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Preface

This thesis marks the end of a two year MSc stuttidewed in the European Master in
Animal Breeding and Genomics. From the beginninghaf MSc the idea was to perform a

research on the revolutionary topic of genomic texhs (genomic selection).

Some decades ago the idea of predicting the yeaitkyamount that a cow would produce
just by using DNA information would appear as asce fiction story. However, this idea
became feasible since 2001 when firstly proposetMbywissen et al and is well known as
“Genomic Selection, GS”. GS has already been astaa by several breeding companies

worldwide in different breeding schemes and species

Nevertheless, there are still important questionset addressed. The last few years numerous
statistical models have been proposed, most of thesti in complexity in a way to achieve
high accuracies (comparable to progeny test) abasgelo “capture” genetic architecture of

quantitative traits.

The idea of this research was to check the prediability of an easy to handle multiple
linear model, principal component regression (PGRjere strong assumptions for the data
are not required. In PCR the original regressorBlIRS in genomic data) have been
transformed into a small number of orthogonal axkiEh can capture the original variability
of the SNP data while at the same time are un@ie@lto each other and each one includes
all the original variables. These axes are theafled principal components (PCs) obtained by

principal component analysis (PCA) of the origidata.

PCR was used to predict genomic values using rat@ grovided by RobustMilk project.
Predictive ability of PCR was compared to an ordirGBLUP model.
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English summary

During the last few years the idea of predictin@umjitative traits and diseases based
on genotypic information has raised a major intereanimal and plant breeding as well as in
human genetics. However, there are still importastions and problems that need to be
addressed. Some of these problems are statisttatistical problems mainly concern
multicollinearity basic derived from the huge ambwf available data. In addition, the
number of variables that needs to be estimgdis much larger than the number of
observationgn) disabling least squares methodology. Principalpmment analysis (PCA) is

a multivariate statistical method often used td det these problems.

The objective of this study was to investigate tise of PCA for predicting genomic
breeding values. Data of 1,609 first lactation Hm®ts heifers were analysed including test-
day milk, fat and protein yields. Animals origindtérom 4 countries, Ireland, United
Kingdom, the Netherlands and Sweden and were gpedtyithin the RobustMilk project
with the Illumina BovineSNP50 Beadchip. After edgj 37,069 SNPs remained.

Two different models were compared for genomic jotexhs i) Principal component
regression (PCR) was used to directly estimate mendireeding values. Selection of
principal components (PCs) was based either om #igenvalues or the regression sum of
square (SS) contribution, ii) a best linear unkdag@ediction model with genomic
relationship matrix (GBLUP) was developed to conepaccuracies to those obtained by PCR
models. In a third case, PCs extracted from thea®irmwere added in the GBLUP model as
fixed effects to investigate the impact of popuatistructure when predicting genomic
breeding values. The dataset was split in foumnimgi (reference populations) and testing
parts for validation. Each testing subset inclugdd animals from only one country.
Predictive ability was calculated as Pearson caticel between the predicted genomic values
and the phenotypes.

PCR where PCs selection was based on their eiggas/adsulted in considerably high
accuracies and outperformed both PCR (SS) and GBho#els. Accuracies varied between
populations and traits. Interestingly, highest aacies were obtained for the only genetically
distinguished population (GBR), according to PC\the dataset with only the first or the
first two PCs for protein and milk yield, respeetiy. In GBLUP models an increase of the

accuracies (~40% on average) was observed insdsoshen PCs were added in the model.

10
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Simplicity of PCR method, fast computation, redoictof data dimension (>96%) as
well as the ability of both predicting breedingwed and identifying groups in the data are the
main benefits of PCR. The above elements togetlitdr av least as accurate predictions as
GBLUP, obtained with real data, marks PCR as aradite tool for animal breeding.
However, the variation on the number of PCs ned¢dedhieve highest accuracies could be a
drawback of the method. According to our resultsere the highest accuracies obtained for
the only group of animals genetically separatedhftbe rest, we hypothesize that PCR could
be tested for across breed genomic predictions.

11
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Hellenic summary (EAAnvwkn [epiAnym)

Koatd m didpketo tov tedevtainv ypdvov 1 10éa e TpOPAEYNG TOGOTIKOV WO10TATOV
Kot acOeveldv pe Paon yevetiky mAnpogopio kot Hoévo €xel e£ApeL TO EVOLAPEPOV GTOVG
Topelg ™¢ yeveTikng Pertioong putodv ko (v, OTm¢ eniong Kot otov avBpomo. Tap’ Ola
aVTE, LTAPYOVY AKOLO CNUAVTIKE EPOTAUATO KO TPOPARLaTA TPOg amdvinon. Mépog avtmv
TOV TPOPANUATOV apOpOVV TN GTATIGTIKY avéAvor). To oTatioTikd TpofArLata TpoEpyovTat
Kuplwg amd T0 peydlo OYKo TV O£d0UEVOV KOl apOpovV, KUPIMG, TOAVGLYYPOUUIKOTNTO
(multicollinearity). EmmAéov, aptbpog tov petafintov (P) peyaAdtepoc Tov mapotnpioeny
(n) xatapyel ™ yprion ¢ peboddov TV ghayiotwv tetpaydvev. H principal component
analysis (PCAJmotedel KAGO0 TG moAvTapayovtikng avdivong (multivariate analysiskot

GLYVA YPNOYLOTOLEITE Y10 AVTLETMOTION TETOL®V TPOPANUATOV GTY| GTATICTIKY AVAAVGT).

Yxomdg ¢ epyaciag Nrav 1 depedhivnon g ypnowotrag s PCA v mpofieyn
KANPodotkdV alldv tov {dov Bdon poplakodv deikt®v. [oAakTomapoywyn, ATOmopaywymn
Kot TpoTEivoTapaymyn and ayerddeg 1,609 Holsteinpmtng yoloktomapaymyikng meptodov
ypnowonomOnkav. To dedopéva mponibav omd 10 RoObustMilk project oto omoio
GLUUETEYOLV TtElpapaTikol otabuol amd Meydain Bpetavia, Olhavdia, IpAavoia kot Zovndia.
Ot yovotumoelg mpayuatomombnkav pe to Illumina BovineSNP50 Beadchipot 37,069
SNPsypnciponomdnkay otny teAkn avéAlvon.

Avo dapopetikd povtéda dnpovpynnkav 1) Principal component regression (PCR).
H emoyn tov PCsPaciotke eite otig eigenvaluesite ot cuvelopopd tov abpoicportog
TV TeTpayoveoy  (regression sum of squares contribution)@ijotn ypoppk apepoAnmn
npoPreyn (GBLUP) yia ovykpion tov anoteieoudtov pe to PCR povtéro. EmmAéov,
avortoyOnke éva poviého GBLUP 6mov PCse&aydpeva amd tov G-matrix mpootédnkav mg
otabepég peTtaPAnTé pe okomd T depehivnomn NG ONUOTIKOTNTOS TNG dOUNG TOV TANBLGHOD
oe povtéda mpoPreyng pe vevetikovg odeiktec. Ta dedopéva yopiommkov oe Té00EPQ
StapopeTikd “exmaidgvon-a&lordynon” uépn. To kabe tunua a&oddynong mepieiye (oa amd
pla xopa. Ov akpifeleg ektipgnong tov kKANPodoTikdv a&udv vroAoyiotnkav ®g Pearson

OLGYETIOELS LETAED TOV EKTILAOUEVAOV TILMOV KOL TOV QOVOTOTOV.

