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Preface 

The submission of this master thesis marks the end of my 2 year MSc. program in Animal 

Breeding and Genetics (European Masters in Animal Breeding and Genetics -EMABG). The 

study was carried out at the Department of Animal and Aquaculture Studies, Norwegian 

University of Life Sciences.  

This thesis was designed to implement genomic selection in small breeding populations using 

a multibreed reference population. This was because, key findings from genomic selection 

experiments are that, the reference population used must be very large to subsequently predict 

accurate genomic estimated breeding values (GEBV); the extent of linkage disequilibrium 

(LD) between markers and QTL should be high; among others. This meant that, in small 

populations, to achieve accurate predictions, breeds/populations needs to be combined or a 

breed with large number of animals could be used as the reference set to predict the 

breed/populations with the smaller number of animals. But results from predictions derived in 

one breed do not predict accurate GEBV when applied to other breeds. Thus researchers have 

suggested that, a multibreed reference population is a potential solution.  

We estimated accuracy of GEBV for three Austrian breeds (Braunvieh, Grauvieh and 

Pinzgauer) with a single and multibreed breed reference population. We used both GBLUP 

(using genomic relationship matrix and then implementing it in ASReml) and Bayesian 

methods (Bayes-B and wgt.GBLUP) that increase the weight of certain important SNPs to 

estimated SNP effect in the prediction equation. Accuracy of GEBV was estimated as the 

correlation of the estimated GEBV and the EBV provided the Austrian breeding organization. 

Standard errors of the calculated accuracies were obtained using bootstrapping. Accuracies 

obtained in the single breed analysis are compared to those obtained from the multibreed 

analysis. Also the three method used are compared and discussed in the thesis. 
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Abstract 

Accuracy of genomic breeding values (GEBVs) is largely determined by the number of 

animals used in training and predicting marker effect. Thus in populations with limited 

number of animals, there are the need to combine populations or breeds to increase the 

reference population. The objective of this study was to investigate the accuracy of genomic 

selection using a single breed and multibreed reference population of the Austrian breeds 

Braunvieh, Grauvieh and Pinzgauer. Genomic relationship matrix (GBLUP) and Bayesian 

methods (Bayes-B and wgt.GBLUP) that increase the weight of certain important SNPs were 

used to predict marker effect. Accuracies were estimated using the 60 youngest bulls and 

calculated as the correlation between GEBV and published estimated breeding values (EBVs) 

for single breed and multibreed. Deregressed EBVs were used as phenotypes and a total of 

10 traits were analysed. Accuracy of GEBV averaged across the 3 methods and the 10 traits 

for single breed ranged from 0.46 to 0.52. Two-way combined breed analysis gave an 

average accuracy of 0.46 and a three-way combined breed analysis was 0.45. Accuracies 

were not significantly different between methods; GBLUP, Bayes-B and wgt.GBLUP. 

Multibreed training set yielded maximum gain of about 17% in a both two and three -way 

analysis. However, on average combining 2 breeds increased accuracy by only 1.9% and a 

loss of 1.32% for a combination of 3 breeds. Combining breeds to increase the number of 

animals used in predicting marker effect and estimates GEBV for young bulls increased 

accuracy but this was not consistent across traits. 

 

Keyword: GEBV, Genomic selection, Multibreed, Accuracy, GBLUP, Bayes-B 
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Norsk sammendrag 

Nøyaktighet av genomisk avlsverdier (GEBVs) er i stor grad bestemmes av antall dyr som 

brukes i opplæring og forutsi markør effekt. Dermed i populasjoner med begrenset antall dyr, 

er det behovet for å kombinere populasjoner eller raser for å øke referansegruppen. Målet 

med denne studien var å undersøke nøyaktigheten av genomisk seleksjon ved hjelp av en 

enkelt rase og multibreed referanse befolkning av den østerrikske raser Braunvieh, Grauvieh 

og Pinzgauer. Genomisk forhold matrise (GBLUP) og Bayesianske metoder (Bayes-B og 

wgt.GBLUP) som øker vekten av enkelte viktige SNPs ble brukt til å forutsi markør effekt. 

Nøyaktigheten ble estimert ved hjelp av de 60 yngste oksene og beregnet som korrelasjonen 

mellom GEBV og publiserte estimerte avlsverdier (EBVs) for enkelt rase og multibreed. 

Deregressed EBVs ble brukt som fenotyper og totalt 10 trekk ble analysert. Nøyaktighet av 

GEBV gjennomsnitt over 3 metoder og de 10 trekkene for enkelt rase varierte 0,46 til 0,52. 

Toveis kombinert rase analyse ga en gjennomsnittlig nøyaktighet på 0,46 og en tre-veis 

kombinert rase analyse var 0,45. Nøyaktigheten var ikke signifikant forskjellig mellom 

metodene, GBLUP, Bayes-B og wgt.GBLUP. Multibreed opplæring sett gitt maksimal 

gevinst på ca 17% i en både to og tre-veis analyse. Men i gjennomsnitt kombinere 2 raser økt 

nøyaktighet med bare 1,9% og et tap på 1,32% for en kombinasjon av 3 raser. Kombinere 

raser for å øke antall dyr brukt i forutsi markør effekt og anslår GEBV for unge okser økt 

nøyaktighet, men dette var ikke konsekvent på tvers av egenskaper.  

 

Søkeord: GEBV, genomisk seleksjon, Multibreed, nøyaktighet, GBLUP, Bayes-B 
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1 Introduction 

1.1 Background 

Animal and plant breeders have long been improving plant and livestock populations by 

estimating breeding values using phenotypic records and pedigree information. However, the 

recently developed  genomic selection method (Meuwissen et al., 2001) have allowed us to 

use genome wide molecular markers (SNPs, haplotypes, etc) in estimating breeding values 

for selection candidates.  

Genomic selection (GS) has been implemented in breeding programs all over the world. In 

GS, selection of parents for the next generation is based on Genome-wide estimated breeding 

values (GEBV). The implementation of GS derives a prediction equation for marker 

genotypes in a reference population (training dataset) that is genotyped and phenotyped. The 

estimated marker effect are assumed to be the populations estimates and thus the prediction 

equation is then used to predict GEBV’s for selection candidates who have marker genotypes 

but do not have a trait record (Meuwissen et al., 2001; Hayes and Goddard 2010). 

As was discussed in 2001, by Meuwissen et al., the feasibility of this approach depends on 

the cost of genotyping plants and animals for a large number of SNPs that are abundant in the 

genome of most species. The rapid sequencing technology after the year 2000 have 

discovered many SNPs that span the entire genome at certain marker intervals in human, 

cattle, pigs, chicken, fish, rice and wheat among others. Species can thus be genotyped with 

these SNP chips at a fairly low cost. 

The fast adoption of GS by breeding companies was due to the large reduction in operational 

cost and the relatively high accuracy of the EBVs predicted for the selection candidates 

(Schaeffer, 2006). The accuracy of predicting EBV in most species using this method in 

simulation studies has been high. Meuwissen et al., (2001) in a simulation study showed that, 

accuracy of GEBV‟s can be 0.73 (BLUP; Best Linear Unbiased Prediction) and as high as 

0.85 (Bayes-B). Calus et al. (2008) also reported accuracies of 0.83 (traits with h
2
=0.5) and 

0.66 (traits with h
2
=0.10).  

However, accuracies reported using real data have slightly been lower than those predicted in 

simulation studies. De Roos et al., (2011) reported high accuracies (average of 0.76) for 

highly heritable traits like milk yield, fat and protein yield and percentage compared to 

average accuracy of 0.63 for lowly heritable traits like fertility index, non return rate and 

longevity in a dairy cattle population from the Netherlands and Flanders. Others have 
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reported accuracies of 0.52 to 0.64 (Moser et al., 2010), 0.71 (Van Raden et al., 2009) and 

0.83 (Van Raden et al, 2011). 

To a large extent, the success of making genome wide predictions in genomic selection 

depends on the size of the reference population (RP), heritability of the traits and the extent 

of linkage disequilibrium (LD) between markers and QTL (Goddard and Hayes, 2009).  

Simulation studies have shown that, higher LD‟s are needed to achieve higher accuracies 

(Calus et al., 2008; Solberg et al., 2008; Meuwissen et al., 2001). LD measured as r
2
 of not 

less than 0.20 for adjacent SNP markers has been shown to give accuracies of about 0.8 to 0.9 

(Calus et al., 2008; Solberg et al., 2008; Meuwissen et al., 2001) although these accuracies 

are slightly lower for traits that are lowly heritable.  The idea is that, the lower the extent of 

LD‟s in the population, more SNPs are required to make sure that, at least one of them is in 

complete LD with the QTL (Goddard, 2009). Linkage Disequilibrium is very much 

dependent on the effective population size (Hayes and Goddard, 2010) of the species under 

study. Species with small effective population sizes require fewer markers since SNPs will be 

in greater LD than those with higher effective population sizes (Meuwissen et al., 2001; 

Hayes and Goddard, 2010).  

Accuracy of GS is observed to be higher for highly heritable traits than for lowly heritable 

traits in both simulation studies (Goddard 2008; Daetwyler et al., 2008; Calus et al., 2008) 

and studies using real data (De Roos et al., 2011; Moser et al., 2010; Luan et al., 2009). The 

accuracy of GEBVs according to the formula of Daetwyler et al. (2008) is directly 

proportional to the heritability or reliability of the traits in the training dataset thus traits with 

higher heritability gives more accurate estimates of GEBVs than those with lower 

heritabilities. 

The prediction methods used in GS suggest that, a large training dataset is needed to 

accurately estimate SNP effect and predict GEBVs (Hayes and Goddard, 2010; Meuwissen et 

al., 2001). Accuracy of GEBV increased by 17% through to 21% when the reference 

population were increased from 500 to 2200 (Meuwissen et al., 2001). Van Raden et al. 

(2009) reported 133% increase in accuracy of net merit in North American Holstein bulls 

when the training population were increased from 1151 to 3576. Luan et al., (2009) also 

reported slightly lower accuracies using 250 daughter yield deviation records in the training 

dataset than using 400 animals in Norwegian Red bulls.  

Due to the large numbers needed in a RP for accurate prediction of marker effect in GS, 

implementation in breeds with smaller breeding population will require the aggregation of a 
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RP across breeds. However, (1) the effect of QTL alleles in one breed may not be the same 

for the other breed; (2) different QTLs may be segregating across populations; (3) the SNP-

QTL LD might not be across breeds (Hayes et al., 2009; De Roos et al., 2009). Due to the 

above mentioned reasons, accuracy of GS where only crossbreed predictions (estimating 

GEBVs of one breed and RP from another breeds) were performed have not been very 

successful. Accuracy of GEBVs in studies of crossbreed prediction have been lower and 

sometimes negative compared to those of within pure breed prediction (Pryce et al., 2011; 

Hayes et al., 2009; Haris et al., 2008). Hayes et al. (2009) suggests that, we should aggregate 

breeds into a multibreed RP instead of crossbreed prediction, which might reduce some of 

the above mentioned reason that hamper across breed predictions. 

The use of multi-breed RP has been studied for highly heritable production traits in dairy 

cattle production (milk yield, fat and protein yield and percentage) by Pryce et al. (2011) and 

Hayes et al. (2009) and in some simulated studies (De Roos et al., 2009). They all concluded 

that, a small accuracy increase for some traits can be achieved when the RP come from a 

multiple breeds. Accuracies of GEBV were up to 13% higher when the multibreed reference 

population was used than when a pure breed reference set was used (Hayes et al., 2009) 

although this percentage increase was not consistent across traits. Pryce et al. (2011) also 

reported that, predicting GEBV’s for a breed that is not in the RP is increased with increasing 

number of breeds assuming that these breeds are related in the distant past. De Roos et al. 

(2009) in their simulation study noted that, an accurate prediction in this way depends on how 

divergent or evolutionarily distant the RP is from the breed to be predicted. Therefore 

sufficient marker density and LD between breeds should be high enough to achieve increase 

in accuracies when different populations or breeds are combined.  
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1.2 Objectives 

The general objective of this paper is to investigate the accuracy of GS using a multi-breed 

RP of the Austrian breeds Braunvieh, Grauvieh and Pinzgauer for functional (lowly 

heritable) and production traits (highly heritable) with both GBLUP (using genomic 

relationship matrix) and Bayesian methods that increase the weight of certain important 

SNPs. 

