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Abstract

For effective forest management missions, the presence of accurate information about the forest
resources is indispensable. However, the absence of such relevant information for most natural
forests in Ethiopia have been challenging the success of management efforts. Lack of appropriate
methods, models and data are usually the bottleneck for the availability of the required
information. This thesis thus, aimed at identifying and evaluating methods and providing
models and data required for estimating tree and forest resources to enhance forest
management decision-making. In Paper I, suitability of satellite images for forest area and
canopy cover estimation based on visual image interpretation was evaluated. PlanetScope,
RapidEye and Sentinel-2 imageries were used under different forest conditions in Ethiopia.
Promising results were obtained where the required forest area and canopy cover estimates of
large forest areas can be determined with relatively less time than field-based survey. When
choosing satellite images, the spatial resolution should be considered carefully. Particularly for
densely forested areas finer resolution images should be used. Imageries with high temporal
resolution enhance estimation results by offering relatively more cloud free images. In Paper 1],
models for quantifying basic tree biometric properties including total tree and section volumes
were developed and wood basic density data for 30 tree species in Dry Afromontane forests of
south-central Ethiopia were documented. The models and data may also be applied to other
similar forests. In Paper III, aboveground tree biomass prediction options were assessed for the
study sites. The newly developed models are accurate and flexible in application depending on
the availability of data from forest inventory. Models developed previously elsewhere were
evaluated on our data and generally large prediction errors were observed. Indirect biomass
prediction option from volume, using biomass expansion factor and wood basic density, was
also assessed and found to be less accurate than the direct method using the newly developed
models. Finally, Paper IV assessed the use of satellite images of Landsat 8, Sentinel-2 and
PlanetScope for biomass estimation. The biomass model developed in Paper III was used to
calculate ground reference values for the 111 systematically distributed sample plots. As a first
practical experience for this type of forest in Ethiopia, the possible best spectral and textural
variables to be used in biomass prediction models were identified for the respective image
types. Model-assisted aboveground biomass estimation method in all the three imageries cases
improved estimation efficiency compared to the purely field-based estimation. The estimation
efficiency gain from Sentinel-2 was much larger than the others. In general, though further
research still required on some gap areas, the developed models along with documented data
and evaluated methods in this thesis may have strong practical implications to enhance forest
management decision-making including the implementation of REDD+ MRV programs in the

Dry Afromontane forests in Ethiopia.
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1.0. Introduction

1.1. General background

Around 50% of all the land areas on the earth can potentially support forests (Grace et al., 2014);
while today’s forest cover only about 31% (4.06 billion ha) of the land, as vast areas have been
cleared (FAO, 2020). Forest covers of the world have been changing over time. Between the
years 1990 and 2020 the global forest cover has shrunk by 178 million ha, though the overall
rate of deforestation has slowed down. However, the ways in which the forest areas have
changed over those decades is interestingly important. While net forest areas have increased in
some parts of the world mainly Europe and Asia since 1990, by far the largest forest area
conversion to other land uses between 1990 and 2020 occurred in the tropics of Africa and
South America, which has shown losses in every measurement period of the global forest

resource assessment (FAO, 2020).

Forests in the tropics account for 45% of the global forest area (FAO, 2020). Various forest types
such as rainforests, montane forests, dry forests, woodlands, mangroves, etc. are found in the
tropics (Brandon, 2014). Tropical forests play a pivotal role of socio-economic and ecological
significance from local to the global perspectives, hence supporting directly or indirectly the
livelihoods of several millions (Hewson etal., 2014; FAO and UNEP, 2020). The forests have been
sequestering large carbon quantities and they are a huge store of carbon stocks. Though the
reported figures have some variations, tropical forests stored more than 270 Pg of carbon (e.g.
Pan et al., 2011; Grace et al, 2014). Embracing many of terrestrial species, the forests also
maintain higher levels of biodiversity than any other forests on the planet (Brandon, 2014).
Products and services like timber, fuel wood, water purifications, as well as cultural and
religious values of tropical forests are huge. However, tropical forests are suffering from severe
deforestation and forest degradation, primarily caused by anthropogenic activities like timber
and fuel wood extraction, conversion of the forest areas to agricultural lands, mining, and
infrastructure development (Venter and Koh, 2012). Deforestation and forest degradation in the
tropics exacerbate loss of biodiversity and increase in global carbon emissions (FAO and UNEP,

2020).

Coordinated efforts have been made globally towards sustainable management and utilization
of the resources. A compensation-based policy mechanism: Reducing Emissions from
Deforestation and forest Degradation, and the sustainable management of forests, and the
conservation and enhancement of forest carbon stocks (REDD+) was established, so as to
address the issues and concerns over the conservation of tropical forest and to mitigate adverse

effects of carbon emissions on global climate change. The REDD+ evolved gradually into its latest
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form and contents. First it was introduced to the United Nations Framework Convention on
Climate Change (UNFCCC) in 2005 as reduced emission from deforestation (RED), at the 11t
Conference of Parties in Montreal (Hewson et al, 2014). Under the REDD+ mechanism,
participating developing countries are supposed to receive payments for their verified
achievement in reducing carbon emissions from forest related activities as well as enhancing
the removal of the carbon from the atmosphere (Goetz et al., 2015). This mechanism has been
accepted as a low cost and promising approach for mitigating climate change (Angelsen and
Brockhaus, 2009) that also may secure several ecological functions of forests, including
biodiversity conservation. Many developing countries have been adopting REDD+ programes,
and the number has increased significantly since the initial introduction under the UNFCCC.
Though the REDD+ program, has been adopted and implemented in several countries, some key
aspects of the REDD+ yet need to be solved in many of the developing tropical countries. For
instance, establishing efficient and credible Measurement, Reporting, and Verification (MRV)
systems and conducting proper national forest monitoring and assessment tasks have been
challenging (Gizachew et al,, 2017), while they are significantly important since payments for
carbon offsets under the REDD+ mechanism are made based on the estimates of forest carbon

stocks and changes (Mattsson et al.,, 2012; Goetz et al,, 2015).

The Good Practice Guidelines (GPG) by the Intergovernmental Panel on Climate Change (IPCC)
provide guidance on estimation methods at different levels of details (i.e. Tier 1, 2 and 3) in
which a Tier represents a level of methodological complexity (IPCC, 2006). For the methods in
the sector of Agriculture, Forestry and Other Land Uses, the GPG provides a framework of Tier
structure. Accordingly, Tier 1 is the simplest alternative to apply, which utilizes globally
available activity data and makes use of default equations and values that are directly provided
by the IPCC. Relatively higher uncertainties are associated with Tier 1 as compared to the other
higher Tiers. On the other hand, Tier 2 utilizes country- or region-specific data for the most
important land-use categories, while Tier 3 utilizes high order methods including models and
inventory measurement systems that are tailored for the country specific conditions (IPCC,

2006).

Tree biomass, volume, wood basic density, etc. are among important components in greenhouse
gas (GHG) inventories carried out in forestry as outlined by the IPCC’s GPG. The IPCC encourages
countries to apply higher Tiers by developing their country-specific emissions factors, such as
allometric models for more accurate biomass estimation (Penman et al., 2003; IPCC, 2006;
Petrokofsky et al., 2012). Accurate biomass estimations are essential for computing carbon

stock in forests. The MRV system is thus responsible for ensuring such accurate estimations in



the REDD+ programs implementation. Biomass estimations can be done based on field survey
or remote sensing assisted approaches (Lu, 2006). Even though, the field-based survey
approach is an accurate method for estimation of biomass; it is time consuming, labour
intensive, and difficult to implement in remote forest areas and areas with large geographic
extent with reasonable cost and precision (Saarela et al., 2015; Nesset et al., 2016). Therefore,
integration of the field-based survey with a remote sensing assisted approach is sought.
Accordingly, methods integrating remotely sensed data have gained wider acceptance for
biomass and other forest attributes estimations, due to their potential to overcome the
limitations of using solely field-based approach. Moreover, remotely sensed data can provide a
holistic view over large areas and enhance the efficiency and usefulness of limited conventional
field-based methods (Sinha et al,, 2015). There are, however, technical (capacity) and resource
(infrastructure) limitations in most developing countries to fully benefit from the advancement

of remote sensing technologies (Singh, 2013).

In addition to forest biomass and volume parameters, proper and accurate estimation methods
for forest area and forest cover change are significantly important for the REDD+ programs as
well as for the regular forest management and monitoring practices. For instance, establishing
a forest reference level (FRL), that serve as benchmark for REDD+ programs, requires knowing
the state of the forest and forest cover changes. This refers to the deforestation and afforestation
conditions that resultin forest area changes. Therefore, it is mandatory for REDD+ undertakings
to accurately estimate the current status of a forest and its spatio-temporal change through a
more rigorous methodology that results in a reliable estimate as outlined in the IPCC’s GPG
(Penman, 2003). Remotely sensed data are, therefore, considered fundamental and play crucial
role in the development of cost-efficient methods for estimations of forest parameters (e.g.
biomass and forest cover/area) needed in REDD+ programs (Asner et al., 2012, Naesset et al.,
2016). Thus, it will be important to understand and quantify the contribution of different
remotely sensed data in improving the estimates of the parameters of interest under different
forest conditions, as this may shape investment decisions in development of cost efficient MRV

systems in the tropical countries.

1.2. Forests and their management in Ethiopia

Ethiopia is a country located in the east African region with an area of over one million square
kilometres. It has diverse topographic features with altitudes ranging from about 125 m b.s.l. to
over 4500 m a.s.l, having more landmass above 2000 m than any other country in Africa. The
highlands that possess Afromontane vegetations were separated by the East African Rift Valley

into the eastern and western highlands (Friis et al, 2010). The altitudinal variations and



associated agroecological zones have resulted in the formation of different types of vegetations.
Floristic analyses of the country have revealed that there were up to 7,000 estimated higher
plant species out of which about 12% are estimated to be endemic (Gebre-Egziabher 1991;
Vivero et al., 2006). Friis et al. (2010) categorized the vegetations in Ethiopia into twelve major
types. For the purposes of FRL report compilation and conducting the national forest inventory,
the vegetation classes were formed in to four main biome types, i.e.,, Moist Afromontane, Dry
Afromontane, Acacia-Commiphora and Combretum-Terminalia (UN-REDD, 2017). The Dry
Afromontane forests, where most of the studies in this thesis were conducted, are distributed
over the north-central, central and south-central highlands of the country where the altitude
ranges between 1500 - 3400 m.a.s.l with tree species of Juniperus procera, Afrocarpus falcatus,
Olea europaea, Croton macrostachyus and Ficus species, dominating the upper canopy while the
middle and lower canopy are usually occupied by Allophylus abyssinicus, Apodytes dimidiata,
Bersama abyssinica, Cassipourea malosana, Celtis africana, Chionanthus mildbraedii and

Dombeya torrida (Friis etal. 2010).

Forests supply most of the wood products for domestic use, as well as large volume of diverse
non-wood forest products, in addition to their ecological functions. It has never been easy,
however, to get reliable estimates on the state of forest cover and forest cover change, growing
stock volume, biomass, etc. in Ethiopia (Singh, 2013). There were limited and conflicting
information, partly attributed to varied definitions of forest and methodological inconsistencies.
The Woody Biomass Inventory Strategic Planning Project (WBISPP) report was the only
comprehensive source of information on forests in Ethiopia, which estimated that around 4.07
million ha of Ethiopia’s land was covered by high forest, that accounts to about 3.56% of the
total land area (WBISPP, 2005). In another report, FAO (2010) estimated that total forest cover
was about 12.29 million ha, which is about 11% of the total land area. On the other hand,
recently the forest cover of the country was reported to be 15.5% (UN-REDD, 2017; Bekele et
al.,, 2018). A recently released report of the national forest inventory (NFI) now also serves as a
source of information (MEFCC, 2018a). The average annual forest loss was estimated to be about
92,000 ha per year, where the main drivers of deforestation and forest degradation were
expansion of agriculture land, intensive fuel wood consumption, illegal timber processing and
forest fires (UN-REDD, 2017). According to a document from the government (FDRE, 2011), if
actions are not taken to change the traditional development path, an area of 9 million hectares

might be deforested between the years 2010 and 2030.

Ethiopia has been striving to conserve its forests and minimize deforestation and forest

degradation by implementing different forest management schemes such as participatory forest



management, area exclosures, biosphere reserves, etc. at various geographic scales (Lemenih
and Kassa, 2014; Lemenih et al, 2015; NABU, 2017). Moreover, Ethiopia has chosen REDD+ as a
climate change mitigation mechanism for the forest sector. The REDD+ was evolved as an
integral part of the Climate Resilient Green Economy (CRGE) strategy, which provides an
ambitious cross-sectoral plan for achieving the economic transition without increasing current
levels of GHG emissions. The strategy identified forestry as one of the sectors having the largest
abatement potential. Therefore, protecting and re-establishing forests for their economic and
ecosystem services including carbon stocks is one of the pillars of the CRGE strategy, and REDD+
has been selected as one of the initiatives for fast-track implementation to achieve CRGE
objectives (FDRE, 2011). Since Ethiopia first initiated the REDD+ process at national level by
requesting to participate in the World Bank’s Forest Carbon Partnership Facility in 2008, several
stepwise milestone activities have been conducted. It has designed and conducted NFI, which
was finalized and reported in 2018 (MEFCC, 2018a). The country has also established and
submitted its updated FRL report in 2017, which was prepared in the context of results-based
payments for REDD+ implementation. The FRL quantified activity data (deforestation and
afforestation) and indicated the GHG considered (i.e. CO2) by pools (i.e. aboveground,
belowground, and deadwood biomass); based on historical average data between 2000 and
2013 (UN-REDD, 2017). Itis expected and emphasized also in the report that the relevant forest
information will be updated periodically applying relevant state of the art quantification

methods and options.

Sound and broad-based forest management decisions under any management schemes require
accurate information of the forest resources, which in turn depend on the availabilities of
accurate measurement, prediction and estimation processes. Therefore, the implementation of
REDD+ activities should be measured, reported and verified using appropriate national forest
monitoring systems with proper combinations of remotely sensed and ground-based inventory
techniques. In addition, such systems serve as bases for formulating policy measures and
adapting management techniques, also provide information to evaluate the success of
implemented policies and programs. However, currently prediction models for biomass,
volume, etc. and other data that are relevant for estimating forest parameters such as carbon
stocks, are not sufficiently available in Ethiopia. Furthermore, despite the potential of the
remote sensing-assisted methods for REDD+ related issues as well as conventional forest
management aspects, there has been limited studies in relation to all forest types in Ethiopia. As
a result, the Tier-3 approach to carbon inventory that was proposed by the IPCC has been

challenging to implement in Ethiopia.



2.0. Objective

The main objective of this thesis was to identify and evaluate methods as well as provide models
and inputs data required for estimating tree and forest resources to enhance forest management
decision-making and support implementations of the REDD+ MRV system in Ethiopia. The
specific objectives of the thesis, addressed through the four papers, were:
1. Toassess feasibility of satellite images for forest area and canopy cover estimation based
on visual image interpretation. (Paper I)
2. To develop models for tree volume and other biometric properties (height, diameter at
breast height and bark thickness) and to document wood basic density data for trees in
Dry Afromontane forest of south-central Ethiopia. (Paper II)
3. To evaluate aboveground biomass prediction options for trees in Dry Afromontane
forests of south-central Ethiopia. (Paper I1I)
4. To evaluate application of remotely sensed optical satellite images data for aboveground

biomass estimation in the Dry Afromontane forests of south-central Ethiopia. (Paper IV)



3.0. Conceptual framework

Figure 1 shows the conceptual framework of this thesis including the workflow and
interdependences between the main activities (objectives). Data were obtained by integrating
sample plot inventory, destructive sampling and remote sensing. In the sample plot inventories
variables such as tree height (ht), diameter at breast height (dbh), diameter at stump height
(dsh) and bark thickness (bt) are measured. From this, information about the forest population
are generated and used as basis for selecting trees for destructive sampling. The measurements
from sample plot inventories are also used for modelling ht-dbh, dbh-dsh and bt-dbh
relationships. Data from destructive sampling of trees are used for modelling total tree and
sections volume and aboveground biomass (AGB). In addition, wood basic density (wbd) data
are compiled and documented from the harvested sample trees. Remotely sensed data, optical
satellite images in this case, are used to enhance forest area, forest biomass and canopy cover
estimations. For a forest biomass estimation, using different satellite images, individual tree and
plot data from sample plot inventory are used along with the developed individual tree AGB and
ht-dbh models as well as wbd data to derive biomass estimates at plot level. The biomass at plot
level is later used to calibrate models based on data extracted from the satellite images. Forest
area and canopy cover estimations are carried out based on visual interpretation of the different
satellite images. Different statistical modelling and analyses techniques are applied to develop
the models and assess their performances, and to evaluate estimation methods for forest
biomass, forest area and canopy cover. The results of the thesis are given as models, methods
and data that will enhance forest management decision-making including the implementations

of REDD+ MRV programs.
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4.0. Motivation

4.1. Forest area and canopy cover estimation

Information about forest area is among the crucial inputs for forest management decisions.
Forest area estimates essentially facilitate quantification of resources up on which forest
management and utilization activities, such as, production planning, making marketing
decisions, setting and evaluating policies, etc. are based. Hence, there is always a constant
demand for accurate and up to date information on forest area estimates at a local, regional, and
national scale (Deppe, 1998). In addition, in REDD+ implementations, where countries are
required to report their contribution of climate change mitigation efforts to access result-based
payments, accurate and consistent information on forest area and forest area change are
important. In a basic methodological approach of estimating greenhouse gas emissions and
removals, activity data are multiplied with emission factors, coefficients that quantify emissions
per unit area such as tons of CO; equivalent per ha (Penman et al., 2003). In this regard forest
area change estimates (i.e. activity data), which often provide information on the extent of
human activity resulting in emissions from deforestation and forest degradation or removals
from afforestation, are basic inputs. For effective assessment of the forest area and forest area
change the presence of working definition of forest is also mandatory. Usually, a comprehensive
forest definition includes threshold values for quantitative variables including minimum area,
minimum crown cover percent, minimum tree height, and minimum width. Thus, crown or
canopy cover estimate, which is the proportion of the land covered by the vertical projection of
tree crowns, also plays a significant role in forest management for various decisions related to
silviculture and utilization of the forests in addition to qualifying the forest definition (Korhonen

etal, 2006).

Forest area determination may be done via mapping approaches such as digital processing of
remotely sensed data (e.g. satellite images) which results in a map that shows the spatial
arrangement of the forest patches. In some past and current practices of forest cover assessment
and land use/land cover (LULC) mapping in Ethiopia, digital image classification and mapping
methods are practiced (e.g.,, Kindu et al,, 2013; Hailemariam et al,, 2016). However, digital image
classification and mapping methods in general require a high level of technical skills, and in most
cases, technical software (Bey et al,, 2016). Furthermore, the spectral similarity of land-cover
classes is also challenging. As a result, the wider application and use of such methodologies for
large-scale activities such as nationwide assessment could be problematic. Consequently,
estimates and reports from most developing tropical countries including Ethiopia have been
highly uncertain, hence necessitating for suitable actions to be taken (IPCC, 2006; Singh, 2013).

Alternatively, forest area and canopy cover estimates may be obtained through statistical

9



sampling either observed in the field or from remotely sensed imageries by visual
interpretation. To maximize from visual image interpretation method and overcome the
drawbacks of digital image processing, some platforms and open source software such as Geo-
Wiki, VIEW-IT, Sky Truth and Collect Earth have been developed and used (Clark and Aide, 2011;
Fritz et al, 2012; Bey et al., 2016). The software packages have been used for interpretation of
satellite imagery with different spatial resolutions under different forest conditions to provide
reference data for forest area and forest cover change estimates (Potapov et al., 2014; Sannier
etal, 2014). The application of some of the software packages is associated with the use of very
high-resolution images, which are often known to have a small geographic scope and an
irregular time interval of acquisition, in turn limiting its utility for large areas. On the other hand,
Landsat images that are available at global scale, have relatively low spatial and temporal
resolutions. Therefore, since forest conditions and properties of the imageries, could potentially
influence estimates, it is important to evaluate different types of satellite images under different

forest conditions to provide guidelines for using such tools at a national level.

The main objective of Paper I was thus to identify and evaluate the use of alternative types of
satellite images for forest area and canopy cover estimation based on visual image

interpretation under different forest conditions in Ethiopia.

4.2. Basic models and data for tree biometric properties

Availability of basic tree biometric data like ht, dbh, bt, volume, biomass and wbd, are critical for
enhanced forest management decision-making. Some of the variables are obtained through
observation while others are determined using appropriate models. In forest management tree
height data are usually needed for estimation of tree volume, biomass, site index, etc. Unlike
diameter, which is easily measured for all trees, measuring height is more difficult, time
consuming, costly and prone to measurement errors (Larjavaara and Muller-Landau, 2013).
Thus, height measurement for all trees on sample plots in any given forest inventory task may
not be feasible. Therefore, ht-dbh models developed from sample trees data are commonly used
to predict missing heights (West, 2015; Mugasha et al,, 2013a; 2019). In the same line
established dbh-dsh relationship provide an opportunity to quantify volume or biomass losses
from previous harvest or damage where only dsh can be measured (Corral-Rivas et al., 2007;
Ozcelik et al, 2010). Furthermore, quantifying bark thickness of trees by means of an
established bt-dbh relationship might be useful either to assess the volume of solid wood to be
used for construction materials or volume of bark to be used for energy purposes, spices or

medicine (van Laar and Akga, 2007; Kershaw et al., 2017).
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Volume data are important to describe present forest resources, also as a variable in growth and
yield models for predicting future growing stocks. Impacts of harvest and silvicultural practices
may be evaluated in terms of changes in growing stock volume (Vanclay, 1994; Weiskittel et al.,
2011). Volume data may also be used to determine biomass using expansion and conversion
factors (Lindner and Karjalainen, 2007; Bollandsas et al., 2016). In Ethiopia there is a recent
growing concern for sustainable management and utilization, including sustainable timber
harvesting, of natural forests particularly in a participatory forest management scheme as
opposed to protection-oriented measures which have led to intensification of illegal logging
practice (Lemeneh et al,, 2015; Ayele et al.,, 2018; MEFCC, 2018b). In this regard, despite the
relevance of volume models (i.e. total tree and sections volume models), currently there is no
volume model developed for the natural forests in Ethiopia apart from a few species-specific
models for plantations (Henry et al., 2011). As a result, default form factor of 0.5 has been used

to estimate tree volume along with dbh and ht (e.g. Sisay et al., 2017).

Information on wbd of trees have been used to facilitate forest management decisions. It is used
as basis for characterizing tree species from a wood utilization point of view (Chave et al.,, 2009;
Missanjo and Matsumura, 2016), and may also have management implications since larger wbd
indicates better wood quality for fuel (Githiomi and Kariuki, 2010) and better resistance to
severe abiotic disturbance factors (Chave et al., 2009). Wood basic density may also be used to
predict biomass either when using allometric models (Chave et al., 2014; Njana et al.,, 2016) or
along with biomass expansion factors and volume data (Bollandsas et al., 2016). Since wbd
varies with tree height and age, and among tree sections, species, sites, and other environmental
factors (Githiomi and Kariuki, 2010; Henry et al. 2010; Ubuy et al., 2018a; Tesfaye et al., 2019),

it should be determined and documented in such a way that addresses these variations.

The main objective of Paper II was therefore to provide models and data that can be used as
tools for quantifying biometric tree properties (i.e. ht, dbh, bt, volume and wbd) and in this way
facilitating a sustainable management and use of the forest resources in the Dry Afromontane

forests of south-central Ethiopia.

4.3. Aboveground tree biomass prediction options

Information about tree biomass is important in forestry to understand how tree growth occur
by producing biomass through photosynthesis, to quantify products such as wood for fuel or
pulp and to determine how much carbon is sequestered in forests as a result of trees taking
carbon dioxide from the atmosphere (Kohl et al., 2006; West, 2015). In line with climate change

and subsequent efforts to mitigate that, accurate biomass and carbon stock estimation methods
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have become a concern of the global community (e.g. Brown, 2002; IPCC, 2006). Aboveground
biomass, one of the five carbon pools in a forest ecosystem, has the largest carbon storage
potential in the tropical forests (Pan et al.,, 2011). Biomass estimations are often carried out
either on ground-based survey or using remotely sensed auxiliary data. In any case the presence
of accurate individual tree biomass prediction option is fundamental to predict biomass of trees
observed in the field sample plots, which then further aggregated and analysed or used as
ground reference for remote sensing-based estimation (Temesgen et al., 2015). Tree biomass
prediction options could be direct, using existing or new allometric models, or indirect, using
conversion factors. Allometric models are constructed based on relationships between trees
AGB and measurable tree variables (e.g. dbh, ht, wbd, etc.). The relationships are explored
empirically from calibration data where AGB has been directly measured by destructive

sampling along with measurements of the predictor variables (Bollandsas et al., 2016).