H PCR 6nov ta PCs eniléyOnkov Pdaon tov eigenvaluesédmoe to KaAvtEpO
OTOTEAEGLATO KO VIEPELXE TOV VITOAOIT®V povtéAmv. Ot axpifeleg ekTiuoems KopoivovTon
Kot EapTdvTOL amd Tov TANOLGUO KOl TO TOGOTIKO Yvdpicua. Eviumwoiakd, peyoaidtepeg

axpifeleg emtevyOnKav yio tov povadtkd TAnbuoud mov ev pépet Eexmpile yeveTIKA amd TOvg

12
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vroloirovg (Baon t™c PCA), uévo pe ) yprion tov mpmtov PC yio ) yad/yn kot
npoteiviyn. Xta povtéda GBLUP avénon tg akpifelog ekTiunoemv tov KANPodoTIK®V

TILAOV TopatnpNONKe 68 OAES TIC TEPMTOGELS [e TNV TTpocOnkn PCs.

H gvukolia epappoyng g PCR,tayeig vroroyiopot, ehdttmon tov dykov dedopuévav
(>96%) 6mw¢ emiong Kot o1 dLVATOTNTEG TNG GLYYPOVNG TPOPAEYNC TUOV KOl EDPECTG
TOOVOV SLOLPOPETIKMY OUAO®V GTO OedopEVAL amoTeEAOVV T PBacikd wpoteprpota e PCR.
Av1d, oe cvuvovaoud pe enitevén axpifeldv extipnong kAnpodotikedv asidv (owv, pe Baon
YEVETIKOVG  OgikTeg, TOLAQyotov icwv pe v GBLUP og mpaypotkd dedopéva
yopaxtnpifovv ) pebodoroyia e PCR®¢ éva eAkuotikd epyaieio ot yeveTikn PeAtioon
tov (Owv. QoT1660, 1| ToKIAia Tov aplBuov Tov PCsrov npénel va mpoctefovv 6To LoVvTELO
v va emttevyBodv péytoteg akpifeteg amotedel petovékTno. ZOUEOVO LE TO OTOTEAEGLOTA
pag, omov péylotec okpifelec emetevydnoav oto  povadikd TANOLOUO TOVL  YEVETIKG
dwyopilotav (ev pépel) amd tovg vmoroimovg vmobétovpe mwg n PCR 6o pmopovoe va

dokipaotel Yo TpoPAEYELS LETAED PLADV.

13
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Abbreviations

GBLUP: Best Linear Unbiased Prediction based orkeragenomic relationship matrix (G)
G matrix: genomic relationship matrix

GS: Genomic selection

LD: Linkage Disequilibrium

PCA: Principal Component Analysis

PCR: Principal Component Regression

PCs: Principal Components (scores of the Princmathponent Analysis)

PCR (EIGEN): Principal Component Regression whieeeselection of the PCs was based on

their eigenvalues

PCR (SS): Principal Component Regression wheraetextion of the PCs was based on the

regression sum of squares contribution

14
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1. Introduction

Breeding programs have successfully been estalllisha variety of animal species
and countries worldwide. Selection of the “bestin@als (animals used to breed next
generation) was based on phenotype and pedigree. alin of breeding programs is
population improvement on the desirable traitsudel in the breeding goal. One of the most
remarkable changes in (dairy cattle) breeding @ogr was the implementation of progeny
test. Progeny test was firstly implemented in Derknaand very soon spread out all over the
world (Johanson, 1959). However, the first revaintiin breeding programs was the
introduction of artificial insemination (Al) whicresulted in a fast transfer of the genetic gain
to the whole (commercial) population (Vishwanatlp2). To illustrate the value of animal
breeding over the last decades, Amer et al (20%fijnates the aggregate benefits due to

genetic improvement in UK dairy industry of arouh@ -2.4 £ billion since 1980.

Some decades ago the idea of predicting the yeaitky amount that a cow would
produce just by using DNA information would appeaara science fiction story. However, in
animal breeding the idea of using molecular markeonnection with phenotypes to predict
animal genetic merit is quite old (Neimann-Sorenaod Robertson, 1961), but not only until
the recent advances in molecular techniques (Wireh@me scan, DNA microarrays) became
this idea feasible. The release of whole genomeesere (e.g. bovine hapmap project), SNP
polymorphisms and the technology of microarraysehéeen successfully collaborated
allowing us to genotype individuals across the whgénome for tens or even hundreds of

thousands markers in a considerably low cost (~100$

In 2001, Meuwissen et al showed through simulatitimst genome-wide dense
markers can adequately be used to estimate breedilgs (EBVs; an estimate of the
additive genetic merit for a particular trait treat individual will pass on to its descendants)
for animals with a considerably high accuracy. Tilesais what is called Genomic Selection
(GS). In GS, DNA information is used to predict tignetic merit of young animals.The key
point in GS is that with a genome-wide panel of steemarkers all quantitative trait loci
(location of a gene on the chromosomes that afecisantitative trait; QTLS) are in linkage
disequilibrium (non-random association of allelesveo or more loci; LD) with at least one

marker.

16
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Over the last few years GS has been implementelhiny cattle breeding programs
(Harris et al., 2008; Van der Linde and Wilmink,08Q Wiggans et al., 2008; Berry et al.,
2009; De Roos et al., 2009; Ducrocq, 2009; Scheekel., 2009a,b; Van Doormaal et al.,
2009) and has fairly been described the most promising molecular application in
livestock (Sellner et al., 2007).

In practise, GS involves two steps. First, theaftd each marker (Single Nucleotide
Polymorphism; SNP) is estimated in a reference |abjopm where animals with known
phenotypes and genotypes are included. In the destep, genomic breeding values
(GEBVs) of young animals are calculated by usinty dime information of the marker3he
prediction of the breeding values through the marl@an be derived from the following

model:

Where,y is a vector of phenotypic records,is the overall meanx is the code of
genotype for SN andb is the additive effect of SNP

Despite the fact that several algorithms have Ipgesented to solve the above model,
there are still important questions and problemse@ddressed. Some of these problems are
statistical. Statistical problems mainly concernltroallinearity in the SNP dataset, that in
genetic terms is interpreted as LD among markehng;iwleads to unstable estimates in least-
squares regression. Moreover, a major problem i Sldtasets is that the number of
variables that needs to be estimafefis much larger than the number of observatign)s
disabling least squares methodology. Principal Gomept Analysis (PCA) is a powerful
dimensionality reduction technique and togetherhwits regression (PCR; Principal

Component Regression) are methods often used toawe these problems.

