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Abstract 

Atlantic salmon (Salmo salar) has an anadromous life cycle, spending the first part of its life in 

freshwater before migrating to seawater. Smoltification is the process where Atlantic salmon 

undergo several morphological, physiological and behavioral changes preparing for transition 

to marine environment. A major challenge in the Norwegian salmon farming industry is the 

high mortality (12-14%), after release of smolt into seawater. One reason is suboptimal smolt 

production, resulting in a state where salmon are not well adopted for life in seawater. It is 

therefore important to optimize smolt production protocols and develop better ways to assess 

seawater-readiness to ensure higher survival, growth and reduce welfare issues. Traditionally, 

the increased expression of the saltwater isoform nkaα1b and nkcc1a cotransporter, and a 

reduction in expression of the freshwater isoform nkaα1b in the gills are used as predictive 

markers for seawater-readiness in the salmon farming industry. The current study aimed to 

use Random Forest to build predictive models for growth in seawater based on gill 

transcriptome data from fish given different light manipulation during smolt production. The 

results showed poor predictive ability towards seawater growth, although superior to simple 

correlation with single gene expression levels. We also found that photoperiodic history had 

effect on the Random Forest predictions, where the Random Forest model from fish exposed 

to continuous light (24:0) was much better at predicting SW growth than any of the models 

from the fish exposed to short photoperiods (8:16 and 12:12).  We extracted most influential 

genes for each Random Forest model and found that these differed depending on the light 

regime used. Based on these results the salmon farming industry should apply caution when 

relying on traditional smolt gene-expression markers to determine the optimal time for SW 

transfer.  
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Sammendrag 

Laks (Salmo salar) er en anadrom fisk som tilbringer den første delen av sin livssyklus i 

ferskvann. Smoltifisering er prosessen der en laks gjennomgår flere morfologiske, fysiologiske 

og atferdsmessige endringer i forbindelse med overgangen fra ferskvann til sjøvann.  En av de 

store utfordring i norsk lakseoppdrett er tap av fisk (12-14%) etter utsetting av smolt i sjøvann. 

Suboptimal smoltproduksjon er én av årsakene til dette, da laksen som et resultat ikke blir 

tilpasset et liv sjøvann. Viktig er det derfor å optimalisere smoltproduksjonsprotokoller, og 

utvikle bedre metoder for å vurdere riktig tidspunkt for sjøutsetting av smolt. En slik 

optimalisering vil kunne sikre høyere overlevelse og vekst, samt redusere velferdsproblemer 

hos laksen. Noen oppdrettere anvender molekylære markører for å evaluere «riktig» 

tidspunkt for sjøutsettelse, men disse har vist seg ikke å være optimale. Formålet med denne 

studien er å bruke Random Forest algoritmen i utviklingen av prediksjonsmodeller som måler 

tilvekst i sjøvann. Modellene er basert på data fra gjelle-transkriptomet fra fisk som i 

smoltproduksjon ble behandlet med ulike lysprotokoller. Studiens resultater viste at 

modellene var mindre egnet i å predikere tilvekst i sjøvann. Likevel var predikasjonen bedre 

enn korrelasjonen mellom tilvekst og genuttrykket til enkeltgener. Videre funn viste at 

lysbehandling påvirket predikasjonene, der modellen for kontinuerlig lys (24:0) ga best 

predikasjon, sammenlignet med modellene basert på vintersignal (8:16, 12:12). De mest 

innflytelsesrike genene for hver modell ble identifisert, også disse var påvirket av lysprotokol. 

På bakgrunn av studiens funn, bør industrien vise forsiktighet med å anvende tradisjonelle 

smolt-genuttrykksmarkører i vurdering av optimalt tidspunkt for sjøutsetting.  
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1 Introduction  

Since its start in the 1960s the Norwegian salmon farming industry has grown steadily and has 

within the last 50 years become the most important export industry next to oil and gas. In 

2022, a total of 1.255 tons Norwegian salmon was exported to a value of 105.8 billion NOK 

(Norwegian Seafood Council, 2022).  Today Norwegian salmon farms are the biggest 

producers of Atlantic salmon (Salmo salar) in the world (Nærings- og fiskeridepartementet, 

2021).  

 

A major challenge in the Norwegian salmon farming is high mortality (12- 14%), after release 

of smolt into seawater (SW) (Hjeltnes et al., 2018). One reason is suboptimal smolt production, 

resulting in salmon that are not well adopted for life in SW with higher salt concentration and 

exposure to new pathogens (Stefansson et al., 2005). To improve smolt robustness, it will be 

important to optimize smolt production protocols, including developing new and better ways 

to assess the SW-readiness and ensure higher survival, growth, and reduce welfare issues.  

 

In this thesis we leverage data from a large smolt-experiment undertaken in 2021-2022 (FHF 

project #901589) to explore the use of gene expression data as predictive markers for salmon 

SW-performance. The experiment included three different smolt production protocols, 

generation of gill transcriptomes from 3000 fish at time of SW transfer, as well as tracking of 

individual fish phenotypes in a common garden SW-pen. In this thesis I aim to use machine 

learning on the gill transcriptome data to predict growth later in life on the same fish, and also 

identify which genes that contributes to the predictions. This knowledge can be used to help 

develop better smolt production protocols and enhance animal welfare and aquaculture 

sustainability.   
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2 Background 

2.1 Life cycle of Atlantic salmon  

Atlantic salmon is an anadromous fish, meaning that it begins its life in freshwater (FW) river 

systems before migrating to SW (Hoar, 1988). Atlantic salmon usually spend 1 to 6 years in FW 

before migrating to SW. Mature Atlantic salmon return to their river of origin, mate and lay 

eggs in late autumn, and the eggs hatch the following spring (Fleming, 1996). Immediately 

after hatching, the salmon is known as alevin, before becoming a fry that quickly grows and 

develops into a parr. The parr is characterized by dark marking along the side of the body and 

several factors influence the length of the parr stage, including size, growth rate and metabolic 

status (Rowe et al., 1991; Thorpe, 1994; Thorpe et al., 1998). Parr exceeding a certain size 

threshold in the autumn tend to undergo the smoltification process, whereas smaller parr 

tend to remain in the parr stage (Kristinsson et al., 1985; Thorpe et al., 1982).  The adult 

salmon spend one to five years at sea before using geomagnetism and olfaction to guide their 

way back to native rivers (Hasler et al., 1978; Keefer & Caudill, 2014).  

 

 
Figure 2.1 Life cycle of Atlantic salmon. Different developmental stages 
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2.2 Smoltification  

Smoltification, hereafter referred to as smolting, is a natural process that occurs in juvenile 

salmon, where they undergo a series of changes in their behavior, morphology, and physiology 

to prepare for life in SW. This transformation is essential for their survival, as they need to 

adapt to the changes in the osmotic environment when they move from FW to SW (Stefansson 

et al., 2008). The process of smolting is under internal control by the neuroendocrine system 

and the timing is controlled by increasing daylight and water temperatures during spring 

(McCormick et al., 1995).  The process of smolting is initiated by stimulation of the light-brain-

pituitary axis, in a response to increasing daylength (Ebbesson et al., 2003). This results in a 

gradual series of physiological changes in parr that ultimately lead to adaptation for survival 

in SW habitats (Björnsson et al., 1989; McCormick et al., 1995). As smolting proceeds, the 

salmon become silvered, with a darker shade on their dorsal side and a brighter hue ventrally 

(Johnston & Eales, 1967; Staley & Ewing, 1992). The growth pattern also changes, turning into 

a more elongated body shape (Wedemeyer et al., 1980). And importantly, salmon smolts 

develop improved ability to tolerate high salt concentrations through remodeling the gill 

physiology, including expression of new genes encoding proteins involved in chloride 

excretion.  

