no further attempts of expression 

were performed. 

 
No results were obtained in the co-expression study of AQP4 and α-syntrophin. This 

transfection was performed twice, but because of limitations of time, no further attempts of 

expression where performed. 
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In the BN-PAGE assay, a shift of band size occurred in the cotransfection of syntrophin and 

Kir4.1. This is a very interesting result, since this can indicate a possible interaction of Kir4.1 

with another protein. A hypothetical complex of two proteins will show slowed migration in 

the gel according to the increased molecular size. A binding partner can also be retained 

intracellular. Unfortunately, a conclusion can not be made since the detection of α-syntrophin 

failed.  It’s tempting to speculate if the cell system used in this thesis, not possess all factors 

necessary for a satisfactory expression of α-syntrophin. Another issue is if endogenous 

proteins of the HeLa cells are able to mask or inhibit the translations or expression of 

exogenous α-syntrophin. 

 

It would be useful to test other plasmids in attempt to express α-syntrophin in a cell system. 

Further testing of the observed band shift in figure 24B imposed to reveal the important result. 

Differences in the cellular metabolism, translation and modifications of proteins are properties 

which can influence protein-expression. HEK 293 cells and CRL2006 cells are good 

candidates for re-testing of this hypothesis. 

 

5.4 Possible protein-protein interaction between Kir4.1 and 
PatJ 

PatJ contains multiple PDZ domains and is localized to tight junctions and the apical 

membrane of epithelial cells. PDZ proteins have the ability to recognize sequences with a 

characteristic four-amino acid sequence found on the C-terminal of other proteins. In Sindic 

(2009), they claimed to prove an interaction between the protein MUPP-1 , which is a paralog 

to PATJ, with an inwardly rectifying potassium channel, Kir4.2. In immunofluorescence 

studies on HEK293 cells, they saw a reduced expression of Kir4.2 on the membrane surface 

of the cells, when co-expressed with MUPP-1. They found MUPP-1 as a potential binding 

partner by using a yeast-two-hybrid screen with the COOH-terminal of Kir4.2 as bait. In 

addition, when testing coexpression of MUPP-1 with a Kir4.2 construct lacking the four 

COOH-terminal, no co-immunopresipitations occurred. A selective interaction between 

Kir4.2 and the MUPP-1 protein was suggested. 

 

Our hypothesis of a possible interaction between Kir4.1 and PatJ, was based on the results 

from Sindic (2009). (Sindic et al., 2009). In addition, it was tested whether the parolog PatJ 

was able to interact with another potassium channel (here: Kir4.1) in the same cell system. 
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MUPP1 and PatJ share several binding partners, and exhibit a similar subcellular distribution 

(Adachi et al., 2009). 

 

In order to test for an interaction, a myc tagged version of the PatJ expression plasmid was 

used in the co-expression study with Kir4.1 and tested in both SDS-PAGE and BN-PAGE 

assay. There are no examples in the literature how the PatJ protein will behave in a native 

assay, and there are also several known isoforms found in different. 

 

The predominant PatJ isoform expected in HeLa cells is ~200kDa in size according to 

Lemmers et al 2002. Known isoforms of PatJ in other tissues (HEK 293) have the 

approximate size of ~200 kDa, ~100 kDa and ~55 kDa. Since Sindic (2009), used HEK293 

cells in their experiments, this cell line was used. 

 

Inconsistent results were obtained from the SDS-PAGE and BN-PAGE analysis. Retained 

Kir4.1 protein was observed (Fig. 25 A), indicating a possible interaction with PatJ. Most 

proteins will not be able to sustain the dimer or multimers in precense of SDS. The presence 

of Kir4.1 tetramer band in SDS-PAGE assay has been reported from other researcher groups 

(Seifert et al., 2009). Sometimes, proteins with a hydrophobic “inside” will aggregate in the 

presence of SDS. The situations for these proteins are more aggregation when exposed to 

denaturizing conditions. 