 

The specific aim of this paper is to: 

i) Compare the accuracies of GS between using pure breed training dataset and multibreed 

training dataset. 

ii) Compare accuracies using GBLUP and different Bayesian estimates of GEBV  

iii) Compare the extent of Linkage Disequilibrium (LD) for marker pairs across breeds 

 

In this study, accuracy of GS for cross prediction (predicting GEBV from an entirely different 

population or breed when the RP does not contain part or that population or breed) were not 

investigated basically due to the expected lower and sometimes negative accuracies reported 

(Pryce et al., 2011 and Hayes et al., 2009) 
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2 Material and Methods 

2.1 Breed Description 

2.1.1 Braunvieh

This breed is popularly known as the “Brown Swiss” 

in most part of the world. It known to have 

originated from Switzerland before it spread to other 

part of Europe (mostly Southern Germany, Italy, 

France, Slovenia and Austria), the Americas (USA 

and Canada), Australia, New Zealand and the other 

part of the world. Currently, the population 

worldwide counts 7 million head. Braunvieh are 

milky-type dual purpose cattle. The breed is known 

to have physical characteristics like unicoloured 

coat, ranging from brown to grey and beige. Males 

show darker coats than the female. Other characters 

included are the dark claws, the black muzzle with a 

bright edge and bright hairs inside the ears. The 

horns are bright with dark tips. It has a medium 

wedge-like body shape and with no emphasis to 

increase it body size in most breeding goals around 

the world. 

In Austria, it is found within the western and central 

part with an estimated population size of 162,000 

(5,444 herds with over 55,078 cow registered in herd 

book). 

 

Picture of Braunvieh dam adapted from ZAR (2009) 

(http://www.zar.at/) 

It has been bred for high performance in milk 

production, functional and reproductive traits. 

Breeding goal has been to develop total merit index 

of 48% milk, 5% beef and 47% reproduction and 

functional traits. Some important performance traits 

include: Age at first calving (31.4 months), calving 

interval of approximately 400 days, productive life 

(3.9 years), and milk production during 305 days 

(6,856 kg milk yield with 4.11 % fat and 3.41 % 

protein)(www.rinderzucht-austria.at).

 

2.1.2 Grauvieh (Tiroler Grauvieh)

The breed is also known as the “Tyrol Grey” is 

certain part or the world. It is believed to have 

originated from Austria and lived mostly in the 

Alpine regions. Today the breed is also found in 

Canada, Italy, Bavaria, and Switzerland among 

others. The breed is regarded as a rare and 

endangered species of livestock today, and is 

therefore part of the Austrian Government gene 

protection program. Its physical characteristics 

include: a uni-coloured coat of silver to iron-grey, 

sometimes brownish-grey, with certain lighter and 

darker spots. The skin is black. Special 

characteristics are a red shock of hair, black horn 

tips and black, hard hooves.  

http://www.zar.at/
http://www.rinderzucht-austria.at/
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The multi-purpose breed has been mainly breed for 

milk and beef. 

The breed is still found largely in the Alpine regions 

of Austria with a population of 18,000 (3.809 

registered cows). The Breeding goal has been to 

develop total merit index of 30% milk, 20% beef 

and 50% fitness traits. 

Production performance for milk yield and it 

component has been 4,837 kg with 3.93% fat and 

3.25% protein. It is also highly breed for meat and 

thus have high quality beef. It calving interval is 

about 33.8 month and has a productive lifespan of 

4.7 years (www.rinderzucht-austria.at). 

 

 

 

Picture of Grauvieh dam adapted from ZAR (2009) 

(http://www.zar.at/)

 

2.1.3 Pinzgauer 

The breed takes its name from the Pinzgau district of 

Salzburg, Austria. It was first developed in the sixth 

century from Bavarian cattle. It was exported to 

other part of Europe especially including Romania, 

Czech Republic, Austria and Yogoslavia. It has then 

spread to USA, Canada, South Africa and other 

countries.  

In Austria, the breed is also found in the 

mountainous (alpine) areas and has a population of 

47,000 with 7,680 registered cows. Pinzgauer are 

easily recognisable by their deep chestnut colour 

with white markings on the back, underside, udder 

and tail. 

The breeding goal is a total merit index of 36% milk, 

14% beef and 50% fitness traits. 

 

Picture of Pinzgauer dam adapted from ZAR (2009) 

(http://www.zar.at/) 

Some important performance traits include: Age at 

first calving (34.1 months), productive life (3.7 

years), and milk production during 305 days (5,398 

kg milk yields with 3.86 % fat and 3.24% protein)  

(www.rinderzucht-austria.at).

 

 

 

 

 

 

 

http://www.rinderzucht-austria.at/
http://www.zar.at/
http://www.zar.at/
http://www.rinderzucht-austria.at/
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2.2 Phenotypic data 

The phenotypic data (provided by Zuchtdata EDV- Dienstleistungen GmbH) 

http://www.zar.at/)  used in estimating SNP effects and predicting GEBV for the ten (10) 

traits in this study were de-regressed estimated breeding values (DrEBV) of bulls. The 

method of Garrick et al. (2009) was used for the de-regressing the original estimated 

breeding values (EBV) that were based on routine genetic evaluation of on average 8-10 year 

old bulls. Parent average effects and the differences in progeny records are removed thereby 

accounting for the heterogeneous variances or different reliabilities of the EBV. The 

following ten (10) traits were analysed: milking speed, protein and fat yield and percentage, 

milk yield, fertility, longevity, persistency and somatic cell count (see table 1). The traits are 

briefly described, however details are found at the Zuchtdata EDV- Dienstleistungen GmbH 

website (http://www.zar.at/). 

 

2.2.1 Production Traits 

Milk yield: The EBV for milk yield was estimated with a test day animal BLUP model. Milk 

yield from a maximum of four lactations were used. The total amount of milk produced per 

day as a sum of morning and evening lactation and accumulated for the entire lactation. 

Milk composition (Protein and Fat yield and percentage): Daily milk records are analysed 

for these protein and fat percentage and yield. EBVs are estimated from the records of the 3 

lactations using again an animal test day BLUP model. 

 

2.2.2 Reproduction and Functional Traits 

Milking speed: The average milking speeds per cow of only the first lactation and milking 

ability as visual scores from the famer are combined to as phenotype for estimating EBVs. 

EBVs are calculated together (multivariate) with the somatic cell count taking the genetic 

correlations into account by an animal BLUP model. 

Fertility: EBVs are calculated as the non-return-rate 56 days of heifers and cows, time to first 

insemination and time from first to last insemination (heifers and cows) using a BLUP animal 

model. A female fertility index is calculated from non-return rate and time from first to last 

insemination, which refers to the fertility of the daughters of a bull. 

http://www.zar.at/
http://www.zar.at/
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Longevity: An individual animal„s productive life EBV is predicted using survival analysis 

which also accounts for censored animals. It is based on a yield-independent productive (milk 

yield) life as it serves as a yardstick for evaluating vitality and fertility. 

Persistency: Persistency is defined as the decrease or increase from lactation day 60 to day 

300. EBVs are then estimated using a test day animal BLUP model.  

Somatic cell count (SCC): The concentration of somatic cells per millilitre for the first three 

lactations collected during milk recording is used for EBV estimation using a test day BLUP 

animal model. SCC is considered an auxiliary characteristic for predisposition and resistance 

to mastitis.  

 

The number of genotyped bulls with DrEBV (discussed under result; table 3a, 3b and 3c) 

varied because bulls with reliabilities of EBVs < 0.30 (r = 0.55) were excluded. This ensures 

that accurate phenotypes are used to estimate GEBVs accurately especially when the number 

of genotyped bulls was small.  

 

2.3 Pedigree structure 

A total pedigree database of 6057 animals from Braunvieh, 1691 from Grauvieh and 3107 

animal from Pinzgauer all in about 8 generations including the genotyped bulls were used in 

this study. There were approximately 1740, 524, 1136 sires and 3862, 998 and 1851 dams for 

Braunvieh, Grauvieh and Pinzgauer respectively. 

 

2.4 Genotypic data 

There were 202 Braunvieh, 100 Grauvieh and 101 pinzgauer bulls genotyped for 54,001 

SNPs markers using the Illumina bovine SNP50 beadchip. In addition, 322 Braunvieh, 120 

Grauvieh and 121 pinzgauer bulls were genotype for 777,000 SNPs using the Illumina 

BovineHD beadchip. The same sets of SNPs of the 54001 markers were extracted from the 

777K SNP chips to make a total of 524 Braunvieh, 221 Grauvieh and 221 Pinzgauer bulls. 

Initial pedigree checks using the SNP information were done to remove sons of sires with 

incorrect pedigree (sons with different homozygous alleles than what the sire is carrying; 
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sons are removed when 1000 alleles are discordant). Genotype quality checking was 

performed within breed using PLINK (Purcell et al., 2007). Maximal identical – by – state 

between bulls: 0.999 (in order to get rid of monozygotic twins or double genotyped sires with 

false ID). SNPs were selected on; minor allele frequency (MAF) > 2%, call rate > 95%, 

missing genotypes < 1%, Hardy Weinberg Equilibrium (HWE) p-value > 10
-3

, SNPs mapped 

to the X chromosome were removed (Hayes et al., 2009, De Roos et al., 2009). Animals with 

GenCall score (Illumina Inc., 2008) of less than 0.60 were discarded. The final extracted 

SNP‟s segregating across all the three (3) breeds were 35,319. 

 

Table 1: Total number of bulls after both phenotypic (DrEBV) and genotypic SNP editing for 

the three (3) breeds; Braunvieh, Grauvieh and Pinzgauer 

Traits  Breed 

Braunvieh Grauvieh Pinzgauer 

Milking Speed  453 181 170 

Protein Kg  450 190 159 

Protein Percent  450 190 159 

Fat Kg  450 190 159 

Fat Percent  450 190 159 

Fertility Maternal  387 93 151 

Milk Kg  450 190 159 

Longevity  423 121 155 

Persistency  455 213 196 

Somatic Cell Count  455 196 189 

 

 

2.5 Reference and cross validation dataset 

Marker effects were estimated from a reference dataset of bulls depending on their birth years 

and the traits. The validation dataset consisted of the 60 youngest bulls (forward prediction) 

with phenotypes for that particular traits evaluated except for Grauvieh where the 30 

youngest bulls were used for the traits fertility Maternal and Longevity. The distribution of 

bulls across birth years for Braunvieh, Grauvieh and Pinzgauer bulls is shown in Figure 1. 

Two and three way combinations of breeds were used for the multibreed GS (see Table 2). 

The cross validation dataset for the multibreed analysis were the same 60 young bulls used 

for the pure breed analysis.  

 

 

 



Materials and Methods   GS in small populations using Multibreed Reference set 

10 

 

Table 2: Overview of the pure bred, two and three way multibreed analysis for both training 

and cross validation dataset 

Analysis Reference  Validation 

 REF-BV  VAL-BV 

Pure breed REF-GV  VAL-GV 

 REF-PI  VAL-PI 

 All GV + REF-BV  VAL-BV 

 All BV + REF-GV  VAL-GV 

Two way Multibreed All PI   + REF-GV  VAL-GV 

 All GV + REF-PI  VAL-PI 

 All PI   + REF-BV  VAL-BV 

 All BV + REF-PI  VAL-PI 

 All GV +  All PI   +  REF-BV  VAL-BV 

Three way Multibreed All BV +  All PI   +  REF-GV  VAL-GV 

 All BV +  All GV + REF-PI  VAL-PI 

REF – Reference dataset  VAL – Cross Validation dataset 

BV – Braunvieh; GV – Grauvieh and PI - Pinzgauer
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Figure 1: Number of bulls across birth years for the forward prediction in Braunvieh, Grauvieh and Pinzgauer breeds. Validation dataset 

are the youngest 60 bulls depending on the traits. 
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2.6 Methods 

2.6.1 Statistical analysis 

DrEBV for the multibreed analysis were adjusted for fixed effect (breed) before been used as 

a response variable in the subsequent GBLUP and Bayesian models. We assume 

𝑦 =  𝜇 + 𝑋𝑏 + 𝑒 
                 equation 1.0 

 

y  = vector of DrEBV for the traits 

µ  = is the overall mean 

X  = is a design matrix relating records to breed 

b = is a vector of breed effect 

e = vector of random residual errors N (0, 1) 

 

In the pure breed analysis, the uncorrected DrEBV phenotypes were used as the response 

variables. This is because, the algorithm for the analysis of the Bayesian methodologies were 

developed only to include the mean of phenotypes pre-corrected for their fixed effect. 