17
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1.1 Principal Component Analysis

Principal component analysis belongs to the gen&mhework of multivariate
analysis and is one of the most famous and olde#iivariate techniques. It was introduced
by Pearson (1901) but also independently develdyyeHotelling (1933). However, only in
recent years through the advanced computer teamoRCA (like many multivariate

technigues) became a useful tool and applicabpedatise.

As stated above, the problem in SNP matrices mainlyes from the huge size of the
data where relatively few individuals (e.g. someugands) are genotyped for many markers
(e.g. hundreds of thousands). As a result unavbidsdme markers will be in LD which in
statistics creates multicollinearity. Assume a ma¥ of order (n x p) wheren individuals
have been genotyped fprSNPs. The elements of this matrix may be 0, 1 mpResenting
the genotype of each individual for each SNP (0 @&idor homozygotes and 1 for
heterozygotes). The main idea of PCA is to redneenimber of variables in a dataset as well
as solving the multicollinearity problem (high celation among X-variables); so, find a
small setk (k<p) of principal components (PCs) explaining as mushpassible of the
variability in the original X-variables. This is ldeved through an orthogonal transformation
(axes of variation) of the original dataset whitettee same time including as much of the
original variability as possible in the first fevCB (Figure 1). So, PCs are linear combinations

of a set of random variables' X[X1 Xa,..., X)]., such asT =a'X . The first principal

component is defined as the variafile=a) X =a,,X; +a,,X, +...+a,X_, which has the

maximum variance with the constraint thaita =1. For all the combinations it stands that:
cov(PC,PC;) =0 foralli#j (i,j= 1,2,...,p).

The basis of PCA is either the spectral decompmsitif the covariance (correlation)
matrix or singular value decomposition (SVD) of @aal matrix. Concerning the equality of
these two techniques there is a disagreement ititénature. Some authors believe that they
are identical, some that they differ in normaliaatstrategies, while others state that PCA and
SVD are completely different approaches (Skillicdz607). However, it is important to note
that SVD is less computationally demanding than P€3pecially with large datasets where
n<<p. The reason is that SVD works directly on the maXr (n x p),whereas PCA on the

covariance (correlation) matr{p x p)

18
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Another interesting point about PCA is the impatttlee rank of the variance-
covariance matrix and its effect on PC extractddssuming a matrix X with dimensiorfa x
p), wheren<<p. While we would expect PCA to return as many P€tha original variables
are (p), due to spectral decomposition of XX, instead P@if return n-1 PCs. Thus, the
total variability which has originally distributedlong p axes now is compressed ml
dimensions. This may result in “spurious” resulBurfb, 1982a,b; Bumb 1986) due to
singular and positive semi-definite correlation nxaand has been observed in factor analysis
when the number of variables exceeds the numbebsdrvations. However, in the literature
there are other authors stating that still themeoigproblem on the interpretation of the results
(Adelman and Morris, 1982a,b; Murrell, 1986). Dimatet al (2011) addressed the above

problem in the era of genomic predictions.

Figure 1 Graphical representation of principal commnents of a dataset, shown as arrows in the diagram
(http://en.wikipedia.org/wiki/Principal_componentadysis)

In genetics PCA has mainly been used for populattadies and has turned out to be
a powerful tool for studying population structuresigration patterns and correcting for
stratification in association studies by captumganmetic variation (Price et al, 2006; Patterson
et al, 2006; Liu and Zhao, 2006; Paschou et. &Q72 Novembre and Stephens, 2008;
Novembre et al, 2008&Reich et al, 2008; Paschou et al., 2008; McVeafl920Drineas et. al.,
2010). The first application of PCA in populatioangtics was in 1978 by Cavalli-Sforza in a
human variation research. In this study, where R@& used to produce maps of human

genetic variation across mainland regions.
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In animal breeding PCA has recently been usednfierring population clusters from
different breeds (Lewis et. al., 2011) as well @sdpresent genotypes in genomic breeding
value estimation (Pinto et al, 2006; Solberg e2809; Macciotta et al, 2010a,b; Long et al,
2010; Dimauro et al, 2011). Daetwyler, et al (2011) us¥dA in an attempt to show the
impact of population structure on the accuracy efamic breeding values (GEBVS) in a
multi-breed sheep population. In all the above sagee PCs added to prediction models of
genomic breeding values only accounted for theabdry captured in the original X-
variables (SNPs) and not for the proportion of exmd phenotypic variability (response
variables — in this case phenotypes of animalhénréference population). However, it has
been shown in statistical literature that in PCR fitst principal components (accounting for
most variation in the X-variables) can totally fad predictors (accounting for the variation in
the response variable) and that even componentaiexyg little variance in the X-variables
can be important in the regression (Jeffers, 196¥iffe, 1982; Hawkins, 1973; Boneh and
Mendietta, 1994; Hwang and Nettleton, 2002). Fatance, Hadi and Ling (1998) have
shown using Hald's dafa that while the first three (out of four) PCs agebfor 99.96% of
the variability in X, they contribute nothing (zesam of squares) to the fit of the regression
model; instead, the last PC alone contributes ¢wieny. Thus, they propose the selection of
the PCs to be basett onlyon the variance decomposition of the co-varialleson the

contribution of each PC to the regression sum oéseg, as well.

2. Objective

The main objective of this research was to invastighe potential of PCA used for
genomic prediction. Alternative techniques of PE@kaion were considered and different
models were developed (simple and mixed linear hsdpder prediction of genomic breeding

values for yield traits in Holstein.

More precisely, the objectives of this study wejeto use PCR for genomic
predictions and compare the predictive ability @RPand GBLUP models, ii) to investigate
the difference of PCs selection based on eithar gigenvalues or the correlation with the
response variable (predictive ability) when usingRPfor genomic predictions and iii) to
evaluate the impact of accounting for populationctire using PCs on genomic predictions

accuracies of different traits in a GBLUP model.

(1) Hald’s data (published by Hald, 1952, pp. 635-689 very nice example for studying collinearity carg
variables, developing variable selection methodsdeh building as well as checking for outliers and
influential observations. The data have been widsbd in statistical literature.
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3. Material and methods

3.1 Data

For this study 66,116 test-day records up to 45kwee lactation for milk, fat and
protein yield from 1,609 first lactation Holsteirifers were used. Heifers originated from 4
countries, Ireland (Teagasc, Moorepark Dairy Pradoy, United Kingdom (Scottish
Agricultural College), the Netherlands (Wagenindg¢R Livestock Research) and Sweden
(Swedish University of Agricultural Science). Theemotypes were pre-adjusted to account
for mean lactation curve, herd, nutritional treattmenilking frequency, year-month of milk
test by management group, and experimental treasnffam a full description, seéeerkamp
et al, 2012)Descriptive statistics of the pre-adjusted phenegyare shown in Table 1.