 

2.2.1 Osmoregulation  

Atlantic salmon encounter distinct osmoregulatory challenges due to differences in salinity in 

FW and SW habitats. Salmon is hyperosmotic to FW, which means they have a higher ion 

concentration in their bodies than their surroundings, and as a result they face the risk of 

losing ions and gain water by passive diffusion and osmosis. To counteract this, the salmon 

actively take up ions and get rid of excess water by producing a large quantity of diluted urine. 

In SW, salmon is hypoosmotic to the sea water, where the internal extracellular fluids have 

lower salt concentration than the external environment. This leads to a state where salmon 

lose water and gain ions. To reduce dehydration SW teleost increase their drinking rate 

(Perrott et al., 1992). Osmoregulation in FW and SW requires cooperative effort of the gills, 

intestine and kidney of which the gill is the most studied (McCormick, 2012). In the gills, ion 

transport is carried out by specialized cells termed ioncytes, also called mitochondrial-rich 
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cells (MRC) (Wilson & Laurent, 2002).   Osmoregulation occurs across MRCs and their function 

and morphology differ between SW and FW (Evans et al., 2005; Hiroi & McCormick, 2012; 

Hwang & Lee, 2007). During smolting there is a notable increase in number and size of MRCs 

and the appearance of the associated accessory cell  The MRC develops an extensive tubular 

system that is characteristic for SW-MRCs, continuous with the basolateral membrane giving 

a large surface area for transport proteins (Pisam et al., 1988).  

 

Several genes have been demonstrated to be a part of the ion-excretory system in SW gills, 

cystic fibrosis transmembrane conductance regulator (CFTR), Sodium/potassium/chloride 

cotransporter (NKCC), and the sodium-potassium ATPase (NKA).  NKA and NKCC are localized 

in the basolateral membrane, while the CFTR is localized in the apical membrane. Salinity 

tolerance is accompanied by increased activity of several ions transporters in the gill were NKA 

is the most studied (McCormick, 2012).  It is an established marker for smolt status because 

of its increased activity during smolting (Hoar, 1988) and is therefore used as an indirect proxy 

of SW readiness of smolts in commercial salmon farming (Handeland & Stefansson, 2001). 

NKA is composed of two subunits α and β, where the α-subunit is the main catalytic unit and 

contains the binding sites for ATP, sodium and potassium. The β-subunit promotes folding and 

positioning of the protein into the basolateral plasma membrane. Salinity dependent isoforms 

of the α subunit are expressed in the gills of salmonoids (Nilsen et al., 2007; Tipsmark et al., 

2011) and NKAα1a and NKAα1b are to major isoforms expressed in FW and SW (McCormick 

et al., 2009).  There is differential expression of these isoforms during smolt development 

where NKA α1a is most abundant in FW while NKA α1b is most abundant in SW (Figure 2.1). 

Smolting is a pre-adaptive process, hence both isoforms will be present in gills during FW 

phase. However, as a part of the parr-smolt transformation the mRNA level of gill NKA α1a 

decreases and the NKA α1b increases in FW during smolting (Nilsen et al., 2007).  This 

corresponds to an increase in salinity tolerance and is often used as an indicator of hypo-

osmoregulatory capacity (McCormick, 2012; Nilsen et al., 2007). 
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Figure 2.2 Model of the osmoregulatory components in the gills of freshwater and seawater teleost. The gill isoform of 
NKA changes during smoltification in FW, and after SW exposure. A) The expression of the NKAα1a isoform dominates in 
FW parr B) During smoltification  the number of NKAα1b isoform increases as the fish is preparing for life in marine habitat. 
Other ion transporters (CFTR and NKCC1) are upregulated at this stage C) After SW exposure the NKAα1a disappears and 
NKAα1b are dominant. The expression of NKCC and CFTR continue to increase after SW exposure.  The figure is made using 
BioRender and is inspired by a figure made by McCormick with colleagues (McCormick, S. et al., 2013). 

 

NKA transport three sodium ions out of the cell for every two potassium ions it pumps into 

the cell, making the inside of the cell more negative and lower in sodium concentration. The 

extracellular concentration of sodium is higher than the intracellular concentration, while the 

intracellular concentration of potassium is higher than the extracellular concentration, this 

creates an ionic gradient across the cell membrane of the ioncytes. NKCC uses the ionic 

gradient to move chloride into the cell. The chloride then leaves the cell through an apical 

chloride channel CFTR, which is another marker related to smolt status due to its upregulation 

of mRNA during smolting (Kiilerich et al., 2007; McCormick, 2001; Singer et al., 2003).  

 

2.2.2 Endocrine control 

Increasing photoperiod is crucial for successful smolting, as it triggers the physiological 

changes necessary for adaptation to SW (Björnsson et al., 1989; McCormick et al., 1995; 

McCormick et al., 2007). Photoperiodic stimulation affects the neuroendocrine system in 

juvenile salmon, leading to changes in the expression of genes involved in osmoregulation, 

growth, and metabolism. Increasing photoperiod is the major factor stimulating hormones like 
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cortisol and growth hormone (GH) (McCormick, 2001). During smolting, GH induces the liver 

to produce insulin-like growth factor (IGF)-1 which is involved in regulation of growth, 

metabolism, and osmoregulation (Björnsson, 1997; Björnsson et al., 2002).  GH, IGF-1 and 

cortisol regulate the three major salt transporters, CFTR, NKCC and NKA during smolting 

(McCormick, 2001).  

 

2.3 Smolt production in salmon farming  

The salmon farming production cycle involves a 2-stage cycle which takes about 2-3 years to 

complete. The first stage is the FW production of smolts and the second is the grown-on stage 

following SW transfer of smolt. Prior to smolt production the process of fertilization and 

rearing is carried out (Mowi, 2022). In salmon farming, fertilized eggs are obtained from 

broodstock fish that have been selected for desirable traits like fast growth and disease 

resistance. After the eggs have been fertilized, the rearing process starts and eggs are placed 

into an incubator containing water where they stay until they hatch. After hatching, the 

production of smolt starts when fry is transferred to FW tanks on land where they stay for 8 

to 16 months. During this time, the fry will develop into a parr which will develop into a smolt. 

Smolting usually takes up to 2 years in natural systems. In contrast, short duration in the 

production of large smolt is possible due to light and temperature manipulation in salmon 

farming.   

