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PREFACE 

This report is my master thesis for the conclusion of Master program in Bioinformatics and 

Applied Statistics at the Department for Chemistry, Biotechnology and Food Science, 

Norwegian University of Life Sciences, Norway 

This thesis is written to provide guidance for using Discrimination and Clustering analysis in 

SNP imputation. Imputation is a fairly new application for LDA and Clustering that has many 

facets that remain mysterious to the average person. People who have never used the LDA 

and Clustering may have major misconceptions about its content, use, and impact on 

Bioinformatics. People who have used the LDA and Clustering may only be familiar with a 

small portion of the information available to them. This thesis will seek to help familiarize 

people with some application of LDA and Clustering Analysis. 

Differing from most of the other studies on Genotype imputation, this analysis was performed 

using a new application of linear discrimination and clustering analysis rather than using the 

traditional Regression or Maximum likelihood approaches. The feasibility of the methods in 

predicting the missing SNP is discussed. 
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ABSTRACT 

The recent development of high-throughput systems for genotyping SNP in Eukaryote has led 

to an extraordinary amount of research activity, particularly in  areas  such  as  whole-

genome  selection  of  livestock  and  genome-wide association studies for detection of  

quantitative  trait loci (Van  Tassell  et al.,  2008). Recent technological advances allow us to 

rapidly genotype more than 10 million SNPs in an individual, accounting for 10% of the 

estimated number of common SNPs (more than 1% minor allele frequency) across the 

population. As a result of missing SNPs, true associations might be missed if the causal SNP 

is not genotyped or if the causal variant is an unknown variant. SNP imputation is important 

in reducing the cost of re-sequencing and  when  genotyping  all  considered  animals  may 

be  too  costly  and  sometimes  not feasible because DNA may not be available  for all 

animals. Computational algorithms and statistical methods have been developed to account 

for some of the unobserved variants. The main idea behind these methods is based on the 

observation that SNPs in close proximity to one another in the genome tend to be correlated, 

or in non-random association (linkage disequilibrium). Several powerful methods to impute 

missing SNP genotypes already exist that, apart from the genotypic information at the locus 

of interest, “using  only  pedigree   data”   (Gengler,  2007,   2008),   “only  surrounding  

markers” (FastPHASE; Scheet and Stephens, 2006), or both (Li and Jiang, 2003; Kong et 

al., 2008; Meuwissen and Goddard, 2010; Mulder et al., 2010b). The mixed model (BLUP) 

method presented by Gengler et al. (2007) uses BLUP to find the missing  gene content 

conditional  on  genotypic  information  of  relatives.  “Several articles have described 

comparisons of imputation methods with respect to computational efficiency and the 

accuracy of results” (Pei YF, 2008; Yu Z, 2007; Nothnagel M, 2009). Overall, MACH, 

BEAGLE, and IMPUTE have been shown to have a proximate similar accuracy, and all of 

these programs have been shown to outperform other methods for imputation such as FAST 

PHASE (Scheet P, 2006) and PLINK (Purcell S, 2007).  Consequently, we perceived a  

substantial  need  to  proposing  a new technique for SNP Imputation with applying linear 

Discrimination and Clustering Analysis Algorithms. To evaluate the factors potentially 

affecting imputation accuracy rates (ARs), we used simulated data sets to investigate the 

effects of Linkage disequilibrium (LD), Minor allele frequency (MAF) of un-typed SNPs, 

marker density (MD), reference sample size (n) and the different numbers of SNPs in every 

haplotype block, in imputation accuracy rate (AR) and the performance of linear 

discriminant analysis and clustering Analysis as a SNP imputation method. 

Key words: SNP Imputation, Clustering, Linear discrimination. 
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GLOSSARY OF TERMS 

Glossary of Genetic terms 

(prepared by Guardeep Sagoo, University of Sheffield, UK)  

Adenine (A): 

purine base that forms a pair with thymine in DNA and uracil in RNA. 

Allele:  

one of the possible forms of a gene at a given locus. Depending on the technology used to 

type the gene, it may be that not all DNA sequence variants are recognised as distinct alleles. 

Allele frequency:  

often used to mean the population relative frequency (i.e. proportion) of an allele. 

Base:  

(abbreviated term for a purine or pyrimidine in the context of nucleic), a cyclic chemical 

compound containing nitrogen that is linked to either a deoxyribose (DNA) or a ribose 

(RNA). 

Base pair (bp):  

a pair of bases that occur opposite each other (one in each strand) in double strand 

DNA/RNA. In DNA adenine base pairs with thymine and cytosine with guanine. RNA is the 

same except that Uracil tacks the place of thymine. 

Chromosome:  

the self-replication threadlike structure found in cell. Chromosomes, which at certain stage of 

meiosis and mitosis consist of two identical sister chromatids, joined at the centromere, and 

carry the genetic information encoded in the DNA sequence. 

Cytosine (C):  

pyrimidine base that forms a pair with guanosine in DNA. 

Deoxyribose:  

the sugar compound found in DNA. 

Diploid:  

have two versions of each autosome, one inherited from the father and one from the mother. 

Compare with haploid.  
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Dominant allele:  

result in the same phenotype irrespective of the other allele at the locus. 

Eukaryote:  

organism whose cells include a membrane-bound nucleus. Compare with prokaryote. 

Exons:  

parts of a gene that are transcribed into RNA and remain in the mature RNA product after 

splicing. An exon may code for a specific part of the final protein. 

Gamete:  

a sex cell, sperm in males, egg in females. Two haploid gametes fuse to form a diploid 

zygote.  

Gene:  

a segment of DNA that specifies a protein. 

Genome:  

all the genetic material of an organism.  

Genotype:  

the (unordered) allele pair(s) carried by an individual at one or more loci. A multilocus 

genotype is equivalent to the individual’s two haplotypes without the phase information. 

Guanine (G):  

purine base that forms a pair with cytosine in DNA. 

Haploid:  

has a single version of each chromosome. 

Haplotype:  

the allele at different loci on a chromosome. An individual's two haplotypes imply the 

genotype; the converse is not true, but in the presence of strong linkage disequilibrium 

haplotypes may be inferred from genotype with few errors. 

Haplotype block:  

A set of single-nucleotide polymorphisms (SNPs) on a single chromosome of a chromosome 

pair that are statistically associated and transmitted together when they are passed on from 



10 | P a g e  
 

parent to child. 

 

Heritability:  

the proportion of the phenotypic variation in the population that can be attributed to 

underlying genetic variation. 

Thymine (T): 

pyrimidine base that forms the pair with adenine in DNA. 

 

 

ABBREVIATIONS 

 

AMOVA:   Analysis of Molecular Variance 

 

ANOVA:   Analysis of Variance 

  

CI:             Confidence Interval 

 

DNA:         Deoxyribonucleic acid 

 

DH:           Doubled Haploids 

 

IBS:          Identical by State 

 

IBD:         Identity by Descent 

 

IIS:           Identity in State   

 

LS:           Least-Squares 

 

LDA:       Linear discriminant analysis 

 

LD:          Linkage Disequilibrium 

 

LLR:       Log-Likelihood Ratio 

 

MCAR:   Missing completely at random 

 

MD:        Marker density 

 

MNAR:   Missing Not at Random 
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PCA:       Principal Component Analysis 

 

REML:   Restricted Maximum likelihood 

 

SNP:       single Nucleotide Polymorphism 
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1 INTRODUCTION 

 

1.1 Background 

mputation is the substitution of some value for missing data, the practice of ‘filling in’ 

missing data with plausible values, is an attractive approach to analysing incomplete 

data. When substituting for a single value, it is known as "unit imputation"; when 

substituting for a component or a complete variable or item, it is known as "item imputation".  