This could be the explanation for the unlike results seen in SDS-PAGE and BN-PAGE assay. 

However, the only difference between non-heated and heated protein seen in the SDS-PAGE 

assay, was when using HeLa transfected samples. The 200 kDa band of PatJ disappeared 

when boiling the sample. This should indicate that aggregation of protein is not the issue here. 

Since PatJ and Kir4.1 are hydrophobic proteins, a possible explanation for the big complexes 

observed in the SDS-PAGE can be unsatisfactory amount of SDS present. SDS helps to 

disrupt the hydrophobic interactions and unfold the secondary structure of the proteins. 

However, hydrophobic interactions tend to bind a bigger amount of SDS and a higher 

concentration is needed for the same denaturising effect even though reducing agents are 

used. One disadvantage in the SDS-PAGE assay is the absence of urea in the gel. Urea can be 

added for more efficient disruption of H-bond and decrease the hydrophobic interactions. For 

the case of Kir4.1, urea was tested in section 4.2 1 with no apparent change in the SDS-

PAGE.  
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The preliminary data of SDS-PAGE and BN-PAGE are indicating different results for the two 

assays. Further testing on the denaturizing conditions in the SDS-PAGE assay is necessary if 

these results should be compared. So far, the indicated complex of PatJ and Kir4.1 seen in 

SDS-PAGE is most probably due to incomplete denaturation of the proteins. 

 

5.5 Triple mutations in AQP4c 

AQP4 is found in high concentrations around blood vessels in the brain and is organized into 

complexes called square arrays. Recently, by the use of 2D BN-PAGE assay, three of six 

isoforms of AQP4, has been shown to contribute of the square array assembly (Sorbo et al., 

2008). In Rash (2003) they found a difference of the two classical isoforms AQP4a and 

AQP4c, where only AQP4c was able to form square arrays in transfected cells (Furman et al., 

2003). 

 

In Hiroaki (2006) the crystal structure of AQP4 was demonstrated, where they claimed to 

prove which amino acids in the structure where responsible for the interactions between 

adjacent AQP4 tetramers (Hiroaki et al., 2006). The residues R108, G157, W231 and Y250 

from the AQP4c sequence were pointed out as crucial for the tetramer-tetramer interactions. 

 

The hypothesis from Hiroaki where tested in the BN-PAGE assay, by mutating the respective 

amino acid residues proposed to contribute to the interactions of tetramers. All residues 

mentioned were mutated to alanine. In the first attempt, only single mutations were introduced 

and tested in the BN-PAGE assay. We found that single mutations had no effect on the square 

array formation. The next step was to test if the introduction of double mutations would affect 

the assembly of the square arrays. The argument for testing double mutations was an 

assumption of high binding strength between the tetramers. Maybe a single mutation was not 

enough to overcome the binding strength between the tetramers, so we decided to test double 

mutations.  No effect was seen on the assembly of the higher order bands. A weakening of the 

8 x band were observed, and by testing triple mutations one hoped to see break down of the 

higher order bands. In a triple mutation, all binding sites in the Hiroaki crystal were mutated, 

affecting every interaction between the tetramers of AQP4. The higher order bands remained 

stable. 
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In the study using triple mutants of AQP4, the ability of AQP4c to assembly higher order 

band was not diminished. An important question about the Hiroaki crystal structure arose 

from these results. These results showed a discrepancy between the arrays of tetramers from 

the in vitro 2D-crystal, and the organization of arrays formed in vivo. One have to assume that 

assembly of square arrays in vivo are organized differently than in a 2D crystal. Sorbo (2008) 

showed recently that another isoform of AQP4 (Mz) was contributing to the assembly of the 

square arrays in vivo, and can be the answer why the 2D crystal doesn’t mirror the in vivo 

situation. 