Table 1 Descriptive statistics of pre-adjusted testlay data of the milk traits

Trait Mean Sd sdErr Min Max n

Milk_yield (kg) 23.837 4.442 0.111 0.990 38.980 1609
Fat_yield (kg) 0.928 0.175 0.004 0.120 1.790 1609
Protein_yield (kg) 0.721 0.127 0.003 0.040 1.340 1609

All animals were genotyped within the RobustMilkojct with the lllumina
BovineSNP50 Beadchip (lllumina Inc., San Diego, Cé9ntaining 54,001 SNPs. After
quality control 37,069 SNPs remained (Table 2). Dataset was split in four training
(reference populations) and testing subsets. Estimg) subset included all animals from only
one country. Thereby, each animal was allocateshtosubset, such that each animal had its
genomic breeding value predicted once. Predictibiitya of each model was assessed
through validation and calculated as Pearson @iioael between the predicted genomic

breeding values and the phenotypes.

Table 2 Number of cows with phenotype and genotygeom the four countries

Population Animals with Animals with SNPs
genotypes phenotypes and genotypes

GBR 566 416 37,069

IRL 413 394

NLD 638 618

SWE 214 181

TOTAL 1,831 1,609
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Population

SWE

NLD

Figure 2 Pie chart of individuals included in the dtaset per country of origin

3.2 Principal Component Regression model

The concept of principal component regression (PiGR}he use of PCs in regression
is not new. Kendal (1957) and Hotelling (1957) thrsproposed this idea, while in 1967
Jeffers published a well-known example. For theiaaton in genomic prediction, the initial
step for a PCR model is to perform PCA on the SN#imX (n x p).In our study, singular
value decomposition via the function “prcomp” inwRs performed. Let be the rank of a
matrix. The matrixT (n x B of PCs is calculated a&= XP, wherek<r andP (p x k)the
loading matrix derived from SVD oX (which give the weights for the original variables)
PCA was performed only in the reference populattbe,P matrix was extracted and tfie
matrix of components was calculatedTas X; P, wherer in our case denotes the reference
population. The® matrix extracted from the reference population wsed to construct the
matrix of PCs for the test population suchlas X; P, where t denotes the test population.

Two different methods were tested for the seleatibthe PCs to be added in the PCR
models. In a first approach, PCs were selecteddbasetheir eigenvalues (variation in the
explanatory variables; genotypes) abbreviated aR PEIGEN). In a second model the
selection of the PCs was based on their contributco the sum of squares (SS) of the
regression (variation in the response variable RRES). This contribution was developed in
the training population through a PCR model whendy dhe animals of the reference
population were included (phenotypes and genotygeshoth cases, the effect of each PC

was estimated in the reference population.
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The PCR model is¥ = ¥+ Tg + € wherey is the vector of phenotypic observations,
W is the overall meanT is the matrix of principal componentg,a vector of regression

coefficients anck are the residuals.

In this case, genomic predictions are only basetherestimated effect of the PCs, so
the genomic relationships among animals are na@ntakto account like in a GBLUP model.
Moreover, by PCR the derived SNP effects (i.e. Pae)treated as fixed effects and not as

random effects as usual in genomic prediction nedel

3.3 GBLUP model

The following best linear unbiased prediction moa#h genomic relationship matrix
(GBLUP) was fitted in ASReml-R (Butler et al, 200%)=¥b + Zu +e where,y is a vector
of pre-adjusted records of test-day yieXdandZ are design matriceb, u ande are vectors
of fixed, additive genetic and residual effectspectively. For additive and residual effects
the following normal distributions are assunted’ (0.#;6) and e~N(0.157), The G matrix is a
genomic relationship matrix calculated as descrimed/anRaden (2008). Fixed effects only
include a mean effect, because phenotypic recoele mre-adjusted. PCA was performed on
the G matrix using the function “eigen” in R. Thepact of accounting for population
structure using PCs on genomic predictions accesasias shown by adding an increasing
number of PCs in the model as fixed effects. Agslt, variance explained in G matrix is
now entered to the model as PCs and thereby expéotbe removed from the breeding
values. The PCs were added one by one in the nasdtlup to 1,000 PCs were included
(accounting for 88.87 of the variability of the Gmx). So, the model becomes as follows:

1000

y = GBLUP + Z PCs+e

i=1

23



European Master in Animal Breeding and Genetics

4. Results

4.1 PCR model
As a first step, PCA was performed on the wholaskttto check for any differences

on the genotypic level between the four differenpydations. According to PCA graph
(Figure 3) part of the GBR population can be dgished from the rest with the first PC.

Popuation|

Scoreplot PC1 vs PC2

t67]

-20 0} 20 40 60

Figure 3 Scoreplot of the first two principal compaments (PC1 vs. PC2). Principal component analysisas
performed on the whole dataset

Results from PCR and the basic GBLUP models for tlatee traits and four
populations are shown in Table 3. The number of R€laded in the model with the highest
accuracies obtained is presented as well. Two sharg mainly interesting in these results.
Firstly, the PCR (EIGEN) method outperforms (i.avg the highest accuracies) the PCR (SS)
and the GBLUP_basic model in 10 out of 12 casedy @ntwo cases slightly higher
accuracies were obtained with PCR (SS) model. PEIBEN) results had always higher
accuracies compared to GBLUP. The difference wate darge and even doubled in some

cases.
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The second interesting point is that for the GBRysation higher accuracies were
achieved compared to the rest of the groups. Mardhe GBR accuracies were twice as
large compared to the others or more in many c&3seally, the aim of data reduction in the
models was achieved (even up to 99%) because itheltases very few regressors (PCs)

were needed compared to the number of initial béega(SNPS).

The pattern of the accuracies, when an increasurgber of PCs is added in the
models, depends both on the trait and the populakarthermore, it should be noted that in
many cases accuracies very close to the highest mag be obtained with very few PCs
(usually less than 50) (Figure 4).

Table 3 Highest accuracies obtained for the three auels. Accuracies were calculated as Pearson
correlation between the predicted genomic breedingalues and the observed phenotypes.