A review by Henry et al. (2011) on biomass models in sub-Saharan Africa showed that most of
the available models in Ethiopia are limited to a few Eucalyptus species in plantations, while
about 98% of the species remained uncovered. Recently some species-specific models for
natural forests have been developed (e.g. Tesfaye et al,, 2016; Kebede and Soromessa, 2018;
Daba and Soromessa, 2019). A few mixed-species general biomass models also exist in some
parts of the country and certain forest conditions (Eshete and Stahl, 1998; Mokria et al., 2018;
Ubuy et al,, 2018b). Except for Tetemke et al. (2019), who developed mixed-species models
including ten tree species for the Dry Afromontane forests in northern Ethiopia, no such models
exist for this type of forests. As a result, pan-tropical models (Brown, 1997; Chave et al., 2005;
2014) have been commonly used (e.g. MEFCC, 2018a; Gebeyehu et al., 2019). Ethiopia’s FRL
report also recommends the pan-tropical biomass model developed by Chave et al. (2014) to be
applied across all forest types due to lack of existing biomass models in the country (UN-REDD,
2017). In addition to direct prediction of tree biomass using allometric models, biomass may be
predicted indirectly from volume using a biomass expansion factor (BEF) and wbd (Brown,

1997).

The main objective of Paper III was therefore to explore different aboveground tree biomass
prediction options for Dry Afromontane forests in south-central Ethiopia by using the direct
method based on new and previously developed models and the indirect method based on
volume, BEF and wbd. The newly developed models are accompanied by covariance matrices
for the parameter estimates to enable assessment of model related uncertainties in large area

forest biomass estimation.
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4.4. Aboveground forest biomass estimation using remotely sensed data
Application of remote sensing techniques in forestry enhanced availability of information
needed for forest management at different spatial scales and temporal dimensions including the
development and implementations of efficient REDD+ MRV system. Remote sensing
technologies have advanced over the last few decades and became vital tools for enhancing
quality and ensuring accessibility of spatial information to users across the world. Following the
advancement, there are many sources of useful remotely sensed data for estimation of forest
parameters such as biomass. Remotely sensed data applied in forestry have been mainly
obtained from sources such as, optical satellite imageries, airborne laser scanning, and radio
detection and ranging (Kumar et al.,, 2015). Also, aerial images such as from unmanned aerial
vehicles (UAV) have become important source of information (e.g. Kachamba et al.,, 2016a; Puliti
etal,, 2018), however, UAV acquisitions are still restricted to relatively small areas due to some
limiting factors such as battery consumption and flight regulations. For biomass estimations,
some previous studies have shown that application of remotely sensed data can help reducing
field-based efforts with enhanced precision of estimates (e.g. Neaesset et al., 2016). Using
remotely sensed data for biomass estimation first requires development of prediction model
based on sample plot forest inventories data to be used as reference biomass (ground
reference). The reference data will be regressed against variables extracted from remotely
sensed data for the respective sample plots. The developed model will then be applied for

biomass estimation over the entire study area.

Landsat and Sentinel-2 imageries are some examples of optical satellite data that have been used
for biomass estimation, and are also freely accessible data (Woodcock et al., 2008; Malenovsky,
et al,, 2012). In addition, PlanetScope imageries are among potentially applicable commercial
satellite remote sensing data, with high-resolution and daily basis provision. These satellite
imageries have been used widely in different parts of the world in forestry for the purposes of
biomass estimations (e.g. Gizachew et al,, 2016; Naesset et al., 2016; Baloloy et al., 2018; Chen et
al.,, 2018). However so far, except some efforts related to the use of optical satellite images for
land cover classification and mapping, for the Dry Afromontane forests in south-central part or
elsewhere in Ethiopia, data from the above-mentioned satellite missions have never been used

to assess forest biomass. Hence, no practical experience exists for this type forest in this regard.

Therefore, the main objective of Paper IV was to explore what kind of relevant variables may be
extracted from the different satellite programs (i.e. Landsat 8, Sentinel-2 and PlanetScope) for
biomass prediction modelling and to evaluate to what extent such remotely sensed data may
improve the precision of biomass estimates beyond the precision obtained in a pure field-based

estimation for the Dry Afromontane forest in south-central Ethiopia.
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5.0. Materials and methods
5.1. Study sites

For Paper |, seven different sites (A, B, ..., G) distributed throughout Ethiopia (Table 1, Figure
2a) were considered. The selected sites are of different biomes having either a tree gain or loss
history. The rest of the papers concentrated in one of the seven sites in south-central Ethiopia
(i.e. site A, Table 1, Figure 2b). Specifically, Paper Il and III were based on data from the Dry
Afromontane forests of Degaga-Gambo and Wondo Genet sites, while Paper IV focused on
Degaga-Gambo site only (Figure 2b). The Degaga-Gambo and Wondo Genet sites are located on
the eastern escarpment of the Great Ethiopian Rift Valley. The areas have a bimodal rainfall
distribution with the short rainy season between March and May and the main rainy season
between July and September. The Degaga-Gambo forest extends from 38°45’ to 38°56’ E
longitude and from 7°13’ to 7°33’ N latitude, with a total area of about 14176 ha out of which
12580 ha is natural forest. The elevation ranges from about 2100 to 2700 m.a.s.l. while the mean
annual rainfall and temperature are 1245 mm and 14.9 °C, respectively. The soils are generally
classified as Mollic Nitisols and Humic Umbrisols, respectively, at lower and upper altitudes
(Fritzsche et al., 2007). Similarly, Wondo Genet forest extends from 38°37’ to 38°39’ E longitude
and from 7°6’ to 7°7’ N latitude. The natural forest has an area of about 390 ha with an altitudinal
range from about 1850 to 2400 m.a.s.] and the soils are mainly classified as Mollic Andosols
(Erikson and Stern, 1987). The mean annual rainfall and temperature are 1123 mm and 17.6 °C,

respectively.

Table 1. Description of the study sites for Paper L.

Site  Biome type Condition of forest in the area*

A Acacia-Commiphora and partly Dry Both tree gain and loss of similar
Afromontane magnitude

B Moist Afromontane Characterized by more tree loss
Partly Moist Afromontane and partly Characterized by more tree loss but
Acacia-Commiphora very little gain

D Moist Afromontane Characterized by more tree loss
Moist Afromontane Both tree gain and loss of similar

magnitude
F Dry Afromontane Characterized by tree gain
G Combretum-Terminalia Characterized by more tree loss

* Source: Global Forest Watch (www.globalforestwatch.org).
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5.2. Data collection

5.2.1. Sample plot inventory data

Ground based sample plot inventories were carried out in the natural forests of both Degaga-
Gambo and Wondo Genet sites, where a total of 65 and 42 circular plots with a size of 1000 and
400 m2 were surveyed in the sites, respectively. In the plots all trees were identified for species
name and measured for dbh. The data were used in tree selection for destructive sampling for
Paper II and III. Up to 10 trees were further sampled and measured for dbh, dsh, ht and bt in
each plot and the data were used partly in Paper Il and IV. The maximum dbh encountered was
270 cm and totally 71 tree species were observed out of which 60 tree species were included in
the sample trees (n=1345). For Paper IV, which was entirely carried out in Degaga-Gambo site
including the 65 plots from the natural forest and other plots from plantations, cropland and
open areas, a total of 111 plots were surveyed. Handheld global positioning system (GPS)
receiver was used to navigate to the pre-defined locations of the plots. More precise coordinates
of the plot centres were determined using differential GPS and global navigation satellite system
(GLONASS) measurements. Two Topcon legacy-E +40 dual frequency receivers were used as
base station and as a rover field unit. The receivers record pseudo-range and carrier phase of
GPS and GLONASS. The base station was set up at Wondo Genet College of Forestry and Natural
Resources campus. The Euclidean distance between the base station and the plot centres ranged
between 21.7 and 57.2 km with an average distance of 41.8 km. For determining the position of
the base station using precise point positioning, the GPS and GLONASS data were recorded
continuously for more than 24 hours (Kouba, 2009). At the plot centres, the rover field unit was
mounted on a 2.98 m carbon rod and recorded for 41.5 minutes on average using a one-second
logging rate. The recordings were post-processed using the Magnet tools software (Topcon
Positioning Systems Inc). The standard error of the post-processed planimetric plot coordinates

reported by the Magnet tools software ranged from 0.017 to 1.111 m with a mean of 0.232 m.

5.2.2. Destructive sampling data

The information obtained from the sample plot inventories were used to secure appropriate
distribution of sample trees across sizes and species. Accordingly, 63 trees (i.e. 32 and 31 from
Degaga-Gambo and Wondo Genet sites, respectively) were destructively sampled from 30 tree
species that represented about 87% of the total basal area of the forest. The selection also
considered tree distribution across the diameter ranges from 5 cm to = 105 cm (i.e. 5 - 15 cm,
15-25cm, .., 2 105 cm) as well as spatial and altitudinal variations. Prior to felling trees were
measured for dbh and dsh with a calliper or diameter tape, ht with a Haglof VL5 hypsometer

and crown width (crw) with a measuring tape.
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Selected trees were cut down at stump height (0.3 m aboveground) and sorted into
merchantable stem, branch and foliage (twigs, leaves and fruits). Merchantable stem is a tree
trunk up to 10 cm top diameter for all trees with dbh = 15 cm. Branch includes all branches with
diameter = 2 cm, the top logs with diameter < 10 cm and trees having dbh < 15 cm. Smaller
branches < 2 cm considered as part of foliage. The merchantable stem was marked and crosscut
into shorter logs, and then for each log the length (m) and mid diameter (cm) were measured
for determination of volume. Weight (kg) was also observed using a hanging balance scale (0 -
200 kg capacity) for biomass determination. The volume (m3) of each log was determined by
multiplying the mid cross-section area by its length. The volume and weight of each branch billet
were determined similarly. Finally, for Paper II the merchantable stem volume (Vi) and branch
volume (Vi) were obtained by summing the volume of all logs of the respective sections; while
the total tree volume (Vi) is the sum of merchantable stem and branch volume. The total fresh
weights of the merchantable stem and branches were also obtained by the summation of the
weights of logs in each respective section. The fresh weight of foliage was obtained by observing
and adding up the weights of each bundle. The fresh weights are basis for determining dry

weight biomass used in Paper II1.

5.2.3. Sub-sampling and laboratory work

For wbd (Paper II) and biomass (Paper III) determination, wood sub-samples (wood discs of
about 3-4 cm in length) were collected from each harvested tree. For the stem section, six sub-
samples were collected, i.e. two sub-samples from dbh position, and from middle and upper
parts of the stem. Three of the sub-samples, one from each position were used for wbd and the
last three for biomass determination. For branches also six sub-samples (three sub-samples
each for wbd and biomass determination) were collected per tree (i.e. two sub-samples each
from big, medium and small sized branches). For some small trees with few and small sized
branches, only two sub-sample (one sub-sample for each wbd and biomass) were collected for
the branch section. In case of large trees, where it was not practical to take the whole wood disc,
the sub-samples were taken with an effort to represent all the bark, sapwood and heartwood
sections (Williamson and Wiemann 2010). Small bundles of foliage samples were also taken
from each sample tree. Totally, 791 sub-samples (364 for wbd and 427 for biomass) were
collected. All the sub-samples were brought to laboratory with airtight plastic bags. Green
volumes of sub-samples for wbd were determined by water displacement after peeling off the
bark, and fresh weights for biomass sub-samples determined using sensitive digital balance
scale. The sub-samples were then dried in an oven at a temperature of 103 °C by monitoring and
weighing it recurrently every 24 hours until a constant mass was attained. Then, wbd was

determined as the ratio of oven dry weight (g) to the green volume (cm3) for each sub-sample.
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Finally, the average dry to fresh weight biomass ratios were determined for the stem, branch
and foliage sections, and used to convert the fresh weights of their respective sections into dry
weights. The total tree aboveground dry weight biomass (AGB:) was aggregated from

merchantable stem biomass (Bms), branch biomass (By:) and foliage biomass (By).

5.2.4. Remotely sensed data

In Paper I, applications of optical satellite images of PlanetScope, RapidEye and Sentinel-2
(Table 2) were evaluated for forest area and canopy cover estimation based on visual
interpretation of the images in their true colour. All the imageries used for the study were
downloaded from the Planet Explorer Beta website in June 2017 and had < 50% cloud cover.
PlanetScope satellite imagery is state-of-the-art optical products with up to 3 m spatial
resolution from the PlanetScope satellite constellation with a daily capacity of covering the
entire landmass. PlanetScope Ortho Tile images of the study sites, which were acquired between
January-May 2017 were downloaded. On average, 13.0 images were available for each location.
RapidEye Ortho Take product (3B) of RapidEye imageries with high (i.e. 5 m) spatial resolution
were also used for the study. The images were acquired between December 2015 to May 2017
where on average 4.5 RapidEye images were available for interpretation at each location.
Sentinel-2 images are freely available data for the public from the European Space Agency since
June 2015. Sentinel-2 images have a spatial resolution of up to 10 m. Level 2A product of
Sentinel-2 images acquired between December 2016 and May 2017 were used for this study

and on average 5.6 images were available for each location.

In each of the seven sites 228 sample points, arranged systematically in a 3 km square grid, were
observed. Two observers were involved and each interpreted 4788 observation points (i.e. 228
sample points x 7 sites x 3 image types). The images were clipped into 1 km x 1 km tiles for each
of the 228 points and centred at each point to have a better overview of the surrounding land
cover during the interpretation. Graphical user interface that was based on the R software used
to display images for each point in a completely randomized manner, and to record and save the
results of the image interpretation (i.e. LULC type, canopy cover, date of acquisition for the
image used, time elapsed for the interpretation). Having each sample point at the centre, a
square of 70 m x 70 m (~ 0.5 ha) observation window was superimposed and used as a unit of
interpretation for LULC classes. The LULC type within the 0.5 ha (with = 20% cover threshold)
was determined visually based on decision tree according to the IPCC definitions of LULC
categories (Penman et al,, 2003). For canopy cover estimation, within the 0.5 ha observation
window, a square grid consisting of 49 squares of 2 m x 2 m in size, was arranged. These small

squares were used in the visual interpretation to observe the presence/absence of tree crowns,
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and then used for canopy cover determination. The canopy cover for a single box of 0.5 ha was

determined using the count of points that coincided with the crowns of trees divided by 49.

Table 2. Satellite image types and their characteristics that are used in Paper [ and IV studies.

Spatial Product level used Spectral bands used for
Image type

resolution (m)  Paperl Paper IV Paper IV*
PlanetScope 3 3A-Visual 3B-Analytic B, G, R, NIR
RapidEye 5 3B - -
Sentinel-2 10 and 20 2A Level-1C B, G, R, ReE, NIR, SWIR1
Landsat 8 30 - L1-TP B, G, R, NIR, SWIR1

*B, G, R, NIR, SWIR1 and ReE represent the blue, green, red, near-infrared, shortwave infrared-
1 and red-edge spectral bands, respectively.

In Paper IV, Landsat 8, Sentinel-2 and PlanetScope optical satellite images (Table 2) were used
to enhance the efficiency of biomass estimation. Single tile images of Landsat 8 (path 168, row
055) and Sentinel-2 (T37ND]) were downloaded from USGS Earth explorer website; while for
PlanetScope six scenes of orthorectified images that cover the entire study site were
downloaded from Planet Explorer website. All the downloaded images were acquired within the
period that coincide with the field inventory time and the dry season of the year. In addition,
only images with < 5% of cloud cover were downloaded. After the required image pre-
processing was conducted, for all the 111 field sample plots mean and standard deviation of
relevant spectral band values were extracted from all images. Similarly, mean and standard
deviation were computed for some important vegetation indices. In addition, for PlanetScope
imagery mean and standard deviation of some textural variables were calculated based on grey
level co-occurrence matrix using the Sentinel Application Platform software (ESA, 2019). For
population level estimation of AGB, the entire study site was tessellated into cells of size
equivalent to the field plot (31.64 m x 31.64 m) and resulted in N = 141604 cells. All image

processing and variable extraction were done using the QGIS software.

5.3. Data analyses
For forest area estimation in Paper I, observations at each point were coded as 1 if forest and 0
otherwise. Both forest area and canopy cover estimation computations were done for the seven

sites from the three types of images (i.e. PlanetScope, RapidEye and Sentinel-2). In addition,
canopy cover was estimated by LULC classes. The mean (?i) and its variance (Var(’_fi)) of forest

area and canopy cover were estimated for all the seven sites (i = 1, 2, ..,, 7) using the respective

estimators. The standard error (SE) of the mean was computed as the square root of the
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variance. To assess the effects of the number of observations, bootstrap sampling with
replacement was carried out for both forest area and canopy cover estimates using four
resample sizes (m = 50, 100, 150 and 200). The standard errors of the bootstrap sampling

statistics (SEpqot, z) Wwere computed and compared with the SE of the original sample (n = 228).

In Paper 1], data from the sample trees (n = 1345) were used for modelling ht-dbh, dbh-dsh and
bt-dbh tree biometric properties, while volume modelling and wbd documentation were based
on the 63 destructively sampled trees data. For the ht-dbh, dbh-dsh and bt-dbh relationships
different nonlinear model forms were tested. First the data were divided into training and test
dataset. The models were fitted to the training dataset and then validated using the test dataset.
The best performing models were finally fitted to the full dataset and performances were
assessed using root mean squared error (RMSE), mean prediction error (MPE), pseudo-R? and

Akaike information criteria (AIC).

For total tree and sections volume modelling, weighted least square regression was applied.
Four model forms, two with dbh only and two with dbh and ht independent variables were
tested for all Vi, Vins and Vi In addition, two more models with dbh and crw were tested for
Vur. Site-specific total volume models were also developed for the two sites. Weighting was
applied to cope with the heteroscedasticity in the data (Picard et al, 2012). For models’
performance assessment a leave one out cross validation (LOOCV) approach was employed to
compute performance indicator metrics: RMSE (%), MPE (%) and pseudo-R2 Also, AIC was
computed for all models. Application of the commonly used form factor 0.5 (fo.s) and observed
mean form factor (fmean) as well as some previously developed potential volume models from
neighbouring countries in the region (Mauya et al., 2014; Kachamba and Eid, 2016; Mugasha et
al.,, 2016) were evaluated by means of RMSE (%) and MPE (%).

The mean wbd values of stem and branch samples were further aggregated by weighting them
by their respective volumes to get a volume weighted wbd at the tree and then species level.
Analysis of variance was carried out to assess the presence of significant variations in wbd
among the tree species and between the sites. Also, differences in wbd among stem sections
(breast height, middle and upper stem positions) and branch sizes (big, mid and small branch)
were tested. Presence of significant wbd differences between stems, branches, values at breast

height and volume weighted means were assessed using pair-wise t-test.

In Paper III, total tree and sections biomass modelling were carried out using weighted

nonlinear least square regression as for volume modelling in Paper II. For all AGB;, Bus, Bor and
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Bt response variables, generally eight different model forms were tested by first using dbh as
sole predictor and then combined with ht, wbd and crw in a stepwise inclusion. Model
performances were assessed by means of AIC along with the computed RMSE (%), MPE (%) and
pseudo-R? following a LOOCV approach. Some previously developed models that could
potentially be applied in our study sites were identified from Ethiopia (Eshete and Stdhl, 1998;
Mokria et al,, 2018; Ubuy et al,, 2018b and Tetemke et al., 2019), elsewhere in Africa (Mugasha
et al,, 2016; Djomo et al,, 2016) and the entire tropical region (Chave et al.,, 2005; 2014), and
their performances were evaluated on our dataset. Furthermore, the indirect biomass
prediction option from total tree and merchantable stem volume along with different wbd
options (i.e. species-specific, study sites mean and national mean) and BEF options (i.e. species-
specific and study sites mean), was tested. The BEFs were obtained by dividing the total
observed tree biomass to the product of observed volume and wbd. Total tree and merchantable
stem volumes were used separately. Individual tree BEFs were aggregated and averaged to yield
species-specific and study sites mean. Comparisons were made based on the RMSE (%) and MPE

(%) computed, and t-tests run to see whether MPEs were significantly different from zero.

For the biomass estimation in Paper IV, the observed AGB (Mg ha-1) of each plot was determined
using allometric biomass model from Paper III. Best predictor variables from each image type
were selected based on the results of correlation analysis with the observed AGB. Then
regression models of generalized linear model form were developed by relating the field
observed AGB with the selected predictor variables from each type of images independently. To
assess the performance of the models for each remotely sensed data source, LOOCV was
conducted. Then RMSE (%), MPE (%) and R? were computed and used to assess the prediction
accuracy of models for each imagery type. The best models from the respective image types
were then applied for the AGB estimation in the whole study site. Population mean and variance
were computed for field based (figie1q, Viielq) and remote sensing-assisted, i.e. model-assisted,
(ﬁimage,vimage) AGB estimation approaches. The relative efficiency (RE) between remote
sensing-assisted estimation technique and purely field-based estimation approach was
determined as the ratio of the variance estimates of the field-based option (i.e. design-based)
relative to remote sensing-assisted option. The RE values were then used to assess the efficiency
gain when using either Landsat 8, Sentinel-2 or PlanetScope to assist in the biomass estimation

for the entire area.
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6.0. Main findings and discussion

6.1. Forest area and canopy cover estimations

In Paper I forest area and canopy cover information, that are important in forest management
activities including quantification of emissions and removals for REDD+ activities (IPCC, 2006;
Korhonen et al, 2006), were generated. On average 83 seconds were spent for the whole
interpretation task at each location with the longest (107 seconds) and shortest (68 seconds)
average time elapsed at each point for PlanetScope and RapidEye, respectively. Relatively the
required average interpretation time per site increased with an increase in proportion of forest.
The study demonstrated efficiency of visual image interpretation practice enabling to survey
vast areas of interest with less time as compared to field-based surveys. Sites B, D and E were
ranked from 1st to 314, respectively, according to proportion of forest and site F was the one with
the smallest proportion of forest in all the three image types consistently. Estimates from
PlanetScope and RapidEye images showed similarities consistently over the seven study sites.
On the other hand, the estimates from Sentinel-2 images differed from the other two, and the
differences were much larger and statistically significant (p < 0.01) in most of the study sites
that had larger proportion of forests. This indicates the importance of using finer resolution
images for densely forested sites. Similarly, for the canopy cover estimate the largest and
smallest values were recorded for sites B and F respectively from all image types. Mostly similar
trends were observed for forest area and canopy cover across the sites in terms of how the
estimates from all the three image types change. Analysis of canopy cover by LULC class, showed
that estimates from all image types were very similar to each other except for the Settlements,
Wetlands, and Other land classes. It seems that if a given LULC class is a homogenous one such
as Forest land, Cropland, or Grassland, any of the images could produce reasonably comparable
estimates of canopy cover. Generally, estimates from PlanetScope and RapidEye images were
similar in many aspects, perhaps due to the higher spatial resolution of the images. Some studies
(e.g. Churches et al,, 2014; Draksler, 2017) have also reported improvement in accuracy of
estimates as the images got finer in spatial resolution. Missing data could also reduce the
number of observations and hence affect the quality of estimates (Lohr, 2009) where most of

the missing data during image interpretation (NAs) were recorded for Sentinel-2 images.

Regarding optimum sample size, bootstrap resampling exercise showed that reducing the
current sample size (i.e. 228) to 200 resulted in a marginal increase of the SEs for all image types
and all sites cases. On the other hand, reducing the sample size to only 50 observations increased
the SEs by more than 100% in all the cases. Therefore, it is important to look for and determine
optimal sample sizes that will result in a precise estimate with the possible minimum resource

(Jayaraman, 2000).
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6.2. Models and data for basic tree biometric properties

In paper 11, models for quantifying tree biometric properties such as ht, dbh, bt and volume were
developed and wbd data documented. Model for ht based on dbh only as independent variable
explained large variations in ht (pseudo-R? = 0.72). This result is similar to some studies from
tropical natural forests elsewhere in Africa (e.g. Mugasha et al,, 2013a) and such ht models may
play a vital role to reduce measurement errors and costs (Larjavaara and Muller-Landau, 2013).
A strong dbh-dsh relationship was observed and the model explained most of variation in dbh
(pseudo-R? = 0.98), which is also in line with other findings (Corral-Rivas et al., 2007; Ozgelik et
al,, 2010). Unlike ht and dbh models, the bt-dbh relationship was relatively weak and only 42%
of the variation in bt was explained by the model. Nevertheless, the model is useful for
quantifying tree properties such as volume of solid wood and volume of bark (Kershaw et al.,

2017).

The general total tree and merchantable stem volume models performed well. From the LOOCV
results the pseudo-R? of the total tree volume and merchantable stem volume models varied
between 0.93-0.95 and 0.96-0.98, respectively and all with MPEs not significantly different from
zero (p > 0.05). For both total tree and merchantable stem volume, models with dbh only as
independent variable performed best and had RMSE% of 37.4 and 19.3, respectively. Inclusion
of ht in the models revealed no improvements, and this conforms with studies in natural forest
elsewhere in eastern Africa (e.g. Mauya et al., 2014; Mugasha et al., 2016). Branch volume
models performed poorer than total tree and merchantable stem volume models and had
pseudo-R? ranging from 0.74 to 0.89. Relatively poor performance of branch volume models is
also previously reported (e.g. Mauya et al., 2014; Kachamba and Eid, 2016). The site-specific
total tree volume models with dbh only as independent variable produced RMSE% of 19.3 and
51.4% for Degaga-Gambo and Wondo Genet, respectively. Since site-specific models performed
best, they are recommended to be applied in their respective sites. For the Dry Afromontane
forests, application of the general models with dbh only as independent variable are
recommended in each total tree and sections volume cases. The models produce reasonably
accurate predictions while reducing the inventory cost since ht is not required. However, for
branch volume more accurate prediction can be obtained by a model with dbh and crw as

independent variables.