After imputing all missing values, the dataset can then be technically analysed using normal 

methods for complete data. We should ideally take into our account that there is a greater 

degree of uncertainty than if the imputed values had actually been observed.  

There are many reasons behind why the data is missing, one nature of missing data could be 

‘missing completely at random’ (MCAR), and it may be because the equipment 

malfunctioned, or the data were entered in an uncorrected way. When some data are missing 

completely at random, it means that the probability that an observation    is missing is 

unrelated to the value of    or to the value of any other variables, e.g. Human HapMap would 

not be considered as MCAR if Whites were more likely to omit reporting genotype than 

African Americans. MCAR is an important consideration, because in this case the analysis 

remains unbiased. We may lose power for our design, but the estimated parameters are not 

biased by the absence of data. If data are not completely missing at random then they are 

classified as ‘Missing Not at Random’ (MNAR). When the data are MNAR then we have the 

problem of a biased dataset, and the only way to obtain an unbiased estimate of parameters is 

to model the missing-ness or to write a model that accounts for the missing data (Dunning 

and Freedman 2008).The traditional treatments for missing data could be one of the following 

techniques,  

A- The list-wise deletion: an entire record is excluded from analysis if any single value 

is missing. 

B- Random Within-Cell Hot-Deck: where a missing value was imputed from a 

randomly selected similar record. 

C- Nearest Neighbour (within cell) Hot-Deck: the missing value is imputed as the 

average of the covariate values of the nearest neighbours in the same data. 

D- Nearest Neighbour Cold-Deck: this uses information from a previous survey or 

historical information on different dataset. 

I 
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E- Cell Mean: here respondents are divided into classes. Then the cell mean for a 

particular class is used for all missing values in that class.  

F- Regression Methods: this method uses a regression model to predict the value to be 

imputed. 

 

In addition to the obvious advantage of allowing standard statistical methods of complete 

data analysis, applying Imputation in row data also has the important advantage of allowing 

the use of row information available from data collector but not available to an external data 

analyser such as a university social scientist analysing public information. This information 

may involve details and important knowledge about some characters of a group of people 

living somewhere sharing some Interests and Hobbies or may be this information coming 

from HR department from any company regarding some knowledge about interviewing 

procedures and reasons for nonresponse or any other important information for public-use 

files, or may be facts, such as street or post addresses of dwelling units, that cannot be placed 

on public-use files because of confidentiality restrictions. This kind of information, even 

though inaccessible to the user of a public-use file, can often improve the imputed values.  

One more advantage of imputation by the database editor is that the missing data problem is 

handling (solving) once, rather than many times by the final users (Data-consumers). This 

implies consistency and stability of the data-bases across users, and a consequent consistency 

of results from using the same statistical analyses. Usually when we are applying the same 

statistical analysis method (e.g., multiple linear regression) on apparently the same data-base 

this will resulting in different answers and conclusions because of the differences in the way 

that Data-users and consumers handle missing data. This situation leads to unnecessary 

confusion and wasted resources. Imputation by the database constructor leads to greater 

consistency, stability and thereby to reduced costs of this type. 

Just as there are obvious advantages to imputing one value for each missing value, there are 

obvious disadvantages of this procedure arising from the fact that the one imputed value 

cannot itself represent any uncertainty about which value to impute, if one value were really 

adequate, then that value was never missing. Hence, analyses that treat imputed values just 

like observed values generally systematically underestimate uncertainty, even assuming the 

precise reasons for nonresponse are known. Equally serious, imputation cannot represent any 

additional uncertainty that arises when the reasons for nonresponse are not known. The 

under-representation of uncertainty with imputation can be a major problem. 
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1.2 Multiple imputation 

In this approach, each missing value is imputed several, say M, times and the variation 

between the M imputation is used to estimate the increase in variance due to nonresponse and 

imputation. Multiple imputation was originated by Rubin (1978, 1987). Unlike single 

imputation (filling in a single value for each missing one), multiple imputation was meant 

from the outset as a method to provide not only a solution to the missing data problem by 

imputation but also to reflect the uncertainty inherent in the imputations. The aim of multiple 

imputation is to provide multiply imputed data sets that should enable researchers to perform 

different kinds of analyses and obtain inferences with valid standard errors, confident 

intervals, and statistical test, in a simple way. Standard analyses are performed on each of the 

M data sets, and the results are combined using relatively simple formulae to obtain valid 

inferences. 

The SAS code for multiple imputation algorithms can be found in Appendix-B (Paul D. 

Allison, 2005). 
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1.3  Literature review 

 

1.3.1 Genome-wide imputation  

Recent technology in high-throughput genotyping estimated that the human genome contains 

more than 7 million common single nucleotide polymorphisms (SNPs) with minor allele 

frequencies (MAF) about 5% (Barrett JC., Cardon L. R., 2006), and only a small fraction of 

these SNPs can be directly assayed using current high-density microarrays. Due to the 

linkage disequilibrium (LD) among neighbours markers, many un-typed or missing SNPs are 

highly correlated with one or more surrounding nearby assayed SNPs. Therefore, testing 

assayed SNPs for association to traits of interest will have some power to detect or prediction 

of un-typed causal SNPs. Further, if the assayed SNPs are uniformly distributed across the 

genome, maximal genetic coverage can be achieved (Hao K., Schadt E. E., 2008). The same 

in genome-wide association studies, where significant signals suggest association between 

phenotypes and causal SNPs in the surveyed genome region. To improve this type of 

association analysis, the genotypes of missing SNPs can be imputed or predicted based on 

nearby markers (SNP) and then directly tested for association with phenotypes of interest 

(Servin B., Stephens M., 2007). The main targets behind such studies are 

1- Give researchers the possibility to combine experiments carried out on different. 

microarrays e.g. Affymetrix and Illumina arrays for genome-wide meta-analyses. 

2- Allow researchers to easily replicating or comparing previous genes Discovered 

across array types. 

3- Enables the investigation across a large number of SNPs to detecting the fine structure 

of the association peak, improving interpretation of results and location of the causal 

SNP. 
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1.3.2 Discriminant-based Imputation.  

Discriminant-based imputation is a model based method for categorical or binary variables. 

The detailed imputation method is described in the methodology section (Applied 

multivariate statistical analysis; R. A. Johnson, D. W. Wichern, 2007). 

When most of the predictor variables arc numerical an alternative method for logistic or 

polytomous regression imputation is Discriminant imputation. Categorical predictor variables 

are replaced by their corresponding dummy variables. The starting point of this method is the 

rule of Bayes  

 (   | )  
 ( |   ) (   )

∑  ( |   )   
    (   )

     ……. (the rule of Bayes) 

            (where in our case we using 1 and 2 only (as minor or major) ) 

Under the assumption that    (          ) given y=j is normally distributed with a mean 

vector μj and covariance matrix Σ, the imputation model is  

 (   | )  
 ( |     )  

∑  ( |     )  
   
   

  

πj is the probability that y = j and   ( |   ) is the probability density function of a 

multivariate normal distribution with a mean vector μ and covariance matrix Σ.  

 

Discriminant imputation 

Let y be a categorical imputation variable with categories 1 and 2 and (x1, x2,…, xp) the set 

of predictor variables resulting from replacing any categorical predictor variable of y  (major 

and minor allele) by its corresponding dummy variables (1 and 2). Let nj be the number of 

values of Yobs in category j, f ( |   ) the probability density function of the multivariate 

normal distribution with mean vector μ and variance Σ, respectively. Under the assumption 

that the conditional probability distribution of      (          )    given y = j is a 

multivariate normal distribution with mean vector μj and covariance matrix Σ the underlying 

statistical model of discriminant imputation is given by 

 (   | )  
 ( |     )  

∑  ( |     )  
   
   

  

The previous model follows directly from substitution of  ( |   )   ( |     ) and 

 (   )     into the formula of Bayes. 
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1.3.3 Nearest-neighbour (Clustering-based Imputation) 

Nearest-neighbour imputation method (NIM) is an alternative form of hot-deck donor 

imputation. With this imputation, values from one record (the “donor”) are used to replace 

the erroneous and missing values in another record (the “recipient”). The name “hot-deck” 

indicates that the donor and the recipient come from the same data set. Only records that are 

error-free may be used as donors. 

