

Evaluation of vGWAS, a test for determining scenarios

of epistasis

by

Yonatan Ayalew Mekonnen

Master's Degree Project

TABLE OF CONTENTS Page

ABSTRACT 1

ABBREVIATIONS 2

1. INTRODUCTION 3

 1.1 The development of QTL mapping methods for detecting epistasis 6

 1.2 The development of genome wide association studies (GWAS)

 and other methods for detecting epistasis

7

 1.3 Limitation to detect epistasis 10

 1.4 The missing heritability 11

2. MATERIALS AND METHODS 11

 2.1 Genotype-phenotype map creation 11

 2.2 Data simulation 13

 2.3 Determining significant QTL 16

 2.4 Heritability and power estimation 17

 2.5 Model description 18

3. RESULTS 21

4. DISCUSSION 24

5. CONCLUSION 29

6. REFERENCES 30

ACKNOWLEDGEMENT 34

APPENDIX 35

1

ABSTRACT:

A number of software packages have been developed for the detection of epistatic QTL.

Nevertheless, none of these approaches could assure the optimal detection of epistasis. There are

a number of limitations in these studies including high computational demands due to increased

combinations of interactions for large datasets. Therefore, it has been a challenge to identify

genes which are responsible for complex genetic traits caused by epistasis as well as gene by

environment (G×E) interactions. Although genetic association studies have recently gained

popularity, most of these studies have been carried out on the effect of the markers’ mean trait

value without considering the differences in the variances of the traits. These differences could

be associated with detecting variance controlling loci and missing heritability. In this paper, we

address the novelty of variance genome wide association study (vGWAS) and evaluate its power

for the detection of epistasis. Data were generated using simulation program for two

chromosomes, both containing 209 markers. vGWAS – an R statistical package was used with

two and three loci epistasis model to analyze the simulated data. The Brown-Forsythe (Levene's)

test was used to assess the equality of group variance for variance controlling loci. For both two

and three loci epistasis models, correct QTL are detected. Both heritability and power are

calculated using three genotype-phenotype maps. Using vGWAS is therefore one way to find

some of the variation currently unexplained. Interaction variances (), which are included in

vGWAS analysis, is a novelty compared to other software in terms of detecting variance

controlling loci (vQTL) and finding the missing heritability due to interacting loci. In our

analysis, we have shown that at low or moderate noise level, both power and heritability

estimates were approximately 1. The result reflects that vGWAS is a powerful and efficient tool

for detecting candidate epistatic genes (i.e., detecting vQTL are often associated with interacting

genes). Therefore, it could be appropriate to be used as a procedure for real data dealing with

complex disease or obscured genetic interactions in addition to standard linear regression

models.

Keywords: Epistasis, heritability, interaction variances, power, QTL, vGWAS, vQTL

2

ABBREVIATIONS

ANOVA Analysis of variance

BQTL Bayesian quantitative trait mapping

cM Centimorgan

COE Convex optimization based epistasis detection algorithm

FPR False positive rate

G×E Gene-environment interaction

G×G Gene-gene interaction

GWAS Genome wide association study

 Heritability

MDR Multifactor dimensionality reduction

MQTL Multi-environmental QTL analysis

QTL Quantitative trait locus

QTLBIM Quantitative trait locus Bayesian interval mapping

SNP Single nucleotide polymorphism

TEAM Tree based epistasis association mapping

 Additive variance

 Dominance variance

 Environmental variance

 Genetic variance

vGWAS Variance genome wide association study

 Interaction variance

 Mean difference

vQTL Variance controlling loci

 Variance difference

3

1. INTRODUCTION:

The term ‘epistasis’ was first coined by Bateson in 1909 to explain the masking effect of alleles

at one locus to prevent an activity at another locus (Cordell et al., 2001). Bateson used the term

‘epistasis’ to describe the phenomena that a novel phenotype results when alleles are combined

compared to when they are apart. This concept was considered as an extension of dominance

notion at single locus. Fisher (1918) used the term epistacy to describe the interaction between

alleles at different loci (i.e., deviation from additivity), which contribute to a specific phenotype

or trait (Malmberg and Mauricio, 2005). However, a more general term ‘gene interaction’ was

used by several researchers to describe the concept epistasis. From these point of view, both

Fisher’s and Bateson’s definitions of epistasis can be used to explain gene interactions at various

levels (Phillips, 2008). Carlborg and Haley (2004) stated that epistasis is the interaction between

loci in which the phenotype depends on the genotype of one locus in the context of the second

locus. Phillips (2008) summarizes the various views of epistasis as functional, compositional and

statistical epistasis.

Functional epistasis deals with the interaction of proteins and other genetic elements at

molecular level. For instance, functional relationship disorder between proteins involves

interaction without direct genetic involvement although the cause of the disorder has genetic

basis. Protein-protein interaction is used to address epistasis of this type (Phillips, 2008).

Compositional epistasis is used to describe the blocking effect of one allele to another which

reflects classical definition of epistasis. Substituting one allele at the loci of interest without

changing the background genes will influence the effect of a specific set of alleles in another

locus (Phillips, 2008).

Statistical epistasis, which reflects the Fisherian view, rather considers the average deviation of

alleles from the additive combination at different loci. The views of compositional and statistical

epistasis seem slightly contradicting. Compositional epistasis evaluates the effect of allele

substitution against fixed background genes whereas statistical epistasis measures the average

4

allele substitution effect against average genetic background of the population. Therefore, allelic

substitution under various genetic backgrounds (i.e., either fixed or average) unifies these two

approaches of epistasis (Phillips, 2008). However, Phillips definition of functional epistasis is

not the same as Alvarez-Castro and Carlborg’s definition of functional epistasis (Cordell, 2009).

In their unified model, the structure of algebraic formulation of functional epistasis resembles

that of statistical epistasis. But, instead of using average allelic substitution effect, their natural

and orthogonal interaction model (NOIA) uses natural (non-average) effect of allelic substitution

for functional epistasis formulation (Alvarez-Castro and Carlborg, 2007). The term biological,

genetical and physiological epistasis has been interchangeably used to address functional

epistasis in the literature, though (Moore and Williams, 2005).

On the other hand, quantitative geneticists consider epistasis in terms of additive and dominance

interactions. Lynch and Walsh (1998) described dominance and epistasis as two measures of

non additivity in which the former explains allelic effect within locus whereas the latter explains

allelic effects between loci. Without considering epistasis, the total genetic variance of a locus is

simplified as additive and dominance effect (Lynch and Walsh, 1998).

 =

 +
 [1]

Where,
 is the total genetic variance,

 is additive genetic variance and
 is dominance

genetic variance.

For two interacting loci, for instance, epistasis can arise in three different ways: additive x

additive (αα), additive x dominance (αδ) and dominance x dominance (δδ). Similarly, for

interacting three loci, there are four different ways in which epistasis can arise: additive x

additive x additive (ααα), additive x additive x dominance (ααδ), additive x dominance x

dominance (αδδ), dominance x dominance x dominance (δδδ) and the number increases with

increasing interacting loci.

 =

 +
 +

 +
 +

 +
 +

 +
 +

 … [2]

This means that epistatic interaction can influence on the additive and/or dominance components

of genetic variance. Although the individual epistatic effects of loci are small, the sum of these

5

individual effects may be large. This may persuade quantitative geneticists not to ignore

epistasis.

However; Crow (2010) proclaimed that it was reasonable to ignore epistasis in some

circumstances in the prediction. Since quantitative geneticists consider quantitative phenotypes

rather than individual genes' effects, variance due to epistasis would have small effect on

predicting breeding values for selection of individuals. According to breeders, many genes which

contribute to quantitative traits usually have little dominance or epistasis. The reason for this is

that each continuously distributed quantitative trait would have a small contribution to

quantitative measurements and their small effects are given as additive variance (Crow, 2010).

According to Crow and Kimura (2009), breeders only account for additive variances although

there may be large amount of epistasis and dominance. They regarded the effect of epistasis as a

noise or a complex factor obscuring selection progress. However, Maher (2008) points out that

these small effects of individual and cumulative sets of genes could be associated with genetics

of common disease and missing heritability. He postulated that one source of the missing

heritability, often encountered in genome wide association studies (GWAS) could be due to

epistasis. However, there have been limitations to evaluate their quantitative significance. These

limitations were lack of good statistical power and proper experimental design.

In this manuscript, we investigate variance genome wide association study (vGWAS),

complementary to the current models that use differences in phenotypic variances between

genotypes rather than using mean differences to identify the loci of interest (Shen et al., 2011).

The aim of this paper is to evaluate the power of vGWAS in relation to broad sense heritability

for the detection of candidate epistatic loci. The Brown-Forsythe test for genotypic

heteroscedasticity is used in vGWAS. The paper also addresses the novelty of vGWAS in

detection of epistasis as a procedure to be used in addition to standard linear regression models.

Moreover, this thesis will intend to fill the gap for animal breeding and genetics by providing

more powerful method in terms of detecting interacting loci that can be used for animal selection

in particular and for complex disease genetics study in general. However, there were limitations

to get adequate references related with the topic.

6

1.1 The development of QTL mapping for detecting epistasis:

In quantitative trait loci (QTL) mapping, the population should be partitioned into different

genotypic classes. Then, the applied test statistic should confer whether the individual of one

genotype differ significantly from individual of other genotype with respect to a certain

phenotype. Usually, QTL mapping requires segregating mapping population such as F2 cross

populations, backcross populations, recombinant inbreed lines, near isogenic lines or double

haploids lines. Phenotypic data obtained from backcross or intercrosses are used to identify the

genomic region that has genotype-phenotype association. In order to identify the genomic

regions associated with the trait of interest, genetic markers such as microsatellite and SNPs;

phenotypes (i.e., observed characters of the individuals) and genetic maps, which specifies the

location of markers on the chromosome, are used (Wu et al., 2007). QTL linkage analysis and

fine mapping studies could lead to identify and functionally confirm the candidate genes which

have potential effect on the trait. For instance, both DGAT1 and GHR genes, which have

significant effect on milk production trait in dairy cattle, have been identified and functionally

confirmed using QTL mapping and fine scale mapping primarily (Jiang, 2010).

A number of methods and software to detect epistasis between QTL have been developed during

the past years. For instance, Genetic algorithm by Carlborg et al. (2000); Exhaustive algorithms

by Nelson et al. (2001) and Ritchie et al. (2001); Two-step approach by Storey et al. (2005) and

Evans et al. (2006); Three epistasis detecting tools (i.e., fast ANOVA, COE and TEAM) by

Zhang et al. (2010). Currently available methods for estimating QTL parameters use least square

regression, maximum likelihood and Bayesian regression as their main methods as shown in

Table 1. All packages listed in Table 1 are limited to detect interaction between two loci without

considering higher order interactions. This is because testing all pair wise combination creates

computational burden for the analysis and becomes time consuming. Although the package

PSEUDOMARKER uses DIRECT, which is a computationally efficient algorithm on MATLAB

platform, the current application is only for two QTL scans. Some of these packages also have

epistatic searching algorithms in addition to QTL detection.

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Rongling+Wu%22

7

Table 1. Existing software packages for QTL analysis.

Main methods Packages

Least square regression

PSEUDOMARKER, QTL Cartographer, HAPPY, MapQTL, BQTL,

QTL Network, WebQTL, MultiQTL, Map Manager QTX,

PLABQTL, the QTL Café, GridQTL, R/qtl, PROC QTL, MQTL,

QGene, QTL-All, Epistat

Maximum likelihood

Mapmaker/QTL, QTL Cartographer, MapQTL, BQTL,

Multimapper, PROC QTL, QTL-by-SAS and QGene

Bayesian regression

QTLBIM, BQTL, Multimapper, PROC QTL, Shrinkage QTL and

QGene

Epistatic searching

algorithms

PSEUDOMARKER, QTLBIM, BQTL, QTLNetwork, MultiQTL,

PLABQTL, GridQTL, R/qtl, PROC QTL, Map Manager QTX and

Epistat

1.2 The development of genome wide association studies

(GWAS) and other methods for detecting epistasis:

Along with the advent of single nucleotide polymorphisms (SNPs), genome wide association

study becomes powerful to detect and identify the genomic regions harboring causal variants.

For complex diseases such as autism and schizophrenia, the application of genome wide

association studies is dominantly used. But a few applications of GWAS have been performed in

cattle such as identifying genes for milk production traits (Jiang et al., 2010). To perform

GWAS, two groups are required; case and control groups with large number of data sets. The

sample taken from each of the two groups is then scanned for intentionally selected markers (i.e.,

using existing data such as HapMap) or randomly chosen markers (SNPs). If the result indicates

that the genetic variations in the case group are considerably more frequent than the control

groups, then the variations are strong indicators of the region in the genome where these

variations are associated with a certain phenotype. However, in order to identify the exact

genetic changes associated with a certain phenotype, further step is needed such as sequencing.

8

GWAS is denoted as a powerful method for the study of disease-associated genetic variants (Iles,

2008). Unlike QTL mapping, GWAS utilizes many unlinked markers; does not necessarily

require inbred lines and is able to detect many more interacting genes (Corvin, 2010). Most of

these studies have been carried out on the effect of the markers’ mean trait value.

Until recently, the differences in the variances of these traits were not considered. Pare´ et al.

(2010) proposed a novel method to prioritize markers for gene-gene and gene-environment

interaction. The analysis was done in two steps. The first step was prioritizing markers for

further interaction using Levene's equality of variance test (i.e., assess whether k samples have

equal variance). The second step was testing prioritized markers using linear regression for

interaction effects against an environmental covariate or other markers. This technique opened a

new perspective to weigh G G and G E interaction on which the new method (vGWAS) is

based. There was some doubt about linking variance differences to epistasis until it was realized

that the source of these variances could be epistasis or G E interactions (Pare' et al., 2010).

Quantitative traits, which are regulated by genetic mean effect, have been explored and were

found by most of the genetic association studies. Unlike the mean controlling loci which

contribute to additive genetic effect, variance controlling loci affect phenotypic variance

indirectly. This means that other genetic or environmental factors affect the mean shift due to

variance controlling loci rather than directly contributing to additive genetic variance. Variance

controlling genes are therefore important for the genetic robustness by stabilizing the traits that

are under selection. Integrating mean controlling loci, variance controlling loci and loci

controlling both are therefore important to elucidate the genetic architecture of a given trait

(Shen et al., 2011).

For the detection of higher order interactions in association studies, a new method called

multifactor dimensionality reduction (MDR) was developed by Ritchie et al., (2001). Most

importantly, this method identifies multi-locus interactions, rather than only single locus effect.

This makes it possible to determine the mechanisms of disease susceptibility that underlie the

influence of epistasis by looking at the hierarchy of interacting genes in biological networks

(Moore, 2003). Most commonly, logistic regression model, which includes main and interaction

9

terms, is used to test statistical interactions. The whole-genome analysis package PLINK is

endowed with logistic regression tests for both main effect and the interactions (Cordell, 2009).

However, logistic regression has low power when loci have no marginal effect. Therefore, the

method which is developed by Yang et al. (1999) can be used to compare case and controls for

their inter-locus associations based on partitioning of values for the conditions that logistic

regression has low power. Although several efforts have been made to study interactions alone,

methods that allow interactions with other genetic or environmental factors while testing the

effect of a given locus increase the power (Cordell, 2009).

Analyzing and testing all possible pairs of loci is the simplest way to look for interactions.

Exhaustive search were built to analyze data in this way. If exhaustive search is applied to

genome scan, it might take several hours or days or even a month to make all pair wise

comparisons (Cordell, 2009). But for higher-order interactions such as three loci, four loci or

higher level interactions, exhaustive search are not normally used for the analysis due to high

computational burden. In order to overcome this problem, two-step approaches have been used.

In the first stage, the loci that are significant for a certain threshold level are filtered. Secondly,

an exhaustive search on those selected loci is applied for two locus or higher order interactions

(Hoh et al., 2000). This approach allows loci for the subsequent stage of testing if they had

marginal association with the trait. Therefore, a shortcoming of this method is that alleles which

did not show marginal associations are not evaluated to detect interactions. Two step methods

are not the only methods to overcome high computational burden. Alternatively, most of

machine-learning or data mining approaches such as Relief and Random Forest do not

necessarily require a locus with marginal effect (Cordell, 2009). Although an efficient global

optimization algorithm, DIRECT, was developed to reduce the high computational complexity

demand (Ljungberg et al., 2004), scaling problem remains a challenge for genotype-phenotype

mapping due to exponentially increasing numbers of all possible genetic interactions (Phillips,

2008).