Application of both commonly used form factor fys and the mean form factor fmean resulted in
large prediction errors. Similar and contrary findings were reported elsewhere by Masota et al.
(2014) and Adekunle et al. (2013), respectively. Previously developed volume models in the
region (Mauya et al., 2014; Kachamba and Eid, 2016; Mugasha et al., 2016) with a potential to

23



be applied in Ethiopia were evaluated on our data, and mostly large MPEs were obtained. Figure
3 shows the trend of how some of these models underpredict the total volume, particularly for

medium and large diameter trees.
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Figure 3. Diameter at breast height against predicted total volume of selected previously
developed models and the model developed in Paper II (current study). Vertical lines indicate
the maximum dbh used in the modelling by Mauya et al. (2014), Paper Il and Kachamba and Eid
(2016), respectively.

Volume weighted wbd values of the 30 tree species were also documented in Paper II. The mean
wbd was 0.588 g cm3 and ranged between 0.426 and 0.979 g cm-3. The top three species with
the largest wbd values were Teclea nobilis, Dodonaea angustifolia and Olea capensis with 0.979,
0.816, and 0.779 g cm3, respectively; while Afrocarpus falcatus, Pittosporum viridiflorum and
Vernonia amygdalina were the three species with the smallest wbd values with 0.426, 0.441 and
0.457 g cm3, respectively. The wbd values were significantly different among species as also
reported in some studies (Ubuy et al., 2018a; Tesfaye et al., 2019). There was no significant
difference between the two sites in wbd values, which is an indication for the possibilities of
using the wbd values for other similar forests. Similarities in wbd values of some species from
other similar forest (Tesfaye et al,, 2019) were seen; while also noticeable differences were
detected from Ubuy et al. (2018a). Wood basic density showed no significant difference along
the stem sections (dbh, mid and upper positions) and different branch sizes (big, medium and
small). Mean wbd values for stems and branches were not significantly different, and this result
was contrary to for example Okai et al,, (2003), while in agreement with others (e.g. Swenson

and Enquist, 2008).
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6.3. Aboveground tree biomass prediction options

Different options for tree biomass prediction, directly using allometric models and indirectly
using BEF, wbd and volume data were evaluated in Paper III. The new and previously developed
models were considered for direct biomass prediction. All the new models with significant
parameter estimates were considered as viable models, and based on LOOCV analysis, none of
the models had MPEs significantly different from zero. From the LOOCV results, the AGB: models
had pseudo-R? ranging between 0.87 to 0.96 and the best performing model with the smallest
AIC was the one with dbh, ht, crw and wbd as independent variables. Likewise, for Bys the same
independent variables as in the AGB; resulted in best model with the smallest AIC and pseudo-
R2 = 0.96. For By and Bf models the pseudo-R? generally varied from 0.63 to 0.84 and in both
cases models with dbh, crw and wbd as independent variables performed best in terms of AlCs.
While dbh explained a significant proportion of variations in both total and section biomass,
addition of ht into the models did not improve the models’ performances, which also confirms
with previous findings (e.g. Fayolle et al., 2018; Ubuy et al., 2018b; Tetemke et al., 2019). On the
contrary to ht, addition of crw considerably improved model performance. This result is also in
agreement with some previous research (e.g. Goodman et al,, 2014; Ubuy et al., 2018b; Tetemke
et al, 2019). Evaluation of all the viable AGB: models over the specific sites generally yielded
smaller MPEs indicating that the models are feasible for application in similar forest types.
Covariance matrices for the parameter estimates are also documented for the viable AGB:

models in Paper III.

The evaluation of some previously developed total AGB models that have been applied or
potentially considered in our study site, resulted in large RMSEs and MPEs significantly different
from zero. Exceptions are the pantropical models (Chave et al, 2005; 2014) that yielded
relatively small MPEs, but still larger than our newly developed models. Figure 4 shows how
some of these models either over- or underpredict biomass in relation to our current model in
Paper III. In the indirect biomass prediction approach less biased prediction results were
obtained when either species-specific or study area mean BEFs were used in line with only
species-specific wbd for both total tree and merchantable stem volume cases. Though species-
specific BEFs produced smaller MPEs than study site mean BEF, in practice this is not a feasible
option since it is not likely that specie-specific BEFs are available for all species. Therefore, the
study site mean BEF should be used along with species-specific wbd, which may also be obtained
from the Global Wood Density database (Chave et al.,, 2009; Zanne et al., 2009) in cases of no
local wbd availability. This approach generally overpredicted biomass and was less accurate

when compared with the newly developed models. Previous researchers have also reported
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poorer performance for the indirect biomass prediction method (e.g. Petersson et al,, 2012;

Njana, 2017; Lisboa et al,, 2018).
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Figure 4. Total tree AGB over dbh based on the model developed in Paper IlI (AGBs), by Mokria
etal. (2018), Ubuy et al. (2018b), Chave et al. (2014) and Mugasha et al. (2016). The vertical line
indicates the maximum dbh in our dataset used for modelling. For graphical display of the
models, AGB was predicted using ht derived from a ht-dbh model, as well as the mean wbd from
Paper II. In addition, for displaying Mokria et al. (2018) and Ubuy et al. (2018b), that used dsh
in their models, the corresponding dbh was determined using a dbh-dsh model from Paper II.

6.4. Forest AGB estimation using remotely sensed data

The exploratory study on identifying potential spectral and textural variables for AGB prediction
in Paper IV, revealed that all the mean values of the spectral bands reflectance were moderately
and negatively correlated with AGB, whereas most of the mean values of the vegetation indices
had moderate positive correlation with AGB in all Landsat 8, Sentinel-2 and PlanetScope cases,
which is in line with for example Gizachew et al. (2016), Macedo et al. (2018) and Bao et al.
(2019). Some standard deviation values of vegetation indices from Sentinel-2 appeared to be
also moderately correlated with AGB. On the other hand, the mean and standard deviation
values of some textural variables of PlanetScope showed moderate correlation with AGB, but
slightly lower than the spectral band reflectance and vegetation indices values. Most of the
independent variables extracted from each image type were also intercorrelated, hence the
number of variables selected for AGB prediction models were limited to a maximum of two so
that the problem of overfitting was reduced. The best models were selected based on the LOOCV

results. For Landsat 8, a model with one variable only using mean of shortwave infrared-1 band
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reflectance performed best with RMSE of 73.2%. For Sentinel-2, a model with two variables
using mean of shortwave infrared-1 band reflectance and standard deviation of green leaf index
was found to perform best (RMSE = 67.1%), because these two variables were less
intercorrelated with each other while strongly correlated with the observed AGB. For
PlanetScope, a one variable model was fitted using mean of green reflectance band and it was a
better performing model than the two variables model that used mean of green reflectance band
and standard deviation of a textural variable (i.e. angular second moment of near infrared band).
Some previous studies identified normalized difference vegetation index as predictor variable
for AGB (e.g. Gizachew et al,, 2016); however, it didn’t perform well in our case. Overall the
predictive power of the Sentinel-2 model prevailed over the other models (Figure 5), perhaps
due to its optimized spatial resolution (better than Landsat 8) and spectral resolution (better

than PlanetScope).
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Figure 5. Relationship of ground reference (observed) versus predicted AGB using selected
models of (A) Landsat 8, (B) Sentinel-2, and (C) PlanetScope data. The dashed red and solid grey
lines represent the identity and the correlation function, respectively.

The best performed models of the respective satellite image types were applied to estimate AGB
over the entire areas of the study site. The field-based estimate of mean (and SE) AGB ({ife1q)
was 184.35 (14.79) Mg ha'l. Similarly, when using the Landsat 8, Sentinel-2 and PlanetScope
prediction models the estimated mean (and SE) AGB ({limages) were 179.67 (12.49), 177.79
(11.40) and 184.27 (12.62) Mg ha-l, respectively. Despite the presence of large AGB variations
in the study site, all the model-assisted estimates were reasonably precise and had smaller SEs
than the field-based estimate. Furthermore, the estimate based on the Sentinel-2 model was the
most precise among the three model-assisted AGB estimates, as a result, the RE of the mean AGB
estimate using the Sentinel-2 model (i.e. 1.68) was greater than what we obtained by using the
Landsat 8 (1.40) and PlanetScope (1.37) models. However, the models generally predicted a
limited range of the observed AGB, may be due to saturation problem (e.g. Lu et al,, 2005). The
results of Paper IV in this thesis will have strong practical implications for forest biomass and

carbon stock assessment in forest management efforts including REDD+ program in Ethiopia.
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7.0. Conclusion and future perspectives

The studies in this thesis are among the very few initiatives in Ethiopia towards modelling and
quantifying tree and forest resources applying field-based and remotely sensed data. The
studies used ground reference data collected through sample plot inventories as well as
destructive sampling to develop models for predicting volume and aboveground biomass with
different options for independent variables. The development and use of the models will enable
to follow the higher Tier approaches of the IPCC to estimate carbon stocks and changes in carbon
stocks in Dry Afromontane forests of south-central Ethiopia. The studies will also contribute to
enrich the national and regional databases on biomass and volume models and wood basic
density data. Furthermore, the studies evaluated the use of remotely sensed data for forest
resource estimation, particularly forest area, canopy cover and aboveground biomass. In
general, this thesis provided data and tools to the local and national level efforts towards
effective forest management. The studies will also assist the country to report its contribution
to the global efforts of mitigating climate change through the implementation of programs such
as REDD+ in which regular periodic reporting of the GHG inventory results are required under

the UNFCCC.

Specifically, in Paper I, forest area and canopy cover estimation options of using satellite images
based on visual interpretation were assessed. The visual image interpretation method is
technically less complex and can best serve the purpose in most developing countries such as
Ethiopia where capacities are limited in several aspects. Large areas can be covered with less
time consumption compared to the field-based approach. When using finer resolution imageries
such as PlanetScope and RapidEye more precise estimates can be obtained than relatively
coarser resolution images such as Sentinel-2. Satellite imagery to be used for visual
interpretation for forest area and canopy cover estimation should be selected carefully
considering densities of the forest. Also, homogeneity within a given LULC type should be
considered when selecting image type for canopy cover estimation. Costs may be reduced by
employing a sampling approach as used in the current study, instead of large-scale wall-to-wall
observation, to obtain reliable estimates at a lower cost of image procurement, especially for

dense forest areas where low-resolution images have deficiencies.

Paper II and III provided relevant models and data for quantifying tree biometric properties.
The models and data were totally lacking for the Dry Afromontane forests of the study sites.
Therefore, the results of this thesis are timely and of paramount importance and will
significantly contribute towards sustainable management and utilization of the forests including

in the REDD+ MRV implementations. The ht-dbh model is relevant to obtain accurate ht
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estimates while reducing measurement cost. The dbh-dsh model facilitates quantifications of
previous losses of biomass or volume as a forest degradation. The bt-dbh model serves
quantification of bark for various uses (e.g. bioenergy) or quantifying wood dimension without
bark (e.g. wood for construction purposes). Wood basic density data were documented for the
dominant tree species in the forest and may be used for enriching the national and Global Wood
Density databases in addition to be useful in routine forest management activities locally.
Furthermore, total tree, merchantable stem and branch volume models for the study forest were
provided in the thesis. The models support planning and implementations of forest management
actions by enabling provision of accurate estimates of the forest growing stock in terms of total
tree or sections volume. The volume estimates can also be used along with BEFs and wbd data
for estimating biomass indirectly. This is particularly important for situations where only
volume data available from previous inventories. Nevertheless, biomass should be predicted
directly using more accurate allometric models if available. Such biomass prediction models are
provided in Paper III for total tree, merchantable stem, branch and foliage biomass with number
of options for choosing models based on the availability of data from an inventory. Individual
tree biomass prediction is crucial for generating forest biomass estimates that are fundamental
for estimating existing forest carbon stock and changes over time in order to assess
contributions of forests to climate change mitigation. All the models and wbd data given in this
thesis may also be applied in other similar forests in Ethiopia; however, thorough evaluation of
species composition, growing conditions and data ranges should be done carefully before using

the models outside their data ranges.

Furthermore, Paper IV has provided the first empirical evidence that optical satellite images can
potentially be used for estimation of AGB in the Dry Afromontane forests of Ethiopia, despite a
wide range of variation in biomass density per unit area. Potential spectral variables for biomass
prediction were derived, explored and identified for each of the Landsat 8, Sentinel-2 and
PlanetScope image cases. Model-assisted estimation approaches that combine the prediction
model and design-based sampling procedure provide the required reliable estimates. Sentinel-
2 images, a freely accessible data source, can be used for AGB estimation with reasonable
precision and estimation efficiency. This practical exercise may offer baseline information for

similar feature studies including designing and implementation of a REDD+ MRV programs.

Generally, the four studies in this thesis have provided data, models and methodological
information that can be used to improve assessment and quantification methods of forest
resources in the study sites. Nevertheless, there are still research gaps that should be further

addressed.
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In Paper [, we analysed interpretation results from the three satellite image types and compared
them against each other. In order to consolidate results and further verify the robustness of the
method, incorporating samples of ground-based observations as reference data might be useful,

hence, future researches would be encouraged to consider this.

The models developed in Paper II and III were based on samples from two sites of Dry
Afromontane forests in south-central Ethiopia. We have also recommended these models to be
applied in other Dry Afromontane forests, which lack site-specific models. However, the recent
NFI report (MEFCC, 2018a) indicated the presence of high variabilities in the Dry Afromontane
forests of the country. In line with this, the observed large prediction errors when testing a
model by Tetemke et al. (2019) from Dry Afromontane forest in northern Ethiopia on the data
from the present study sites, confirms this variability. Thus, future studies should consider
developing comprehensive models with additional data from other forests sites together with
the existing data from this study and other similar studies, for example from Tetemke et al.
(2019), for developing models that can better represent all Dry Afromontane forests in Ethiopia.
Some biomass modelling studies (e.g. Huy et al,, 2019) have applied a seemingly unrelated
regression modelling approach when developing total tree and sections biomass models
simultaneously, as suggested by Parresol, (2001), to cater for the additivity challenge of
nonlinear section biomass equations. This could be an interesting issue to consider and evaluate
in a future study. The present study has only considered aboveground tree biomass.
Belowground biomass is also one of the vital carbon pools in forests. Currently default
conversion factors have been used in Ethiopia (e.g. UN-REDD, 2017; MEFCC, 2018a). However,
for more accurate estimation, country- or site-specific belowground models are preferred (IPCC,
2006). Therefore, belowground biomass models should be developed also for Dry Afromontane

forests in Ethiopia, although collecting belowground biomass data are demanding and costly.

In Paper IV, the use of optical satellite imageries for biomass estimation were tested, which
might be influenced by factors such as saturation, shadow effect and topographic variations.
Alternatively, the use of information such as 3D data from UAV imagery and airborne laser
scanner sources have been used to improve the quality of estimates widely in most boreal
forests (e.g. Naesset and Gobakken, 2008) and few cases in sub-Saharan Africa (e.g. Mauya et al.,
2015; Kachamba et al., 2016a). Thus, future research should consider such options for the
current study forest as well as other forest types in Ethiopia. In addition, effects of different sizes
of the field inventory plots should be studied since it may have implications for estimation

efficiency (e.g. Neesset et al., 2015).
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This thesis has generally provided models, data and methods that are relevant for estimating
tree and forest resources from which the ongoing implementations of different forest
management schemes in Ethiopia would benefit. Sustainable management and utilization
aspects in participatory forest management programs should be guided by proper and accurate
information, towards which the results from this thesis contribute significantly. In REDD+ MRV
programs, biomass and carbon stocks and their change over time need to be quantified and
reported along with the uncertainties involved. The models and methods provided in Papers I
to IV are means for estimating biomass and carbon stock at any point in time and for quantifying
and documenting uncertainties. In particular, the covariance matrices for the parameter
estimates of the developed biomass models that are provided in this thesis opens up for
interesting research related to error propagation in biomass and carbon stock estimation where
errors related to model parameters along with errors related to sampling design (e.g. number
and distribution of sample points) and response design (e.g. size and shape of the plot and

measurements in the plot) can be considered (Chave et al, 2004; Clark and Kellner, 2012).
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Abstract: Forests, particularly in the tropics, are suffering from deforestation and forest degradations.
The estimation of forest area and canopy cover is an essential part of the establishment of a
measurement, reporting, and verification (MRV) system that is needed for monitoring carbon stocks
and the associated greenhouse gas emissions and removals. Information about forest area and canopy
cover might be obtained by visual image interpretation as an alternative to expensive fieldwork.
The objectives of this study were to evaluate different types of satellite images for forest area and
canopy cover estimation though visual image interpretation, and assess the influence of sample
sizes on the estimates. Seven sites in Ethiopia with different vegetation systems were subjectively
identified, and visual interpretations were carried out in a systematical design. Bootstrapping was
applied to evaluate the effects of sample sizes. The results showed that high-resolution satellite
images (<5 m) (PlanetScope and RapidEye) images produced very similar estimates, while coarser
resolution imagery (10 m, Sentinel-2) estimates were dependent on forest conditions. Estimates based
on Sentinel-2 images varied significantly from the two other types of images in sites with denser forest
cover. The estimates from PlanetScope and RapidEye were less sensitive to changes in sample size.

Keywords: land cover; land use; visual interpretation; high resolution imagery; estimation;
design-based inference

1. Introduction

Forests constitute the largest terrestrial ecosystem, and they provide a variety of services
and functions [1,2]. One of the services that forests offer is carbon sequestration; approximately
2.5 billion tons carbon are absorbed annually [3-5]. Despite their contributions to carbon sequestration,
much of the world’s forests, particularly tropical forests, are suffering from severe deforestation and
degradation, contributing to increased carbon emission [5-7]. About 12% of the total anthropogenic
carbon emissions come from deforestation [5,8]. The pressure from deforestation and degradation on
forests is larger particularly in tropical, developing countries due to heavy dependence on the resource
for livelihoods [9].

The world has been acting continuously from the Kyoto Protocol in 1992 to the recent Paris
Agreement in 2015 to halt the global warming through various means, one of which is the REDD+
mechanism (Reducing Emissions from Deforestation and forest Degradation). The REDD+ mechanism
gives financial incentives to countries decreasing their deforestation and forest degradation. Ethiopia is
one of the tropical countries that has lost much of its forest resources in the past [10]. Historically,
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the forest cover of Ethiopia was reported to be more than 30-40% of the area [10,11]. However,
the origin of this number is uncertain, and the amount itself is questionable [12]. Either way, there has
been severe deforestation and forest degradation in the country the last century [11-14]. The pressure
to convert forests into land for food production to support the increasing human population and
provide socio-economic benefits to the nature-based livelihoods of the majority of the people has been
huge. The use of wood for fuel has also aggravated the rate of deforestation [10,11].

Ethiopia is currently in the process of implementing REDD+, and one of the prerequisites for
implementing the REDD+ mechanism is to develop a robust measuring, reporting, and verification
(MRV) system following the Intergovernmental Panel on Climate Change (IPCC) Good Practice
Guidelines [15]. Information about forest area and canopy cover are required for a MRV system in
the REDD+ process and sustainable forest management practices. Forest area is the proportion of
an area that is covered with trees and other perennial components of a forest land. The definition of
forest varies among countries, the contexts of institutions, and of course the purpose [16]. The Food
and Agriculture Organization (FAO) of the United Nations defines forest as land spanning more than
0.5 hectares with trees higher than 5 m and a canopy cover of more than 10%, or trees that are able to
reach these thresholds in situ [17]. In Ethiopia, the working definition of forest describes it as any land
spanning at least 0.5 hectares covered by trees (including bamboo) attaining a height of at least 2 m
and a canopy cover of at least 20%, or trees with the potential to reach these thresholds in situ in due
course. Canopy cover is the proportion of the forest floor covered by the vertical projection of the tree
crowns [15,18,19]. Canopy cover plays a significant role in forest management for various decisions
related to silviculture and the utilization of the forests [20].

In REDD+, developing countries rehabilitate and preserve their forests, and in turn get paid
for the extra amount of CO, sequestered beyond a certain agreed level following MRV after their
commitment [21]. The REDD+ system, of course, requires accurate measurement and estimation
methods to be carried out through a properly established MRV system [22]. In the course of quantifying
the amount of CO; by sink and source, reliable forest area and canopy cover estimations are key
attributes [15,23]. However, according to the IPCC, information on forest area and deforestation in
tropical countries is highly uncertain, often up to 50% of error [24]. This is because tropical countries
are constrained by a lack of technical capacity and lack of both trained human power as well as
infrastructure. In such situations, when and where there are technical inefficiencies, it would be
important to critically scrutinize and choose the most feasible methods and technologies [23].

Past and current practices of forest cover assessment as well as land-use and land-cover (LULC)
mapping in Ethiopia, digital image classification, and mapping methods are practiced, such as
supervised, unsupervised, and object-based classification (e.g., [13,14]). However, digital image
classification and mapping methods in general require a high level of technical skill, and in most cases,
technical software [25,26]. Furthermore, the spectral similarity of land-cover classes is also challenging.
As a result, the wider application and use of such methodologies for large-scale activities such as
nationwide assessment could be problematic. For instance, Ethiopia’s historical data on LULC changes
between 2000-2013 for forest reference level (FRL) submission to the United Nations Framework
Convention on Climate Change (UNFCCC) were generated through digital image classification and
mapping using Landsat data. Nevertheless, the report underlined the need for the further reduction
of uncertainties of the estimates [27]. In response to the drawbacks of digital image classification
and mapping mentioned above, some platforms of free and open source software such as Geo-Wiki,
VIEW-IT, and Sky Truth are developed by different bodies, including academic institutions [26,28].
The software support visual satellite image interpretation and LULC map validation by non-remote
sensing experts, while some of the programs can also be used for other advanced applications by
professional users [26,29]. The application of these software packages is associated with the use of
very high-resolution images, which are often known to have a small geographic scope and an irregular
time interval of acquisition, in turn limiting its utility for large areas. On the other hand, using Landsat
images will provide a global coverage with bi-monthly acquisitions; however, interpretation is limited
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by its low spatial resolution. FAO designed the software system Collect Earth as an open source tool
that helps to collect, analyze, and compile reports on LULC through visual image interpretation based
on freely available satellite images mainly with the Google Earth platform [25]. The tool has been
adopted, and many countries have used it around the world for activities such as national forest
inventory, LULC mapping, and the estimation of activity data for REDD+ [25].

The mentioned software supporting visual satellite image interpretation are efficient tools for
gathering reference data. Such reference data gathered using interpretation of satellite imagery with
different spatial resolutions under different forest conditions has been used to provide forest area
and forest cover change estimates [30,31]. However, forest conditions and properties of the imagery,
such as spatial resolution and revisit times, could potentially influence estimates. Hence, it is important
to evaluate different types of satellite images under different forest conditions in order to provide
guidelines for using such tools at a national level.

Thus, the aim of this study was to identify and evaluate different and alternative types of satellite
images to minimize the level of uncertainties of the estimation of forest area and canopy cover in
different forest conditions in Ethiopia. The specific objectives of the study were to: (1) evaluate
the use of PlanetScope, RapidEye, and Sentinel-2 satellite images for forest area and canopy cover
estimation through visual interpretation; and (2) assess the influence of sample sizes on the estimates.
Accordingly, efforts were made to see if there is variation in the pattern of the estimates and the
uncertainty of estimates from the three types of satellite images over the different areas of interest (sites
of the study), which are characterized by having different biomes. Thus, such efforts would provide
insight on the robustness of the method when applied to different forest conditions. The time elapsed
for interpretation was assessed to evaluate the effectiveness of the method. In general, the study
sites were selected so that they covered the important carbon storage areas of the country. Therefore,
the study is helpful for gaining knowledge and contributing to improving Ethiopia’s REDD+ MRV
system in practice.

2. Materials and Methods

2.1. Description of the Study Sites

Ethiopia is located in eastern Africa, geographically extending from 3° to 15° north latitude and
from 33° to 48° east longitude. It is known for its topographic diversity, stretching from the lowest
Danakil depression 125 m below sea level to the highest peak of the Simien Mountains, which is
over 4500 m above sea level. The great East African rift valley that runs from northeast to southwest
divides the country into north, northwest, and southwest highlands and the western lowlands on one
side, and the eastern and southeastern highlands and the associated lowlands on the other side [32].
This topographic diversity favored the country to have a wide range of climate and a diverse flora and
fauna, with a considerable amount of it being endemic [33].