 

There is no common method for smolt production in salmon aquaculture. Some producers 

simply grow smolt until they reach a very large size (>200g), others use feed with added salt 

to prime the fish for SW entry, and many producers use artificial light manipulation to 

stimulate and synchronize smolting. Such light manipulation imitates the natural conditions 

of smolting where salmon have evolved to smoltify following a period of exposure to winter 

photoperiods. To facilitate smolting of salmonoids, an artificial winter period is created by 

interrupting the constant light conditions in which they are typically reared after hatching, and 

exposing them to a daily light-dark cycle with limited light exposure of 12 hours or less per 

day, followed by a return to constant light in combination with increased temperature  

(Ytrestøyl et al., 2019). There are variations in the industry on the specifics of light 
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manipulation employed in smolt production, where both the length of exposure to winter 

photoperiod and the number of hours light exposure per day used as winter period differs.   

 

Numbers form the industry show that the quality of smolts produced are not optimal and it 

varies between facilities (Pino Martinez et al., 2023), where the quality is measured in terms 

of survival and growth. Producers claim that this issue can be explained by the difficulties in 

timing SW transfer in relation to the “smolt window”, which is the time smolt has the best 

capacity to tolerate SW (Handeland et al., 1996). The use of  intensive light regime can result 

in unsynchronized onset of smolting among farmed population (Pino Martinez et al., 2023; 

Stefansson et al., 2020). Therefor the determination of a SW ready smolt is key for the salmon 

farming industry.  The industry defines a SW ready smolt by two gold standards.  One method 

measures the gill NKA activity prior to SW transfer and/or changes in plasma chloride (Cl) 

levels after short term 24-h SW challenge (McCormick, S. et al., 2013). The second method use 

gene expression levels of the NKAα1a and NKA α1b isoforms to make a SW readiness score, 

because these isoforms are known to change in ratio during smolting (McCormick et al., 2009).     

 

2.5 Machine learning  

Machine learning (ML) is a subfield of Artificial Intelligence (AI) that involves using computer 

algorithms and statistical methods to identify patterns that can be used to make predictions 

from data (Mitchell & Mitchell, 1997). These algorithms learn from data and are able to 

gradually increase the accuracy of the model.  A mathematical model is built on data called 

training data and can make predictions or decisions based on comparable data, without the 

need for explicit programming. ML algorithms are especially useful when predicting values/or 

classes containing complex patterns (interactions between features), and data from genomic 

research often possess these qualities, making them highly relevant to use when studying 

biological processes with genomics data (Greener et al., 2022). Usually, the aim of any ML 

model is prediction or interpretation (Libbrecht & Noble, 2015). There are two main categories 

of ML techniques, unsupervised learning, and supervised learning. Unsupervised learning 

finds patterns and make predictions using unlabeled data sets whereas supervised learning 

finds patters and make predictions using labeled datasets. In biology data is labeled using 

phenotypic information like disease status, weight or size. Supervised learning includes 
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classification and regression, where a classification model predicts using classes and a 

regression model predicts using a continuous set of variables.  

 

ML algorithms need to be trained before being able to make predictions and interpretations. 

This is usually done by splitting the data into a training set and a testing set, where the training 

set is the largest proportion of the of the original data (Greener et al., 2022). The training data 

is applied to the machine learning algorithm to train it, while the test set evaluates the 

performance of the model and make sure the model have predictive power on unseen data 

(Chicco, 2017). This process is called model training and the output of this process is a machine 

learning model. How well a machine learning model preforms and if its predictions can be 

trusted can be measured by model evaluation. This process uses different evaluation metrics 

to understand the machine learning models performance, including its strengths and 

weaknesses. In classification problems, the tools most frequently used include a confusion 

matrix (correlation between the predictions of a model and actual class labels), accuracy 

(measurement of how accurate the model is), precision (ratio between of true positive and 

total positive predictions), ROC (plot between the true positive rate and false positive rate) 

and AUC (area under the curve in ROC plot) (Jiang et al., 2020). In regression problems root 

mean squared error (RMSE) and the coefficient of determination (R2) can be used as 

evaluation metrics (Sun et al., 2019). R2 indicates whether the model is a good fit, whereas 

RMSE estimates how well the model was able to predict on test set outcomes and can be 

calculated with the following equation: 

 

𝑅𝑀𝑆𝐸 = 	√[Σ(𝑃! −	𝑂!)"/𝑛]                                                                                                Eq. (1) 

 

Cross validation is used to test the effectiveness of a machine learning method, and the 

technique can also be used as a resampling method, used to evaluate model performance (Liu, 

2017).  Cross-validation is a technique which splits the dataset into groups, where one group 

is kept aside as the test set, while training the model with the remaining groups. The process 

is repeated for each group held as the test set, which evaluates the performance, and the 

average evaluation scores are retained from the model. The skill of the model is summarized 

using the evaluation scores. 

  



 9 

2.5.1 Random Forest 

Random forest is a supervised ML method which can be used for both classification and 

regression problems. It is a commonly used algorithm introduced by Leo Breiman in 2001, 

where the algorithm combines the output of multiple randomized decisions trees to produce 

a single result (Breiman, 2001).  The Random Forest algorithm is made up by an ensemble of 

decision trees where their predictions are combined to identify the most accurate result.  

Decision tree algorithms make decisions and predict values based on an if-else condition. 

Decision trees seek to find the best split to subset the data to create subsets that are as 

homogeneous as possible with respect to the target variable (Song & Lu, 2015). The 

Classification and Regression Tree (CART) algorithm is a common method used to build 

decision trees (Breiman, 2017). In CART, the algorithm iteratively selects a feature and a 

threshold to split the data into two groups based on the feature value. It then calculates an 

impurity score for each resulting subset, such as the Gini index for classification or the mean 

squared error for regression (Biau & Scornet, 2016).  Decision trees can be prone to problems 

like overfitting and bias, therefore when multiple decision trees form an ensemble in the 

Random Forest algorithm, they are able to predict more accurate results (Qi, 2012). Bagging 

is a type of ensemble method where a random sample of data in a training set is selected with 

replacement (Breiman, 1996).  Several samples of data are generated, and these models are 

then trained independently. The Random Forest algorithm uses both bagging and feature 

bagging to create an uncorrelated forest of decision trees, where feature bagging generates a 

random subset of features ensuring low correlation among decision trees (Biau & Scornet, 

2016).  

 

Two parameters, M and mtry are important for RF models and is usually tuned to make the 

model perform optimally. The M parameter describes the number of trees to grow and tuning 

this parameter may increase the computational burden, especially for big data sets containing 

hundreds and thousands of samples and variables (Schwarz et al., 2010).  As M grows the 

variance of the forest decreases, thus more accurate predictions are most likely to be obtained 

by choosing a large number of trees to grow (Biau & Scornet, 2016). A trade-off between 

computational complexity and accuracy needs to be accomplished to achieve the best working 

model. The mtry parameter controls how much randomness is added to the decision tree 

process by controlling how many features are available to be considered for each new split 
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(Genuer et al., 2010). Tuning this parameter can have an impact on the model’s performance.  

When building the Random Forest model, each tree in the forest only uses a subset of original 

data to train one tree. The data that remains are not used in the training process and can be 

used to measure the overall performance of the model, called the Out-of-bag (OOB) estimate 

(Biau & Scornet, 2016).  The estimate is calculated by aggregating the predictions made by 

each tree on its corresponding OOB samples.  

 

2.6 Aim of the thesis 

This master project is a part of the ongoing Syncrosmolt project where main objective is to 

deliverer improved smolt production protocols, monitoring tools and enhanced broodstock to 

produce robust smolts with improved growth rates, survival, and welfare after SW transfer.   