10

1.3 Limitations to detect epistasis:

It has been a challenge to identify genes which are responsible for complex genetic traits

especially when they are involved in epistasis and gene by environment (G E) interactions. It is

also clear that gene frequencies and phenotypic variations change from population to population,

from sample to sample and from generation to generation. This makes it difficult to assign a

phenotype to its complimentary genotype (even when the system is simple and there are no

environmental interactions). Since there is often some degree of environmental interaction, it

becomes more difficult to detect and map genes due to non-linear interactions between genes. As

the number of genetic factors increases, the average contribution of each factor explaining a

specific phenotype decreases. The inverse relationship between number of genes and individual

average gene effect limits detection and mapping of genes. Caution is therefore important when

we want to map the component of genes in complex traits and explain their role (Wade et al.,

2001).

Since epistatic QTL uses the mean of multi-locus genotypes rather than single locus individuals,

it requires larger sample size. Usually, there is a limitation to collect adequate data in association

studies which results in lack of power (Carlborg and Haley, 2004). Most studies for detection of

epistatic QTL use quantitative genetic models since the detected interactions are not always

biologically relevant. For instance, when epistasis is modeled as a deviation from additivity, it is

difficult to report gene-gene interaction in a biological context (Cordell et al., 2001). But there

are methods to associate statistically modeled epistasis to their real biological meanings. One

way to describe how gene interactions influence the phenotype is genotype-phenotype maps.

These maps can be used to connect experimental data to real gene interaction patterns (Carlborg

et al., 2003). Functional relationship among loci and gene regulatory networks such as positive

and negative feedback loops are other methods to link statistical estimates of epistasis to

biological meaning (Omholt et al., 2000).

11

1.4 The missing heritability

The majority of complex diseases are thought to be influenced by many environmental and

genetic factors (Manolio et al., 2009). GWAS has become a powerful and popular tool to

associate the genotypic variance with phenotypic variance. Complex traits are however often

assumed to follow the infinitesimal model (i.e., traits are determined by infinite number of

unlinked loci) (Fisher, 1918). Several other reasons, including larger number of variants with

smaller effect or few variants with larger effect and a low power to detect gene-gene interaction,

may lead to the small estimates of heritability observed in many studies. This raises a question:

Is the “missing heritability” due to sampling issues or an inherent problem with the methodology

in association studies? It was termed as "dark matter" of the genome, since it certainly exists, but

cannot be detected. Therefore, there is a need to propose and develop methods to detect the

potential source of this missing heritability when dealing with complex disease genetics

(Manolio et al., 2009). Since current methods used in GWAS are not able to detect interactions,

using vGWAS enables to find some of the variation currently unexplained.

2. MATERIALS AND METHODS:

2.1 Genotype-phenotype map creation:

For two and three loci epistasis model, different genotype-phenotype maps were used. A

genotype-phenotype map without mean difference could inherit variance difference between

genotypes of a particular individual locus. Since vGWAS was built to detect variance differences,

QTL of these maps can be detected using this program. Genotype-phenotype maps (shown in

Figure 1a, 1b and 1c) were used to show variance differences between genotypes and estimate

the power of vGWAS in relation to heritability.

12

Figure 1a. Genotype-phenotype map. There is no mean or variance difference between genotype AA and Aa,

when summed over all combination with the B-locus. But, there is mean and variance difference between genotype

aa and the other genotypes (AA or Aa) averaged over all combination with the B-locus.

Figure 1b. Genotype-phenotype map (including without mean difference for genotype-phenotype

maps having same frequencies). There is no mean difference between genotypes AA, and Aa, aa and AA and;

aa and Aa when summed over all combination with the B-locus. But there are variance differences between

genotype AA and Aa; and Aa and aa, averaged over all combination with the B-locus.

BBAA BbAA bbAA BBAa BbAa bbAa BBaa Bbaa bbaa

Phenotypic Value 1000 500 0 0 500 1000 0 0 0

0

200

400

600

800

1000

1200
P

h
e

n
o

ty
p

ic
 V

al
u

e

BBAA BbAA bbAA BBAa BbAa bbAa BBaa Bbaa bbaa

Phenotypic Value 500 0 500 0 1000 0 500 0 500

0

200

400

600

800

1000

1200

P
h

e
n

o
ty

p
ic

 V
al

u
e

13

Figure 1c. Genotype-phenotype map. There is no mean and variance difference between genotype AA and

Aa, when summed over all combination with the B-locus. There is mean and variance difference between genotype

AA and aa, and Aa and aa averaged over all combination with the B-locus.

The numbers in each cell represent the mean phenotypic value of specific genotype. Since the

population is in Hardy-Weinberg equilibrium, there may be a small main effect. This means that

the differences observed could be detected by testing for main effect. However, testing the

variance should not be greatly affected by these artifacts. In non Hardy-Weinberg population,

there may be a condition in which the genotype frequencies remain the same. In this case,

vGWAS could rather detect differences in variance without main effect.

2.2 Data simulation:

Data was generated up to 30 generations using a simulation program written by Ronald Nelson

in C++ and compiled for Mac_OS_X (see appendix). Simulations were conducted for different

scenarios of population size and noise levels at generation 30 as summarized in Table 2. To limit

the effect of drift on the allelic frequency, we terminated at generation 30. This could ensure

enough recombination events to be similar to a realistic out-bred population. Two chromosomes

were simulated; the first contains 100 markers and the second 109 as shown in Figure 2. QTL are

BBAA BbAA bbAA BBAa BbAa bbAa BBaa Bbaa bbaa

Phenotypic Value 1000 500 0 500 1000 0 0 0 0

0

200

400

600

800

1000

1200
P

h
e

n
o

ty
p

ic
 V

al
u

e

14

simulated in the genome using these two chromosomes and keeping them far apart to behave as

if they are unlinked.

Figure 2. The simulated chromosome maps. (Markers are indicated in blue and QTL in red. QTL were

simulated at different positions but were always unlinked when more than one was used. If QTL are in the same

chromosome, they kept far apart to be unlinked reasonably).

The founder populations had four completely homozygous individuals, but they had different

alleles at all loci. There were 2 males and 2 females and the sex ratio throughout simulation was

kept at 1:1 in all subsequent generations. QTL were simulated at 47 cM in the first chromosome

and 131 cM in the second chromosome for two loci epistasis model. For three loci epistasis

15

209 markers in 2

chromosomes

model, QTL were simulated at 6cM and 47cM in the first chromosome and at 131cM in the

second chromosome. The positions of simulated QTL for both two and three loci epistasis model

were the same for every repeated simulation. Since no selection is performed, allelic frequencies

remain the same as in the founder population, and allowing random mating keeps the genotype

frequencies to be in equilibrium. The created maps, as shown in Figure 1(a, b, c), were simulated

with noise level of 1, 3, 10
4.5

, 10
5
, 10

5.5
and 10

6
 for population size of 500 at generation 30 for

two loci epistasis model. vGWAS – an R statistical package was used to analyze the simulated

data. The simulated data contains both genotype and phenotype information. Genotype-

phenotype maps are allelic combinations expressing a specific phenotypic value. The numeric

values of each cell in Figure 1 are phenotypic values of their allelic combinations. The vGWAS

program scanned the genotypes of the individuals for all possible pair wise associations. The

outputs were stored and graphs were plotted. The whole process can be summarized as the

following flow chart in Figure 3.

Figure 3. Flow chart summarizing the methodology.

Genotype phenotype

creation

Data simulation with C++

compiled for Mac_OS_X

Analysis of scan data and

estimation of power

Simulation with

different population

and noise level at

generation 30

QTLs simulated

at 47 & 131 cM

for two loci; 6,

47 & 131 cM for

three loci

Mac_OS_X

16

A total of 1060 simulations were performed for the two loci model. Subsequently, further 120

simulations for three loci epistasis model were simulated (see Table 2) following the same

procedure as two loci simulations (i.e., for 30 generations and population sizes of 1000) for

different genotype-phenotype maps. To evaluate power in terms of different heritability levels,

the values of heritability and power at each of the noise levels were used.

Table 2. Simulations performed for two and three locus epistasis based on different population

size and noise level at generation 30.

Loci Noise

level

Number of

Simulations

Population sizes

Two loci

1

1

3

3

10
4.5

10
5

10
5.5

10
6

 90

140

 90

140

150

150

150

150

 500

1000

 500

1000

 500

 500

 500

 500

Three loci

1

3

 60

 60

1000

1000

2.3 Determining significant QTL:

The QTL detected by vGWAS program were recorded as correct or wrong QTL. Experience has

shown that it is appropriate to take 6cM as a boundary between correct or wrong QTL. If the

QTL detected were 6cM or less away from the position in which the QTL were simulated, it was

recorded as correct QTL. Beyond that, the signals were recorded as wrong QTL. The simulated

number of QTL was calculated as: number of simulations × number of interacting loci. For

example, number of simulations for two loci was 90 and number of interacting loci was 2.

17

Therefore, the number of simulated QTL was 180. If the detected QTL were significantly above

Bonferroni corrected threshold, it was recorded as a potential QTL. Significance level was

calculated as α/n where α is the degree of significance (i.e., 0.05) and n is the total number of

markers used (i.e., 209). In two loci epistasis model case, if the QTL are more than two or in

wrong positions compared to the simulated QTL positions, then we record it as false positive

QTL. The same procedure was also applied for three loci epistasis model. The power of vGWAS

was calculated by using correct and wrong QTL compared to the simulated number of QTL.

2.4 Heritability and power estimation:

Traditionally, phenotypic variance is the sum of genetic and environmental variances.

 = + [3]

But, may be further decomposed in to genetic variance due to mean difference () including

additive () and dominance variance (), and variance due to a change in variance () which

includes interaction variance () and heritable variance heterogeneity (i.e., variance shift

between genotypes) (Shen et al., 2011).

 = + [4]

Broad sense heritability ()

can be defined as the ratio of genotypic variance (VG) to the total

phenotypic variance (VP):

= [5]

Broad sense heritability was calculated using R for different noise levels that correspond to

environmental variance. Broad sense heritability includes all possible genetic effects such as

epistasis, and additive and dominance variances. In vGWAS, is included for calculating

18

heritability whereas GWAS misses for heritability assessment. Phenotypic and genotypic

variance calculations are given in Figure 4.

Figure 4. Heritability calculation in R

Power was estimated using the number of correct QTL out of simulated number of QTL. False

positive rates (FPR) were also calculated as the number of false positive QTL recorded out of

expected QTL.

Power = # detected epistasis / # simulated epistasis [6]

FPR = # false positive epistasis/# simulated epistasis [7]

2.5 Model description:

vGWAS was developed with the aim to search for variance controlling genes. Mapping variance

controlling genes could be used to identify loci which have significant effect on the variance of a

trait of interest and to validate such candidate epistatic genes. Brown-Forsythe’s test of equality

of variances is applied in vGWAS. Brown-Forsythe test of equality of variance was based on

Levene’s test of homogeneity of variances in k groups. It applies ANOVA statistics (Kruskal-

Wallis ANOVA). The method is based on variance heterogeneity which helps to screen

potentially interacting single nucleotide polymorphisms (SNPs). Brown-Forsythe (Levene's) test

was used to assess the equality of group variance for variance controlling loci. For instance, for

H2 <- function(geno.pheno.map, env.var) {

 freq <- tcrossprod(c(.25, .5, .25))

 Ey <- sum(colSums(geno.pheno.map*freq))

 Ey2 <- sum(colSums((geno.pheno.map**2 + env.var)*freq))

 Vy <- Ey2 - Ey**2

 VG <- Vy - env.var

 H2 <- VG/Vy

 return(list(H2 = H2, VG = VG))

}

19

the phenotypic value where = 1….n and = 1…m, the absolute deviation of each genotype

from the median can be given as:

 [8]

where, is the value of for the th
 observation of th

 sub group and .

_

iY is th
 sub group mean.

Levene's test assumes that the null population variances are equal. The test statistics can be given

as:

 =

K

i
iij

K

i
ii

ZZK

ZZNKN

1

2
.

_

1

2
..

_

.

_

)()1(

)()(
 [9]

where, .

_

iZ is group mean of and ..

_

Z is the overall mean of for N population size and K

sub groups. The model also used ANOVA F test to calculate p-values. The calculated p-values

are used in vGWAS with Bonferroni corrected significance threshold (Shen et al., 2011).

The sampling distribution for our parametric model which is used to estimate the proportions

explained by mean and variance is given as:

 i| , i, , ~ N(+ i, exp { i} [10]

where, and are mean and variance with and intercepts. i is a covariate denoted for

SNP dosage. and are the mean and variance genetic effects. The model likelihood can be

given as:

 = i i)
2
/2

 } where,
 = exp([11]

To estimate the parameters, , the double generalized linear model (DGLM) is

used for both mean and variance parts (Shen et al., 2011). This means that linear model is fitted

for the mean part and generalized linear model (GLM) is fitted for variance part. In addition,

20

DGLM consists of one ordinary least squares (OLS) for variance part and one weighted least

squares (WLS) for variance part. Both mean and variance least square parts can be combined as

follows:

R
2

=
 + (1

)
 [12]

where, R
2
 corresponds to (ranges from 0 to 1),

 corresponds to , and
 corresponds

to . The missing part in the mean model is represented by 1
 and

 is the proportion

reaching the missing part. Sum of squares for the mean part of the model is calculated by:

 = () / [13]

Where, is the total sum of squares and is the residual sum of squares. Sum of squares of

the variance part of the model is calculated by using deviances:

 = ()/ [14]

where, is the null deviance and is the deviance from the fitted generalized linear model

(i.e. GLM has gamma distribution). Dealing with interaction effects and vQTL, vGWAS detects

epistasis by using Brown-Forsythe test. The sampling distribution that consists of interactions for

two loci a1 and a2 can be given as:

yi | N (a1x1i + a2x2i + a12x1ix
2i

, 2
) [15]

where, x1i and x2i are covariates, a12 is the interaction effect and 2
 is a common residual

variance.

If the detected vQTL are a result of interaction effect, both G x G and G x E could be the

possible factors. Testing the association of environmental factors with the phenotype confirms

whether the traits are associated with the environment or not. If there is association between the

traits and environmental factor, the interaction of each vQTLs and environmental factor will

21

have significant G x E interactions. Therefore, we can also consider environmental factor as

variance controlling factor. The association between the trait and environmental factor could be

detected by variance heterogeneity test in our model where the noise level acts in a similar

fashion as G x E interaction does (see equation 9).

3. RESULTS:

Two QTL for two loci and three QTL for three loci were observed as expected. These are shown

in Figure 5a and 5b respectively. The observed positions of the QTLs were mostly the same as in

the simulated data set and the same is also true for three locus epistasis model as shown in Figure

5. The summary of the results across different noise levels for two loci model is shown in Table

3. In this table, lower noise level results higher true positive QTL/rates and lower false positive

QTL/rates whereas higher noise level results lower true positive QTL/rates and higher false

positive QTL/rates. But for three loci model, only lower noise level is tested since we focused on

two loci epistasis model primarily.

22

5a 5b

Figure 5. Two and three loci candidate epistatic QTLs. (The light orange line is the threshold value. The -axis

represents the marker positions in the genome where number 1 and 2 refers to the first and the second chromosome.The location

of the detected QTL are shown. Y-axis represents p-value as a function of base 10 logarithm with Bonferroni corrected

threshold.) QTL positions were located at 47 and 131 for two loci interactions and 6, 47 and 131 cM for three locus interactions.

In graph 4a and 4b noise level of 3 were used. But in 4a population size of 500 were used whereas in 4b 1000 individuals were

used.)

If the QTL were recorded beyond 100 cM, then the signal is on the second chromosome and vice

versa. In the above figure, there is more than one dot (marker) above Bonferroni corrected

threshold line associated with the detected QTL. This is because there are linkages between

markers and they are recorded as a single peak.

23

Table 3. Summary of vGWAS scan for two and three loci epistasis model.