For this study, seven sites were identified to represent the major biomes of the country, as well
as their tree gain or loss conditions (Table 1). The selection of sites was subjective in order to have
sites covering a range of forest conditions. The size of each site was 2052 km? (36 km x 57 km).
The major biomes were used in activity data compilation for FRL submission to the UNFCCC, and
stratification during the national forest inventory planning and implementation [27]. The major
biomes include (1) Dry Afromontane: includes undifferentiated Afromontane forest; dry single
dominant Afromontane forest of the Ethiopian highland; Afromontane woodland, wooded grassland,
and grassland. In addition, transition between Afromontane vegetation and Acacia-Commiphora
bushland on the eastern escarpment, as well as Ericaceous and Afroalpine belts, are included. (2) Moist
Afromontane: comprises mainly primary or mature secondary moist evergreen Afromontane forest.
Also contains edges of moist evergreen Afromontane forest, bushland, woodland, and wooded
grassland, as well as transitional rain forest. (3) Combretum-Terminalia: Combretum-Terminalia woodland
and wooded grassland is a major component. Furthermore, it includes wooded grassland of
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the western Gambela region. (4) Acacia-Commiphora: Acacia-Commiphora woodland and bushland
proper; Acacia wooded grassland of the rift valley as well as desert and semi-desert vegetation [32].
Accordingly, dry Afromontane forests cover the north, central, and eastern highlands of the country;
moist Afromontane forests dominate the southwest and south-central areas. Combretum-Terminalia
covers the northwest, west, and southwest lowlands; Acacia-Commiphora includes the northeast, east,
and south lowlands of the country, while the rest that is categorized as others included water bodies
and wetlands (Figure 1).

Table 1. Description of the study sites.

Site Biome Type Condition of Forest in the Area *
A Acacia-Commiphora and partly dry Afromontane Both tree gain and loss of similar magnitude
B Moist Afromontane Characterized by tree loss
C Partly moist Afromontane and partly Acacia-Commiphora Characterized by tree loss and very little gain
D Moist Afromontane Characterized by tree loss
E Moist Afromontane Both tree gain and loss of similar magnitude
F Dry Afromontane Characterized by tree gain
G Combretum-Terminalia Characterized by tree loss

* Source: Global Forest Watch (www.globalforestwatch.org).
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Figure 1. The major biomes in Ethiopia and the seven sites (A, B, ... , G) selected for the study.

2.2. Satellite Imagery

Satellite images upon which the visual interpretation was based were PlanetScope, RapidEye,
and Sentinel-2, which were all in their true color image (red, blue, and green).
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2.2.1. PlanetScope

PlanetScope image products are available in three different forms. PlanetScope Basic Scene
(1B) is a product with radiometric and sensor corrections only, which is designed for users with
advanced knowledge of image processing. PlanetScope Ortho Scene (3B) is an orthorectified product
that is projected to a cartographic projection. PlanetScope Ortho Tile (3A) products are orthorectified
as individual 25 km x 25 km tiles, and can serve a wide range of applications that need accurate
geolocation and cartographic projection. PlanetScope satellite imagery is state-of-the-art optical
products with up to 3-m spatial resolution. Unlike other optical satellites, the PlanetScope satellite
constellation consists of multiple launches of groups of individual satellites (also called “Doves”)
with continuous improvements of on-orbit capacity. The complete PlanetScope constellation of about
175 satellites (by 2 April 2018) covers the entire earth’s landmass every day, and has a daily collection
capacity of about 300 million km?. PlanetScope Ortho Tile images of the study sites were downloaded
from the Planet Explorer Beta website in June 2017. Only images with cloud cover <50% and images
acquired between January—May 2017 were used. On average, 13.0 images were available for each
location. The minimum number of images per location was four, and the maximum was 24.

2.2.2. RapidEye

RapidEye and PlanetScope imagery products are currently acquired and supplied by the same
private company, Planet Labs Inc. RapidEye provides optical imagery from a constellation of five
earth-imaging satellites. It has a large area coverage with frequent revisit time (one-day interval),
which allows one to get cloud-free images for almost all areas. The images have high spatial (5-m pixel
size) resolution. RapidEye image products can be obtained in different forms (RapidEye basic (1B):
least processed product; RapidEye Ortho (3A): orthorectified and other required corrections made at
individual 25 km x 25 km tiles; and RapidEye Ortho Take (3B): large-scale orthorectified product based
on RapidEye Image Takes), depending on the users’ needs and image processing capability (Planet,
2017). Recent RapidEye Ortho Take (product level 3B) images of the study sites were obtained from the
same source as PlanetScope. Only images with a cloud cover <50% and images from December 2015 to
May 2017 were used. The minimum number of images per location was one, and the maximum was
12 images; on average, 4.5 RapidEye images were available for interpretation for each location.

2.2.3. Sentinel-2

Sentinel-2 is owned by the European Space Agency (ESA); it was launched to support activities
such as land monitoring, emergency management, security, and climate change issues. In order to
fulfill such objectives, the mission was designed in such a way that it has high revisit frequency
(five days at the equator), high spatial resolution (up to 10 m in some bands), and having wider swath
(290 km). It has been providing unprecedented freely available data to the public since June 2015.
The Sentinel-2 product level 2A images (Table 2) used for this study were also downloaded from the
Planet Explorer Beta. Only images with a cloud cover <50% and images from December 2016 to May
2017 were used. The average number of Sentinel-2 images available for interpretation at each location
was 5.6 with a range from two to 10 images.

Table 2. Satellite images used in this study.

Satellite Spatial Resolution (m) Product Level
Planet Scope 3 3B
RapidEye 5 3B

Sentinel-2 10 2A
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2.3. Data Collection Techniques

For each of the seven sites, a 3 km x 3 km grid of systematically distributed points were prepared
and overlaid the images. This resulted in 228 sample points within each site. Systematic sampling
design was used because of its potential to uniformly cover the entire sites and thereby produce
more precise estimates [15]. Each of the two observers interpreted a total of 4788 observation points
(228 observation points per site per image type X seven sites x three image types). Having the grid
point at the center, a square of 0.5 ha (about 70 m x 70 m) was created for all of the 228 grid points
within each site. This cell layer was the unit of interpretation of the LULC class. This cell size was
chosen to match with the minimum area of the national and FAO definitions of forest. Within these
0.5 ha cells, a systematic grid consisting of 49 squares of 2 m x 2 m in size, was arranged. These small
squares were used in the visual interpretation to observe the presence/absence of tree crowns, and then
used for canopy cover determination. The canopy cover of a single cell of 0.5 ha was determined using
the count of points that coincided with the crowns of trees divided by 49. The images were clipped to
1km x 1 km tiles for each of the 228 points, and centered at each point to have a better overview of
the surrounding land cover during the interpretation. A package was written in R language to develop
a graphical user interface that was used to display images for each point in a completely randomized
manner, and record and save the results of the image interpretation. The 0.5-ha cell with 49 grid points
was enabled to be zoomed in and displayed together with the clipped image (Figure 2). In addition,
the land-cover type, time of acquisition for the selected image, and elapsed time (time from launching
a location to saving results) were recorded.

A given LULC type within the 0.5 ha was determined visually based on the IPCC definitions
of LULC categories [15] i.e., forest land, cropland, grassland, wetland, settlements, and other land;
see the IPCC guidelines for details. The thresholds for forest land were 0.5 ha area and 20% canopy
cover in the current study. Furthermore, interpretation decisions were made following a hierarchy
of rules [34] (Figure 3). The proportions of points that fell on tree crowns (if any) were determined,
regardless of the LULC class types. Among the potential images for interpretation, the newest image
was used. Two persons performed the interpretation, and the average of the interpretation results was
used in further analyses.

¢ Ethiopia photointerpretation = © ® R Graphics: Device 8 (inactive) -
Plots
New Save Progress | Closeall
images
PCC - LAND USE
NA
Land use category - confidence
M v

Number of ssmple squares covering trees:

Fie _History Resize

Zoom out, Date= 20170524

NA v

Image status:

Output
Recorded

Land cover class: 0

Land cover confidence: NA

Nusber of sample dots: 0(0%)

Inage status: Fine

Dato: Y

Figure 2. The graphical user interface used for visual image interpretation. (A) A window for opening
new image and recording the interpreted data; (B) 1 km x 1 km image with a point at the center;
(C) a zoomed into 0.5-ha cell with the 49 points (2 m x 2 m squares).
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Is the image clear &
interpretable?

Record NA Is the Settlements > 20%?

Is the Cropland > 20%? Record Settlements
No Yes

s the Forest land > 20%? Recard Cropland

Yes
I the Grassland > 20%?

No Yes
s the Wetlands > 20%? Record Grassland
No Yes

Record Other land Record Wetlands

Figure 3. Decision tree based on the hierarchy of rules.

2.4. Estimation

Forest area estimates were computed for the three image types in all seven sites. Observation
points were coded as 1 if they were forest and 0 otherwise, and then the mean forest area was estimated
using the expression in Equation (1). Canopy cover estimates were also computed for the different
image types in the seven respective sites, as well as each LULC class, applying the estimator in
Equation (2):

o XX

Xj=="—, M
where ii is the mean forest area estimate of site 7; x;; is the proportion of forest area observed in site i
at sample point j; and 7 is the number of observations in a site i.

~ Yy

Y, = ]T @
where Y; is the estimated mean canopy cover of site i; and 7 is the number of observations.

The uncertainty of each estimate was computed using Equations (3) and (4) for forest area and
canopy cover, respectively. The standard error (SE) of the mean of each estimate was computed by
taking the square root of the error variance. An analysis of variance was then performed to assess
the presence of significant differences among the forest area and canopy cover estimates from each
image type.

A~ N2
Y (xi— X
_ = 1<n/_ 1) ) , (3)

Var (ﬁ,) = 1’!(

where Var (Y,) is the estimated error variance of the mean forest area estimate of site i.
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Var (?,) _ f—1<y”_)y’> @

where V/Er(Yi) is the error variance of the mean canopy cover estimate of site i.

Analysis was carried out on the data that were averaged between the two observers, as given in
Table 3.

Table 3. Observation results of forest and non-forest classes from the three image types.

Observation PlanetScope RapidEye Sentinel-2
Forest 819 824 602

Non-Forest 774 772 947
NA* 3 0 47
Total 1596 1596 1596

* Not recorded due to clouds or missing imagery.

In order to assess the effects of the number of observations, bootstrap sampling was carried out
for each of the forest area and canopy cover estimates of the three image types and the seven respective
sites. Four different resample sizes (m = 50, 100, 150, and 200) were used in the bootstrapping with
replacement, and the standard deviation of the boot statistics (Equation (5)), which is an estimate of
the standard error [35], was computed and compared with the standard error of the original sample:

1 1 2
SEppot, 7= \| —— ) (Xx——) ¥ 5
boot, X \/Wll (x* mzx*) ®)
where SEp,,, % is the standard error of an estimate, and X+ is the mean of each resample.
3. Results

3.1. Dates and Time Elapsed for Interpretation

There was a substantial difference between the acquisition dates of the images selected for
interpretation for the different image types. For PlanetScope imagery, 85% of the images used were
from May 2017, and only 2.4% were from March and earlier. For Sentinel-2 imagery, 51% were from
May and April, and only a marginal number were from pre-2017 (<1%). Meanwhile, for RapidEye,
none of the images interpreted was from April and May 2017, and only 23% were acquired in 2017.
However, most of the images were acquired during the dry season (December-May), except for 13% of
the images from RapidEye, which were acquired in October and November. There was no identified
effect of any differences in the time of acquisitions.

On average, 83 s were used for each location to record the LULC class and canopy coverage.
The difference between RapidEye and Sentinel-2 was minor (68 s versus 73 s), while for PlanetScope,
107 s on average were needed to carry out the interpretation for each location. The seven sites were
forming three clusters with respect to time consumption. The time consumption for the three groups
were 67-75 s (sites A, F, and G), 87-89 s (sites C, D, and E) and 103 s (site B).

3.2. Forest Area Estimation

Mean forest area estimates from the three image types for all of the study sites are displayed
in Figure 4. Sites B, D, and E were the three densely forested sites with estimated proportions of
forest area of 0.89, 0.77, and 0.60 from PlanetScope, 0.88, 0.76, and 0.56 from RapidEye, and 0.55,
0.48, and 0.41 from Sentinel-2, respectively. On the other hand, site F has the least forest cover, with
an estimated proportion of forest area of 0.03, 0.07, and 0.05 from the PlanetScope, RapidEye, and
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Sentinel-2 images, respectively. Forest area estimates from PlanetScope and RapidEye images showed
similarities consistently over the seven study sites, although there were marginal differences, where
estimates from RapidEye image were smaller in most cases. The estimates from Sentinel-2 images
differed from the other two image types in most of the study sites, and these differences in mean forest
area were much larger and statistically significant (p < 0.01) for sites B, D, E, and G. However, the
magnitude of the differences in mean forest area estimates decreased as the overall forest cover of the
sites decreased. Thus, no significant differences were observed among the different image types for the
three study sites A, C, and F, which had relatively smaller forest cover. It appears that when an area
has a small proportion of forest such as sites A, C, and F, Sentinel-2 images, having relatively coarser
resolution than PlanetScope and RapidEye images, would produce a reasonably comparable estimate.

o
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EaEE O RapidEye
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Figure 4. Forest area (proportion) estimates from PlanetScope, RapidEye, and Sentinel-2 images for
each study site (A-G). Error bars represent the estimated standard error of the mean.

3.3. Canopy Cover Estimation

Estimates of proportions of canopy cover from the three image types for all of the study sites are
shown in Figure 5 and for LULC classes in Figure 6. The largest canopy cover estimate was recorded
for site B as 0.59, 0.56, and 0.34 using PlanetScope, RapidEye, and Sentinel-2 images, respectively.
By contrast, site F showed the smallest estimates of all of the sites with canopy cover estimates of 0.05,
0.09, and 0.07 from PlanetScope, RapidEye, and Sentinel-2 images. Estimates from PlanetScope and
RapidEye images again appeared to be comparable, with a slightly larger difference between them than
those of the forest area estimates. Nevertheless, no statistically significant difference was seen in any
site between the two software packages. In sites A, C, and F, all of which had less forest cover, Sentinel-2
produced quite similar estimates to the other image types. In contrast, in sites B, D, E, and G, which
had large forest cover where one also could expect large canopy cover, the estimates from Sentinel-2
significantly varied (p < 0.01) from the rest. This shows that the estimates from Sentinel-2 images
provided smaller canopy cover values where forests tended to be denser compared to PlanetScope
and RapidEye. In terms of overall performance, when taking into account the magnitude of the
standard errors of canopy cover estimates of all of the sites, although the differences were not that big,
PlanetScope seemed to produce a precise estimate since it on average had the smallest value, whereas
RapidEye and Sentinel-2 resulted in slightly less precise estimates (Figure 7).
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Figure 5. Canopy cover (proportion) estimates from PlanetScope, RapidEye, and Sentinel-2 images for
each study site (A-G). Error bars represent the estimated standard error of the mean.

When analyses of estimates of tree canopy cover were carried out for each LULC class using the
three image types (Figure 6) the largest proportion of canopy cover estimate was, as expected, obtained
in the Forest land category, with a magnitude of 0.57 from PlanetScope, 0.59 from RapidEye, and 0.58
from the Sentinel-2 images. According to the estimates from PlanetScope, Settlements (0.10), Cropland
(0.09), and Grassland (0.08) were the second, third, and fourth LULC classes in terms of their canopy
coverage. Within each LULC class, the different image types resulted in estimates that were very
similar to each other except for the Settlements, Wetlands, and Other land classes. However, even in
these classes, the differences were not significant in the statistical sense. It seems that if a given LULC
class is a homogenous one such as Forest land, Cropland, or Grassland, then any of these images could
produce reasonably comparable estimates of canopy cover. Whereas on the contrary, in heterogeneous
LULC scenarios, coarser resolution images tended to either overestimate or underestimate canopy
cover as compared with estimates from finer resolution images. Considering overall standard errors
for each image type, it was observed that PlanetScope resulted in a smaller overall variability, showing
a better precision of estimates, whereas the largest variability of estimates was seen for RapidEye
(Figure 7).
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Figure 6. Canopy cover (proportion) estimates from PlanetScope, RapidEye, and Sentinel-2 images by
land-use and land-cover (LULC) classes. Error bars represent the estimated standard error of the mean.
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Figure 7. Average standard error for forest area and canopy cover estimates by sites as well as for
canopy cover estimates by LULC classes from the three image types.

3.4. Optimal Sample Size Determination

The results from the bootstrapping showed increasing standard errors as the sample size
decreased for both forest area and canopy cover estimates, regardless of site and image type (Figure 8).
Resampling with a sample size of 200 observations resulted in estimates that were very close to
the original sample size of 228, followed by 150, 100, and 50 as the second, third, and fourth
closest estimates, respectively. On average, the increase in standard error when using 200 instead
of 228 sample observations was 6.7%, 6.5%, and 4.9% for forest area and 8.7%, 6.0%, and 4.2% for
canopy cover estimates from PlanetScope, RapidEye, and Sentinel-2, respectively. Similarly, samples
of 150 observations on average generated estimates with a standard error inflation of less than 24.0%
for all of the image types and both forest area and canopy cover estimations. Furthermore, when the
sample size was reduced to 100 observations, the standard error increased almost by 50%.

The standard errors were consistently smaller for site F than for the rest of the study sites.
In addition, the standard error values of sites A and F were entirely below the average curve, while
those of sites D and E were constantly above the average curve for both the forest area and canopy
cover estimates of the three image types (Figure 8). Reducing the sample size to only 50 observations
resulted in a steeper curve and increased the standard errors by more than 100% in all of the cases.
In general, considering the sample sizes, overall estimates of PlanetScope and RapidEye were found
to be less sensitive to the reduction of sample size for forest area and canopy cover estimations, and
the ranges of percentage increment across the sites were smaller in each respective case. Meanwhile,
the Sentinel-2 estimates were highly sensitive in both cases with larger range values across the sites,
regardless of having some smaller values.
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Figure 8. Standard error (y-axis) for forest area and canopy cover estimates in connection with sample
size (x-axis). The results were determined through bootstrapping, except for 228 obtained from the
original sample. (a—c) are for forest area; and (d—f) are for canopy cover estimates from PlanetScope,
RapidEye, and Sentinel-2 images, respectively.

4. Discussion

4.1. Visual Image Interpretation in a REDD+ MRV

Visual image interpretation was adopted in this study to estimate the proportion of forest

area and crown cover in seven subjectively selected sites in Ethiopia that have different forest and



Land 2018, 7, 92 13 of 17

vegetation types. Satellite images of PlanetScope, RapidEye, and Sentinel-2 were examined for their
performance of producing estimates of forest area and canopy cover across the variety of site conditions.
In addition, the study evaluated how sample size affected the uncertainty of the estimates from different
image types.

The proportion of forest cover within an area of interest can be used to estimate the area
of the forest by multiplying it with the total size of the area. Such information are of paramount
importance for LULC change analysis as well as the quantification of emissions and removals for
REDD+ activities [23,36]. Likewise, canopy cover information is used in several forest management
applications. For instance, it serves as an important ecological indicator such as for habitat,
microclimate, and light condition assessment [18], and it is used as a criterion in forest definitions [17].

In the current study, it was possible to record data representing 390 km? per hour on average.
Meanwhile, for field surveys, only moving to a field plot representing 9 km? could be difficult within
the same amount of time. Thus, the efficiency of visual interpretation is the major advantage. However,
a disadvantage is the amount of subjectivity that is allowed in the interpretation. In this study,
the average interpretation between two interpreters was used. However, if multiple interpreters are
available, the difference between them could be calculated and thus calibrated for. Hence, multiple
interpreters can mitigate systematic errors occurring due to individual decisions. In addition, it is
problematic that the interpreted value could also have errors when trained and experienced interpreters
are carrying out the work. Experience form Tanzania showed that tree cover and the amount of woody
biomass is not necessarily a good indicator of land-use or land-cover classification in field [37]. Thus,
a major confine of the current study is that we did not have any ground-measured value. However,
indicating that differences between the imagery exist is important. A natural assumption is that higher
resolution imageries provide a more accurate interpretation.

In this study, design-based estimates were the focus, and only the interpretations for the
observation points were used to create estimates. The next step for implementing REDD+ MRV
could be to include complete cover information e.g., from PlanetScope, RapidEye, or Sentinel, and
combine the complete cover information with the interpretations making a wall-to-wall map that can
be used in model-assisted estimation [37,38]. This will be a natural extension of the current study,
as capacity building are taking place in the REDD+ countries.

4.2. Factors Influencing Estimates

Proportions of forest area estimated using PlanetScope and RapidEye images were very similar
across the seven sites, regardless of their differences in spatial resolution. On the other hand, estimates
from Sentinel-2 images for most of the sites differed significantly from those of both PlanetScope
and RapidEye images. Exactly the same pattern of similarities and differences occurred as well for
canopy cover estimates. It seemed that PlanetScope and RapidEye estimates were robust and capable
of producing reliable results in different biomes with different forest types and magnitudes of forest
coverage. However, the performance of Sentinel-2 images seemed to be dependent on the magnitude
of forest cover. It produced similar estimates to those of PlanetScope and RapidEye for areas with
less forest cover, and varied as the forest cover of the area increased. Each land-cover category has
its own property that needs to be considered when selecting methods, including the images to be
used for land-cover classification and mapping [39]. Accordingly, the discrepancy among estimates
from these image types is perhaps due to a number of factors, one of which is the differences in
the resolution of the images. Draksler [40] investigated the effect of satellite image resolution and
minimum mapping unit on the accuracy of forest cover mapping in two different sites using RapidEye,
Sentinel-2, and Landsat-8, and reported a declining trend in overall accuracy as the resolution got
coarser. A similar trend was reported by Churches et al. [41], who compared forest cover estimates of
Haiti using different satellite images.

Another factor contributing to the differences could be missing data, which will reduce the
number of observations and hence affect the quality of estimates [42]. Most of the missing data during
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image interpretation (NAs) were recorded for Sentinel-2 images (Table 3). Out of the total NAs in
Sentinel-2, more than 70% were in sites B and D. These are the sites that are known to have denser forest
cover and be accompanied by the presence of heavy cloud cover during most of the year. Therefore, its
relatively coarser resolution coupled with the cloud cover might have affected the interpretation result,
since it failed to sufficiently capture the existing variability within the study sites. The revisit frequency
also directly influences the availability at cloudy locations. The frequent revisits of PlanetScope is
highly favorable for REDD+ MRV, since 85% of the images used for the interpretations were acquired
within a time period of one month, May 2017, while for RapidEye and Sentinel-2, a maximum of 34%
and 40% of the images originated from one single month, respectively.

The majority of the images used for interpretation was acquired during the dry season. One reason
for this is that cloud coverage is smaller in this season compared with the rainy season. It is likely that
the phenology of the trees and other vegetation influences the interpretation. A tree crown with more
leaves could potentially lead to a larger interpreted crown cover compared with when the tree has less
or no leaves. The design of this study did not provide data to analyze the effect of seasonality in a
statistical sense.

Satellite imagery used for the visual interpretation of forest area and canopy cover should be
carefully selected. For low-density forest areas, say, somewhere below 30% canopy cover, Sentinel-2
images may be safely used, whereas for denser forest areas, higher resolution images such as
PlanetScope and RapidEye should be considered. Of course, the choice may depend on the purpose
of the study and available resources. To reduce costs, sampling instead of large-scale wall-to-wall
observation could be used [43,44]. The method used in this study is such an alternative to obtain
reliable estimates at a lower cost of image procurement, especially for dense forest areas where
low-resolution images have deficiencies, and the quality of information pays off.

4.3. Sample Size

When resources allocated for data collection are limited, it is important also to apply appropriate
sampling designs and use adequate sampling intensities [45,46]. Hence, it would be necessary to
look for and determine optimal sample sizes that will result in a precise estimate with the possible
minimum resource [45]. The bootstrapping technique allowed us to repeatedly sample from a given
set of observations and assess the uncertainty of an estimate under certain circumstances, such as
for example with different sample sizes, as in our case. As indicated in Figure 8, the precision of the
estimates is sensitive to changes in the number of observations in the sample. The sensitivity also
differs depending on the parameter of interest to be estimated as well as the types of images to be used.
Hence, depending on the purpose of the study, the available resources, and the precisions that are
required, one may decide on the number of observations accordingly. From the analysis of sample size
in the current study, it seems possible to reduce the sample size slightly without substantially affecting
the obtained accuracy. Perhaps a sample plot spacing of 3.5 km or 4 km between sample locations
could have been considered.

5. Conclusions

Forest area and canopy cover estimates are among the most essential information in any forest
management practice. One of the approaches to derive such information is through visual image
interpretation techniques using satellite images. The technique is particularly quick, less costly, and
helpful when the technical capacities to use digital image classification and mapping are limited.
In this study, visual image interpretation was applied, and the use of PlanetScope, RapidEye, and
Sentinel-2 satellite images for forest area and canopy cover estimation was evaluated. PlanetScope
and RapidEye images produced similar estimates for all of the study sites and all of the LULC classes.
Sentinel-2 image estimates varied significantly from the two other types of images in study sites with
relatively denser forest cover, but resulted in similar estimates in sites with less dense forests. In visual
image interpretation practices, very high-resolution images should be given priority. The choice of



Land 2018, 7, 92 150f 17

image type can be influenced by the condition of the forest on the ground as well as the costs of the
images. In case of using expensive and very high-resolution images, a sampling approach could reduce
the overall costs compared to wall-to-wall acquisitions. Furthermore, the precision of the estimate
is dependent on the sample size. Therefore, by taking the purpose of the assessment as well as the
available resources into account, one should aim for sample sizes that balance the inventory costs and
the required precision of an estimate.
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Key Message: Models for quantifying tree biometric properties, imperative for forest
management decisions-making, including height, diameter, bark thickness and volume were
developed, and wood basic density was documented for Dry Afromontane forests of south-

central Ethiopia.