 

The difference between the Hiroaki crystal and the in vivo square array assembly were also 

supported in a later article (Crane et al., 2008). Alanine mutants of residue Arg108 and 

Tyr250 of AQP4 from the Hiroaki crystal were tested in a live-cell single-molecular tracking 

fluorescence image. These residues were claimed to affect and destroy formation of square 

arrays. If the Hiroaki crystal were correct there should be a difference of diffusion rate (which 

indicated formation of square arrays) between the mutants and the AQP4c. No difference was 

seen, and they concluded that the crystal structure had other contact-contact interactions 

between tetramers, than in vivo square arrays. 

 

“Since higher order band were present with all mutations tested in the BN-PAGE assay, it was 

concluded that the mutations results do not agree with the Hiroaki model of the proposed 

tetramer-tetramer interactions in the formation of square array assembly in vivo”. (Strand et 

al., 2009).  

 

5.6 N-terminal mutations in AQP4c 

Crane and Verkman used in 2009 the same assay of quantum dot single-molecular tracking 

and live cell images, to reveal the molecular determinants of square array formation in cell 

membranes.(Crane and Verkman, 2009). AQP4 was labelled with Qdot via a myc tag in its C-

loop and the mutated AQP4 was tested in the system. By tracking the labelled native AQP4 

and later AQP4 mutants, they tried to distinguish between AQP4a (which moves freely in the 

membrane) and AQP4c that are immobilized upon square array assembly. In order to test their 

hypothesis that distinct residues in the N-terminal of AQP4 were responsible for preventing 

formation of square arrays, they made AQP4 mutants where residues upstreams of methionin 
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23, where changed. In their first attempt, many residues between methionin 1 and methionin 

23 were mutated. No signs of square array formation were seen, except when cystein 17 was 

deleted. Large fractions of square arrays were formed, and these results supported the FFEM 

study of Suzuki (2008) where they used the same cystein mutation (Suzuki et al., 2008). 

However, when they mutated cystein 17 to alanine, no sign of square array formation was 

seen. Suzuki (2008), claimed that palmitylation of cystein 17 was required to obtain 

disruption of square arrays. However, alanine cannot undergo palmitylation. Crane and 

Verkmans results did not support the results from Suzuki et al, and they concluded that 

palmitylation was not required for the disruption of square arrays. 

 

From these results and other AQP4a mutants tested, it was claimed that residues just upstream 

of methionin 23 disrupted square arrays, by interfering with interactions where the 

downstream residues after methionin 23, where important. In their second attempt they tried 

to determine the formation of square array assembly. Seven residues downstream from 

methionin nr. 23 where mutated to alanine (V24A-F34A). Of these single mutations, F26A 

had a great effect on the lacking formation of square arrays. V24A had no effect on the 

disruption of square arrays, whereas a double mutation of V24A/F26A had some disruptive 

effect. K27A and G28A had also no effect on deletion of square arrays. Crane and Verkman 

(2008) suggested that “hydrophobic and aromatic residues downstream of methionin 23 are 

involved in square array formation”. 

 

Since a small effect on square array destabilization had been seen with these mutants, we 

decided to test the same mutants in our BN-PAGE assay. Seven mutants of AQP4c were 

made, (V24Q, A25Q, F26Q, K27A, K27P, G28A and G28P), according to the Crane and 

Verkman article. Mutation A25Q and F26Q were made as a response to the suggestion about 

hydrophobic interactions responsible for the square array formation. Glutamines (Q) is a 

hydrophilic amino acid, and by introduce these mutations into the BN-PAGE assay, one 

hoped to see loss of higher order bands in the AQP4c mutants. Crane and Verkman had also 

tested the V24Q single mutation showing less disruptive effect than A25Q and F26Q. 

