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ABSTRACT: 
 

A number of software packages have been developed for the detection of epistatic QTL. 

Nevertheless, none of these approaches could assure the optimal detection of epistasis. There are 

a number of limitations in these studies including high computational demands due to increased 

combinations of interactions for large datasets. Therefore, it has been a challenge to identify 

genes which are responsible for complex genetic traits caused by epistasis as well as gene by 

environment (G×E) interactions. Although genetic association studies have recently gained 

popularity, most of these studies have been carried out on the effect of the markers’ mean trait 

value without considering the differences in the variances of the traits. These differences could 

be associated with detecting variance controlling loci and missing heritability. In this paper, we 

address the novelty of variance genome wide association study (vGWAS) and evaluate its power 

for the detection of epistasis. Data were generated using simulation program for two 

chromosomes, both containing 209 markers. vGWAS – an R statistical package was used with 

two and three loci epistasis model to analyze the simulated data. The Brown-Forsythe (Levene's) 

test was used to assess the equality of group variance for variance controlling loci. For both two 

and three loci epistasis models, correct QTL are detected. Both heritability and power are 

calculated using three genotype-phenotype maps. Using vGWAS is therefore one way to find 

some of the variation currently unexplained. Interaction variances (  ), which are included in 

vGWAS analysis, is a novelty compared to other software in terms of detecting variance 

controlling loci (vQTL) and finding the missing heritability due to interacting loci. In our 

analysis, we have shown that at low or moderate noise level, both power and heritability 

estimates were approximately 1. The result reflects that vGWAS is a powerful and efficient tool 

for detecting candidate epistatic genes (i.e., detecting vQTL are often associated with interacting 

genes). Therefore, it could be appropriate to be used as a procedure for real data dealing with 

complex disease or obscured genetic interactions in addition to standard linear regression 

models.  

 

Keywords: Epistasis, heritability, interaction variances, power, QTL, vGWAS, vQTL 
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ABBREVIATIONS 

ANOVA Analysis of variance 

BQTL Bayesian quantitative trait mapping 

cM Centimorgan 

COE Convex optimization based epistasis detection algorithm 

FPR False positive rate 

G×E Gene-environment interaction 

G×G Gene-gene interaction 

GWAS Genome wide association study 

   Heritability 

MDR Multifactor dimensionality reduction 

MQTL Multi-environmental QTL analysis 

QTL Quantitative trait locus 

QTLBIM Quantitative trait locus Bayesian interval mapping 

SNP Single nucleotide polymorphism 

TEAM Tree based epistasis association mapping 

   Additive variance 

   Dominance variance 

   Environmental variance 

   Genetic variance 

vGWAS Variance genome wide association study 

   Interaction variance 

   Mean difference 

vQTL Variance controlling loci 

   Variance difference 
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1. INTRODUCTION: 
 

The term ‘epistasis’ was first coined by Bateson in 1909 to explain the masking effect of alleles 

at one locus to prevent an activity at another locus (Cordell et al., 2001). Bateson used the term 

‘epistasis’ to describe the phenomena that a novel phenotype results when alleles are combined 

compared to when they are apart. This concept was considered as an extension of dominance 

notion at single locus. Fisher (1918) used the term epistacy to describe the interaction between 

alleles at different loci (i.e., deviation from additivity), which contribute to a specific phenotype 

or trait (Malmberg and Mauricio, 2005). However, a more general term ‘gene interaction’ was 

used by several researchers to describe the concept epistasis. From these point of view, both 

Fisher’s and Bateson’s definitions of epistasis can be used to explain gene interactions at various 

levels (Phillips, 2008).  Carlborg and Haley (2004) stated that epistasis is the interaction between 

loci in which the phenotype depends on the genotype of one locus in the context of the second 

locus. Phillips (2008) summarizes the various views of epistasis as functional, compositional and 

statistical epistasis.  

 

Functional epistasis deals with the interaction of proteins and other genetic elements at 

molecular level. For instance, functional relationship disorder between proteins involves 

interaction without direct genetic involvement although the cause of the disorder has genetic 

basis. Protein-protein interaction is used to address epistasis of this type (Phillips, 2008). 

 

Compositional epistasis is used to describe the blocking effect of one allele to another which 

reflects classical definition of epistasis. Substituting one allele at the loci of interest without 

changing the background genes will influence the effect of a specific set of alleles in another 

locus (Phillips, 2008).  

 

Statistical epistasis, which reflects the Fisherian view, rather considers the average deviation of 

alleles from the additive combination at different loci. The views of compositional and statistical 

epistasis seem slightly contradicting. Compositional epistasis evaluates the effect of allele 

substitution against fixed background genes whereas statistical epistasis measures the average 
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allele substitution effect against average genetic background of the population. Therefore, allelic 

substitution under various genetic backgrounds (i.e., either fixed or average) unifies these two 

approaches of epistasis (Phillips, 2008).  However, Phillips definition of functional epistasis is 

not the same as Alvarez-Castro and Carlborg’s definition of functional epistasis (Cordell, 2009). 

In their unified model, the structure of algebraic formulation of functional epistasis resembles 

that of statistical epistasis. But, instead of using average allelic substitution effect, their natural 

and orthogonal interaction model (NOIA) uses natural (non-average) effect of allelic substitution 

for functional epistasis formulation (Alvarez-Castro and Carlborg, 2007). The term biological, 

genetical and physiological epistasis has been interchangeably used to address functional 

epistasis in the literature, though (Moore and Williams, 2005). 

 

On the other hand, quantitative geneticists consider epistasis in terms of additive and dominance 

interactions.  Lynch and Walsh (1998) described dominance and epistasis as two measures of 

non additivity in which the former explains allelic effect within locus whereas the latter explains 

allelic effects between loci. Without considering epistasis, the total genetic variance of a locus is 

simplified as additive and dominance effect (Lynch and Walsh, 1998).  

  
   =   

  +   
                                                    [1] 

Where,   
  is the total genetic variance,   

  is additive genetic variance and   
  is dominance 

genetic variance.     

For two interacting loci, for instance, epistasis can arise in three different ways: additive x 

additive (αα), additive x dominance (αδ) and dominance x dominance (δδ). Similarly, for 

interacting three loci, there are four different ways in which epistasis can arise: additive x 

additive x additive (ααα), additive x additive x dominance (ααδ), additive x dominance x 

dominance (αδδ), dominance x dominance x dominance (δδδ) and the number increases with 

increasing interacting loci. 

  
  =   

   +   
  +    

  +    
 +    

  +     
  +     

  +     
  +     

  …               [2] 

This means that epistatic interaction can influence on the additive and/or dominance components 

of genetic variance. Although the individual epistatic effects of loci are small, the sum of these 
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individual effects may be large. This may persuade quantitative geneticists not to ignore 

epistasis.  

 

However; Crow (2010) proclaimed that it was reasonable to ignore epistasis in some 

circumstances in the prediction. Since quantitative geneticists consider quantitative phenotypes 

rather than individual genes' effects, variance due to epistasis would have small effect on 

predicting breeding values for selection of individuals. According to breeders, many genes which 

contribute to quantitative traits usually have little dominance or epistasis. The reason for this is 

that each continuously distributed quantitative trait would have a small contribution to 

quantitative measurements and their small effects are given as additive variance (Crow, 2010). 

According to Crow and Kimura (2009), breeders only account for additive variances although 

there may be large amount of epistasis and dominance. They regarded the effect of epistasis as a 

noise or a complex factor obscuring selection progress. However, Maher (2008) points out that 

these small effects of individual and cumulative sets of genes could be associated with genetics 

of common disease and missing heritability. He postulated that one source of the missing 

heritability, often encountered in genome wide association studies (GWAS) could be due to 

epistasis. However, there have been limitations to evaluate their quantitative significance. These 

limitations were lack of good statistical power and proper experimental design.  

 

In this manuscript, we investigate variance genome wide association study (vGWAS), 

complementary to the current models that use differences in phenotypic variances between 

genotypes rather than using mean differences to identify the loci of interest (Shen et al., 2011). 

The aim of this paper is to evaluate the power of vGWAS in relation to broad sense heritability 

for the detection of candidate epistatic loci. The Brown-Forsythe test for genotypic 

heteroscedasticity is used in vGWAS. The paper also addresses the novelty of vGWAS in 

detection of epistasis as a procedure to be used in addition to standard linear regression models. 

Moreover, this thesis will intend to fill the gap for animal breeding and genetics by providing 

more powerful method in terms of detecting interacting loci that can be used for animal selection 

in particular and for complex disease genetics study in general. However, there were limitations 

to get adequate references related with the topic. 
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1.1 The development of QTL mapping for detecting epistasis: 
 

In quantitative trait loci (QTL) mapping, the population should be partitioned into different 

genotypic classes. Then, the applied test statistic should confer whether the individual of one 

genotype differ significantly from individual of other genotype with respect to a certain 

phenotype. Usually, QTL mapping requires segregating mapping population such as F2 cross 

populations, backcross populations, recombinant inbreed lines, near isogenic lines or double 

haploids lines. Phenotypic data obtained from backcross or intercrosses are used to identify the 

genomic region that has genotype-phenotype association. In order to identify the genomic 

regions associated with the trait of interest, genetic markers such as microsatellite and SNPs; 

phenotypes (i.e., observed characters of the individuals) and genetic maps, which specifies the 

location of markers on the chromosome, are used (Wu et al., 2007). QTL linkage analysis and 

fine mapping studies could lead to identify and functionally confirm the candidate genes which 

have potential effect on the trait.  For instance, both DGAT1 and GHR genes, which have 

significant effect on milk production trait in dairy cattle, have been identified and functionally 

confirmed using QTL mapping and fine scale mapping primarily (Jiang, 2010).  

 

A number of methods and software to detect epistasis between QTL have been developed during 

the past years. For instance, Genetic algorithm by Carlborg et al. (2000); Exhaustive algorithms 

by Nelson et al. (2001) and Ritchie et al. (2001); Two-step approach by Storey et al. (2005) and 

Evans et al. (2006); Three epistasis detecting tools (i.e., fast ANOVA, COE and TEAM) by 

Zhang et al. (2010). Currently available methods for estimating QTL parameters use least square 

regression, maximum likelihood and Bayesian regression as their main methods as shown in 

Table 1. All packages listed in Table 1 are limited to detect interaction between two loci without 

considering higher order interactions. This is because testing all pair wise combination creates 

computational burden for the analysis and becomes time consuming. Although the package 

PSEUDOMARKER uses DIRECT, which is a computationally efficient algorithm on MATLAB 

platform, the current application is only for two QTL scans. Some of these packages also have 

epistatic searching algorithms in addition to QTL detection.  

 

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Rongling+Wu%22
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Table 1. Existing software packages for QTL analysis. 

Main methods Packages 

 

 

Least square regression 

PSEUDOMARKER, QTL Cartographer, HAPPY, MapQTL, BQTL, 

QTL Network, WebQTL, MultiQTL, Map Manager QTX, 

PLABQTL, the QTL Café, GridQTL, R/qtl, PROC QTL, MQTL, 

QGene, QTL-All, Epistat 

 

Maximum likelihood 

Mapmaker/QTL, QTL Cartographer, MapQTL, BQTL, 

Multimapper, PROC QTL, QTL-by-SAS and QGene 

 

Bayesian regression 

 

QTLBIM, BQTL, Multimapper, PROC QTL, Shrinkage QTL and 

QGene 

 

Epistatic searching 

algorithms 

PSEUDOMARKER, QTLBIM, BQTL, QTLNetwork, MultiQTL, 

PLABQTL, GridQTL, R/qtl, PROC QTL, Map Manager QTX and 

Epistat 

 

1.2 The development of genome wide association studies 

(GWAS) and other methods for detecting epistasis: 
 

Along with the advent of single nucleotide polymorphisms (SNPs), genome wide association 

study becomes powerful to detect and identify the genomic regions harboring causal variants. 

For complex diseases such as autism and schizophrenia, the application of genome wide 

association studies is dominantly used. But a few applications of GWAS have been performed in 

cattle such as identifying genes for milk production traits (Jiang et al., 2010). To perform 

GWAS, two groups are required; case and control groups with large number of data sets. The 

sample taken from each of the two groups is then scanned for intentionally selected markers (i.e., 

using existing data such as HapMap) or randomly chosen markers (SNPs). If the result indicates 

that the genetic variations in the case group are considerably more frequent than the control 

groups, then the variations are strong indicators of the region in the genome where these 

variations are associated with a certain phenotype. However, in order to identify the exact 

genetic changes associated with a certain phenotype, further step is needed such as sequencing. 
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GWAS is denoted as a powerful method for the study of disease-associated genetic variants (Iles, 

2008). Unlike QTL mapping, GWAS utilizes many unlinked markers; does not necessarily 

require inbred lines and is able to detect many more interacting genes (Corvin, 2010). Most of 

these studies have been carried out on the effect of the markers’ mean trait value. 

 

Until recently, the differences in the variances of these traits were not considered. Pare´ et al. 

(2010) proposed a novel method to prioritize markers for gene-gene and gene-environment 

interaction. The analysis was done in two steps. The first step was prioritizing markers for 

further interaction using Levene's equality of variance test (i.e., assess whether k samples have 

equal variance). The second step was testing prioritized markers using linear regression for 

interaction effects against an environmental covariate or other markers. This technique opened a 

new perspective to weigh G G and G E interaction on which the new method (vGWAS) is 

based. There was some doubt about linking variance differences to epistasis until it was realized 

that the source of these variances could be epistasis or G E interactions (Pare' et al., 2010). 

Quantitative traits, which are regulated by genetic mean effect, have been explored and were 

found by most of the genetic association studies. Unlike the mean controlling loci which 

contribute to additive genetic effect, variance controlling loci affect phenotypic variance 

indirectly. This means that other genetic or environmental factors affect the mean shift due to 

variance controlling loci rather than directly contributing to additive genetic variance. Variance 

controlling genes are therefore important for the genetic robustness by stabilizing the traits that 

are under selection. Integrating mean controlling loci, variance controlling loci and loci 

controlling both are therefore important to elucidate the genetic architecture of a given trait 

(Shen et al., 2011). 

 

For the detection of higher order interactions in association studies, a new method called 

multifactor dimensionality reduction (MDR) was developed by Ritchie et al., (2001). Most 

importantly, this method identifies multi-locus interactions, rather than only single locus effect. 

This makes it possible to determine the mechanisms of disease susceptibility that underlie the 

influence of epistasis by looking at the hierarchy of interacting genes in biological networks 

(Moore, 2003). Most commonly, logistic regression model, which includes main and interaction 
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terms, is used to test statistical interactions. The whole-genome analysis package PLINK is 

endowed with logistic regression tests for both main effect and the interactions (Cordell, 2009). 

However, logistic regression has low power when loci have no marginal effect. Therefore, the 

method which is developed by Yang et al. (1999) can be used to compare case and controls for 

their inter-locus associations based on partitioning of    values for the conditions that logistic 

regression has low power. Although several efforts have been made to study interactions alone, 

methods that allow interactions with other genetic or environmental factors while testing the 

effect of a given locus increase the power (Cordell, 2009). 

 

Analyzing and testing all possible pairs of loci is the simplest way to look for interactions. 

Exhaustive search were built to analyze data in this way. If exhaustive search is applied to 

genome scan, it might take several hours or days or even a month to make all pair wise 

comparisons (Cordell, 2009). But for higher-order interactions such as three loci, four loci or 

higher level interactions, exhaustive search are not normally used for the analysis due to high 

computational burden. In order to overcome this problem, two-step approaches have been used. 