 

2.6.1.1 GBLUP  

GEBV will be estimated by fitting a polygenic effect assuming that every marker has a 

constant variance (GBLUP) (Meuwissen et al., 2001) i.e. assuming that each marker explains 

an equal proportion of the total genetic variance (𝜎𝑔
2). Genomic relationship matrix (G) based 

on SNP marker genotypes instead of the conventional additive genetic relationship matrix 

(PBLUP) from pedigree information were used in estimating the GEBV. The GBLUP model 

assumed was: 

 

𝑦 =  1𝑛𝜇 + 𝑍𝑔 + 𝑒 
           equation 2.0 

 

y = corrected DrEBV 

1n = vector of 1s 

µ  = overall mean 

Z  = design matrix allocating records to breeding values  

g  = vector of random additive genetic effect using the genomic relationship matrix (G)  
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coming from 𝑁(0,𝐺𝜎𝑔
2) 

e  = vector of random residual errors 𝑁(0, 𝐼𝜎𝑒
2) 

 

The genomic relationship matrix (G) is calculated by using SNP marker genotype as 

described by Yang et al. (2010). 

𝐺 = 𝑋𝑋 𝑚  

X= matrix of standardised SNP genotypes Xij  

m=number of SNPs  

Xij denotes the standardised SNP genotypes of animal i for SNP j  

For genotypes 0, 1 and 2 

𝑋𝑖𝑗 : 
(0− 2𝑝𝑗 )

√𝐻
 ;  

(1−2𝑝𝑗 )

√𝐻
 ;  

(2− 2𝑝𝑗 )

√𝐻
  

The values of the three SNP genotypes are originally 0, 1 and 2 respectively, but are 

standardised to a mean of zero and a standard deviation of 1 (by subtracting the mean (2pj) 

and dividing by the standard deviation √H. 𝐻𝑒𝑡𝑒𝑟𝑜𝑧𝑦𝑔𝑜𝑠𝑖𝑡𝑦 (𝐻) = 2𝑝𝑗 (1− 𝑝𝑗 ). 

Thus the Gik between two animals i and k were calculated 

𝐺𝑖𝑗 =  𝑐𝑜𝑟𝑟 𝑋𝑖𝑗 :𝑋𝑘𝑗  =  𝑐𝑜𝑣 𝑋𝑖𝑗 :𝑋𝑘𝑗    

The calculated genomic relationship matrix is implemented in the equations to calculate 

GBLUP breeding values using ASReml v3 software package (Gilmour et al., 2009). 

 

2.6.1.2 Bayesian Methodologies (Bayes-B and Weighted Mixture model) 

Bayesian methodology will be used to vary the variance assumption employed across loci 

instead of a constant variance assumption in GBLUP (Meuwissen et al., 2001).  

2.6.1.1.1 Bayes-B  

This model assumed that some markers had a big effect of variance 𝜎2 with probability of π, 

whilst the remaining markers have a small effect with small variance with a probability of (1- 

π), the variance of which will be assumed to be equal and will be estimated in the model from 

the data (Luan et al., 2009), instead of assuming that these markers and with a variance of 0, 

had virtually no effect at all (Meuwissen et al., 2001). Assuming that, the variance of those 
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SNPs with no or little effect was not equal to zero but small allows the Gibbs sampler to work 

slightly faster than usual and allows for many small genes spread across the genome. The 

prior probability π is unknown and therefore different values are tested till we arrived at the 

one that gives the largest accuracies of GEBV. Interestingly, varying these prior distributions 

of the marker effect showed little or no increase in accuracy for most of the traits. The model 

used was: 

𝑦 =  𝜇 +  𝑋𝑗𝑎𝑗

𝑁𝑚

𝑗=1

+ 𝑒 

 

           equation 3.0 

y  = vector of phenotypes 

Nm  = number of markers fitted  

Xj  = vector denoting the genotype of the individuals for marker j 

aj  = effect of the marker 

e  = vector of random residual errors 𝑁(0, 𝐼𝜎𝑒
2) 

 

In detail 𝑋𝑗  is calculated from individuals with genotypes 𝑋𝑖𝑗 = 0 if individual i is 

homozygous for the first allele at locus j. 𝑋𝑖𝑗 = 1 √𝐻𝑗  if heterozygous. 𝑋𝑖𝑗 = 2 √𝐻𝑗  if 

individual i is homozygous for the second allele at locus j, and 𝑋𝑖𝑗 = 2𝑞𝑖 √𝐻𝑗  if the marker 

genotype is missing, where qj is the frequency of the second marker allele and Hj is the 

marker heterozygosity. The division by √𝐻𝑗  standardizes the variance of the marker genotype 

data to 1 (Luan et al., 2009). 

After obtaining the marker effect, Genome wide estimated breeding Values (GEBV) will be 

predicted as 

𝐺𝐸𝐵𝑉 = 𝜇 +   𝑋𝑖𝑗 â𝑗

𝑁𝑚

𝑗=1

 

           equation 3.1 

 

Where µ is the overall mean; Xij is the marker genotype of individual i for marker j; âi is the 

estimated effect of marker j. 
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For each trait, the Gibbs sampler of the Markov Chain Monte Carlo (MCMC) method was 

run on a single chain of 40,000 iterations and 10,000 burn-ins based on a convergence test 

with the traits milk yield and SCC for using different chain length and burn-ins to estimate 

parameters.  

 

2.6.1.1.2 Weighted GBLUP (wgt.GBLUP)  

The model was the same as in equation 3.0 but the SNP variance assumption changed to 

V(aj) =  bj
2
, where bj is the solution of the jth SNP in the GBLUP model. Thus bj

2
 is seen here 

as an estimate of the variance due to the jth SNP, except that the prediction error variance of 

bj is ignored when estimating the variance of the SNP, which implies that the variance is 

underestimated. This underestimation corrected by scaling up the V(aj) such that the sum of 

the overall SNPs equals to the total genetic variance. In a sense this model is Bayes-A model 

where the variance due to each SNP is estimated. wgt.GBLUP. The model implies that, SNPs 

with higher GBLUP-SNP effect, bj are regressed back less than those with lower SNP effect.  

Another variant of this wgt.GBLUP which used the marker effect estimated with a multibreed 

(all 3 breeds) training set as weight for the maker effect estimated in the purebred analysis did 

not improve accuracy above 1% (these are averaged across breeds and traits; results for both 

single breed and multibreed analysis are presented in table 16 of Appendix 1). Therefore the 

earlier mentioned wgt.GBLUP method was used instead.  

All the Bayesian methods were programmed in Fortran90 and compiled for Linux and were 

developed by Theo H.E. Meuwissen (Norwegian University of Life Science, Aas, Norway). 

These programs (BAYESGG ~ Bayes-B and BAYESP ~ wgt.GBLUP) were then run on an 

Intel Core
 TM

 Duo CPU E8500.  

 

2.7 Evaluation of Accuracy of GEBV  

Accuracy of GEBV were estimated as the correlation between GEBV and EBV; 

𝑟 = 𝑐𝑜𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉). EBVs were obtained from the Zuchtdata EDV- Dienstleistungen 

GmbH, Austria. Therefore, this meant that the theoretical maximum for these accuracies will 

be the average accuracy of the EBVs obtained from Zuchtdata EDV- Dienstleistungen 
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GmbH, Austria. Note that, unless otherwise stated accuracies are calculated as the correlation 

between the estimated GEBVs and the EBV obtained from Zuchtdata EDV- Dienstleistungen 

GmbH, Austria without dividing this estimate by the theoretical maximum. As stated earlier, 

forward prediction (the youngest bulls are used in validation dataset) procedure was used in 

evaluating the accuracy of GEBV. Since the numbers of bulls in this study were small, the 

bootstrapping procedure (sampling with replacement) was used to calculate the standard error 

of the correlation between the GEBV and the EBV.  

The estimated GEBV were bootstrapped 10,000 times (this value appeared to give stable 

results) and the bootstrap GEBVs are correlated to the EBVs. The standard error is calculated 

from the 10,000 estimated accuracies. This procedure gives us a fair estimate of the degree of 

dispersion of the estimated correlation. Although other cross validation procedure like 

random splitting procedures could have been employed; this study chose to use forward 

prediction which is more relevant to breeding companies. This is because; marker effects will 

be estimated from older animals and the target selection candidate for the implementation of 

GS might include younger animals or their offspring. Bootstrapping was done by the R 

statistical software package (R, Development Core Team, 2011). 

 

2.8 Regression of EBV on GEBV 

The regression coefficient was used to measure the predicted bias by regressing the estimated 

breeding values obtained from Zuchtdata EDV- Dienstleistungen GmbH in Austria on the 

GEBV. An estimated regression coefficient of 1 indicates an unbiased estimator of the true 

breeding value i.e. 1 unit higher predicted GEBV corresponds to 1 unit EBV (De Roos et al., 

2011).  

 

2.9 Correlation between GS methods 

Pearson correlation coefficient of GEBV estimated with each method for a particular trait 

was used as a measure of the relationship between prediction methods.  
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2.10 Extent of Linkage Disequilibrium (LD) 

Extent of LD was calculated to help explain the prediction pattern among and between the 

breeds. As reported by De Roos et al. (2008) and Calus et al. (2008), accuracy of GS is 

affected by the LD in that population, since GS relies on markers that are in high LD to the 

QTL. The persistence of LD was calculated for syntenic (adjacent) marker pairs using 

genome-wide SNPs (De Roos et al., 2008; Hill and Robertson 1968). The r and R
2
 

representing the measures of LD for 2 syntenic markers will be calculated using PLINK 

(Purcell et al., 2007) as:  

𝑟 =  
𝑃𝐴1𝐵1𝑃𝐴2𝐵2 − 𝑃𝐴1𝐵2𝑃𝐴2𝐵1

 𝑃𝐴1𝑃𝐴2𝑃𝐵1𝑃𝐵2

 

 

To evaluate further the persistence of LD phase across breeds, the correlation of r between 

breeds were calculated for the mean genomic distance (67 kb) reported for the Illumina 

BovineHD beadchip. 
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3 RESULTS 

3.1 Summary of phenotypic data 

The mean value of DrEBV, reliabilities and number of records for each trait for the bulls in 

the training dataset of Braunvieh, Grauvieh and Pinzgauer breeds are presented in Table 3a, 

3b & 3c respectively. Reliabilities for all DrEBV were higher for Braunvieh breed followed 

by Pinzgauer and then the Grauvieh breed. Also on average, the number of bulls in the 

training dataset was highest for Braunvieh, and lowest for Pinzgauer.  

 

Braunvieh breed: The number of bulls in the training dataset ranged from 327 to 395 (Table 

3a). The average reliability for all traits was 0.86 and a standard deviation of 0.09. The 

DrEBV were slightly more reliable (r
2 

> 0.92) and of less variation (SD < 0.06) for 

production traits (milk yield, Protein and Fat Percentage and yield) than for functional and 

reproductive traits (milking speed, fertility, and Somatic cell count; except persistency).  

 

Table 2a:  Braunvieh breed: Traits for the study: number of bulls, mean and standard 

deviation (SD) of DrEBV and mean reliability (r
2
) of DrEBV of bulls in training dataset 

Traits  Number  

of bulls 

Mean 

DrEBV 

SD 

of DrEBV 

Mean 

r
2
 

SD 

of r
2
 

Milking Speed  393 98.33 10.45 0.83 0.14 

Protein Kg  390 -13.93 17.30 0.92 0.06 

Protein Percent  390 -0.01 0.12 0.92 0.06 

Fat Kg  390 -13.30 19.71 0.92 0.06 

Fat Percent  390 0.03 0.17 0.92 0.06 

Fertility Maternal  327 102.9 11.78 0.67 0.19 

Milk Kg  390 -356.4 539.7 0.92 0.06 

Longevity  363 102.6 15.58 0.75 0.15 

Persistency  395 98.09 11.90 0.92 0.06 

Somatic Cell Count  395 96.94 13.09 0.87 0.09 

 

Grauvieh breed: the reliabilities of DrEBV for all traits range from 0.57 through to 0.81 (see table 

3b) with higher reliabilities associated with production traits and lower reliabilities with functional 

and reproductive traits. Most of the bulls did not have records on fertility and longevity or reliability 

of EBV these two traits were < 0.30. This left us with only 93 and 121 bulls to be used for GS, thus 

the 30 young bulls were used as validation bulls leaving 63 and 91 as training bulls for fertility and 

longevity.  
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Table 2b: Grauvieh breed:  Traits for the study: number of bulls, mean and standard deviation 

(SD) of DrEBV and mean reliability (r
2
) of DrEBV of bulls in training dataset 

Traits  Number  

of bulls 

Mean 

DrEBV 

SD 

of DrEBV 

Mean 

r
2
 

SD 

of r
2
 

Milking Speed  121 99.01 10.12 0.61 0.17 

Protein Kg  130 -9.62 13.80 0.81 0.11 

Protein Percent  130 -0.03 0.17 0.81 0.11 

Fat Kg  130 -16.33 28.80 0.81 0.11 

Fat Percent  130 -0.14 0.23 0.81 0.11 

Fertility Maternal  63 95.10 11.34 0.57 0.18 

Milk Kg  130 -241.0 444.7 0.81 0.11 

Longevity  91 91.92 121.6 0.59 0.17 

Persistency  153 104.7 14.65 0.80 0.12 

Somatic Cell Count  136 94.49 12.16 0.68 0.17 

 

Pinzgauer breed: The number of bulls with phenotype varied for different traits. Reliabilities 

were above 0.65 and ranged from 0.66 to 0.90. The average reliability for all traits was 0.84 ± 

0.12. As was the case for Braunvieh and Grauvieh, reliabilities were higher on average for 

production traits than for functional and reproductive traits.  