However, in our experiments none of these glutamine-mutations had any effect on the 

destabilization of higher order bands. Crane and Verkman claimed to see more effective 

destabilization if some of the mutations tested were substituted with more hydrophobic amino 

acids, like leucine. This was the case for A25 but not for e.g. F26. Leucine substitution of F26 

showed no effect on the break down of square arrays, however an opposite effect was seen 
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when an additional hydroxyl group was added, suggesting an even more rigid structure of 

square arrays. This last suggestion has not been tested in the BN-PAGE assay. 

 

Another theory of formation of square arrays was postulated by the same research group. 

They hypothesized that those interactions producing square arrays required a definite spatial 

positioning of the hydrophobic residues downstream from methionin 23, to fit into a 

hypothetical binding pocket in the adjacent tetramer. In response to these suggestions we 

tested the residues K27 and G28 mutated to prolinein the BN-PAGE assay. Proline has a 

cyclic structure, which give the amino acid a rigid conformational structure. In addition 

proline has a nick name as “helix breaker”, since it has an ability to disrupt a helical backbone 

conformations. 

Neither this time were any disruptions of the higher order bands seen when proline-mutations 

were tested in the BN-PAGE assay, even tough Crane and Verkman showed completely loss 

of square arrays with their proline-substitutions. They concluded that by changing secondary 

structure downstream of methionin 23, more effective square array destabilization where seen 

in contrast to reduced hydropathy in the same area. 

 

In conclusion, none of the mutants tested in the BN-PAGE assay where able to show any 

effect on disrupted square array formation. These results are in disagreement to the results 

obtained by Crane and Verkman (2008), and further testing must be accomplice in order to 

reveal the specific nature and site of intermolecular interactions responsible for the formation 

of square arrays. 

 

5.7 Some possible methodological limitations of BN-PAGE 

Rash and co-workers demonstrated that the morphological appearance of square arrays 

differed in size when isoforms of AQP4 (M1 and M23) were expressed alone and together 

(Furman et al., 2003). They also found that the average square arrays contained 17 

intramembrane particles (IMP). M23- transfected cells contained large rafts ( >100 IMP`s), 

ten times larger than observed in normal astrocyte endfeet. In contrast, mostly single IMP`s 

were observed when M1 where transfected into cells. An AQP4 monomer is approximately 

32 kDa in size. If an IMP corresponds to an AQP4 tetramer, the average size of a square array 

will have a total size of >2000 kDa. According to the BN-PAGE protocol, this method covers 
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a mass range of native complexes from <100 kDa to ~10 MDa (Wittig et al., 2006) .Since 

there has been discrepancy of the results from interaction-study of AQP4a and AQP4c 

obtained in vivo and by the use of BN-PAGE, one have to consider the possibility that the 

smaller complexes shown in BN-PAGE do not mirror the in vivo situations of square array 

assembly. However, the method is capable to handle an approximately sized square array of 

17 IMP. 

 

Another disadvantage in the BN-PAGE assay is problems with size estimations of native 

proteins. In this study, the native protein marker was difficult to use, since smeary results 

were seen when secondary antibody from goat where used for visualization. Since the 

approximately size of AQP4a was known and tested in this assay, the results were often 

compared with the AQP4 monomer band. In the BN-PAGE assay, the migrating complex 

during electrophoresis consists of the protein itself and G250 bound to it. In Heuberger 

(2002), they demonstrated that membrane proteins bound approximately 1.8 times more G250 

than commonly used molecular weight markers soluble in water (Heuberger et al., 2002). 

Thus, this can implicate that protein size in BN-PAGE must be divided by 1.8 to arrive at an 

estimate of the absolute molecular weight. This approach has been used in Sorbo (2008), and 

also in this thesis.  

Another approach for estimating molecular size in the BN-PAGE assay where used  

Shukolyukov and group (Shukolyukov, 2009). A calibration curve where made after the 

relative mobility of known proteins, e.g. BSA monomer and trimer. The logarithmic function 

of the relative mobility where used as an estimate for the molecular mass and this method will 

in a better way, considers the secondary and tertiary structure of the proteins and how they 

influence the mobility. 