 

The aim of this thesis is twofold; first part is to use Random Forest to build predictive models 

of gill transcriptome data from fish given different light manipulation during smolt production 

to predict salmon smolt growth in SW. Different light treatment matter for SW performance, 

and there are large variations in developmental status among fish at the time of SW transfer 

(Strand et al., 2018; Ytrestøyl et al., 2019). Therefore, it is crucial to develop smolt markers 

able to predict long term SW performance. Second, use the prediction models to extract 

information about genes being involved in SW growth. This knowledge can be used to find 

new and better ways to assess SW readiness ensuring higher survival, growth and reduce 

welfare issues.  
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3 Methods 

The data used in this master thesis were generated in the Synchrosmolt project funded by 

Fiskeri- og havbruksnærningens forskningsfinansiering (FHF).  Sampling was carried out by 

researcher working on the project. 

 

 
Figure 3.1 Flow of experimental set up and data analysis in the project. Production of smolt was carried out using three 
different photoperiods, continuous light (24:0), short-day (12:12), short-day (8:16). Prior to seawater transfer smolt sampling 
was carried out, here gill biopsies were taken, weight measurements and phenotyping of each salmon. After 5 months in 
seawater, sampling was again carried out and new weight measurement were taken. Gene expression measurements 
together with metadata containing the morphometric measurements was processed and applied to a machine learning 
algorithm to make a predictive model of salmon smolt growth performance in seawater. 
 

3.1. Salmon smolt production 

Salmon smolt was produced using a commonly used aquaculture smolt production protocol. 

In brief, fertilized eggs were placed on an incubator kept at 8°C, where they took 60 days to 

hatch.  Following hatching 3000 fish was kept in one big tank on continuous light regime (24 

hours light).  When the weight of the salmon reached ~10g each salmon was pit-tagged and 

redistributed to three replicate tanks. Pit-tagging was performed on euthanized salmon that 

were given a small dose of benzocaine. Nano transponders were then surgically implanted 

into the left intraperitoneal cavity using specialized syringes. Pit-tagged salmon were further 

subjected into either short day photoperiod (8:16) short day photoperiod (12:12) or kept on 
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continuous light regime (24:0), before they were transferred back on 24:0 for 8 weeks before 

SW transfer to initiate smolting (Figure 3.1).   

 

3.2. Salmon smolt sampling  

Prior to SW transfer salmon smolt sampling was carried out over a period of 6 days. The 

sampling was randomized and carried out tank by tank. Salmon were euthanized with a small 

dose of benzocaine before sampling. The weight and length of each salmon were measured 

and salmon smolt status was assessed visually and ranked from 1 to 3 by the following 

evaluation criteria: 1 (parr marks clearly visible), 2 (silvery appearance with faint parr marks), 

3 (silver skin, no parr marks visible). All parameters were recorded electronically using 

Fishreader W (Trovan) and the software ZesusCapture.  After 5 moths in SW, fish were taken 

up and morphometric measurements were taken. 

 

3.3 Generation of smolt gill gene expression profiles 

Small non-lethal gill biopsies were sampled prior to SW transfer from euthanized salmon and 

placed on dry ice before storing at -80°C. Pit-tag ID was recorded and linked to all gill biopsy 

samples. RNA isolation from gill-tissue was carried out at Qiagen (Germany) using RNeasy 

Fibrous Tissue Mini Kit, and RNA was sent to Novogene (Cambridge, UK) where RNA-seq 

libraries were prepared and RNA-sequencing was performed. RNA-seq libraries were 150 bp 

paired- end sequencing and sequenced to a depth of 10 million reads per sample.  

 

3.4 Data analyses 

Conversion of raw sequencing data to normalized gene expression quantification in the form 

of Transcripts Per Million (tpm) was done using the Salmon software (Patro et al., 2017). The 

Ssal.v3 genome assembly (GCA_905237065) with ENSEMBL gene annotation was used. All 

bioinformatics data handling prior to ML analyses were done by researchers in the 

Synchrosmolt project. All data analysis was performed in R (R Core Team, 2022) using the 

interface RStudio (Posit team, 2022). The caret R package (Kuhn, 2008) was used for ML and 

data visualization was performed using the R package ‘ggplot2’ (H. Wickham, 2016).   
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Prior to pre-processing, RNA-seq data was merged with metadata containing the 

morphometric measurements (June sampling and November sampling), smolt status (June 

sampling) and light treatment from each salmon-sample. Growth performance in SW, was 

calculated by subtracting the sampling weight in June from the sampling weight in November 

and samples that contained NA values were removed from the analysis.   

 

3.4.1 Pre-processing and quality control of RNA-seq data  

Initially, the data set was log transformed to reduce skewness and expression ratio of the 

NKAα1b and NKAα1a isoforms were calculated. By only keeping rows where the row means 

was larger than zero, non-expressed genes were filtered from data sets to lighten the 

computational load. Principal Component Analysis (PCA) was used to identify patterns and 

relationships in the data, and therefore also identify potential sample outliers.  First, the 

function standardizes the values and make new principal components where the first principal 

component (PC1) corresponds to the direction with the maximum variation in the data set. 

The second principal component (PC2) corresponds to the direction with the second 

maximum amount of variation in the dataset. For visualization, samples were colored 

according to light treatment, and samples that deviated from the expected pattern in the 

dataset were identified as sample outliers and subsequently removed. Lastly, the data set was 

split into three subsets according to light treatment, 8:12, 12:12 and 24:0.  

 

A statistical test for differences in weight (June sampling), growth and NKA ratio according to 

light treatment was preformed using a one-way Analysis of Variance (ANOVA) followed by a 

post-hoc Tukey HSD.   

 

3.4.2 Feature selection 

Prior to machine learning, feature selection was carried out to reduce the number of genes 

used as input in the machine learning algorithm. By reducing the number of genes, the 

machine learning model may be more accurate, and it may prevent the algorithm from 

crashing. Two different steps of feature selection (near zero variance and correlation) were 

applied to the data sets (8:16, 12:12 and 24:0). For near zero variance, variables with little 

variance were removed from the data set. The cutoff ratio of the most common value to the 
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second most common value was set at 40 and the cutoff of the percentage of distinct values 

out of total samples was set at 20.  In the second step a correlation matrix with the correlation 

coefficients for all genes were calculated, genes with a pair-wise correlation were removed 

using a cutoff set at 0.35.  After feature selection was carried out a correlation matrix between 

all genes and growth performance in SW was made to assess the correlation between single 

genes and the response variable used in the machine learning algorithm.  

 
3.4.3 Model training  

A Random Forest algorithm was trained for each light treatment group separately (8:16, 12:12 

and 24:0) to predict salmon smolt growth performance in SW. The Random Forest algorithm 

was trained using the complete data set to ensure the algorithm had enough training data to 

learn form.  Model training, with k-fold cross validation as the resampling method was 

conducted on the data sets where the number of folds were set to 10. The method used 

different partitions of the data set to train and test the model on different iterations. The 

algorithm was initially trained by using the default parameters of the Random Forest 

algorithm, in carets train function, before parameter tuning was carried out using grid search 

for mtry and manual search for ntree. The metrices used to evaluate the performance of the 

model was root mean square error (RMSE) and the coefficient of determination (R2), both 

based on cross validation.  The performance metrices of the different models was then 

compared and a final predictive model was chosen for each light treatment group.   