To apply nearest-neighbour hot-deck imputation, a distance function D(i,k) must be defined 

that the measures the distance between two units i and k, where i is the item non-respondent 

and k is an arbitrary item respondent. The distance function D(i,k) can be defined in many 

different ways. A frequently used general distance function is the so called Minkowski 

distance: 

 (   )   (∑ |       |
 

 
)

 
 

 

Where the x variables are numerical, and the sum is taken over all auxiliary variables; xij (xkj) 

denotes the value of variables xj in record i (k). Let the smallest value of D(i,k) be attained for 

item respondent d [d=arg mink D(i,k)], then respondent d is said to be the nearest-neighbour 

of the item non-respondent i and becomes its donor. For z=2 the Minkowiski distance is the 

Euclidean distance and for z=1 it is the so-called city-block distance. For larger z, large 

difference between xij and xkj are “punished” more heavily. In this Study we will use the 

Euclidean distance. 

Practically, we divided the dataset (including the records with missing values) into (n) 

clusters. Next, missing values of an instance i are patched up with the plausible values 

generated from K’s cluster. The following experiments will test the performance of the 

proposed method in genotype imputation task. 

The Advantages of Nearest-neighbour imputation (NIM) 

 The NIM works fast in practice. A limited number of imputation action is generated, 

using a limited number of donors, and one of these imputation actions is then selected. 

 The NIM is able to handle numerical and categorical data simultaneously. At the time 

NIM was developed, all existing regression-based applications could handle either 

numerical data or categorical data, but not a combination (cf. Bankier et al. 1994).  
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1.4 Aim of the study 

 

The general aim of this study is to test the performance of modern multivariate techniques 

like (linear discriminant and clustering analysis) in SNP imputation. But in genotype data 

there are many factors that affecting the imputation accuracy, this will be investigated by 

1- Testing linear discriminant imputation and clustering imputation in low and high 

Linkage disequilibrium genome regions (LD). 

2- Testing linear discriminant imputation and clustering imputation in different 

levels of Minor allele frequency genome regions (MAF). 

3- Testing linear discriminant imputation and clustering imputation in different 

levels Marker density regions (HD, LD). 

4- Testing linear discriminant imputation and clustering imputation with different 

Reference sample sizes (n). 

5- Testing linear discriminant imputation and clustering imputation with different 

Haplotype block sizes (K).  

N.B. We measure the Haplotype block size by counting the number of SNPs per 

haplotype block, not by Centimorgan.  
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2. MATERIALS AND METHODS 

       2.1 Material and Data-simulation  

Many datasets have been simulated for this study (See Table1), each Dataset consisted of a 

number of haplotype blocks (rows of individuals) and a number of SNPs markers (columns of 

variables), simulated with some constants parameters and only one varied parameter 

(parameter under investigation), for example: to investigate the effects of Minor allele 

frequency (MAF) of un-typed SNPs in imputation accuracy rate by a given imputation 

method, we simulate a different datasets with a constant correlation between SNPs, a constant 

reference sample size (n) and a constant number of SNPs in every haplotype blocks, but with 

a different levels of Minor allele frequency (MAF) of un-typed loci in each datasets, then we 

measured the differences in accuracy rate coming from using different dataset with different 

MAF. For more details we summarised “how did we simulate each dataset and why each one 

have their own parameters” in the following descriptions.     

- Dataset 1:  

- Simulated to investigate the effect of the different numbers of SNPs (markers) in each 

haplotype block in imputation Accuracy rate, in a region of low linkage disequilibrium. 

-Dataset1, consisted of 1000 haplotype blocks (1000 rows, 500 haplotypes as a training 

dataset and 500 haplotypes as a test dataset), with low correlation between SNPs = 0.2 (low 

average correlation between SNPs = low linkage disequilibrium region) and MAF = 0.5 

(maximal MAF). 

- And to investigate the effect of the different numbers of SNPs (markers) in each haplotype 

block, we measured the accuracy rate coming from 10 different imputation tests each one 

done by using different numbers of SNPs (markers) in each haplotype block (e.g. test 1 we 

used 4 SNPs surrounding the missing one, test 2 we used 9 SNPs surrounding the missing 

one and so on ..) (See figure 2.1) 
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                   Test 2: using 10 SNPs 

 

                Test 1: using 5 SNPs  

 

 1000 Haplotype 

 blocks, 500 as  

a training dataset  

and 500 blocks as 

a tested dataset  

Figure 2.1: small example to illustrating Dataset 1 

 

 

- To simulated dataset 1, we used the following “R-code" 

 

> library(mvtnorm)  ## Loading (mvtnorm) Package: These functions providing the density  

       function and a random number generator for the multivariate normal  

       distribution with specific mean and a covariance matrix (sigma). 

 

> nsim=1000;nSNP=100;rho=0.2 ##  A dataset with 1000 haplotype block, 100 SNPs  

       markers and a constant correlation between markers 

        = 0.2 (Not realistic, but we assume that haplotype  

       blocks were inherited as one locus with no  

       recombination between SNPs )   

 

> sigma= matrix(rho,ncol=nSNP,nrow=nSNP)  

> diag(sigma)=rep(1,nSNP)                                         ## A designing matrix for the  

           correlation  between SNPs  

 

 

> x <- rmvnorm(n=nsim, mean=rep(0,nSNP), sigma) ## Running the function with  

                      a given number of haplotype  

          blocks (n), mean (mean),  

             and correlation between  

             SNPs(sigma). 

 

U
n

-t
yp

ed
 S

N
P
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> Dataset_1=apply(x,2,function(x) 1*(x<0)+2*(x >= 0)) 

           ## This function (apply) is implemented here to  

                convert the continuous variable to a discrete  

                            variable (‘1’ and ‘2’ for minor and major allele  

                frequencies ).  

 

>cc=paste("snp",1:nSNP,sep="")     

> colnames(Dataset_1)=cc          ##  columns names 

 

>save(Dataset_1,file=" Dataset_1.RData")  ##  Saving dataset  

 

(See appendix-A). 

 

- Dataset 2:  

- Simulated to investigate the effect of the different numbers of SNPs (markers) in each 

haplotype block in imputation Accuracy rate, in a region of High linkage disequilibrium. 

 - Dataset2 Consisted of 1000 haplotype blocks (1000 rows, 500 haplotypes as a training 

dataset and 500 haplotypes as a test dataset), with high correlation between SNPs = 0.8 (high 

linkage disequilibrium region) and MAF = 0.5 (maximal MAF). 

- And to simulate dataset 2, we used the previous “R-code" with changing the value of (rho) 

in sigma (correlation matrix) from 0.2 to 0.8. For more detail (See appendix-A).  

 

 

 

- Dataset 3:  

- Simulated to investigate the effects of Minor allele frequency (MAF) of un-typed SNPs in 

imputation accuracy rate. 