 

Table 2c: Pinzgauer breed: Traits for the study: number of bulls, mean and standard deviation 

(SD) of DrEBV and mean reliability (r
2
) of DrEBV of bulls in training dataset 

Traits  Number  

of bulls 

Mean 

DrEBV 

SD 

of DrEBV 

Mean 

r
2
 

SD 

of r
2
 

Milking Speed  110 69.64 10.51 0.77 0.18 

Protein Kg  99 -10.68 18.74 0.90 0.09 

Protein Percent  99 0.04 0.17 0.90 0.09 

Fat Kg  99 -11.21 25.44 0.90 0.09 

Fat Percent  99 0.07 0.24 0.90 0.09 

Fertility Maternal  91 101.1 9.85 0.66 0.18 

Milk Kg  99 -372.7 631.8 0.90 0.09 

Longevity  95 93.31 13.67 0.75 0.17 

Persistency  136 106.4 12.96 0.89 0.11 

Somatic Cell Count  129 98.46 13.51 0.80 0.17 

 

 

 

3.2 Accuracy
1
 of GEBV prediction 

3.2.1 Accuracy of GEBV in purebred-GS 

Table 3, 4 and 5 represent the accuracy of GEBV in the validation dataset for the 10 traits 

studied in Braunvieh, Grauvieh and Pinzgauer breed respectively. In all, accuracy of GEBVs 

                                                 
1
 Note that, although we mention differences in accuracy between methods as well as differences in accuracy 
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among methods did not differ significantly
2
 for all the three breeds. In Braunvieh breed, the 

correlations between GEBV and EBV ranged from 0.26 to 0.63 for GBLUP, from 0.25 to 

0.63 for Bayes-B and from 0.27 to 0.63 for wgt.GBLUP (Table 3). Accuracies were clearly 

higher for fat and protein percentage when using Bayesian methodology (Bayes-B and 

wgt.GBLUP) then GBLUP (Table 3). This result agreed with studies by Hayes et al. (2009). 

It is well known that, milk components like fat percentage are influenced a by few QTL with 

large effects (Grisart et al., 2004).  However in Grauvieh and Pinzgauer, there were no clear 

advantages of using any of the Bayesian assumption in predicting these traits known to have 

some QTLs with large effect.  

 

Table 3: Braunvieh (BV) breed: Accuracy of GEBV using GBLUP and  

SNP effect form Bayes-B and wgt.GBLUP 

Traits  No of bulls in 

ref. dataset 

2
Accuracy 

EBVvalid 

 r[(GEBV,EBV)]
1
 

GBLUP Bayes-B wgt.GBLUP 

Milking Speed  393 0.89 0.63(0.06) 0.63(0.07) 0.63(0.06) 

Protein Kg  390 0.91  0.35(0.13) 0.35(0.13) 0.35(0.12) 

Protein Percent  390 0.91  0.38(0.10) 0.44(0.10) 0.42(0.11) 

Fat Kg  390 0.91  0.48(0.09)
 

0.46(0.09) 0.48(0.09) 

Fat Percent  390 0.91  0.40(0.10) 0.42(0.09) 0.41(0.09) 

Fertility Maternal  327 0.74  0.47(0.13)
 

0.48(0.12) 0.48(0.12) 

Milk Kg  390 0.91  0.26(0.13)
 

0.25(0.14) 0.27(0.13) 

Longevity  363 0.74  0.41(0.09)
 

0.48(0.10) 0.44(0.10) 

Persistency  395 0.91  0.57(0.09)
 

0.57(0.09) 0.58(0.09) 

Somatic Cell Count  395 0.86  0.55(0.08) 0.54(0.08) 0.55(0.08) 

Mean  - 0.87  0.45 0.46 0.46 
  1

 The youngest 60 bulls are used in calculating the accuracies 
2
 Average accuracies for the EBV’s of the validation dataset 

 

 

On average, across all 10 traits, accuracies were highest for wgt.GBLUP (0.47) followed by 

Bayes-B (0.46) and GBLUP (0.45) in Braunvieh. But this was not the case for both Grauvieh 

and Pinzgauer (Table 4 & 5) where the 2 methods (GBLUP and Bayes-B) did equally well 

and outperformed wgt.GBLUP.   

 

 

Table 4:  Grauvieh (GV) breed: Accuracy of GEBV using GBLUP and  

SNP effect form Bayes-B and wgt.GBLUP 

Traits  No of bulls in 

ref. dataset 

2
Accuracy 

EBVvalid 

 r[(GEBV,EBV)]
1
 

GBLUP Bayes-B wgt.GBLUP 

                                                 
2
 Standard errors were estimated with 10,000 bootstrap samples of the validation GEBV. Details are stated in a 

previous section of this paper.  
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Milking Speed  121 0.82 0.59(0.09) 0.64(0.07) 0.62(0.08) 

Protein Kg  130 0.87  0.31(0.13) 0.30(0.13) 0.31(0.13) 

Protein Percent  130 0.87  0.72(0.07) 0.67(0.07) 0.70(0.07) 

Fat Kg  130 0.87  0.34(0.11) 0.31(0.12) 0.34(0.11) 

Fat Percent  130 0.87  0.70(0.07) 0.69(0.07) 0.70(0.07) 

Fertility Maternal  63 0.76  0.47(0.09) 0.45(0.09) 0.31(0.13) 

Milk Kg  130 0.87  0.44(0.11) 0.45(0.11) 0.44(0.11) 

Longevity  91 0.73  0.12(0.11) 0.14(0.11) 0.13(0.11) 

Persistency  153 0.86  0.43(0.12) 0.40(0.12) 0.42(0.12) 

Somatic Cell Count  136 0.82  0.70(0.06) 0.70(0.06) 0.71(0.06) 

Mean  - 0.84  0.48 0.48 0.47 
  1

 The youngest 60 bulls are used in calculating the accuracies except for the traits Fertility Maternal 

and Longevity where the youngest 30bulls are used 
2
 Average accuracies for the EBV’s of the validation dataset 

 

 

In Grauvieh, accuracies of GEBV were above 0.66 for fat and protein percentage and somatic 

cell count across all methods. However, accuracies for the other traits were lower than 0.65 

with accuracy of GEBV for longevity as low as 0.12 (Table 4).  Values ranged from 0.30 to 

0.72 across methods and were higher for those reported for Braunvieh but lower for the 

highest accuracy of GEBV for Pinzgauer (0.80; Table 5). The three method predicted GEBVs 

almost equally for most traits except fertility, where accuracies were 34% (r = 0.47) and 31% 

(r = 0.45) higher for GBLUP and Bayes-B respectively than for wgt.GBLUP (r = 0.31) 

(Table 4).  

Although accuracies were slightly low to moderately high in Pinzgauer for most traits (values 

ranged for 0.20 to 0.80; Table 5), except for longevity where accuracies were negative, even 

across methods. The average accuracy of the validation bulls was 0.79 coupled with small 

number of bulls in training dataset (95) might have resulted in these negative estimate.  

Generally, across all breeds and methods, longevity had very low accuracies (Table 3, 4 & 5). 

Accuracies of GEBVs for fitness and reproduction traits (especially somatic cell count, 

milking speed and fertility) have been higher in these three populations. On average, 

accuracy of theoretical EBVs were 47.5% (values ranged from 29% to 71%), 43.3% (values 

ranged from 12.4% to 85.4%) and 42.2% (values ranged from 12.1% to 76.2%) higher than 

those estimated in Braunvieh, Grauvieh and Pinzgauer. This implies that, accuracies of 

GEBVs can improve by the stated percentages.  
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Table 5:  Pinzgauer (PI) breed: Accuracy of GEBV using GBLUP and  

SNP effect form Bayes-B and wgt.GBLUP 

Traits  No of bulls in 

ref. dataset 

2
Accuracy 

EBVvalid 

 r[(GEBV,EBV)]
1
 

GBLUP Bayes-B wgt.GBLUP 

Milking Speed  110 0.91 0.51(0.11) 0.51(0.11) 0.52(0.11) 

Protein Kg  99 0.93  0.49(0.11) 0.48(0.11) 0.47(0.11) 

Protein Percent  99 0.93  0.22(0.12) 0.21(0.12) 0.22(0.12) 

Fat Kg  99 0.93  0.62(0.08) 0.62(0.08) 0.61(0.08) 

Fat Percent  99 0.93  0.43(0.12) 0.42(0.11) 0.41(0.12) 

Fertility Maternal  91 0.85  0.79(0.05) 0.80(0.04) 0.78(0.05) 

Milk Kg  99 0.92  0.46(0.10) 0.47(0.10) 0.43(0.10) 

Longevity  95 0.79  -0.04(0.12) -0.05(0.12) -0.06(0.12) 

Persistency  136 0.92  0.52(0.12) 0.53(0.10) 0.53(0.10) 

Somatic Cell Count  129 0.90  0.66(0.08) 0.67(0.07) 0.67(0.07) 

Mean  - 0.90  0.47 0.47 0.46 

Mean*   0.90  0.52 0.52 0.52 
  1

 The youngest 60 bulls are used in calculating the accuracies 
2
 Average accuracies for the EBV’s of the validation dataset 

*Mean values excluding values of longevity 

 

 

3.3 Comparison of accuracy from purebred and multibreed  

The estimated accuracies of GEBV for selected traits were plotted for single breed analysis 

and both 2 & 3 way multibreed analyses. Figures 2, 3 & 4 shows the comparison of 

accuracies estimated with single and multibreed training dataset for Braunvieh, Grauvieh and 

Pinzgauer respectively. The values for all traits are represented in Table 6 and 7.  

In Braunvieh (Figure 2), accuracies were consistently higher for fertility and somatic cell 

count than for the other selected traits. In general, using a 2-way multibreed training dataset 

resulted in slightly greater accuracies than training on purebred, although these differences 

were not significant. Combining Braunvieh and Pinzgauer gave higher accuracies for fertility 

and somatic cell count. This type of trend was also observed when Braunvieh was combined 

with Grauvieh as accuracies of protein percentage and milk yield tend to increase slightly 

(Figure 2). The above mentioned trend that, increase in accuracies for multibreed training 

dataset than purebred training dataset were consistent across methods; GBLUP, Bayes-B and 

wgt.GBLUP (Figure 2a, 2b and 2c). 
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Figure 2: Accuracy of GEBV estimated with GBLUP (on the left; 2a), Bayes-B (in the 

middle; 2b) and wgt.GBLUP (on the right; 2c) when using pure bred and multibreed 

training dataset in estimating marker effect in Braunvieh 

 

Generally, correlations of predicted GEBVs and EBVs for GBLUP were less variable.  

Accuracies were almost the same for both purebred and multibreed training dataset compared 

to wgt.GBLUP where values were highly variable among training dataset (In Appendix; 

Table 6 & 7) and Figure 2.  

However, there was a clear trait – by method – by training set interaction. Meaning that, 

depending on the traits or the method or the training dataset, methods were superior to one 

another. For example, the clear advantage of Bayes-B to predict GEBV of fat and protein 

percentage with higher accuracies with the purebred training dataset (Table 1, Figure 2) 

diminishes when multibreed training dataset is used. This was also observed by Pryce et al. 
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(2011). They reported that although accuracies were higher for Bayes-A method, this wasn‟t 

consistent as there were clear instances where GBLUP did better than Bayes-A.  