Abstract

Tree biometric properties such as height (ht), diameter at breast height (dbh), bark thickness
(bt), volume and wood basic density (wbd) are imperative for forest management decisions-
making. For Dry Afromontane forests in south-central Ethiopia, models for quantifying such tree
properties are totally lacking. This study therefore aimed at developing models for ht based on
dbh, for dbh based on stump height diameter (dsh), for bt based on dbh, for volume based on
dbh, ht and crown width (crw), as well as documenting wbd data. Comprehensive and
representative datasets were collected from Degaga-Gambo and Wondo Genet forests. The ht,
dbh and bt modelling were based on 1345 sampled trees during forest inventories, while the
volume modelling and wbd documentation were based on 63 destructively sampled trees from
30 species covering 87% of the total basal area in the study sites. Weighted least squares
regression was applied for modelling and leave one out cross-validation was used for evaluation.
The ht-dbh and dbh-dsh models performed well (pseudo-R2? = 0.72 and 0.98), while bt-dbh
performed poorer (pseudo-R? = 0.42). Models for the total tree, merchantable stem and
branches volume were developed with different options for independent variables, where
pseudo-R? varied from 0.74 to 0.98, with smallest values for the branches models The models
may be applied to forests outside the present study sites provided that the growing conditions
are carefully evaluated. The species-wise wbd was ranging from 0.426-0.979 g cm3, with the
overall mean of 0.588 g cm-3. The wbd data will be useful for building up a national wbd database
and may also be included in the Global Wood Density database. The study represents a
significant step towards sustainable forest management including REDD+ MRV practices in the

Dry Afromontane forests of south-central Ethiopia.

Key words: Dry Afromontane forests, Height-diameter and bark models, Volume models, Wood

basic density



Introduction

Forest management decisions can be affected by the availability of relevant tree biometric
information. In the course of acquiring information for decision-making in the whole continuum
from single trees to forests, the use of appropriate models and data plays an immense role
(Vanclay 1994; van Laar and Akga 2007). The availability of tree biometric data like wood basic
density (wbd), tree height (ht), diameter at breast height (dbh), bark thickness (bt), volume and
biomass are critical for supporting forest management decision-making and reducing costs for
ground based forest resource assessment (van Laar and Ak¢a 2007; West 2009). Such data and
models are also the basis for assessing changes over time, which is linked to a successful
implementation of measurement reporting and verification (MRV) practices in reducing

emissions from deforestation and forest degradation (REDD+) programs (Penman et al. 2003).

Diameter at breast height and tree height are core variables describing trees. In the tropics, tree
height measurement is very challenging compared to dbh (Mokria et al. 2015). Hence, tree
height is mostly determined by means of models describing ht-dbh relationships (West 2009;
Mugasha et al. 2013; Mokria et al. 2015; Mugasha et al. 2019). To this line, studies have also
reported 10-30% errors in ht measurements in tropical forests (Larjavaara and Muller-Landau
2013). Hence, the presence of appropriate ht-dbh models may therefore reduce both the
inventory costs and the uncertainty in height estimates, especially in tropical forests with
complex tree architecture (Feldpausch et al. 2011). When assessing previous harvests or
damages in a forest, only stump diameter (dsh) can usually be measured. For such cases it is
therefore important to establish a dbh-dsh relationship, where dbh, and subsequently volume
or biomass can be estimated by measuring dsh only (Corral-Rivas et al. 2007; Ozgelik et al.
2010). Furthermore, quantifying bark thickness of trees by means of an established bt-dbh
relationship might be useful either to assess the volume of solid wood to be used for
construction materials or volume of bark to be used for energy purposes, spices or medicine

(van Laar and Ak¢a 2007; Kershaw et al. 2017).

Volume data are used to describe present forest resources, as a variable in growth and yield
models for predicting future growing stocks and impacts of harvest as well as to assist in
evaluating silvicultural practices (Vanclay 1994; Weiskittel et al. 2011). Volume data may also
be used to determine biomass using expansion and conversion factors (Lindner and Karjalainen
2007; Bollandsas et al. 2016). Models predicting volume of trees based on dbh, ht and other tree
properties measured in the field have been developed for decades. The development of such
models, however, continues to attract attention, because no single theory exists for developing
volume models that can be used satisfactorily for all tree species and forest types (Muhairwe

1999).



Wood basic density (g cm3) of trees, i.e. the ratio of oven dry mass to the green volume of the
wood (Williamson and Wiemann 2010), is the basis for characterizing tree species from a wood
utilization point of view (Chave et al. 2009; Missanjo and Matsumura 2016). Information on wbhd
may have management implications since larger wbd indicates better wood quality for fuel
(Githiomi and Kariuki 2010) and better resistance to severe abiotic disturbance factors (Chave
et al. 2009). Wood basic density may also be used to predict biomass either when using
allometric models (Chave et al. 2014; Njana et al. 2016) or along with biomass expansion factors
and volume data (Bollandsas et al. 2016). The magnitude of wbd is reported to vary with tree
height and age (Githiomi and Kariuki 2010), tree section (Njana et al. 2016; Tesfaye et al. 2019),
and between species, sites, and other environmental factors (Henry et al. 2010; Ubuy et al.

2018a).

The present study was conducted in Dry Afromontane forest, which is a dominant forest type in
Ethiopia (UN-REDD 2017). Dry Afromontane forests are characterized by high levels of
biodiversity and species endemism (Mittermeier et al. 2004; Friis et al. 2010) and are found in
most highland areas in north-central, central and south-central parts at elevations between
1500 and 3400 m. Having about 460 woody species recorded, the Dry Afromontane is the
second most diverse forest type in the country following the Acacia-Commiphora forest (Friis et
al. 2010). The upper canopy of the remaining patches of these forests are dominated by
Juniperus procera, Afrocarpus falcatus, Olea europaea, Croton macrostachyus and Ficus species,
while the middle and lower canopy are usually occupied by Allophylus abyssinicus, Apodytes
dimidiata, Bersama abyssinica, Cassipourea malosana, Celtis africana, Chionanthus mildbraedii,

and Dombeya torrida (Friis et al. 2010).

Forests in Ethiopia and their management have been given attention recently from different
stakeholders, mainly in line with the growing concern on climate change and its mitigation
issues (UN-REDD 2017). In response, the country is striving to improve its forest management
by implementing new approaches like Participatory Forest Management (PFM) (Lemenih et al.
2015), area exclosures (Lemenih and Kassa 2014), and REDD+ (UN-REDD 2017). Dry
Afromontane forests, like most other natural forest types in the country, have none or little
active management (Guillozet et al. 2014). However, recently, the longstanding concern that
such forests should be managed and used sustainably rather than mere protection is gaining
momentum, and thus some efforts to implement PFM regimes which integrate sustainable
timber harvesting have been seen (Lemenih et al. 2015; Ayele et al. 2018). This may provide
sufficient incentives and motivate to a better forest management scheme, as opposed to the

status-quo protection-oriented system, which favours illegal and uncontrolled harvests of



timber and other forest products (MEFCC 2018). The forest policy amendment in 2018 and the
development of guidelines for sustainable timber harvesting from forests under PFM (Ayele et

al. 2018) are steps forward towards a shift in management.

Models and data which are basic for informed decision-making and facilitating a shift in forest
management for Dry Afromontane forests in Ethiopia, however, are very scarce or totally
lacking. Kebede et al. (2013) and Wondrade et al. (2015), for example, spent much time
measuring both dbh and ht of all trees in their study area due to lack of any models describing
ht-dbh relationships. No studies have been found specifically dealing with the dbh-dsh
relationship, although several studies from natural forests in Ethiopia have used dsh instead of
dbh to estimate biomass (e.g. Mokria et al. 2018, Ubuy et al. 2018b). Except for Eriksson et al.
(2002), who partly dealt with bark from a fire resistance point of view, no studies have been
found quantifying bt of trees in Ethiopia. Despite having diverse forest types, models estimating
tree volume for natural forests in Ethiopia are lacking (Henry et al. 2011). In the literature we
found volume models only for plantations (Pohjonen 1991; Teshome 2005; Berhe 2009). Hence,
a general volume formula that uses tree basal area, ht and form factor (f) has been applied. Form
factor is a correction value that characterizes the shape of the tree stem and adjusts the assumed
cylindrical volume value to the actual stem volume (Laar and Akg¢a 2007). However, this
approach requires knowing species-specific f values, which are totally lacking for natural forests
in Ethiopia. Instead, a generalised f value of 0.5 is usually applied (Sisay et al. 2017). Despite the
importance of wbd in describing wood properties and the presence of the high number of tree
species as well as diverse environmental conditions in Ethiopia, only a limited number of wbhd
studies are found in the literature (Desalegn et al. 2012; Ubuy et al. 2018a; Tesfaye et al. 2019).
As aresult, biomass estimations in the Ethiopian forest reference level (FRL) report submitted
to the United Nations Framework Convention on Climate Change (UN-REDD 2017) were based
on wbd values obtained from the Global Wood Density (GWD) database (Chave et al. 2009;
Zanne et al. 2009), comprising very little data from Ethiopia.

The main objective of this study was therefore to provide models and data that can be used as
tools for quantifying biometric tree properties and facilitating a sustainable use of resources in
the Dry Afromontane forests of south-central Ethiopia. Specifically, the study aimed at i)
developing models for ht based on dbh, dbh based on dsh and bt based on dbh, ii) developing
models for merchantable stem, branches and total tree volume, and iii) determining and

documenting the wbd values and their variability for different tree species.



Materials and methods

Study sites

The study was conducted in Degaga-Gambo and Wondo Genet Dry Afromontane forests in
south-central Ethiopia (Fig. 1), situated along the eastern escarpment of the Great East African
Rift Valley. The sites receive a biannual rainfall with the short rainy season between March and
May and the main rainy season between July and September. The surrounding landscapes are
composed of mosaics of land use/land covers including plantations, woodlands, settlements and
water bodies. The sites are habitat for several wildlife species and source of several tributary
rivers. The vegetation at both sites are remnants of previously dense Dry Afromontane forests

(Friis et al. 2010).

In Degaga-Gambo, the district authorities simply conserve the natural forests, while maintaining
plantation forests of exotic tree species for economic wood production purposes. During the
forest inventory we observed many stumps from illegal harvesting in the natural forests.
Currently, there is an ongoing effort of transferring the natural forests into a PFM system as a
means to reduce deforestation and forest degradation in the area. Degaga-Gambo forest extends
from 38°45’ to 38°56’ E longitude and from 7°13’ to 7°33’ N latitude, with an area of 12580 ha.
The elevation ranges from about 2100 to 2700 m a.s.l. The mean annual rainfall and temperature
are 1245 mm and 14.9 °C, respectively. The soils are generally classified as Mollic Nitisols and
Humic Umbrisols, respectively, at lower and upper altitudes (Fritzsche et al. 2007). The Wondo
Genet site is under the concession areas of Wondo Genet College of Forestry and Natural
Resources, which gives the forest protection and guarding services against illegal logging and
fire incidences. The natural forest has no management plan, and no silvicultural interventions
are carried out except some occasional planting activities. It extends from 38°37’ to 38°39’ E
longitude and from 7°6’ to 7°7’ N latitude. The forest has an area of 390 ha with an altitudinal
range from about 1850 to 2400 m a.s.], and the soils are mainly classified as Mollic Andosols
(Erikson and Stern 1987). The mean annual rainfall and temperature are 1123 mm and 17.6 °C,

respectively.
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Fig. 1 Map of study sites; DG: Degaga-Gambo, WG: Wondo Genet

Data collection

Forest inventories

Forestinventories were carried out in 2018 to obtain information required for the tree selection
in the destructive sampling (e.g. Mauya et al. 2014). A systematic square grid was overlaid with
the sampling frame (map of the respective sites) that resulted in 65 and 42 sample plots for
Degaga-Gambo and Wondo Genet, respectively. Circular plots with a size of 1000 m2 and 400 m?
were used for the inventories in Degaga-Gambo and Wondo Genet, respectively. All trees in the
plot with dbh = 5 cm were identified by species and measured for dbh. Up to 10 trees were then
randomly sampled for each plot and measured for dsh (at 0.30 m above ground), ht, and bt (at
breast height). Where there were only 10 or less trees in the plot, all trees were measured for
dbh, dsh, ht and bt. For buttressed trees dsh was measured at the top of the buttress, and then
dbh measured 0.3 m above this point if the buttress extended beyond one meter (West 2009).
Tree diameters were measured using diameter tape or calliper, while ht was measured using a
Hagl6f VLS hypsometer. For the sample plots, 45 and 50 tree species were identified in Degaga-
Gambo and Wondo Genet, respectively, while in total there were 71 tree species. The maximum

dbh encountered was 270 cm for Degaga-Gambo and 197 cm for Wondo Genet. A total of 1345



sample trees representing 60 tree species were measured and used for modelling of ht, dbh and
bt. The mean (and range) values of these trees were 24.7 cm (5.0-270.0 cm), 20.9 cm (5.0-270.0
cm), 10.9 m (2.1-69.4 m) and 9.9 mm (2.0-50.0 mm) for dsh, dbh, ht and bt, respectively.

Selection of trees for destructive sampling

Based on the forest inventory data, a total of 63 trees representing 30 species (11 unique from
each site and eight common from both) were selected for destructive sampling (Tables 1, 8 in
Appendix). The dominant tree species, that constituted about 85% of the total basal area, were
first included into the sample proportional to their basal area. The remaining trees were
selected randomly among all species, meaning that 87% of the total basal area was represented
in the dataset. An effort was made to proportionally select the trees throughout the 11 diameter
classes considered from 5 cm to = 105 cm (i.e. 5-15, 15-25, ..., 2 105), as this will help to ensure
better and more stable models (Bollandsas et al. 2016). In addition, we tried to have a fair
representation of large trees (10 trees with dbh > 75 cm) to try to avoid extrapolation in model
applications (Bollandsas et al. 2016). Moreover, during destructive sampling, efforts were made
in the selection to represent the altitudinal variation and spatial coverage over both sites to

capture as much variability as possible in tree properties.

Before felling, we measured dbh over bark with a diameter tape or a calliper, depending on the
size and shape of the stem. Tree height was measured with Haglof VL5 hypsometer. In addition,
mean crown width (crw) was recorded by taking two measurements using a measuring tape,
one for maximum and one for minimum crown width. At the position of each tree, elevation (m),
slope (%) and aspect (N, E, S, W) were measured, and basal area (m? ha'') was determined by
means of relascope. Our hypotheses regarding wbd were that slope and basal area positively
affect wbd because of slower growth, while elevation negatively affects wbd because
precipitation increases with elevation and hence growth will be faster. In contrast, north and
south facing aspects affect wbd positively and negatively, respectively, because of slower and

faster growth.

Destructive sampling procedures

The selected trees were felled at stump height (0.3 m) using a chainsaw and each tree was sorted
into merchantable stem, branches, and leaves and twigs sections (Table 1). The main stem up to
the minimum useable top diameter (= 10 cm) was considered as merchantable stem. This cut
off point was applied since it has been practiced as a rule of thumb at the sawmill of Wondo
Genet College of Forestry and Natural Resources. However, trees with dbh < 15 cm were

included in the branches section since they are considered to have insignificant merchantable



value. As a result, the merchantable stem volume analysis was based on 45 out of the 63 trees
(Table 1). The branches section included the top log with diameter < 10 cm and all branches
with diameter = 2 cm. Twigs with diameter < 2 cm were set aside together with leaves for a
separate biomass study. The stem was crosscut into shorter logs (from 0.5 m to 2.5 m) to
facilitate the mid diameter and length measurement as well as to reduce taper effects. Similarly,
branches were cut into pieces mostly shorter than 2 m and measured for length and mid
diameter. The volume of each log was determined by multiplying the middle cross-sectional area
of the log by its length (e.g. Bollandsas et al. 2016). Tree merchantable stem volume (Vi) and
branches volume (Vi) were obtained by summing up volumes for all logs in each section,
respectively. Total tree volume (Vi) was determined by summarizing merchantable stem and

branches volumes (Table 1; Fig. 3 in appendix).

Table 1 Descriptive summary of destructively sampled trees

Both sites (n = 63) Degaga-Gambo (n = 32) Wondo Genet (n = 31)

Mean Range SD Mean Range SD Mean Range SD
dbh (cm) 378 7.0-106.5 29.9 37.4 7.0-105.5 30.0 383 8.0-106.5 30.3
ht (m) 17.9 5.2-38.8 9.1 17.6 5.4-36.0 8.9 18.2 5.2-38.8 9.4
crw (m) 8.4 2.4-239 5.0 7.9 2.3-20.0 4.7 89 2.4-239 5.3
Vior (m3) 3.066  0.014-22.537  5.230 2.897 0.014-17.252  4.918 3.242  0.031-22.537 5.611
Vins (m3) D 2.687  0.074-11.865  3.559 2.683  0.076-11.865  3.671 2.691  0.074-11.579  3.525
Vor (m3) 1.147  0.014-10.958  2.140 0.969 0.014-6.113 1.654 1332 0.031-10.958  2.564

1) Vs for trees with dbh = 15 cm only, n = 23, 22 and 45 for Degaga-Gambo, Wondo Genet and
both sites, respectively; SD = standard deviation

Sub-samples for wood basic density and laboratory work

For determining wbd, Chave et al. (2006) recommended collecting wood sub-samples from all
parts of the tree. Accordingly, for each tree we collected three wood discs from the stem (i.e. one
from breast height position, and one from each of the middle and upper parts) and three wood
discs from the branches (one disc at a random point from a small, medium and large branch,
respectively). The sizes of most discs were about 3-4 cm in length. For smaller trees with few
and small sized branches, only one sub-sample was collected for the branch section. For larger
trees, where it was not practical to take the whole wood disc, sub-samples were taken in such a
way that they represent both the sapwood and heartwood sections (Williamson and Wiemann
2010). In total, we collected 364 sub-samples of wood, which correspond to an average of 5.8
sub-samples per tree. All sub-samples were put in an airtight plastic bag and brought to a
laboratory, where green volumes were determined by the water displacement method after
peeling off the bark. Then the sub-samples were oven dried at a temperature of about 103 °C
until a constant mass was guaranteed by checking through recurrent measurements with a

sensitive digital balance. Often this was attained within 48 or 72 hours, depending on the size of



the sub-sample. Finally, wbd was determined as the ratio of dry mass (g) to the green volume

(cm3) for each sub-sample.

Data analyses

All data analyses were done with the R software (R Core Team 2019). The ‘nlstools’ package
(Baty et al. 2015) in the R software was used for non-linear regression. Model fitting and
performance evaluation were carried out based on two different datasets. To develop the ht-
dbh, dbh-dsh and bt-dbh relationships, we used the sample trees’ data (n=1345) from the
inventories. To develop models for Vie, Vms and Vi, and to document wbd values and their

variability, we used the destructively sampled trees (n=63).

For establishing the ht-dbh relationship five different non-linear models were tested. The data
were first divided randomly into equal sized training and test datasets. Models were fitted to the
training dataset, then applied on the test dataset for evaluation. Their performances were
assessed using root mean squared error (RMSE), mean prediction error (MPE) and pseudo-R?
(Eq. 7-11), where generally the smallest (close to zero) RMSE and MPE values and largest
pseudo-R? values (close to 1), indicating a better model fit (James et al. 2013). The best
performing model was finally recalibrated to the full dataset. The dbh-dsh and bt-dbh models

were developed in a similar way as ht-dbh model.

For volume modelling, the data were first visually explored by plotting volume against the
potential explanatory variables (Fig. 3 in appendix) to examine their functional relationships.
Several textbooks suggest the use of dbh and ht together or separately as independent variables
in volume modelling (e.g. West 2009; Kershaw et al. 2017). We were not able to find volume
models developed for natural forests in Ethiopia, hence potential models for further testing
were picked from the general literature (Schumacher and Hall 1933; van Laar and Ak¢a 2007;
West 2009) and from previous research on tree volume in natural forests in Tanzania (Mauya
et al. 2014; Mugasha et al. 2016) and Malawi (Kachamba and Eid 2016). In addition, we tested
two models for prediction of Vi, where crw was included as independent variable. The following

six models were tested;

Viotmspr = @ + b X (dbh)? )
Viotmsbr = @ X (dbh)P )
Viotmspr = @ X (dbh? X ht)® (3)
Viotms,br = @ X (dbh)® x (ht)® 4)
Vi = a X (dbh? x crw)P (5)
Vpr = a X (dbh)® x (crw)© (6)

where a, b, and c are model parameters.
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Weighted ordinary least square regression was applied for Model 1 and non-linear least square
regression for the remaining. Weights were applied to account for heteroscedasticity in the data,
i.e. non-constant variance of the residuals with increasing values of the response variable. This
is a common phenomenon that often occurs when modelling biological entities like trees (van
Laar and Ak¢a 2007; Zeng and Tang 2011). The error variances were inversely proportional to
the dbh?, and hence a weight of 1/(dbh*)2 was used, where w is the weighting factor. The initial
value for w was determined as explained in Picard et al. (2012), and finally after an iterative
procedure the value which resulted in the smallest possible prediction error was selected as
weighting factor. In addition, following recommendations by Kelly and Beltz (1987) for models
with dbh and ht as independent variables, a weighting factor of 1/(dbhwxht)? was tested, and
the obtained prediction error was compared with the prediction error of 1/(dbhw)2 Eventually,

the one with the smallest prediction error was used for weighting.

The basic requirement when testing the models was that all parameter estimates should be
significantly different from zero. For further evaluation of the model performances, a leave one
out cross-validation approach was applied (James et al. 2013), where one observation was put
aside as test data and the model fitted to all remaining observations (i.e. n -1, training data) and
then prediction was done on the test data (n=1) at a time. The procedure was repeated n times
until all observations in the data were tested. The residuals, difference between the observed
and predicted, were then used to calculate the performance indicators RMSE, RMSE%, MPE,
MPE% and pseudo-R? as shown in Eq. 7-11, respectively. Akaike information criterion (AIC)

was also computed.

RMSE = w )
RMSE

RMSE (%) = (F52) x 100 (8)

MPE = w )
MPE

MPE (%) = (*52) x 100 (10)

2 _q1_ (3R
pseudo —R* =1 (CSST) (11

where Y; and ?i are observed and predicted ht, dbh, bt or volume (either total, merchantable
stem or branch) of observation i respectively; Y is mean observed ht, dbh, bt or volume (either
total, merchantable or branch); SSR is sum of squared residuals; and CSST is corrected total sum

of squares.
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We also investigated consequences of using form factors in determining total volume by means

of Eq. 12;

Viot = 8 X ht X f0.5,mean,pred (12)

where g is the basal area of a tree calculated using dbh; fos, fnean and fyreq are different form
factors. We first applied the frequently used form factor of 0.5 (fo.5) and the mean form factor
observed in our data (fmean). The fmean is the average of all observed form factors calculated as
the ratio of observed total volume and the volume of a cylinder with a diameter dbh and length
of ht. In addition, we wanted to test the application of a predicted form factor (fyreq) for each tree
by fitting a model based on dbh and ht (Tenzin et al. 2016) to the observed form factors in our
data. However, this approach failed because of insignificant parameter estimates in the model.
Finally, since no previously developed relevant volume models exist for Ethiopia, the
performance of some previously developed models for natural forests elsewhere in east-Africa

(Mauya et al. 2014; Kachamba and Eid 2016; Mugasha et al. 2016) were tested on our dataset.

The wbd values obtained from stem and branch sub-samples were averaged to get mean stem
and branch wbd. These mean values were further aggregated by weighting them by their
respective volumes to obtain a volume weighted wbd at tree and species level. The wbd data
were organized and summarized using descriptive statistics. In addition, analysis of variance
was carried out to assess the presence of significant variations in wbd among the tree species
and between the sites. Differences among stem sections (breast height, middle and upper stem
positions) and branch sizes (big, mid and small branch) for wbd were also tested by means of
analysis of variance. Furthermore, pair-wise t-tests were applied to determine if there were
significant wbd differences between stems, branches, values at breast height and volume
weighted means. As whd is expected to vary depending on growing conditions we fitted a linear
regression to explore effects of elevation (m), slope (%), aspect (N, E, S, W) and basal area (m?

ha1) on wbd variations.

12



Results

The model parameters and model performance indicators for the relationships between ht-dbh,
dbh-dsh and bt-dbh are shown in Table 2. The ht-dbh relationship was relatively strong
(pseudo-R2 = 0.72). A very strong dbh-dsh relationship was found (pseudo-R2 = 0.98) while the
bt-dbh relationship was weaker. Generally, none of the MPEs for the models were significantly

different from zero.