- We divided our dataset 3 into 10 different parts, each part consisted of 100 haplotype blocks 

(100 rows, 50 haplotypes as a training dataset and 50 haplotypes as a test dataset), with 10 
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SNPs in each haplotype block and low correlation between SNPs = 0.2 (to capture the major 

variation due to MAF, as we found previously from (dataset 1) that the variation in Accuracy 

rate is huge when using low correlation between only 10 SNPs in each haplotype block ), 

then we varied the MAF of un-typed SNPs in all different 10 parts (e.g. part 1 with 

MAF=0.01, part 2 with MAF=0.02, part 3 with MAF=0.04, part 4 with MAF=0.06, part 5 

with MAF=0.08, part 6 with MAF=0.1, part 7 with MAF=0.2, part 8 with MAF=0.3, part 9 

with MAF=0.4, part 10 with MAF=0.49) (See figure 2.2)) 

N.B. “MAF is an attribute of a SNP, but here we simulated empirical datasets to test the 

performances of our methods under different conditions of genotype datasets with different 

parameters” 

 

 

part 1: 100 haplotypes, MAF=0.01    

 

part 2: 100 haplotypes, MAF=0.02    

 

parts 3, 4, 5, 6, 7, 8 and part 9 

 

part 10: 100 haplotypes, MAF=0.49    

                  Figure 2.2: small example to illustrating Dataset 2. 

- Then we simulated this dataset by “R" program, using the following code, for example: to 

simulate (part one) in Dataset 3 we used the next loop  

nsim=100                        ##   number of Haplotype blocks  

part1=rep(0,nsim)                     

for (i in 1:nsim){ 

  p=pmin(rbeta(1,3,7),0.05)     ## for more details about “beta function”  

        (see appendix-A) 

  part1[i]=sample(1:2,1,prob=c(p,1-p),replace=T) 

} 
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The previous loop will give us a vector (of one SNP locus) containing 100 variables (minor 

and major alleles) with a frequency of 0.05 of minor alleles and 0.95 of major alleles.  

For more details (see appendix-A). 

- Dataset 4:  

- Simulated to investigate the effects of marker density (MD) in imputation accuracy rate. 

- In this case we duplicate the Dataset to 10 different datasets, each one varied from the 

others in their correlation between SNPs, but constants with other parameters. 

- Each dataset Consisted of 1000 haplotype blocks (1000 rows, 500 haplotypes as a training 

dataset and 500 haplotypes as a test dataset), with 10 SNPs in each haplotype block and MAF 

= 0.50. 

- To simulated dataset 4 we using “R-code" from Dataset 1 simulation-code. 

 

 

- Dataset 5: 

- Simulated to investigate the effects of reference sample size (n) in imputation accuracy rate. 

- In this case to investigate the effects of reference sample size (n), we divided our dataset 

into 9 sup-datasets:  9 training datasets and 9 test datasets.  

 Sup-datasets 1: consisted of 100 haplotypes as training-dataset and the rest 900 

haplotypes as test-dataset.  

 Sup-datasets 2: consisted of 200 haplotypes as training-dataset and the rest 800 

haplotypes as test-dataset. 

and so on until the sup-datasets 9 

 Sup-datasets 9: consisted of 900 haplotypes as training-dataset and the rest 100 

haplotypes as test-dataset. 

- Each Test consisted of 1000 haplotypes and 10 SNPs, with correlation between SNPs = 0.20 

and MAF =0.10. 

- And to divide such dataset we used the following “R-code". 
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Training_1 <-(as.data.frame(Dataset_5[1:100,])) 

Test_1 <-(as.data.frame(Dataset_5[101:1000,])) 

 

Table 1: Presentation of all datasets used in imputation experiment. 

Dataset Test Correlation MAF

% 

No. haplotypes No. SNP 

1 No. of SNPs in (LLD) region 0.2 49 1000 Vary 

2 No. of SNPs in (HLD) region 0.8 49 1000 Vary 

3 Minor allele frequency (MAF) 0.2 Vary 1000 10 

4 Marker density (MD) Vary 49 1000 10 

5 Reference sample size (n) 0.2 10 1000 10 
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2.2 Methods and implementation 

2.2.1 Linear discriminant analysis 

Linear discriminant analysis (LDA): is sometimes known as Fisher's linear discriminant 

analysis, after its inventor, Ronald A. Fisher, who published it in The Use of Multiple 

Measures in Taxonomic Problems (1936). It is typically used as a feature extraction step 

before classification. LDA and the related Fisher's linear discriminant are methods used in 

statistics, pattern recognition and machine learning to find a linear combination of features 

which characterizes or separates two or more classes of objects or events. The resulting 

combination may be used as a linear classifier or, more commonly, for dimensionality 

reduction before later classification. This method maximizes the ratio of between-class 

variance to the within-class variance in any particular data set thereby guaranteeing maximal 

separability. LDA doesn’t change the location but only tries to provide more class 

separability and draw a decision region between the given classes. 

Different features of functional signal may have different significance for recognition and 

may not be independent. Classical linear discriminant analysis provides a way to combine 

such features in a discriminant function. Such a function, when applied to a pattern, yields an 

output that is an estimate of the class membership of this pattern. The discriminative 

technique provides minimization of the error rate of classification (Afifi and Azen, 1979). 

Let us assume that any given variables of SNPs (in a given haplotype block) can be described 

by vector X of p characteristics (x1, x2,…, xp), that can be measured (x1=1 for major allele and 

x1=2 for minor allele) . The linear discriminant analysis procedure finds a linear combination 

of the measures (called the linear discriminant function or LDF), that provides maximum 

discrimination between major alleles (class 1 or ’ π1’) and minor alleles (class 2 or ‘π2’).  

  ∑     
 
      ……..  (LDF) 

The LDF classifies X into class 1 if Z > c and into class 2 if Z < c. The vector of coefficients 

(          ) and threshold constant c and derived from the training set by maximizing the 

ratio of between-class variation of   to the within-class variation and are equal to (Afifi and 

Azen, 1979):  
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 ⃗     ( ⃗⃗⃗   ⃗⃗⃗ )  

And 

 ⃗   ⃗( ⃗⃗⃗   ⃗⃗⃗ )    

Where  ⃗⃗⃗  are the sample mean vectors of characteristics for class 1 and class 2, respectively; 

  is pooled covariance matrix of characteristics 

  
 

       
(     )  

In which Si  are estimated covariance matrices and ni is the sample size of class i. Based on 

these equations, we can calculate the coefficients of the LDF and threshold constant c using 

the values of characteristics of major and minor alleles from the training datasets and then 

test the accuracy of the LDF on the test dataset. The significance of a given characteristics or 

a set of characteristics can be estimated by the generalized distance between two classes 

(called the Mahalanobis distance), given by  

   ( ⃗⃗⃗   ⃗⃗⃗ )
    ( ⃗⃗⃗   ⃗⃗⃗ )  

Which is computed based on values of the characteristics in the training dataset of classes 

1(major alleles) and 2(minor alleles). 

 

 

 

 

 

 

 

 

 



27 | P a g e  
 

Implementation 

Example 3.1 (a set of training and test SNPs-genotypes datasets from our simulated dataset) 

Consider two groups of alleles in SNP3: π1, minor allele (with number 1), and π2, those 

major allele (with number 2).  The training-dataset consisted of 5 different SNP genotyped 

(5 variables). We want to use this training dataset to construct a classification rule (equation) 

which can be used to classify SNP3 in a new dataset (test dataset) where SNP3 is missing. 