 
3.4.4 Variable importance  

The variable importance for each model was calculated using the VarImp() function from the 

caret package (Kuhn, 2008). The function calculates the variable importance based on the 

mean decrease in accuracy (calculated across all trees) resulting from removing a particular 

feature from the Random Forest model. The mean decrease of accuracy is a measure used to 

assess the contribution of each feature to the accuracy of the models predictions. From the 

output of the VarImp() function the top 10 important features were chosen, and the geneIDs 

of the features were changed to their corresponding gene name in the ensemble  annotation 

for easier interpretation. In the case where genes were annotated as novel, a Basic Local 

Alignment Search (BLAST) search were applied to identify their potential homologs and gain 

insight into their function (Altschul et al., 1990). The Blastp tool from NCBI with default 
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settings were used to compare the translated protein sequence of the novel gene to a protein 

database. From the list with the closest matches to the query sequence, the most abundant 

description of gene function was chosen.       

 

Finally, a functional enrichment analysis of the top 50 important features. These features were 

retrieved from the variable importance analysis was performed using the bioinformatic 

webtool g:profiler (Raudvere et al., 2019).   
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4 Results 

4.1. Gene expression data quality and filtering 

Mean normalized expression level (tpm) across all 1816 fish for each gene (Figure 4.1) ranged 

from 3.09 x 10-5 to 14.9 (median tpm = 1,02). A total of 1016 genes had a zero expression and 

were removed from further analyses.   

 

 
Figure 4.1 Histogram visualizing the mean distribution of gene expression in all samples. The mean gene expression of each 
gene is log transformed and calculated on the x-axis. The gene expression is measured in TPM. The y- axis shows the number 
of genes corresponding to the mean gene expression value. Most genes are lowly expressed. 

 

To get a better overview of the data and identify potential sample outliers we performed PCA 

analyses on gene expression levels for each light treatment separately (Figure 4.2). PC1 and 

PC2 explained 18-15% and 5-9% of the variance across the three treatments respectively, and 

no extreme sample outliers were detected.  
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Figure 4.2 PCA plot of samples being exposed to three different light treatments. Samples were plotted along the PC1 and 
PC2 axis and colored according to June sampling smolt status. A) Gene expression levels for samples exposed to 8:16 
photoperiod. PC1 explains 15.5% of the variation in the data set, while PC2 explains 10.39 % of the variation in the data set.  
B) Gene expression levels for samples exposed to 12:12 photoperiod, PC1 = 17.42% and PC2 0 5.28% C) Gene expression 
levels for samples exposed to 24:0 photoperiod, PC1 = 18.19% and PC2 = 9,04%. 

 
 
4.2 Growth and NKA ratio expression in groups exposed to different light treatment 

To determine whether photoperiodic history influenced growth in FW phase we compared 

the weight prior to SW transfer between groups exposed to different light treatment (Figure 

4.3). Salmon exposed to 24:0 photoperiod showed significantly higher weight (Tukey-test, p-

adjusted = 0.00) (median = 171g) compared to salmon exposed to winter photoperiod, 8:16 

(median 153g) and 12:12 (median = 154g). The 24:0 group showed lower growth in SW 

compared to 8:16 and 12:12 group (Figure 4.3B). However, no significant difference was 

detected between the groups (ANOVA, p = 0.99).   
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Figure 4.3. Boxplot visualizing the distribution of salmon smolt weight(g) measured prior to SW transfer and growth (g) in 
SW. A) The x-axis shows light treatment with the corresponding weight in on the y-axis. Salmon exposed to continuous light 
have a higher weight than salmon exposed to winter photoperiod. B) The x- axis show light treatment with the corresponding 
growth in SW on the y-axis. Growth in SW was the same for the three groups. 

 

We were interested in how mortality in the SW phase varied according to light treatment. Fish 

exposed to 24:0 was the group with the highest mortality (total dead = 431). In 24:0 the 

mortality was highest compared to the 12:12 and 8:16 groups where the mortality was 394 

and 398 respectively (Figure 4.4).  

 

 
Figure 4.4 Mortality according to light treatment: The x-axis shows three different light treatments (8:16, 12:12 and 24:0) 
with the corresponding mortality of the group. The mortality was highest in the 24:0 group. 
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Since the ratio of NKAα1b to NKAα1a is a commonly used marker for smolt status in 

commercial smolt production, we wanted to test if light treatment were associated with 

different NKA-ratios (Figure 4.4). The median NKA-ratios were significantly higher in 8:16 and 

12:12 (1.19, 1.18) compared to the 24:0 (0.88) (Tukey-test, p-adjusted = 0.00). 

 

           
Figure 4.5 Boxplot visualizing expression for the NKA ratio for salmon exposed to different light regimes. The x-axis show 
which light treatment salmon is exposed to, 12:12, 8:16 and 24:0 while the y-axis show expression of NKA ratio.  Salmon 
exposed to winter photoperiod expression ratio of the NKA is higher than for salmon exposed to continuous light. 

 

4.3 Feature selection   

To make the machine learning model more accurate and reduce computational costs, several 

steps of feature selection was performed on the data sets (8:16, 12, 12:12, 24:0). Genes with 

a near zero variance, meaning that they have few unique values and features with low 

variance were removed. Features with high correlation are more linearly dependent and 

hence have almost the same effect on the dependent variable. In cases where two features 

have high correlation one of the features may be eliminated, the threshold was set at 0.35. 

The two steps of feature selection reduced the number of genes from 45.647 to 7825 for 8:12, 

to 8686 for 12.12 and to 7037 for 24:0.  
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4.4 Random Forest prediction models for growth in SW  

A Random Forest algorithm was trained using three data sets 8:12, 12:12 and 24:0 to 

investigate if different photoperiod had effect on predicting growth in SW. Since growth is a 

continuous variable we chose a RF-algorithm with a regression model.   

 

4.4.1 Salmonoids exposed to 8:16 photoperiod  

The algorithm was trained using 610 samples and 7825 genes. First, a baseline model was 

trained using the default values of the rf algorithm, ntree = 500 and mtry = 70.  This resulted 

in a model where the coefficient of determination (R2) was 0.04. A low R2 value reflects low 

explanatory/predictive power, and lead to inadequate predictions of the outcome variable, 

SW growth performance. The RMSE was calculated to be 185, compared to the mean growth 

in SW at 479h the models prediction error was estimated to be approximately 38% on average. 

To attempt to increase the model performance we tuned the mtry parameter, however this 

resulted in no changes of RMSE (=185) and R2 (=0.04) (Figure 4.6). The best value for this 

parameter was mtry=2500 which was used for the analyses of the 8:12 photoperiod fish.  
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Figure 4.6 The best mtry numbers on models RMSE and R2 produced by gridsearch. A-C) Number of selected predictors 
plotted on the x axis with the corresponding RMSE of the model. A)  8:16 B) 12:12 C) 24:0. RMSE ranges from 182-185 for the 
three groups. D-F) Number of selected predictors plotted on the x axis with corresponding R2 of the model. D) 8:16 E) 12:12 
F) 24:0. The 24:0 model has the highest R2 (0.11) out of the tree models.  