The model parameters and performance indicators for the general total (GT), merchantable
stem (GMS) and branch (GB) volume models are shown in Table 3. The pseudo-R? of the total
volume and merchantable stem volume models varied between 0.93-0.95 and 0.96-0.98,
respectively. Moreover, none of these models had MPEs significantly different from zero and all
had significant model parameters. For total volume, Model GT2 performed best (pseudo-R2 =
0.95, RMSE = 37.4%) for the models with only dbh as independent variable, while Model GT3
performed best (pseudo-R2 = 0.95, RMSE = 37.7%) for the models with both dbh and ht as
independent variables. Likewise, for merchantable stem volume, Model GMS2 and GMS4 with
dbh only and with dbh and ht independent variables, respectively, were performing best
regarding pseudo-R? and RMSE. In general, the addition of ht into the total and merchantable
stem volume models did not improve the performance indicators. The branch volume models in
general had larger RMSEs compared to the total and merchantable stem volume models. For the
models with dbh only as independent variable, Model GB2 was found to perform best (pseudo-
R2 = 0.74, and RMSE = 94.1%). Models with dbh and ht predictor variables either had poorer
performance (Model GB3) or insignificant parameter estimates (Model GB4). Inclusion of crw
instead of ht reduced the RMSEs to some extent. For the models with dbh and crw as
independent variables, Model GB6 was found to perform best (pseudo-RZz = 0.89, RMSE =

62.2%). None of the branch volume models had MPEs significantly different from zero.

Site-specific total volume models for Degaga-Gambo (DT) and Wondo Genet (WT) were also
developed (Table 4). As for the general total volume models, Model DT2 and WT2 were found
to be the best among models with dbh only in both sites Degaga-Gambo (pseudo-R2z =0.99, RMSE
=19.3%) and Wondo Genet (pseudo-R2 = 0.91, RMSE = 51.4%) respectively. Inclusion of ht into
the models improved performance marginally for Degaga-Gambo, but not for Wondo Genet. All
the models for Degaga-Gambo performed better than the corresponding models in Wondo
Genet. We also tested the general Model GT2 on the specific data from the two sites, but MPE

was not significantly different from zero for any of them.
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Table 5 shows the results when testing the use of form factor approach and the previously
developed models to predict total volume for our data. With fys, total volume is significantly (p
> 0.05) underpredicted (16.1%), while when applying funean (0.64), volume tended to be
overpredicted, although not significantly. Generally, the previously developed models over- or
underpredict volume, although the difference between observed and predicted volume is not
significantly different from zero when applying the models developed by Mauya et al. (2014)
and Mugasha et al. (2016) with both dbh and ht as independent variables. Figure 2 illustrates
how all the models developed by Mauya et al. (2014), Kachamba and Eid (2016) and Mugasha
et al. (2016), using only dbh as independent variable underpredicted volume consistently for
medium and larger dbh sizes as compared to the corresponding model developed in the present

study (Model GT2, Table 3).

Table 5 Testing the use of form factor and previously developed models for predicting total tree

volume from our data

Predicted RMSE MPE

Model type

volume (m?) (m3) (%) (m3) (%)
fos 2.574 1.423 46.4 0.493** 16.1
fmean (0.64) 3.296 1.169 38.1 -0.229 -7.5
Mauya et al. (2014): dbh only 2.727 1.264 41.2 0.339* 11.1
Kachamba and Eid (2016): dbh only 2.675 1.655 54.0 0.391 12.8
Mugasha et al. (2016): dbh only 2.318 2.214 72.2 0.749** 24.4
Mauya et al. (2014): dbh and ht 3.081 1.020 333 -0.015 -0.5
Kachamba and Eid (2016): dbh and ht 4.103 1.957 63.8  -1.036*** -33.8
Mugasha et al. (2016): dbh and ht 2.870 1.073 35.0 0.196 6.4
Current study (GT2) 3.030 1.021 33.3 0.006 0.2

n = 63; observed total volume is 3.066 m3; * p < 0.05, ** p < 0.01, *** p < 0.001
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Fig. 2 Relationship of tree diameter against predicted total volume of selected previous models
and the current study (Model GT2). Vertical lines indicate the maximum dbh used in the studies
by Mauya et al. (2014), the current study, and Kachamba and Eid (2016), respectively

Volume weighted wbd values for 30 different tree species are documented in Table 6. The
species-wise overall volume weighted mean (n=30 species) wbd was 0.588 g cm-3 and ranged
between 0.426 and 0.979 g cm3. At individual tree level (n=63), the overall volume weighted
mean wbd was 0.553 g cm-3 and ranged between 0.380 - 0.979 g cm=3. Among the species, T.
nobilis, D. angustifolia and O. capensis were found to be the top three with the largest wbd values
0f0.979, 0.816, and 0.779 g cm-3, respectively; while A. falcatus, P. viridiflorum and V. amygdalina
were the three species with the smallest wbd values with 0.426, 0.441 and 0.457 g cm3,

respectively.

Analysis of variance revealed that wbd values were significantly different (p < 0.001) among the
tree species, while they were not significantly different (p > 0.05) between sites. In addition,
analyses showed that there were no significant differences in wbd among the three samples
collected from the stem sections (at breast height, at midpoint and at upper part) or among the
three branch sizes (small, medium and large branches). The species-wise overall mean wbd for
samples from stem, branch, and breast height position were also determined, and found to be
0.590, 0.589 and 0.576 g cm3, respectively (Table 8 in Appendix); and analyses of variance
revealed no significant differences between these means (p > 0.05).
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Table 6 Mean and range of volume weighted wbd values by tree species

No. of wbd (g cm3)
Scientific name sample Mean Range
trees

0.621

0.426  0.401-0.480
0.534  0.499-0.598
0.509  0.509 - 0.515

Acokanthera schimperi (A. DC.) Schweinf.
Afrocarpus falcatus (Thumb.) Mirb.
Albizia gummifera (J.F.Gmel.) C. A. Sm.
Allophylus abyssinicus Radlk.

Apodytes dimidiata E. Mey ex Am. 0.556
Bersama abyssinica Fresen. 0.576
Canthium oligocarpum Hiern 0.473

0.663  0.605-0.683
0.631  0.615-0.658

Cassipourea malosana Alston
Celtis africana Burm. F.

Combretum molle R. Br. ex. G. Don 0.701
Croton macrostachyus Hochst. ex. Delile. 0.511 0.430-0.521
Dodonaea angustifolia L. f. 0.816
Ekebergia capensis Sparm. 0.532
Ficus thonningii Blume 0.471
Galiniera coffeoides Delile 0.563

0.483  0.457-0.536
0.615 0.615-0.622
0.550  0.380-0.554
0.537  0.498 - 0.603

Maesa lanceolata Forssk.

Maytenus arbutifolia (Hochst. ex. A. Rich) R. Wilczek
Millettia ferruginea Hochst

Nuxia congesta R. Br.

Olea capensis L. 0.779
Olea welwitschii (Knobl.) Gilg. & Schellenb. 0.700
Olinia rochetiana A. Juss. 0.544
Osyris quadripartita Salzam. ex Decne. 0.690
Pittosporum viridiflorum Sims 0.441

0.460  0.458-0.567
0.609  0.608-0.615
0.580 0.579-0.590

Pouteria adolfi-friedericii (Engl.) Baehni
Prunus africana (Hook.f.) Kalkman
Syzygium guineense (Willd.) DC.

R R R NWRARRRRRNNANWRRRRLBURUNRRRRNWO R

Teclea nobilis Delile 0.979
Vepris dainellii (Pic. Serm.) Kokwaro 0.631
Vernonia amygdalina Del 0.457

The outputs from regression analysis of wbd against variables describing growing conditions
revealed non-significant parameter estimates for all the tested variables (Table 7) and a very
small value of coefficient of determination. Still, when considering the signs of the parameter
estimates, wbd was negatively influenced by elevation and basal area but positively influenced
by slope. Concerning aspect, trees facing to the south tend to have higher wbd than the trees

facing north.

Table 7 Parameter estimates and p-values from linear regression analysis of wbd as a

dependent variable and some growing factors as independent variables

Parameters p-value
Intercept 0.762300 <0.0000
Elevation (m) -0.000103 0.1950
Slope (%) 0.000317 0.7960
Basal area (m? ha'1) -0.000262 0.9030
Aspect (South) 0.009509 0.7730
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Discussion

Models for tree biometric properties

The present study reported multi-species ht-dbh, dbh-dsh and bt-dbh models (Table 2), based
on 1345 trees and 60 tree species, representing the study Dry Afromontane forests. Our ht-dbh
model explained about 72% of the variation in ht, which is similar to models developed for four
different natural forest types in Tanzania (Mugasha et al. 2013). Tree height measurement is
challenging and susceptible to errors in tropical forests with complex tree architecture. Thus,
the presence of local ht-dbh models may play a considerable role in reducing measurement

errors (Larjavaara and Muller-Landau 2013; Mugasha et al. 2019).

The dbh-dsh model explained 98% of the variance. Similarly, other studies have reported strong
dbh-dsh relationship (Corral-Rivas et al. 2007; Ozcelik et al. 2010). This indicates that the model
is important for volume or biomass quantification, particularly where there is only dsh data.
More importantly, the model is helpful to estimate the magnitude of forest degradation and
carbon loss from remaining stumps, which is presently a challenge in REDD+ MRV practices

(UN-REDD 2017).

The bt-dbh model explained only 42% of the variation in bt. The model has a larger RMSE (49%)
than some similar previously developed models, e.g. by Zeibig-Kichas et al. (2016) in the USA
(RMSE of about 25%), but the MPE was not significantly different from zero, indicating that the
model has an appropriate behaviour. Although some uncertainty will be involved in application
due to the large RMSE, the model can be used for predicting bt at breast height, which may be
useful in itself. Based on the bt predicted from the model, it is also possible indirectly to quantify
tree properties relevant to forest management, such as volume of solid wood and volume of bark

(van Laar and Ak¢a 2007; Kershaw et al. 2017).

Tree and forest volume may be used for planning and monitoring of forest management
practices (West 2009). Merchantable stem volume is needed to evaluate trees from a timber
production perspective, but may also be useful when determining compensations for timber loss
due to several reasons such as road construction (Melemez 2012). Branch volume estimates,
particularly for big trees that have been used for timber production, maybe useful to estimate
fuelwood quantities. Thus, our models remain crucial for the aspired sustainable utilization of

the natural forests in Ethiopia (Ayele et al. 2018).

Generally, the total tree volume models explained about 93 - 95% of the variation in volume

(Table 3). Model GTZ, with dbh only as independent variable performed better than the other

19



models, i.e. Model GT3 with dbh and ht as independent variables revealed a marginally larger
RMSE than Model GT2. The same applies to the merchantable stem volume models, i.e. Model
GMS2 with dbh only and Model GMS4 with both dbh and ht, where the differences in RMSE again
were marginal. The fact that inclusion of ht in the models revealed none or marginal
improvements, conforms with studies in natural forest elsewhere in eastern Africa (e.g. Mauya
et al. 2014; Mugasha et al. 2016). The branch volume models generally exhibited poorer
performance than the total and merchantable stem volume models. Among the six branch
volume models, Model GB2 with dbh and Model GB6 with dbh and crw had significant model
parameters and the smallest MPE with pseudo-R? of 0.74 and 0.89, respectively. The relatively
poor performance of the branch volume models might be attributed to the different branching
habits of the different species. Similar findings regarding poor performance of branch volume

models are also previously reported (Mauya et al. 2014; Kachamba and Eid 2016).

We also developed site-specific total volume models for Degaga-Gambo and Wondo Genet
(Table 4). Site-specific models usually provide more accurate site-specific results than general
models developed with data from multiple sites (Penman et al. 2003). Accordingly, we
recommend the site-specific models to be applied for their respective sites. Furthermore, we
recommend to use Models DT2 and DT4 for Degaga-Gambo and Models WT2 and WT3 for
Wondo Genet with dbh only and with dbh and ht entries, respectively, depending on the

availability of data.

No previous volume models have been developed in Ethiopia, neither for Dry Afromontane
forests in particular, nor in general for natural forests. When applying the most relevant volume
models from elsewhere in eastern Africa (Mauya et al. 2014; Kachamba and Eid 2016; Mugasha
etal. 2016) on our data, the results showed that the MPEs in many cases were quite large (Table
5; Fig. 2). This is not surprising since these models were applied outside the ecological range
they are developed for. Form factor fy5, along with dbh and ht, is often used in Ethiopia to
determine tree volume (e.g. Sisay et al. 2017). Our result on the use of fo5 and fyean sShowed that
both form factors produced large MPEs, although the use of fnean performed relatively better
(Table 5). A study in Tanzania (Masota et al. 2014) conforms with our results, while a study in
India (Adekunle et al. 2013) found volume estimates using mean form factors similar to
estimates using volume models. However, in our case the use of form factors should be avoided

since the models provide much better results.

Since no other appropriate options exist, we recommend the general models developed in this

study also to be applied for Dry Afromontane forests elsewhere in the country. The fact that the
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test of the general Model GT2 on data from the two specific sites did not reveal significant MPEs
for any of the sites, is also indicating that this could be a viable option. Still, however, it is
important to carefully evaluate species composition, and growing conditions related to altitude,
rainfall, temperature and edaphic factors before utilizing our models. We also recommend
applying Models GT2, GMS2 and GB2, based on only dbh as independent variable, in volume
predictions for total, merchantable stem and branch, respectively. This will provide reasonably
accurate predictions, and since these models do not require ht data, the inventory costs will be
reduced. However, it is important to note that for branch volume, more accurate predictions can

be made using Model GB6 if crw data are available besides dbh.

Wood basic density data

The wbd data of this study (Table 6) together with data from other studies (e.g. Ubuy et al.
2018a; Tesfaye et al. 2019) will help to develop a national wbd database for Ethiopia. Wood
basic density data for 420 tree species have previously been compiled in Ethiopia’s FRL report
(UN-REDD 2017), but only a few of the wbd values were based on data from Ethiopia. The
remaining were obtained mainly from the GWD database. In addition, the locally determined
wbd values in the national database were determined at air dry basis (Desalegn et al. 2012),
which means that some distortion may occur when converting them into oven dry basis
(Vieilledent et al. 2018). Among the locally determined wbd values in the national database, we
noted that for the 12 species also found in our study sites, they all had larger values as compared
to our values. We have also recognized that 11 of the species in our list were not included in the
GWD database (Chave et al. 2009; Zanne et al. 2009). Since our procedure in wbd determination
is congruent with the requirement stated by Chave et al. (2006) and Williamson and Wiemann
(2010), there is a possibility to incorporate the new Ethiopian wbd values into the GWD

database.

The wbd values in our study varied significantly among species. The same was reported in some
previous studies in Ethiopia (Ubuy et al. 2018a; Tesfaye et al. 2019). It is so because all species
have inherent genetic makeup that governs its characteristics (Chave et al. 2006). Interestingly,
there was no significant difference between our two sites in terms of mean wbd; perhaps due to
the fact that they both belong to the same forest type. This is in fact a good indication that the
wbd values also can be applied elsewhere in a similar forest type. This can be further
consolidated by comparing wbd of two species A. abyssinicus (0.510 g cm3) and O. rochetiana
(0.560 g cm3) from Tesfaye et al. (2019), a study conducted in a Dry Afromontane forest of
central Ethiopia, with our findings that happened to be quite similar (i.e. 0.509 and 0.544 g cm-

3, respectively). On the other hand, when comparing the wbd of seven common species from
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Ubuy et al. (2018a), the values were generally larger than ours and the differences ranged from
0.001 to 0.218 g cm-3. Although some studies (e.g. Chave et al. 2009; Tesfaye et al. 2019) stated
that wbd varies along the stem, we did not find any significant wbd differences along the stems,
or among different branch sizes. Similarly, the overall stem and branch wbd values were not
significantly different. This finding was contrary to some studies (e.g. Okai et al. 2003), while

being in agreement with others (e.g. Swenson and Enquist 2008).

Many previous studies have found that wbd is influenced by growing conditions (e.g. Muller-
Landau 2004; Ubuy et al. 2018a). In our study, no significant parameter estimates were found
when we tested a few variables describing growing conditions by means of regression analysis
(Table 7). Still, the signs of the parameter estimates might provide an indication of the effects.
Elevation, for example, influenced wbd negatively. This confirms our hypothesis that both
precipitation and growth will increase with elevation, and accordingly wbd will be smaller. Such
a result is also in agreement with previous findings (Chave et al. 2006). Similarly, the effect of
slope confirms our hypothesis, because increasing slope inclination might be associated with
moisture stress, as water drains quickly, leading to slow growth and higher wbd. A similar
finding was reported by Barij et al. (2007). Furthermore, we hypothesized that as basal area
increases, the competition among trees becomes more intense, leading to slower growth and
higher wbd. The results from the analyses, however, showed an opposite effect. Similarly, the
result derived from the effect of aspect was the opposite of our hypothesis since trees on south
facing slopes tended to have higher wbd than trees on north facing slopes. This could be due to
more moisture stress due to higher evapotranspiration caused by longer exposure to sunlight
for south facing slopes, implying slow growth, but denser wood. The work by Diaconu et al.

(2016) also showed that south-west facing trees tend to have larger wbd.

Conclusions

This study provided the first comprehensive biometric datasets and models that can be used
when working towards sustainable forest management including REDD+ MRV practices in the
Dry Afromontane forests of south-central Ethiopia. Applying the ht-dbh model may have dual
advantages of obtaining accurate ht estimates and of reducing costs in ht measurements while
the dbh-dsh model may significantly contribute to estimation of biomass loss from forest
degradation. The volume models are the first ones developed based on destructive sampling for
natural forests in Ethiopia and facilitate a significant step forward for the management. The
models may also be applied to Dry Afromontane forest areas outside the present study sites. It
is, however, important to carefully evaluate the growing conditions in such areas before model

application. The documented wbd data were based on a robust sampling scheme that
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represented the whole tree. The absence of significant differences between the two sites in
terms of wbhd, and comparisons with findings from other studies indicate that the wbd data are
applicable to other Dry Afromontane forests as well. The wbd data from the present study will
be useful for building up a national wbd database and may potentially also be included in the

GWD database.
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Fig. 3 Scatter plot of total volume against dbh (left) and ht (right) panel for both study sites,
Degaga-Gambo and Wondo Genet (from top to bottom)
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Biomass of trees may be predicted either directly applying allometric models or indirectly from volume and
biomass expansion factors (BEFs). For the Dry Afromontane forests, the second largest biomass pool in Ethiopia,
such methods are not devised and properly documented. The main objective of this study was to explore dif-
ferent aboveground tree biomass prediction options based on destructively sampled tree biomass data. We ex-
plored the direct method by means of 1) new mixed-species general biomass models developed in the present
study, and 2) some previously developed models including the pan-tropical models, and the indirect method by
means of 3) volume and BEFs. From two sites in south-central Ethiopia, based on information from systematic
sample plot inventories, 63 trees from 30 different species that contributed about 87% to the total forest basal
area, were destructively sampled. Weighted nonlinear regression was applied to fit new models and their per-
formance was assessed using root mean squared error (RMSE, %), mean prediction error (MPE, %) and pseudo-
R? based on leave-one-out-cross-validation. Previously developed models and the indirect method were also
evaluated by means of RMSE and MPE. The new general total biomass models performed well with pseudo-R*
ranging between 0.87 and 0.96 and are presented along with covariance matrices for the parameter estimates
enabling error propagation in biomass estimation. Most previously developed models resulted in significant
MPEs up to 78%, while the best pan-tropical model performed much better with an MPE of about 7%. The
indirect method also showed poor performance with MPEs ranging between 5% and 30%. Generally, the new
models are accurate and flexible, thus, preferred over all previously developed models and the indirect method
for application. However, their application to Dry Afromontane forests outside the study sites should be made
only after thoroughly evaluating growing conditions and species composition. The results are step forward to
enhance decisions made towards sustainable forest management including the REDD + implementation for Dry
Afromontane forests in Ethiopia.

1. Introduction

Forests are biologically rich and diverse ecosystems and cover about
one third (30.6%) of the global land area (FAO, 2016). Forests are
sources of livelihoods to millions of people and contribute to economic
development in many countries. In addition, by being sources and sinks
of carbon, forests influence the magnitude and rate of climate change
(Brown, 2002; Agrawal et al., 2011; Kohl et al., 2015). Tropical forests
are particularly important as they store 55% of the carbon accumulated
in the global forest ecosystems, out of which 56% is found in the live
tree biomass (Pan et al., 2011). Despite their ecological and socio-
economic significance, tropical forests have been under severe chal-
lenges due to deforestation and forest degradation (e.g. Gibbs et al.,

2010; FAO, 2016).

Forests in Ethiopia have also experienced deforestation and forest
degradation over the last century (McCann, 1997). The major natural
forest types in Ethiopia include Dry Afromontane forests, which is the
focus of the present study, Moist Afromontane forests, Acacia-Commi-
phora forests and Combretum-Terminalia forests (UN-REDD, 2017). The
Dry Afromontane forests of sub-Saharan Africa have been deforested
and degraded heavily over many years due to an increasing population
accompanied by high demands of wood for fuel and farmland for food
production (Chidumayo and Marunda, 2010). The Dry Afromontane
forests of Ethiopia, which also are heavily degraded (MEFCC, 2018a),
are distributed over north-central, central and south-central parts of the
country, mostly between altitudinal ranges from 1500 to 3400 m a.s.l.
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They are the second largest harbour of aboveground biomass in the
country (UN-REDD, 2017), and most diverse next to Acacia-Commiphora
forests, with Juniperus procera, Afrocarpus falcatus, Olea europaea, Croton
macrostachyus and Ficus species dominating in the upper canopy and
Allophylus abyssinicus, Apodytes dimidiala, Bersama abyssinica, Cassi-
pourea malosana, Celtis africana, Chionanthus mildbraedii and Dombeya
torrida dominating in the middle and lower canopies (Friis et al., 2010).

Management and utilization of natural forests in Ethiopia in gen-
eral, and of Dry Afromontane forests in particular, have been given
little attention in the past, except for mere protection measures.
Recently, however, the issue of sustainable forest utilization has been
raised (Lemenih et al., 2015; MEFCC, 2018a). Various approaches such
as participatory forest management, establishment of biosphere re-
serves and exclosures, as well as carbon financed projects such as clean
development mechanisms and reducing emissions from deforestation
and forest degradation (REDD +) mechanism have been implemented
for enhancing sustainable management of natural forests in the country
(Winberg, 2011; Lemenih and Kassa, 2014; NABU, 2017; UN-REDD,
2017).

In line with climate change and subsequent efforts to mitigate that,
accurate biomass estimation methods have become a concern of the
global community (e.g. Brown, 2002; IPCC, 2006; Temesgen et al.,
2015). Aboveground tree biomass, i.e. the dry weight of the whole
aboveground part of a tree or its sections (stem, branch, and foliage),
and then of that of a forest per unit area, are information often used in
forestry as an input for forest management decisions (e.g. Burkhart and
Tomé, 2012). Information on biomass can be used to understand how
tree growth occur by producing biomass through photosynthesis, to
quantify products such as wood for fuel or pulp and to determine how
much carbon is sequestered in forests as a result of trees taking carbon
dioxide from the atmosphere (Kohl et al., 2006; West, 2015). In-
formation for section biomass, such as branch and foliage, are also
important to assess the potential availability for extraction of fuelwood
and fodder products (Brown, 1997; Balehegn et al., 2012; Burkhart and
Tomé, 2012).

The biomass of a tree may be directly predicted by applying allo-
metric models based on easily measured tree variables or indirectly
using a biomass expansion factor (BEF) to convert tree volume into tree
biomass (Brown, 1997). Allometric biomass prediction models are
usually developed by regressing tree variables such as diameter at
breast height (dbh), total tree height (ht) and other tree variables with
observed tree biomass based on destructive sampling (e.g. Brown, 1997;
Chave et al., 2005, 2014; Bollandsas et al., 2016). Such models can be
developed for a single species or a mixture of species as well as for one
site and multiple sites. Species-specific biomass models are preferred for
their accurate prediction for that given species, but they are constrained
by the narrow range of application due to the large number of species in
tropical forests (Penman et al., 2003; Gibbs et al., 2007; Picard et al.,
2012). Many mixed-species biomass models have therefore been de-
veloped for tropical forests, among these are the pan-tropical models by
Brown (1997) and Chave et al. (2005, 2014), which are based on
comprehensive datasets collected throughout the tropical region. Since
the pan-tropical models developed by Chave et al. (2005, 2014) offer
the opportunity of application over large areas and different forest
types, there are many examples where they have been tested on local
data from destructive sampling in sub-Saharan African (viz. Afro-
tropics) natural forests. A number of such tests, for example in miombo
woodlands (Mugasha et al., 2013), dry forests (Vieilledent et al., 2012;
Tetemke et al., 2019) and moist forests (Vieilledent et al., 2012; Fayolle
et al., 2013, 2018), have shown that the models are almost as good as
the local ones, but there are also several cases where large prediction
errors have been detected, for example Mugasha et al. (2013) and
Kachamba et al. (2016) in miombo woodlands, Tesfaye et al. (2016)
and Ubuy et al. (2018) in dry forests, and Ngomanda et al. (2014) and
Lisboa et al. (2018) in moist forests.