Loci No. of

simulation

Noise

levels

Average

Heritability

Simulated

number

of QTL

True

positive

QTL

True

positive

rate

False

positive

QTL

False

positive

rate

Two

230 1

~ 1 460 454

0.987 1

0.002

230 3

~ 1 460 456

0.991 5

0.011

150 10
4.5

0.84 300 268

0.893 8

0.027

150 10
5

0.62 300 213

0.710 2

0.007

150 10
5.5

0.34 300 27

0.090 4

0.013

150 10
6

0.10 300 2

0.007 8

0.027

Three

60 1

- 180 163

0.906 0

0.000

60 3

- 180 165

0.917 2

0.011

Heritability is also plotted in relation to power (see Figure 6). The graphs shown in Figure 6 are

consistent with the result presented in table 3. That is at lower noise level, there are high true

positive rates, power and heritability. But at higher noise level, all of these three parameters

become lower. Figure 6 shows the relationship between power and heritability of genotype-

phenotype maps (see Figure 1a, 1b and 1c). The trends in all three graphs are similar, but they

have different turning points due to different combination of each map.

24

Figure 6. Power and heritability estimates for the three genotype-phenotype maps (see Figure 1

(a, b, c)).

The graph shows that the power was good at low noise level; for example, at noise level of 3,

both power and heritability estimates were approximately 1.

 Map 1 (Figure 1a)

 Map 2 (Figure 1b)

 Map 3 (Figure 1c)

Legend

25

4. DISCUSSION:

In this project, we focused on the detection of two-way interactions with a newly developed

method, vGWAS (Shen et al., 2011). We also showed that this method is able to accurately detect

three loci epistasis interactions. The significant loci, as shown in Figure 5, could be explained as

candidate epistatic loci. These loci could be detected with or without main additive effects.

Current methods are unable to detect interacting QTL in the absence of main effect. The absence

of main effect or detecting few QTL by the conventional association methods could be a sign of

the presence of epistatic interaction. This is because detecting epistasis is often associated with

the absence of main effect (Xu and Jia, 2007). Using the variance differences for alleles reveals

an alternative mode of genetic influence with biological relevance (Pare' et al., 2010).

The generated data we have used for simulation follows Hardy-Weinberg equilibrium throughout

the population. This would make some of the genotype to become frequent than others. Because

of unequal frequencies of genotypes, genotype-phenotype maps created to show variance

differences in the absence of mean difference (see Figure 1b) could also contain mean

differences. This is because some of the genotypes are more frequent than the other. Although

the phenomena could not greatly affect the variance effect, the incident might slightly

underestimate the power analysis. In non Hardy-weinberg population, which may keep all allele

frequencies equal, the effect of variance differences could be detected without mean difference

by vGWAS. This is one potential area for improvement in the design of this project.

The increasing and decreasing trends of both power and heritability also reflects the effect of all

non-genetic variances. Since increasing or decreasing the noise level would result in detection of

wrong or correct significant loci, we relate the noise level as all non-genetic variances such as

environmental variance (Ev), epigenetics, penetrance or sampling error. The power of vGWAS to

detect epistasis was good especially for lower noise levels (higher heritability) analysis (see

Figure 6). Moreover, the value of average FPR for the two loci epistasis model was less than

1.4% (see Table 3). This confirms that vGWAS can efficiently detect epistasis. However, to draw

inference for the three loci epistasis model, there were not enough simulations.

26

Nowadays, epistasis becomes a common consciousness for researches since searching markers

for their individual effect may not be sufficient to identify genomic regions having significant

effect. Carlborg et al. (2006) performed a study that allows epistatic relationship among loci. In

their study, only one QTL, namely Growth9, was found when testing for individual effects of

loci on body weight in chicken. However, testing for epistatic relationship among loci enabled

them to identify additional five significant genomic regions associated with growth. Several

independent studies on loci with epistatic relationships have been found such as those

influencing obesity in mice (Stylianou et al., 2006), odor-guide behavior in Drosophila

melanogaster (Sambandan et al., 2006), the Arabidopsis Thaliana metabolome (Rowe et al.,

2008), additivity and epistasis controls of growth and yield in tomatoes (Causse et al., 2007),

genetic architecture of co-variation in skull trait complexes in mice (Wolf et al., 2005), genome-

wide expression in yeast (Store et al., 2005), and QTL mapping of yeast (Nogami et al., 2007).

Designing and monitoring novel breeding strategies that take into account interacting loci could

be appropriate to increase the power of current selection schemes. Since vGWAS detects more

QTL than GWAS does, more QTL can be used for selection in animal breeding.

When the phenotypes in the population are characterized by non-additive variance of major

genes, the candidates may not be evaluated directly for the traits that are under selection.

Therefore, there is no or low pressure of conventional selection on the effect of major genes

segregating in the population (Dodds et al., 2007). Dagnachew et al., 2011 reported a deletion

allele in exon 12 of CSN1S1 gene (i.e., associated with lowered fat and protein composition in

milk) which exhibits a non-additive effect. They have reported over-dominance in kg milk and

lactose percentage. It has unusually high frequency in the Norwegian goat population. In their

study, they explained that the phenomenon decreases the selection pressure for the allele when

conventional breeding methods are used. To decrease the frequency of this deletion at national

level, molecular information on the deletion is included as a selection criterion in the national

breeding scheme. However, to explain the occurrence of high frequency of the allele, while the

aim of breeding is against the effect of this allele (i.e., deletion allele, CSN1S1), the presence of

epistasis and/or linkage could be considered (Cesurer et al., 2002). This phenomenon can be an

27

example of the gap that earlier methods had in animal breeding. Since vGWAS detects more QTL

associated with the trait (Shen et al., 2011), it would provide more information for animal

selection. This means that the loci that interact epistatically for a given trait can be detected by

vGWAS. It might be necessary to build extended segment to capture those QTL underlying the

traits of interest. Since larger segments recombine more frequently, the epistatic effects of linked

genes would go on the cost of stability of haplotype effect across generation. Therefore, using

epistasis of linked genes could speed up short term selection response. In addition, the loci

carrying alternative genotypes may not show mean differences. But these loci could have

variance differences between alternative genotype classes and this can be detected by vGWAS.

Using vGWAS could therefore fill such gaps which were not reached by earlier methods.

Usually, selection generates linkage disequilibrium. This means that for the selection of the

optimum values of a given trait, certain genes will be responsible. These genes interact

epistatically to give the optimum values of a trait (Phillips, 2008). Through selection, linkage and

epistasis have evolutionary consequences over generations. Therefore, designing selection

strategies based on conventional breeding scheme should consider the presence of epistasis and

linkage.

Currently, lack of precise breeding value of any single individual is associated with addressing

the source of genetic variation accurately. This means that in our breeding value estimation, we

must consider whether additive combinations of a single locus could be used to explain

phenotypic variation associated with multi-locus genotypes or whether important non-linear

interactions exist. We also have to consider the independence of inheritance and distribution of

one locus to those of the other loci. Since the expressions of polygenic traits are influenced by

environmental variance, we should also consider whether gene expression varies with context

and whether specific genotypes are associated with particular environment (Lynch and Walsh,

1998). Existing breeding knowledge relates response to selection closely with the level of

additive genetic variance. However, environmental variance reduces the efficiency of selection

process by obscuring genotype-phenotype relationship (Lynch and Walsh, 1998). Usually, low

heritability is associated with high environmental effect. But, it could also be associated with

28

traits regulated by variance controlling genes rather than mean controlling genes. Implementing

vGWAS therefore could detect the additive effects at two loci a1 and a2 of variance controlling

loci and the interaction effects a12 (see equation 15).

Detecting loci (vQTLs) which control such variance provide valuable information for various

multi-disciplinary studies. For instance, in genomic selection, it can provide more consistent

livestock selection schemes (Rönnegård and Valdar, 2011). This means that at the beginning of

selection, a change in mean results in economic gain. When the optimum is reached through

time, selection pressure may shift from the mean to variance. Reducing variance could further

promote economic gain through uniformity (Mulder et al., 2008). Animal uniformity for traits

with nearly optimum values have economic interest such as pH range, litter size, weight and

quality of carcass in pigs, sheep and broilers (Mulder et al., 2008). Moreover, vGWAS also helps

to find those genetic factors underlying the disease phenotypes since most complex diseases are

caused by combined effect of multiple genes.

As a shortcoming of this method, vGWAS requires more observations (i.e., fivefold as many

observations as mean controlling loci) to reach the same precision (Rönnegård and Valdar,

2011). Since vGWAS is a conservative approach, it has low power to detect interactions at lower

heritabilities. This means that vGWAS requires higher heritability as shown in Figure 6 to get a

powerful estimate compared with other methods. But, most quantitative traits have low to

moderate heritability estimates which may make it difficult to detect interactions with good

power.

http://www.genetics.org/search?author1=Lars+R%C3%B6nneg%C3%A5rd&sortspec=date&submit=Submit
http://www.genetics.org/search?author1=Lars+R%C3%B6nneg%C3%A5rd&sortspec=date&submit=Submit
http://www.genetics.org/search?author1=William+Valdar&sortspec=date&submit=Submit

29

5. CONCLUSION

Our results show that vGWAS is a powerful and promising tool for candidate epistatic gene

detection. It would be applicable for real data dealing with complex disease or obscured genetic

interactions. However, the requirement of high heritable traits could face a challenge in its

applicability for most of quantitative traits. The identified candidate epistatic genes would

require further experimental procedures to confirm that the candidates are the actual epistatic

genes. The missing heritability due to variance shift between genotypes and interaction variance

linked with epistasis could be reachable by vGWAS since the method has good power and

accuracy for highly heritable traits. Although we have also tested three loci epistasis model, the

performed simulations were not enough due to its complexity. Therefore, more simulation is

required to draw the power analysis for three loci epistasis model. Practically, it is possible to

reanalyze previous datasets by vGWAS to detect significant loci which were not detected by

GWAS.

30

6. REFERENCES

Alvarez-Castro, J. M. and Carlborg, O., 2007. A unified model for functional and statistical epistasis

and its application in quantitative trait loci analysis. Genetics 176: 1151–1167.

Carlborg, Ö., Andersson, L. and Kinghorn, B., 2000. The use of a genetic algorithm for simultaneous

mapping of multiple interacting quantitative trait loci. Genetics 155: 2003–2010.

Carlborg, Ö., Jacobsson, L., Ahgren, P., Siegel, P. and Andersson, L., 2006. Epistasis and the release of

genetic variation during long-term selection. Nature Genet. 38: 418-420.

Carlborg, Ö. and Haley C. S., 2004. Epistasis: too often neglected in complex trait studies? Nature Rev.

Genet. 5: 615- 625.

Carlborg Ö., Kerje, S., Schütz, K., Jacobsson, L., Jensen, P. and Andersson, L., 2003. A global

search reveals epistatic interaction between QTLs for early growth in the chicken.

Genome Res. 13: 413–421.

Causse, M., Chaïb, J., Lecomte, L., Buret, M. and Hospital, F., 2007. Both additivity and

epistasis control the genetic variation for fruit quality traits in tomato. Theor. Appl. Genet.

115: 429–442.

Cesurer, L., Bölek, Y., Dokuyucu, T., Akkay, A., 2002. Understanding of heterosis. KSUJ.

Science and Engineering 5(2): 68-75.

Chase, K., Adler, F. R. and Lark, K. G., 1997. Epistat: a computer program for identifying and

testing interactions between pairs of quantitative trait loci. Theor. Appl. Genet. 94:724–

730.

Cordell, H. J., 2009. Epistasis: what it means, what it doesn’t mean, and statistical methods to

detect it in humans. Human Molecular Genetics 11: 2463-2468.

Cordell, H. J., Todda, J. A., Hilla, N. J., Lorda, C. J., Paul, A. Lyonsa, P. A., Peterson, L. B.,

Wickerb, L. S. and Claytona, D. G., 2001. Statistical modeling of inter-locus interactions in

a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes.

Genetics 158: 357–367.

Corvin, A., Craddock, N., Sullivan, P. F., 2010. Human genome-wide association studies a primer.

Psychol. Med. 40(7): 1063-77.

http://genome.cshlp.org/search?author1=%C3%96rjan+Carlborg&sortspec=date&submit=Submit
http://genome.cshlp.org/search?author1=Susanne+Kerje&sortspec=date&submit=Submit
http://genome.cshlp.org/search?author1=Karin+Sch%C3%BCtz&sortspec=date&submit=Submit
http://genome.cshlp.org/search?author1=Lina+Jacobsson&sortspec=date&submit=Submit
http://genome.cshlp.org/search?author1=Per+Jensen&sortspec=date&submit=Submit
http://genome.cshlp.org/search?author1=Leif+Andersson&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Corvin%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Craddock%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sullivan%20PF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/19895722

31

Crow, J. F., 2010. On epistasis: why it is important in polygenic directional selection. Phil.

Trans. R. Soc. 365: 1241-1244.

Crow, J. F. and Kimura, M. 2009. An Introduction to population genetics theory. Caldwell, NJ:

Blackburn Press.

Dagnachew, B. S., Thaller, G., Lien S., and Ådnøy, T., 2011. Casein SNP in Norwegian goats:

additive and dominance effects on milk composition and quality. Genetics Selection

Evolution 43:31 doi:10.1186/1297-9686.

Deng, H.W., Chen, W.M. Recker, R.R., 2000. QTL fine mapping by measuring and testing for

hardy-weinberg and linkage disequilibrium at a series of linked marker loci in extreme

samples of populations. Am. J. Hum. Genet. 66:1027–1045.

Dodds, K. G., McEwan, J. C., and Davis G. H., 2007. Integration of molecular and quantitative

information in sheep and goat industry breeding programmes. Small Ruminant Res. 70:32-

41.

Evans, D. M., Marchini J., Morris A. P., Cardon L. R., 2006. Two-stage two-locus models in

genome-wide association. PLoS Genet. 2(9): e157.

Fisher, R. A., 1918. The correlation between relatives on the supposition of mendelian

inheritance. Trans. R. Soc. Edinb. 52: 399-433.

Jiang L, Liu J, Sun D, Ma P, Ding X, et al. (2010) Genome Wide Association Studies for Milk

Production Traits in Chinese Holstein Population. PLoSONE 5(10): e13661.

doi:10.1371/journal.pone.0013661.

Hoh, J., Wille, A., Zee, R., Cheng, S., Reynolds, R., Lindpaintner, K., and Ott, J., 2000.

Selecting SNPs in two-stage analysis of disease association data: A model-free approach.

Ann. Hum. Genet. 64(5):413–417.

Iles, M.M., 2008. What can Genome-Wide Association Studies tell us about the genetics of common

disease? PLoS Genetics 4:2|e33.

Ljungberg, K., Carlborg, Ö., Holmgren, S., 2004. Simultaneous search for multiple QTL using

the global optimization algorithm DIRECT. Bioinformatics 20 (12): 1887–1895.

Lynch, M. and Walash, B., 1998. Genetics and Analysis of Quantitative Traits. Sanderland:

Sinauer associates, Inc. publishers.

32

Moore, J. H., 2003. The ubiquitous nature of Epistasis in determining susceptibility to common

human diseases. Hum Hered. 56:73–82.

Moore, J. H. and Williams, S. M., 2005. Traversing the conceptual divide between biological and

statistical epistasis: systems biology and a more modern synthesis. Bioessays 27: 637–646.

Maher, B., 2008. The case of the missing heritability. Nature 456: 18-21.

Malmberg, R., Mauricio, R., 2005. QTL-based evidence for the role of epistasis in evolution.

Genet. Res. Camb. 86: 89–95.

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J.,

McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A.

E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D.,Whittemore,

A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F.,

McCarroll, S. A., Visscher, P. M, 2009: Finding the missing heritability of complex

diseases. Nature: 461 (7265):747–753.

Mulder, H. A., Bijma, P., and Hill, W. G., 2008. Selection for uniformity in livestock by

exploiting genetic heterogeneity of residual variance. Genet. Sel. Evol. 40: 37-59.

Nelson, M. R, Kardia, S. L, Ferrell, R. E, Sing, C. F, 2001: A combinatorial partitioning method to

identify multilocus genotypic partitions that predict quantitative trait variation. Genome

Res. 11(3):458-470.

Nogami, S., Ohya, Y. and Yvert, G., 2007. Genetic complexity and quantitative trait loci mapping of

yeast morphological traits. PLoS Genet. 3: e31.

Omholt, S. W., Plahte, E., Oyehaug, L. and Xiang, K., 2000. Gene regulatory networks

generating the phenomena of additivity, dominance and epistasis. Genetics 155: 969–980.

Pare´ G., Cook, N. R., Ridker, P. M., Chasman, D. I., 2010. On the use of variance per genotype

as a tool to identify quantitative trait interaction effects: A report from the women’s

genome health study. PLoS Genet. 6 (6). e1000981.