 

4.4.2 Salmonoids exposed to 12:12 photoperiod  

The Random Forest algorithm was trained using 630 samples and 8686 features. Similar to the 

8:16 group, a baseline model was trained with, ntree = 500 and mtry = 74. This resulted in a 

model where R2 was 0.01 and RMSE was 183. Compared to the mean growth in SW at 481g 

the prediction error of the model was 38%. Attempts were made to increase the model 

performance by tuning the mtry parameter, however this resulted in very small changes in 

RMSE (=181) and R2 (=0.02) (Figure 4.6). The best value for this parameter was mtry = 5500 

which was used for the analyses of the 12:12 photoperiod fish.  

  

4.4.3 Salmonids exposed to 24:0 photoperiod 

The 24:0 data set contained 576 samples and 7037 features, which was used to train the 

algorithm. A baseline model was trained (RMSE = 185) and (R2 = 0.07) before the mtry 

parameter was tuned in attempts to increase model performance. This resulted in small 

changes for RMSE (=182) (Figure 4.6) however the models R2 increased (=0.11) (Figure 4.6). 

The best value for this parameter was mtry=7037 which was used for the analyses of the 24:0 

photoperiod fish. The model could explain 11% of the variation in growth in SW and the RMSE 

of the model was 182, the prediction error of the model was 38%.   

 

4.5 Variable importance  

The variable importance analysis was used to quantify the contribution of each gene to the 

regression models, specifically to determine the genes that play a crucial role in the growth of 

salmon in SW. This approach allowed for identifying the genes with the highest impact on the 

model, providing insights into the key genetic factors that influence SW growth in salmon.  

 

4.5.1 Salmonoids exposed to 8:16 photoperiod  

From the variable importance analysis of the Random Forest model of salmon exposed to 8:16 

photoperiod, the gene with the highest impact on the model was IRF1-2 (importance = 6.68) 

(Figure 4.6). The top second gene was annotated as uncaractherized gene (importance = 3.12), 
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where Zink finger protein was the BLAST homolog (Accession number = AKP41000, e-value= 

0.0, % identity = 78.90). The top third feature of the model was the plg gene (plasminogen) 

with a variable importance of 3.12. The known smolt gene-expression markers NKA and CFTR 

had a variable importance of -0.62 and 2.41 respectively.   

 
Figure 4.7 Variable importance plot for salmonoids exposed to 8:12 photoperiod. The 10 top genes contributing to the 
Random Forest model made from salmonoids exposed to short day photoperiod (8:16). The features are plotted on the x-
axis with the corresponding importance on the y-axis. The gene which had the highest variable importance was a IRF 1-2 
and its variable importance was 4.68. *Sequence homology BLAST  

 

4.5.2 Salmonoids exposed to 12:12 photoperiod 

From the variable importance analysis of the 12:12 Random Forest model, the gene with the 

highest impact on the model (importance = 7.89) was an uncharacterized gene, however its 

blast homolog was transposase (Accession number = ABV31710, e-value=1x10-74, % identity = 

78.06), and this gene had an importance of 7.89 (Figure 4.7). The top second gene of the model 

was also an uncharacterized gene (importance = 4.33), and its BLAST homolog was zink finger 

protein (Accession number = XP_045555642, e-value= 0, % identity = 99.11). In comparison, 

the known smolt-gene expression markers NKA and CFTR had very low variable importance of 

0.13 and -0.33 respectively.  
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Figure 4.8 Variable importance plot for salmonoids exposed to 12:12 photoperiod. The top 10 genes contributing to the 
Random Forest model made from salmonoids exposed to 12:12 photoperiod. The genes are plotted on the x-axis with the 
corresponding importance on the y-axis. The gene which had the highest variable importance was an uncharacterized gene 
and its BLAST homolog was transposase, its variable importance was 4.92.  *Sequence homology BLAST  

 

4.5.3 Salmonids exposed to 24:0 photoperiod 

From the variable importance analysis of the 24:0 Random Forest model, the known smolt-

gene expression marker CFTR ranked top second with a variable importance of 10.5 (Figure 

4.8), however NKA had a variable importance of -0.06.  The BLAST homolog of the top third 

gene was the sodium/potassium-transporting ATPase subunit alpha-3 isoform (Accession 

number = XP_014055887, e-value= 0, % identity = 99.68), with a variable importance of 9.50. 
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Figure 4.9 Variable importance plot for salmonoids exposed to 24:0 photoperiod. The top 10 genes contributing to the 
Random Forest model made from salmonoids exposed to 24:0 photoperiod. The features are plotted on the x-axis with the 
corresponding importance on the y-axis. CFTR was the gene with the second highest variable importance at 10.57. *Sequence 
homology BLAST 
 
To test if there was any common pathways or biological functions associated with the top 50 

ranked genes of each Random Forest model (8:16, 12:12, and 24:0) a functional enrichment 

analysis was performed in g:Profiler (Raudvere et al., 2019), however this gave no significant 

enrichments of gene ontologies or KEGG pathways.  

 

4.6 Correlation between single genes and growth performance in seawater 

Although the Random Forest models trained in this study performed poorly, we wanted to 

investigate how poor these Random Forest predictions were compared to using gene 

expression from single genes. This is relevant as the gene expression levels of single genes (or 

the ratio between two genes) are used in aquaculture production to assess smolt 

development status. We therefore computed the correlation between the expression levels 

of all genes individually and growth in SW and compared this with the correlation coefficients 

(sqrt(R2)) from the Random Forest models. 
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The correlation coefficient of the 8:16 Random Forest model was 0.20, while the correlation 

coefficients of NKA and CFTR were 0.07 and 0.08, respectively (Figure 4.10). The gene with the 

strongest correlation to the SW growth was the JunD gene (JunD proto-oncogene, AP-1 

transcription factor subunit) with a correlation coefficient of 0.14. (Figure 4.10). The 

correlation coefficient of the 12:12 Random Forest model was 0.14, while the correlation 

coefficients of the NKA and CFTR were 0.06 and 0.05, respectively (Figure 4.10). The 24:0 

Random Forest model had a notably higher correlation coefficient of 0.33, while the 

correlation coefficients of CFTR and NKA were 0.27 and 0.22 respectively (Figure 3.10). 

 

 
Figure 4.10 Distribution of genes according to correlation coefficient between genes and SW growth. The x- axis shows the 
correlation coefficient between the expression level of single genes growth and growth in SW. The y-axis shows the number 
of genes. CFTR and NKA are known gene-expression markers for SW readiness in salmon smolt and their correlation 
coefficient to SW growth is marked with a vertical line on the figure. Most genes show a low correlation coefficient meaning 
that they do not correlate strong with the growth variable. For all Random Forest models trained in this study A) 8:16, B) 
12:12, and C) 24:0 the models correlation coefficient is higher than the correlation coefficient of single gene expressions. 
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5 Discussion  

The two main objectives of this master thesis were to (i) test if we can use machine learning 

to predict smolt performance in SW based on FW gill transcriptomes from the same fish and 

(ii) identify the genes that will best predict SW smolt performance. In the following discussion, 

I will first focus on three aspects of the results, namely the poor performance of the machine 

learning predictions, the clear impact of photoperiodic history (i.e. light treatments) on the 

Random Forest models and the Random Forest method and its suitability for gene expression 

based trait predictions.  