(See table 3.2.2 and 3.2.3) 

Table 3.2.2: Training dataset 

Hap. SNP1 SNP2 SNP3 SNP4 SNP5 

1 2 1 2 1 1 

2 1 1 1 2 2 

3 2 2 1 1 2 

4 1 1 2 1 1 

5 1 1 2 2 2 

Table 3.2.3: Test dataset  

Hap. SNP1 SNP2 SNP3 SNP4 SNP5 

6 1 1 ? 1 2 

7 2 2 ? 1 2 

 

R commands  

lda(SNP3 ~ SNP1 + SNP2 + SNP4 + SNP5, data = Training) 

Coefficients of linear discriminants: LD1 

SNP1  1.939638e-16  

SNP2 -1.718108e+00 

SNP4 -1.145405e-01 

SNP5 -1.489027e+00 

 

So the LDA model should be  

 

SNP3 ≈μ+SNP1 (1.939638e-16) +SNP2 (-1.718108e+00) +SNP4 (-

1.145405e-01) + SNP5 (-1.489027e+00) + e 

 

e: error 

Now, in order to identify the missing SNP number 3 in the Test dataset, e.g. haplotype 

number 6  

predict(DAModel.5, data.frame('SNP1'=1, 'SNP2'=1, 'SNP4'=1, 

'SNP5'=2)) 

$class 

[1] 2 

So the SNP3 in haplotype 6 (record no. 6) expected to   2 (major allele class). 
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2.2.2 Clustering analysis 

Grouping, or clustering, is distinct from the classification or discrimination discussed in the 

previous method. Classification pertains to a known number of groups, and the operational 

objective technique in that no assumptions are made concerning the number of groups or the 

group structure. Grouping is done on the basis of similarities or distances (dissimilarities).The 

inputs required are similarity measures or data from which similarities can be computed.   

To summarize, the basic objective in cluster analysis is to discover natural grouping of the 

items (or variables). In turn, we must first develop a quantitative scale on which we measure 

the association (similarity) between objects.  

Similarity measures 

Most efforts to produce a rather simple group structure from a complex data set require a 

measure of “closeness,” or “similarity.” There is often a great deal of subjectivity involved in 

the choice of a similarity measure. Important considerations include the nature of the 

variables (discrete, continues and binary), scales measurements (nominal, ordinal, interval 

and ratio), and subject matter knowledge. 

When items (unit or cases) are clustered, proximity is usually indicated by some sort of 

distance. By contrast, variables are usually grouped on the basis of correlation coefficients or 

similar measures of association. 

Distance and similarity coefficients for pair’s items  

Distance: straight line or Euclidean. 

If we consider the point     (      ) in the plan, the straight -line distance, (   ), from P 

to the origin     (   )is, according to Pythagorean theorem,   (   )   √  
    

  

            

        (      )  

                           (   )   √  
    

  

                                                                        

  (   )                                                 

                                       

          Figure 3.1 Distance given by the Pythagorean Theorem 
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The situation is illustrated in Figure 3.1 In general, if the point P has p coordinates so the 

   (            ), the strait line distance from P to the origin    (   ) is  

  (   )   √  
    

           
   ---------- (3.1) 

All points(            ) that lie a constant squared distance, such as c
2
, from the origin 

satisfy the equation  

   (   )     
    

           
     ------ (3.2) 

Because this is the equation of a hypersphere (a circle if p =2), points equidistant from the 

origin lie on a hypersphere. 

The strait-line distance between two arbitrary points P and Q with coordinates 

   (            ), and    (            ) is given by 

   (   )   √(     )  (     )        (     )
 
                             -------- (3.3) 

Using Matrix and vector notations 

   [            ], and     [            ] is given by 

  (   )   √(     )  (     )        (     )
 
 

  √(   ) (   )    -----------   (3.4) 

The statistical distance between the same two observations is of the form  

   (   )    √(   )    (   )      -----------  (3.5) 

Ordinary A =S
-1, 

where S contain the sample variances and co-variances. However, without 

prior knowledge of the distinct groups, these sample quantities cannot be computed. For this 

reason, Euclidean distance is often preferred for clustering. 

Another distance measure is the previously mentioned Minkowski metric.  

  (   )    [∑ |     |
  

   ]
 

 ⁄     -------- (3.6) 



30 | P a g e  
 

For m = 1, d(x,y) measures the “city-block” distance between two point in p dimension. For 

m = 2, d(x,y) becomes the Euclidean distance. In general, varying m changes the weight 

given to large and smaller differences. 

  

Two additional popular measures of “distance” or dissimilarities are given by the Canberra 

metric and the Czekanowski coefficient. Both of these measures are defined for nonnegative 

variables only. We have 

 

 

Canberra metric:          (   )    ∑
|     |

(     )

 
       ---------- (3.7) 

 

Czekanowski coefficient:     (   )      
 ∑    (     )

 
   

∑ (     )
 
   

  --------- (3.8) 

  

Whenever possible, it is advisable to use “true” distance that is, distances satisfying the 

distance properties of d(P,Q) ≤ d(P,R)+d(R,Q) “triangle inequality”  where R is any other 

intermediate point, for clustering objects. On the other hand, most clustering algorithms will 

accept subjectively assigned distance number that may not satisfy, for example, the triangle 

inequality.   

Hierarchical clustering methods  

In my point of view, I found that the Hierarchical clustering methods (HLM) is the most 

suitable way to measure the distance and grouping the haplotype blocks into a clusters 

according to the SNPs markers variation. 

We can rarely examine all grouping possibilities, even with the largest and fastest computers. 

Because of this problem, a wide variety of clustering algorithms have emerged that find 

“reasonable” clusters without having to look at all configurations. 
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Hierarchical clustering techniques proceed by either a series of successive mergers or a series 

of successive divisions. Agglomerative hierarchical methods start with the individual object. 

Thus, there are initially as many clusters as objects. The most similar objects are first 

grouped, and these initial groups are merged according to their similarities. Eventually, as the 

similarities decreased, all subgroups are fused into single cluster.  

Division hierarchical methods work on the opposite direction. An initial single group of 

objects is divided into two subgroup such that the objects in one subgroup are “far from” the 

objects in the other. These subgroups are then further divided into dissimilar subgroup; he 

process continues until there are many groups as objects that is, until each object forms a 

group. 

The result of both agglomerative and division methods may be displayed in the form of a 

two-dimensional diagram known as dendrogram. As we shall see, the dendrogram illustrate 

the mergers or division that have been made at successive level. 

In this Thesis and in our application in SNP imputation, we shall concentrate on 

agglomerative hierarchical procedures and, in particular, linkage methods.  

Linkage methods are suitable for clustering items, as well as variables. This is not true for all 

hierarchical agglomerative procedures. We shall discuss, in turn, single linkage (minimum 

distance or nearest neighbours), complete linkage (Maximum distance or farthest neighbour) 

and average linkage (average distance). The merging of clusters under the three linkage 

criteria is illustrated schematically in figure 3.2  

 

 

 

 

 

 

 

 

Figure 3.2 the three linkage methods. 
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From the figure, we see that the single linkage results when groups are fused according to the 

distance between their nearest members. Complete linkage occurs when groups are fused 

according to the distance between the farthest members. For average linkage, groups are 

fused according to the average distance between pairs of members in the respective test. 

In our study we select the complete linkage method because our data have only two type of 

variable (minor allele=1 and major allele =2) and we was searching for a method that can 

give us the maximum differences between clusters in our genotypic data. 

Complete linkage 

In complete linkage clustering: the distance (similarity) between clusters is determined by the 

distance (similarity) between the two elements, one from each cluster, that are most distant. 

Thus, complete distance ensures that all items in a cluster are within maximum distance (or 

minimum similarity) of each other. 

Implementation 

  

Example 3.2 (Clustering using complete linkage and the Euclidean distance) 

To illustrate the application of Clustering in SNP imputation, we consider the hypothetical 

correlation distances between pairs of 5 Haplotypes, each haplotype have (n) numbers of 

SNPs as follows: 

e.g correlation distance between haplotype 1 and haplotype 3: 

    (     )   [      (     )]     …… to simplifying the calculation  

   {   }   

    

    

    

    

    
[
 
 
 
 
 
  
 
 
  

 
 
  

 
  
( )   ]

 
 
 
 

 

At the 1
st
 stage, objects 3 and 5 are merged, since they are most similar. This gives the cluster (35). 