Test Trait  GBLUP PCR Number PCR  Number resflezfe:::e
Population basic (EIGEN) of PCs (SS) of PCs R
population
GBR Milk 0.250 0.311 25 0.306 118 1,193
Fat 0.259 0.294 812 0.272 811
Protein 0.266 0.294 244 0.181 396
SWE Milk 0.162 0.178 1112 0.161 1060 1,428
Fat 0.089 0.220 46 0.101 991
Protein 0.062 0.114 265 0.076 790
IRL Milk 0.060 0.147 967 0.118 758 1,215
Fat 0.081 0.123 954 0.142 572
Protein 0.043 0.120 749 0.09 245
NLD Milk 0.156 0.210 20 0.172 4 991
Fat 0.152 0.172 794 0.186 400
Protein 0.133 0.173 7 0.161 8

* GBLUP_basic denotes the GBLUP model with only treamas fixed effect and without any PCs includ&R REIGEN) anc
PCR (SS) are PCR models where the selection ofviSsbased either on the eigenvalues or the regressim of square,

respectively.
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Figure 4 Pattern of the accuracies for principal camponent regression models where the selection of BC
was based either on eigenvalues (left panel) or aam of square contribution (right panel). An increaing
number of PCs, one by one, up to 1,000 was fitted.
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Due to a partly differentiation of GBR populatidfrigure 3) it was interested to search
inside this group and check exactly which animaésendistinguished from the rest in the
dataset. The reason is that GBR population actuahsists of two different genetic lines
(control vs. selection) as part of a still ongos®dection experiment established on 1992. This
has been captured from PCA analysis, where the gemetic group is separated in the
subspace of PCA with the first PC (Figure 5). Hoerevt should be noted that th& PC
captures only 1.5% while the first two PCs 4% & tbtal original variability of the SNP data
(Table 4). Accuracies of predicted genomic breedwges for these lines are shown in Table
4. Again, PCR where the selection of PCs was basezigenvalues gave the best results. The
GBR_1 line had higher accuracies than GBR_2. Howete increase on the accuracies of
GBR_1 compared to the whole GBR population was @nésent in milk yield. For fat and
protein yield there was a decrease on the accerémi€&sBR_1 compared to GBR.

Popuation
° GBR1
A GBR2 Scoreplot PC1vs PC2
+ IR
X NLD

Figure 5 Scoreplot of the first two principal compaments (PC1 vs. PC2). Principal component analysisas
performed on the whole dataset, whereas GBR populan was split into the two different genetic groups
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Table 4 Cumulative proportion of the original variability captured by principal components

Number of PCs Cumulative
Proportion (%)

1.4

2 3.9

37 20
138 40
326 60
668 80
967 90

Table 5 Highest accuracies obtained for GBR total rad the two GBR lines separately. Accuracies were
calculated as Pearson correlation between the prexded genomic breeding values and the observed
phenotypes.

Test Trait GBLUP PCR Number PCR Number Size of
Population basic (EIGEN) of PCs (SS) of PCs reference
population
GBR Milk 0.250 0.311 25 0.306 118 1,193
Fat 0.259 0.294 812 0.272 811
Protein 0.266 0.294 244 0.181 396
GBR_1 Milk 0.261 0.436 14 0.355 2 1,403
Fat 0.068 0.164 776 0.130 3
Protein -0.005 0.245 14 0.163 1
GBR_2 Milk 0.103 0.161 3 0.151 11 1,399
Fat -0.021 0.082 1061 0.07 751
Protein 0.006 0.0662 1 0.078 2

* GBLUP_basic denotes the GBLUP model with only thean as fixed effect and without any PCs inclué®R (EIGEN) and PCR (SS)
are PCR models where the selection of PCs was ledthed on the eigenvalues or the regression susquire, respectively. GBR_1 and

GBR_2 are the two genetic groups of GBR population.

To summarize the above comparison of PCR and thie &BLUP models i) higher
accuracies were obtained for the most geneticaligrded population (GBR), and ii) the PCR
model where the PC selection was based on theénegues resulted in higher accuracies
(on average) compared to a PCR model where theM@tsselected based on their regression
sum of square contribution. Moreover, PCR in all dases outperforms GBLUP. If only the
size of the reference population matters in orddrave accurately predicted breeding values
then we would expect the SWE and the IRL populatimmhave higher accuracies than the
GBR and the NLD populations. On the opposite, mast all cases the GBR followed by the
NLD population resulted in higher accuracies. MegFp given that part of GBR population
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(more specifically the GBR_1 line) is geneticalgparated from the others we would expect
to be more difficult to accurately estimate the MSBof this population. In contrast, this is

the most accurately predicted population.

The explanation of the above results may simplydeaved from the definition of
principal components, that isXes of variation” of the original data. As a result, the first PCs
are going to the direction of the maximum varidpiin the data which means to the GBR
population. However, in our approach the population which the GEBVs were to be
predicted was always excluded from the referenqauladion which implies that the SNP
variability in the evaluated population did noteaff the definition of the PCs. To this purpose

an alternative method to extract PCs was investiat

In the new case the whole dataset (all animalsided) was used to perform PCA and
then the dataset was split into a training and pest by selecting the animals (rows) of
interest. This resulted in an extra increase fer @EBVs for all traits, mainly to the GBR
population and secondly to the GBR_1 incorporatél afurther reduction on the number of
the PCs needed to achieve the highest accuracibstine PCR (EIGEN) model (results
shown in Table 6). Interestingly, accuracies of0@.and 0.465 for protein and milk yield
were obtained with only the first or the first tWALCs, respectively, for the GBR population.
Even more interesting is that for the GBR_1 thstfRC resulted in highest accuracies but for
fat yield. From the results it is also clear thatthe population that is more diverged from the
rest (GBR) fewer PCs are needed in the model (TablBor the rest of the populations there
was either an (substantial) increase or a decr@aske GEBVs accuracies. On average, this

approach (extraction of PCs from the whole datasst)lted in higher accuracies.
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Table 6 Highest accuracies obtained for principal emponent regression models. Accuracies were
calculated as Pearson correlation between the prexded genomic breeding values and the observed
phenotypes. Difference denotes the change on thecaracies between the two different PCA methods.

Test Trait PCR Difference Number of PCR Difference Number of
Population (EIGEN) PCs (SS) PCs
GBR Milk 0.311 25 0.306 118
Fat 0.294 812 0.272 811
Protein 0.294 244 0.181 396
GBR_new Milk 0.465 49.20% 2 0.247 -19.28% 81
Fat 0.474 61.22% 21 0.303 11.40% 273
Protein 0.502 70.75% 1 0.244 34.81% 1146
GBR_1 Milk 0.436 14 0.355 2
Fat 0.164 776 0.130 3
Protein 0.245 14 0.163 1
GBR_1_new Milk 0.450 3.21% 6 0.23 -35.21% 458
Fat 0.176 7.32% 1 0.213 63.85% 219
Protein 0.280 14.29% 7 0.092 -43.56% 1
GBR_2 Milk 0.161 3 0.151 11
Fat 0.082 1061 0.07 751
Protein 0.0662 1 0.078 2
GBR_2_new Milk 0.194 20.50% 144 0.145 -3.97% 46
Fat 0.120 46.34% 593 0.09 28.57% 1370
Protein 0.100 51.06% 151 0.082 5.13% 233
SWE Milk 0.178 1112 0.161 1060
Fat 0.220 46 0.101 991
Protein 0.114 265 0.076 790
SWE_new Milk 0.210 17.98% 365 0.165 2.48% 344
Fat 0.175 -20.45% 1425 0.177 75.25% 871
Protein 0.250 119.30% 1424 0.196 157.89% 1419
IRL Milk 0.147 967 0.118 758
Fat 0.123 954 0.142 572
Protein 0.120 749 0.09 245
IRL_new Milk 0.143 -2.72% 92 0.185 56.78% 288
Fat 0.155 26.02% 790 0.122 -14.08% 965
Protein 0.159 32.50% 94 0.134 48.89% 273
NLD Milk 0.210 20 0.172 4
Fat 0.172 794 0.186 400
Protein 0.173 7 0.161 8
NLD_new Milk 0.190 -9.52% 24 0.171 -0.58% 16
Fat 0.171 -0.58% 585 0.176 -5.38% 78
Protein 0.165 -4.62% 5 0.165 2.48% 4