Phillips, P. C., 2008. Epistasis - the essential role of gene interaction in the structure and

evolution of genetic systems. Nature (Genetics) 9: 855-867.

Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., and Moore, J. H., 2001.

Multifactor-dimensionality reduction reveals high-order interactions among estrogen-

metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69 (1):138-147.

http://www.ncbi.nlm.nih.gov/pubmed/18987709

33

 Wu, R., Ma, C., and Casella, G. 2007. Statistical genetics of quantitative traits: New York.

Linkage, maps, and QTL. Spring science and Business media, LLC publisher.

Rönnegård, L. and Valdar W., 2011. Detecting Major Genetic Loci Controlling Phenotypic

Variability in Experimental Crosses. Genetics. 188 (2): 435-447.

Rowe, H. C., Hansen, B. G., Halkier, B. A. and Kliebenstein, D. J., 2008. Biochemical networks

and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20: 1199–1216.

Sambandan, D., Yamamoto, A., Fanara, J. J., Mackay, T. F. and Anholt, R. R., 2006. Dynamic

genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics

174: 1349-1363.

Shen, X., Petterson, M., Rönnegård, L. and Carlborg, Ö., 2011. Inheritance beyond plain

heritability: Variance-controlling genes in Arabidopsis Thaliana. Submitted.

Storey, J. D, Akey. J. M, Kruglyak. L., 2005. Multiple locus linkage analysis of genome-wide

expression in yeast. PLoS Biol. 3: e267.

Stylianou, I. M., Korstanje, R., Li, R., Sheehan, S., Paigen, B., Churchill, G. A., 2006.

Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci.

Mamm. Genome 17: 22-36.

Wade, M. J., Winther, R. G., Agrawal, A. F. and Goodnight, C. J. (2001). Alternative definitions

of epistasis: dependence and interaction. TRENDS in Ecology & Evolution 16 (9): 498-

504.

Wolf, J. B., Leamy, L. J., Routman, E. J. and Cheverud, J. M., 2005. Epistatic pleiotropy and the

genetic architecture of co-variation within early and late-developing skull trait

complexes in mice. Genetics 171: 683–694.

Xu, S. and Jia, Z., 2007, Genome-wide analysis of epistatic effect for quantitative traits in barley.

Genetics 175: 1955-1963.

Yang, Q., Khoury, M. J., Sun, F. and Flanders, W. D., 1999. Case-only design to measure gene -

gene interaction. Epidemiology 10: 167–170.

Zhang, X., Pan, F., Xie, Y., Zou, F. and Wang, W., 2010. COE: A general approach for efficient

genome-wide two-locus epistasis test in disease association study. Journal of

Computational Biology 17(3): 401–441.

http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Rongling+Wu%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Chang-Xing+Ma%22
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22George+Casella%22
http://www.genetics.org/search?author1=William+Valdar&sortspec=date&submit=Submit
http://www.genetics.org/search?author1=Lars+R%C3%B6nneg%C3%A5rd&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stylianou%20IM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Korstanje%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Li%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sheehan%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Paigen%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Churchill%20GA%22%5BAuthor%5D

34

ACKNOWLEDGEMENT

First, let me take a moment of praise to the Almighty God for sending miracles every single day

in my life. I thank Holy Virgin Mary, the Mother of Jesus Christ for being a shed all the way

here.

This thesis would not have looked the way it is right now had it not been for my great

supervisors. I would like to thank Dr. Ronnie Nelson, my main supervisor, for his valuable

encouragement and motivation under his supervision. I am truly grateful for your critical advices

and for keeping me in track in writing this thesis. My gratitude also passes to my co-supervisors;

Xia Shen for your support during the analysis in R and for statistical aspects of the project and

Tormod Ådnøy, Associate Professor in department of Animal and Aquaculture Science (UMB)

in Norway, for your constructive advices in the writing process and for the general progress of

my paper. I am also indebted to forward my gratitude for Örjan Carlborg, my examiner, for your

counseling. Last but not least, I would like to thank all computational genetics group in general

for their support, advice and for making my time during my thesis work enjoyable.

35

APPENDIX

C++ simulation program

 ronnie.nelson@hgen.slu.se

 This program simulates the creation of offspring

 from set or user defined genotypes (haplotypes) for analysis of

 qtl estimation programs */

/* Note that all the arrays (elements in the arrays) start at one with zero as an empty space to use in some

 cases for sorting or finding things or resetting some values before selection*/

#include <iostream>

#include <string>

#include <algorithm>

#include <math.h>

using namespace std;

//structure

struct saved_information {//should have the info for all the subpops, to get the freq just devide by

subpopsize or 2*subpopsize for allele freq or the number of loci

 int prop_fixed_loci; //the number of fixed alleles in this population

 int *one_allele_freq; /*determine the allele freq of the 1st allele,

 can use to determine if it is fixed and if the markers

 are snps the other freq can also be detemined*/

};

struct chromosome {

 char chr_name[40]; //name of the chromosomes

 int markernumber; //including the QTL's

 int qtl_per_chr; //the number of qtls in this chr

 string *markernames; //array of marker names

 float *maleCM; //array of positions of markers cM (first always 0) this is the absolute position on

the chr

 float *femaleCM; //seperate for male and females??

 float *RF_to_next_marker_maleCM;//the recombination frequency between markers next to e.o.,

will enable some different ways to calc

 float *RF_to_next_marker_femaleCM;

 bool *type; //marker or qtl, marker = 1, qtl = 0, may change to int when microsats are used

 //add a fixed for an allele function..., cpuld be an array here?

 //sex chromosome

 //int *physical position??

};

struct qtl_array {

 char qtl_name[40]; //name of the phenotype

 int qtl_chro; //which chromosome

36

 float qtl_male; //the place on the male map

 float qtl_female;

 int qtl_pos;//number on the map of where qtl is locates i.e. marker number 200 is a qtl

 /*

 add here the amount of additive and or dominance varianve is explaind by the qtl

 also which if there are more than one trait which trait it affects

 */

};

struct individual{//all should will be part of a population

 bool sex; //1 defines male, 0 defines female

 int subpopID;//could maybe remove this to make faster!!

 int *haplotypeA, *haplotypeB; // the actual genotype composition of the individual

 int times_mated; //

 bool selected_to_mate; //if this is 1 the individual can mate if 0 not

 int father, mother;

 float phenotype, phenotype2;

 //string ind_id;//no name yet for individuals

};

struct population{

 char popname[40];

 int popsize;

 individual *ind;

};

//GLOBAL VARIABLES

//(From the Inputfile)

int chromosome_number;

int qtl_number;

int total_markernumber; //excluding qtls

int haplotype_size; //markers and qtls

int burnin_generations;

string marker_type; //snp, micro_sat

chromosome *chr;

qtl_array *qtl;

population founderpop;// the founder population

population *subpop;//the array of subpops creating the parental line

population *subpop_offspring;

int population_size_total;//total no of individuals in whole population

int subpopnumber;//the number of subpops during burnin

int subpopsize;// all subpopsizes are currently assumed to be the same, make this an array if different

popsizes are to be simulated

char rec_freq_method[2];//the way the recombination frequency is calculated (h haldane, k kosambi, e

map distance = recmbination frequency), currently only haldane

//saved info

saved_information **info_per_gen_per_pop;//2dimentional 1st[generation] 2nd[subpopulation]

int *tot_fixed_loci;//array per gen

37

int *same_fixed_loci;//array per gen

int *sexratio;//array per gen, actually the number of males

//noise for the phenotypes

//int *unifdistr; // array of uniforma distr numbers

float *int_noise;

float noise_scale; //used to scale the error, currently to around one stdev

//Function: draw the chromosome maps

void plot_fixed_allel_freq(){

 //var

 int counter, counterB, counterC;

 FILE * outfile;

 //creating a R-info file named: "plot_freq2.R"

 outfile = fopen("plot_freq2.R","w");

 fprintf(outfile, "#data to be used in R-file plot_freq.R");

 fprintf(outfile, "\npopsize <- %d",population_size_total);

 fprintf(outfile, "\nsubpopnumber <- %d",subpopnumber);

 fprintf(outfile, "\nloci <- %d",haplotype_size);

 fprintf(outfile, "\nmaxgen <- %d",burnin_generations);

 fclose(outfile);

 //creating the data file named: "outfreq.grph"

 outfile = fopen("outfreq.grph","w");

 fprintf(outfile, "generation\tmales\ttotal_fixed\tsame_allele\tdifferent_allele");

 for (counter = 1; counter<(subpopnumber+1); counter++) {

 fprintf(outfile, "\tfixed_pop_%d",counter);

 }

 //adding all the allele freq of all the populations to the recorded data

 for (counter = 1; counter<(subpopnumber+1); counter++){

 for (counterB = 1; counterB<(haplotype_size+1); counterB++) {

 fprintf(outfile, "\tpop_%d",counter);

 fprintf(outfile, "locus_%d",counterB);

 } }

 for (counter =1; counter<(burnin_generations+1); counter++) {//for each gen recorded

 fprintf(outfile,

"\n%d\t%d\t%d\t%d\t%d",counter,sexratio[counter],tot_fixed_loci[counter],same_fixed_loci[counter],(tot

_fixed_loci[counter]-same_fixed_loci[counter]));

 for (counterB = 1; counterB<(subpopnumber+1); counterB++) {//for each subpop

 fprintf(outfile,

"\t%d",info_per_gen_per_pop[counter][counterB].prop_fixed_loci);

 }

 //adding all the allele freq of all the populations to the recorded data

 for (counterB = 1; counterB<(subpopnumber+1); counterB++){

 for (counterC = 1; counterC<(haplotype_size+1); counterC++) {

38

 fprintf(outfile,

"\t%d",info_per_gen_per_pop[counter][counterB].one_allele_freq[counterC]);

 }

 }

 }

 fclose(outfile);

 system ("R CMD BATCH plot_freq.R R_log_freq_plot.txt");

// system("open proportion_loci_fixed.pdf");

}

//Function: draw the chromosome maps

void plot_marker_info(){

 //var

 int counter, counterB, counterC;

 FILE * outfile;

 //creating a outfile, should go in a seperate function when more than one plot is created

 outfile = fopen("outin.grph","w");

 fprintf(outfile, "markerno\tchr\tposition\ttype");

 counterC = 1;

 for (counter = 1; counter<(chromosome_number+1); counter++) {

 for (counterB = 1; counterB<(chr[counter].markernumber+1); counterB++) {

 fprintf(outfile,"\n",counterC);

 if (chr[counter].type[counterB] == 0) {

 fprintf(outfile,"%d\t%d\t%f\tq",counterC,counter,chr[counter].maleCM[counterB]);

 }

 else {

 fprintf(outfile,"%d\t%d\t%f\tm",counterC,counter,chr[counter].maleCM[counterB]);

 }

 counterC =counterC+1;

 }

}

 fclose(outfile);

 system ("R CMD BATCH draw_qtls.R R_log_chr_draw.txt");

// system("open chromosome_map.pdf");

}

//Function: show the imported data: can use to create a log file, alternative output

void show_marker_info(){

 //var

 int counter, counterB;

 //cout << "\nThe data imported (also written to the following log file '*.txt'):\n";

39

 //QTL OUTPUT

 cout << "\n";

 cout << "Number of QTLs: " << qtl_number << "\n";

 for (counter=1; counter<(qtl_number+1); counter++) {

 cout << qtl[counter].qtl_name;

 cout << ", on chromosome " << qtl[counter].qtl_chro << ", at positions "

 << qtl[counter].qtl_male << " and " << qtl[counter].qtl_female << "

(male,female)\n";

 }

 //CHROMOSOME OUTPUT, including the places of the QTLS

 cout << "\n";

 cout << "Number of markers (total, excluding QTL's): " << total_markernumber << " \n";

 cout << "Number of markers including QTL's: " << (haplotype_size) << " \n";

 cout << "Marker type: " << marker_type << "\n";

 cout << "Number of chromosomes: " << chromosome_number << "\n";

 for (counter=1; counter<(chromosome_number+1); counter++) {

 cout << chr[counter].chr_name <<"\n";

 cout << "Marker no (incl. QTL): " << chr[counter].markernumber <<"\n";

 cout << "QTL no: " << chr[counter].qtl_per_chr <<"\n";

 //slightly inefficient to repeat a few times but

 //this is mainly for tessting and

 //may want to keep in this way to make the rows into cols if wanted

 cout << "Marker_names:";

 for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) {

 cout << " " <<chr[counter].markernames[counterB] ;

 }

 cout << "\n";

 cout << "Male_map_(cM):";

 for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) {

 cout << " " <<chr[counter].maleCM[counterB] ;

 }

 cout << "\n";

 cout << "Female_map_(cM):";

 for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) {

 cout << " " <<chr[counter].femaleCM[counterB] ;

 }

 cout << "\n";

 cout << "Recombination_frequency_to_next_marker_(male,cM):";

 for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) {

 cout << " " <<chr[counter].RF_to_next_marker_maleCM[counterB] ;

 if (chr[counter].RF_to_next_marker_maleCM[counterB] < 0) {

 cout << "\n\n****ERROR: check map as markers are not in positional

order\n\n";

 }

 }

 cout << "\n";

40

 cout << "Recombination_frequency_to_next_marker_(female,cM):";

 for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) {

 cout << " " <<chr[counter].RF_to_next_marker_femaleCM[counterB] ;

 if (chr[counter].RF_to_next_marker_femaleCM[counterB] < 0) {

 cout << "\n\n****ERROR: check map as markers are not in positional

order\n\n";

 }

 }

 cout << "\n";

 cout << "Marker/QTL:";

 for (counterB=1; counterB<(chr[counter].markernumber+1); counterB++) {

 if (chr[counter].type[counterB] == 0) {

 cout << " Q";

 }

 else {

 cout << " M";

 }

 }

 cout << "\n";

 }

 cout << "\n";

}

//Function: show the individuals in a population

void showpop(population which_pop){//passing a population here to show what is in it

 //var

 int counter, counterB;

 float sexratio_o;

 string sexer, outstring1;

 //char inttochar[40];

 sexratio_o = 0;

 cout << "\nInformation for population: "<< which_pop.popname <<"\n";

 cout << "Number of inidivuduals in population: " << which_pop.popsize <<"\n";

 cout << "\nIndividual info:\n";

 outstring1 = "Ind PopID Sex Markers";

 /*for (counter =1 ;counter<(chromosome_number+1); counter++) {

 for (counterB =1 ;counterB<(chr[counter].markernumber+1); counterB++) {

 sprintf(inttochar,"%d",counter);

 outstring1 = outstring1 + " (c" + inttochar + ")_" +

chr[counter].markernames[counterB];

 }

 }*/

 cout << outstring1 << "\n";

 for (counter = 1; counter<(which_pop.popsize+1);counter++) {

 if (which_pop.ind[counter].sex == 1) {

41

 sexer =" MALE ";

 sexratio_o = sexratio_o + 1;

 } else {

 sexer =" FEMALE ";

 }

 cout << "Ind_"<<counter<< sexer<< which_pop.ind[counter].subpopID << ", can mate =

" << which_pop.ind[counter].selected_to_mate <<", times_mated "<<

which_pop.ind[counter].times_mated << " ";

 //---SHOWING THE GENOTYOPE

 for (counterB = 1; counterB<(haplotype_size+1);counterB++) {

 cout << which_pop.ind[counter].haplotypeA[counterB] << "/"

<<which_pop.ind[counter].haplotypeB[counterB] << " ";

 }

 cout << " \n";

 }

 //can be made to show only part of the output for a given individual

 sexratio_o = sexratio_o/(which_pop.popsize);

 cout << "Population sex ratio: " << sexratio_o;

 cout << "\n";

}

//Function: show the files in the current directory

string showfiles(){

 //may want to change this that the user can choose the file from any dir

 //var

 char openfile[256];

 cout<< "\nChoose the main information file to open from the current directory:\n";

 system("ls");

 cout << "\nType the complete name and extention and press enter, ";

 cout << "type 'Q' to quit: ";

 cin.getline(openfile,256);

 return(openfile);

}

//Function: splice the qtl and marker array togehter

void spliceqtl (){

 //var

 int counter, counterB, counterC, counterD;

 chromosome tempchr, tempchrB;

 qtl_array *CQarr; // and array of qtls within each chr, as the no of qls are only few this should

never be very big and this can be created each time

 int marker, incerA, incerB;

 float map_dist_male, map_dist_female; //to calculate the recombination frequency

 string warning_out = "";