At stage 2, we compute  

d(35)1 = max {d31,d51} = max {3,10} = 10 

d(35)2 = max {d32,d52} = 10 

d(35)4 = max {d34,d54} = 9  

And the modified matrix becomes  
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   (  )

    

    

    
[
 
 
 
 
 
   
  
 

 
 

 
( )  

]
 
 
 
 

 

The next merger occurs between the most similar groups, 2 and 4, to give the cluster (24). 

At stage 3, we have 

d(24)(35)  = max {d2(35),d4(35)} = max {10,9} = 10 

d(24)1 = max {d21,d41} = max {9,6} = 9 

And the distance matrix 

(  )

(  )
 

[
 
   
    

] 

The next merger produces the cluster (124). At the final stage, the group (35) and (124) are merged as the single 

cluster (12345) at level  

d(124)(35)  = max {d1(35),d(24)(35)} = max {10,10} = 10 

The dendrogram is given in Figure 3.3 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 complete linkage dendrogram for distances between five haplotypes 

R commands 

 hclust(dist(model.matrix(~-1 + 

hap1+hap2+hap3+hap4+hap5,Dataset)), method= "complete") 

 plot(HClust.1, main= "Cluster Dendrogram for Solution 

HClust.1", sub="Method=complete;Distance=euclidian") 
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 Dataset$hclus.label <- assignCluster(model.matrix(~-1 + hap1 + 

hap2 + hap3 + hap4 + hap5, Dataset), Dataset, cutree(HClust.1, 

k = 3)) 

The last line to add the cluster number, or to assign every haplotype to its cluster as follows 

Hap. SNP1 SNP2 …. SNPn Cluster 

1 2 1 …. 1 1 

2 1 1 …. 2 2 

3 2 2 …. 2 3 

4 1 1 …. 1 2 

5 1 1 …. 2 3 

 

In this case we can use this result in imputation the missing SNPs as follows: 

Any missing SNP in a given haplotype can be substituted with a known SNP in another 

haplotype sharing the same cluster, e.g. if a haplotype #3 have a missing SNP we can 

substitute it with the same SNP in the Haplotype #5 as they are in the same cluster.       
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2.3 Validation 

  The holdout method 

The holdout method is the simplest method of cross validation. Each data set is split into two 

parts or sets, called the training-dataset (reference data-set) and the test-dataset. In LDA the 

prediction model is fit using the training data-set only. But in Clustering the prediction model 

is fit using the training data-set and the Test data-set. Usually we using 50% training data-set 

in this study, except in the last experiment where we measuring the effect of the size of the 

training dataset (where we varying the size of the training dataset (n)). 

Then the same model is used to predict the outcome values for the data in the test data-set 

(only in LDA, were it has never seen these output values before). 

The errors it makes (when we using the model to predict the outcome) are accumulated to 

give the mean absolute test set error, which is used to evaluate the model, in other word, the 

accuracy of this model counted by measuring the correlation between the true and the 

predicted value of the imputed SNP vector.  

 

 

 

 

The advantage of this validation method is that It gives us the possibility to measure how 

much the size of the training-dataset (reference data-set) can affect the imputation accuracy, 

because in real life usually the data set contain some completed data (which can considered 

as training-dataset) and the rest have some missing values (considered as test-dataset) 

However, the evaluation usually depends heavily on which data points end up in the training-

dataset and which end up in the test-dataset. And estimating the error rate will be 

misleading if we happen to get an “unfortunate” split. 

 

 

 

 

 

 



36 | P a g e  
 

4.0 RESULTS  

  4. 1 Comparison between the performance of LDA and Clustering 

analysis in SNP imputation.  

1- Figure 1: shows the effects of size of haplotype block (number of SNPs per haplotype), 

on imputation accuracy rate (AR) using low and high linkage disequilibrium dataset 

(LLD, HLLD). When LDA is used for imputation with constant MAF =49% and low 

linkage disequilibrium data the accuracy rate ranging from 60% (using 5 SNPs) to 70% 

(using 100 SNPs), while with High linkage disequilibrium data the accuracy rate ranging 

from 88% (using 5 SNPs) to 93% (using 100 SNPs). This is a high LD dataset AR is 

generally substantially higher and there is less improvement by increasing the number of 

SNPs. (See appendix-C, Table 4.1). 

 

 

 

 
Figure 1: The effects of using Low and High linkage disequilibrium dataset on Accuracy rate of LDA in  

                 imputation. 
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2-  Figure 2: Shows the effects of number of SNPs surrounding the missing one, in 

imputation accuracy rate (AR) using low and high linkage disequilibrium dataset (LLD, 

HLD). When clustering is used for imputation with constant MAF =49% and low linkage 

disequilibrium data the accuracy rate ranging from 55% (using 5 SNPs) to 71% (using 

100 SNPs), while with High linkage disequilibrium data the accuracy rate ranging from 

75% (using 5 SNPs) to 91% (using 100 SNPs). Generally clustering is less accurate than 

LDA and need more SNPs to reach high accuracy. (See appendix-C, Table 4.2). 

 

 

 
     Figure 2: The effects of no.SNPs using Low and High linkage disequilibrium dataset on accuracy rate of  

                     Clustering in imputation. 
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3 - The effects of Minor allele frequency (MAF): Figure 3. 

Using LDA with constant correlation between SNPs = 0.10 and using the surrounding 10 

SNPs the accuracy rate ranging from 0.99 (using MAF=0.10) to 0.75(using MAF=0.49), (See 

Figure 3). While using Clustering with constant correlation between SNPs = 0.10 and using 

the surrounding 10 SNPs the accuracy rate ranging from 92% (using MAF=0.10) to 69% 

(using MAF=0.49). It seems that AR is much more accurate when MAF is low compared to 

when it is high. A lower MAF usually corresponds to a stronger LD with nearby markers and 

the recombination plays a primary role in LD decay (Yu-Fang Pei., 2008). (See appendix-C, 

Table 4.3). 

 

 
Figure 3: The effects of Minor allele frequency on accuracy rate using LDA and Clustering.  
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4 - The effects of marker density (MD): Figure 4. 

Using LDA With constant MAF =50% and using the surrounding 10 SNPs the accuracy rate 

ranging from 61% (using Corr. =0.10) to 97% (using Corr. =0.90). (See Figure 4) While 

using Clustering with constant MAF =49% and using the surrounding 10 SNPs the accuracy 

rate ranging from 55% (using Corr. =0.10) to 94% (using Corr. =0.90). (See appendix-C, 

Table 4.4). 

 

Here, we measure the effect of Marker density by varying the correlation between markers 

(SNPs). 

 

 
Figure 4: The effects of marker density on accuracy rate using LDA and Clustering. 
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5 - The effects of reference sample size (n): Figure 5. 

Using LDA, with constant MAF =10%, constant correlation between SNPs = 0.10 and using 

the surrounding 10 SNPs the accuracy rate ranged from 72% (using n =0.10) to 83% (using n 

=0.90), while using Clustering, with constant MAF =10%, constant correlation between SNPs 

= 0.10 and using the surrounding 10 SNPs the accuracy rate ranged from 33% (using n 

=0.10) to 79% (using n =0.90). This shows that clustering needs higher (n) to reach high 

accuracy. (See appendix-C, Table 4.5). 