* Selection of the PCs was based either on theneajaes (PCR (EIGEN)) or the regression sum of Eg@RCR (SS)). Two different
methods of applying principal component analysithée separately for reference and test parts ahenvhole dataset) were compared. The
term “new” indicates the method where PCA perforraedhe whole dataset.
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By considering the differences between the twoedgit approaches of extracting
PCA on the number of PCs needed per trait and gqaulation a substantial decrease for GBR
and GBR_1 for all traits was observed (Tables 7 &axdHowever, it should be mentioned
again that in many cases high accuracies very dhs$kee highest ones were obtained with

very few PCs (usually less than 50).

Table 7 Number of principal components needed to &teve highest accuracies per trait and per
population when principal component analysis applid on the reference part

Population Milk Fat Protein Average
GBR 25 812 244 360
GBR_1 14 776 14 268
GBR_2 3 1061 1 355
SWE 1112 46 265 474
IRL 967 954 749 890
NLD 20 794 7 273

Average 356.83 740.50 213.33

Table 8 Number of PCs needed to achieve highest acacies per trait and per population when the entie
dataset was used to perform principal component argsis

Population Milk Fat Protein Average
GBR_new 2 21 1 8
GBR_1_new 6 1 7 5
GBR_2_new 144 593 151 296
SWE_new 365 1425 1424 1071
IRL_new 92 790 94 325
NLD_new 24 585 5 204

Average 105.33 569.17 280.33

4.2 GBLUP model
The aim of the GBLUP model was to check the impurgaof population structure on

the accuracy of genomic breeding values. PCA wa®mmeed on the G matrix and the PCs
extracted were added to the basic GBLUP modelxasl feffects. By adding PCs to the model
an increase to the accuracies was observed f@oplilations as well as for all traits (from
6.2% up to 141.9%). So, information from the ba€8LUP model was extracted,
transformed (in terms of PCs) and then added tontbdel as covariates. In this way no
further improvement of the model would be expectedt perhaps rather a decrease in
accuracy, because information may be removed frabteeding values. Nevertheless in all
cases there was a significant improvement of thdeihwith the contribution of PCs (Table 9,
Figure 7). An adjective explanation would be thatGBLUP, somehow, we are losing
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information concerning SNP variation. For instangenomic relationship matrix (G) has
been constructed based on genotypic informations;T@ matrix includes information about
SNP variation of the dataset. Nonetheless, if byA R€&chnique based on data variation) we
are able to increase the accuracies, although P£3Abken applied to G matrix, this could

reasonably imply that this loss of information asrelated to variation.

Based on changes in trend of the accuracies atlessumber of PCs added to the
model (Figure 7) four main areas on the plots cddddistinguished (0-200, 200-600, 600-
800, 800-1,000 PCs). On average, accuracies wghehfor GBR followed by NLD. For
GBR there was a clear increase on the accuraciegeée 200-800 PCs, while a decrease
started from 1 to 200 PCs. The pattern was the $amal traits. For NLD, SWE and IRL,
accuracies were almost stabilized by fitting thietfR00 PCs for all traits. For fat and protein
we observe an interesting area between 200 and?@30 In this range accuracies of SWE
make a curve with a minimum point while at the sdime accuracies of IRL make a curve
with a maximum; implying that these PCs are morgcdptive for IRL than SWE. Between
600-800 PCs accuracies remain stable for SWE ahdolgically for fat and protein. After
800 PCs for all traits we observe an unstable simeor GBR and NLD, stabilization of
SWE while an increase of IRL. However, it is unkmowhat will happen if more PCs added

till the last one. For this study it was not possittue to computation time.

According to the plot in Figure 6, no populatiomdze distinguished by PCA when it
is performed on the G matrix. This is differentvibat we have seen when performing the
PCA on the genotypes. So, while the genotypesrdoemative and able to separate different
populations the marker genetic relationships repres more related view of the animals.
This is logical because the spot of each individndhe (PCA) space is not only based on its
own information (genotype) but on the others ad {ganetic relationship) when G matrix is

used to extract PCs.

Comparing GBLUP and PCR models the same patterpredictions is observed
concerning different populations such that in bo#ses GBR followed by NLD gave the
highest accuracies. On the contrary, an oppogiiat®n was observed for the number of PCs
needed to achieve higher accuracies for GBR. In B@&Rfirst few PCs were needed to
achieve the highest accuracies, while in the GBlad#und 800 PCs were needed. However,
PCR and GBLUP models have been developed forrdiffepurposes. The first is used for
direct estimation of genomic breeding values wiliile second one to identify and remove

32



European Master in Animal Breeding and Genetics

information that creates noise to the model. Tallesummarizes the highest accuracies
achieved in GBLUP models (with or without PCs) dahe PCR (EIGEN) models in the two
situations where either all animals were includeetract PCs or separately on the reference

and test populations.
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Figure 6 Scoreplot of the first two principal compaments (PC1 vs. PC2). Principal component analysisas
performed on the G matrix
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Table 9 Highest accuracies obtained from GBLUP mode with (GBLUP_PCs) and without principal
components (GBLUP_basic) included. Accuracies werealculated as Pearson correlation between the
predicted genomic breeding values and the observathenotypes. Difference indicates the change on the
accuracies between the two GBLUP models with or wibut PCs.

Population Trait GBLUP GBLUP Number Difference
basic PCs of PCs (%)
GBR Milk 0.250 0.344 708 38
Fat 0.259 0.336 709 30
Protein 0.266 0.325 708 22
SWE Milk 0.162 0.172 64 6
Fat 0.089 0.098 682 10
Protein 0.062 0.084 93 35
IRL Milk 0.060 0.090 346 50
Fat 0.081 0.151 387 86
Protein 0.043 0.104 986 142
NLD Milk 0.156 0.192 531 23
Fat 0.152 0.168 138 11
Protein 0.133 0.160 132 20
Trait: Milk Trait: Fat
Method: GBLUP Method: GBLUP
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Figure 7 Pattern of the accuracies for GBLUP modeldor test-day milk, fat and protein yield for four

countries. An increasing number of PCs (extractedrébm G matrix) was fitted, one by one, up to 1,000.

Table 10 Summarized table of highest accuracies f@8BLUP with (GBLUP_PCs) and without principal
components (GBLUP_basic) included and principal coponent regression (PCR (EIGEN)) models.
Accuracies were calculated as Pearson correlatiorebween the predicted genomic breeding values andeh

observed phenotypes.