The Intergovernmental Panel on Climate Change (IPCC) requires
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uncertainties to be identified, documented and reported along with
biomass and carbon stock estimates when reporting under the REDD +
mechanism (IPCC, 2014). Uncertainties in biomass estimation can
among others arise due to measurements of individual tree properties
(e.g. dbh and ht), sample plot design (e.g. number, size and distribution
of plots), applied remote sensing platform and methods, and biomass
model application (e.g. Chave et al., 2004; Clark and Kellner, 2012;
Mavouroulou et al., 2014; Nasset et al., 2016). The uncertainty related
to biomass model application in this context could be due to model
misspecifications, residual variability and uncertainty in the model
parameter estimates (e.g. McRoberts and Westfall, 2013; Mavouroulou
et al., 2014; Magnussen and Negrete, 2015). The uncertainty in the
model parameter estimates, which can be documented by means of the
covariance structure of the parameter estimates of the developed
models, has large influence on the uncertainty, but are seldom reported
(Breidenbach et al., 2014; Magnussen and Negrete, 2015). A necessary
step forward to be able to propagate the totality of the uncertainty in
biomass estimation is therefore to document this when developing new
models. To our knowledge, the biomass models developed by
Kachamba et al. (2016) are the only ones from east-Africa where this
has been done.

In the indirect biomass prediction method, wood basic density
(wbd) and BEF are used to convert volume into biomass. The biomass
expansion factor, which is unitless, is usually determined as the ratio of
biomass for the whole tree (kg) to stem volume (m?®) multiplied with the
wbd (kg m™2) of the stem (Brown, 1997; IPCC, 2006; Hewson et al.,
2014). Both total stem volume (Nogueira et al., 2008; Petersson et al.,
2012; Magalhies and Seifert, 2015a) and merchantable stem volume
(Brown, 2002; Magalhdes and Seifert, 2015a, 2015b; Njana, 2017;
Lisboa et al., 2018) have been used to calibrate BEFs. Since the appli-
cation of the indirect biomass prediction method relies on BEFs not
directly measured in ordinary forest inventories, the uncertainties in
biomass estimation for this method, as compared to the direct method
using allometric biomass models, have been the concern of several
authors (Petersson et al., 2012; Magalhaes and Seifert, 2015a, 2015b;
Njana, 2017).

A review by Henry et al. (2011) on biomass models in sub-Saharan
Africa showed that most of the available models in Ethiopia are limited
to a few Eucalyptus species in plantations, while about 98% of the
species were uncovered. Recently some species-specific models for
natural forests have been developed (e.g. Tesfaye et al., 2016; Kebede
and Soromessa, 2018; Daba and Soromessa, 2019). A few mixed-species
general biomass models also exist in some parts of the country and
forest conditions (Eshete and Stahl, 1998; Mokria et al., 2018; Ubuy
et al.,, 2018). There are no mixed-species models for the Dry Afro-
montane forests in general, except the very recently published models
by Tetemke et al. (2019) in northern Ethiopia. As a result, pan-tropical
models (Brown, 1997; Chave et al., 2005, 2014) have been commonly
used (e.g. MEFCC, 2018b; Gebeyehu et al., 2019). It is also worth
mentioning that the implementation of the REDD+ programme in
Ethiopia is in progress and that the country has submitted its first forest
reference level report to the United Nations Framework Convention on
Climate Change (UN-REDD, 2017). This report recommends the pan-
tropical biomass model developed by Chave et al. (2014) to be applied
across all forest types due to lack of existing biomass models in the
country.

The main objective of this study was therefore to explore different
aboveground tree biomass prediction options for Dry Afromontane
forests in south-central Ethiopia. The options considered were; using
the direct method by means of 1) new mixed-species general biomass
models developed in the present study, and 2) some previously devel-
oped models including the pan-tropical models, and using the indirect
method by means of 3) volume and expansion factors. The performance
of the all three options were evaluated using root mean squared error
and mean prediction error derived from destructively sampled tree
biomass data. New mixed-species general tree section biomass models
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Fig. 1. Map of the study sites; (A) location of the study sites in Ethiopia; (B) Deggaga-Gambo site; and (C) Wondo Genet site. In both sites, areas outside the natural
forests (grey) are mosaics of plantations, cropland, grassland and settlement land cover types.

were also developed. The developed general aboveground biomass
models were accompanied by information on the covariance structure
of the parameter estimates.

2. Materials and methods
2.1. Study sites

Degaga-Gambo and Wondo Genet forest sites were chosen to re-
present the Dry Afromontane forests in south-central Ethiopia (Fig. 1).
These forests are remnants from extensive montane forests in the
highlands of north-central, central and south-central parts of the
country (Friis et al., 2010). The standing scattered big trees on the
surrounding farmlands indicate the severity of the deforestation hap-
pened in the past. There is still a continued pressure on the forests
manifested in different ways; clearing trees for farmland; illegal logging
for lumber processing and extraction of wood for fuel. Forest fire is also
a common phenomenon, particularly in Wondo Genet. Despite all the
pressures, the forests serve as source of food, fodder and water sup-
porting numerous people in the surrounding and downstream areas.
Both sites have a bimodal rainfall with the short rainy season between
March and May and the main rainy season between July and Sep-
tember.

Degaga-Gambo is located in the Oromia regional state about 240 km
south of Addis Ababa and belongs to the state-owned Oromia Forest and
Wildlife Enterprise. The forest area considered for this study extends
longitudinally from 38°45’ to 38°56” E and latitudinally from 7°13” to
7°33’ N, with an area of about 12580 ha. As it is located along the
eastern escarpment of the main Ethiopian Rift Valley the elevation
ranges from about 2100 to 2700 m.a.s.l. Based on climate data regis-
tered at a station inside the forest in the period 2001 to 2011, the mean
annual rainfall and temperature were 1245 mm and 14.9 °C, respec-
tively. The soils are generally classified as Mollic Nitisols and Humic
Umbrisols, respectively, at lower (2300 m) and upper (2600 m) parts of
the forest (Fritzsche et al., 2007).

Wondo Genet is located about 270 km south of Addis Ababa, and
extends longitudinally from 38°37’ to 38°39” E and latitudinally from
7°6” to 7°7’ N. The forest covers an area of about 390 ha with an alti-
tudinal range from about 1850 to 2400 m.a.s.l. The mean annual
rainfall and temperature are 1123 mm and 17.6 °C, respectively. The
soils are mainly classified as Mollic Andosols (Erikson and Stern, 1987).
The forest is managed by Wondo Genet College of Forestry and Natural
Resources.

2.2. Data collection

2.2.1. Systematic sample plot inventories

Tree allometry varies with location, tree species and size. Thus,
trees to be selected for destructive sampling and biomass modelling
should reflect such variations in order to minimize extrapolations in
model application. For appropriate selection of trees, a ground-based
forest inventory representative for the target population therefore
needs to be conducted (e.g. Jara et al., 2014; Bollandsas et al., 2016).
Systematic sample plot inventories were done for both sites with 65
circular plots of 1000 m? at Degaga-Gambo and 42 circular plots of
400 m? at Wondo Genet. Following tree species identification, all trees
on the plots with dbh = 5 cm were measured for dbh. Species were
identified with the help of local guides and identification keys
(Tesemma, 2007). A total of 71 species were identified with 45 and 50
species in Degaga-Gambo and Wondo Genet, respectively. The most
frequently occurring species were Afrocarpus falcatus and Celtis africana.
Afrocarpus falcatus trees were the largest measured in both sites with
dbh of 270 cm in Degaga-Gambo and 197 cm in Wondo Genet. The
mean basal areas for all sample plots in Degaga-Gambo and Wondo
Genet, respectively, were 14 and 17 m? ha~! while number of stems
were 129 and 416 ha=1.

2.2.2. Selection of sample trees for destructive sampling
Based on information from the sample plot inventories we selected a
total of 63 trees (32 in Degaga-Gambo and 31 in Wondo Genet)
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representing 30 different species (11 unique from each site and eight
common from both) (Fig. 2 and Table A1). For each site we first se-
lected according to dominant tree species, and subsequently the rest
was selected randomly among the remaining species. The dominant
species accounted for 85% of the total basal area of the forests while in
total 87% was covered. Furthermore, the selection of trees aimed at
having a fair distribution across the diameter classes which also in-
cluded a relatively high number of larger trees (Fig. 2) because in
general a few individuals of the larger trees accumulate a relatively
large part of the biomass in forests (Brown, 2002). Finally, when in
field, we also aimed at selecting trees representing the population in
terms of tree forms and spatial coverage.

Prior to felling the selected tree was verified for correct species
name. Subsequently, diameter at stump height (dsh, 0.3 m above
ground) and dbh were measured either with calliper or diameter tape
(for irregular shape or bigger size stems) while ht was measured using
Haglof Vertex Laser 5. In addition, average crown width (crw) was
determined by measuring maximum and minimum widths of the crown
with measuring tape (Fig. 2 and Table Al).

2.2.3. Destructive sampling procedures
After measurements of the selected trees were completed, they were
felled with a chainsaw at stump height (0.3 m above ground). The trees
were divided into three sections: merchantable stem, branch and fo-
liage. The merchantable stem section included the main trunk up to a
minimum of 10 cm top diameter, a dimension beyond which local
sawmills do not consider the wood for processing. The stems of all trees
with dbh < 15 cm were included in the branch section because they
are not considered as suitable for wood processing. The merchantable
stem section also included the stump, i.e. the part of the stem from
ground to 0.3 m above ground. The volume of the stump was de-
termined from the mid-diameter and length of the stump part. Later the
biomass of the stump was determined from volume and wbd (Brown,
1997; IPCC, 2006). The branch section comprised all branches with
diameter = 2 cm, stem tops with diameter < 10 c¢m and the stems of
all trees with dbh < 15 cm. The foliage section included branches <
2 cm, and all twigs, flowers, fruits, seeds and leaves. For practical
reasons the stem was crosscut into smaller logs and then fresh weight of
each log was determined using a hanging balance scale (0-200 kg ca-
pacity). Similarly, branches were cut into shorter pieces and measured
for fresh weights. The foliage was collected in bundles and weighed
using a plastic sheet. Merchantable stem, branch and foliage fresh
weights were obtained by summing up the fresh weights of all

respective pieces.

2.2.4. Sub-samples for wood basic density and dry weight biomass

For determining wbd of the trees, separate wood sub-samples were
collected from stem and branches. A detailed description of sub-sam-
pling procedures and determination of wbd values are given by Asrat
et al. (2020). For dry weight biomass determination of the trees, three
wood sub-samples from the stem were collected, i.e. one at breast
height, and one from middle and upper positions, respectively. Three
sub-samples for each tree were also collected from the branches, i.e. one
from a large, medium and small branch. However, for some smaller
trees, which just had a few branches of similar size, only one branch
sub-sample was taken. The sub-samples were mostly wood discs re-
presenting the whole cross-section, except for some large trees where a
smaller representative (from pith to bark) wood sub-sample was taken.
Small bundles of foliage samples were also taken from each sample tree.
In total, 427 sub-samples (6.8 per tree) were collected. All the sub-
samples were brought to laboratory with an airtight plastic bag where
fresh weights first were determined using sensitive digital balance
scale. The sub-samples were then dried in an oven for two to three days
at a temperature of 103 °C. The sub-samples were monitored and
weighed recurrently every 24 h to check if a constant mass was at-
tained. Finally, the average dry to fresh weight biomass ratios were
determined for the stem, branch and foliage sections. These ratios were
used to convert the fresh weights of their respective sections into dry
weights. For the merchantable stem section of each tree the dry weight
of the stump, derived by multiplying the volume of the stump with the
wbd of the tree (Asrat et al., 2020), was added. The total tree above-
ground dry weight biomass (AGB,) was aggregated from merchantable
stem biomass (B,), branch biomass (By;) and foliage biomass (Bf)
(Fig. 2 and Fig. A1).

2.3. Model fitting and evaluation

All analyses were done with the R statistical software (R Core Team,
2019). The potential predictor variables considered to describe varia-
tions in biomass were dbh, ht, wbd and crw. The scatter plots of bio-
mass versus dbh and ht indicated non-linear relationships (Fig. A1). To
cope with non-linearity, power functions have been widely applied in
biomass modelling (e.g. Chave et al., 2005, 2014; Picard et al., 2015;
Mugasha et al., 2016; Mokria et al., 2018; Ubuy et al., 2018; Tetemke
et al.,, 2019). In all these models, dbh and ht were used as predictor
variables, either separately (Picard et al., 2015; Ubuy et al.,, 2018;
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Tetemke et al., 2019) or by combining dbh and ht as dbh? x ht (Chave
et al., 2005, 2014; Picard et al., 2015; Mugasha et al., 2016; Mokria
et al., 2018). Using dbh? x ht as one entry in the regression is usually
practiced to overcome problems of collinearity (Picard et al., 2015;
Ducti et al., 2019). The reasoning behind using dbh® X ht is that
aboveground biomass is proportional to the volume of a cylinder with a
diameter dbh and length of ht. However, a limitation of this approach is
that the dbh® X ht as predictor constrains the model to produce
parameter estimates for dbh and ht that have a fixed ratio, in this case
equal to 2.0. Picard et al. (2015) compared the approaches with sepa-
rate and combined predictors and concluded that separate predictors
performed better than combined. Similarly, when Ducta et al. (2019)
compared the two approaches they concluded that the dbh? x ht
predictor becomes less efficient in predicting biomass when the Q-ratio,
i.e. the ratio of the parameter estimates for dbh and ht when used se-
parately, deviates from 2.0. Therefore, they recommend the combined
approach only when the Q-ratio is between 1.5 and 2.5. Since colli-
nearity between dbh and ht was not a problem in our case (i.e. variance
inflation factor was 5.0), and since previous models developed for
natural forests in Ethiopia (Ubuy et al., 2018; Tetemke et al., 2019)
produced Q-ratios outside the interval of 1.5-2.5, we decided to apply
the separate predictor approach in our modelling. We formulated eight
different model forms (Egs. (1)-(8)) for testing the general biomass
models, by using dbh as sole predictor and combined with a stepwise
inclusion of ht, wbd and crw in the following way;

Y = a x (dbh)® &b
Y = a x (dbh)® x (ht)* @
Y = a x (dbh)® x (wbd)* 3)
Y = a x (dbh)® x (crw)° @
Y = a x (dbh)® x (ht)° x (whd)? (5)
Y = a x (dbh)® x (h)® X (crw)? (6)
Y = a X (dbh)® X (crw)® x (whd)¢ 7
Y = a x (dbh)P x (ht)¢ x (crw)d x (whd)f 8)

where Y is biomass (dry weight respectively of total aboveground,
merchantable stem, branch and foliage biomass) in kg, dbh in cm, ht in
m, wbd in g cm ™2 and crw in m; and a, b, ¢, d and f are parameter
estimates.

Weighted nonlinear least square regression was applied. The nls
function in the R programme was used to fit models. Weighting by 1/
(dbh)25 was used to account for heteroscedasticity in the residuals
(Kelly and Beltz, 1987), where § is a weighting factor determined by
following the procedures of Picard et al. (2012). The models were as-
sessed for their performance based on root mean squared error (RMSE,
%), mean prediction error (MPE, %) and pseudo-R_Z all determined from
leave-one-out cross-validation. In a leave-one-out cross-validation one
observation (xy, y;) is used as validation data after a model is calibrated
based on the rest of the data {(xz, y2), ...., (Xn, ¥n)} at a time. This
procedure is repeated n (number of observations) times (James et al.,
2013). The obtained n residuals (observed minus predicted) from leave-
one-out-cross-validation were used to compute the model performance
indicators;

[Tem ey , _ RMSE
RMSE = ;Eizl(Yi_Y“)* RMSE# = === X 100

1 MPE
MPE = — Zm (% —Y); MPE% = =5 X100

Tn, (% - B

Pseudo — R2=1 — —
Zi 59
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where Y; is observed biomass of a tree, ¥; is predicted biomass of a tree
and Y is the mean observed biomass of all trees. Models with non-sig-
nificant parameter estimates were ignored and the final judgements on
the models were based on Akaike Information Criterion (AIC) along
with RMSE, MPE and pseudo-R2.

Some previously developed aboveground biomass models that have
been or potentially could be applied for Dry Afromontane forests in
Ethiopia (Table A2), were tested based on our dataset. First, some
mixed-species models from Ethiopia were tested (Eshete and Stahl,
1998; Mokria et al., 2018; Ubuy et al., 2018; Tetemke et al., 2019). We
also tested two relevant models from tropical dry forests elsewhere in
Africa (Djomo et al., 2016; Mugasha et al., 2016), and the pan-tropical
models developed by Chave et al. (2005) for dry forest including ht, and
Chave et al. (2014). The performance of the models was evaluated by
means of RSME and MPE. Mean prediction errors were statistically
tested by means of t-tests.

For testing the indirect biomass prediction method, we first de-
termined BEF, and BEF  for all the individual trees with dbh = 15 cm
(n = 45) based on total tree volume (i.e. stem and large branches) and
merchantable stem volume, respectively;

AGB,_gbs AGB_obs

BEF, = — o= . _
"7 Vi ops X whd Vs abs X Whd

BEE, =
where AGB; 4 are observed total aboveground biomass (kg), Vi obs and
Vins obs are observed total and merchantable stem volume (m®) and wbd
are wood basic density (kg m ). Details on the determination of ob-
served total volume, merchantable stem volume and wbd for the trees
are described by Asrat et al. (2020).

Secondly, we used these biomass expansion factors (BEF, i), along
with predicted volumes (Vms prea) based on mixed-species total and
merchantable stem volume models and wbd from Asrat et al. (2020), to
mimic application of the indirect biomass prediction method for in-
dividual trees;

AGB, = BEF, s X Vims_pred X Whd

where AGB, are predicted total aboveground biomass. For each of two
BEFs we applied two options, i.e. species-specific means (Table A1) and
study sites means (BEF, = 1.10, BEF,,; = 1.80). In addition, we applied
species-specific whd values (Table Al), study sites mean wbd value
(0.588 g cm ™ %) as well as national mean wbd value (0.612 g cm ™)
from the national wbd database (UN-REDD, 2017). Finally, the re-
siduals (observed minus predicted biomass) were used to compute
RMSE and MPE. Mean prediction errors were statistically tested by
means of t-tests.

3. Results

Parameter estimates and performance indicators of the general total
aboveground and section biomass models are displayed in Table 1. No
models with MPE significantly different from zero were found. All
models, where all the parameter estimates are different from zero, are
regarded as viable options, except Model Bgs, which was ruled out due
to the negative parameter estimate for wbd implying that biomass is
decreasing with increasing wbd. For the general total aboveground
biomass models, pseudo-R? ranged from 0.87 to 0.96, and Model AGBg,
with dbh, ht, crw and wbd as predictor variables, performed best ac-
cording to AIC. For the merchantable stem models, pseudo-R? varied
from 0.88 to 0.96, and Model B,,g, with dbh, ht, crw and wbd as
predictor variables, was best in terms of AIC. The performance of the
branch and foliage biomass models in general appeared to be relatively
poorer compared to the total aboveground and merchantable stem
biomass models. Using dbh as sole predictor explained 68% and 83% of
the variations in branch and foliage biomass, respectively. Inclusion of
ht in any form of combinations in the branch and foliage models re-
sulted in non-significant parameter estimates. On the other hand, in-
cluding crw as predictor variable improved the model performances.
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Table 1
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Model parameters and performance indicators for general total tree aboveground, merchantable stem, branch and foliage biomass models.

Section Model

Pseudo-R>  RMSE MPE AIC

(kg) (%) (kg) (%)

Total above-ground (n = 63)  AGBy = 0.15895 x (dbh)>3*7° 0.87 9955 609 0.1 0.0 1041.6
AGB, = 0.13648 x (dbh)>%9%%7 x (h)®35775N8 0.87 975.0 596 45.2 2.8 1043.6

AGBz = 0.26136 x (dbh)*>*°**! x (wbd)'!*°*¢ 0.90 8747 535 —-0.0 -0.0 10203

AGB,, = 0.21170 x (dbh)**°%° x (crw)®9%0%0 0.93 7418 454 0.0 0.0 1010.7

AGBs = 0.19250 x (dbh)?>2'%%° x (ht)®*%38 » (whd)!-215%° 0.89 8876 543 59 0.4 1019.8

AGBs = 0.17587 x (dbh)"5'%% x (hn)®27#5! x (crw)>9614% 0.92 757.0 463 239 15 1010.9

AGBy; = 0.29628 x (dbh)'*%'*° x (crw)®7%0%¢ x (wbd)'¥°® 0.96 5281 323 0.1 0.0 946.5

AGBg = 0.21765 x (dbh)77°% x (ht)>33242 x (crw)®®5S x (wbd)"77%°  0.96 531.6 325 0.1 0.0 943.6

Merchant-able stem Bue = 0.12106 x (dbh)>?7313 0.89 5343 426 -07 -01 6887
(n = 45) Bz = 0.04031 x (dbh)#2°'* x (ht)°9134° 0.88 5533 441 0.0 0.0 690.7
Bues = 0.18572 x (dbh)>*°%%0 x (whbd)'-20824 0.95 369.0 29.4 —44 —04 6513

Bunss = 0.14609 x (dbh)'#%32 x (crw)®0%428 0.90 5027  40.0 —-02 —0.0 6839

Bmss = 0.10785 x (dbh)*®7°%* x (h)®%63! x (wbd)'27%>3 0.95 361.3 288 0.1 0.0 646.6

B = 0.05873 X (dbh)00756 x (ht)O74197 x (crw)0-#1969 0.89 5348 426 —01 0.0 6857

Bumsy = 0.20867 x (dbh)“¥7*%% x (crw)®*2%%® x (wbd)'*'*™* 0.96 3179 253 —04  —0.0 6246

Bmss = 0.10447 x (dbh)'741%% x (ht)*%°"3° x (crw)®2%%¢ x (wbd)!7777 0.96 3129 249 0.0 0.0 615.9

Branch Boer = 0.06505 x (dbh)>33062 0.68 6809 1079 8.2 1.3 991.9
(n = 63) Bora = 0.11906 x (dbh)2#3%78 x (ht)032368NS 0.67 689.1  109.2 242 38 993.9
By = 0.11022 X (dbh)>#38* x (wbd)'-5*%57 0.63 7224 1145 3.2 0.5 985.6

Bps = 0.06888 x (dbh)'#4535 x (crw)!-#+1522 0.80 531.0 84.1 3.6 0.6 956.0

Bis = 0.16117 x (dbh)>*33% x (hty 010229 5 (whd)'-6013 0.65 7080 1122 153 24 986.7

Bors = 0.14685 x (dbh)**¥% x (hty 02177 ¢ (crw)l-48018 0.80 5383 853 113 1.8 955.9

By = 0.10787 3 (dbh)™*7% x (crw)'*1226 x (wbd)!7°%4! 0.82 511.0 81.0 5.7 0.9 932.1

Bis = 0.14173 x (dbh)"*'9% x (hty @024 ¢ (crw)-3#63% x (wbd)! 7148 0.82 5122 812 7.2 1.1 932.7

Foliage By = 0.12031 x (dbh)'775% 0.83 62.1 57.9 0.0 0.0 696.6
(n = 63) Bp = 0.16246 x (dbh)#%°% x (hy)©31562NS 0.83 62.6 584 0.1 0.1 697.8
Bf3 = 0.07122 X (dbh)'7®*%° x (wbd) 721 0.84 60.7 565 14 L3 685.0

By = 0.18503 x (dbh)*17%% x (crw)*578%¢ 0.82 64.9 60.5 0.3 0.3 697.0

Bis = 0.31330 x (dbh)13% x (ht)®19%70NS x (whd)®-#!5% 0.73 78.2 728 52 48 682.6

Bis = 0.24750 x (dbh)!53610 x (ht)O37940NS x (crw)0-39060 0.82 64.7 60.3 -0.0 -0.0 6978

By = 0.30861 x (dbh)'2%%%* x (crw)®74%1° x (wbd)®76902 0.74 76.6 71.4 4.2 3.9 686.1

Brs = 0.39100 x (dbh)"*#77® x (ht) O8NS ¢ (crw)®B179 x (wbd)*7*840 0.74 77.1 71.8 4.2 3.9 682.6

NS not significant (p > 0.05), viable models with lowest AIC highlighted in bold.

Models By,7 and Bg; for branch and foliage biomass, respectively, were
best in terms of lowest AIC. Covariance matrices for all the viable total
aboveground biomass models in Table 1 are presented in Table A3.

Fig. 3 displays observed biomass over predicted biomass for the best
performing general models, i.e. total aboveground (AGB.g), merchan-
table stem (Bsg), branch (By7) and foliage (Bs7) biomass models, re-
spectively.

All the general total aboveground biomass models with significant
parameter estimates were applied separately over the two sites and
evaluated by means of RMSE and MPE (Table 2). Except for model
AGB;; in Degaga-Gambo, the models produced MPEs not significantly
different from zero (p > 0.05).

The previously developed models were also applied to our dataset
and evaluated by means of RMSE and MPE (Table 3). In general, all
tested models, except the pan-tropical models developed by Chave et al.
(2005, 2014), yielded large MPEs significantly different from zero
(p < 0.01). Fig. 4 displays graphically some of the previously devel-
oped models and Model AGB,s from the current study.