 

 
Figure 5: The effects of reference sample size on accuracy rate using LDA and Clustering. 
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5. DISCUSSION AND CONCLUSION 

 

This study compared two different approaches (Discriminant-based SNP imputation and 

Nearest-neighbour or Clustering-based SNP imputation) using haplotype blocks instead of 

individual markers or all available markers. The average number of SNPs per haplotype 

blocks varying from 5 SNPs (in low LD region) to 100 (in High LD region). To investigate 

the performance of these two methods we simulated a group datasets each one simulated to 

test the effects of Linkage disequilibrium (LD), Minor allele frequency (MAF) of un-typed 

SNPs, marker density (MD), reference sample size (n) and the different numbers of SNPs in 

every haplotype block, in imputation accuracy rate (AR) and the performance of The Linear 

discriminant analysis and Clustering Analysis as a SNP imputation method. The dataset was 

also split in a training dataset and test dataset. The methods were validated using the holdout 

method then measuring the correlation between the true and imputed SNP in test dataset.  

 

The performance of the elementary imputation methods, clustering and discrimination is 

generally good. However, to compare the performance of each algorithm with the currently 

used methods like in MACH, BEAGLE, and IMPUTE, more test experiments are needed to 

be conducted. Furthermore, to be sure that the algorithms are reliable, the same data sets 

should be used to run the experiments. Like any simulation study, this one has its limitations 

and advantages in some cases like: 

1- In low LD region, the clustering-based method can use the correlation between 

records instead of the correlation between markers in the imputation process. 

2- The Discriminant-based method also can handle numerical and categorical data 

simultaneously without rounding-up the results (which can affect the accuracy of 

imputation). 

But in optimal state of genotype data (in High LD, low MAF, and high density haplotype 

blokes) both methods (Clustering and discrimination) were working efficiently, and the 

accuracy can reached 89 %. 

Further studies and experiments are necessary before one can conclude whether the 

establishment of Discriminant-based and Clustering-based SNP imputation is feasible or not. 

The Clustering-based SNP imputation models show a lot of promise for SNP imputation (and 

in Microarray analysis in general) based on the associations between records instead of using 

the association between markers. 
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Results obtained had many similarities with those obtained both from Discriminant-based 

imputation and Clustering-based SNP imputation approaches in similar datasets. 

 

Linear discrimination can be considered as a complement algorithm for Clustering especially 

when applied to noisy data in what we can call “Cluster-based pattern discrimination CPD”, 

which differs from standard clustering by being simultaneous subspace selection via linear 

discriminant analysis (LDA). 

LDA is the most widely used in the two dimensions or categorised data. However, both 

statistical methods suffer from some deficiencies. Clustering analysis has the problem of 

selecting different values of K (i.e. number of nearest neighbouring haplotype records). Using 

different K-values results in different performance of the algorithms which in turn affects the 

final evaluation for the method accuracy. So that we propose to test the optimal K-value each 

time the algorithm is used. Finally, searching for a new technique and a new application or a 

new demonstration of Discriminant and Clustering analysis was the main interest of this 

thesis because nowadays the application of the modern statistical techniques such LDA, 

Clustering, PCA, PLS …and etc., are so important considerations in the field of 

Bioinformatics and Applied statistic. 
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Appendix-A 

Software:  

“R” is a free software environment for statistical computing and graphics. It compiles and 

runs on a wide variety of UNIX platforms, Windows and MacOS. 

http://www.r-project.org/ 

Simulation methods: 

1- rmvnorm() : 

Random generation for the multivariate normal (also called Gaussian) distribution, these 

functions provide information about the multivariate normal distribution with mean equal to 

mean and covariance matrix sigma.  

“rmvnorm”: generates random deviates. (Friedrich Leisch).  
rmvnorm (n, mean, sigma) 

-n: Number of observations 

-mean:  Mean vector 

-sigma: Covariance matrix 

 

2- The Beta Distribution: rbeta() 

Random generation for the Beta distribution with parameters shape1 and shape2 (and 

optional non-centrality parameter ncp),  
rbeta(n, shape1, shape2, ncp = 0) 

n: number of observations.  

shape1, shape2: positive parameters of the Beta distribution. 

ncp: non-centrality parameter. 

The Beta distribution with parameters shape1 = a and shape2 = b has density 
Γ(a+b)/(Γ(a)Γ(b))x^(a-1)(1-x)^(b-1) 

for a > 0, b > 0 and 0 ≤ x ≤ 1 where the boundary values at x=0 or x=1 are defined 

as by continuity (as limits). 

The mean is a/(a+b)  

and the variance is ab/((a+b)^2 (a+b+1)). 

3- The sample function: sample() 

Sample takes a sample of the specified size from the elements of x using either with or 

without replacement. 
sample(x, size, replace = FALSE, prob = NULL) 

n: a positive number, the number of items to choose from.  

size:a non-negative integer giving the number of items to choose. 

replace: Should sampling be with replacement? 

prob: A vector of probability weights for obtaining the elements of the vector being sampled. 

 

 

 

 

 

 

 

http://www.r-project.org/
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Appendix-B 

 
The SAS code for multiple imputation algorithms can be found in Appendix-B (Paul D. Allison, 

2005). 

 
 
/*Proportions, single auxiliary covariate, MCAR*/ 

%let cut=.50; 

data dumsim; 

cut=&cut; 

do sample = 1 to 500; 

do i=1 to 500; 

d=ranuni(0)<cut; 

x=-1+1*d+1*rannor(0); 

miss=ranuni(0)<.5; 

if miss=1 then dmiss=.; else dmiss=d; 

output; 

end; 

end; 

run; 

proc corr data=dumsim; var d x miss;run; 

proc mi data=dumsim out=outdum noprint; 

var x dmiss; 

monotone regression(dmiss=x); 

by sample; 

run; 

/*The following macros do the analysis. Macros may be found below */ 

%complete 

%analyze 

%round 

%discrim 

%logistic 

/*Proportions, single auxiliary covariate, MAR*/ 

%let cut=.01; 

data dumsim; 

misslope=2; 

missint=2; 

cut=&cut; 

do sample = 1 to 500; 

do i=1 to 500; 

d=ranuni(0)<cut; 

x=-1+1*d+.3*rannor(0); 

p=1/(1+exp(-missint-misslope*x)); 

miss=ranuni(0)<p;if miss=1 then dmiss=.; else dmiss=d; 

output; 

end; 

end; 

run; 

proc corr data=dumsim; var d x miss;run; 

proc mi data=dumsim out=outdum noprint; 

var x dmiss; 

monotone regression(dmiss=x); 

by sample; 

run; 

%completeSUGI 30 Focus Session 
%noround 

%round 

%logistic 

%discrim 
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%macro complete; 

proc means data=dumsim nway noprint; 

var dmiss; 

class sample; 

output out=a mean=mean lclm=lclm uclm=uclm stderr=se; 

run; 

data b; 

set a; 

coverage=lclm<&cut<uclm; 

run; 

proc means data=b; 

var mean se coverage; 

run; 

%mend complete; 

%macro noround; 

%do i=1 %to 500; 

proc reg data=outdum outest=a covout noprint; 

where sample=&i; 

model dmiss=; 

by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var intercept; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parms; 

set %do j=1 %to 500; parms&j %end; ; 

coverage=lclmean<&cut<uclmean; 

run; 

ods listing; 

proc means data=parms; 

var Estimate stderr coverage; 

run; 

%mend noround; 

%macro round; 

data outround; 

set outdum; 

if dmiss>.5 then dmiss=1; else dmiss=0; 

run; 

%do i=1 %to 500; 

proc reg data=outround outest=a covout noprint; 

where sample=&i; 

model dmiss=; 

by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var intercept; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parms; 

set %do j=1 %to 500; parms&j %end; ; 

coverage=lclmean<&cut<uclmean; 

run; 

ods listing; 

proc means data=parms; 

var Estimate stderr coverage; 

run; 
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%mend round;30 Focus Session 
%macro logistic; 