 

Solubility of membrane proteins is difficult in both SDS-PAGE and BN-PAGE assay. 

Unsolubilized protein in the SDS-PAGE assay can give rise to a false low monomer signal. 

For AQP4, self made gel with urea was necessary for a good resolution of the different 

isoforms. If the protein was heated prior to loading, aggregation of AQP4 was seen, leading to 

false molecular weight estimations. However, in BN-PAGE assay, the anionic dye G250 is 

used for native solubilisation step. It can bind to hydrophobic areas in membrane proteins, 

making the membrane protein water soluble. This lowers the risk for aggregation of 

membrane proteins. Thus, for very hydrophobic proteins, a large number of dye molecules are 
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required to solubilise the target protein. This can influence the relative molecular size, leading 

to false interpretations of size. 

 

In summary, the conditions discussed above are able to influence the observed appearance 

and migration patterns of both native and denaturated protein. Therefore the results and 

conclusions reached with the BN-PAGE methodology should be treated with caution when 

they disagree with the FFEM and single-molecule tracking square array data. 
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APPENDIX 
 
Appendix 1 
The perivascular endfoot of an astrocyte (bottom). (Reprinted from M.Amiry-Moghaddam et 

al. (2008)). 
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Appendix 2 
Four AQP4 monomers together forming a tetramer. Water molecules inside the pore are 

indicated as red spheres. (Reprinted from Tani et al. (2009)). 
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Appendix 3 
The AQP4a transmembrane protein. Major and minor transmembrane helices are colored 

blue. Numbering and red coloring indicate mutated amino acid residues.The first aminoacid 

of AQP4c is numbered M23. (Reprinted from Strand et al. (2008)). 
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Appendix 4  
Diagram indicating a chart of pCR2.1-TOPO plasmid. (Reprinted from www.invitrogen.com).  
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Appendix 5 
 
Example of a multiple alignment of Kir4.1 (NM_0010394) and endo-maxiprep eluat from 
ligation of  Kir4.1 into pcDNA3.1/Zeo(+). Mx 8 eluate sequenced with T7 primer. 
 
Start codon: ATG, Kozak: GCCACC, HindIII: AAGCTT, EcoRI: GAATTC   
 
QTWRMGKTWWMYTTAAGCTTGGWMCGAGCTCGGATCCACTAGTCCAGKGKGGTGGAATTCGCCCYYMYKYTTGCC
ACC 
 
 
Alignment: 
Query  78    ATGACGTCGGTCGCTAAGGTCTATTACAGYCAGACGACTCAGACAGAGAGCCGCCCCCTA  137 
             ||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||| 
Sbjct  243   ATGACGTCGGTCGCTAAGGTCTATTACAGTCAGACGACTCAGACAGAGAGCCGCCCCCTA  302 
 
Query  138   GTGGCCCCAGGAATACGCCGGAGGAGGGTCCTCACGAAAGACGGCCGGAGCAATGTGAGA  197 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  303   GTGGCCCCAGGAATACGCCGGAGGAGGGTCCTCACGAAAGACGGCCGGAGCAATGTGAGA  362 
 
Query  198   ATGGAGCACATTGCTGACAAGCGTTTCCTCTACCTCAAGGATCTATGGACGACCTTCATT  257 
             |||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||| 
Sbjct  363   ATGGAGCACATTGCTGACAAACGTTTCCTCTACCTCAAGGATCTATGGACGACCTTCATT  422 
 
Query  258   GACATGCAATGGCGCTACAAGCTTCTGCTCTTCTCTGCAACCTTTGCAGGCACGTGGTTC  317 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  423   GACATGCAATGGCGCTACAAGCTTCTGCTCTTCTCTGCAACCTTTGCAGGCACGTGGTTC  482 
 