In the first stage, the loci that are significant for a certain threshold level are filtered. Secondly, 

an exhaustive search on those selected loci is applied for two locus or higher order interactions 

(Hoh et al., 2000). This approach allows loci for the subsequent stage of testing if they had 

marginal association with the trait. Therefore, a shortcoming of this method is that alleles which 

did not show marginal associations are not evaluated to detect interactions. Two step methods 

are not the only methods to overcome high computational burden. Alternatively, most of 

machine-learning or data mining approaches such as Relief and Random Forest do not 

necessarily require a locus with marginal effect (Cordell, 2009). Although an efficient global 

optimization algorithm, DIRECT, was developed to reduce the high computational complexity 

demand (Ljungberg et al., 2004), scaling problem remains a challenge for genotype-phenotype 

mapping due to exponentially increasing numbers of all possible genetic interactions (Phillips, 

2008).  
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1.3 Limitations to detect epistasis:  
 

It has been a challenge to identify genes which are responsible for complex genetic traits 

especially when they are involved in epistasis and gene by environment (G E) interactions. It is 

also clear that gene frequencies and phenotypic variations change from population to population, 

from sample to sample and from generation to generation. This makes it difficult to assign a 

phenotype to its complimentary genotype (even when the system is simple and there are no 

environmental interactions). Since there is often some degree of environmental interaction, it 

becomes more difficult to detect and map genes due to non-linear interactions between genes. As 

the number of genetic factors increases, the average contribution of each factor explaining a 

specific phenotype decreases. The inverse relationship between number of genes and individual 

average gene effect limits detection and mapping of genes. Caution is therefore important when 

we want to map the component of genes in complex traits and explain their role (Wade et al., 

2001).  

 

Since epistatic QTL uses the mean of multi-locus genotypes rather than single locus individuals, 

it requires larger sample size. Usually, there is a limitation to collect adequate data in association 

studies which results in lack of power (Carlborg and Haley, 2004). Most studies for detection of 

epistatic QTL use quantitative genetic models since the detected interactions are not always 

biologically relevant. For instance, when epistasis is modeled as a deviation from additivity, it is 

difficult to report gene-gene interaction in a biological context (Cordell et al., 2001). But there 

are methods to associate statistically modeled epistasis to their real biological meanings. One 

way to describe how gene interactions influence the phenotype is genotype-phenotype maps. 

These maps can be used to connect experimental data to real gene interaction patterns (Carlborg 

et al., 2003). Functional relationship among loci and gene regulatory networks such as positive 

and negative feedback loops are other methods to link statistical estimates of epistasis to 

biological meaning (Omholt et al., 2000).  
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1.4 The missing heritability 
 

The majority of complex diseases are thought to be influenced by many environmental and 

genetic factors (Manolio et al., 2009). GWAS has become a powerful and popular tool to 

associate the genotypic variance with phenotypic variance. Complex traits are however often 

assumed to follow the infinitesimal model (i.e., traits are determined by infinite number of 

unlinked loci) (Fisher, 1918). Several other reasons, including larger number of variants with 

smaller effect or few variants with larger effect and a low power to detect gene-gene interaction, 

may lead to the small estimates of heritability observed in many studies. This raises a question: 

Is the “missing heritability” due to sampling issues or an inherent problem with the methodology 

in association studies? It was termed as "dark matter" of the genome, since it certainly exists, but 

cannot be detected. Therefore, there is a need to propose and develop methods to detect the 

potential source of this missing heritability when dealing with complex disease genetics 

(Manolio et al., 2009). Since current methods used in GWAS are not able to detect interactions, 

using vGWAS enables to find some of the variation currently unexplained.  

 

2. MATERIALS AND METHODS: 
 

2.1 Genotype-phenotype map creation: 

 

For two and three loci epistasis model, different genotype-phenotype maps were used. A 

genotype-phenotype map without mean difference could inherit variance difference between 

genotypes of a particular individual locus. Since vGWAS was built to detect variance differences, 

QTL of these maps can be detected using this program. Genotype-phenotype maps (shown in 

Figure 1a, 1b and 1c) were used to show variance differences between genotypes and estimate 

the power of vGWAS in relation to heritability. 
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Figure 1a. Genotype-phenotype map. There is no mean or variance difference between genotype AA and Aa, 

when summed over all combination with the B-locus. But, there is mean and variance difference between genotype 

aa and the other genotypes (AA or Aa) averaged over all combination with the B-locus. 

 

 

Figure 1b. Genotype-phenotype map (including without mean difference for genotype-phenotype 

maps having same frequencies). There is no mean difference between genotypes AA, and Aa, aa and AA and; 

aa and Aa when summed over all combination with the B-locus. But there are variance differences between 

genotype AA and Aa; and Aa and aa, averaged over all combination with the B-locus. 
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Figure 1c. Genotype-phenotype map. There is no mean and variance difference between genotype AA and 

Aa, when summed over all combination with the B-locus. There is mean and variance difference between genotype 

AA and aa, and Aa and aa averaged over all combination with the B-locus. 

 

The numbers in each cell represent the mean phenotypic value of specific genotype. Since the 

population is in Hardy-Weinberg equilibrium, there may be a small main effect. This means that 

the differences observed could be detected by testing for main effect. However, testing the 

variance should not be greatly affected by these artifacts. In non Hardy-Weinberg population, 

there may be a condition in which the genotype frequencies remain the same. In this case, 

vGWAS could rather detect differences in variance without main effect.  

 

2.2 Data simulation: 
 

Data was generated up to 30 generations using a simulation program written by Ronald Nelson 

in C++ and compiled for Mac_OS_X (see appendix). Simulations were conducted for different 

scenarios of population size and noise levels at generation 30 as summarized in Table 2. To limit 

the effect of drift on the allelic frequency, we terminated at generation 30. This could ensure 

enough recombination events to be similar to a realistic out-bred population. Two chromosomes 

were simulated; the first contains 100 markers and the second 109 as shown in Figure 2. QTL are 

BBAA BbAA bbAA BBAa BbAa bbAa BBaa Bbaa bbaa 

Phenotypic Value 1000 500 0 500 1000 0 0 0 0 

0 

200 

400 

600 

800 

1000 

1200 
P

h
e

n
o

ty
p

ic
 V

al
u

e
 

 

 

 



 

14 

 

simulated in the genome using these two chromosomes and keeping them far apart to behave as 

if they are unlinked. 

 

Figure 2. The simulated chromosome maps. (Markers are indicated in blue and QTL in red. QTL were 

simulated at different positions but were always unlinked when more than one was used. If QTL are in the same 

chromosome, they kept far apart to be unlinked reasonably). 

 

The founder populations had four completely homozygous individuals, but they had different 

alleles at all loci. There were 2 males and 2 females and the sex ratio throughout simulation was 

kept at 1:1 in all subsequent generations. QTL were simulated at 47 cM in the first chromosome 

and 131 cM in the second chromosome for two loci epistasis model. For three loci epistasis 
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209 markers in 2 

chromosomes  

model, QTL were simulated at 6cM and 47cM in the first chromosome and at 131cM in the 

second chromosome. The positions of simulated QTL for both two and three loci epistasis model 

were the same for every repeated simulation. Since no selection is performed, allelic frequencies 

remain the same as in the founder population, and allowing random mating keeps the genotype 

frequencies to be in equilibrium. The created maps, as shown in Figure 1(a, b, c), were simulated 

with noise level of 1, 3, 10
4.5

, 10
5
, 10

5.5 
and 10

6
 for population size of 500 at generation 30 for 

two loci epistasis model.  vGWAS – an R statistical package was used to analyze the simulated 

data. The simulated data contains both genotype and phenotype information. Genotype-

phenotype maps are allelic combinations expressing a specific phenotypic value. The numeric 

values of each cell in Figure 1 are phenotypic values of their allelic combinations. The vGWAS 

program scanned the genotypes of the individuals for all possible pair wise associations. The 

outputs were stored and graphs were plotted. The whole process can be summarized as the 

following flow chart in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flow chart summarizing the methodology. 
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A total of 1060 simulations were performed for the two loci model. Subsequently, further 120 

simulations for three loci epistasis model were simulated (see Table 2) following the same 

procedure as two loci simulations (i.e., for 30 generations and population sizes of 1000) for 

different genotype-phenotype maps. To evaluate power in terms of different heritability levels, 

the values of heritability and power at each of the noise levels were used.  

 

Table 2. Simulations performed for two and three locus epistasis based on different population 

size and noise level at generation 30.  

 

Loci Noise 

level  

Number of  

Simulations 

Population sizes 

Two loci  

 

 

 

 

 

 

1 

1 

3 

3 

10
4.5

 

10
5
 

10
5.5 

10
6
 

  90 

140 

  90 

140 

150 

150 

150 

150 

  500 

1000 

  500 

1000 

  500 

  500 

  500 

  500 

Three loci 

 

1 

3 

  60 

  60 

1000 

1000 

 

2.3 Determining significant QTL: 
 

The QTL detected by vGWAS program were recorded as correct or wrong QTL. Experience has 

shown that it is appropriate to take 6cM as a boundary between correct or wrong QTL. If the 

QTL detected were 6cM or less away from the position in which the QTL were simulated, it was 

recorded as correct QTL. Beyond that, the signals were recorded as wrong QTL. The simulated 

number of QTL was calculated as: number of simulations × number of interacting loci. For 

example, number of simulations for two loci was 90 and number of interacting loci was 2. 
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Therefore, the number of simulated QTL was 180. If the detected QTL were significantly above 

Bonferroni corrected threshold, it was recorded as a potential QTL. Significance level was 

calculated as α/n where α is the degree of significance (i.e., 0.05) and n is the total number of 

markers used (i.e., 209). In two loci epistasis model case, if the QTL are more than two or in 

wrong positions compared to the simulated QTL positions, then we record it as false positive 

QTL. The same procedure was also applied for three loci epistasis model. The power of vGWAS 

was calculated by using correct and wrong QTL compared to the simulated number of QTL. 

 

2.4 Heritability and power estimation: 
 

Traditionally, phenotypic variance is the sum of genetic and environmental variances.  

  

   =   +                                           [3] 

 

But,    may be further decomposed in to genetic variance due to mean difference (  ) including 

additive (  ) and dominance variance (  ), and variance due to a change in variance (  ) which 

includes interaction variance (  ) and heritable variance heterogeneity (i.e., variance shift 

between genotypes) (Shen et al., 2011).  

 

   =    +                                      [4] 

 

Broad sense heritability (  )
 
can be defined as the ratio of genotypic variance (VG) to the total 

phenotypic variance (VP): 

 

   
=                                                [5] 

 

Broad sense heritability was calculated using R for different noise levels that correspond to 

environmental variance. Broad sense heritability includes all possible genetic effects such as 

epistasis, and additive and dominance variances. In vGWAS,    is included for calculating 
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heritability whereas GWAS misses    for heritability assessment. Phenotypic and genotypic 

variance calculations are given in Figure 4. 

 

  

Figure 4. Heritability calculation in R  

                                               

Power was estimated using the number of correct QTL out of simulated number of QTL. False 

positive rates (FPR) were also calculated as the number of false positive QTL recorded out of 

expected QTL.  

 

Power = # detected epistasis / # simulated epistasis                               [6] 

FPR = # false positive epistasis/# simulated epistasis                          [7] 

 

2.5 Model description: 

 

vGWAS was developed with the aim to search for variance controlling genes. Mapping variance 

controlling genes could be used to identify loci which have significant effect on the variance of a 

trait of interest and to validate such candidate epistatic genes. Brown-Forsythe’s test of equality 

of variances is applied in vGWAS. Brown-Forsythe test of equality of variance was based on 

Levene’s test of homogeneity of variances in k groups. It applies ANOVA statistics (Kruskal-

Wallis ANOVA). The method is based on variance heterogeneity which helps to screen 

potentially interacting single nucleotide polymorphisms (SNPs). Brown-Forsythe (Levene's) test 

was used to assess the equality of group variance for variance controlling loci. For instance, for 

 

H2 <- function(geno.pheno.map, env.var) { 

        freq <- tcrossprod(c(.25, .5, .25)) 

        Ey <- sum(colSums(geno.pheno.map*freq)) 

        Ey2 <- sum(colSums((geno.pheno.map**2 + env.var)*freq)) 

        Vy <- Ey2 - Ey**2 

        VG <- Vy - env.var 

        H2 <- VG/Vy 

        return(list(H2 = H2, VG = VG)) 

} 
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the phenotypic value     where   = 1….n and   = 1…m, the absolute deviation of each genotype 

from the median can be given as: 

 

                                                           [8] 

 

where,     is the value of   for the  th
 observation of  th

 sub group and .

_

iY  is  th
 sub group mean. 

Levene's test assumes that the null population variances are equal. The test statistics can be given 

as:  
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where, .

_

iZ is group mean of     and ..

_

Z  is the overall mean of     for N population size and K 

sub groups. The model also used ANOVA F test to calculate p-values. The calculated p-values 

are used in vGWAS with Bonferroni corrected significance threshold (Shen et al., 2011).  

 

The sampling distribution for our parametric model which is used to estimate the proportions 

explained by mean and variance is given as:  

 

 i|   ,     i,   ,    ~ N(   +    i, exp {       i}                [10] 

 

where,   and   are mean and variance with    and    intercepts.  i is a covariate denoted for 

SNP dosage.    and    are the mean and variance genetic effects. The model likelihood can be 

given as:  

 

  =                   i         i)
2
/2  

  } where,   
  = exp(           [11] 

 

To estimate the parameters,            , the double generalized linear model (DGLM) is 

used for both mean and variance parts (Shen et al., 2011). This means that linear model is fitted 

for the mean part and generalized linear model (GLM) is fitted for variance part. In addition, 
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DGLM consists of one ordinary least squares (OLS) for variance part and one weighted least 

squares (WLS) for variance part. Both mean and variance least square parts can be combined as 

follows:  

 

R
2 

=   
  + (1    

 )  
                                  [12] 

 

where, R
2
 corresponds to    (ranges from 0 to 1),   

  corresponds to   , and   
  corresponds 

to   . The missing part in the mean model is represented by 1    
  and   

  is the proportion 

reaching the missing part. Sum of squares for the mean part of the model is calculated by: 

 

  
  = (        ) /                                [13] 

 

Where,     is the total sum of squares and     is the residual sum of squares. Sum of squares of 

the variance part of the model is calculated by using deviances:  

 

  
  = (      )/                                     [14] 

 

where,    is the null deviance and   is the deviance from the fitted generalized linear model 

(i.e. GLM has gamma distribution).  Dealing with interaction effects and vQTL, vGWAS detects 

epistasis by using Brown-Forsythe test. The sampling distribution that consists of interactions for 

two loci a1 and a2 can be given as: 

 

yi | N (a1x1i + a2x2i + a12x1ix
2i

,  2
)                   [15] 

 

where, x1i and x2i are covariates, a12 is the interaction effect and  2
 is a common residual 

variance.  

 

If the detected vQTL are a result of interaction effect, both G x G and G x E could be the 

possible factors. Testing the association of environmental factors with the phenotype confirms 

whether the traits are associated with the environment or not. If there is association between the 

traits and environmental factor, the interaction of each vQTLs and environmental factor will 
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have significant G x E interactions. Therefore, we can also consider environmental factor as 

variance controlling factor. The association between the trait and environmental factor could be 

detected by variance heterogeneity test in our model where the noise level acts in a similar 

fashion as G x E interaction does (see equation 9). 

 

3. RESULTS: 
 

Two QTL for two loci and three QTL for three loci were observed as expected. These are shown 

in Figure 5a and 5b respectively. The observed positions of the QTLs were mostly the same as in 

the simulated data set and the same is also true for three locus epistasis model as shown in Figure 

5. The summary of the results across different noise levels for two loci model is shown in Table 

3. In this table, lower noise level results higher true positive QTL/rates and lower false positive 

QTL/rates whereas higher noise level results lower true positive QTL/rates and higher false 

positive QTL/rates. But for three loci model, only lower noise level is tested since we focused on 

two loci epistasis model primarily.   
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5a                                                                                      5b 

Figure 5. Two and three loci candidate epistatic QTLs. (The light orange line is the threshold value. The  -axis 

represents the marker positions in the genome where number 1 and 2 refers to the first and the second chromosome.The location 

of the detected QTL are shown. Y-axis represents p-value as a function of base 10 logarithm with Bonferroni corrected 

threshold.) QTL positions were located at 47 and 131 for two loci interactions and 6, 47 and 131 cM for three locus interactions. 