 

   

  

 

Figure 3: Accuracy of GEBV estimated with GBLUP (on the left; 3a), Bayes-B (in the 

middle; 3b) and wgt.GBLUP (on the right; 3c) when using pure bred and multibreed 

training dataset f in estimating marker effect in Grauvieh 

Figure 3 depicts the comparison of accuracies when using purebred and multibreed training 

dataset to predict marker effect and estimate GEBV for Grauvieh. As was observed in 

Braunvieh, combining these two breeds (Grauvieh and Braunvieh) increased accuracy of 

protein percentage. This trend was seen across methods (Figure 3a, 3b & 3c).  Using purebred 

training datasets in estimating marker effect resulted in higher accuracies than using 

multibreed training dataset for fat percentage and fertility. Increase in accuracy was observed 

for longevity, when Grauvieh was combined with Pinzgauer and when the three breeds were 

combined in the training dataset. This increase was consistent across methods of prediction 

for this study. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P
ro

te
in

 %

Fa
t 

%

M
ilk

 K
g

Fe
rt

ili
ty

Lo
n

ge
vi

ty

SC
C

A
cc

u
ra

cy

Traits

GBLUP_GV
GBLUP_GV+BV
GBLUP_GV+PI
GBLUP_GV+BV+PI

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P
ro

te
in

 %

Fa
t 

%

M
ilk

 K
g

Fe
rt

ili
ty

Lo
n

ge
vi

ty

SC
C

A
cc

u
ra

cy

Traits

BayesB_GV
BayesB_GV+BV
BayesB_GV+PI
BayesB_GV+BV+PI

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P
ro

te
in

 %

Fa
t 

%

M
ilk

 K
g

Fe
rt

ili
ty

Lo
n

ge
vi

ty

SC
C

A
cc

u
ra

cy

Traits

wgt.GBLUP_GV
wgt.GBLUP_GV+BV
wgt.GBLUP_GV+PI
wgt.GBLUP_GV+BV+PI

Figure: 3a 

 

Figure: 3b 

 

Figure: 3c 

 



Results     GS in small populations using Multibreed Reference set 

25 

 

 

  
 

 

Figure 4: Accuracy of GEBV estimated with GBLUP (on the left), Bayes-B (in the 

middle) and wgt.GBLUP (on the right) when using pure bred and multibreed training 

dataset in estimating marker effect in Pinzgauer 

 

Accuracy of GEBVs when using purebred Pinzgauer training dataset and combined breeds in 

estimating marker effect varied for traits and methods used in this study (In Appendix; Table 

6 & 7; Figure 4). It was evident (Figure 4a, 4b & 4c) that wgt.GBLUP was superior in 

estimating marker effect and predicting GEBV with smaller prediction error for protein and 

fat percentage than GBLUP and Bayes-B especially using multibreed training dataset.  As 

was mentioned before for the Braunvieh and Grauvieh, there was trait – by method – by 

training set interactions for Pinzgauer. Combining Pinzgauer and Braunvieh in a 2 way 

multibreed training dataset reduces accuracy, this meant that, accuracies from purebred 

training set were higher than for combined PI and BV breeds for almost all traits (In 

Appendix; Table 6 &7; Figure 4a, 4b & 4c). This is seen clearly in both GBLUP and Bayes-B 

but moderately in wgt.GBLUP. There was however an increase in accuracy of GEBV when 

Pinzgauer was combined with Grauvieh mostly for fitness traits and slightly for milk yield 
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and milk component. And again this is most clear for the methods GBLUP and Bayes-P than 

for wgt.GBLUP (Figure 4a, 4b & 4c).  

Generally, there were small increases and decreases in accuracies across traits when 

multibreed training set was used (Table 8a, 8b & 8c). Combining training set of Pinzgauer 

dataset or Grauvieh or the combination of the 2 to Braunvieh training lead to no or increases 

in accuracy of production traits (Table 8a). On average accuracy increase about 2.88% -

GBLUP, 4.17% – Bayes-B and 11.20% wgt.GBLUP when using a multibreed training set for 

the selected production traits and about 0.23% - GBLUP, 0.23% – Bayes-B and 3.50% 

wgt.GBLUP for fitness traits. Increases were higher for wgt.GBLUP followed by Bayes-B.  

 

Table 8a: Percentage increases or decreases in accuracy using multibreed training dataset for 

Braunvieh breed. Values
3
 are average accuracies across three production and fitness traits 

 Method Braunvieh  

BV+GV BV+PI BV+PI+GV Mean Overall 

Mean
c
 

Production traits
a
 GBLUP 6.73 0.00 1.92 2.88 1.56 

Fitness traits
b
  -1.40 2.10 0.00 0.23 

Production traits Bayes-B 6.73 2.88 2.88 4.17 2.2 

Fitness traits  -2.10 2.10 0.70 0.23 

Production traits wgt.GBLUP 15.38 8.65 9.62 11.2 7.36 

Fitness traits  2.80 4.90 2.80 3.50 
a
 Three traits were included: Protein and Fat percentage and Milk yield 

b
 Three traits were included: Fertility, Longevity and somatic cell count 

c
 The mean increase in accuracy for both production and fitness traits 

BV – Braunvieh   GV - Grauvieh   PI – Pinzgauer  

 

 

Although individual fitness traits were improved (e.g. longevity; Figure 3 & 4) when 

Grauvieh was combined to Pinzgauer, average accuracies for 3 selected fitness traits,  

fertility, longevity and somatic cell count, shows an overall decrease in estimated accuracy 

for the 2 breeds (Table 8b & 8c). Note that the decrease in accuracies was smaller than a 

combination of Braunvieh and Pinzgauer multibreed training set. In Grauvieh, increase in 

accuracy of production traits were recorded when Braunvieh training bulls were added. But 

accuracy decreased for fitness traits. Also any form of combination with Pinzgauer resulted in 

reduction in accuracies estimated with purebred prediction. Exactly opposite trend was 

                                                 
3
 Values were calculated as : 

 
 𝑀𝑒𝑡ℎ𝑜𝑑𝑚𝑢𝑙𝑡𝑖𝑏𝑟𝑒𝑒𝑑 ,𝑗 −𝑀𝑒𝑡ℎ𝑜𝑑𝑝𝑢𝑟𝑒𝑏𝑟𝑒 𝑑 ,𝑗  

𝑀𝑒𝑡ℎ𝑜𝑑𝑝𝑢𝑟𝑒𝑏𝑟𝑒𝑑 ,𝑗
 × 100

𝑗=3

 

 

Where j is the traits; Method is GBLUP or Bayes-B or wgt.MixP 
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observed for Pinzgauer. An increase and decrease in accuracy for 2 way combination with 

Grauvieh for production traits and fitness traits respectively. However regardless of the traits 

under study accuracy for purebred analysis decreased when Braunvieh training bulls were 

added to pinzgauer training dataset. Average decrease in accuracy was 1.87% - GBLUP and 

5.18% – Bayes-B when using a multibreed training set for Grauvieh as well as 8.26% -

GBLUP and 6.68% – Bayes-B for Pinzgauer.  

 

Table 8b: Percentage increases or decreases in accuracy using multibreed training dataset for 

Grauvieh breed. Values are average accuracies across three production and fitness traits 
  Grauvieh  

GV+BV GV+PI GV+BV+PI Mean Overall 

Mean
c
 

Production traits
a
 GBLUP 2.69 -3.23 -2.15 -0.90 -1.87 

Fitness traits
b
  -3.10 -0.78 -4.65 -2.84 

Production traits Bayes-B 3.23 -4.30 -0.54 -0.54 -5.18 

Fitness traits  -20.93 -3.10 -5.43 -9.82 

Production traits wgt.GBLUP 4.48 -2.69 -1.08 0.36 5.22 

Fitness traits  12.40 8.53 9.30 10.1 
a
 Three traits were included: protein and fat percentage and milk yield 

b
 Three traits were included: fertility, longevity and somatic cell count 

c
 The mean increase in accuracy for both production and fitness traits 

BV – Braunvieh   GV - Grauvieh   PI – Pinzgauer  

 

 

 

Table 8c: Percentage increases or decreases in accuracy using multibreed training dataset for 

Pinzgauer breed. Values are average accuracies across three production and fitness traits 
  Pinzgauer  

PI+BV PI+GV PI +BV+GV Mean Overall 

Mean
c
 

Production traits
a
 GBLUP -10.8 0.90 -6.30 -5.40 -8.26 

Fitness traits
b
  -13.5 -7.80 -12.06 -11.1 

Production traits Bayes-B -10.8 5.41 -16.21 -7.20 -6.68 

Fitness traits  -9.22 -0.71 -8.51 -6.15 

Production traits wgt.GBLUP 0.90 6.31 0 2.40 -2.11 

Fitness traits  -7.09 -4.96 -7.80 -6.61 
a
 Three traits were included: protein and fat percentage and milk yield 

b
 Three traits were included: fertility, longevity and somatic cell count 

c
 The mean increase in accuracy for both production and fitness traits 

BV – Braunvieh   GV - Grauvieh   PI – Pinzgauer  

 

3.4 Regression of EBVs on predicted GEBVs 

Table 9 a,b & c, 10 & 11 shows the regression coefficients of EBV and predicted GEBVs for 

various methods and traits. Regression coefficient deviated highly from 1 for some traits. On 

for purebreds there were less bias for Pinzgauer followed by Grauvieh and Braunvieh, this is 
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averaged across traits. Generally for the purebreds, wgt.GBLUP showed less bias in 

predicting EBVs compared to Bayes-B and GBLUP. Regression of EBV on GEBV relies on 

the independence of the prediction errors for EBVs and GEBVs. A prediction error of EBV 

also depends on their accuracy (Brøndum et. al., 2011). Traits with lower accuracies (Table 

3, 4 & 5) for the correlation between GEBV and EBV showed higher and lower bias 

(deviation from 1; Table 9a, b & c).  

 

Table 9a: Regression Coefficient of EBV on GEBV with the GS methods GBLUP, Bayes-B 

and wgt.GBLUP for purebred analysis in Braunvieh for the 10 traits 

Traits  Braunvieh 

 GBLUP Bayes-B wgt. GBLUP 

Milking Speed  1.48(0.24) 0.95(0.15) 1.48(0.24) 

Protein Kg  0.52(0.18) 0.47(0.17) 0.48(0.17) 

Protein %  0.71(0.23) 0.73(0.19) 0.71(0.20) 

Fat Kg  0.82(0.20) 0.70(0.18) 0.78(0.19) 

Fat %  0.93(0.28) 0.83(0.24) 0.90(0.26) 

Fertility  0.91(0.22) 0.56(0.13) 0.78(0.19) 

Milk Kg  0.45(0.22) 0.38(0.19) 0.44(0.21) 

Longevity  0.62(0.18) 0.38(0.13) 0.49(0.13) 

Persistency  1.06(0.20) 0.79(0.15) 0.86(0.16) 

Somatic cell count  0.85(0.17) 0.66(0.14) 0.71(0.14) 

Mean  0.84 0.65 0.76 

Standard error for these estimate ranged from 0.13-0.41, estimated from the 10,000 bootstrapping 

(*) – Poorly estimated, values were too large or too small. 

 

 

Multibreed training set predicted EBV worse than purebred training set (Table 10). 

Regression coefficient showed more deviation from 1. Longevity had the greatest bias of 0.52 

averaged across multibreed training set (Table 10). Regression coefficients for milking speed, 

protein percentage, fertility and somatic cell count seems to be predicting EBVs with less 

bias in both the 2 way and 3 way multibreed training set. Brøndum et. al. (2011), also 

reported larger deviation from 1 for longevity in Finnish Red diary bulls.  