 //INSERTING THE QTLS ON THE MAP (male map as reff first), This is tricky as the two

arrays not clearly defined needs to be merged

 /* Note that the male map is used an not both the male and female map

 this means the assumprion is made that the qtls are in similar order on

 both the male and female maps. If this is not the case, a few things sould be

42

 done in this application to rectify. But shoud not be a problem*/

 incerA = 1;

 incerB = 1;

 for (counter=1; counter<(chromosome_number+1);counter++) {//cycle through chromosomes

 CQarr = new qtl_array[qtl_number+1];//again inefficient but I expect not a lot of qtls

 marker = 1;

 for (counterB = 1; counterB<(qtl_number+1); counterB++) {//cycle through qtls

 if (qtl[counterB].qtl_chro == counter) {

 CQarr[marker] = qtl[counterB];

 marker++;

 }

 }

 for (counterB=marker; counterB<(qtl_number+1); counterB++) {

 CQarr[counterB].qtl_male = -2;//this is used in the empty array REMEBER -2,

the empty values

 }

 //SORT the sub qtl arrays here if needed, and not in propper order when on input

 SORT HERE

 /* checking for (counterB = 1; counterB<(qtl_number+1); counterB++){//checking

function

 cout << "\nchromosome " << counter << " " << CQarr[counterB].qtl_name << "

"<< CQarr[counterB].qtl_male;

 }*/

 chr[counter].type = new bool[chr[counter].markernumber+1];//to get the marker type

 tempchr = chr[counter];//for each chr a temp holder is made with all the info of the chr

 tempchrB.markernames = new string[chr[counter].markernumber+1];

 tempchrB.maleCM = new float[chr[counter].markernumber+1];

 tempchrB.femaleCM = new float[chr[counter].markernumber+1];

 tempchrB.type = new bool[chr[counter].markernumber+1];

 /*hierdie hierbo is kak, veral die tempchrB en het 3 dae gevat om uit te figure maar...

 it is needed as the tempchr and chr[counter] becomes

 exactly equal interchange values in a way I can't predict*/

 /* cheking for (counterB=1; counterB<(tempchr.markernumber+1);counterB++) {

 cout << "\nTempchr marker number " << counterB << " name: " <<

tempchr.markernames[counterB];

 }*/

 chr[counter].type = new bool[chr[counter].markernumber+1];//to get the marker type

 counterC = 1;

 counterD = 1;

43

 for (counterB = 1; counterB<(chr[counter].markernumber+1); counterB++) {

 if ((CQarr[counterC].qtl_male <= tempchr.maleCM[counterD]) and

(CQarr[counterC].qtl_male > 0)){

 tempchrB.markernames[counterB] = CQarr[counterC].qtl_name;

 tempchrB.maleCM[counterB] = CQarr[counterC].qtl_male;

 tempchrB.femaleCM[counterB] = CQarr[counterC].qtl_female;

 tempchrB.type[counterB] = 0;

 qtl[incerB].qtl_pos = incerA;

 // cout << "\n MARKER(qtl): " << CQarr[counterC].qtl_name << "

counterB: " << counterB << " counterC: " << counterC << " counterD: " << counterD;

 counterC = counterC+1;

 incerB = incerB+1;

 }

 else {

 tempchrB.markernames[counterB] = tempchr.markernames[counterD];

 tempchrB.maleCM[counterB] = tempchr.maleCM[counterD];

 tempchrB.femaleCM[counterB] = tempchr.femaleCM[counterD];

 tempchrB.type[counterB] = 1;

 // cout << "\n MARKER(marker): " << tempchr.markernames[counterD]

<< " counterB: " << counterB << " counterC: " << counterC << " counterD: " << counterD;

 counterD = counterD+1;

 }

 incerA = incerA+1;

 }

 chr[counter].markernames = tempchrB.markernames; //replacing the values in the used

array nl. chr[counter]

 chr[counter].maleCM = tempchrB.maleCM;

 chr[counter].femaleCM = tempchrB.femaleCM;

 chr[counter].type = tempchrB.type;

 //the relative positions

 for (counterB = 1; counterB<(chr[counter].markernumber+0); counterB++) {/*note this

+0, because we are working with the

 intervals and this is one less than the

 number of markers*/

 /*here we calculate the recombination frequency dependant on the map distance

 three methods can be used, chosen by the user,

 1 haldane (h), where

 RF = (1-e(-2m))/2 where m is the map distance

 2 kosambi (k), where

 3 e, where the recombination RF is equal to m*/

 map_dist_male = chr[counter].maleCM[counterB+1] -

chr[counter].maleCM[counterB];

 map_dist_female = chr[counter].femaleCM[counterB+1] -

chr[counter].femaleCM[counterB];

 if ((strcmp(rec_freq_method,"h"))==0) {//haldane chosen

44

 chr[counter].RF_to_next_marker_maleCM[counterB] = (1-exp(-

2*map_dist_male/100))/2;

 chr[counter].RF_to_next_marker_femaleCM[counterB] = (1-exp(-

2*map_dist_female/100))/2;

 warning_out = "\n*Haldane's mapping function used to calculate

recombination frequency.\n";

 }

 else {

 if ((strcmp(rec_freq_method,"e"))==0) {

 chr[counter].RF_to_next_marker_maleCM[counterB] =

map_dist_male/100;

 chr[counter].RF_to_next_marker_femaleCM[counterB] =

map_dist_female/100;

 warning_out = "\n*Recomination frequency assumed to be equal

to map distance.\n";

 }else {

 if ((strcmp(rec_freq_method,"k"))==0) {//kosmabi mapping

 chr[counter].RF_to_next_marker_maleCM[counterB] =

(exp(4*(map_dist_male/100))-1)/(2+2*exp(4*(map_dist_male/100)));

 chr[counter].RF_to_next_marker_femaleCM[counterB] =

(exp(4*(map_dist_female/100))-1)/(2+2*exp(4*(map_dist_female/100)));;

 warning_out = "\n*Kosabmi's mapping function used to

calculate recombination frequency.\n";

 }else {//no mapping function chosen, default = haldane

 warning_out = "\n*WARNING: recombination

frequency not specified, Haldane's mapping function used.\n";

 chr[counter].RF_to_next_marker_maleCM[counterB] =

(1-exp(-2*map_dist_male))/2;

 chr[counter].RF_to_next_marker_femaleCM[counterB]

= (1-exp(-2*map_dist_female))/2;

 }

 }

 }

 }

 /*checking for (counterB=1; counterB<(tempchr.markernumber+1);counterB++) {

 cout << "\nTempchr B marker number " << counterB << " name: " <<

tempchrB.markernames[counterB];

 }*/

 } //for each chr

 cout << warning_out;

}

//Function: open the map file and reading the marker info and the QTL's

/* if changes to the marker info file is to be made it should be doen in this

 function. This includes if the QTL's for some reason are included between the markers*/

bool loadmap(string thefilename){

 //var

 bool opened;

 bool qtls_added = 0; //to only do the qtl adding once

45

 char linenames[40], transfer[40];//the names of the lines indicating variables

 char inttochar[40];

 int counter, counterB, empty;//count the number of cols when multiple items per line

 char *charconvert = (char*)thefilename.c_str();//conversion of string to char array

 FILE* thefile = fopen(charconvert, "r");

 total_markernumber = 0;

 if (thefile==NULL) {

 cout << "\n****ERROR: No map file with QTL and marker postitions named: '"<<

thefilename

 <<"' ,please edit main infomation file to indicate correct map file to load.\n";

 opened = false;

 }

 else {//reading the file

 //celcounter = 0; // see how many cells there are in the file

 while(feof(thefile)==0) {//benchmarked the reading of the file on my mac to approx

20sec/gig

 fscanf(thefile, "%s", linenames);//scan the line names for var indicators

 //almost CASE, which would have been nice here

 //1 CHROMOSOME SECTION

 if ((strcmp(linenames, "chromosome_number"))==0) {

 fscanf(thefile, "%d",&chromosome_number);

 chr = new chromosome[chromosome_number+1];

 //including space for our qtls in the arrays

 if (qtls_added == 0) {

 for (counter=1;counter<(qtl_number+1); counter++) {

 chr[qtl[counter].qtl_chro].qtl_per_chr++;

 }

 qtls_added = 1;

 }

 for (counter = 1; counter<(chromosome_number+1); counter++) {

 fscanf(thefile, "%s%d",chr[counter].chr_name,

&chr[counter].markernumber);

 //setting the length of maker names and, maps

 //could make this automatic if ness, espessially when creating

automated txtfiles

 total_markernumber = total_markernumber +

chr[counter].markernumber;//must be done before changed to include the qtls (NB)

 chr[counter].markernumber = chr[counter].markernumber +

chr[counter].qtl_per_chr;

 chr[counter].markernames = new

string[chr[counter].markernumber+1];

 chr[counter].maleCM = new

float[chr[counter].markernumber+1];

46

 chr[counter].femaleCM = new

float[chr[counter].markernumber+1];

 chr[counter].RF_to_next_marker_maleCM = new

float[chr[counter].markernumber+1];

 chr[counter].RF_to_next_marker_femaleCM = new

float[chr[counter].markernumber+1];

 }

 }

 if ((strcmp(linenames, "female_map"))==0) {

 for (counter=1; counter<(chromosome_number+1); counter++) {

 for (counterB=1; counterB<(chr[counter].markernumber +1 -

chr[counter].qtl_per_chr); counterB++) {

 fscanf(thefile,

"%d%s%f%f",&empty,transfer,&chr[counter].maleCM[counterB],&chr[counter].femaleCM[counterB]);

 chr[counter].markernames[counterB] = transfer;

 }

 }

 }

 //2 QTL SECTION

 if ((strcmp(linenames, "qtl_number"))==0) {

 fscanf(thefile, "%d",&qtl_number);

 qtl = new qtl_array[qtl_number+1];

 for (counter=1; counter<(qtl_number+1); counter++) {//giving the names

of the chromosomes

 sprintf(inttochar,"%d",counter); //converting int to char

 strcpy(qtl[counter].qtl_name, "qtl_"); //assigning string values

 strncat(qtl[counter].qtl_name, inttochar,5); //concatenating

strings

 }

 for (counter=1; counter<(qtl_number+1);counter++) {

 fscanf(thefile, "%s", linenames);

 if ((strcmp(linenames,qtl[counter].qtl_name))==0) {

 fscanf(thefile,"%d" "%f"

"%f",&qtl[counter].qtl_chro,&qtl[counter].qtl_male,&qtl[counter].qtl_female);

 }

 }

 }

 } //reading the file while open

 haplotype_size = qtl_number + total_markernumber;

 spliceqtl(); //now adding the qtl to the array

 fclose(thefile);

 opened = true;

 cout << "\nThe marker and QTL file '";

 cout << thefilename <<"' was read...check the output below to see if the data is

correct...\n";

47

 }

 return(opened);

}

//Function: creating empty but correct size arrays for the individuals in a given population

void create_empty_pop(population &which_pop, int popID){

 //var

 int counter;

 which_pop.ind = new individual[which_pop.popsize+1]; //setting the popsize array

 for (counter = 1; counter<(which_pop.popsize+1); counter++) {

 which_pop.ind[counter].subpopID = popID;

 which_pop.ind[counter].haplotypeA = new int[haplotype_size+1]; //setting the haplotype

array

 which_pop.ind[counter].haplotypeB = new int[haplotype_size+1]; //setting the haplotype

array

 }

}

//Function: open the file with the number of founders and their diploid genotypes

/* if changes to the founder datafile to be made it should be doen in this

 function. Important to remember that the QTL's should also have their genotypes in the

 founder info file at their position between the markers*/

bool loadfounders(string thefilename){

 //var

 bool opened;

 bool two_lines_per_marker; //double or single line genotypes, no = 0, yes = 1

 char linenames[40], linenamesB[40];

 int counter, counterB;

 char *charconvert = (char*)thefilename.c_str();//conversion of string to char array

 FILE* thefile = fopen(charconvert, "r");

 if (thefile==NULL) {

 cout << "\n****ERROR: No founder genotypes file named: '"<< thefilename

 <<"' ,please edit main infomation file to indicate correct founder genotypes file to

load.\n";

 opened = false;

 }

 else {//reading the file and creating a founder pop

 strcpy(founderpop.popname, "Founder population");

 while(feof(thefile)==0) {

 fscanf(thefile, "%s", linenames);//scan the line names for var indicators

 if ((strcmp(linenames, "2_lines_per_marker"))==0) {//single lines for genotype

or double, should mostly be double

48

 fscanf(thefile, "%s",linenamesB);

 if ((strcmp(linenamesB, "yes"))==0) {

 two_lines_per_marker = true;

 }else {

 two_lines_per_marker = false;

 }

 }

 if ((strcmp(linenames, "number_of_founders"))==0) {//defining the number of

founders

 fscanf(thefile, "%d",&founderpop.popsize);

 // founderpop.ind = new individual[founderpop.popsize+1]; //setting the

popsize array

 create_empty_pop(founderpop, -1);//indicating that this is the founder

population

 }

 if ((strcmp(linenames, "sex"))==0) {//defining the number of founders

 //would like to know if there is a way to read a whole line...

 for (counter = 1; counter<(founderpop.popsize+1); counter++) {

 fscanf(thefile, "%s", linenames);

 if ((strcmp(linenames, "1"))==0) {/*only ness that the

males must be one, but here it can be decided by

 changing this IF

statement whet the males and females in the input

 file should be*/

 founderpop.ind[counter].sex = 1; //

1=TRUE=MALE

 } else {

 founderpop.ind[counter].sex = 0; //

0=FALSE=FEMALE

 }

 }

 //two line switch here

 //NB currently the individual genotypes should follow directly after the gender

identification

 for (counterB = 1; counterB<(haplotype_size+1); counterB++) {

 fscanf(thefile, "%s", linenames);

 for (counter = 1; counter<(founderpop.popsize+1); counter++) {

 fscanf(thefile,

"%d",&founderpop.ind[counter].haplotypeA[counterB]);

 }

 fscanf(thefile, "%s", linenamesB);

 if ((strcmp(linenames,linenamesB))==0) {

 for (counter = 1; counter<(founderpop.popsize+1);

counter++) {

 fscanf(thefile,

"%d",&founderpop.ind[counter].haplotypeB[counterB]);

 }

 }else { //problem with double line input file EXIT here

49

 cout << "****ERROR: founder input file,

'"<<thefilename<<"' seem to be incorrect. Genotype data incorrect.\n";

 exit(1);

 }

 }

 }

 }

 fclose(thefile);

 opened = true;

 cout << "\nThe founder genotype file '";

 cout << thefilename <<"' was read...check the output below to see if the data is

correct...\n";

 }

 return(opened);

}

//Function: reading the main information file on how to simulate the population, this should be made by

another program at a later stage

void readmainfile(string thefilename, bool& opened, string& markerfilename, string& founderfilename,

string& parentalfilename){

 //var

 char linenames[40];// the names of the lines indicating variables

 bool simulate_map, simulate_founders, simulate_parentals; //make later global if ness

 char *charconvert = (char*)thefilename.c_str();//conversion of string to char array

 FILE* thefile = fopen(charconvert, "r");

 simulate_parentals = false;

 simulate_founders = false;

 simulate_map = false;

 if (thefile==NULL) {

 cout << "\nNo main info file named: '"<< thefilename

 << "' , please select another file.\n";

 opened = false;

 }

 else {//reading the file

 while(feof(thefile)==0) {

 fscanf(thefile, "%s", linenames);//scan the line names for var indicators

 if ((strcmp(linenames, "marker_type"))==0) {//marker type

 fscanf(thefile, "%s", linenames);

 marker_type = linenames;

 }

 if ((strcmp(linenames, "create_map"))==0) {//loading the marker and qlt datafile

 fscanf(thefile, "%s",linenames);

50

 if ((strcmp(linenames, "no"))==0){//do not simulate but

read file

 simulate_map = false;

 fscanf(thefile, "%s",linenames);

 if ((strcmp(linenames, "load_map_file"))==0){

 fscanf(thefile, "%s",linenames);

 markerfilename = linenames;

 }

 }

 else {//marker map needs to be simulated

 simulate_map = true;

 markerfilename = "SIMULATE_MAP_DATA";