In graph 4a and 4b noise level of 3 were used. But in 4a population size of 500 were used whereas in 4b 1000 individuals were 

used.) 

 

If the QTL were recorded beyond 100 cM, then the signal is on the second chromosome and vice 

versa. In the above figure, there is more than one dot (marker) above Bonferroni corrected 

threshold line associated with the detected QTL. This is because there are linkages between 

markers and they are recorded as a single peak. 
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Table 3. Summary of vGWAS scan for two and three loci epistasis model. 

 

Loci No. of 

simulation 

Noise 

levels  

Average 

Heritability 

Simulated 

number 

of  QTL  

True 

positive 

QTL 

True 

positive 

rate 

False 

positive 

QTL 

False 

positive 

rate 

Two 

 

230 1 

 

~ 1 460 454 

 

0.987 1 

 

0.002 

 
 

230 3 

 

~ 1 460 456 

 

0.991 5 

 

0.011 

 
 

150 10
4.5

 

 

0.84 300 268 

 

0.893 8 

 

0.027 

 
 

150 10
5
 

 

0.62 300 213 

 

0.710 2 

 

0.007 

 
 

150 10
5.5

 

 

0.34 300 27 

 

0.090 4 

 

0.013 

 
 

150 10
6
 

 

0.10 300 2 

 

0.007 8 

 

0.027 

Three 

 

60 1 

 

- 180 163 

 

0.906 0 

 

0.000 

 
 

60 3 

 

- 180 165 

 

0.917 2 

 

0.011 

 

Heritability is also plotted in relation to power (see Figure 6). The graphs shown in Figure 6 are 

consistent with the result presented in table 3. That is at lower noise level, there are high true 

positive rates, power and heritability. But at higher noise level, all of these three parameters 

become lower. Figure 6 shows the relationship between power and heritability of genotype-

phenotype maps (see Figure 1a, 1b and 1c). The trends in all three graphs are similar, but they 

have different turning points due to different combination of each map.  
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Figure 6. Power and heritability estimates for the three genotype-phenotype maps (see Figure 1 

(a, b, c)). 

The graph shows that the power was good at low noise level; for example, at noise level of 3, 

both power and heritability estimates were approximately 1.  

 

 

 

 

 

 

            Map 1 (Figure 1a) 

            Map 2 (Figure 1b) 

            Map 3 (Figure 1c) 

Legend 
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4. DISCUSSION: 
 

In this project, we focused on the detection of two-way interactions with a newly developed 

method, vGWAS (Shen et al., 2011). We also showed that this method is able to accurately detect 

three loci epistasis interactions. The significant loci, as shown in Figure 5, could be explained as 

candidate epistatic loci. These loci could be detected with or without main additive effects. 

Current methods are unable to detect interacting QTL in the absence of main effect. The absence 

of main effect or detecting few QTL by the conventional association methods could be a sign of 

the presence of epistatic interaction. This is because detecting epistasis is often associated with 

the absence of main effect (Xu and Jia, 2007).  Using the variance differences for alleles reveals 

an alternative mode of genetic influence with biological relevance (Pare' et al., 2010).  

 

The generated data we have used for simulation follows Hardy-Weinberg equilibrium throughout 

the population. This would make some of the genotype to become frequent than others. Because 

of unequal frequencies of genotypes, genotype-phenotype maps created to show variance 

differences in the absence of mean difference (see Figure 1b) could also contain mean 

differences. This is because some of the genotypes are more frequent than the other. Although 

the phenomena could not greatly affect the variance effect, the incident might slightly 

underestimate the power analysis. In non Hardy-weinberg population, which may keep all allele 

frequencies equal, the effect of variance differences could be detected without mean difference 

by vGWAS. This is one potential area for improvement in the design of this project.  

 

The increasing and decreasing trends of both power and heritability also reflects the effect of all 

non-genetic variances. Since increasing or decreasing the noise level would result in detection of 

wrong or correct significant loci, we relate the noise level as all non-genetic variances such as 

environmental variance (Ev), epigenetics, penetrance or sampling error. The power of vGWAS to 

detect epistasis was good especially for lower noise levels (higher heritability) analysis (see 

Figure 6).  Moreover, the value of average FPR for the two loci epistasis model was less than 

1.4% (see Table 3). This confirms that vGWAS can efficiently detect epistasis. However, to draw 

inference for the three loci epistasis model, there were not enough simulations.   
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Nowadays, epistasis becomes a common consciousness for researches since searching markers 

for their individual effect may not be sufficient to identify genomic regions having significant 

effect. Carlborg et al. (2006) performed a study that allows epistatic relationship among loci. In 

their study, only one QTL, namely Growth9, was found when testing for individual effects of 

loci on body weight in chicken. However, testing for epistatic relationship among loci enabled 

them to identify additional five significant genomic regions associated with growth. Several 

independent studies on loci with epistatic relationships have been found such as those 

influencing obesity in mice (Stylianou et al., 2006), odor-guide behavior in Drosophila 

melanogaster (Sambandan et al., 2006), the Arabidopsis Thaliana metabolome (Rowe et al., 

2008), additivity and epistasis controls of growth and yield in tomatoes (Causse et al., 2007), 

genetic architecture of co-variation in skull trait complexes in mice (Wolf et al., 2005), genome-

wide expression in yeast (Store et al., 2005), and QTL mapping of yeast (Nogami et al., 2007). 

Designing and monitoring novel breeding strategies that take into account interacting loci could 

be appropriate to increase the power of current selection schemes. Since vGWAS detects more 

QTL than GWAS does, more QTL can be used for selection in animal breeding. 

 

When the phenotypes in the population are characterized by non-additive variance of major 

genes, the candidates may not be evaluated directly for the traits that are under selection. 

Therefore, there is no or low pressure of conventional selection on the effect of major genes 

segregating in the population (Dodds et al., 2007). Dagnachew et al., 2011 reported a deletion 

allele in exon 12 of CSN1S1 gene (i.e., associated with lowered fat and protein composition in 

milk) which exhibits a non-additive effect. They have reported over-dominance in kg milk and 

lactose percentage. It has unusually high frequency in the Norwegian goat population. In their 

study, they explained that the phenomenon decreases the selection pressure for the allele when 

conventional breeding methods are used. To decrease the frequency of this deletion at national 

level, molecular information on the deletion is included as a selection criterion in the national 

breeding scheme. However, to explain the occurrence of high frequency of the allele, while the 

aim of breeding is against the effect of this allele (i.e., deletion allele, CSN1S1), the presence of 

epistasis and/or linkage could be considered (Cesurer et al., 2002). This phenomenon can be an 
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example of the gap that earlier methods had in animal breeding. Since vGWAS detects more QTL 

associated with the trait (Shen et al., 2011), it would provide more information for animal 

selection. This means that the loci that interact epistatically for a given trait can be detected by 

vGWAS. It might be necessary to build extended segment to capture those QTL underlying the 

traits of interest. Since larger segments recombine more frequently, the epistatic effects of linked 

genes would go on the cost of stability of haplotype effect across generation. Therefore, using 

epistasis of linked genes could speed up short term selection response. In addition, the loci 

carrying alternative genotypes may not show mean differences. But these loci could have 

variance differences between alternative genotype classes and this can be detected by vGWAS. 

Using vGWAS could therefore fill such gaps which were not reached by earlier methods.   

 

Usually, selection generates linkage disequilibrium. This means that for the selection of the 

optimum values of a given trait, certain genes will be responsible. These genes interact 

epistatically to give the optimum values of a trait (Phillips, 2008). Through selection, linkage and 

epistasis have evolutionary consequences over generations. Therefore, designing selection 

strategies based on conventional breeding scheme should consider the presence of epistasis and 

linkage.  

 

Currently, lack of precise breeding value of any single individual is associated with addressing 

the source of genetic variation accurately. This means that in our breeding value estimation, we 

must consider whether additive combinations of a single locus could be used to explain 

phenotypic variation associated with multi-locus genotypes or whether important non-linear 

interactions exist. We also have to consider the independence of inheritance and distribution of 

one locus to those of the other loci. Since the expressions of polygenic traits are influenced by 

environmental variance, we should also consider whether gene expression varies with context 

and whether specific genotypes are associated with particular environment (Lynch and Walsh, 

1998). Existing breeding knowledge relates response to selection closely with the level of 

additive genetic variance. However, environmental variance reduces the efficiency of selection 

process by obscuring genotype-phenotype relationship (Lynch and Walsh, 1998). Usually, low 

heritability is associated with high environmental effect. But, it could also be associated with 
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traits regulated by variance controlling genes rather than mean controlling genes. Implementing 

vGWAS therefore could detect the additive effects at two loci a1 and a2 of variance controlling 

loci and the interaction effects a12 (see equation 15).  

 

Detecting loci (vQTLs) which control such variance provide valuable information for various 

multi-disciplinary studies. For instance, in genomic selection, it can provide more consistent 

livestock selection schemes (Rönnegård and Valdar, 2011). This means that at the beginning of 

selection, a change in mean results in economic gain. When the optimum is reached through 

time, selection pressure may shift from the mean to variance. Reducing variance could further 

promote economic gain through uniformity (Mulder et al., 2008). Animal uniformity for traits 

with nearly optimum values have economic interest such as pH range, litter size, weight and 

quality of carcass in pigs, sheep and broilers (Mulder et al., 2008). Moreover, vGWAS also helps 

to find those genetic factors underlying the disease phenotypes since most complex diseases are 

caused by combined effect of multiple genes.  

 

As a shortcoming of this method, vGWAS requires more observations (i.e., fivefold as many 

observations as mean controlling loci) to reach the same precision (Rönnegård and Valdar, 

2011). Since vGWAS is a conservative approach, it has low power to detect interactions at lower 

heritabilities. This means that vGWAS requires higher heritability as shown in Figure 6 to get a 

powerful estimate compared with other methods. But, most quantitative traits have low to 

moderate heritability estimates which may make it difficult to detect interactions with good 

power.  
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http://www.genetics.org/search?author1=Lars+R%C3%B6nneg%C3%A5rd&sortspec=date&submit=Submit
http://www.genetics.org/search?author1=William+Valdar&sortspec=date&submit=Submit
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5. CONCLUSION 
 

Our results show that vGWAS is a powerful and promising tool for candidate epistatic gene 

detection. It would be applicable for real data dealing with complex disease or obscured genetic 

interactions. However, the requirement of high heritable traits could face a challenge in its 

applicability for most of quantitative traits. The identified candidate epistatic genes would 

require further experimental procedures to confirm that the candidates are the actual epistatic 

genes. The missing heritability due to variance shift between genotypes and interaction variance 

linked with epistasis could be reachable by vGWAS since the method has good power and 

accuracy for highly heritable traits. Although we have also tested three loci epistasis model, the 

performed simulations were not enough due to its complexity. Therefore, more simulation is 

required to draw the power analysis for three loci epistasis model. Practically, it is possible to 

reanalyze previous datasets by vGWAS to detect significant loci which were not detected by 

GWAS.  
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APPENDIX 

  

C++ simulation program 
 
 ronnie.nelson@hgen.slu.se 

 This program simulates the creation of offspring  

 from set or user defined genotypes (haplotypes) for analysis of 

 qtl estimation programs */ 

 

/* Note that all the arrays (elements in the arrays) start at one with zero as an empty space to use in some  

 cases for sorting or finding things or resetting some values before selection*/ 

 

#include <iostream> 

#include <string> 

#include <algorithm> 

#include <math.h> 

 

using namespace std; 

 

//structure 

struct saved_information {//should have the info for all the subpops, to get the freq just devide by 

subpopsize or 2*subpopsize for allele freq or the number of loci  

 int prop_fixed_loci; //the number of fixed alleles in this population 

 int *one_allele_freq; /*determine the allele freq of the 1st allele,  

         can use to determine if it is fixed and if the markers  

         are snps the other freq can also be detemined*/ 

}; 

 

struct chromosome { 

 char chr_name[40]; //name of the chromosomes 

 int markernumber; //including the QTL's 

 int qtl_per_chr; //the number of qtls in this chr 

 string *markernames; //array of marker names 

 float *maleCM; //array of positions of markers cM (first always 0) this is the absolute position on 

the chr 

 float *femaleCM; //seperate for male and females?? 

 float *RF_to_next_marker_maleCM;//the recombination frequency between markers next to e.o., 

will enable some different ways to calc 

 float *RF_to_next_marker_femaleCM; 

 bool *type; //marker or qtl, marker = 1, qtl = 0, may change to int when microsats are used 

   //add a fixed for an allele function..., cpuld be an array here? 

   //sex chromosome 

      //int *physical position?? 

}; 

 

struct qtl_array { 

 char qtl_name[40]; //name of the phenotype 

 int qtl_chro; //which chromosome 
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 float qtl_male; //the place on the male map 

 float qtl_female; 

 int qtl_pos;//number on the map of where qtl is locates i.e. marker number 200 is a qtl 

 /* 

  add here the amount of additive and or dominance varianve is explaind by the qtl 

  also which if there are more than one trait which trait it affects 

  */ 

}; 

 

struct individual{//all should will be part of a population 

 bool sex; //1 defines male, 0 defines female 

 int subpopID;//could maybe remove this to make faster!! 

 int *haplotypeA, *haplotypeB; // the actual genotype composition of the individual 

 int times_mated; // 

 bool selected_to_mate; //if this is 1 the individual can mate if 0 not 

 int father, mother; 

 float phenotype, phenotype2; 

 //string ind_id;//no name yet for individuals  

}; 

 

struct population{ 

 char popname[40]; 

 int popsize; 

 individual *ind; 

}; 

 

//GLOBAL VARIABLES  

//(From the Inputfile) 

int chromosome_number; 

int qtl_number; 

int total_markernumber; //excluding qtls 

int haplotype_size; //markers and qtls 

int burnin_generations; 

string marker_type; //snp, micro_sat 

chromosome *chr; 

qtl_array *qtl; 

 

population founderpop;// the founder population 

population *subpop;//the array of subpops creating the parental line 

population *subpop_offspring; 

int population_size_total;//total no of individuals in whole population 

int subpopnumber;//the number of subpops during burnin 

int subpopsize;// all subpopsizes are currently assumed to be the same, make this an array if different 

popsizes are to be simulated 

char rec_freq_method[2];//the way the recombination frequency is calculated (h haldane, k kosambi, e 

map distance = recmbination frequency), currently only haldane 

 

//saved info 

saved_information **info_per_gen_per_pop;//2dimentional 1st[generation] 2nd[subpopulation] 

int *tot_fixed_loci;//array per gen 
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int *same_fixed_loci;//array per gen 

int *sexratio;//array per gen, actually the number of males 

 

//noise for the phenotypes 

//int *unifdistr; // array of uniforma distr numbers 

float *int_noise; 

float noise_scale; //used to scale the error, currently to around one stdev 

 

//Function: draw the chromosome maps 

void plot_fixed_allel_freq(){ 

 //var 

 int counter, counterB, counterC; 

 FILE * outfile; 

  

 //creating a R-info file named: "plot_freq2.R" 

 outfile = fopen("plot_freq2.R","w"); 

 fprintf(outfile, "#data to be used in R-file plot_freq.R"); 

 fprintf(outfile, "\npopsize <- %d",population_size_total); 

 fprintf(outfile, "\nsubpopnumber <- %d",subpopnumber); 

 fprintf(outfile, "\nloci <- %d",haplotype_size); 

 fprintf(outfile, "\nmaxgen <- %d",burnin_generations); 

 fclose(outfile); 