 

 

Table 9b: Regression Coefficient of EBV on GEBV with the GS methods GBLUP, Bayes-B 

and wgt.GBLUP for purebred analysis in Grauvieh for the 10 traits 

Traits  Grauvieh 

GBLUP Bayes-B Wgt.GBLUP 

Milking Speed  1.91(0.35) 0.87(0.14) 1.31(0.22) 

Protein Kg  0.50(0.20) 0.48(0.20) 0.51(0.21) 

Protein %  1.62(0.21) 1.17(0.17) 1.22(0.17) 

Fat Kg  0.54(0.19) 0.45(0.18) 0.52(0.19) 

Fat %  1.66(0.22) 1.55(0.21) 1.58(0.21) 

Fertility  1.96(0.41) 1.12(0.29) 0.49(0.20) 
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Milk Kg  0.80(0.22) 0.63(0.16) 0.62(0.17) 

Longevity  * 0.62(0.41) * 

Persistency  0.88(0.24) 0.63(0.19) 0.76(0.21) 

Somatic cell count  1.40(0.19) 1.05(0.14) 1.08(0.14) 

Mean  1.25 0.86 0.90 

 

 

 

Table 9c: Regression Coefficient of EBV on GEBV with the GS methods GBLUP, Bayes-B 

and wgt.GBLUP for purebred analysis in Pinzgauer for the 10 traits 

Traits  Pinzgauer 

 GBLUP Bayes-B wgt.GBLUP 

Milking Speed  1.17(0.26) 1.01(0.22) 1.04(0.22) 

Protein Kg  1.15(0.27) 1.11(0.26) 1.10(0.27) 

Protein %  0.39(0.23) 0.37(0.23) 0.38(0.23) 

Fat Kg  1.29(0.22) 1.29(0.21) 1.27(0.21) 

Fat %  1.25(0.35) 1.20(0.37) 1.20(0.36) 

Fertility  1.38(0.14) 1.41(0.14) 1.38(0.14) 

Milk Kg  1.24(0.31) 1.22(0.30) 1.16(0.31) 

Longevity  * * * 

Persistency  0.94(0.20) 0.94(0.20) 0.96(0.20) 

Somatic cell count  1.24(0.18) 1.20(0.18) 1.22(0.18) 

Mean  1.12 1.08 1.08 

 

 

3.5 Comparison of GS prediction Methods 

Correlations between methods for the validation set were high (Table 13, 14 & 15, see 

appendix 1) for Braunvieh and Pinzgauer compared to Grauvieh for some selected traits. 

Correlations were lower when breeds are combined both in the 2-way and 3-way multibreed 

analysis. Correlations ranged from 0.70 to 1.0. Also correlations were higher for milk yield 

and somatic cell count. This might be due to the higher reliabilities of DrEBV as well as the 

number of (Table 3a, 3b & 3c) bulls in the training set. When number of bulls for fertility in 

Grauvieh was increased from 63 to 450 with the addition of Braunvieh bulls, correlations 

with other methods increased. Nirea (2009) also reported similar correlation between 

Bayesian methods and GBLUP for fat and protein percentage and somatic cell count. 
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Table 10: Regression Coefficient of EBV on GEBV with the GS methods GBLUP, Bayes-B and wgt.GBLUP for 2 way multibreed analysis for the 

following traits: Milking Speed (DMG), Protein Kg (EKG), Protein Percent (EP), Fat Kg (FKG), Fat Percent (FP), Fertility Maternal (FRM), Milk Kg 

(MKG), Longevity (ND), Persistency (PER) and Somatic Cell Count (ZZ) 

REF VAL Method  DMG EKG EP FKG FP FRM MKG ND PER ZZ 

 BV GBLUP  1.46(0.24) 0.51(0.18) 0.70(0.21) 0.77(0.19) 0.93(0.26) 0.82(0.21) 0.50(0.22) 0.65(0.19) 1.03(0.20) 0.81(0.17) 

  Bayes-B  0.90(0.15) 0.47(0.17) 0.76(0.19) 0.81(0.22) 0.76(0.22) 0.51(0.13) 0.49(0.20) 0.39(0.11) 0.79(0.15) 0.64(0.13) 

  wgt.GBLUP  1.11(0.20) 0.47(0.17) 0.78(0.20) 0.76(0.19) 0.94(0.23) 0.59(0.14) 0.52(0.20) 0.53(0.13) 0.83(0.16) 0.65 (0.13) 

BV+GV              

 GV GBLUP  1.16(0.19) 0.51(0.23) 1.39(0.17) 0.59(0.20) 1.71(0.24) 1.43(0.36) 0.76(0.17) 0.67(0.39) 0.79(0.23) 1.12(0.15) 

  Bayes-B  0.82(0.13) 0.51(0.20) 1.23(0.15) 0.64(0.22) 1.44(0.22) 0.26(0.19) 0.65(0.15) 0.23(0.22) 0.56(0.19) 0.97(0.13) 

  wgt.GBLUP  0.88(0.88) 0.47(0.20) 1.31(0.15) 0.55(0.19) 1.54(0.22) 0.69(0.21) 0.66(0.15) 0.55(0.30) 0.60(0.19) 0.93(0.13) 

 BV GBLUP  1.39(0.23) 0.44(0.17) 0.65(0.21) 0.69(0.18) 0.86(0.25) 0.85(0.20) 0.39(0.20) 0.61(0.17) 0.99(0.18) 0..81(0.16) 

  Bayes-B  0.93(0.15) 0.40(0.16) 0.73(0.19) 0.60(0.16) 0.81(0.22) 0.57(0.13) 0.39(0.18) 0.37(0.11) 0.74(0.14) 0.68(0.14) 

  wgt.GBLUP  1.06(0.17) 0.38(0.16) 0.79(0.20) 0.64(0.15) 0.87(0.22) 0.56(0.12) 0.37(0.18) 0.40(0.11) 0.71(0.14) 0.67(0.13) 

BV+PI              

 PI GBLUP  1.15(0.28) 1.01(0.29) 0.36(0.24) 1.21(0.23) 1.13(0.34) 2.01(0.29) 1.13(0.33) * 1.12(0.25) 1.19(0.23) 

  Bayes-B  0.83(0.20) 0.90(0.27) 0.32(0.22) 1.05(0.23) 0.94(0.30) 1.33(0.14) 1.05(0.31) * 0.90(0.22) 1.00(0.20) 

  wgt.GBLUP  0.96(0.22) 0.80(0.28) 0.37(0.20) 1.02(0.21) 1.23(0.30) 1.31(0.14) 0.91(0.32) * 0.91(0.20) 1.00(0.20) 

 GV GBLUP  1.17(0.20) 0.45(0.19) 1.49(0.20) 0.47(0.18) 1.59(0.23) 0.82(0.25) 0.56(0.16) 0.82(0.39) 0.72(0.21) 1.07(0.13) 

  Bayes-B  0.83(0.19) 0.45(0.16) 1.16(0.16) 0.50(0.17) 1.31(0.21) 0.80(0.27) 0.53(0.15) 0.35(0.24) 0.65(0.18) 1.03(0.14) 

  wgt.GBLUP  0.90(0.15) 0.41(0.19) 1.21(0.16) 0.51(0.18) 1.47(0.21) 0.90(0.25) 0.54(0.16) 0.69(0.39) 0.60(0.18) 1.06(0.13) 

GV+PI              

 PI GBLUP  1.47(0.32) 1.13(0.25) 0.48(0.26) 1.25(0.21) 1.38(0.38) 1.34(0.15) 1.24(0.30) * 1.34(0.30) 1.32(0.19) 

  Bayes-B  0.91(0.22) 1.09(0.25) 0.40(0.23) 1.23(0.20) 1.21(0.34) 1.32(0.14) 1.20(0.26) * 0.88(0.20) 1.14(0.17) 

  wgt.GBLUP  1.07(0.22) 1.04(0.25) 0.46(0.22) 1.20(0.20) 1.29(0.35) 1.26(0.14) 1.01(0.29) * 0.90(0.20) 1.15(0.18) 

              

Mean    1.06 0.64 0.81 0.81 1.19 0.97 0.72 0.52 0.83 0.98 

Standard error for these estimate ranged from 0.11 - 0.39, estimated from the 10,000 bootstrapping 

(*) – Poorly estimated, values were over (too large) or under estimated (too small). 

REF – Reference dataset   VAL – Validation dataset  

BV – Braunvieh   GV - Grauvieh   PI – Pinzgauer  
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Table 11: Regression Coefficient of EBV on GEBV with the GS methods GBLUP, Bayes-B and wgt.GBLUP for 3 way multibreed analysis for the 

following traits: Milking Speed (DMG), Protein Kg (EKG), Protein Percent (EP), Fat Kg (FKG), Fat Percent (FP), Fertility Maternal (FRM), Milk Kg 

(MKG), Longevity (ND), Persistency (PER) and Somatic Cell Count (ZZ) 

REF VAL Method  DMG EKG EP FKG FP FRM MKG ND PER ZZ 

 

 

 

 

BV+GV+PI 

BV GBLUP  1.40(0.24) 0.44(0.17) 0.62(0.21) 0.67(0.18) 0.89(0.25) 0.77(0.19) 0.42(0.20) 0.66(0.19) 1.01(0.19) 0.78(0.16) 

Bayes-B  0.87(0.15) 0.40(0.16) 0.71(0.18) 0.60(0.16) 0.73(0.21) 0.51(0.13) 0.38(0.19) 0.39(0.10) 0.73(0.14) 0.67(0.13) 

 wgt.GBLUP  1.04(0.18) 0.40(0.17) 0.68(0.20) 0.61(0.16) 0.94(0.21) 0.52(0.12) 0.42(0.18) 0.48(0.12) 0.76(0.14) 0.62(0.12) 

             

GV GBLUP  1.10(0.19) 0.49(0.22) 1.35(0.18) 0.54(0.19) 1.48(0.23) 1.08(0.39) 0.79(0.17) 0.75(0.39) 1.01(0.22) 1.15(0.14) 

Bayes-B  0.80(0.13) 0.51(0.20) 1.27(0.15) 0.47(0.13) 1.26(0.23) 0.60(0.23) 0.63(0.16) 0.33(0.20) 0.60(0.17) 0.87(0.12) 

 wgt.GBLUP  0.85(0.14) 0.49(0.21) 1.28(0.16) 0.54(0.17) 1.44(0.23) 0.56(0.22) 0.61(0.16) 0.53(0.27) 0.56(0.17) 0.86(0.12) 

             

PI GBLUP  1.15(0.28) 1.05(0.27) 0.40(0.25) 1.22(0.22) 1.14(0.35) 2.01(0.26) 1.15(0.32) * 1.11(0.26) 1.27(0.23) 

Bayes-B  0.75(0.21) 0.88(0.24) 0.35(0.21) 1.06(0.20) 0.81(0.28) 1.15(0.15) 0.87(0.30) * 0.77(0.19) 1.08(0.19) 

  wgt.GBLUP  0.88(0.22) 0.88(0.25) 0.36(0.22) 1.07(0.20) 1.14(0.31) 1.12(0.14) 0.98(0.30) * 0.85(0.19) 0.99(0.19) 

              

Mean    0.98 0.62 0.78 0.75 1.09 0.92 0.69 0.52 0.82 0.92 

Standard error for these estimate ranged from 0.10 - 0.39, estimated from the 10,000 bootstrapping 

(*) – Poorly estimated, values were over (too large) or under estimated (too small). 

REF – Reference dataset   VAL – Validation dataset  

BV – Braunvieh   GV - Grauvieh   PI – Pinzgauer
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3.6 LD between syntenic markers and Persistence of LD between breeds 

We assessed LD in Braunvieh, Grauvieh and Pinzgauer measured as R
2
 (Figure 5) for 

syntenic markers and also the extent of LD between breeds using the correlation of the r 

(Table 12). Marker interval on the Illumina BovineSNP50 BeadChip has a mean of 67 kbp 

(median of about 50 kkp with most markers in a range of 45-100 kbp). LD (R
2
) for these 

markers with 67 kbp was 0.153, 0.142, 0.133 and 0.126 for Braunvieh, Grauvieh, and 

Pinzgauer and for combined breeds respectively.  

These values were slightly lower than those reported by De Roos et al. (2008) studying 

Holstein and Angus breeds. Recent studies by Lamer et al. (2012) unpublished; in Canadian 

Brown Swiss for Illumina Bovine SNP50 BeadChip on LD, reported average R
2
 value of 0.20 

for marker distance between 50 – 100 kbp. 

 

 

Figure 5: Average LD (r2) for syntenic markers of genomic distances between 50 kb 

and 85 kb for Braunvieh, Grauvieh, Pinzgauer and combined breeds (multibreed) 

 

The extend of LD was measured as the correlation of LD (measured as r) between breeds 

(Table 12). Correlation of r for syntenic markers at 67 kpb‟s apart were strongest for 
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Grauvieh – Pinzgauer (0.45) combination followed by Braunvieh – Grauvieh (0.44) and 

Braunvieh – Pinzgauer (0.41) (Table 12). 

 

Table 12: Average LD (r) for genomic distances of 67 kb and 1000 kb. Correlation of r of 

marker pairs between breeds: r values above the diagonal are correlation with 67 kb marker 

distance whiles below the diagonal is the correlation with 1000 kb marker distance. 