Query  318   CTCTTTGGTGTGGTGTGGTATCTGGTAGCTGTGGCCCATGGGGACCTGTTGGAGCTGGGA  377 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  483   CTCTTTGGTGTGGTGTGGTATCTGGTAGCTGTGGCCCATGGGGACCTGTTGGAGCTGGGA  542 
 
Query  378   CCTCCTGCCAACCACACGCCTTGTGTGGTGCAGGTGCACACGCTCACCGGAGCCTTCCTC  437 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  543   CCTCCTGCCAACCACACGCCTTGTGTGGTGCAGGTGCACACGCTCACCGGAGCCTTCCTC  602 
 
Query  438   TTCTCCCTGGAATCCCAGACCACCATCGGCTATGGCTTCCGCTACATCAGTGAGGAATGC  497 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  603   TTCTCCCTGGAATCCCAGACCACCATCGGCTATGGCTTCCGCTACATCAGTGAGGAATGC  662 
 
Query  498   CCACTGGCCATCGTGCTCCTTATTGCGCAGCTGGTGCTCACCACCATTCTGGAAATCTTC  557 
             ||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||| 
Sbjct  663   CCACTGGCCATCGTGCTTCTTATTGCGCAGCTGGTGCTCACCACCATTCTGGAAATCTTC  722 
 
Query  558   ATCACAGGTACCTTCCTTGCAAAGATTGCCCGGCCTAAGAAGAGGGCCGAGACGATCCGC  617 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  723   ATCACAGGTACCTTCCTTGCAAAGATTGCCCGGCCTAAGAAGAGGGCCGAGACGATCCGC  782 
 
Query  618   TTCAGCCAGCATGCCGTTGTGGCTTCCCACAACGGGAAGCCTTGCCTTATGATCCGGGTT  677 
             ||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||| 
Sbjct  783   TTCAGCCAGCATGCCGTTGTGGCTTCCCATAACGGGAAGCCTTGCCTTATGATCCGGGTT  842 
 
Query  678   GCCAATATGCGGAAGAGTCTCCTCATTGGATGCCAGGTGACAGGCAAACTGCTTCAAACG  737 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  843   GCCAATATGCGGAAGAGTCTCCTCATTGGATGCCAGGTGACAGGCAAACTGCTTCAAACG  902 
 
Query  738   CACCAGACAAAGGAGGGTGAGAATATTCGGCTCAACCAGGTCAACGTGACTTTCCAAGTA  797 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  903   CACCAGACAAAGGAGGGTGAGAATATTCGGCTCAACCAGGTCAACGTGACTTTCCAAGTA  962 
 
Query  798   GACACAGCCTCAGACAG-CCCTTTCTCATCCTACCCCTGACTTTCTA-CATGT-GTAGAT  854 
             ||||||||||||||||| ||||||||||||||||||||||||||||| || || |||||| 
Sbjct  963   GACACAGCCTCAGACAGCCCCTTTCTCATCCTACCCCTGACTTTCTACCACGTGGTAGAT  1022 
 
Query  855   GAGAGCAGCCC--TTAAAGATCTCCCSCTCCGCAGKGGGGA-GGGGACTTTGAGCTGGTG  911 
             |||| ||||||  | ||||||||||| |||||||| ||||| |||||||||||||||||| 
Sbjct  1023  GAGACCAGCCCCTTAAAAGATCTCCCGCTCCGCAGTGGGGAGGGGGACTTTGAGCTGGTG  1082 
 
Query  912   CTGATCCTGA  921 
             |||||||||| 
Sbjct  1083  CTGATCCTGA  1092 
 



Appendix 6 
Diagram showing the chart of pcDNA3.1/ Zeo(+) plasmid. (Printed with permission from 

Torgeir Holen (unpublished)). 
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Appendix 7 
Diagram showing the chart of pCR2.1-TOPO-mKir4.1 plasmid.(Printed with permission from 

Torgeir Holen (unpublished)). 
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