  

 //creating the data file named: "outfreq.grph"  

 outfile = fopen("outfreq.grph","w"); 

 fprintf(outfile, "generation\tmales\ttotal_fixed\tsame_allele\tdifferent_allele"); 

 for (counter = 1; counter<(subpopnumber+1); counter++) { 

  fprintf(outfile, "\tfixed_pop_%d",counter); 

 } 

  

 //adding all the allele freq of all the populations to the recorded data 

 for (counter = 1; counter<(subpopnumber+1); counter++){ 

  for (counterB = 1; counterB<(haplotype_size+1); counterB++) { 

   fprintf(outfile, "\tpop_%d",counter); 

   fprintf(outfile, "locus_%d",counterB); 

  } } 

  

 for (counter =1; counter<(burnin_generations+1); counter++) {//for each gen recorded 

  fprintf(outfile, 

"\n%d\t%d\t%d\t%d\t%d",counter,sexratio[counter],tot_fixed_loci[counter],same_fixed_loci[counter],(tot

_fixed_loci[counter]-same_fixed_loci[counter])); 

  for (counterB = 1; counterB<(subpopnumber+1); counterB++) {//for each subpop 

   fprintf(outfile, 

"\t%d",info_per_gen_per_pop[counter][counterB].prop_fixed_loci); 

  } 

   

  //adding all the allele freq of all the populations to the recorded data 

  for (counterB = 1; counterB<(subpopnumber+1); counterB++){ 

   for (counterC = 1; counterC<(haplotype_size+1); counterC++) { 
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    fprintf(outfile, 

"\t%d",info_per_gen_per_pop[counter][counterB].one_allele_freq[counterC]); 

   } 

  } 

   

 } 

  

 fclose(outfile); 

 

 system ("R CMD BATCH plot_freq.R R_log_freq_plot.txt"); 

// system("open proportion_loci_fixed.pdf"); 

} 

 

//Function: draw the chromosome maps 

void plot_marker_info(){ 

 //var 

 int counter, counterB, counterC; 

 FILE * outfile; 

  

 //creating a outfile, should go in a seperate function when more than one plot is created 

 outfile = fopen("outin.grph","w"); 

 fprintf(outfile, "markerno\tchr\tposition\ttype"); 

 counterC = 1; 

  

 for (counter = 1; counter<(chromosome_number+1); counter++) { 

  for (counterB = 1; counterB<(chr[counter].markernumber+1); counterB++) { 

    

   fprintf(outfile,"\n",counterC); 

   if (chr[counter].type[counterB] == 0) { 

  

 fprintf(outfile,"%d\t%d\t%f\tq",counterC,counter,chr[counter].maleCM[counterB]);   

   } 

   else { 

  

 fprintf(outfile,"%d\t%d\t%f\tm",counterC,counter,chr[counter].maleCM[counterB]);   

   } 

   counterC =counterC+1; 

  } 

} 

 fclose(outfile); 

 system ("R CMD BATCH draw_qtls.R R_log_chr_draw.txt"); 

// system("open chromosome_map.pdf"); 

} 

 

//Function: show the imported data: can use to create a log file, alternative output 

void show_marker_info(){  

 //var  

 int counter, counterB; 

 //cout << "\nThe data imported (also written to the following log file '*.txt'):\n"; 
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 //QTL OUTPUT 

 cout << "\n"; 

 cout << "Number of QTLs: " << qtl_number << "\n"; 

  

 for (counter=1; counter<(qtl_number+1); counter++) { 

  cout << qtl[counter].qtl_name; 

  cout << ", on chromosome " << qtl[counter].qtl_chro << ", at positions "  

   << qtl[counter].qtl_male << " and " << qtl[counter].qtl_female << " 

(male,female)\n";   

 } 

  

 //CHROMOSOME OUTPUT, including the places of the QTLS 

 cout << "\n"; 

 cout << "Number of markers (total, excluding QTL's): " << total_markernumber  << " \n"; 

 cout << "Number of markers including QTL's: " << (haplotype_size) << " \n"; 

 cout << "Marker type: " << marker_type << "\n"; 

 cout << "Number of chromosomes: " << chromosome_number << "\n"; 

  

 for (counter=1; counter<(chromosome_number+1); counter++) { 

  cout << chr[counter].chr_name <<"\n"; 

  cout << "Marker no (incl. QTL): " << chr[counter].markernumber <<"\n"; 

  cout << "QTL no: " << chr[counter].qtl_per_chr <<"\n"; 

   

  //slightly inefficient to repeat a few times but  

  //this is mainly for tessting and  

  //may want to keep in this way to make the rows into cols if wanted  

  cout << "Marker_names:"; 

  for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) { 

   cout << " " <<chr[counter].markernames[counterB] ; 

  } 

  cout << "\n"; 

  cout << "Male_map_(cM):"; 

  for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) { 

   cout << " " <<chr[counter].maleCM[counterB] ; 

  } 

  cout << "\n"; 

  cout << "Female_map_(cM):"; 

  for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) { 

   cout << " " <<chr[counter].femaleCM[counterB] ; 

  } 

  cout << "\n"; 

  cout << "Recombination_frequency_to_next_marker_(male,cM):"; 

  for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) { 

   cout << " " <<chr[counter].RF_to_next_marker_maleCM[counterB] ; 

   if (chr[counter].RF_to_next_marker_maleCM[counterB] < 0) { 

    cout << "\n\n****ERROR: check map as markers are not in positional 

order\n\n"; 

   } 

  } 

  cout << "\n"; 
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  cout << "Recombination_frequency_to_next_marker_(female,cM):"; 

  for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) { 

   cout << " " <<chr[counter].RF_to_next_marker_femaleCM[counterB] ; 

   if (chr[counter].RF_to_next_marker_femaleCM[counterB] < 0) { 

    cout << "\n\n****ERROR: check map as markers are not in positional 

order\n\n"; 

   } 

  }  

  cout << "\n"; 

  cout << "Marker/QTL:"; 

  for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) { 

   if (chr[counter].type[counterB] == 0) { 

    cout << " Q"; 

    } 

   else { 

    cout << " M"; 

   } 

  } 

  cout << "\n"; 

 } 

 cout << "\n";  

} 

 

//Function: show the individuals in a population 

void showpop(population which_pop){//passing a population here to show what is in it 

 //var 

 int counter, counterB; 

 float sexratio_o; 

 string sexer, outstring1; 

 //char inttochar[40]; 

  

 sexratio_o = 0; 

  

 cout << "\nInformation for population: "<< which_pop.popname <<"\n"; 

 cout << "Number of inidivuduals in population: " << which_pop.popsize <<"\n"; 

 cout << "\nIndividual info:\n"; 

  

 outstring1 = "Ind PopID Sex Markers"; 

 /*for (counter =1 ;counter<(chromosome_number+1); counter++) { 

  for (counterB =1 ;counterB<(chr[counter].markernumber+1); counterB++) { 

   sprintf(inttochar,"%d",counter); 

   outstring1 = outstring1 + " (c" + inttochar + ")_" + 

chr[counter].markernames[counterB]; 

  } 

 }*/ 

 cout << outstring1 << "\n"; 

  

 for (counter = 1; counter<(which_pop.popsize+1);counter++) { 

   

  if (which_pop.ind[counter].sex == 1) { 
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   sexer =" MALE "; 

   sexratio_o = sexratio_o + 1; 

  } else { 

   sexer =" FEMALE "; 

  } 

  cout << "Ind_"<<counter<< sexer<< which_pop.ind[counter].subpopID << ", can mate = 

" << which_pop.ind[counter].selected_to_mate <<", times_mated "<< 

which_pop.ind[counter].times_mated << " "; 

   //---SHOWING THE GENOTYOPE 

  for (counterB = 1; counterB<(haplotype_size+1);counterB++) { 

   cout << which_pop.ind[counter].haplotypeA[counterB] << "/" 

<<which_pop.ind[counter].haplotypeB[counterB] << " "; 

  }  

  cout << " \n"; 

 }           

 //can be made to show only part of the output for a given individual 

 sexratio_o = sexratio_o/(which_pop.popsize); 

 cout << "Population sex ratio: " << sexratio_o; 

 cout << "\n"; 

} 

 

//Function: show the files in the current directory 

string showfiles(){ 

 //may want to change this that the user can choose the file from any dir 

 //var 

 char openfile[256]; 

 cout<< "\nChoose the main information file to open from the current directory:\n"; 

 system("ls"); 

 cout << "\nType the complete name and extention and press enter, "; 

 cout << "type 'Q' to quit: "; 

 cin.getline(openfile,256); 

 return(openfile); 

} 

 

//Function: splice the qtl and marker array togehter 

void spliceqtl (){ 

 //var 

 int counter, counterB, counterC, counterD; 

 chromosome tempchr, tempchrB; 

 qtl_array *CQarr; // and array of qtls within each chr, as the no of qls are only few this should 

never be very big and this can be created each time 

 int marker, incerA, incerB; 

 float map_dist_male, map_dist_female; //to calculate the recombination frequency  

 string warning_out = ""; 

  

 //INSERTING THE QTLS ON THE MAP (male map as reff first), This is tricky as the two 

arrays not clearly defined needs to be merged  

 /* Note that the male map is used an not both the male and female map 

  this means the assumprion is made that the qtls are in similar order on 

  both the male and female maps. If this is not the case, a few things sould be 
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  done in this application to rectify. But shoud not be a problem*/ 

  

 incerA = 1; 

 incerB = 1; 

 

 for (counter=1; counter<(chromosome_number+1);counter++) {//cycle through chromosomes 

  

  CQarr = new qtl_array[qtl_number+1];//again inefficient but I expect not a lot of qtls 

  marker = 1; 

  for (counterB = 1; counterB<(qtl_number+1); counterB++) {//cycle through qtls 

   if (qtl[counterB].qtl_chro == counter) { 

    CQarr[marker] = qtl[counterB]; 

    marker++;  

   } 

  } 

   

  for (counterB=marker; counterB<(qtl_number+1); counterB++) { 

   CQarr[counterB].qtl_male = -2;//this is used in the empty array REMEBER -2, 

the empty values 

  } 

   

  //SORT the sub qtl arrays here if needed, and not in propper order when on input  

 SORT HERE 

   

  /* checking for (counterB = 1; counterB<(qtl_number+1); counterB++){//checking 

function 

   cout << "\nchromosome " << counter << " " << CQarr[counterB].qtl_name << " 

"<< CQarr[counterB].qtl_male;     

  }*/ 

   

  chr[counter].type = new bool[chr[counter].markernumber+1];//to get the marker type 

  tempchr = chr[counter];//for each chr a temp holder is made with all the info of the chr 

  tempchrB.markernames = new string[chr[counter].markernumber+1]; 

  tempchrB.maleCM = new float[chr[counter].markernumber+1]; 

  tempchrB.femaleCM = new float[chr[counter].markernumber+1]; 

  tempchrB.type = new bool[chr[counter].markernumber+1]; 

  /*hierdie hierbo is kak, veral die tempchrB en het 3 dae gevat om uit te figure maar... 

  it is needed as the tempchr and chr[counter] becomes  

  exactly equal interchange values in a way I can't predict*/ 

   

   

  /* cheking for (counterB=1; counterB<(tempchr.markernumber+1);counterB++)  { 

   cout << "\nTempchr marker number " << counterB << " name: " << 

tempchr.markernames[counterB];  

  }*/ 

   

  chr[counter].type = new bool[chr[counter].markernumber+1];//to get the marker type 

   

  counterC = 1; 

  counterD = 1;    
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  for (counterB = 1; counterB<(chr[counter].markernumber+1); counterB++) { 

   if ((CQarr[counterC].qtl_male <= tempchr.maleCM[counterD]) and  

(CQarr[counterC].qtl_male > 0)){ 

    tempchrB.markernames[counterB] = CQarr[counterC].qtl_name; 

    tempchrB.maleCM[counterB] = CQarr[counterC].qtl_male; 

    tempchrB.femaleCM[counterB] = CQarr[counterC].qtl_female; 

    tempchrB.type[counterB] = 0; 

    qtl[incerB].qtl_pos = incerA; 

   // cout << "\n MARKER(qtl): " << CQarr[counterC].qtl_name <<  " 

counterB: " << counterB <<  " counterC: " << counterC << " counterD: " << counterD; 

    counterC = counterC+1; 

    incerB = incerB+1; 

   } 

   else { 

    tempchrB.markernames[counterB] = tempchr.markernames[counterD]; 

    tempchrB.maleCM[counterB] = tempchr.maleCM[counterD]; 

    tempchrB.femaleCM[counterB] = tempchr.femaleCM[counterD]; 

    tempchrB.type[counterB] = 1; 

   // cout << "\n MARKER(marker): " << tempchr.markernames[counterD] 

<<  " counterB: " << counterB <<  " counterC: " << counterC << " counterD: " << counterD; 

    counterD = counterD+1; 

   } 

   incerA = incerA+1; 

  } 

   

  chr[counter].markernames = tempchrB.markernames; //replacing the values in the used 

array nl. chr[counter] 

  chr[counter].maleCM = tempchrB.maleCM; 

  chr[counter].femaleCM = tempchrB.femaleCM; 

  chr[counter].type = tempchrB.type; 

   

  //the relative positions 

  for (counterB = 1; counterB<(chr[counter].markernumber+0); counterB++) {/*note this 

+0, because we are working with the  

             

        intervals and this is one less than the  

             

        number of markers*/ 

   /*here we calculate the recombination frequency dependant on the map distance 

    three methods can be used, chosen by the user,  

    1 haldane (h), where  

    RF = (1-e(-2m))/2 where m is the map distance 

    2 kosambi (k), where 

    3 e, where the recombination RF is equal to m*/ 

   map_dist_male = chr[counter].maleCM[counterB+1] - 

chr[counter].maleCM[counterB]; 

   map_dist_female = chr[counter].femaleCM[counterB+1] - 

chr[counter].femaleCM[counterB]; 

    

   if ((strcmp(rec_freq_method,"h"))==0) {//haldane chosen 
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    chr[counter].RF_to_next_marker_maleCM[counterB] =  (1-exp(-

2*map_dist_male/100))/2; 

    chr[counter].RF_to_next_marker_femaleCM[counterB] = (1-exp(-

2*map_dist_female/100))/2; 

    warning_out = "\n*Haldane's mapping function used to calculate 

recombination frequency.\n"; 

   } 

   else {  

    if ((strcmp(rec_freq_method,"e"))==0) { 

     chr[counter].RF_to_next_marker_maleCM[counterB] =  

map_dist_male/100; 

     chr[counter].RF_to_next_marker_femaleCM[counterB] = 

map_dist_female/100; 

     warning_out = "\n*Recomination frequency assumed to be equal 

to map distance.\n"; 

    }else { 

    if ((strcmp(rec_freq_method,"k"))==0) {//kosmabi mapping 

     chr[counter].RF_to_next_marker_maleCM[counterB] =  

(exp(4*(map_dist_male/100))-1)/(2+2*exp(4*(map_dist_male/100))); 

     chr[counter].RF_to_next_marker_femaleCM[counterB] = 

(exp(4*(map_dist_female/100))-1)/(2+2*exp(4*(map_dist_female/100)));; 

     warning_out = "\n*Kosabmi's mapping function used to 

calculate recombination frequency.\n"; 

     }else {//no mapping function chosen, default = haldane 

      warning_out = "\n*WARNING: recombination 

frequency not specified, Haldane's mapping function used.\n"; 

      chr[counter].RF_to_next_marker_maleCM[counterB] =  

(1-exp(-2*map_dist_male))/2; 

      chr[counter].RF_to_next_marker_femaleCM[counterB] 

= (1-exp(-2*map_dist_female))/2; 

     } 

    }     

   }    

  } 

   

  /*checking for (counterB=1; counterB<(tempchr.markernumber+1);counterB++)  { 

   cout << "\nTempchr B marker number " << counterB << " name: " << 

tempchrB.markernames[counterB];  