 }

 }

 if ((strcmp(linenames, "create_founders"))==0) {/* loading the parental

genotypes from this file

 should not be linked witht the population size*/

 fscanf(thefile, "%s",linenames);

 if ((strcmp(linenames, "no"))==0){//do not simulate but read file

 simulate_founders = false;

 fscanf(thefile, "%s",linenames);

 if ((strcmp(linenames, "load_founders_genotypes"))==0){

 fscanf(thefile, "%s",linenames);

 founderfilename = linenames;

 }

 }

 else {//marker map needs to be simulated

 simulate_founders = true;

 founderfilename = "SIMULATE_FOUDER_DATA";

 }

 }

 if ((strcmp(linenames, "create_parentals"))==0) {

 fscanf(thefile, "%s",linenames);

 if ((strcmp(linenames, "no"))==0){//do not simulate but read file

 simulate_parentals = false;

 cout << "Founders are parentals: burnin generations = 0";

 } else {

 simulate_parentals = true;

 }

 }

 if ((strcmp(linenames,

"generations_to_parental_generation"))==0) {

 fscanf(thefile, "%d", &burnin_generations);

 }

51

 if (simulate_parentals == false) {

 burnin_generations = 0;

 }

 if ((strcmp(linenames, "number_of_parental_populations"))==0)

{

 fscanf(thefile, "%d", &subpopnumber);

 }

 if ((strcmp(linenames,

"individuals_in_parental_populations"))==0) {

 fscanf(thefile, "%d", &subpopsize);

 }

 if ((strcmp(linenames, "recombination_frequency"))==0) {

 fscanf(thefile, "%s", rec_freq_method);

 }

 parentalfilename = "SIMULATE_PARENTAL_DATA";

 }

 fclose(thefile);

 opened = true;

 }

 population_size_total = subpopnumber*subpopsize; //only valid while subpops are the same size

}

//Function: the main reproduction function. This function will hold all the steps to replace the current

population with its offspring

//Used to simulate the Founder populations, if they are not loaded (will unfortunately have some

duplication of this code in the simulate cross function.

void reproduce(int generations) {

 //var

 int counter, counterB, counterC, counterD, counterE, counterF;

 int mateone, matetwo;

 individual par1, par2;

 bool which_haplotype_p1, which_haplotype_p2;

 float chance01;

 int matings_per_subpop, offspring_per_mating;

 int whichind;

 int male_matings, female_matings; //some special variables that indicates how many times (max

value) any individual of a spec sex can mate

 //max matings

 male_matings = population_size_total*2; //max number times a male can mate

 female_matings = male_matings; //max number of times a female can mate

 offspring_per_mating = 1;

52

 for (counter = 1; counter<(subpopnumber + 1); counter++) {//for all the subpopulations

 whichind = 0;

 //matings_per_subpop = subpop[counter].popsize;//this is used when only one offspring

per mating are created

 matings_per_subpop = subpop[counter].popsize/offspring_per_mating; //use thi formula

to keep the popsize constant, check that it is an integer

 for (counterB = 1; counterB<(matings_per_subpop+1); counterB++) {//for all individuals the new

populations population

 /*mate selection 1, selecting a male or female at random,

 i.e. no preferecne for any sex to be selected at first (can change this when one or the other sex has

some fitness thing)

 from which pop -- founder (gen ==1), same or a migrant */

 mateone = 0;//to reset the first mate

 matetwo = 0;//to reset the 2nd mate

 //PUT THIS IN A FUNCTION AND RETURN THE INDIVUDUAL

PARENTS, make switches for diff stages of generation times and migration

 if (generations == 1) {//for the first generation and from the -----

FOUNDER POPULATION-------

 mateone = rand() % founderpop.popsize + 1;

 /*mate selection 2, selecting second mate. Must be different individual and opposite sex.*/

 do { //must be do while do at least one before continuing

 matetwo = rand() % founderpop.popsize + 1;

 } while ((matetwo == mateone) or (founderpop.ind[mateone].sex

== founderpop.ind[matetwo].sex));

 //parental assignment (to make sure the male is par one

 if (founderpop.ind[mateone].sex == 1) {

 par1 = founderpop.ind[mateone];

 par2 = founderpop.ind[matetwo];

 // cout << "Subpop: " << counter << ", Individual: " <<

counterB << "\n";

 // cout << "Mateone " << mateone << " Par 1 Sex: "<<

par1.sex << ", PopID: " << par1.subpopID << " , 1st allele: "<< par1.haplotypeA[1] << ", 2nd allele: "<<

par1.haplotypeB[1] << "\n";

 // cout << "Matetwo " << matetwo << " Par 2 Sex: "<<

par2.sex << ", PopID: " << par2.subpopID << " , 1st allele: "<< par2.haplotypeA[1] << ", 2nd allele: "<<

par2.haplotypeB[1] << "\n";

 } else {

 par2 = founderpop.ind[mateone];

 par1 = founderpop.ind[matetwo];

53

 // cout << "Subpop: " << counter << ", Individual: " <<

counterB << "\n";

 // cout << "Mateone " << mateone << " Par 1 Sex: "<<

par1.sex << ", PopID: " << par1.subpopID << " , 1st allele: "<< par1.haplotypeA[1] << ", 2nd allele: "<<

par1.haplotypeB[1] << "\n";

 // cout << "Matetwo " << matetwo << " Par 2 Sex: "<<

par2.sex << ", PopID: " << par2.subpopID << " , 1st allele: "<< par2.haplotypeA[1] << ", 2nd allele: "<<

par2.haplotypeB[1] << "\n";

 }

 } else {//when parrents are from ------SUB POPULATION-----

 //no migration in this function yet

 //----------RANDOM MATING POPULATION SECTION---------

 mateone = rand() % subpop[counter].popsize + 1;

 //mate selection 2, selecting second mate. Must be different

individual and opposite sex.

 do { //must be do while do at least one before continuing

 matetwo = rand() % subpop[counter].popsize + 1;

 } while ((matetwo == mateone) or

(subpop[counter].ind[mateone].sex == subpop[counter].ind[matetwo].sex));

 //parental assignment (to make sure the male is par one

 if (subpop[counter].ind[mateone].sex == 1) {

 par1 = subpop[counter].ind[mateone];

 par2 = subpop[counter].ind[matetwo];

// cout << "Subpop: " << counter

<< ", Individual: " << counterB << "\n";

// cout << "Mateone " << mateone

<< " Par 1 Sex: "<< par1.sex << ", PopID: " << par1.subpopID << " , 1st allele: "<< par1.haplotypeA[1]

<< ", 2nd allele: "<< par1.haplotypeB[1] << "\n";

// cout << "Matetwo " << matetwo

<< " Par 2 Sex: "<< par2.sex << ", PopID: " << par2.subpopID << " , 1st allele: "<< par2.haplotypeA[1]

<< ", 2nd allele: "<< par2.haplotypeB[1] << "\n";

 // cout << "M1A=P1A M1B=P1B M2A=P2A

M2B=P2B\n";

 // cout

<<subpop[counter].ind[mateone].haplotypeA[1]<<"="<<par1.haplotypeA[1]<<"

"<<subpop[counter].ind[mateone].haplotypeB[1]<<"="<<par1.haplotypeB[1]<<"

"<<subpop[counter].ind[matetwo].haplotypeA[1]<<"="<<par2.haplotypeA[1]<<"

"<<subpop[counter].ind[matetwo].haplotypeB[1]<<"="<<par2.haplotypeB[1]<<"\n" ;

 } else {

 par2 = subpop[counter].ind[mateone];

 par1 = subpop[counter].ind[matetwo];

// cout << "Subpop: " << counter

<< ", Individual: " << counterB << "\n";

// cout << "Mateone " << mateone

<< " Par 1 Sex: "<< par1.sex << ", PopID: " << par1.subpopID << " , 1st allele: "<< par1.haplotypeA[1]

<< ", 2nd allele: "<< par1.haplotypeB[1] << "\n";

54

// cout << "Matetwo " << matetwo

<< " Par 2 Sex: "<< par2.sex << ", PopID: " << par2.subpopID << " , 1st allele: "<< par2.haplotypeA[1]

<< ", 2nd allele: "<< par2.haplotypeB[1] << "\n";

 // cout << "M2A=P1A M2B=P1B M1A=P2A

M1B=P2B\n";

 // cout

<<subpop[counter].ind[matetwo].haplotypeA[1]<<"="<<par1.haplotypeA[1]<<"

"<<subpop[counter].ind[matetwo].haplotypeB[1]<<"="<<par1.haplotypeB[1]<<"

"<<subpop[counter].ind[mateone].haplotypeA[1]<<"="<<par2.haplotypeA[1]<<"

"<<subpop[counter].ind[mateone].haplotypeB[1]<<"="<<par2.haplotypeB[1]<<"\n" ;

 }

 //counting their matings

 subpop[counter].ind[mateone].times_mated =

subpop[counter].ind[mateone].times_mated +1;

 subpop[counter].ind[matetwo].times_mated =

subpop[counter].ind[matetwo].times_mated +1;

 // cout << mateone << "\n";

 // cout << matetwo << "\n";

 //----------RANDOM MATING POPULATION SECTION-- END--------

-*/

 //SWITCH HERE BETWEEN RANDOM AND STRUCTURED POPULATIONS

 /*//----------STRUCTURED POPULATION section-----------------

 //this is currently quite inefficient as all the individuals are

chosen by chance

 //even the last ones in the population when still unmated, this

will be a problem when the population sizes becomes big

 //selecting male first

 do {

 mateone = rand() % subpop[counter].popsize + 1;

 } while ((subpop[counter].ind[mateone].sex != 1) or

(subpop[counter].ind[mateone].times_mated == male_matings)

 or

(subpop[counter].ind[mateone].selected_to_mate != 1));//only some males can mate

 //mate selection 2, selecting FEMALE. .

 do { //must be do while do at least one before continuing

 matetwo = rand() % subpop[counter].popsize + 1;

 } while ((subpop[counter].ind[matetwo].sex != 0) or

(subpop[counter].ind[matetwo].times_mated == female_matings));

 //counting their matings and stopping remating

 subpop[counter].ind[mateone].times_mated =

subpop[counter].ind[mateone].times_mated +1;

55

 subpop[counter].ind[matetwo].times_mated =

subpop[counter].ind[matetwo].times_mated +1;

 par1 = subpop[counter].ind[mateone];

 par2 = subpop[counter].ind[matetwo];

 //----------STRUCTURED POPULATION section-- end-----------*/

 }

 /*mating -- crossing over and independent assortment & creating offspring pops

 since the migration will be done by selecting parents from different populations

 this section do not need to account for that, this means the new individuals are

 placed in their correct places (see counter and counterB)*/

 for (counterF = 1; counterF<(offspring_per_mating+1);counterF++) {//repeat for the number of

matings

 counterE = 0;//for deriving the marker number from chr number and marker nr on the chr.

 whichind = whichind + 1;

 subpop_offspring[counter].ind[whichind].father = mateone;

 subpop_offspring[counter].ind[whichind].mother = matetwo;

 //cout << "pop: " << counter << " counterB: " << counterB << " counterF: " << counterF

<< " the individual: " << whichind << "\n";

 for (counterC = 1; counterC<(chromosome_number +1); counterC++) {//per chr?

 which_haplotype_p1 = 0;

 which_haplotype_p2 = 0;

 if (rand()%2 == 1) {

 which_haplotype_p1 = 1;

 }/*cout << "1\n";

 } else {

 cout << "0\n";

 }*/

 if (rand()%2 == 1) {

 which_haplotype_p2 = 1;

 }

 for (counterD=1; counterD<(chr[counterC].markernumber +1); counterD++) {//for each

of the markers

 counterE = counterE + 1;

 /*/All loci unlinked experiment FOR TESTING

 //////////////////remove after experiment, here all the loci are

unlinked!!!///////////////////

56

 which_haplotype_p1 = 0;///////////

 which_haplotype_p2 = 0;////////////

 //////////

 if (rand()%2 == 1) {//////////

 which_haplotype_p1 = 1;//////////

 }//////////////

 if (rand()%2 == 1) {/////////

 which_haplotype_p2 = 1;/////////

 }//////////////////remove after experiment, here all the loci are

unlinked!!!//////////////*/

 //RANDOMLY from male or female parent first

 //if (rand()%2 == 1) {//Chromosome from the male first

 //from parent 1 the male parent

 if (which_haplotype_p1 == 1) {//haplotypeA from par_1 markers will be

allocated to the new individual's A hapl

 subpop_offspring[counter].ind[whichind].haplotypeA[counterE] =

par1.haplotypeA[counterE];

// cout << "(a)Marker number : "<< (counterE)<<"\n";

 }

 else {//haplotypeB from par_1 will be allocated to the new individual's A hapl

 subpop_offspring[counter].ind[whichind].haplotypeA[counterE] =

par1.haplotypeB[counterE];

// cout << "(b)Marker number : "<< (counterE)<<"\n";

 }

 /*CROSSINGOVER HERE for the male parent*/

 chance01 = (rand()%100001);

 chance01 = chance01/100000;

 if (chance01 <= chr[counterC].RF_to_next_marker_maleCM[counterD]) {

 which_haplotype_p1 = !which_haplotype_p1;

// cout << "switch (male): chance " << chance01 << " <= recfreq "<<

chr[counterC].RF_to_next_marker_maleCM[counterD];

// cout << "\nwhichhap = " << which_haplotype_p1 <<"\n";

 }

 //male end

 //from parent 2, female parent

 if (which_haplotype_p2 == 1) {//haplotypeA from par2 markers will be allocated

to the new individual's A hapl

 subpop_offspring[counter].ind[whichind].haplotypeB[counterE] =

par2.haplotypeA[counterE];

// cout << "(a)Marker number : "<< (counterE)<<"\n";

 }

 else {//haplotypeB from par2 will be allocated to the new individual's A hapl

 subpop_offspring[counter].ind[whichind].haplotypeB[counterE] =

par2.haplotypeB[counterE];

// cout << "(b)Marker number : "<< (counterE)<<"\n";

 }

57

 /*CROSSINGOVER HERE female*/

 chance01 = (rand()%100001);

 chance01 = chance01/100000;

 if (chance01 <= chr[counterC].RF_to_next_marker_femaleCM[counterD]) {

 which_haplotype_p2 = !which_haplotype_p2;

// cout << "switch (fem): chance " << chance01 << " <= recfreq "<<

chr[counterC].RF_to_next_marker_femaleCM[counterD];

// cout << "\nwhichhap = " << which_haplotype_p2 <<"\n";

 }//female end.

 //} //--------------swithc to chromosomeA from female first--

 /* else {

 //from parent 2 the female parent

 if (which_haplotype_p2 == 1) {//haplotypeA from par_2 markers will be

allocated to the new individual's A hapl

 subpop_offspring[counter].ind[whichind].haplotypeA[counterE]

= par2.haplotypeA[counterE];

 cout << "(a)Marker number : "<< (counterE)<<"\n";

 }

 else {//haplotypeB from par_2 will be allocated to the new individual's A

hapl

 subpop_offspring[counter].ind[whichind].haplotypeA[counterE]

= par2.haplotypeB[counterE];

 cout << "(b)Marker number : "<< (counterE)<<"\n";

 }

 //CROSSINGOVER HERE for the female parent

 chance01 = (rand()%100001);

 chance01 = chance01/100000;

 if (chance01 <=

chr[counterC].RF_to_next_marker_femaleCM[counterD]) {

 which_haplotype_p2 = !which_haplotype_p2;

 }

 //female end

 //from parent 1, male parent

 if (which_haplotype_p1 == 1) {//haplotypeA from par1 markers will be

allocated to the new individual's A hapl

 subpop_offspring[counter].ind[whichind].haplotypeB[counterE]

= par1.haplotypeA[counterE];

 cout << "(a)Marker number : "<< (counterE)<<"\n";

 }

 else {//haplotypeB from par1 will be allocated to the new individual's A

hapl

 subpop_offspring[counter].ind[whichind].haplotypeB[counterE]

= par1.haplotypeB[counterE];

 cout << "(b)Marker number : "<< (counterE)<<"\n";

 }

 //CROSSINGOVER HERE male

58

 chance01 = (rand()%100001);

 chance01 = chance01/100000;

 if (chance01 <= chr[counterC].RF_to_next_marker_maleCM[counterD])

{

 which_haplotype_p1 = !which_haplotype_p1;

 }//male end.