Population Trait GBLUP GBLUP Number PCR Number PCR Number
basic PCs of PCs (EIGEN) of PCs (EIGEN_new) of PCs
GBR Milk 0.25 0.344 708 0.311 25 0.464 1
Fat 0.259 0.336 709 0.294 812 0.474 21
Protein  0.266 0.325 708 0.294 244 0.502 1
SWE Milk 0.162 0.172 64 0.178 1112 0.21 365
Fat 0.089 0.098 682 0.220 46 0.175 1425
Protein  0.062 0.084 93 0.114 265 0.25 1424
IRL Milk 0.06 0.09 346 0.147 967 0.143 92
Fat 0.081 0.151 387 0.123 954 0.155 790
Protein  0.043 0.104 986 0.12 749 0.159 94
NLD Milk 0.156 0.192 531 0.210 20 0.19 24
Fat 0.152 0.168 138 0.172 794 0.171 585
Protein  0.133 0.16 132 0.173 7 0.165 5

* PCR (EIGEN) denotes that selection of the PCs ased on their eigenvalueghe term “new” indicates that PCA was performedion

whole dataset.
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To have a better view of the different GBLUP mod@&gth or without PCs) a model
with only PCs included as fixed effects but not tharker genetic relationships (G matrix)
was developed. This means that the mixed modelrbes@ simple linear model with fixed
effects the PCs extracted from the G matrix. FOIRGEd NLD highest accuracies where
very low and around zero (Table 11). Surprisingy, SWE and IRL similar or even higher
accuracies were achieved compared to GBLUP mohlseover, in 7 out of 12 cases PCR
(SS) outperformed PCR (EIGEN). So, in the case@sd Bxtracted from G matrix results are
opposite from previous (PCA applied on the genatypeith SWE and IRL resulting in
higher accuracies than GBR and NLD and sum of squantribution method of selecting

PCs being, on average, as good as eigenvaluesRmidels.

Another interesting part deriving from Table 11thst if add the values of GBLUP
basic and PCR (EIGEN), similar values to the omeshe GBLUP model with PCs are
obtained. This supports the idea of loss of infdramain the ordinary GBLUP model.
However, this happens only for the GBR and NLD datd this sum of accuracies of two

different models seems quite arbitrary.

The above results are consistent to the literattiabier et al (2007) has shown
through simulations that genetic relationships el@an affect GEBVs accuracies even if
there is no LD between QTL and the marker. Theseaech was driven by Fernando 1998
who stated that additive relationships can alsedpured by the markers. Thus, part of the
genomic accuracies is only due to genetic relahipss In our case, for SWE and IRL, a fixed
regression with only additive genetic relationshipsterms of PCs) results in at least same

accuracies as the GBLUP model.

Table 11 Highest accuracies for GBLUP with (GBLUP_PCsyand without principal components (GBLUP_basic)
included and principal component regression modelsAccuracies were calculated as Pearson correlatidretween the
predicted genomic breeding values and the observeahenotypes.

Population Trait GBLUP GBLUP Number PCR Number PCR Number
basic PCs of PCs (EIGEN) of PCs (SS) of PCs
GBR Milk 0.250 0.344 708 0.062 1119 0.104 854
Fat 0.259 0.336 709 0.069 1190 0.074 10
Protein 0.266 0.325 708 0.081 154 0.086 989
SWE Milk 0.162 0.172 64 0.140 55 0.158 1399
Fat 0.089 0.098 682 0.196 3 0.147 358
Protein 0.062 0.084 93 0.126 1426 0.133 1323
IRL Milk 0.060 0.09 346 0.081 218 0.101 1199
Fat 0.081 0.151 387 0.120 1175 0.116 1209
Protein 0.043 0.104 986 0.115 308 0.088 719
NLD Milk 0.156 0.192 531 0.056 322 0.060 30
Fat 0.152 0.168 138 0.033 3 0.024 949
Protein 0.133 0.160 132 0.053 3 0.059 1

* Principal components were extracted from the Grmakor the principal component regression thiect®n of the PCs wabasec
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5. Discussion

Principal component analysis belongs in the genéiahework of multivariate
statistical analysis techniques. Principal compbmegression is an alternative method to
perform data reduction in the model as well asdives problems of dependencies among
variables (multicollinearity). Due to these chaeaistics PCA and its regression (PCR) were
selected to be used as an alternative way for genpiradictions. The contribution of PCR to
model improvements mainly derives from the abilifythe PCA to capture the original
variability of the dataset in a small set of PCslevthese PCs are by default uncorrelated. In
this study singular value decomposition was use@xivact PCs from a given X matrix

including the genotypes of the animals.

Results show that considerably high accuracies lmarachieved with a multiple
regression model (PCR) where SNPs are entereked &ffects (in the sense of principal
components). Breeding values of the animals weteamailable in our data, thus genomic
prediction accuracies were back correlated to thenptypes. Therefore, even higher
accuracies would be expected if breeding valueg weed. Data reduction was at least 96%
of the original data. Highest accuracies were aguddor a wide number of PCs that were fit
in PCR model, from only one to more than one thodsahis is a wider range than found in
the literature were it was shown through simulatitmat highest accuracies can be achieved
in the range between 250 to 350 PCs (Solberg &089; Macciotta et al, 2010a). By fitting
PCs one by one in the model it is shown that mbgteoPCs have a contribution to the model
(either positive or negative) and thus the trend bf the accuracies is not a stable curve but
fluctuates. As a result, empirical thresholds fetesting PCs (e.g. by keeping PCs that
explain 80% of the original variability according @igenvalues) may not provide the highest
accuracies that can be achieved through the comgmriEhus, the way PCs are selected and

kept in a regression model should be reconsidered.

Principal component regression outperforms a GBloiiélel for predicting genomic
breeding values in all cases in our analysis. itigressive that a multiple linear model with
very few regressors (compared to the original Wées) resulted in higher accuracies than a
mixed linear model where further information, imnts of genetic relationships, is included.
This may be explained by the fact that in a fixedression the assumption of equal

contributions of each SNP does not hold as in a Bltdodel. These findings are in
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agreement with the literature (Pintus et al, 208&jough in that case PCs were treated as

random variables in a BLUP model.

Moreover, the selection of PCs in a PCR model basetheir eigenvalues instead of
sum of squares contribution resulted in higher emdas (on average) in our analysis.
However, it is unknown what the case will be if thanber of observations is increased (e.g.
some thousands of animals in the reference popua)atso more information will be added in

terms of sum of squares.

The dataset on which PCA is performed is also opartance. Therefore, when
genotypes of test population were included in tkieaetion of the principal components the
accuracies significantly increased, especially tieg most genetically diverged population
(GBR). This indicates that the weights of each SMPthe P matrix of eigenvectors) were
better estimated from the model. However, this was always the case and decreases in
accuracies were also observed in some cases. Fudiees it should be noted that in this
analysis phenotypic records from different coustaed experimental stations were used. The
records were already pre-adjusted (more detaN&eigrkamp et al, 2012). However, it cannot
be 100% certain that all environmental effectsexauded.