  }*/ 

 } //for each chr  

 cout << warning_out; 

} 

 

//Function: open the map file and reading the marker info and the QTL's 

/* if changes to the marker info file is to be made it should be doen in this 

 function. This includes if the QTL's for some reason are included between the markers*/ 

bool loadmap(string thefilename){ 

 //var 

 bool opened; 

 bool qtls_added = 0; //to only do the qtl adding once 
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 char linenames[40], transfer[40];//the names of the lines indicating variables 

 char inttochar[40]; 

 int counter, counterB, empty;//count the number of cols when multiple items per line 

    

 char *charconvert = (char*)thefilename.c_str();//conversion of string to char array 

 FILE* thefile = fopen(charconvert, "r"); 

  

 total_markernumber = 0; 

  

 if (thefile==NULL) { 

  cout << "\n****ERROR: No map file with QTL and marker postitions named: '"<< 

thefilename  

  <<"' ,please edit main infomation file to indicate correct map file to load.\n"; 

  opened = false; 

   } 

 else {//reading the file 

  //celcounter = 0; // see how many cells there are in the file 

  while(feof(thefile)==0) {//benchmarked the reading of the file on my mac to approx 

20sec/gig 

   fscanf(thefile, "%s", linenames);//scan the line names for var indicators 

          

   //almost CASE, which would have been nice here 

   //1 CHROMOSOME SECTION  

   if ((strcmp(linenames, "chromosome_number"))==0) { 

    fscanf(thefile, "%d",&chromosome_number); 

    chr = new chromosome[chromosome_number+1]; 

     

    //including space for our qtls in the arrays 

    if (qtls_added == 0) { 

     for (counter=1;counter<(qtl_number+1); counter++) { 

      chr[qtl[counter].qtl_chro].qtl_per_chr++; 

     } 

     qtls_added = 1; 

    }  

     

       

    for (counter = 1; counter<(chromosome_number+1); counter++) { 

     fscanf(thefile, "%s%d",chr[counter].chr_name, 

&chr[counter].markernumber); 

     //setting the length of maker names and, maps 

     //could make this automatic if ness, espessially when creating 

automated txtfiles 

     total_markernumber = total_markernumber + 

chr[counter].markernumber;//must be done before changed to include the qtls (NB) 

     chr[counter].markernumber = chr[counter].markernumber + 

chr[counter].qtl_per_chr; 

     chr[counter].markernames = new 

string[chr[counter].markernumber+1]; 

     chr[counter].maleCM = new 

float[chr[counter].markernumber+1]; 
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     chr[counter].femaleCM = new 

float[chr[counter].markernumber+1]; 

     chr[counter].RF_to_next_marker_maleCM = new 

float[chr[counter].markernumber+1]; 

     chr[counter].RF_to_next_marker_femaleCM = new 

float[chr[counter].markernumber+1]; 

    }     

   } 

         

    

   if ((strcmp(linenames, "female_map"))==0) { 

    for (counter=1; counter<(chromosome_number+1); counter++) { 

     for (counterB=1; counterB<(chr[counter].markernumber +1 - 

chr[counter].qtl_per_chr); counterB++) { 

      fscanf(thefile, 

"%d%s%f%f",&empty,transfer,&chr[counter].maleCM[counterB],&chr[counter].femaleCM[counterB]); 

      chr[counter].markernames[counterB] = transfer; 

     }      

    } 

   } 

     

  //2 QTL SECTION 

   if ((strcmp(linenames, "qtl_number"))==0) { 

    fscanf(thefile, "%d",&qtl_number); 

    qtl = new qtl_array[qtl_number+1]; 

    for (counter=1; counter<(qtl_number+1); counter++) {//giving the names 

of the chromosomes 

     sprintf(inttochar,"%d",counter); //converting int to char 

     strcpy(qtl[counter].qtl_name, "qtl_"); //assigning string values 

     strncat(qtl[counter].qtl_name, inttochar,5); //concatenating 

strings 

    } 

     for (counter=1; counter<(qtl_number+1);counter++) { 

      fscanf(thefile, "%s", linenames); 

         if ((strcmp(linenames,qtl[counter].qtl_name))==0) { 

          fscanf(thefile,"%d" "%f" 

"%f",&qtl[counter].qtl_chro,&qtl[counter].qtl_male,&qtl[counter].qtl_female); 

     } 

    } 

   }  

  } //reading the file while open 

   

  haplotype_size = qtl_number + total_markernumber; 

  spliceqtl(); //now adding the qtl to the array 

   

  fclose(thefile); 

  opened = true; 

  cout << "\nThe marker and QTL file '"; 

  cout << thefilename <<"' was read...check the output below to see if the data is 

correct...\n"; 
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 } 

 return(opened);  

} 

 

//Function: creating empty but correct size arrays for the individuals in a given population 

void create_empty_pop(population &which_pop, int popID){ 

 //var 

 int counter; 

  

     which_pop.ind = new individual[which_pop.popsize+1]; //setting the popsize array 

  

 for (counter = 1; counter<(which_pop.popsize+1); counter++) { 

  which_pop.ind[counter].subpopID = popID; 

  which_pop.ind[counter].haplotypeA = new int[haplotype_size+1]; //setting the haplotype 

array 

  which_pop.ind[counter].haplotypeB = new int[haplotype_size+1]; //setting the haplotype 

array 

 } 

} 

 

//Function: open the file with the number of founders and their diploid genotypes 

/* if changes to the founder datafile to be made it should be doen in this 

 function. Important to remember that the QTL's should also have their genotypes in the 

 founder info file at their position between the markers*/ 

bool loadfounders(string thefilename){ 

 //var 

 bool opened; 

 bool two_lines_per_marker; //double or single line genotypes, no = 0, yes = 1 

 char linenames[40], linenamesB[40]; 

 int counter, counterB;  

   

 char *charconvert = (char*)thefilename.c_str();//conversion of string to char array 

 FILE* thefile = fopen(charconvert, "r"); 

  

 if (thefile==NULL) { 

  cout << "\n****ERROR: No founder genotypes file named: '"<< thefilename  

  <<"' ,please edit main infomation file to indicate correct founder genotypes file to 

load.\n"; 

  opened = false; 

 } 

 else {//reading the file and creating a founder pop 

   

  strcpy(founderpop.popname, "Founder population"); 

   

  while(feof(thefile)==0) { 

   fscanf(thefile, "%s", linenames);//scan the line names for var indicators 

    

   if ((strcmp(linenames, "2_lines_per_marker"))==0) {//single lines for genotype 

or double, should mostly be double 
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    fscanf(thefile, "%s",linenamesB); 

    if ((strcmp(linenamesB, "yes"))==0) { 

     two_lines_per_marker = true; 

    }else { 

     two_lines_per_marker = false; 

    } 

   } 

    

   if ((strcmp(linenames, "number_of_founders"))==0) {//defining the number of 

founders  

    fscanf(thefile, "%d",&founderpop.popsize); 

  //  founderpop.ind = new individual[founderpop.popsize+1]; //setting the 

popsize array 

    create_empty_pop(founderpop, -1);//indicating that this is the founder 

population 

   } 

    

   if ((strcmp(linenames, "sex"))==0) {//defining the number of founders  

    //would like to know if there is a way to read a whole line... 

    for (counter = 1; counter<(founderpop.popsize+1); counter++) { 

      fscanf(thefile, "%s", linenames); 

      if ((strcmp(linenames, "1"))==0) {/*only ness that the 

males must be one, but here it can be decided by  

          changing this IF 

statement whet the males and females in the input 

          file should be*/ 

       founderpop.ind[counter].sex = 1; // 

1=TRUE=MALE 

      } else { 

       founderpop.ind[counter].sex = 0; // 

0=FALSE=FEMALE 

      } 

    } 

   //two line switch here 

   //NB currently the individual genotypes should follow directly after the gender 

identification 

    for (counterB = 1; counterB<(haplotype_size+1); counterB++) { 

     fscanf(thefile, "%s", linenames);  

     for (counter = 1; counter<(founderpop.popsize+1); counter++) { 

      fscanf(thefile, 

"%d",&founderpop.ind[counter].haplotypeA[counterB]); 

     } 

      fscanf(thefile, "%s", linenamesB);  

     if  ((strcmp(linenames,linenamesB))==0) { 

      for (counter = 1; counter<(founderpop.popsize+1); 

counter++) { 

       fscanf(thefile, 

"%d",&founderpop.ind[counter].haplotypeB[counterB]); 

      } 

     }else { //problem with double line input file EXIT here 
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      cout << "****ERROR: founder input file, 

'"<<thefilename<<"' seem to be incorrect. Genotype data incorrect.\n"; 

      exit(1); 

     } 

    } 

   } 

   } 

  fclose(thefile); 

  opened = true; 

  cout << "\nThe founder genotype file '"; 

  cout << thefilename <<"' was read...check the output below to see if the data is 

correct...\n"; 

 } 

 return(opened);  

} 

    

//Function: reading the main information file on how to simulate the population, this should be made by 

another program at a later stage 

void readmainfile(string thefilename, bool& opened, string& markerfilename, string& founderfilename, 

string& parentalfilename){ 

 //var 

 char linenames[40];// the names of the lines indicating variables 

 bool simulate_map, simulate_founders, simulate_parentals; //make later global if ness 

 

 char *charconvert = (char*)thefilename.c_str();//conversion of string to char array 

 FILE* thefile = fopen(charconvert, "r"); 

  

  

 simulate_parentals = false; 

 simulate_founders = false; 

 simulate_map = false; 

  

 if (thefile==NULL) { 

  cout << "\nNo main info file named: '"<< thefilename  

  << "' , please select another file.\n"; 

  opened = false; 

 } 

  

 else {//reading the file 

  while(feof(thefile)==0) { 

   fscanf(thefile, "%s", linenames);//scan the line names for var indicators 

    

   if ((strcmp(linenames, "marker_type"))==0) {//marker type  

    fscanf(thefile, "%s", linenames); 

    marker_type = linenames; 

   } 

    

   if ((strcmp(linenames, "create_map"))==0) {//loading the marker and qlt datafile  

     fscanf(thefile, "%s",linenames); 
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      if ((strcmp(linenames, "no"))==0){//do not simulate but 

read file 

       simulate_map = false; 

       fscanf(thefile, "%s",linenames); 

       if ((strcmp(linenames, "load_map_file"))==0){ 

        fscanf(thefile, "%s",linenames); 

        markerfilename = linenames; 

       } 

      } 

    else {//marker map needs to be simulated 

     simulate_map = true; 

     markerfilename = "SIMULATE_MAP_DATA"; 

    } 

   }  

   

   if ((strcmp(linenames, "create_founders"))==0) {/* loading the parental 

genotypes from this file 

             

    should not be linked witht the population size*/ 

    fscanf(thefile, "%s",linenames); 

    if ((strcmp(linenames, "no"))==0){//do not simulate but read file 

     simulate_founders = false; 

     fscanf(thefile, "%s",linenames); 

     if ((strcmp(linenames, "load_founders_genotypes"))==0){ 

      fscanf(thefile, "%s",linenames); 

      founderfilename = linenames; 

     } 

    } 

    else {//marker map needs to be simulated 

     simulate_founders = true; 

     founderfilename = "SIMULATE_FOUDER_DATA"; 

    } 

   } 

    

   if ((strcmp(linenames, "create_parentals"))==0) { 

     

    fscanf(thefile, "%s",linenames); 

    if ((strcmp(linenames, "no"))==0){//do not simulate but read file 

     simulate_parentals = false; 

     cout << "Founders are parentals: burnin generations = 0"; 

     } else { 

     simulate_parentals = true; 

     } 

   } 

      

     if ((strcmp(linenames, 

"generations_to_parental_generation"))==0) { 

      

     fscanf(thefile, "%d", &burnin_generations); 

     } 
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     if (simulate_parentals == false) { 

      burnin_generations = 0; 

     } 

     

    

     if ((strcmp(linenames, "number_of_parental_populations"))==0) 

{ 

     fscanf(thefile, "%d", &subpopnumber); 

     } 

    

     if ((strcmp(linenames, 

"individuals_in_parental_populations"))==0) { 

     fscanf(thefile, "%d", &subpopsize); 

     } 

    

     if ((strcmp(linenames, "recombination_frequency"))==0) { 

     fscanf(thefile, "%s", rec_freq_method); 

     } 

     parentalfilename = "SIMULATE_PARENTAL_DATA"; 

     

     

   

  } 

  fclose(thefile); 

  opened = true; 

 } 

 population_size_total = subpopnumber*subpopsize; //only valid while subpops are the same size 

} 

 

//Function: the main reproduction function. This function will hold all the steps to replace the current 

population with its offspring 

//Used to simulate the Founder populations, if they are not loaded (will unfortunately have some 

duplication of this code in the simulate cross function. 

void reproduce(int generations) { 

 //var 

 int counter, counterB, counterC, counterD, counterE, counterF; 

 int mateone, matetwo; 

 individual par1, par2; 

 bool which_haplotype_p1, which_haplotype_p2; 

 float chance01; 

 int matings_per_subpop, offspring_per_mating; 

 int whichind;  

 int male_matings, female_matings; //some special variables that indicates how many times (max 

value) any individual of a spec sex can mate 

  

 //max matings 

 male_matings = population_size_total*2; //max number times a male can mate 

 female_matings = male_matings; //max number of times a female can mate 

 offspring_per_mating = 1;  
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 for (counter = 1; counter<(subpopnumber + 1); counter++) {//for all the subpopulations 

   

  whichind = 0; 

  //matings_per_subpop = subpop[counter].popsize;//this is used when only one offspring 

per mating are created 

  matings_per_subpop = subpop[counter].popsize/offspring_per_mating; //use thi formula 

to keep the popsize constant, check that it is an integer 

   

 for (counterB = 1; counterB<(matings_per_subpop+1); counterB++) {//for all individuals the new 

populations population  

  

   

 /*mate selection 1, selecting a male or female at random,  

 i.e. no preferecne for any sex to be selected at first (can change this when one or the other sex has 

some fitness thing)  

 from which pop -- founder (gen ==1 ), same or a migrant */ 

     

    mateone = 0;//to reset the first mate 

    matetwo = 0;//to reset the 2nd mate  

   

     

     

   //PUT THIS IN A FUNCTION AND RETURN THE INDIVUDUAL 

PARENTS, make switches for diff stages of generation times and migration  

    if (generations == 1) {//for the first generation and from the -----

FOUNDER POPULATION------- 

     mateone = rand() % founderpop.popsize + 1; 

         /*mate selection 2, selecting second mate. Must be different individual and opposite sex.*/ 

   

     do { //must be do while do at least one before continuing 

      matetwo = rand() % founderpop.popsize + 1; 

     } while ((matetwo == mateone) or (founderpop.ind[mateone].sex 

== founderpop.ind[matetwo].sex)); 

   

     //parental assignment (to make sure the male is par one 

     if (founderpop.ind[mateone].sex == 1) { 

     par1 = founderpop.ind[mateone]; 

     par2  = founderpop.ind[matetwo]; 

     // cout << "Subpop: " << counter << ", Individual: " << 

counterB << "\n"; 

     // cout << "Mateone " << mateone << " Par 1 Sex: "<< 

par1.sex << ", PopID: " << par1.subpopID <<  " , 1st allele: "<< par1.haplotypeA[1] << ", 2nd allele: "<< 

par1.haplotypeB[1] << "\n"; 

     // cout << "Matetwo " << matetwo << " Par 2 Sex: "<< 

par2.sex << ", PopID: " << par2.subpopID <<  " , 1st allele: "<< par2.haplotypeA[1] << ", 2nd allele: "<< 

par2.haplotypeB[1] <<  "\n"; 