 

5.1 What can cause the poor prediction of growth in sea water? 

Successful smolting requires the synchronization of developmental and physiological 

processes to produce a smolt phenotype ready for SW. The development of salinity tolerance 

is one important aspect of smolt development and is achieved by increasing the activity of 

several ion transporters in the gill, including the NKA protein (McCormick, 2012).  Several 

isoforms of the alpha (a) subunit of this protein have been found expressed in salmonids 

(Richards et al., 2003). In gill tissue of Atlantic salmon, the expression of four distinct isoforms 

of the nkaa genes have been identified (-1a, -1b, -1c, -3) as well as one nkab1 gene. The 

nkaa1a has been found highly expressed in FW whereas nkaa1b has been found highly 

expressed in SW (McCormick et al., 2009; Nilsen et al., 2007). Hence, gill transcriptome profiles 

have been used as an indirect proxy of SW readiness of smolts in both academic experiments 

(Kiilerich et al., 2007; McCormick, 2001; McGowan et al., 2021; Singer et al., 2003; Striberny 

et al., 2021) and commercial salmon farming (Handeland & Stefansson, 2001). However, in 

our study we find that Random Forest models have extremely poor predictive ability for SW 

growth, although superior to single genes involved in smolt gill development (Figure 4.10.). 

What could this mean? 

 

One obvious interpretation is that poor model predictions reflect that gill transcriptome holds 

little information about longer term future growth. It is clear from numerous studies that gill 

genes involved in salinity regulation clearly distinguish small parr from larger fish ready to 

smolt (Nilsen et al., 2007; Pelis et al., 2001; Tipsmark et al., 2002). However, as suggested by 

Iversen with colleagues  (Iversen et al., 2020), it is possible that most large smolts (>50-100g) 
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have the capacity to suppress blood chloride levels following SW entry, despite variable levels 

of ‘smolt gill’ gene expression markers. In other words, it is perhaps not dysregulated gill 

function that results in suppressed growth in the sea for most fish, but rather other factors 

which does not reflect well in the gill transcriptome.  

 

Another reason for poor model performance could be related to technical aspects. Here we 

choose a Random Forest algorithm which offers several advantages of little data 

preprocessing and have few parameters for the user to adjust. Random Forest is also powerful 

when number of observations (p) is much lower than features (n) as is the case in our study. 

In other studies of gene expression highly accurate rf models have been trained with n<100 

with 10s of thousands of gene expression phenotypes (Chen & Ishwaran, 2012). The way of 

one-step-at-a-time node splitting enables the forest to impose regularization for effective 

analysis in cases where p >> n, also the grouping properties of trees enables RF to adeptly deal 

with correlation and interactions among variables (Ishwaran et al., 2010). Hence, we do not 

believe the choice of the Random Forest algorithm per se (compared to another more 

complicated model such as neural networks) has hampered our predictive ability. Another 

potential factor that could have impacted the Random Forest model is the way we quantify 

growth in SW. It is possible that by representing growth as a percentage of weight at smolt 

would capture some correlations to gill gene expression that we did not have in our dataset, 

however, due to time constraints we could not evaluate this in this thesis. 

 

In this study the cross-validation method was used to measure model performance, which 

were evaluated based on the average performance across multiple iterations. We used the 

complete dataset for training because p >> n, to ensure the algorithm had enough training 

data to learn from. The tuning of model parameters (i.e mtry) was in our case done by grid 

search, this method could potentially lead to overfitting when tuning multiple times. However, 

by only tuning one parameter we do not think this have affected the performance our 

predictive model.  

 

5.2 Photoperiodic history impacts the rf predictions  

The growth performance of salmonoids is influenced by a number of abiotic and biotic factors 

with light and temperature being the primary environmental factors that regulate various 
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physiological processes and therefore affect the life trajectories of this species (McCormick, S. 

D. et al., 2013). Previous studies have concluded that smolt development is highly impacted 

by photoperiodic history (Duncan & Bromage, 1998; Iversen et al., 2020; Saunders et al., 

1985), including growth performance in SW (Striberny et al., 2021). It is perhaps not surprising 

that our results showed that the three Random Forest models from different light regimes had 

different predictive power and non-identical top lists of most influential features (Figures 4.7, 

4.8, 4.9). 

 

In this study we found that the Random Forest model for the 24:0 group were much better at 

predicting SW growth than any of the models from the fish exposed to short photoperiods 

(Figure 4.6). At first glance, this result is possibly a bit counterintuitive, as a large bulk of 

scientific work has demonstrated the importance of exposure to winter photoperiods in smolt 

production protocols (Björnsson et al., 1989; Björnsson et al., 2000; Handeland & Stefansson, 

2001; McCormick et al., 1987; McCormick et al., 1995). Increased levels of GH are normally 

observed after transfer from short to long photoperiods, and salmon exposed to winter period 

can therefore develop a better scope for growth in SW (Björnsson et al., 1989; McCormick et 

al., 2007). However, when dissecting the data further, it is perhaps not as puzzling after all. If 

the 24:0 treatment was the least optimal in the context of gill physiology development and 

resulted in a less homogenous smolt population, then this could explain the better model 

performance in 24:0 fish. This interpretation is also indirectly supported by 24:0 fish also 

having the highest early SW mortality rate (Figure 4.4).   These interpretations are consisted 

with other studies suggesting that extended use of continuous light regimes deprives the 

juvenile salmon of seasonal cures and thus critically interfere with the completion of parr-

smolt-transformation. These negative effects include reduced hypo-osmoregulatory ability 

(McCormick et al., 1987), smolt-related endocrine signaling (Björnsson et al., 2000) and 

growth rate after transfer to SW (Striberny et al., 2021). Hence, we believe that poorer 

Random Forest model performance on fish exposed to winter photoperiod could be due to 

these fish having a more synchronized smolt gill development. This may indicate that building 

a predictive model based on gene expression from FW is not necessary reflecting the salmon 

status when it comes to survival, welfare and performance in SW. 
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The top 10 of associated genes ranked by variable importance were non identical between 

our three Random Forest models. For example, the gene expression of CFTR were only ranked 

top 10 important features in the 24:0 model (Figure 4.10), in comparison CFTR had a negative 

variable importance in the 12:12 model (Figure 4.9), and removing this feature would likely 

improve the model’s performance (Cutler et al., 2012).  The gene ranked top one differed for 

the three rf models, however for the genes included in the 8:16 and 12:12 model a sequence 

homology to Zink finger protein which was detected as the second top feature. Zink finger 

proteins represent the most abundant class of DNA binding proteins, often as transcription 

factors and they therefore play a significant role in gene regulation (Laity et al., 2001). NKA 

had a low variable importance in all three models < 0.13, and for the 8:16, and 24:0 the 

variable importance was negative. Our variable importance analysis has highlighted an 

important consideration when using gill transcriptome profiles as an indirect proxy for SW 

readiness of smolts in commercial salmon farming. Specifically, we found that the markers 

identified as important differed depending on the light regime used to produce smolts.  