Breed Marker distance (kb)  Correlation of r 

 67 1000 Bruanvieh Grauvieh Pinzgauer 

Bruanvieh 0.102 0.052  0.442 0.408 

Grauvieh 0.081 0.029  0.200  0.446 

Pinzgauer 0.076 0.030  0.174 0.219  
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4 Discussion 

The study investigated the accuracy of GEBV for both purebred and multibreed GS 

approaches for small populations (Braunvieh, Grauvieh and Pinzgauer breeds form Austria). 

The result shows that accuracy of GEBVs were low to moderately high in these three breeds 

for both purebred and multibreed analysis. The benefit of combining breeds into a 2 way 

multibreed training set was only 1.9% and a loss of 1.32% in prediction accuracy for a 3 way 

multibreed training set, these values are averaged over methods (GBLUP, Bayes-B and 

wgt.GBLUP) and the 10 traits used in this study.  

For the single breed analysis, there were no clear advantages of using any of the Bayesian 

assumption in predicting traits known to have some QTLs with large effect especially in 

Grauvieh and Pinzgauer. It is possible that, the number of training animals (190 for Grauvieh 

and 159 for Pinzgauer) were too small for Bayes-B to identify and locate the QTL. Moreover, 

the two breeds have been selected for more beef and fitness traits than milk production. Thus 

the known DGAT allele for milk yield and it component might not be segregating in these 

two breeds. Generally, across all breeds and methods in the single breed analysis, longevity 

had very low accuracies (Table 3, 4 & 5), which reflects very low heritabilities associated 

with this traits and the small number of bulls both use in the training dataset and validation 

dataset. Accuracies of GEBVs for fitness and reproduction traits (especially somatic cell 

count, milking speed and fertility) have been higher in these three populations, probably due 

to the fact that, QTLs for these traits might be segregating in moderate frequency thus 

explaining larger proportions of the genetic variance (Falconer and Mackay, 1996). 

When breeds were combined, there were combinatorial differences between the breeds. 

Braunvieh and Grauvieh predicted each other with increased in accuracy of 2.1% and 3.6% 

respectively. Also, addition of Grauvieh to Pinzgauer and vice versa increased accuracy by 

8.7% for pinzgauer and 2.0% for Grauvieh compared to using purebred training set but there 

were loss (5.7%) in accuracy aggregating Braunvieh and Pinzgauer. This implies small to no 

benefit in combining these three breeds together. An increase in accuracy combining 

Grauvieh and Pinzgauer (mostly for fitness traits and slightly for milk yield and milk 

component which was clearly shown using the methods GBLUP and Bayes-B than for 

wgt.GBLUP; Figure 4a, 4b & 4c) as well as the combination of the three breeds. Hayes et al. 

(2009), Pryce et al. (2011), and De Roos et al. (2009) all reported a slight to moderate 
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increase in accuracies when multibreed training set is adopted to estimate marker effect and 

predict GEBVs for purebreds. They suggested that, this trend is only possible if populations 

under study are closely related and SNP marker densities were high enough to maintain LD 

of markers with QTLs. The specific breed – by breed increases and losses in accuracies 

observed in this study, might be due to the aim of the breeding goals leading to SNP markers 

not been in LD with QTL in both breeds and or QTL not been in the same phase across 

breeds for those specific traits. If QTLs are segregating in these breeds and the above 

mentioned reason is true, increasing the number of animals will expectedly increase accuracy 

as was observed. As mentioned earlier, Grauvieh and Pinzgauer have been selected for high 

beef and fitness traits and therefore marker-QTL association might be in the same phase 

which leads to complementary increase in accuracies due to the increase in the number of 

training animals compared to Braunvieh which is been highly selected for milk and virtually 

no selection for beef. Different selection schemes might have lead to different QTL alleles 

segregating for different population. This view of QTLs been in LD and not in the same 

phase across population has been shared by Hayes et al. (2009) and Pryce et al. (2011). Both 

research teams demonstrated that, SNPs in low LD with QTL do not receive an effect in the 

prediction equation but only those in high LD.  

Moreover, according to the Grauvieh and Pinzgauer breeding companies, breeding goal for 

fitness traits is about 50% of the total merit index. This suggest that, there might be close 

genetic ties (i.e in terms of alleles that are present) among the two breeds for fitness traits, 

probably because both have been breed with larger emphasis on those traits than Braunvieh 

that has been breed for milk production and milk composition. Lund et al. (2011) reported an 

overall increase of 10% in accuracy for multibreed predictions over purebred predictions 

studying Holstein bulls from the EuroGenomics project (animals from France, Denmark, 

Sweden, Finland, Germany, Netherlands and Flanders). Contrarily, as mentioned earlier in 

this paper, the combination of Pinzgauer and Braunvieh in a 2 way multibreed training 

dataset reduced accuracy, this meant that, accuracies from purebred training set were higher 

than for combined PI and BV breeds for almost all traits (Table 6 &7; Figure 4a, 4b & 4c) 

using both GBLUP and Bayes-B but moderately in wgt.GBLUP.  

LD decays slightly as genomic distance increase for all breeds (Figure 5). LD was 

substantially higher for Braunvieh followed by Grauvieh. Lamer et al. (2012) unpublished; in 

Canadian Brown Swiss for Illumina BovineSNP50 BeadChip on LD, reported average R
2
 of 
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0.20 for marker distance between 50 – 100 kbp. De Roos et al. (2008) also reported average 

R
2 

of 0.167 for markers within 50 – 100 kbp
 
for six different populations of Holsteins, Jersey 

and Angus breeds. The lower values reported in the Braunvieh breed (“Brown Swiss”) 

compared to the Canadian Brown Swiss suggest that, effective population size might be 

higher and that Canadian Brown Swiss might have been selected for higher genetic merit  

(De Roos et al., 2008). The implication of these slightly low R
2
 for these breed is that, 

markers might be too distant to predict QTL effect. The combination of all three breeds 

reduces LD between markers to an average of 0.123, suggesting that, on average combining 

breeds might not increase accuracy of GEBV. This is seen with the 3 way multibreed training 

set giving decrease in accuracies average across traits and methods of 1.32%. Correlation of r 

for syntenic markers at 67 kpb‟s apart were strongest for Grauvieh – Pinzgauer (0.45) 

combination followed by Braunvieh – Grauvieh (0.44) and Braunvieh – Pinzgauer (0.41) 

(Table 12). In general these estimates are smaller those reported by De Roos et al. (2008) 

considering the marker distance used. This means, marker pairs were in LD or in a certain LD 

phase might not persist. These results depict clearly what was observed when breeds were 

combined in the 2 way analysis. Generally, accuracies were slightly increased for Braunvieh 

and Grauvieh, Grauvieh and Pinzgauer multibreed training set and reduced for Braunvieh and 

Pinzgauer combination.  

In addition to the studying LD between markers pairs and extent of LD between breeds, a 

plot (Figure 6) of the principal component (PC1 and PC2 using a scale singular value 

decomposition method; both explaining about 70% of genotype diversity- Genomic 

relationship matrix) of the SNP genotype for all the 35,319 markers also affirms the result 

seen with the LD studies. The first principle component on the vertical axis separate 

Braunvieh from the 2 breeds. This again shows some genetic ties between Grauvieh and 

Pinzgauer. Some SNPs are only largely present in one breed and might cause a reduction in 

accuracy if breeds are combined together especially if those SNPs explain part of the genetic 

variances we see in that breed. 
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Figure 6: The first 2 principal components (PC1 and PC2) of Braunvieh, Grauvieh and 

Pinzgauer breeds using the GRM matrix 

 

We assert that for Braunvieh “Brown Swiss” combining breeds from different countries 

might help improve accuracies of this Austrian breed. There is the evidence that, the Austrian 

Braunvieh breed are closely related to the once in USA and Canada (they were imported from 

Switzerland) (http://www.brownswissusa.com/Breed/History), thus combining the animals 

from these countries will be expected to be more beneficial than an entirely new breed. The 

reason is that, animals from these breeds have a recent common ancestor making them 

genetically less distant than with other breeds. As was reported by Lund et al. (2011), a 

multibreed reference set of Holstein bulls from the EuroGenomics project increased accuracy 

of about 10%. 

In this study, accuracy did not improve much when the number of animals in the training set 

of purebreds was increased substantially by combining breeds. This suggests that, breed 

relationships are much more important than the number of animals in the training set. 

Kizilkaya et al. (2010), Ibánẽz-Escriche et al. (2009), Toosi et al. (2010) and Harris et al. 

(2008) all stated that, for a highly diverged population (divergence may be due to different 

selection schemes for different genetic merit), marker density showed be sufficiently high to 

achieve accurate predictions of marker effect in increases accuracy of GEBV and is much 

more important than the number of animals in the training set. This implies that in our current 

http://www.brownswissusa.com/Breed/History
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study marker density should be increased from the current 35,319 SNPs to about 500,000 

considering the large effective population size of these breeds.  

Moreover, combining distant breeds might increase the number of independent chromosome 

segment (Me) (Daetwyler et al., 2010). Daetwyler et al. (2010) defined accuracy (r) for a 

GBLUP model as; 𝑟 =  𝑁𝑇ℎ2 𝑁𝑇ℎ2 +𝑀𝑒  and Where Me (Effective number of chromosome 

segment) was defined as 𝑀𝑒 = 2𝑁𝑒𝐿 log(4𝑁𝑒𝐿) ; NT is the number of training animals, h
2
 is 

the heritability of the trait, Ne is the effective population size and L is the genome length in 

Morgan‟s. Implicitly, an increase in Me without increasing the number of training animals in 

the population will lead to a decrease in accuracy. This might the main reason for the loss in 

accuracy observed for combining breeds especially in the case of the 3 way multibreed 

analysis. 
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5 CONCLUSION 

The benefit of combining these breeds into a 2 way multibreed training set was overall 1.9% 

and a loss of 1.32% in prediction accuracy for a 3 way multibreed training set. There were no 

significant difference in the methods (GBLUP, Bayes-B and wgt.GBLUP) used, both for the 

within/single breed and the multibreed analysis. Increasing the number of animals in the 

reference set did not necessary increase accuracies but breed relatedness or diversity among 

breeds were much more important in increasing accuracy. The result for this study should be 

interpreted with caution as the number of animals used in the analysis was limited.  

Further studies will be undertaken with 777k imputed SNPs using both family information 

and 50k SNPs. 
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Appendix 

Table 6: Accuracies of GEBV with their standard errors (subscript) using GBLUP or SNP effect from Bayes-B, and wgt.GBLUP for the traits: Milking 

Speed (DMG), Protein Kg (EKG), Protein Percent (EP), Fat Kg (FKG), Fat Percent (FP), Fertility Maternal (FRM), Milk Kg (MKG), Longevity (ND), 

Persistency (PER) and Somatic Cell Count (ZZ) for 2 way cross predictions of Braunvieh, Grauvieh and Pinzgauer breeds 

Reference 

dataset1 

Validation2 

dataset 

Method  Traits 

DMG EKG EP  FKG FP  FRM MKG ND PER ZZ 

 

 

 

Braunvieh 

and 

Grauvieh 

 

Braunvieh 

 

GBLUP  0.62(0.07) 0.34(0.13) 0.40(0.10) 0.47(0.09) 0.43(0.09) 0.46(0.13) 0.28(0.13) 0.41(0.10) 0.55(0.09) 0.54(0.08) 

Bayes-B 0.61(0.07) 0.35(0.12) 0.46(0.11) 0.43(0.10) 0.41(0.09) 0.46(0.12) 0.31(0.13) 0.47(0.10) 0.58(0.09) 0.54(0.08) 

wgt.GBLUP 0.61(0.07) 0.34(0.12) 0.46(0.10) 0.47(0.09) 0.48(0.08) 0.49(0.12) 0.32(0.13) 0.47(0.10) 0.57(0.09) 0.55(0.08) 

            

Grauvieh GBLUP 0.62(0.08) 0.29(0.13) 0.73(0.06) 0.36(0.11) 0.68(0.08) 0.40(0.09) 0.50(0.10) 0.16(0.10) 0.40(0.12) 0.69(0.07) 

Bayes-B 0.65(0.08) 0.32(0.12) 0.74(0.06) 0.37(0.10) 0.65(0.08) 0.18(0.12) 0.48(0.10) 0.14(0.12) 0.37(0.13) 0.70(0.07) 

wgt.GBLUP 0.61(0.07) 0.30(0.13) 0.75(0.06) 0.37(0.11) 0.67(0.08) 0.39(0.09) 0.50(0.10) 0.23(0.11) 0.38(0.12) 0.69(0.07) 