     } else { 

       par2 = founderpop.ind[mateone]; 

       par1  = founderpop.ind[matetwo]; 
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     // cout << "Subpop: " << counter << ", Individual: " << 

counterB << "\n"; 

     // cout << "Mateone " << mateone << " Par 1 Sex: "<< 

par1.sex << ", PopID: " << par1.subpopID <<  " , 1st allele: "<< par1.haplotypeA[1] << ", 2nd allele: "<< 

par1.haplotypeB[1] << "\n"; 

     // cout << "Matetwo " << matetwo << " Par 2 Sex: "<< 

par2.sex << ", PopID: " << par2.subpopID <<  " , 1st allele: "<< par2.haplotypeA[1] << ", 2nd allele: "<< 

par2.haplotypeB[1] <<  "\n"; 

     } 

    } else {//when parrents are from ------SUB POPULATION----- 

     //no migration in this function yet 

      

    //----------RANDOM MATING POPULATION SECTION--------- 

     mateone = rand() % subpop[counter].popsize + 1; 

     //mate selection 2, selecting second mate. Must be different 

individual and opposite sex. 

     do { //must be do while do at least one before continuing 

      matetwo = rand() % subpop[counter].popsize + 1; 

     } while ((matetwo == mateone) or 

(subpop[counter].ind[mateone].sex == subpop[counter].ind[matetwo].sex)); 

      

     //parental assignment (to make sure the male is par one 

     if (subpop[counter].ind[mateone].sex == 1) { 

      par1 = subpop[counter].ind[mateone]; 

      par2  = subpop[counter].ind[matetwo]; 

//         cout << "Subpop: " << counter 

<< ", Individual: " << counterB << "\n"; 

//         cout << "Mateone " << mateone 

<< " Par 1 Sex: "<< par1.sex << ", PopID: " << par1.subpopID <<  " , 1st allele: "<< par1.haplotypeA[1] 

<< ", 2nd allele: "<< par1.haplotypeB[1] << "\n"; 

//         cout << "Matetwo " << matetwo 

<< " Par 2 Sex: "<< par2.sex << ", PopID: " << par2.subpopID <<  " , 1st allele: "<< par2.haplotypeA[1] 

<< ", 2nd allele: "<< par2.haplotypeB[1] <<  "\n"; 

    //  cout << "M1A=P1A M1B=P1B M2A=P2A 

M2B=P2B\n"; 

    //  cout 

<<subpop[counter].ind[mateone].haplotypeA[1]<<"="<<par1.haplotypeA[1]<<" 

"<<subpop[counter].ind[mateone].haplotypeB[1]<<"="<<par1.haplotypeB[1]<<" 

"<<subpop[counter].ind[matetwo].haplotypeA[1]<<"="<<par2.haplotypeA[1]<<" 

"<<subpop[counter].ind[matetwo].haplotypeB[1]<<"="<<par2.haplotypeB[1]<<"\n" ;  

     } else { 

      par2 = subpop[counter].ind[mateone]; 

      par1  = subpop[counter].ind[matetwo]; 

//         cout << "Subpop: " << counter 

<< ", Individual: " << counterB << "\n"; 

//         cout << "Mateone " << mateone 

<< " Par 1 Sex: "<< par1.sex << ", PopID: " << par1.subpopID <<  " , 1st allele: "<< par1.haplotypeA[1] 

<< ", 2nd allele: "<< par1.haplotypeB[1] << "\n"; 
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//         cout << "Matetwo " << matetwo 

<< " Par 2 Sex: "<< par2.sex << ", PopID: " << par2.subpopID <<  " , 1st allele: "<< par2.haplotypeA[1] 

<< ", 2nd allele: "<< par2.haplotypeB[1] <<  "\n"; 

    //  cout << "M2A=P1A M2B=P1B M1A=P2A 

M1B=P2B\n"; 

    //  cout 

<<subpop[counter].ind[matetwo].haplotypeA[1]<<"="<<par1.haplotypeA[1]<<" 

"<<subpop[counter].ind[matetwo].haplotypeB[1]<<"="<<par1.haplotypeB[1]<<" 

"<<subpop[counter].ind[mateone].haplotypeA[1]<<"="<<par2.haplotypeA[1]<<" 

"<<subpop[counter].ind[mateone].haplotypeB[1]<<"="<<par2.haplotypeB[1]<<"\n" ;  

       

     } 

     //counting their matings 

     subpop[counter].ind[mateone].times_mated = 

subpop[counter].ind[mateone].times_mated +1; 

     subpop[counter].ind[matetwo].times_mated = 

subpop[counter].ind[matetwo].times_mated +1; 

      

    // cout << mateone << "\n"; 

    // cout << matetwo << "\n"; 

      

    //----------RANDOM MATING POPULATION SECTION-- END--------

-*/ 

      

  //SWITCH HERE BETWEEN RANDOM AND STRUCTURED POPULATIONS 

      

    /*//----------STRUCTURED POPULATION section----------------- 

     //this is currently quite inefficient as all the individuals are 

chosen by chance 

     //even the last ones in the population when still unmated, this 

will be a problem when the population sizes becomes big 

 

           

     //selecting male first 

     do { 

      mateone = rand() % subpop[counter].popsize + 1; 

     } while ((subpop[counter].ind[mateone].sex != 1) or 

(subpop[counter].ind[mateone].times_mated == male_matings) 

         or 

(subpop[counter].ind[mateone].selected_to_mate != 1));//only some males can mate 

      

     //mate selection 2, selecting FEMALE. . 

     do { //must be do while do at least one before continuing 

      matetwo = rand() % subpop[counter].popsize + 1; 

     } while ((subpop[counter].ind[matetwo].sex != 0) or 

(subpop[counter].ind[matetwo].times_mated == female_matings)); 

      

     //counting their matings and stopping remating 

     subpop[counter].ind[mateone].times_mated = 

subpop[counter].ind[mateone].times_mated +1;      
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     subpop[counter].ind[matetwo].times_mated = 

subpop[counter].ind[matetwo].times_mated +1; 

      

     par1 = subpop[counter].ind[mateone]; 

     par2  = subpop[counter].ind[matetwo]; 

    //----------STRUCTURED POPULATION section-- end-----------*/ 

    

    }     

 

 /*mating -- crossing over and independent assortment & creating offspring pops 

  since the migration will be done by selecting parents from different populations 

  this section do not need to account for that, this means the new individuals are  

  placed in their correct  places (see counter and counterB)*/ 

     

     

 for (counterF = 1; counterF<(offspring_per_mating+1);counterF++) {//repeat for the number of 

matings 

   counterE = 0;//for deriving the marker number from chr number and marker nr on the chr.  

   

  whichind = whichind + 1; 

  subpop_offspring[counter].ind[whichind].father = mateone; 

  subpop_offspring[counter].ind[whichind].mother = matetwo; 

  //cout << "pop: " << counter << " counterB: " << counterB << " counterF:  " << counterF 

<< " the individual: " << whichind << "\n"; 

       

 for (counterC = 1; counterC<(chromosome_number +1); counterC++) {//per chr? 

 

  which_haplotype_p1 = 0; 

  which_haplotype_p2 = 0;  

   

  if (rand()%2 == 1) { 

   which_haplotype_p1 = 1; 

    

  }/*cout << "1\n"; 

   } else { 

    cout << "0\n"; 

   }*/ 

 

   

  if (rand()%2 == 1) { 

   which_haplotype_p2 = 1; 

  } 

   

  for (counterD=1; counterD<(chr[counterC].markernumber +1); counterD++) {//for each 

of the markers 

   counterE = counterE + 1; 

 

   /*/All loci unlinked experiment FOR TESTING 

   //////////////////remove after experiment, here all the loci are 

unlinked!!!/////////////////// 
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   which_haplotype_p1 = 0;/////////// 

   which_haplotype_p2 = 0;//////////// 

   ////////// 

   if (rand()%2 == 1) {////////// 

    which_haplotype_p1 = 1;////////// 

   }////////////// 

   if (rand()%2 == 1) {///////// 

    which_haplotype_p2 = 1;///////// 

   }//////////////////remove after experiment, here all the loci are 

unlinked!!!//////////////*/ 

    

    

   //RANDOMLY from male or female parent first 

   //if (rand()%2 == 1) {//Chromosome from the male first 

    

   //from parent 1 the male parent 

   if (which_haplotype_p1 == 1) {//haplotypeA from par_1 markers will be 

allocated to the new individual's A hapl 

    subpop_offspring[counter].ind[whichind].haplotypeA[counterE] = 

par1.haplotypeA[counterE]; 

//    cout << "(a)Marker number : "<< (counterE)<<"\n"; 

   } 

   else {//haplotypeB from par_1 will be allocated to the new individual's A hapl 

    subpop_offspring[counter].ind[whichind].haplotypeA[counterE] = 

par1.haplotypeB[counterE]; 

//    cout << "(b)Marker number : "<< (counterE)<<"\n"; 

   } 

   /*CROSSINGOVER HERE for the male parent*/ 

   chance01 = (rand()%100001); 

   chance01 = chance01/100000; 

   if (chance01 <= chr[counterC].RF_to_next_marker_maleCM[counterD]) { 

    which_haplotype_p1 =  !which_haplotype_p1; 

//    cout << "switch (male): chance " << chance01 << " <= recfreq "<< 

chr[counterC].RF_to_next_marker_maleCM[counterD]; 

//    cout << "\nwhichhap = " << which_haplotype_p1 <<"\n";  

   } 

   //male end 

   

  //from parent 2, female parent 

   if (which_haplotype_p2 == 1) {//haplotypeA from par2 markers will be allocated 

to the new individual's A hapl 

    subpop_offspring[counter].ind[whichind].haplotypeB[counterE] = 

par2.haplotypeA[counterE]; 

//    cout << "(a)Marker number : "<< (counterE)<<"\n"; 

   } 

   else {//haplotypeB from par2 will be allocated to the new individual's A hapl 

    subpop_offspring[counter].ind[whichind].haplotypeB[counterE] = 

par2.haplotypeB[counterE]; 

//    cout << "(b)Marker number : "<< (counterE)<<"\n"; 

   } 
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   /*CROSSINGOVER HERE female*/ 

   chance01 = (rand()%100001); 

   chance01 = chance01/100000; 

   if (chance01 <= chr[counterC].RF_to_next_marker_femaleCM[counterD]) { 

    which_haplotype_p2 =  !which_haplotype_p2; 

   

   

//    cout << "switch (fem): chance " << chance01 << " <= recfreq "<< 

chr[counterC].RF_to_next_marker_femaleCM[counterD]; 

//    cout << "\nwhichhap = " << which_haplotype_p2 <<"\n";  

   }//female end.  

   //}    //--------------swithc to chromosomeA from female first--

------------  

  /* else { 

    //from parent 2 the female parent 

    if (which_haplotype_p2 == 1) {//haplotypeA from par_2 markers will be 

allocated to the new individual's A hapl 

     subpop_offspring[counter].ind[whichind].haplotypeA[counterE] 

= par2.haplotypeA[counterE]; 

      cout << "(a)Marker number : "<< (counterE)<<"\n"; 

    } 

    else {//haplotypeB from par_2 will be allocated to the new individual's A 

hapl 

     subpop_offspring[counter].ind[whichind].haplotypeA[counterE] 

= par2.haplotypeB[counterE]; 

      cout << "(b)Marker number : "<< (counterE)<<"\n"; 

    } 

    //CROSSINGOVER HERE for the female parent 

    chance01 = (rand()%100001); 

    chance01 = chance01/100000; 

    if (chance01 <= 

chr[counterC].RF_to_next_marker_femaleCM[counterD]) { 

     which_haplotype_p2 =  !which_haplotype_p2; 

    } 

    //female end 

     

    //from parent 1, male parent 

    if (which_haplotype_p1 == 1) {//haplotypeA from par1 markers will be 

allocated to the new individual's A hapl 

     subpop_offspring[counter].ind[whichind].haplotypeB[counterE] 

= par1.haplotypeA[counterE]; 

      cout << "(a)Marker number : "<< (counterE)<<"\n"; 

    } 

    else {//haplotypeB from par1 will be allocated to the new individual's A 

hapl 

     subpop_offspring[counter].ind[whichind].haplotypeB[counterE] 

= par1.haplotypeB[counterE]; 

      cout << "(b)Marker number : "<< (counterE)<<"\n"; 

    } 

    //CROSSINGOVER HERE male 
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    chance01 = (rand()%100001); 

    chance01 = chance01/100000; 

    if (chance01 <= chr[counterC].RF_to_next_marker_maleCM[counterD]) 

{ 

     which_haplotype_p1 =  !which_haplotype_p1; 

    }//male end. 

   } */ //end of if else statement that chooce which parent will donate their alleles 

first 

    

    }//number of markers per chr end 

 

  }//chr end   

  }//number off offspring per mating loop (counter F) 

   }   

 } 

  

//----------- here all the new individuals are created ----------------- 

 

 //mutation here if ness, different types for different markers 

  

 //showing the old population before replacement with the new stuff 

// for (counter = 1; counter<(subpopnumber + 1); counter++){ 

//  showpop(subpop[counter]);  

// } 

  

 //replacing parental populations and resetting the other values 

  for (counter = 1; counter<(subpopnumber + 1); counter++) {//for all the subpopulations 

   for (counterB = 1; counterB<(subpop[counter].popsize+1); counterB++) {//for all 

individuals in a population  

    for (counterC = 1; counterC<(haplotype_size+1); counterC++) { 

     subpop[counter].ind[counterB].haplotypeA[counterC] = 

subpop_offspring[counter].ind[counterB].haplotypeA[counterC]; 

     subpop[counter].ind[counterB].haplotypeB[counterC] = 

subpop_offspring[counter].ind[counterB].haplotypeB[counterC]; 

    } 

    subpop[counter].ind[counterB].mother = 

subpop_offspring[counter].ind[counterB].mother; 

    subpop[counter].ind[counterB].father =

 subpop_offspring[counter].ind[counterB].father;    

    subpop[counter].ind[counterB].subpopID = counter;   

  

    subpop[counter].ind[counterB].times_mated = 0; 

    subpop[counter].ind[counterB].phenotype = 0; 

    subpop[counter].ind[counterB].phenotype2 = 0; 

   // subpop[counter].ind[counterB].selected_to_mate = 0; 

    /*forced-exact sex ratio 

    to get the correct sex ratio here the following must be done 

    take the sexratio, i.e. = nr_males/total_population_size 

     and invert this, i.e. =  *x-1 */ 

   //also the selected to mate parameter must be one to enable mating 
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    if (counterB % 2==0) {//the modulus operator 

     subpop[counter].ind[counterB].sex = 1;//male 

     subpop[counter].ind[counterB].selected_to_mate = 1;  

    

    } 

    else { 

     subpop[counter].ind[counterB].sex = 0;//female 

     subpop[counter].ind[counterB].selected_to_mate = 1; 

    } 

  } 

 } 

 //showing fixations, heterozygosity,  

} 

 

//function: The first selection type that can be done 

void selection_1() { 

 //var 

 int chance, counter, counterB; 

 int mating_males;  

 //int mating_females; // the number of males and females that can mate 

  

 mating_males = 14; 

 //mating_females = 5; currently all the females can mate see above 

  

 //random selection of a number of males and females to mate  

 for (counter = 1; counter<(subpopnumber + 1); counter++) {//for all the subpopulations 

   

  //for selecting the males 

  for (counterB = 1;counterB<(mating_males+1); counterB++) {//enabeling the number of 

males to mate  

   do {//redraw ind if female or allready selected 

    chance = (rand()%(subpop[counter].popsize + 1)); 

   } while ((subpop[counter].ind[chance].sex == 0) or 

(subpop[counter].ind[chance].selected_to_mate == 1)); 

   subpop[counter].ind[chance].selected_to_mate = 1; //now this male can mate 

   //cout << "\n male enabled counterB " <<  counterB; 

  } 

 } 

        

} 

 

//function: to record the information for some of the generations 

void record_info_for_gen(int which_gen) { 

 //var 

 int counter, counterB, counterC; 

 int *allele_type_holder; 

 bool same_holder, tot_holder; 

 int sexratio_o; 

  

 //setting the array for each subpop in this generation array 
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 info_per_gen_per_pop[which_gen] = new saved_information[subpopnumber+1];  

 //the holder array 

 allele_type_holder = new int[haplotype_size+1]; 

 //the allel freq array 

 for (counter = 1; counter<(subpopnumber+1); counter++) { 

  info_per_gen_per_pop[which_gen][counter].one_allele_freq = new 

int[haplotype_size+1]; 

 } 

  

 //cout << "Generation: "<<which_gen<<"\n"; 

  

 sexratio_o = 0; 

 for (counter = 1; counter<(subpopnumber+1); counter++) {//for all the subpops 

  for (counterB = 1; counterB<(haplotype_size+1); counterB++) {//for all the loci 

    

   /*NOTE: ALLELE FREQ 

    the next line is an enigma, it is used to record the allels frequency per locus per 

subpop 

    BUT 

   it uses the fist allele of the first individual (for all loci) as the allele type to 

compare all others to 

   this in itself is not a problem but it does make generation wise following of a 

allele frequency dificult using this 

    recorded value as it will randomly assign allele types per generation to the allele 

type when there is more than one allele 

    in the population.  