 } */ //end of if else statement that chooce which parent will donate their alleles

first

 }//number of markers per chr end

 }//chr end

 }//number off offspring per mating loop (counter F)

 }

 }

//----------- here all the new individuals are created -----------------

 //mutation here if ness, different types for different markers

 //showing the old population before replacement with the new stuff

// for (counter = 1; counter<(subpopnumber + 1); counter++){

// showpop(subpop[counter]);

// }

 //replacing parental populations and resetting the other values

 for (counter = 1; counter<(subpopnumber + 1); counter++) {//for all the subpopulations

 for (counterB = 1; counterB<(subpop[counter].popsize+1); counterB++) {//for all

individuals in a population

 for (counterC = 1; counterC<(haplotype_size+1); counterC++) {

 subpop[counter].ind[counterB].haplotypeA[counterC] =

subpop_offspring[counter].ind[counterB].haplotypeA[counterC];

 subpop[counter].ind[counterB].haplotypeB[counterC] =

subpop_offspring[counter].ind[counterB].haplotypeB[counterC];

 }

 subpop[counter].ind[counterB].mother =

subpop_offspring[counter].ind[counterB].mother;

 subpop[counter].ind[counterB].father =

 subpop_offspring[counter].ind[counterB].father;

 subpop[counter].ind[counterB].subpopID = counter;

 subpop[counter].ind[counterB].times_mated = 0;

 subpop[counter].ind[counterB].phenotype = 0;

 subpop[counter].ind[counterB].phenotype2 = 0;

 // subpop[counter].ind[counterB].selected_to_mate = 0;

 /*forced-exact sex ratio

 to get the correct sex ratio here the following must be done

 take the sexratio, i.e. = nr_males/total_population_size

 and invert this, i.e. = *x-1 */

 //also the selected to mate parameter must be one to enable mating

59

 if (counterB % 2==0) {//the modulus operator

 subpop[counter].ind[counterB].sex = 1;//male

 subpop[counter].ind[counterB].selected_to_mate = 1;

 }

 else {

 subpop[counter].ind[counterB].sex = 0;//female

 subpop[counter].ind[counterB].selected_to_mate = 1;

 }

 }

 }

 //showing fixations, heterozygosity,

}

//function: The first selection type that can be done

void selection_1() {

 //var

 int chance, counter, counterB;

 int mating_males;

 //int mating_females; // the number of males and females that can mate

 mating_males = 14;

 //mating_females = 5; currently all the females can mate see above

 //random selection of a number of males and females to mate

 for (counter = 1; counter<(subpopnumber + 1); counter++) {//for all the subpopulations

 //for selecting the males

 for (counterB = 1;counterB<(mating_males+1); counterB++) {//enabeling the number of

males to mate

 do {//redraw ind if female or allready selected

 chance = (rand()%(subpop[counter].popsize + 1));

 } while ((subpop[counter].ind[chance].sex == 0) or

(subpop[counter].ind[chance].selected_to_mate == 1));

 subpop[counter].ind[chance].selected_to_mate = 1; //now this male can mate

 //cout << "\n male enabled counterB " << counterB;

 }

 }

}

//function: to record the information for some of the generations

void record_info_for_gen(int which_gen) {

 //var

 int counter, counterB, counterC;

 int *allele_type_holder;

 bool same_holder, tot_holder;

 int sexratio_o;

 //setting the array for each subpop in this generation array

60

 info_per_gen_per_pop[which_gen] = new saved_information[subpopnumber+1];

 //the holder array

 allele_type_holder = new int[haplotype_size+1];

 //the allel freq array

 for (counter = 1; counter<(subpopnumber+1); counter++) {

 info_per_gen_per_pop[which_gen][counter].one_allele_freq = new

int[haplotype_size+1];

 }

 //cout << "Generation: "<<which_gen<<"\n";

 sexratio_o = 0;

 for (counter = 1; counter<(subpopnumber+1); counter++) {//for all the subpops

 for (counterB = 1; counterB<(haplotype_size+1); counterB++) {//for all the loci

 /*NOTE: ALLELE FREQ

 the next line is an enigma, it is used to record the allels frequency per locus per

subpop

 BUT

 it uses the fist allele of the first individual (for all loci) as the allele type to

compare all others to

 this in itself is not a problem but it does make generation wise following of a

allele frequency dificult using this

 recorded value as it will randomly assign allele types per generation to the allele

type when there is more than one allele

 in the population.

 THEREFORE, dont use this when trying to follow the allele frequencies for

each generation!!

 unless the holder's type is set to an allele value that could be found in the

population BUT then the fixation per total population cant

 be calculated

 */

 allele_type_holder[counterB] =

subpop[counter].ind[1].haplotypeA[counterB];//to set the holder's first alleletype

 info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterB] = 1;

 if (subpop[counter].ind[1].haplotypeB[counterB] ==

allele_type_holder[counterB]) {//continue to add dipl allelel same as 1st

 info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterB] =

info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterB] + 1;

 }

 }

 //note this is for the first male as the next loop is from ind 2 onwards

 if (subpop[counter].ind[1].sex == 1) {//male

 sexratio_o = sexratio_o + 1;

 }

 for (counterB = 2/*NOTE THIS "2"*/; counterB<(subpop[counter].popsize+1);

counterB++) {//for the ind per pop FROM ind 2

 if (subpop[counter].ind[counterB].sex == 1) {//male

61

 sexratio_o = sexratio_o + 1;

 }

 for (counterC = 1; counterC<(haplotype_size+1); counterC++) { //remember,

they are diploid

 if (subpop[counter].ind[counterB].haplotypeA[counterC] ==

allele_type_holder[counterC]) {//continue to add if same as 1st

 info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] =

info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] + 1;

 }

 if (subpop[counter].ind[counterB].haplotypeB[counterC] ==

allele_type_holder[counterC]) {//continue to add if same as 1st for allele B

 info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] =

info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] + 1;

 }

 }

 }//end of ind loop

 /*Recording the info for each subpopulation here*/

 info_per_gen_per_pop[which_gen][counter].prop_fixed_loci = 0;

 for (counterC = 1; counterC<(haplotype_size+1); counterC++) {

 if (info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC] ==

(subpop[counter].popsize*2)) {//counting the no of fixed loci

 info_per_gen_per_pop[which_gen][counter].prop_fixed_loci =

info_per_gen_per_pop[which_gen][counter].prop_fixed_loci + 1;

 }

 }

 //testout

 // cout << "SubPop: " << counter << " (popsize = "<<subpop[counter].popsize<<")\n";

 // cout << "Males: "<< sexratio_o << ", (no males recoreded): "<<

info_per_gen_per_pop[which_gen][counter].sexratio <<"\n";

 // cout << "Number_fixed_loci: "<<

info_per_gen_per_pop[which_gen][counter].prop_fixed_loci <<"\n";

 // cout << "Marker_number_(of_the_first_allele): ";

 // for (counterC = 1;counterC<(haplotype_size+1); counterC++) {

 // cout << info_per_gen_per_pop[which_gen][counter].one_allele_freq[counterC]

<< " ";

 // }

 // cout << "\n";

 }//end of pop

 /*Recording the information per total pop*///this could maybe be moved up into the prev loop

 same_fixed_loci[which_gen] = 0;

 tot_fixed_loci[which_gen] = 0;

 //this could mybe be better by reducing the else statements, think a bit

62

 for (counter = 1; counter<(haplotype_size+1); counter++) {//loop other way around...

 same_holder = 1;

 tot_holder = 1;

 for (counterB = 2; counterB<(subpopnumber+1); counterB++) {

 if ((info_per_gen_per_pop[which_gen][counterB-1].one_allele_freq[counter] ==

(subpop[counterB].popsize*2)) and

 (info_per_gen_per_pop[which_gen][counterB].one_allele_freq[counter]

== (subpop[counterB].popsize*2)) and

 (tot_holder == 1)){

 tot_holder=1;

 if ((subpop[counterB-1].ind[1].haplotypeA[counter] ==

subpop[counterB].ind[1].haplotypeA[counter]) and

 (same_holder == 1)) {//using the 1st ind allele if fixed (will be

fine)

 same_holder = 1;

 }else {

 same_holder = 0;

 }

 }else {

 tot_holder = 0;

 same_holder = 0;

 }

 }

 tot_fixed_loci[which_gen] = tot_fixed_loci[which_gen] + tot_holder;

 same_fixed_loci[which_gen] = same_fixed_loci[which_gen] + same_holder;

 sexratio[which_gen] = sexratio_o;

 }

 //testoutII

/* cout << "Loci fixed in whole population: " << tot_fixed_loci[which_gen] << "\n";

 cout << "Loci fixed for the same alleles between sub pops: "<< same_fixed_loci[which_gen] <<

"\n";

 cout << "Loci fixed but for different allelels between subpops: "<< tot_fixed_loci[which_gen]-

same_fixed_loci[which_gen] << "\n";

 */

}

//function: Noise Generator

void noisegenerator() {

 //var

 int dis_range, dis_mean;

 int subset_size;

 int counter,counterB;

 div_t devider;

 float sum_of_sq;

 int noisenumber;

 dis_range = 10000;

 devider = div (dis_range,2);

 dis_mean = devider.quot;

63

 subset_size = 100;

 sum_of_sq = 0;

 noisenumber = population_size_total*2;

 int_noise = new float[noisenumber + 1];

 for (counter=1; counter<(noisenumber+1); counter++) {

 int_noise[counter] = 0;

 for (counterB=1; counterB<(subset_size+1); counterB++) {

 int_noise[counter] = int_noise[counter] + ((rand()%dis_range) + 1);

 }

 int_noise[counter] = (int_noise[counter]/subset_size)-dis_mean;

 sum_of_sq = sum_of_sq + pow((int_noise[counter]/* REMEMBER THE MEAN IS

REMOVED ONE LINE ABOVE -dis_mean*/), 2);

 }

 //Scale HERE

 noise_scale = sqrt(sum_of_sq/noisenumber); //currently this is the standard deviation. Before

changing this THINK FIRST!!

 //cout << "NOISE SCALE !!! " << noise_scale;

}

//PHENOTYPING SUBFUNCTION 1: main effects, single qtl

//format: which individual, which QTL, effect sizes

float single_QTL(individual ind_who, int QTLA, float AA, float Aa, float aa){

 //var

 float phenoval;

 /*NOTE: using else is slightly better since it will often not go to the last

 class. However a class satement would be much better but cant find any*/

 //00

 if ((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 0) and

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 0)){

 phenoval = AA;

 }

 //01 or 01

 else if (((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1) and

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 0)) or

 ((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 0) and

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1))){

 phenoval = Aa;

 }

 //11

 else if ((ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1) and

(ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1)){

 phenoval = aa;

 }

64

 return(phenoval);

}

//PHENOTYPING SUBFUNCTION 2: Two way interaction

//format: which individual, which QTL, effect sizes

float two_way(individual ind_who, int QTLA, int QTLB, float AABB, float AABb, float AAbb,

 float AaBB, float AaBb, float Aabb,

 float aaBB, float aaBb, float aabb){

 //var

 float phenoval;

 string geno2d = "0000";

 //get genotype string

 if (ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1){geno2d[0] = '1';}

 if (ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1){geno2d[1] = '1';}

 if (ind_who.haplotypeA[qtl[QTLB].qtl_pos] == 1){geno2d[2] = '1';}

 if (ind_who.haplotypeB[qtl[QTLB].qtl_pos] == 1){geno2d[3] = '1';}

 //get phenotype

 if (geno2d == "0000") {

 phenoval = AABB;

 }

 if ((geno2d == "0001") or (geno2d == "0010")) {

 phenoval = AABb;

 }

 if (geno2d == "0011") {

 phenoval = AAbb;

 }

 //---

 if ((geno2d == "0100") or (geno2d == "1000")) {

 phenoval = AaBB;

 }

 if ((geno2d == "0101") or (geno2d == "0110") or (geno2d == "1001") or (geno2d == "1010")) {

 phenoval = AaBb;

 }

 if ((geno2d == "0111") or (geno2d == "1011")) {

 phenoval = Aabb;

 }

 //---

 if (geno2d == "1100") {

 phenoval = aaBB;

 }

 if ((geno2d == "1101") or (geno2d == "1110")) {

 phenoval = aaBb;

 }

 if (geno2d == "1111") {

 phenoval = aabb;

 }

65

 return(phenoval);

}

//PHENOTYPING SUBFUNCTION 2: Three way interaction

//format: which individual, which QTL, effect sizes

float three_way(individual ind_who, int QTLA, int QTLB, int QTLC, float AABBCC, float AABBCc,

float AABBcc,

 float AABbCC, float AABbCc, float AABbcc,

 float AAbbCC, float AAbbCc, float AAbbcc,

 float AaBBCC, float AaBBCc, float AaBBcc,

 float AaBbCC, float AaBbCc, float AaBbcc,

 float AabbCC, float AabbCc, float Aabbcc,

 float aaBBCC, float aaBBCc, float aaBBcc,

 float aaBbCC, float aaBbCc, float aaBbcc,

 float aabbCC, float aabbCc, float aabbcc){

 //var

 float phenoval = 111111;

 string geno3d = "000000";

 //get genotype string

 if (ind_who.haplotypeA[qtl[QTLA].qtl_pos] == 1){geno3d[0] = '1';}

 if (ind_who.haplotypeB[qtl[QTLA].qtl_pos] == 1){geno3d[1] = '1';}

 if (ind_who.haplotypeA[qtl[QTLB].qtl_pos] == 1){geno3d[2] = '1';}

 if (ind_who.haplotypeB[qtl[QTLB].qtl_pos] == 1){geno3d[3] = '1';}

 if (ind_who.haplotypeA[qtl[QTLC].qtl_pos] == 1){geno3d[4] = '1';}

 if (ind_who.haplotypeB[qtl[QTLC].qtl_pos] == 1){geno3d[5] = '1';}

 //get phenotype

 if (geno3d == "000000") {

 phenoval = AABBCC;

 }

 if ((geno3d == "000001") or (geno3d == "000010")) {

 phenoval = AABBCc;

 }

 if (geno3d == "000011") {

 phenoval = AABBcc;

 }

 //---

 if ((geno3d == "000100") or (geno3d == "001000")) {

66

 phenoval = AABbCC;

 }

 if ((geno3d == "000101") or (geno3d == "000110") or (geno3d == "001001") or (geno3d ==

"001010")) {

 phenoval = AABbCc;

 }

 if ((geno3d == "000111") or (geno3d == "001011")) {

 phenoval = AABbcc;

 }

 //---

 if (geno3d == "001100") {

 phenoval = AAbbCC;

 }

 if ((geno3d == "001101") or (geno3d == "001110")) {

 phenoval = AAbbCc;

 }

 if (geno3d == "001111") {

 phenoval = AAbbcc;

 }

 //---------

 if ((geno3d == "010000") or (geno3d == "100000")) {

 phenoval = AaBBCC;

 }

 if ((geno3d == "010001") or (geno3d == "010010") or (geno3d == "100001") or (geno3d ==

"100010")) {

 phenoval = AaBBCc;

 }

 if ((geno3d == "010011") or (geno3d == "100011")) {

 phenoval = AaBBcc;

 }

 //---

 if ((geno3d == "010100") or (geno3d == "011000") or (geno3d == "100100") or (geno3d ==

"101000")) {

 phenoval = AaBbCC;

 }

 if ((geno3d == "101010") or (geno3d == "101001") or (geno3d == "100110") or (geno3d ==

"100101") or (geno3d == "011010") or (geno3d == "011001") or (geno3d == "010110") or (geno3d ==

"010101")) {

 phenoval = AaBbCc; //hehe

 }

 if ((geno3d == "010111") or (geno3d == "011011") or (geno3d == "100111") or (geno3d ==

"101011")) {

 phenoval = AaBbcc;

 }

 //---

 if ((geno3d == "101100") or (geno3d == "011100")) {

 phenoval = AabbCC;

 }

67

 if ((geno3d == "011101") or (geno3d == "011110") or (geno3d == "101101") or (geno3d ==

"101110")) {

 phenoval = AabbCc;

 }

 if ((geno3d == "101111") or (geno3d == "011111")) {

 phenoval = Aabbcc;

 }

 //---------

 if (geno3d == "110000") {

 phenoval = aaBBCC;

 }

 if ((geno3d == "110001") or (geno3d == "110010")) {

 phenoval = aaBBCc;

 }

 if (geno3d == "110011") {

 phenoval = aaBBcc;

 }

 //---

 if ((geno3d == "110100") or (geno3d == "111000")) {

 phenoval = aaBbCC;

 }

 if ((geno3d == "110101") or (geno3d == "110110") or (geno3d == "111001") or (geno3d ==

"111010")) {

 phenoval = aaBbCc;

 }

 if ((geno3d == "110111") or (geno3d == "111011")) {

 phenoval = aaBbcc;

 }

 //---

 if (geno3d == "111100") {

 phenoval = aabbCC;

 }

 if ((geno3d == "111101") or (geno3d == "111110")) {

 phenoval = aabbCc;

 }

 if (geno3d == "111111") {

 phenoval = aabbcc;

 }

 return(phenoval);

}

//function: phenotyping. This function assign phenotypes, depending on the QTL.