 

5.3 Immune system at smolt impact growth performance 

Production of smolt in the 8:16 group resulted in a model where the IRF1-2 gene was the top 

feature associated with growth in SW. According to our results IRF1-2, was the strongest 

predictor of smolt growth in SW.  In humans IRF1-2 is an activator of genes involved in the 

immune system. This gene activates transcription of genes involved in response to viruses and 

bacteria, as well as playing a role in the immune responses (Oshima et al., 2004; Su et al., 

2007) The top third gene was the plg gene, encoding a protein circulating blood plasma which 

is converted to plasmin.  Plasmin is a protease enzyme involved in the breakdown of blood 

clots, and it also has functions in the immune system, such as clearance of apocopic cells and 

regulation of inflammatory processes (Stelzer et al., 2016). The gill is the major mucosal 

immune barrier with lymphoid tissue, named gill associated lymphoid tissue (GIALT) (Koppang 

et al., 2015; Rességuier et al., 2020). This tissue is rich in T cells, natural killer cells and 

macrophages. The process of smolting has shown to suppress immune functions and a 

previous study on Atlantic salmon revealed a reduction in several types of immune-related 

cells (West et al., 2021).   Our results suggest that the expression of specific genes associated 

with the immune system during smolting serves as a significant predictor of smolt growth in 

SW for samples exposed to winter photoperiod (8:16). These genes exhibit considerable 
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predictive power, indicating their potential role in regulating immune responses are essential 

for growth in SW.  

 

The results from the correlation analysis between gene expression and growth in SW showed 

that the JunD gene had the strongest correlation to growth for fish exposed to short 

photoperiod (8:16). This gene is important in cellular differentiation and proliferation 

(Hernandez et al., 2008), and could therefore potentially play a role in the remodeling of gill 

cell types during smolting. During smolting it is hypothesized that a reorganization of the gill 

immune system needs to coincide with the physiological changes happening, due to exposure 

to novel pathogens which they have previously not been exposed to (Johansson et al., 2016). 

The previous studies point towards an adaptive immunological reprogramming that helps to 

avoid immune shock when salmon transition between the distinctive pathogen complements 

of FW and SW habitats (Lee & Eom, 2016; Wang et al., 2012; West et al., 2021). Our findings 

suggest that the JunD gene could be involved in important cellular changes associated with 

growth in SW.   

 

5.4 NKA subunits influence on growth 

Results from the 24:0 Random Forest model showed ATP1A3 as the top third gene when 

predicting growth in SW, this gene encodes the α-subunit of NKA. This gene is a paralogue of 

the NKAα1a and NKA α1b, however it is not used as a smolt gene-expression marker.  The α3 

isoform was first found expressed in gills of rainbow trout (Oncorhynchus mykiss) along with 

three other NKA α-isoforms (α1a, α1b, α1c and α3) (Richards et al., 2003). The expression 

levels of NKA α1c- and α3-isofoms was found to be low in FW and their expression pattern did 

not change following transfer to SW.  However, in a study performed by Nilsen and colleagues  

(Nilsen et al., 2007) they found that expression of NKA-α3 increased towards smolting. Our 

results showed this gene a strong predictor of growth in SW, which may be consisted with the 

previous findings where the α3 isoform may be important in the functional differences in NKA.   
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6 Conclusion 

In this thesis we tested the use of a Random Forest model to predict salmon smolt growth in 

SW based on FW transcriptome from the same fish. 

 

The results from the Random Forest model indicate low predictive power when using gill 

transcriptome to predict growth in SW. Furthermore, the top genes associated with growth in 

SW varied depending on the photoperiodic history of the sample. Therefore, the salmon 

farming industry should apply caution when relying on traditional smolt gene-expression 

markers to determine the optimal time for SW transfer, especially when using a winter 

photoperiod in the smolt production process. 
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Appendices  

Code 

R-scripts used for machine learning are available at: 
https://github.com/sofierob/Master_thesis 
 
 
Feature importance 

Appendix 1: Feature importance of the 10 top features of the Random Forest model trained on samples exposed to 8:16 
photoperiod. The gene product corresponding to the geneID from ensemble annotation. *BLAST homology 

Gene ID Product/Human readable gene 
name 

Importance 

ENSSSAG00000067957 IRF 1-2 4.675085 
ENSSSAG00000096115 Zink finger protein* 4.044526 
ENSSSAG00000048657 plg gene (plasminogen)* 3.123647 
ENSSSAG00000091826 tom1 (target of myb1 

membrane trafficking protein) 
2.906224 

ENSSSAG00000121032 PAFAH1B3* 2.880318 
ENSSSAG00000104042 ADAP1* 2.719710 
ENSSSAG00000098144 slc35e4 (solute carrier family 

35 member E4) 
2.663777 

ENSSSAG00000081374 tradd 
(tnfrsf1a-associated via death 
domain) 

2.646980 

ENSSSAG00000059823 Gprc5d* 2.630080 
ENSSSAG00000040556 U334 

(nucleoside-triphosphatase, 
cancer-related) 

2.613816 

 
Appendix 2: Feature importance of the 10 top features of the Random Forest model trained on samples exposed 12:12 
photoperiod. The gene product corresponding to the geneID from ensemble annotation. *BLAST homology 

GeneID Product/Human readable 
gene name 

Importance 

ENSSSAG00000108652 Transposase* 7.888520 
ENSSSAG00000109564 Zink finger protein* 4.336683 
ENSSSAG00000115630 Chordc1 undefined 4.307205 
ENSSSAG00000106818 Zink finger (SCAN) protein 3.516217 
ENSSSAG00000008608 GAS2L3* 3.341893 
ENSSSAG00000067562 ZFAND4 (zinc finger AN1-

type containing 4) 
3.172849 

ENSSSAG00000045361 nrxn3b (neurexin 3b) 3.011871 
ENSSSAG00000112083 Eosinophil peroxidase-like* 2.929402 
ENSSSAG00000042328 TLR undefined 2.832087 
ENSSSAG00000039803 CFAP206 

(cilia and flagella associated 
protein 206) 

2.822662 
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Appendix 3: Feature importance of the 20 top features of the Random Forest model trained on samples exposed to 24:0 
photoperiod. The gene product corresponding to the geneID from ensemble annotation. *BLAST homology 

GeneID Product/Human readable 
gene name 

Importance 

ENSSSAG00000089982 ZG16* 10.585890 
ENSSSAG00000051689 CFTR (CF transmembrane 

conductance regulator) 
10.536953 

ENSSSAG00000093085 ATP1A3* 9.504433 
ENSSSAG00000066983 ST6GALNAC3* 5.301288 
ENSSSAG00000093757 TEL1 (Cystein-rich venom 

protein) * 
5.246348 

ENSSSAG00000108467 NLRC3* 4.668199 
ENSSSAG00000050238 RTN2A (reticulon 2) 3.604681 
ENSSSAG00000066030 DNA- (apurinic or 

apyrimidinic site) lysase 2* 
3.559809 

ENSSSAG00000028036 KIF6 (kinesin family member 
6) 

3.309607 

ENSSSAG00000008547 CABP1 (calcium binding 
protein 1b) 

3.049088 

 
 
 



 

 

 