    THEREFORE, dont use this when trying to follow the allele frequencies for 

each generation!! 

    unless the holder's type is set to an allele value that could be found in the 

population BUT then the fixation per total population cant  

    be calculated 

    */ 

   allele_type_holder[counterB] = 

subpop[counter].ind[1].haplotypeA[counterB];//to set the holder's first alleletype 

    

   info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterB] = 1; 

   if (subpop[counter].ind[1].haplotypeB[counterB] == 

allele_type_holder[counterB]) {//continue to add dipl allelel same as 1st  

    info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterB] = 

info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterB] + 1; 

   } 

  } 

  //note this is for the first male as the next loop is from ind 2 onwards  

  if (subpop[counter].ind[1].sex == 1) {//male 

   sexratio_o = sexratio_o + 1; 

  } 

   

  for (counterB = 2/*NOTE THIS "2"*/; counterB<(subpop[counter].popsize+1); 

counterB++) {//for the ind per pop FROM ind 2 

   if (subpop[counter].ind[counterB].sex == 1) {//male 
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    sexratio_o = sexratio_o + 1; 

   } 

   for (counterC = 1; counterC<(haplotype_size+1); counterC++) { //remember, 

they are diploid 

    if (subpop[counter].ind[counterB].haplotypeA[counterC] == 

allele_type_holder[counterC]) {//continue to add if same as 1st 

    

 info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] = 

info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] + 1; 

    } 

    if (subpop[counter].ind[counterB].haplotypeB[counterC] == 

allele_type_holder[counterC]) {//continue to add if same as 1st for allele B 

    

 info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] = 

info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] + 1; 

    } 

   } 

    

   }//end of ind loop  

   

  /*Recording the info for each subpopulation here*/  

  info_per_gen_per_pop[which_gen][counter].prop_fixed_loci = 0; 

  for (counterC = 1; counterC<(haplotype_size+1); counterC++) { 

   if (info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] == 

(subpop[counter].popsize*2)) {//counting the no of fixed loci 

    info_per_gen_per_pop[which_gen][counter].prop_fixed_loci = 

info_per_gen_per_pop[which_gen][counter].prop_fixed_loci + 1; 

   } 

     

  } 

    

  //testout 

 // cout << "SubPop: " << counter << " (popsize = "<<subpop[counter].popsize<<")\n"; 

 // cout << "Males: "<< sexratio_o << ", (no males recoreded): "<< 

info_per_gen_per_pop[which_gen][counter].sexratio <<"\n"; 

 // cout << "Number_fixed_loci: "<< 

info_per_gen_per_pop[which_gen][counter].prop_fixed_loci <<"\n"; 

 // cout << "Marker_number_(of_the_first_allele): "; 

 // for (counterC = 1;counterC<(haplotype_size+1); counterC++) { 

 //  cout << info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] 

<< " "; 

 // } 

 // cout << "\n";  

   

 }//end of pop 

  

 /*Recording the information per total pop*///this could maybe be moved up into the prev loop 

 same_fixed_loci[which_gen] = 0; 

 tot_fixed_loci[which_gen] = 0; 

  //this could mybe be better by reducing the else statements, think a bit 
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 for (counter = 1; counter<(haplotype_size+1); counter++) {//loop other way around... 

  same_holder = 1; 

  tot_holder = 1; 

  for (counterB = 2; counterB<(subpopnumber+1); counterB++) { 

   if ((info_per_gen_per_pop[which_gen][counterB-1].one_allele_freq[counter] == 

(subpop[counterB].popsize*2)) and  

    (info_per_gen_per_pop[which_gen][counterB].one_allele_freq[counter] 

== (subpop[counterB].popsize*2)) and 

       (tot_holder == 1)){ 

    tot_holder=1; 

    if ((subpop[counterB-1].ind[1].haplotypeA[counter] == 

subpop[counterB].ind[1].haplotypeA[counter]) and 

     (same_holder == 1)) {//using the 1st ind allele if fixed (will be 

fine) 

     same_holder = 1; 

    }else { 

     same_holder = 0; 

    } 

   }else { 

    tot_holder = 0; 

    same_holder = 0; 

   } 

  } 

  tot_fixed_loci[which_gen] = tot_fixed_loci[which_gen] + tot_holder; 

  same_fixed_loci[which_gen] = same_fixed_loci[which_gen] + same_holder; 

  sexratio[which_gen] = sexratio_o; 

 } 

 

 //testoutII 

/* cout << "Loci fixed in whole population: " << tot_fixed_loci[which_gen] << "\n"; 

 cout << "Loci fixed for the same alleles between sub pops: "<< same_fixed_loci[which_gen] << 

"\n"; 

 cout << "Loci fixed but for different allelels between subpops: "<< tot_fixed_loci[which_gen]-

same_fixed_loci[which_gen] << "\n"; 

 */ 

} 

 

//function: Noise Generator 

void noisegenerator() { 

 //var 

 int dis_range, dis_mean; 

 int subset_size; 

 int counter,counterB; 

 div_t devider; 

 float sum_of_sq; 

 int noisenumber; 

  

 dis_range = 10000; 

 devider = div (dis_range,2); 

 dis_mean = devider.quot; 
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 subset_size = 100; 

 sum_of_sq = 0; 

 noisenumber = population_size_total*2; 

  

 int_noise = new float[noisenumber + 1]; 

  

 for (counter=1; counter<(noisenumber+1); counter++) { 

  int_noise[counter] = 0; 

  for (counterB=1; counterB<(subset_size+1); counterB++) { 

   int_noise[counter] = int_noise[counter] + ((rand()%dis_range) + 1); 

  } 

  int_noise[counter] = (int_noise[counter]/subset_size)-dis_mean; 

  sum_of_sq = sum_of_sq + pow((int_noise[counter]/* REMEMBER THE MEAN IS 

REMOVED ONE LINE ABOVE -dis_mean*/), 2); 

 } 

  

 //Scale HERE 

 noise_scale = sqrt(sum_of_sq/noisenumber); //currently this is the standard deviation. Before 

changing this THINK FIRST!! 

 //cout << "NOISE SCALE !!! " << noise_scale; 

} 

 

 

//PHENOTYPING SUBFUNCTION 1: main effects, single qtl 

//format: which individual, which QTL, effect sizes 

float single_QTL(individual ind_who, int QTLA, float AA, float Aa, float aa){ 

 //var 

 float phenoval; 

 

 /*NOTE: using else is slightly better since it will often not go to the last 

  class. However a class satement would be much better but cant find any*/ 

 

 //00 

 if ((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 0) and 

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 0)){ 

  phenoval = AA; 

 } 

 //01 or 01 

 else if (((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1) and 

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 0)) or 

   ((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 0) and 

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1))){ 

  phenoval = Aa; 

 } 

 //11 

 else if ((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1) and 

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1)){ 

  phenoval = aa; 

 } 
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 return(phenoval);   

} 

    

//PHENOTYPING SUBFUNCTION 2: Two way interaction 

//format: which individual, which QTL, effect sizes 

float two_way(individual ind_who, int QTLA, int QTLB, float AABB, float AABb, float AAbb,  

             

 float AaBB, float AaBb, float Aabb,  

             

 float aaBB, float aaBb, float aabb){ 

 //var 

 float phenoval; 

 string geno2d = "0000"; 

  

 //get genotype string 

 if (ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1){geno2d[0] = '1';} 

 if (ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1){geno2d[1] = '1';} 

 if (ind_who.haplotypeA[qtl[QTLB].qtl_pos] == 1){geno2d[2] = '1';} 

 if (ind_who.haplotypeB[qtl[QTLB].qtl_pos] == 1){geno2d[3] = '1';} 

 

 //get phenotype 

 if (geno2d == "0000") { 

  phenoval = AABB; 

 } 

 if ((geno2d == "0001") or (geno2d == "0010")) { 

  phenoval = AABb; 

 } 

 if (geno2d == "0011") { 

  phenoval = AAbb; 

 } 

 //--- 

 if ((geno2d == "0100") or (geno2d == "1000")) { 

  phenoval = AaBB; 

 } 

 if ((geno2d == "0101") or (geno2d == "0110") or (geno2d == "1001") or (geno2d == "1010")) { 

  phenoval = AaBb; 

 } 

 if ((geno2d == "0111") or (geno2d == "1011")) { 

  phenoval = Aabb; 

 } 

 //--- 

 if (geno2d == "1100") { 

  phenoval = aaBB; 

 } 

 if ((geno2d == "1101") or (geno2d == "1110")) { 

  phenoval = aaBb; 

 } 

 if (geno2d == "1111") { 

  phenoval = aabb; 

 } 
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 return(phenoval);   

} 

 

//PHENOTYPING SUBFUNCTION 2: Three way interaction 

//format: which individual, which QTL, effect sizes 

float three_way(individual ind_who, int QTLA, int QTLB, int QTLC, float AABBCC, float AABBCc, 

float AABBcc,  

             

   float AABbCC, float AABbCc, float AABbcc,  

             

   float AAbbCC, float AAbbCc, float AAbbcc, 

      

             

   float AaBBCC, float AaBBCc, float AaBBcc,  

             

   float AaBbCC, float AaBbCc, float AaBbcc,  

             

   float AabbCC, float AabbCc, float Aabbcc, 

        

             

   float aaBBCC, float aaBBCc, float aaBBcc,  

             

   float aaBbCC, float aaBbCc, float aaBbcc,  

             

   float aabbCC, float aabbCc, float aabbcc){ 

 //var 

 float phenoval = 111111; 

 string geno3d = "000000"; 

  

 //get genotype string 

 if (ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1){geno3d[0] = '1';} 

 if (ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1){geno3d[1] = '1';} 

 if (ind_who.haplotypeA[qtl[QTLB].qtl_pos] == 1){geno3d[2] = '1';} 

 if (ind_who.haplotypeB[qtl[QTLB].qtl_pos] == 1){geno3d[3] = '1';} 

 if (ind_who.haplotypeA[qtl[QTLC].qtl_pos] == 1){geno3d[4] = '1';} 

 if (ind_who.haplotypeB[qtl[QTLC].qtl_pos] == 1){geno3d[5] = '1';} 

 

 //get phenotype 

 if (geno3d == "000000") { 

  phenoval = AABBCC; 

 } 

 if ((geno3d == "000001") or (geno3d == "000010")) { 

  phenoval = AABBCc; 

 } 

 if (geno3d == "000011") { 

  phenoval = AABBcc; 

 } 

 //--- 

 if ((geno3d == "000100") or (geno3d == "001000")) { 
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  phenoval = AABbCC; 

 } 

 if ((geno3d == "000101") or (geno3d == "000110") or (geno3d == "001001") or (geno3d == 

"001010")) { 

  phenoval = AABbCc; 

 } 

 if ((geno3d == "000111") or (geno3d == "001011")) { 

  phenoval = AABbcc; 

 } 

 //--- 

 if (geno3d == "001100") { 

  phenoval = AAbbCC; 

 } 

 if ((geno3d == "001101") or (geno3d == "001110")) { 

  phenoval = AAbbCc; 

 } 

 if (geno3d == "001111") { 

  phenoval = AAbbcc; 

 } 

  

 //--------- 

 if ((geno3d == "010000") or (geno3d == "100000")) { 

  phenoval = AaBBCC; 

 } 

 if ((geno3d == "010001") or (geno3d == "010010") or (geno3d == "100001") or (geno3d == 

"100010")) { 

  phenoval = AaBBCc; 

 } 

 if ((geno3d == "010011") or (geno3d == "100011")) { 

  phenoval = AaBBcc; 

 } 

 //--- 

 if ((geno3d == "010100") or (geno3d == "011000") or (geno3d == "100100") or (geno3d == 

"101000")) { 

  phenoval = AaBbCC; 

 } 

 if ((geno3d == "101010") or (geno3d == "101001") or (geno3d == "100110") or (geno3d == 

"100101") or (geno3d == "011010") or (geno3d == "011001") or (geno3d == "010110") or (geno3d == 

"010101")) { 

  phenoval = AaBbCc; //hehe 

 } 

 if ((geno3d == "010111") or (geno3d == "011011") or (geno3d == "100111") or (geno3d == 

"101011")) { 

  phenoval = AaBbcc; 

 } 

 //--- 

 if ((geno3d == "101100") or (geno3d == "011100")) { 

  phenoval = AabbCC; 

 } 
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 if ((geno3d == "011101") or (geno3d == "011110") or (geno3d == "101101") or (geno3d == 

"101110")) { 

  phenoval = AabbCc; 

 } 

 if ((geno3d == "101111") or (geno3d == "011111")) { 

  phenoval = Aabbcc; 

 } 

   

 //--------- 

 if (geno3d == "110000") { 

  phenoval = aaBBCC; 

 } 

 if ((geno3d == "110001") or (geno3d == "110010")) { 

  phenoval = aaBBCc; 

 } 

 if (geno3d == "110011") { 

  phenoval = aaBBcc; 

 } 

 //--- 

 if ((geno3d == "110100") or (geno3d == "111000")) { 

  phenoval = aaBbCC; 

 } 

 if ((geno3d == "110101") or (geno3d == "110110") or (geno3d == "111001") or (geno3d == 

"111010")) { 

  phenoval = aaBbCc; 

 } 

 if ((geno3d == "110111") or (geno3d == "111011")) { 

  phenoval = aaBbcc; 

 } 

 //--- 

 if (geno3d == "111100") { 

  phenoval = aabbCC; 

 } 

 if ((geno3d == "111101") or (geno3d == "111110")) { 

  phenoval = aabbCc; 

 } 

 if (geno3d == "111111") { 

  phenoval = aabbcc; 

 }  

 return(phenoval);  

} 

 

//function: phenotyping. This function assign phenotypes, depending on the QTL.  

//Important function this NB, may need to move up 

//ALSO CANT DO THE FOUNDER POPULATION!! 

void phenotyping(){ 

 //var 

 int counter, counterB, counterC; 

 float pheno, pheno2; 

 float phenoval, phenoval2; 
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 //phenoval = 10; 

 //phenoval2 = 1; 

  

 float noise_inflation; 

 noise_inflation = 316227.766; //1 is one sdev, 2 is two sdev ect. 