%do i=1 %to 500; 

proc mi data=dumsim out=outlog noprint ; 

where sample=&i; 

class dmiss; 

var x dmiss; 

monotone logistic(dmiss=x) ; 

run; 

proc reg data=outlog outest=a covout noprint; 

model dmiss=; 

by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var intercept; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parms; 

set %do j=1 %to 500; parms&j %end; ; 

coverage=lclmean<&cut<uclmean; 

run; 

ods listing; 

proc means data=parms; 

var Estimate stderr coverage; 

run; 

%mend logistic; 

%macro discrim; 

%do i=1 %to 500; 

proc mi data=dumsim out=outlog noprint ; 

where sample=&i; 

class dmiss; 

var x dmiss; 

monotone discrim(dmiss=x) ; 

run; 

proc reg data=outlog outest=a covout noprint; 

model dmiss=; 

by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var intercept; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parms; 

set %do j=1 %to 500; parms&j %end; ; 

coverage=lclmean<&cut<uclmean; 

run; 

ods listing; 

proc means data=parms; 

var Estimate stderr coverage; 

run; 

%mend discrim; 

/* Regression with dummy predictor, MAR*/ 

%let cut=.5; 

%let b=1; 

%let c=1; 

data dumreg; 

b=&b; 
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c=&c; 

missint=1; 

misslope=1; 

sig=3; 

cut=&cut; 

cutmiss=.5; 

do sample = 1 to 500; 

do i=1 to 500;30 Focus Session 
d=ranuni(0)<cut; 

x=-1+1*d+1*rannor(0); 

y=b*d+c*x+sig*rannor(0); 

p=1/(1+exp(-missint-misslope*x)); 

miss=ranuni(0)<p;if miss=1 then dmiss=.; else dmiss=d; 

output; 

end; 

end; 

run; 

proc reg; model y= x d; run; 

ODS LISTING; 

proc corr data=dumreg;var d x y miss; run; 

proc mi data=dumreg out=outreg noprint; 

var x y dmiss; 

monotone regression(dmiss=x y); 

by sample; 

run; 

/*The following macros do the analysis. Macros may be found below*/ 

%completereg 

%noroundreg 

%roundreg 

%discrimreg 

%logreg 

%macro completereg; 

ods listing close; 

proc reg data=dumreg; 

model y=dmiss x / clb; 

ods output ParameterEstimates=parms; 

by sample; 

run; 

ods listing; 

data dmiss; 

set parms; 

where variable='dmiss'; 

coverage=lowercl<&b<uppercl; 

run; 

proc means data=dmiss; 

var Estimate StdErr coverage; 

run; 

data x; 

set parms; 

where variable='x'; 

coverage=lowercl<&c<uppercl; 

run; 

proc means data=x; 

var Estimate StdErr coverage; 

run; 

%mend completereg; 

%macro noroundreg; 

%do i=1 %to 500; 

proc reg data=outreg outest=a covout noprint; 

where sample=&i; 

model y=dmiss x; 
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by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var dmiss x; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parmsb; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='dmiss'; 

coverage=lclmean<&b<uclmean; 

run; 

ods listing; 

proc means data=parmsb; 

var Estimate stderr coverage;30 Focus Session 
run; 

data parmsc; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='x'; 

coverage=lclmean<&c<uclmean; 

run; 

ods listing; 

proc means data=parmsc; 

var Estimate stderr coverage; 

run; 

%mend noroundreg; 

%macro roundreg; 

data outround; 

set outreg; 

if dmiss>.5 then dmiss=1; else dmiss=0; 

run; 

%do i=1 %to 500; 

proc reg data=outround outest=a covout noprint; 

where sample=&i; 

model y=dmiss x; 

by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var dmiss x; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parmsb; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='dmiss'; 

coverage=lclmean<&b<uclmean; 

run; 

ods listing; 

proc means data=parmsb; 

var Estimate stderr coverage; 

run; 

data parmsc; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='x'; 

coverage=lclmean<&c<uclmean; 

run; 

ods listing; 

proc means data=parmsc; 

var Estimate stderr coverage; 
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run; 

%mend roundreg; 

%macro logreg; 

%do i=1 %to 500; 

proc mi data=dumreg out=outlog noprint ; 

where sample=&i; 

class dmiss; 

var x y dmiss; 

monotone logistic (dmiss=x y) ; 

run; 

proc reg data=outlog outest=a covout noprint; 

model y=dmiss x; 

by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var dmiss x; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parmsb; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='dmiss'; 

coverage=lclmean<&b<uclmean;Focus Session 
run; 

ods listing; 

proc means data=parmsb; 

var Estimate stderr coverage; 

run; 

data parmsc; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='x'; 

coverage=lclmean<&c<uclmean; 

run; 

ods listing; 

proc means data=parmsc; 

var Estimate stderr coverage; 

run; 

%mend logreg; 

%macro discrimreg; 

%do i=1 %to 500; 

proc mi data=dumreg out=outlog noprint ; 

where sample=&i; 

class dmiss; 

var x y dmiss; 

monotone discrim (dmiss=x y) ; 

run; 

proc reg data=outlog outest=a covout noprint; 

model y=dmiss x; 

by _imputation_; 

run; 

ods listing close; 

proc mianalyze data=a; 

var dmiss x; 

ods output ParameterEstimates=parms&i; 

run; 

%end; 

data parmsb; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='dmiss'; 

coverage=lclmean<&b<uclmean; 
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run; 

ods listing; 

proc means data=parmsb; 

var Estimate stderr coverage; 

run; 

data parmsc; 

set %do j=1 %to 500; parms&j %end; ; 

where parm='x'; 

coverage=lclmean<&c<uclmean; 

run; 

ods listing; 

proc means data=parmsc; 

var Estimate stderr coverage; 

run; 

%mend discrimreg; 
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Appendix-C 

Table 4.1: The effects of using Low and High linkage disequilibrium dataset on Accuracy rate of LDA in  

                 imputation. 

 

 

 

 

Table 4.2: The effects of no.SNPs using Low and High linkage disequilibrium dataset on accuracy rate of  

     Clustering in imputation. 

 

 

 

Table 4.3: The effects of Minor allele frequency on accuracy rate using LDA and Clustering.  

 

 

 

 

Table 4.4: The effects of marker density on accuracy rate using LDA and Clustering. 

 

 

 

 

Table 4.5: The effects of reference sample size on accuracy rate using LDA and Clustering. 

 

 

total number of haplotyps 5 SNPs 10 SNPs 20 SNPs 40 SNPs 60 SNPs 80 SNPs 100 SNPs

Low LD 0.60 0.64 0.65 0.69 0.69 0.70 0.70

High LD 0.88 0.88 0.90 0.91 0.91 0.92 0.93

total number of haplotyps 5 SNPs 10 SNPs 20 SNPs 40 SNPs 60 SNPs 80 SNPs 100 SNPs

Low LD 0.55 0.62 0.60 0.66 0.69 0.70 0.71

High LD 0.75 0.78 0.82 0.85 0.87 0.89 0.91

MAF 0.01  0.02 0.04  0.06  0.08  0.10  0.20  0.30 0.40  0.49

LDA 0.99 0.96 0.95 0.93 0.91 0.88 0.80 0.72 0.72 0.70

Culstering 0.92 0.90 0.89 0.87 0.86 0.84 0.81 0.74 0.70 0.69

Correlations  0.10  0.20  0.30  0.40  0.50  0.60  0.70  0.80  0.90

LDA 0.61 0.67 0.71 0.75 0.81 0.85 0.88 0.93 0.97

Clustering 0.55 0.59 0.62 0.68 0.75 0.81 0.86 0.89 0.94

Reference sample size  0.10 0.20 0.30 0.40 0.50  0.60 0.70

LDA 0.72 0.73 0.74 0.79 0.79 0.81 0.83

Clustering 0.33 0.37 0.50 0.66 0.72 0.77 0.79
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