             

 

 

 

Braunvieh 

and 

Pinzgauer 

 

Braunvieh GBLUP 0.63(0.07) 0.32(0.13) 0.37(0.11) 0.45(0.09) 0.42(0.09) 0.48(0.12) 0.25(0.13) 0.43(0.09) 0.59(0.09) 0.55(0.08) 

 Bayes-B 0.64(0.07) 0.32(0.13) 0.44(0.11) 0.44(0.09) 0.43(0.09) 0.49(0.12) 0.27(0.14) 0.48(0.11) 0.57(0.10) 0.56(0.08) 

 wgt.GBLUP 0.63(0.07) 0.30(0.13) 0.47(0.10) 0.48(0.08) 0.46(0.09) 0.51(0.11) 0.26(0.14) 0.46(0.11) 0.56(0.10) 0.57(0.08) 

            

Pinzgauer GBLUP 0.48(0.11) 0.42(0.10) 0.19(0.12) 0.57(0.09) 0.40(0.11) 0.74(0.05) 0.40(0.10) -0.09(0.12) 0.50(0.10) 0.57(0.10) 

 Bayes-B 0.47(0.11) 0.41(0.10) 0.18(0.12) 0.52(0.10) 0.39(0.11) 0.77(0.05) 0.41(0.09) -0.04(0.13) 0.52(0.09) 0.56(0.10) 

 wgt.GBLUP 0.50(0.10) 0.36(0.11) 0.22(0.12) 0.54(0.10) 0.48(0.10) 0.78(0.05) 0.35(0.12) -0.04(0.12) 0.51(0.09) 0.55(0.10) 

             

 

 

Grauvieh 

and 

Pinzgauer 

 

Grauvieh GBLUP 0.61(0.08) 0.29(0.14) 0.71(0.07) 0.33(0.12) 0.67(0.08) 0.39(0.10) 0.42(0.11) 0.18(0.11) 0.42(0.12) 0.71(0.06) 

 Bayes-B 0.62(0.08) 0.30(0.14) 0.68(0.07) 0.35(0.11) 0.63(0.09) 0.36(0.10) 0.42(0.11) 0.19(0.12) 0.42(0.12) 0.70(0.06) 

 wgt.GBLUP 0.62(0.08) 0.27(0.14) 0.70(0.07) 0.35(0.11) 0.68(0.08) 0.42(0.10) 0.40(0.12) 0.16(0.11) 0.39(0.13) 0.68(0.07) 

            

Pinzgauer GBLUP 0.51(0.11) 0.51(0.11) 0.23(0.11) 0.62(0.08) 0.42(0.11) 0.77(0.05) 0.47(0.10) -0.14(0.13) 0.51(0.10) 0.67(0.07) 

 Bayes-B 0.48(0.11) 0.50(0.12) 0.23(0.12) 0.62(0.08) 0.42(0.11) 0.78(0.05) 0.51(0.10) -0.02(0.13) 0.50(0.10) 0.65(0.07) 

 wgt.GBLUP 0.52(0.11) 0.48(0.11) 0.26(0.11) 0.61(0.08) 0.43(0.11) 0.76(0.06) 0.42(0.11) -0.09(0.13) 0.50(0.11)  0.65(0.08) 

Mean    0.58 0.36 0.46 0.46 0.51 0.54 0.39 0.19 0.49 0.62 
1
 The training dataset contains the full number of bulls in each breed if that breed is not used as the validation dataset 

2 
The validation dataset contains the youngest 60 bulls in each breed except in Grauvieh for the traits FRM and ND where the youngest 30 

bulls are used 
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Table 7: Accuracies of GEBV in a 3 way cross predictions using GBLUP or SNP effect from Bayes-B and wgt.GBLUP for the traits: Milking Speed  

(DMG), Protein Kg (EKG), Protein Percent (EP), Fat Kg (FKG), Fat Percent (FP), Fertility Maternal (FRM), Milk Kg (MKG) , Longevity (ND), 

Persistency (PER) and Somatic Cell Count (ZZ) of Braunvieh, Grauvieh and Pinzgauer breeds 

Reference 

dataset1 

Validation2 

dataset 

Method  Traits 

DMG EKG EP  FKG FP  FRM MKG ND PER ZZ 

 

 

 

Braunvieh 

+ 

Grauvieh 

+ 

Pinzgauer 

Braunvieh 

 

GBLUP  0.61(0.07) 0.32(0.13) 0.36(0.10) 0.45(0.09) 0.43(0.08) 0.47(0.12) 0.27(0.13) 0.42(0.10) 0.57(0.09) 0.54(0.08) 

Bayes-B 0.60(0.07) 0.32(0.13) 0.46(0.11) 0.43(0.09) 0.42(0.09) 0.46(0.12) 0.26(0.13) 0.49(0.10) 0.56(0.09) 0.56(0.08) 

wgt.GBLUP 0.61(0.07) 0.30(0.13) 0.41(0.10) 0.45(0.09) 0.50(0.07) 0.49(0.12) 0.29(0.13) 0.47(0.10) 0.57(0.09) 0.55(0.08) 

            

Grauvieh GBLUP 0.61(0.08) 0.28(0.13) 0.71(0.07) 0.35(0.10) 0.64(0.08) 0.35(0.11) 0.47(0.11) 0.20(0.10) 0.41(0.12) 0.68(0.07) 

Bayes-B 0.64(0.07) 0.31(0.12) 0.75(0.06) 0.43(0.10) 0.59(0.10) 0.32(0.11) 0.46(0.11) 0.20(0.11) 0.42(0.12) 0.70(0.07) 

wgt.GBLUP 0.62(0.08) 0.29(0.12) 0.73(0.07) 0.38(0.10) 0.64(0.08) 0.32(0.11) 0.44(0.11) 0.25(0.10) 0.39(0.13) 0.70(0.07) 

            

Pinzgauer GBLUP 0.48(0.11) 0.45(0.10) 0.21(0.12) 0.59(0.09) 0.40(0.11) 0.72(0.06) 0.43(0.10) -0.07(0.13) 0.49(0.10) 0.59(0.09) 

Bayes-B  0.43(0.11) 0.43(0.10) 0.21(0.12) 0.57(0.09) 0.35(0.12) 0.72(0.06) 0.36(0.10) -0.02(0.13) 0.48(0.10) 0.60(0.09) 

wgt.GBLUP  0.47(0.11) 0.41(0.11) 0.21(0.11) 0.56(0.10) 0.43(0.10) 0.73(0.06) 0.40(0.11) -0.02(0.13) 0.50(0.09) 0.57(0.10) 

Mean    0.56 0.35 0.45 0.47 0.49 0.51 0.38 0.21 0.49 0.61 
1
 The training dataset contains the full number of bulls in each breed if that breed is not used as the validation dataset 

2 
The validation dataset contains the youngest 60 bulls in each breed except in Grauvieh for the traits FRM and ND where the youngest 30 

bulls are used 
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Table 13: Correlation of 3 prediction methods (GBLUP, Bayes-B and wgt.GBLUP) for GEBV of the 

selected traits Fertility, Milk yield and Somatic cell Count (SCC) for the purebred 

Trait Method REF- Braunvieh  REF- Grauvieh  REF- Pinzgauer 

VAL (Braunvieh) VAL (Grauvieh) VAL (Pinzgauer) 

Bayes-B wgt.GBLUP Bayes-B wgt.GBLUP Bayes-B wgt.GBLUP 

 GBLUP 0.93 0.99 0.98 0.70 1.00 0.99 

Fertility Bayes-B  0.96   0.73   0.99 

 GBLUP 0.98 1.00  0.99 0.99  0.99 0.99 

Milk  Kg Bayes-B  0.99   1.00   0.98 

 GBLUP 0.99 0.99  0.97 0.98  0.99 0.99 

SCC Bayes-B  1.00   1.00   0.99 

BV – Braunvieh      GV - Grauvieh        PI – Pinzgauer  

REF – Training dataset      VAL – Validation dataset        

 

 

Table 14: Correlation of 3 prediction methods (GBLUP, Bayes-B and wgt.GBLUP) for GEBV of the 

selected traits Fertility, Milk yield and Somatic cell Count for selected two way multibreed GS 
Trait Method REF (BV+GV)  REF (GV+BV)  REF (PI+GV) 

VAL (Braunvieh) VAL (Grauvieh) VAL (Pinzgauer) 

Bayes-B wgt.GBLUP Bayes-B wgt.GBLUP Bayes-B wgt.GBLUP 

 GBLUP 0.93 0.93 0.74 0.87 0.96 0.95 

Fertility Bayes-B  0.98   0.78   0.98 

 GBLUP 0.96 0.97  0.98 0.98  0.98 0.96 

Milk  Kg Bayes-B  0.98   0.97   0.95 

 GBLUP 0.99 0.98  0.98 0.96  0.99 0.98 

SCC Bayes-B  0.99   0.98   0.99 

BV – Braunvieh      GV - Grauvieh        PI – Pinzgauer  

REF – Training dataset      VAL – Validation dataset        

 

 

Table 15: Correlation of 3 prediction methods (GBLUP, Bayes-B and wgt.GBLUP) for GEBV of the 

selected traits Fertility, Milk yield and Somatic cell Count for three way multibreed GS 

Trait Method REF (BV+PI+GV)  REF (GV+BV+PI)  REF  (PI+BV+GV) 

VAL (Braunvieh) VAL (Grauvieh) VAL (Pinzguaer) 

Bayes-B wgt.GBLUP Bayes-B wgt.GBLUP Bayes-B wgt.GBLUP 

 GBLUP 0.94 0.92 0.95 0.88 0.96 0.95 

Fertility Bayes-B  0.99   0.95   0.98 

 GBLUP 0.98 0.97  0.95 0.97  0.97 0.96 

Milk Kg Bayes-B  0.98   0.96   0.97 

 GBLUP 0.99 0.98  0.98 0.97  0.98 0.97 

SCC Bayes-B  0.99   0.99   0.98 

BV – Braunvieh      GV - Grauvieh        PI – Pinzgauer  

REF – Training dataset      VAL – Validation dataset        
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Table 16: Accuracies of GEBV with their standard errors (subscript) using GBLUP or SNP effect 

from Bayes-B, and wgt.GBLUP for the traits: Milking Speed (DMG), Protein Kg (EKG), Protein 

Percent (EP), Fat Kg (FKG), Fat Percent (FP), Fertility Maternal (FRM), Milk Kg (MKG), Longevity 

(ND), Persistency (PER) and Somatic Cell Count (ZZ) for single and Multibreed predictions 

REF
1
  VAL

2
  DMG EKG EP  FKG FP  FRM MKG ND PER ZZ 

Bruanvieh  BV  0.63 0.35 0.42 0.48 0.41 0.48 0.27 0.44 0.58 0.55 

Grauvieh   GV  0.62 0.31 0.70 0.34 0.70 0.31 0.44 0.13 0.42 0.71 

Pinzgauer    PI  0.52 0.44 0.22 0.57 0.42 0.76 0.40 0.02 0.50 0.64 

              

Bruanvieh  

Grauvieh 

 BV  0.61 0.34 0.39 0.46 0.33 0.44 0.30 0.40 0.57 0.56 

 GV  0.63 0.29 0.73 0.36 0.65 0.30 0.50 0.15 0.39 0.69 

              

Bruanvieh 

Pinzgauer   

 BV  0.62 0.33 0.37 0.43 0.37 0.43 0.29 0.44 0.58 0.54 

 PI  0.47 0.42 0.19 0.53 0.39 0.66 0.37 -0.10 0.53 0.52 

              

Grauvieh  

Pinzgauer   

 GV  0.65 0.29 0.70 0.33 0.69 0.41 0.41 0.17 0.37 0.69 

 PI  0.50 0.45 0.18 0.54 0.39 0.71 0.38 -0.06 0.45 0.62 

              

Bruanvieh 

Grauvieh  

Pinzgauer   

 BV  0.60 0.32 0.37 0.40 0.37 0.39 0.29 0.43 0.59 0.55 

 GV  0.63 0.25 0.70 0.32 0.65 0.22 0.44 0.16 0.39 0.67 

 PI  0.46 0.43 0.14 0.53 0.35 0.64 0.37 -0.05 0.50 0.52 

BV – Braunvieh      GV - Grauvieh     PI – Pinzgauer  

REF – Training dataset      VAL – Validation dataset     
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