  

   

 //note the noise generator generates noise specifically for the number of inds in the pop in the 

final gen 

 //for now it is fine but will need to be moved and slightly addapted if phenotypes for each gen is 

req (only to speed up things) 

 

 /*notes on the phenoytpe generators: the order of the genotype effects are always as follows 

 Where caps refer to 0 and smallcaps refer to 1  

 single main effects: AA,Aa,aa 

  

  two way interactions: AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, aabb 

  

  three way interaction: AABBCC, AABBCc, AABBcc,   AABbCC, AABbCc, AABbcc,   AAbbCC, 

AAbbCc, AAbbcc, 

         AaBBCC, AaBBCc, AaBBcc,   AaBbCC, AaBbCc, 

AaBbcc,   AabbCC, AabbCc, Aabbcc, 

         aaBBCC, aaBBCc, aaBBcc,   aaBbCC, aaBbCc, 

aaBbcc,   aabbCC, aabbCc, aabbcc, 

  */ 

  

 noisegenerator(); 

 counterC = 1; 

 for (counter = 1; counter < (subpopnumber+1); counter++) {//per subpop 

  for (counterB = 1; counterB < (subpop[counter].popsize +1); counterB++) {//per ind 

   //resetting the pheno var 

   pheno = 0; 

   pheno2 = 0; 

    

   //here are the main effects for:    

   //Q1 

  //pheno = pheno + single_QTL(subpop[counter].ind[counterB], 6,1000,0,0); 

  // pheno = pheno + single_QTL(subpop[counter].ind[counterB], 9, 10,10,0); 

    

  // pheno2 = pheno2 + single_QTL(subpop[counter].ind[counterB], 6, 1,0.5,0); 

  // pheno2 = pheno2 + single_QTL(subpop[counter].ind[counterB], 9, 1,1,0); 

   //Q2 

   //pheno = pheno + single_QTL(subpop[counter].ind[counterB], 2, 1,2,3); 

    

   //here are the two way interaction for: 

   //Q1 and Q2 

   pheno = pheno + two_way(subpop[counter].ind[counterB], 

6,9,500,0,500,0,1000,0,500,0,500); 

    

   //here are the three way interaction for: 
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   //Q1 and Q2 and Q3 

   //pheno = pheno + three_way(subpop[counter].ind[counterB], 

2,6,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,0,0); 

    

   //pheno2 = pheno2 + three_way(subpop[counter].ind[counterB], 2,4,10, 

phenoval2,phenoval2,0,0,0,0,(phenoval2-2.0),(phenoval2-2.0),0,(phenoval2-0.5),(phenoval2-

0.5),0,0,0,0,(phenoval2-1.5),(phenoval2-1.5),0,0,0,0,0,0,0,0,0,0); 

    

   //ONLY ADDING NOISE (the int_noise array has a noise parameter for each 

individual) 

 

   pheno = pheno + int_noise[counterC]/noise_scale*(sqrt(noise_inflation)); //see 

noise scale above 

   counterC++; 

  

   pheno2 = pheno2 + int_noise[counterC]/noise_scale*(sqrt(noise_inflation));//see 

noise scale above 

   counterC++; 

    

   //Adding the phenotype to the ind 

   subpop[counter].ind[counterB].phenotype = pheno; 

   subpop[counter].ind[counterB].phenotype2 = 0;//pheno2; 

  } 

 } 

    

 //will do this for all the individuals in the whole population. 

} 

 

//function: this function is to record/write some information IN A FILE 

void outputfunction(int which_gen_rec) { 

 //var 

 FILE * outfile; 

 char outfilename[256] = {0}; 

 char gennum[5]; 

 int counter, counterB, counterC, counterD; 

  

 strcat(outfilename,"Generation_"); 

 sprintf(gennum,"%d",which_gen_rec); 

 strcat(outfilename, gennum); 

 strcat(outfilename,"_genotypes.txt"); 

  

 //cout << "\nQTL array data TEST\n"; 

 //for (counter = 1; counter< (qtl_number+1); counter++) { 

 // cout << counter <<" \t"; 

 // cout << qtl[counter].qtl_pos << "\n"; 

 //} 

  

 outfile = fopen(outfilename,"w"); 

// fprintf(outfile,"Generation, %d",which_gen_rec); 

 fprintf(outfile, "Individual\tPopulation\tSex\tFather\tMother\tPhenotype\tPhenotype2"); 
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 for (counter = 1; counter < (qtl_number +1 ); counter++) { //writing the QTLs first in the format 

Qnumber,positio in haplotype 

  fprintf(outfile, "\tQ%d_%d", counter, qtl[counter].qtl_pos); 

  //   fprintf(outfile, "\tQ%d,%d", counter, qtl[counter].qtl_pos); 

 } 

  

 counterD = 1; 

 for (counter = 1; counter<(haplotype_size+1); counter++) { //writing the names excluding the 

QTls 

   if (counter == (qtl[counterD].qtl_pos)) { 

    counterD = counterD + 1; 

   }else { 

    fprintf(outfile,"\t%d",counter-(counterD)+1); 

  //  fprintf(outfile,"\t%d",counter); 

   } 

 } 

  

 /* Cant print burnin Gen before fixed 

  if (burnin_generations == 0) {//founder generation 

   

  for (counterB = 1; counterB < (founderpop.popsize +1); counterB++) {//per ind 

   fprintf(outfile, 

"\n%d\t%d\t%d\t%d\t%d\t%f\t%f",counterB,founderpop.ind[counterB].subpopID,founderpop.ind[counter

B].sex,0,0,founderpop.ind[counterB].phenotype,founderpop.ind[counterB].phenotype2); 

   for (counterC=1; counterC < (qtl_number +1 ); counterC++) { 

    fprintf(outfile, 

"\t%d%d",founderpop.ind[counterB].haplotypeA[qtl[counterC].qtl_pos],founderpop.ind[counterB].haplot

ypeB[qtl[counterC].qtl_pos]); 

   } 

   counterD = 1; 

   for (counterC=1; counterC < (haplotype_size+1); counterC++ ) { 

    if (counterC == (qtl[counterD].qtl_pos)) { 

     counterD = counterD + 1; 

    }else { 

     fprintf(outfile, 

"\t%d%d",founderpop.ind[counterB].haplotypeA[counterC],founderpop.ind[counterB].haplotypeB[count

erC]); 

    }    

   } 

  } 

 }else 

  */ 

 //non founder generation 

  for (counter = 1; counter < (subpopnumber+1); counter++) {//per subpop 

   for (counterB = 1; counterB < (subpop[counter].popsize +1); counterB++) {//per 

ind 

    fprintf(outfile, 

"\n%d\t%d\t%d\t%d\t%d\t%f\t%f",counterB,subpop[counter].ind[counterB].subpopID,subpop[counter].in

d[counterB].sex,subpop[counter].ind[counterB].father,subpop[counter].ind[counterB].mother,subpop[cou

nter].ind[counterB].phenotype,subpop[counter].ind[counterB].phenotype2); 
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    for (counterC=1; counterC < (qtl_number +1 ); counterC++) { 

     fprintf(outfile, 

"\t%d%d",subpop[counter].ind[counterB].haplotypeA[qtl[counterC].qtl_pos],subpop[counter].ind[counter

B].haplotypeB[qtl[counterC].qtl_pos]); 

      

    } 

    counterD = 1;  

    for (counterC=1; counterC < (haplotype_size+1); counterC++ ) { 

     if (counterC == (qtl[counterD].qtl_pos)) { 

      counterD = counterD + 1; 

     }else { 

      if (subpop[counter].ind[counterB].haplotypeA[counterC] 

== 0 and subpop[counter].ind[counterB].haplotypeB[counterC] == 0) { 

       fprintf(outfile, "\t%d", 1); 

      } 

      if (subpop[counter].ind[counterB].haplotypeA[counterC] 

== 1 and subpop[counter].ind[counterB].haplotypeB[counterC] == 0) { 

       fprintf(outfile, "\t%d", 2); 

      } 

      if (subpop[counter].ind[counterB].haplotypeA[counterC] 

== 0 and subpop[counter].ind[counterB].haplotypeB[counterC] == 1) { 

       fprintf(outfile, "\t%d", 2); 

      } 

      if (subpop[counter].ind[counterB].haplotypeA[counterC] 

== 1 and subpop[counter].ind[counterB].haplotypeB[counterC] == 1) { 

       fprintf(outfile, "\t%d", 3); 

      } 

     // fprintf(outfile, 

"\t%d%d",subpop[counter].ind[counterB].haplotypeA[counterC],subpop[counter].ind[counterB].haplotyp

eB[counterC]); 

      

     }    

    } 

   }   

 } 

 

 fclose(outfile); 

} 

 

 

//THE MAIN PROGRAM 

int main (int argc, char * const argv[]) { 

 //LOCAL VARIABLES 

 string xfile,markerfile,founderfile,parentalfile;//the file name that needs to be opened 

 char inttochar[40]; 

 bool exitnow; //use when quitting is ness 

 bool xfileopen;//could the file be read correctly 

 char switch_questions[256]; 

 int counter;  

 //int counterB; 
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 //int record_fraction;//the number of generations in the simulation that info will be recorded for 

  

  

 //BEGIN 

 srand (time(NULL)); //making the randomizer slightly more random but can change to have a 

seeding value...weird but true 

 system("clear");//clear the terminal 

 cout<< "Running QTL simulator v1 (Ronald Nelson):\n"; 

  

   

 //getting correct file to open (the showfile and openfunction would be better if together) 

 xfileopen = false; 

 exitnow = false; 

 while ((exitnow==false) and (xfileopen==false)) { 

  xfile = showfiles();//point to the main file to be opened 

   if ((xfile == "q") or (xfile == "Q")) { 

     exitnow = true; //quitting the progam 

    } 

    else { 

     readmainfile(xfile,exitnow,markerfile,founderfile,parentalfile); 

      

    } 

 }//to repeat until the correct file is opend or the user quits 

  

    

 if (markerfile == "SIMULATE_MAP_DATA") { //loading or creating marker and qtl info file 

  cout << "\nSimulating founder dataset...\n"; 

  //make file according to user input, and save file 

  //xfileopen = open the just created datafile 

 } 

 else { 

  if (markerfile != "") { 

   xfileopen = loadmap(markerfile);//opening and reading the markers and qtls 

  } 

 }   

  

  

 if (founderfile == "SIMULATE_FOUDER_DATA") { //loading or creating the founder 

genotypes if individual.... 

  cout << "\nSimulating founder dataset...\n"; 

  //make file according to user input, and save file 

  //xfileopen = open the just created datafile 

 } 

 else { 

  if (founderfile != "") { 

   xfileopen = loadfounders(founderfile);//opening and reading the markers and qtls 

  } 

 } 
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 if (xfileopen==true){//only continue the program from here if the MARKER- and FOUNDER- 

files was opened sucessfully 

        show_marker_info();//numerical display of data 

  plot_marker_info();//graphical display of data 

  showpop(founderpop); 

   

     

  if (parentalfile == "SIMULATE_PARENTAL_DATA") //----switch here between 

loading parentals or creating parentals  

   {//-----------------------START TO simulate parentals...default----------------------- 

       

    cout << "Continue to simulate "<< subpopnumber <<" sub-populations 

from founder population for " << burnin_generations <<  " generations to create parental lines (Y/N).\n"; 

    cin.getline(switch_questions,256); 

    if ((strcmp(switch_questions, "y")==0) or strcmp(switch_questions, 

"Y")==0){//continue only if user say yes 

      

      

     /*setting the info array, this could be excluded completely if 

needed but would 

      be good to have for at least some generations.  

      Could limit the number of gen when this is created but for now 

      it is the same size as the number of gen*/ 

     info_per_gen_per_pop = new 

saved_information*[burnin_generations+1]; 

     tot_fixed_loci = new int[burnin_generations+1]; 

     same_fixed_loci = new int[burnin_generations+1]; 

     sexratio = new int[burnin_generations+1]; 

      

     //---------These next lines are to create a empty new parental 

population lines (and empty new offspring population holder arrays)--  

     subpop = new population[subpopnumber+1]; 

     subpop_offspring = new population[subpopnumber+1]; 

     for (counter = 1; counter<(subpopnumber+1);counter++) { 

      //parental 

      sprintf(inttochar,"%d",counter); 

      strcpy(subpop[counter].popname, "Population_"); 

//assigning string values 

      strncat(subpop[counter].popname, inttochar,5); 

//concatenating strings 

      subpop[counter].popsize = subpopsize; 

      create_empty_pop(subpop[counter],counter); 

      // showpop(subpop[counter]); 

       

      //offspring 

      sprintf(inttochar,"%d",counter); 

      strcpy(subpop_offspring[counter].popname, 

"Offspring_Population_"); //assigning string values 

      strncat(subpop_offspring[counter].popname, 

inttochar,5); //concatenating strings 
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      subpop_offspring[counter].popsize = subpopsize; 

      create_empty_pop(subpop_offspring[counter],counter); 

      // showpop(subpop_offspring[counter]); 

     } 

      

     //----To reproduce for a number of generations, creating the 

parental populations, ADD something here 

     //record_fraction = 10; //percentage of generations for which the 

information is recorded 

     //record_fraction = (record_fraction/100)*burnin_generations; 

      

      

     //REMOVE THIS REPEATER LATER WHEN ALL IS 

TESTED 

     // int repeats = 1; 

     // int repcounter; 

     // int samefix, difffix, totfix; 

     // samefix = 0; 

     // difffix = 0; 

     // totfix = 0; 

     // for (repcounter = 1; repcounter<(repeats+1); 

repcounter++) { 

      

      for (counter = 1; counter<(burnin_generations +1); counter++) { 

//running for each generation!!! 

      //  cout << "\nGeneration "<< counter << " 

"; 

      reproduce(counter); 

      // selection_1();//first type of selection 

       

      /* for (counterB = 1; 

counterB<(subpopnumber+1);counterB++) {//internal checking things 

       showpop(subpop[counterB]); 

       showpop(subpop_offspring[counterB]); 

       } */ 

      record_info_for_gen(counter);//recording some 

information for the current generation 

       

       phenotyping();  

       outputfunction(counter); 

        

     }//END of...reproduce function//for the amount of burnin gen 

      

     //more repstuff 

     //cout << "\nRepeat no: "<< repcounter << ", same fixed: "<< 

same_fixed_loci[burnin_generations] << " (tot loci "<< haplotype_size<< ")"; 

     // if (same_fixed_loci[burnin_generations] == 1) { 

     //  samefix = samefix+1; 

     // } 

     // if (tot_fixed_loci[burnin_generations] == 1){ 
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     //  totfix = totfix +1; 

     // } 

     //difffix = totfix - samefix; 

      

     //} //repeatruns end 

      

     //cout << "\n\n Total Runs :" << repeats; 

     //cout << "\n Total fixed :" << totfix; 

     //cout << "\n Total unfixed :" << repeats-totfix; 

     //cout << "\n same fixed :" << samefix; 

     //cout << "\n different fixed :" << difffix; 

     //repeater stuff till here 

      

     plot_fixed_allel_freq(); //plotting the allelel freqs after 

simulation  

      

     //showing the last population 

    //    for (counterB = 1; 

counterB<(subpopnumber+1);counterB++) { 

    //     showpop(subpop[counterB]); 

    //    }   

        

      

    }//END of...to continue if the user has cheked the data before simulation 

  

     

  }//------------------Here ends the simulation of the initial populations before the 

experimental cross is done------ 

   

  else {//----start to load parentals------------------------ 

   cout << "Used when loading parental file. \n"; 

  }//-------end of loading parentals------------------------ 

   

  //DO THE CROSSES HERE IF STILL REQ 

     

   

 // phenotyping(); 

     

  //----WRITING SOME OUTPUT HERE--- 

  //bool writeoutput = true;//just a switch 

  // if (writeoutput==true) { 

    //who gets reproduced, grandpar = burnin number, F1 = grandpar+1, F2 = F1+1 

   // outputfunction(burnin_generations);//the grandparents or F0. 

   //} 

   

   

 }//END of...if the files was opened succesfully (xfileopen)  

  

cout << "\n"; 
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}//ENDING OF MAIN PROGRAM, RMN. 
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