The accuracies of a PCR model depend not only @padipulation structure but on the
trait as well. Differences of genomic accuraciesveen traits as well as breeds have also
been reported in other studies (Pintus et al, 20f@23ddition, the pattern of the accuracies for
each population and each trait differs.

Accuracies of 0.502 and 0.465 for protein and njitkd were obtained with only the
first or the first two PCs, respectively, for th&8& population. Even more interesting is that
for the one genetic line of GBR (GBR_1) that isaseped from the rest animals in the data
the first PC resulted in highest accuracies buftdbyield. This indicates that perhaps it is not
clear what kind of information is captured in th€sPin terms of traits (QTLS). In other
words, variation in the genome (at least as itlmaeaptured by PCA) may not be informative
for the expression of quantitative traits. The legfhaccuracy achieved in our analysis was 0.5
for GBR population in protein yield. In this cadeetgenotypes of the test population were
included in the extraction of the PCs. Interesyinghe GBR population was the one
genetically separated from the rest by PCA. Thusweuldn’t expect to accurately predict
GBR genomic breeding values. The explanation maplsi be derived from the definition of
principal components, that isiXes of variation” of the original data. As a result, the first PCs
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are going to the direction of the maximum varidpiin the data which means to the GBR
population in our case. This drive us to hypothesimt perhaps PCA could be a helpful tool
in across-breeds predictions.

It should be noted that for all models developethaanalysis only one replicate (test
dataset) per country and trait was used. Howewending different randomly selected test

parts and several cross-validations may yield fiedint results and ranking of the methods.

Concerning the GBLUP models, firstly a basic GBLuBdel was fitted with only the
mean as fixed effect because the phenotypic recoets pre-adjusted. Then, the model was
expanded by adding PCs extracted from genomicioekdtip matrix (G-matrix). In all cases
an increase on the accuracies (~40% on averageyvaloscompared to the basic GBLUP
model. This is in agreement with findings in théerdature were similar models were
developed in across breeds genomic predictionsiviyéer et al (2011) using a similar
GBLUP model also found a substantial increase (3008t 0.05 to 0.2) on the accuracy of
one population in across breed predictions in shegponly for one of the two traits
investigated. However, this trend of increased emzas when PCs are fit is unexpected. The
reason is that variance explained in G matrix & eatered to the model as PCs and thereby
expected to be removed from the breeding valuesother words, by correcting for
population structure in the model a decrease ofpiteelicted values would be expected.
However, this increase in the accuracies indicHtas there is a loss of information in the
basic GBLUP model. According to this analysis iswet clear why this happened. Therefore

more research is needed in this direction to hawettr insight.

On the other hand, when a fixed regression appligd PCs derived from the G-
matrix nonzero accuracies obtained. In addition,S&/E and IRL accuracies where at least
as high as the GBLUP with PCs. The explanation diemsady been stated from Fernando
(1998) and Habier et al (2007). According to thasthors part of the GEBVs accuracies can
be only due to additive genetic relationships eifetmere is no LD between markers and
QTLs. The reason is that marker effects which aedufor genomic predictions capture
additive genetic relationships as well.

As a further research, it would be interesting lheak the performance of a GBLUP
model where the inverse of G matrix would be st&d by the inverse matrix of the PCs.
Thus, variation on the genotypes will directly ksed and take the place of additive genetic
relationships in the model.
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PCA is a useful and easy tool for preliminary as@\of the data. In an initial step it
can be used to check for grouping in the data. &slhein a dataset where different breeds
are included PCA can give an overview through g¢asynderstand graphical representation
of genetic similarities or differences among difier breeds. In across breed predictions it
would be interesting to check accuracies if onlysRi@at are descriptive for each breed and
can separate it from the rest are used to prediwdmic breeding values of the animals of the
specific breed.

In a further step, it would be interesting to invgaste which SNPs dominate each
component, especially the ones that can differenti@e groups in the dataset and try to use
this information for breed specification or corteda with a specific trait. PCA has already
been used for genome-wide association studies (Bal@ et al, 2010), thus broaden its
application in a more thoroughgoing perspectivegamomic data of breeding programs.
However, we should always consider the amount gfir@l variation captured by each PC

before extracting conclusions of biological meaning

Principal component analysis and multivariate asedyin general has been used in
several studies to extract information from markard have been proved to be a nice tool for
capturing genetic variability. Moreover, as explanga statistical methods they do not hold on
strong assumptions of the data. However, we shetildbe very careful when applying
multivariate analysis in genomic data and espagciahen interpreting the results. Jombart et
(2009) gives a nice overview of wrongly used mualtigte analysis in different datasets as
well as fallacies during the interpretation of ttesults. On this direction, Edwards (2003)
discusses “erroneous conclusions” derived from gipmnterpretation of genetic markers
information in human genetic diversity studies. oA of information can be derived by the

plethora of genetic markers, still the way thiomfation is used has to be optimized.
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6. Conclusions and implications

Our results indicate that considerably high acaesa; genomic predictions can be
obtained with a simple linear regression model (P@Rere very few components are fitted.
Accuracies obtained by PCR were at least as higla &BLUP model. However, the
accuracies as well as the number of PCs to batfit the PCR model depend both on the
dataset and the trait. Due to the fact that thestdols populations used in this study
originated from four different countries but highescuracies obtained for the only one
genetically diverged (GBR) from the rest, accordiag®CA graphs, it is hypothesized that
PCR methodology could also be tested in acrossdbgeaomic predictions. However, the
variance of the number of PCs added to the modehioh highest accuracies occurred (from
one to more than 1,000 PCs) is a drawback of thteade

It is proposed PCA to be applied on the whole Sif dnd then split to training and
testing parts for cross-validation to estimate eacies of genomic breeding values.
According to our analysis the selection of PCs tase their eigenvalues and not on the
regression sum of square contribution (correlationthe trait) resulted in better results.
However, this cannot be generalised for genomia,despecially when some thousands of
phenotypes will be included, so more informatioti Wwe added in terms of sum of squares.
Furthermore, the first few PCs alone should be rtak#o consideration when fitting a
regression model, even if they do not capture aifssgnt amount of the total original data
variability. It was shown in the analysis that heghaccuracies could be achieved even with
the first PC. Thus the methodology of keeping H@&s$ tontribute over 80% of the variability
of the SNP data should be reconsidered.

The simplicity of the method, the (considerablyytf@omputation, dimensionality
reduction while at the same time keeping all thgioal variables in the dataset as well as the
ability of both predicting and identifying groups the data (pattern recognition) could be
stated as the main advantages of PCR. The abovele together with nice performance in
predictive ability of the model with real data cheterizes PCR as an attractive tool for

animal breeding.
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