//Important function this NB, may need to move up

//ALSO CANT DO THE FOUNDER POPULATION!!

void phenotyping(){

 //var

 int counter, counterB, counterC;

 float pheno, pheno2;

 float phenoval, phenoval2;

68

 //phenoval = 10;

 //phenoval2 = 1;

 float noise_inflation;

 noise_inflation = 316227.766; //1 is one sdev, 2 is two sdev ect.

 //note the noise generator generates noise specifically for the number of inds in the pop in the

final gen

 //for now it is fine but will need to be moved and slightly addapted if phenotypes for each gen is

req (only to speed up things)

 /*notes on the phenoytpe generators: the order of the genotype effects are always as follows

 Where caps refer to 0 and smallcaps refer to 1

 single main effects: AA,Aa,aa

 two way interactions: AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, aabb

 three way interaction: AABBCC, AABBCc, AABBcc, AABbCC, AABbCc, AABbcc, AAbbCC,

AAbbCc, AAbbcc,

 AaBBCC, AaBBCc, AaBBcc, AaBbCC, AaBbCc,

AaBbcc, AabbCC, AabbCc, Aabbcc,

 aaBBCC, aaBBCc, aaBBcc, aaBbCC, aaBbCc,

aaBbcc, aabbCC, aabbCc, aabbcc,

 */

 noisegenerator();

 counterC = 1;

 for (counter = 1; counter < (subpopnumber+1); counter++) {//per subpop

 for (counterB = 1; counterB < (subpop[counter].popsize +1); counterB++) {//per ind

 //resetting the pheno var

 pheno = 0;

 pheno2 = 0;

 //here are the main effects for:

 //Q1

 //pheno = pheno + single_QTL(subpop[counter].ind[counterB], 6,1000,0,0);

 // pheno = pheno + single_QTL(subpop[counter].ind[counterB], 9, 10,10,0);

 // pheno2 = pheno2 + single_QTL(subpop[counter].ind[counterB], 6, 1,0.5,0);

 // pheno2 = pheno2 + single_QTL(subpop[counter].ind[counterB], 9, 1,1,0);

 //Q2

 //pheno = pheno + single_QTL(subpop[counter].ind[counterB], 2, 1,2,3);

 //here are the two way interaction for:

 //Q1 and Q2

 pheno = pheno + two_way(subpop[counter].ind[counterB],

6,9,500,0,500,0,1000,0,500,0,500);

 //here are the three way interaction for:

69

 //Q1 and Q2 and Q3

 //pheno = pheno + three_way(subpop[counter].ind[counterB],

2,6,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1000,0,0,0,0,0,0,0,0,0,0,0);

 //pheno2 = pheno2 + three_way(subpop[counter].ind[counterB], 2,4,10,

phenoval2,phenoval2,0,0,0,0,(phenoval2-2.0),(phenoval2-2.0),0,(phenoval2-0.5),(phenoval2-

0.5),0,0,0,0,(phenoval2-1.5),(phenoval2-1.5),0,0,0,0,0,0,0,0,0,0);

 //ONLY ADDING NOISE (the int_noise array has a noise parameter for each

individual)

 pheno = pheno + int_noise[counterC]/noise_scale*(sqrt(noise_inflation)); //see

noise scale above

 counterC++;

 pheno2 = pheno2 + int_noise[counterC]/noise_scale*(sqrt(noise_inflation));//see

noise scale above

 counterC++;

 //Adding the phenotype to the ind

 subpop[counter].ind[counterB].phenotype = pheno;

 subpop[counter].ind[counterB].phenotype2 = 0;//pheno2;

 }

 }

 //will do this for all the individuals in the whole population.

}

//function: this function is to record/write some information IN A FILE

void outputfunction(int which_gen_rec) {

 //var

 FILE * outfile;

 char outfilename[256] = {0};

 char gennum[5];

 int counter, counterB, counterC, counterD;

 strcat(outfilename,"Generation_");

 sprintf(gennum,"%d",which_gen_rec);

 strcat(outfilename, gennum);

 strcat(outfilename,"_genotypes.txt");

 //cout << "\nQTL array data TEST\n";

 //for (counter = 1; counter< (qtl_number+1); counter++) {

 // cout << counter <<" \t";

 // cout << qtl[counter].qtl_pos << "\n";

 //}

 outfile = fopen(outfilename,"w");

// fprintf(outfile,"Generation, %d",which_gen_rec);

 fprintf(outfile, "Individual\tPopulation\tSex\tFather\tMother\tPhenotype\tPhenotype2");

70

 for (counter = 1; counter < (qtl_number +1); counter++) { //writing the QTLs first in the format

Qnumber,positio in haplotype

 fprintf(outfile, "\tQ%d_%d", counter, qtl[counter].qtl_pos);

 // fprintf(outfile, "\tQ%d,%d", counter, qtl[counter].qtl_pos);

 }

 counterD = 1;

 for (counter = 1; counter<(haplotype_size+1); counter++) { //writing the names excluding the

QTls

 if (counter == (qtl[counterD].qtl_pos)) {

 counterD = counterD + 1;

 }else {

 fprintf(outfile,"\t%d",counter-(counterD)+1);

 // fprintf(outfile,"\t%d",counter);

 }

 }

 /* Cant print burnin Gen before fixed

 if (burnin_generations == 0) {//founder generation

 for (counterB = 1; counterB < (founderpop.popsize +1); counterB++) {//per ind

 fprintf(outfile,

"\n%d\t%d\t%d\t%d\t%d\t%f\t%f",counterB,founderpop.ind[counterB].subpopID,founderpop.ind[counter

B].sex,0,0,founderpop.ind[counterB].phenotype,founderpop.ind[counterB].phenotype2);

 for (counterC=1; counterC < (qtl_number +1); counterC++) {

 fprintf(outfile,

"\t%d%d",founderpop.ind[counterB].haplotypeA[qtl[counterC].qtl_pos],founderpop.ind[counterB].haplot

ypeB[qtl[counterC].qtl_pos]);

 }

 counterD = 1;

 for (counterC=1; counterC < (haplotype_size+1); counterC++) {

 if (counterC == (qtl[counterD].qtl_pos)) {

 counterD = counterD + 1;

 }else {

 fprintf(outfile,

"\t%d%d",founderpop.ind[counterB].haplotypeA[counterC],founderpop.ind[counterB].haplotypeB[count

erC]);

 }

 }

 }

 }else

 */

 //non founder generation

 for (counter = 1; counter < (subpopnumber+1); counter++) {//per subpop

 for (counterB = 1; counterB < (subpop[counter].popsize +1); counterB++) {//per

ind

 fprintf(outfile,

"\n%d\t%d\t%d\t%d\t%d\t%f\t%f",counterB,subpop[counter].ind[counterB].subpopID,subpop[counter].in

d[counterB].sex,subpop[counter].ind[counterB].father,subpop[counter].ind[counterB].mother,subpop[cou

nter].ind[counterB].phenotype,subpop[counter].ind[counterB].phenotype2);

71

 for (counterC=1; counterC < (qtl_number +1); counterC++) {

 fprintf(outfile,

"\t%d%d",subpop[counter].ind[counterB].haplotypeA[qtl[counterC].qtl_pos],subpop[counter].ind[counter

B].haplotypeB[qtl[counterC].qtl_pos]);

 }

 counterD = 1;

 for (counterC=1; counterC < (haplotype_size+1); counterC++) {

 if (counterC == (qtl[counterD].qtl_pos)) {

 counterD = counterD + 1;

 }else {

 if (subpop[counter].ind[counterB].haplotypeA[counterC]

== 0 and subpop[counter].ind[counterB].haplotypeB[counterC] == 0) {

 fprintf(outfile, "\t%d", 1);

 }

 if (subpop[counter].ind[counterB].haplotypeA[counterC]

== 1 and subpop[counter].ind[counterB].haplotypeB[counterC] == 0) {

 fprintf(outfile, "\t%d", 2);

 }

 if (subpop[counter].ind[counterB].haplotypeA[counterC]

== 0 and subpop[counter].ind[counterB].haplotypeB[counterC] == 1) {

 fprintf(outfile, "\t%d", 2);

 }

 if (subpop[counter].ind[counterB].haplotypeA[counterC]

== 1 and subpop[counter].ind[counterB].haplotypeB[counterC] == 1) {

 fprintf(outfile, "\t%d", 3);

 }

 // fprintf(outfile,

"\t%d%d",subpop[counter].ind[counterB].haplotypeA[counterC],subpop[counter].ind[counterB].haplotyp

eB[counterC]);

 }

 }

 }

 }

 fclose(outfile);

}

//THE MAIN PROGRAM

int main (int argc, char * const argv[]) {

 //LOCAL VARIABLES

 string xfile,markerfile,founderfile,parentalfile;//the file name that needs to be opened

 char inttochar[40];

 bool exitnow; //use when quitting is ness

 bool xfileopen;//could the file be read correctly

 char switch_questions[256];

 int counter;

 //int counterB;

72

 //int record_fraction;//the number of generations in the simulation that info will be recorded for

 //BEGIN

 srand (time(NULL)); //making the randomizer slightly more random but can change to have a

seeding value...weird but true

 system("clear");//clear the terminal

 cout<< "Running QTL simulator v1 (Ronald Nelson):\n";

 //getting correct file to open (the showfile and openfunction would be better if together)

 xfileopen = false;

 exitnow = false;

 while ((exitnow==false) and (xfileopen==false)) {

 xfile = showfiles();//point to the main file to be opened

 if ((xfile == "q") or (xfile == "Q")) {

 exitnow = true; //quitting the progam

 }

 else {

 readmainfile(xfile,exitnow,markerfile,founderfile,parentalfile);

 }

 }//to repeat until the correct file is opend or the user quits

 if (markerfile == "SIMULATE_MAP_DATA") { //loading or creating marker and qtl info file

 cout << "\nSimulating founder dataset...\n";

 //make file according to user input, and save file

 //xfileopen = open the just created datafile

 }

 else {

 if (markerfile != "") {

 xfileopen = loadmap(markerfile);//opening and reading the markers and qtls

 }

 }

 if (founderfile == "SIMULATE_FOUDER_DATA") { //loading or creating the founder

genotypes if individual....

 cout << "\nSimulating founder dataset...\n";

 //make file according to user input, and save file

 //xfileopen = open the just created datafile

 }

 else {

 if (founderfile != "") {

 xfileopen = loadfounders(founderfile);//opening and reading the markers and qtls

 }

 }

73

 if (xfileopen==true){//only continue the program from here if the MARKER- and FOUNDER-

files was opened sucessfully

 show_marker_info();//numerical display of data

 plot_marker_info();//graphical display of data

 showpop(founderpop);

 if (parentalfile == "SIMULATE_PARENTAL_DATA") //----switch here between

loading parentals or creating parentals

 {//-----------------------START TO simulate parentals...default-----------------------

 cout << "Continue to simulate "<< subpopnumber <<" sub-populations

from founder population for " << burnin_generations << " generations to create parental lines (Y/N).\n";

 cin.getline(switch_questions,256);

 if ((strcmp(switch_questions, "y")==0) or strcmp(switch_questions,

"Y")==0){//continue only if user say yes

 /*setting the info array, this could be excluded completely if

needed but would

 be good to have for at least some generations.

 Could limit the number of gen when this is created but for now

 it is the same size as the number of gen*/

 info_per_gen_per_pop = new

saved_information*[burnin_generations+1];

 tot_fixed_loci = new int[burnin_generations+1];

 same_fixed_loci = new int[burnin_generations+1];

 sexratio = new int[burnin_generations+1];

 //---------These next lines are to create a empty new parental

population lines (and empty new offspring population holder arrays)--

 subpop = new population[subpopnumber+1];

 subpop_offspring = new population[subpopnumber+1];

 for (counter = 1; counter<(subpopnumber+1);counter++) {

 //parental

 sprintf(inttochar,"%d",counter);

 strcpy(subpop[counter].popname, "Population_");

//assigning string values

 strncat(subpop[counter].popname, inttochar,5);

//concatenating strings

 subpop[counter].popsize = subpopsize;

 create_empty_pop(subpop[counter],counter);

 // showpop(subpop[counter]);

 //offspring

 sprintf(inttochar,"%d",counter);

 strcpy(subpop_offspring[counter].popname,

"Offspring_Population_"); //assigning string values

 strncat(subpop_offspring[counter].popname,

inttochar,5); //concatenating strings

74

 subpop_offspring[counter].popsize = subpopsize;

 create_empty_pop(subpop_offspring[counter],counter);

 // showpop(subpop_offspring[counter]);

 }

 //----To reproduce for a number of generations, creating the

parental populations, ADD something here

 //record_fraction = 10; //percentage of generations for which the

information is recorded

 //record_fraction = (record_fraction/100)*burnin_generations;

 //REMOVE THIS REPEATER LATER WHEN ALL IS

TESTED

 // int repeats = 1;

 // int repcounter;

 // int samefix, difffix, totfix;

 // samefix = 0;

 // difffix = 0;

 // totfix = 0;

 // for (repcounter = 1; repcounter<(repeats+1);

repcounter++) {

 for (counter = 1; counter<(burnin_generations +1); counter++) {

//running for each generation!!!

 // cout << "\nGeneration "<< counter << "

";

 reproduce(counter);

 // selection_1();//first type of selection

 /* for (counterB = 1;

counterB<(subpopnumber+1);counterB++) {//internal checking things

 showpop(subpop[counterB]);

 showpop(subpop_offspring[counterB]);

 } */

 record_info_for_gen(counter);//recording some

information for the current generation

 phenotyping();

 outputfunction(counter);

 }//END of...reproduce function//for the amount of burnin gen

 //more repstuff

 //cout << "\nRepeat no: "<< repcounter << ", same fixed: "<<

same_fixed_loci[burnin_generations] << " (tot loci "<< haplotype_size<< ")";

 // if (same_fixed_loci[burnin_generations] == 1) {

 // samefix = samefix+1;

 // }

 // if (tot_fixed_loci[burnin_generations] == 1){

75

 // totfix = totfix +1;

 // }

 //difffix = totfix - samefix;

 //} //repeatruns end

 //cout << "\n\n Total Runs :" << repeats;

 //cout << "\n Total fixed :" << totfix;

 //cout << "\n Total unfixed :" << repeats-totfix;

 //cout << "\n same fixed :" << samefix;

 //cout << "\n different fixed :" << difffix;

 //repeater stuff till here

 plot_fixed_allel_freq(); //plotting the allelel freqs after

simulation

 //showing the last population

 // for (counterB = 1;

counterB<(subpopnumber+1);counterB++) {

 // showpop(subpop[counterB]);

 // }

 }//END of...to continue if the user has cheked the data before simulation

 }//------------------Here ends the simulation of the initial populations before the

experimental cross is done------

 else {//----start to load parentals------------------------

 cout << "Used when loading parental file. \n";

 }//-------end of loading parentals------------------------

 //DO THE CROSSES HERE IF STILL REQ

 // phenotyping();

 //----WRITING SOME OUTPUT HERE---

 //bool writeoutput = true;//just a switch

 // if (writeoutput==true) {

 //who gets reproduced, grandpar = burnin number, F1 = grandpar+1, F2 = F1+1

 // outputfunction(burnin_generations);//the grandparents or F0.

 //}

 }//END of...if the files was opened succesfully (xfileopen)

cout << "\n";

76

}//ENDING OF MAIN PROGRAM, RMN.

	Tittel: Evaluation of vGWAS, a test for determining scenarios of epistasis
	Navn: Yonatan Ayalew Mekonnen
	Institutt for: Department of animal and aquacultural sciences (IHA) Master Thesis 30 credits 2013