The results of the indirect biomass prediction method, using BEFs
based on total volume and merchantable stem volume, respectively are
shown in Table 4. In general, predicted biomass were larger than ob-
served biomass in all cases. MPEs not significantly different from zero
(p > 0.05) were obtained only when species-specific wbd values were
applied along with either species-specific or study sites mean BEF va-
lues. As expected, the MPEs increased as the BEF and wbd values
changed from species-specific to study site mean values, and to the
national mean values in the case of wbd.

4. Discussion

Quantification and related uncertainties of tree biomass prediction
and biomass estimation per unit area for forests have been a main
concern among researchers globally, and various approaches to this
have been devised and applied under different conditions in different
places. In the present study, conducted in Dry Afromontane forests in
south-central Ethiopia, we considered options, challenges and un-
certainties related to direct tree biomass prediction methods using both
new and previously developed models, and to indirect methods using
different tree volumes and BEFs. The study was based on a compre-
hensive dataset from destructive sampling. Destructive sampling is
demanding in terms of time consumption, required equipment and fi-
nancial resources (e.g. Eid et al.,, 2016). In our case, with a crew
comprising a researcher, two assistants with forestry background, one
chainsaw operator and four to seven labourers, we spent from about
one hour per tree to complete measurements in the field for the smallest
ones and up to five days for the largest. The data were collected from
two sites with a relatively wide range of altitudinal variations and as-
sociated soils, rainfall and temperature variability. Prior to the de-
structive sampling, systematic sample plot inventories were conducted
for each site to secure representativity for the target populations. Sixty-
three trees were selected, among these 30 different tree species cov-
ering about 87% of the total basal area of the study sites were re-
presented. We also emphasised to include wide diameter ranges and a
relatively high number of large trees, as this will reduce extrapolations
in model application (Bollandsas et al., 2016). No previous studies in
Ethiopia have considered trees with such large diameters in tree bio-
mass prediction models, despite the fact that these trees store large
parts of the total biomass and carbon stock in tropical forests (Brown,
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Fig. 3. Observed biomass over predicted biomass for the best performing general total aboveground (AGBg), merchantable stem (B,), branch (By,,) and foliage
(Bg;) biomass models. The black and red colours represent sample trees from Degaga-Gambo and Wondo Genet sites, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2

Evaluation results of the general total tree aboveground biomass models over

the study sites.

Site Model Predicted AGB,  RMSE MPE
(kg)
(kg) %) (kg) (%)
Degaga-Gambo' AGBy,  1603.0 4347 303 -1655 -11.8*
(n=32) AGBsy 15718 4961 346 -1374 -9.6
AGB,, 1515.1 5287 369 -807 5.6
AGBy;  1560.5 4834 337 1350 -9.4
AGB,, 14915 5237 365 -571 —4.0
AGB, 1499.1 3338 233 -647 —45
AGBy 1515.1 2905 203 -807 5.6
Wondo Genet ' AGB,, 1665.8 12034 653 1768 9.6
(n=31) AGB; 1694.8 937.2 509 1478 80
AGBy  1761.2 8268 44.9 814 4.4
AGBys  1695.4 9236 50.1 1472 80
AGB, 1737.8 8644 469 1048 5.7
AGB,, 17910 5208 283 516 2.8
AGBg 17734 5967 324 69.1 3.8

! Observed AGB, for Degaga-Gambo and Wondo Genet were 1434.4 kg and

1842.6 kg, respectively;
* Gignificantly different from zero (p < 0.05)

Table 3

Evaluation results of previously developed models when applied on our dataset.
Reference Predicted AGB, RMSE MPE

(kg)
(kg) @) (kg) (%)
Eshete and Stéhl 361.5 2611.2 1597 12738 77.9°
(1998)

Mokria et al. (2018) 525.5 2378.1 1454 11098 67.9°°
Ubuy et al. (2018) 745.0 1976.0 120.8 890.2 544"
Tetemke et al. (2019) 766.1 1869.7 1143 869.1 53.2""
Mugasha et al. (2016) 1979.7 995.2 60.9 —3444 -2117
Djomo et al. (2016) 635.8 2104.7 1287 999.5 611"
Chave et al. (2005) 1468.3 852.5 521 167.0 10.2
Chave et al. (2014) 1747.8 801.8 49.0 -1125 -69
Current study AGBys 1631.4 733.8 44,9 3.8 0.2
Current study AGBg 1642.2 467.0 28.6 —6.9 —0.4

n = 63; observed mean AGB; = 1635.6 kg.
= p < 0.01.
% p < 0.001.

2002; MEFCC, 2018b).

In data analysis we applied well documented methods. For model
fitting we considered the pros and cons of available power model forms
(e.g. Picard et al., 2015; Ducta et al., 2019), and also included several
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Fig. 4. A graph for total aboveground biomass (dry weight) over dbh based on
the general models developed in this study (AGBys), by Mokria et al. (2018),
Ubuy et al. (2018), Chave et al. (2014) and Mugasha et al. (2016). The vertical
line indicates the maximum diameter in our dataset used for modelling. For
graphical display of the models, AGB was predicted using ht derived from a ht-
dbh model, as well as the mean wbd for the study sites given by Asrat et al.
(2020). In addition, for displaying Mokria et al. (2018) and Ubuy et al. (2018),
that used dsh in their models, the corresponding dbh was determined using a
dbh-dsh model from Asrat et al. (2020).

predictor variable options. Furthermore, we applied a leave-one-out
cross validation to compute model fit statistics, which enables using the
entire dataset for modelling instead of splitting it into separate mod-
elling and validation datasets (James et al., 2013). Finally, we have also
in our work emphasised to document information near up the re-
quirements on the target population, environmental conditions, sam-
pling and laboratory procedures as well as model fitting and related
uncertainties as suggested by Jara et al. (2014).

As part of exploring the direct tree biomass prediction method we
developed a set of new models. To allow flexibility in practical appli-
cations, we provided different model options applicable depending on
the availability of data from inventories. In the case of our general
aboveground tree biomass models, Model AGBy; with dbh only as
predictor variable explained about 87% of the variations in above-
ground biomass. Adding ht into the model (Model AGB,;) did not
provide a viable model because of an insignificant parameter estimate

Forest Ecology and Management 473 (2020) 118335

for ht. Similar results are also reported from elsewhere in Ethiopia (e.g.
Ubuy et al., 2018; Tetemke et al., 2019) and from central Africa (e.g.
Fayolle et al., 2018). On the other hand, adding wbd (Model AGB,3) or
crw (Model AGBy4) improved the model performance considerably with
pseudo-R? of 0.90 and 0.93, respectively. However, by using ht together
with dbh, crw and wbd as predictor variables Model AGB,g explained
96% of the variations in biomass and produced the lowest AIC. Prob-
ably the branchy patterns of many trees in these forests, that enable
accumulation of considerable biomass proportions to branches (see
Fig. 2), made crw a better predictor variable than ht to explain variation
in biomass. Similar poor contributions of ht as opposed to crw in ex-
plaining variations in biomass are also reported by Ubuy et al. (2018)
for exclosure forests and Tetemke et al. (2019) for Dry Afromontane
forest in northern Ethiopia. Apart from improving the models, crw has
also the potential of being used for biomass estimation in remote sen-
sing applications since this variable is more easily detectable from the
air as compared to other variables (e.g. Eshete and Stahl, 1998; Jucker
et al., 2017).

Overall, none of the viable general AGB, models had MPEs sig-
nificantly different from zero, and no obvious trends were seen for
observed biomass over predicted biomass over size, indicating that
extrapolation of the models within reasonable ranges are not likely to
be biased. In addition, the models explained from 87% to 96% of bio-
mass variations, which are more than some previous models from dry
forests in east-Africa (e.g. Mokria et al., 2018; Ubuy et al., 2018) while
similar to some others (e.g. Mugasha et al.,, 2013; Kachamba et al.,
2016; Tetemke et al., 2019). The general conclusion is therefore these
models may be applied with high certainty for tree biomass prediction
in our study sites.

For biomass and carbon stock estimation over larger forest areas,
particularly in REDD+ implementation, the associated uncertainties
should be indicated (IPCC, 2014). Errors related to models’ parameter
estimates are one source of the uncertainties that need to be provided
along with the developed models (Magnussen and Negrete, 2015).
However, very few published papers reported these results (e.g.
Breidenbach et al, 2014; Kachamba et al., 2016). Hence in order to
enable the potential users of our models to determine uncertainties in
biomass estimates, e.g. related to the REDD + implementations that are
underway for Ethiopia (UN-REDD, 2017), covariance matrices for the
parameters estimates of all the viable general total tree aboveground
biomass models in Table 1 are provided (Table A3). Breidenbach et al.
(2014) and Stahl et al. (2014) used information from covariance ma-
trices of biomass models along with information from the sampling
design and applied Monte Carlo simulations to quantify the combined
effects on biomass uncertainty from both models and sampling. Both

Table 4
Evaluation results of the indirect biomass prediction method.
Volume BEF wbd Predicted AGB, (kg) RMSE MPE
(kg) (%) (kg) (%)
Total Species-specific Species-specific 24449 917.6 40.4 —-173.4 —-7.6
Species-specific Study sites mean 2766.1 1535.7 67.6 —494.6 —21.8*
Species-specific National mean 2879.3 1664.2 73.3 —-607.8 —26.8%
Study sites mean Species-specific 2452.0 970.0 42.7 —180.6 —-8.0
Study sites mean Study sites mean 2756.8 1436.2 63.2 —485.3 —21.4%
Study sites mean National mean 2869.3 1564.4 68.9 —-597.8 —26.3"
Merchantable stem Species-specific Species-specific 2378.6 595.3 26.2 -107.2 —4.7
Species-specific Study sites mean 2688.5 12859 56.6 —417.0 —18.4*
Species-specific National mean 27987 14125 62.2 —527.2 —23.2
Study sites mean Species-specific 2526.9 1004.4 44.2 —255.4 —11.2
Study sites mean Study sites mean 2840.2 1497.4 65.9 —568.7 —25.0"
Study sites mean National mean 2956.1 1634.7 72.0 —684.6 —30.1"

n = 45; observed mean AGB, = 2271.5 kg.
*p < 0.05.
g 0,01,
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studies concluded that the model related effects had considerable in-
fluence. The documentation of covariance matrices of the biomass
models developed in the present study therefore facilitate interesting
future research related to error propagation issues when estimating
biomass in an Ethiopian context.

Tree section biomass models may be useful in forest management
for quantifying exploitable tree products such as fuelwood and fodder
(Brown, 1997; Balehegn et al., 2012). The branch and foliage models
developed in the present study in general performed poorer than the
total aboveground and the merchantable stem biomass models, but
most of them may still be applied to our study sites with reasonable
certainty. A similar result with poorer branch biomass models than
stem biomass models was found for natural forests in Tanzania
(Mugasha et al., 2016) while the opposite was seen in Malawi
(Kachamba et al., 2016). Tree height as a predictor variable did not
bring any improvement into the branch and foliage models, i.e. best
performing according to AIC were Model By, for branch and Model Bg;
for foliage, both with dbh, crw and wbd as predictor variables.

Application of previously developed biomass models should always
be considered as an option if no models exist for a certain forest area.
When we tested some relevant previously developed models on our
dataset, we found large MPEs significantly different from zero except
for the pan-tropical models. This is of course not surprising because the
models were applied outside the data ranges from which they were
developed from. Even the model developed for Dry Afromontane forest
in northern Ethiopia (Tetemke et al., 2019) arrived at such a result, but
when considering the large variation in biomass per ha within the Dry
Afromontane forests documented in a recent national forest inventory
for Ethiopia (MEFCC, 2018b), this is probably what we should expect.
Among the previously developed models, only the pan-tropical ones
(Chave et al., 2005, 2014) yielded MPEs not significantly different from
zero. This means that these models perform in an appropriate way in
our study sites, although not as good as the new models. It is important
to note, however, that this does not guarantee the pan-tropical models
to work well in other parts of Dry Afromontane forest in Ethiopia.

There are also situations where tree biomass must be predicted in-
directly from volume by the means of BEF and wbd (Brown, 1997;
IPCC, 2006). By mimicking such a situation, we tested this method on
our dataset. In general, this method overpredicted biomass, but not
significantly when species-specific wbd values were used. Species-spe-
cific wbd values should therefore be used, probably even when local
wbd values are not available they can be obtained from the Global
Wood Density database (Chave et al., 2009; Zanne et al., 2009), al-
though some additional uncertainty then is included. Species-specific
BEF values, along with species-specific wbd values, produced smaller
MPEs than the study sites mean BEF values. This is not a realistic si-
tuation, however, because species-specific BEFs are very likely not
available for all species in a forest. The most realistic situation is
therefore to apply study sites mean BEF values. Generally, the perfor-
mance of indirect biomass prediction method is much influenced by the
methodologies applied (Sanquetta et al., 2011). Similar to our study,
also previous researchers have reported poorer performance for the
indirect biomass prediction method as compared to the direct method
(e.g. Petersson et al., 2012; Njana, 2017). To describe BEF values as a
function of dbh and/or ht has proved to result in lower uncertainty than
mean BEF values (Sanquetta et al., 2011; Magalhdes and Seifert,
2015a). However, several authors have also indicated that the indirect
method should be avoided if possible because the method generally is
associated with larger uncertainties than the direct method (e.g.
Hewson et al., 2014; Lisboa et al., 2018).

Among the options for biomass prediction explored in this study
there is no doubt that the direct biomass prediction method when ap-
plying the new biomass models performed well and is associated with
the lowest uncertainty. Applications of the new general models are
therefore likely to enhance the bases for decision-making in forest
management including REDD + implementation for Dry Afromontane
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forests in Ethiopia. For maximizing accuracy, we recommend Models
AGB,g, Bz, Bprz and Bg to be used for total, merchantable stem,
branch and foliage biomass, respectively. However, it is also important
to note that any of the viable models still may be applied depending on
the variables that are available from an inventory. The previously de-
veloped models performed poorer than the new models and most of
them had MPEs significantly different from zero, generally because they
were applied outside their data ranges. Similarly, the indirect method
performed poorer than the new models. Application of the indirect
method should be limited to situations where no biomass models are
available using study sites mean BEF values, which are the most prac-
tically realistic option, and either available local specie-specific wbd
values or values from Global Wood Density database.

The dataset used in this study does not cover large parts of the Dry
Afromontane forests in Ethiopia. Future research should therefore aim
at developing biomass models based on both existing data and addi-
tional data to better cover the entire target population including the
high biomass density variation that characterize this forest type
(MEFCC, 2018b). Meanwhile we rely on existing models, and in this
regard, though the pan-tropical models are still viable, we recommend
for the Dry Afromontane forests in Ethiopia to apply the models from
the present study and from the Tetemke et al. (2019) models over the
pan-tropical models (Chave et al., 2005, 2014), mainly because the
latter models are limited by the fact that they are not based on any data
from Ethiopia, but also because crw as an independent variable in our
models improved performance considerably. However, before an ap-
plication of the existing models is done, we also strongly recommend
considering similarities in terms of growing conditions such as soil,
rainfall and temperature, and data ranges of dbh and ht. A recent study
of biomass allometry, based on two large datasets from Eurasia and
Canada, found that the differences between species was a more im-
portant driver of the variability in allometric models compared to dif-
ferences between sites (Dutcad, 2019). Particularly for our models
therefore, the presence of dominant tree species such as Afrocarpus
falcatus, Celtis africana, Croton macrostachyus, Millettia ferruginea, and
Pouteria adolfi-friedericii is important when considering application of
the models.

5. Conclusion

Choice of tree biomass prediction method is a crucial step for bio-
mass and carbon stock estimations. Here we have evaluated direct and
indirect biomass prediction methods based on destructively sampled
trees data from Dry Afromontane forests in south-central Ethiopia. The
direct method using the newly developed general allometric models is
the best option for application in the study sites. The pan-tropical model
also performed well as opposed to other previously developed models
and the indirect method that are associated with larger uncertainties.
The new models are flexible and any of the viable models may be
chosen for application based on the availability of data from an in-
ventory. Our general models may also be considered for application in
other Dry Afromontane forests, which lack site-specific models, but
only if the required conditions are carefully evaluated. The results have
strong practical implications for enhanced decision-making in forest
management including REDD + implementations for Dry Afromontane
forests in Ethiopia.
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Table Al

Tree species sampled for biomass modelling along with their mean and range values for dbh, ht, crw, wbd and BEF.
Tree species n dbh (cm) ht (m) crw (m) whbd (g cm’:’)* BEF; BEF,s

Mean  Range Mean  Range Mean Range Mean  Range Mean (n;)  Range Mean”  Range

Acokanthera schimperi 1 17.0 9.4 5.9 0.621 1.53(1) 3.01
Afrocarpus falcatus 9 472 9.5-105.5 19.7 6.9-36.0 9.6 3.4-17.7 0.426  0.401-0.480 1.28(8) 0.95-1.77 2.06 1.43-2.66
Albizia gummifera 3 87.2 65.0-106.5  29.9 25.1-38.8 20.3 16.1-23.9 0.534  0.499-0.598 1.07(3) 0.99-1.12 2.01 1.83-2.15
Allophylus abyssinicus 2 363 10.5-62 14.0 6.8-21.2 85 4.5-125 0.509  0.509-0.515  1.09(1) 1.77
Apodytes dimidiata 1 375 24.7 6.1 0.556 1.03(1) 1.22
Bersama abyssinica 1 27.0 11.7 6.7 0.576 1.24(1) 2.05
Canthium oligocarpum 1 285 15.6 5.7 0.473 1.12(1) 1.57
Cassipourea malosana 2 100 8.0-12.0 8.0 6.6-9.4 51 4.9-54 0.663  0.605-0.683 - -
Celtis africana 5 492 20.0-95.0 24.6 21.3-29.1 10.4 8.1-16.3 0.631 0.615-0.658 1.20(5) 1.10-1.40 1.93 1.45-2.37
Combretum molle 1 12.0 7.7 3.6 0.701 - =
Croton macrostachyus 5 436 11.5-85.0 221 105-30.2 113 3.6-20.0 0.511  0.430-0.521  1.00(4) 0.90-1.06 1.31 1.24-1.38
Dodonaea angustifolia 1 13.5 9.3 6.8 0.816 - -
Ekebergia capensis 1 62.0 33.1 12.9 0.532 0.91(1) 1.40
Ficus thonningii 1 47.0 18.6 8.2 0.471 1.14(1) 1.92
Galiniera coffeoides 1 11.3 8.6 4.1 0.563 - -
Maesa lanceolata 3 233 14.5-38.0 12.0 9.2-15.8 5.0 3.5-6.8 0.483  0.457-0.536 1.06(2) 0.99-1.13 1.67 1.48-1.85
Maytenus arbutifolia 2 12.3 7.0-17.5 8.6 5.4-11.7 4.2 3.4-49 0.615  0.615-0.622 0.92(1) 1.31
Millettia ferruginea 4 474 8.0-77.5 24.1 10.2-33.3 89 2.4-131 0.550  0.380-0.554  1.05(3) 0.97-1.17 151 1.47-1.60
Nuxia congesta 2 213 19.0-23.5 111 10.0-121 4.7 4.3-5.0 0.537  0.498-0.603  1.14(2) 1.13-1.15 210 2.10-2.10
Olea capensis 3 § 23.0 19.3 FE 0.779 1.11(1) 2.32
Olea welwitschii 1 19.5 10.9 5.9 0.700 1.16(1) 2.38
Olinia rochetiana 1 75 114 24 0.544 - -
Osyris quadripartita 1 305 8.4 7.8 0.690 1.06(1) 2.27
Pittosporum viridiflorum 1 10.5 5.2 3.8 0.441 - -
Pouteria adolfi-friedericii 4 42.1 13.5-106.0  20.9 10.7-335 7.6 3.7-15.9 0.460  0.458-0.567 1.03(3) 0.85-1.17 118 1.07-1.30
Prunus africana 3 533 11.5-105.5 21.4 12.8-319 84 5.3-13.3 0.609  0.608-0.615  0.94(2) 0.86-1.01 118 1.15-1.21
Syzygium guineense 2 53.0 26.5-79.5 24.8 225-27.1 10.7 6.9-14.6 0.580  0.579-0.590 1.09(2) 0.93-1.24 1.59 1.36-1.83
Teclea nobilis 1 95, 7.3 5.2 0.979 - -
Vepris dainellii 1 125 83 5.7 0.631 - -
Vernonia amygdalina 1 10.0 6.1 29 0.457 - -

* wbd from Asrat et al. (2020); n;: number of individual trees per species.
** The same n, as in BEF,.

Table A2

Previously developed total aboveground biomass models applied on our data.
Reference Model n dbh/dsh range (cm)
Eshete and Stdhl (1998) AGB; = exp(1.21 + 1.09 X In(cra)) * 83 -
Mokria et al. (2018) AGB, = 0.2451 x (dsh? x ht)®70%8 84 =
Ubuy et al. (2018) AGB, = 0.217 x dsh®?® x ht®336! x wphd02963 305 2.5-295
Tetemke et al. (2019) AGB, = 0.350 x dbh'®* x cra®!7! x wbd®4% * 86 2.9-45.2
Mugasha et al. (2016) AGB, = 0.1014 x (wbd % dbh? x ht)>5'° 30 -
Djomo et al. (2016) AGB, = exp(—0.841 + 2.082 x In(dbh) + 1.248 x In(wbd)) 118 3.0-32.0
Chave et al. (2005) AGB, = 0.112 x (wbd x dbh? x hp)**'® 686 5.0-63.4
Chave et al. (2014) AGB, = 0.0673 x (wbd x dbh® x ht)®%"® 4004 5.0-180.0

* cra: crown area (m?).

Table A3
Covariance matrices for all viable general total aboveground biomass models.
Model Model expression Variables Covariance matrix
AGB,, 0.15895 X (dbh)2-34670 Intercept dbh
Intercept 0.00183
dbh —0.00272 0.00414
AGBys 0.26136 x (dbh)>*2! x (wbd)''%!® Intercept dbh whd
Intercept 0.00346
dbh —0.00261 0.00285
wbd 0.00369 0.00298 0.04423
AGBy4 0.21170 % (dbh)™9%%30 x (crw)?-9°9%° Intercept dbh crw
Intercept 0.00095
dbh —0.00128 0.01137
cw 0.00009 —0.01548 0.02474

(continued on next page)
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Table A3 (continued)
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Model Model expression Variables Covariance matrix
AGBys 0.19250 x (dbh)>21%%0 x (ht)®35380 x (whd)'-2189° Intercept dbh ht whbd
Intercept 0.00311
dbh 0.00109 0.01122
ht —0.00601 —0.01601 0.03099
wbd 0.00162 0.00034 0.00513 0.04426
AGBys 0.17587 x (dbh)'*'%%° x (h)*#*! x (crw)®201% Intercept dbh ht crw
Intercept 0.00089
dbh 0.00036 0.01606
ht —0.00230 —0.01043 0.01873
crw 0.00011 —0.01263 —0.00216 0.02291
AGB,, 0.29628 x (dbh)™*°'*® x (crw)®7%6%¢ x (wbd)!-'47°%% Intercept dbh caw whbd
Intercept 0.00208
dbh —0.00168 0.00657
crw 0.00037 —0.00775 0.01183
wbd 0.00151 0.00254 —0.00056 0.02370
AGByg 0.21765 x (dbh)'77%%° x (h)***22 x (crw)®0%7° x (wbd)"*77% Intercept dbh ht crw whbd
Intercept 0.00097
dbh 0.00052 0.00923
ht —0.00197 —0.00526 0.01111
crw —0.00005 —0.00794 —0.00170 0.01397
wbd 0.00053 0.00426 0.00179 —0.00475 0.02254
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Abstract

Periodic assessment of forest aboveground biomass (AGB) is essential to regulate the impacts
of the changing climate. However, AGB estimation using field-based sample survey (FBSS) has
limited precision due to cost and accessibility constraints. Fortunately, remote sensing
technologies assist to improve AGB estimation precisions. Thus, this study assessed the role of
remotely sensed (RS) data in improving the precision of AGB estimation in an Afromontane
forest in south-central Ethiopia. The research objectives were to identify RS variables that are
useful for estimating AGB and evaluate the extent of improvement in the precision of the
remote sensing-assisted AGB estimates beyond the precision of a pure FBSS. Reference AGB
data for model calibration and estimation were collected from 111 systematically distributed
circular sample plots (SPs) of 1,000 m2 area. Independent variables were derived from
Landsat-8, Sentinel-2 and PlanetScope images acquired in January 2019. The area-weighted
mean and standard deviation of the spectral reflectance, spectral index and texture (only for
PlanetScope) variables were extracted for each SP. A maximum of two independent variables
from each image type was fitted to a generalized linear model for AGB estimation using model-
assisted estimators. The results of this study revealed that the Landsat-8 model with predictor
variable of shortwave infrared band reflectance and the PlanetScope model with predictor
variable of green band reflectance had estimation efficiency of 1.40 and 1.37, respectively.
Similarly, the Sentinel-2 model, which had predictor variables of shortwave infrared
reflectance and standard deviation of green leaf index, improved AGB estimation with the
relative efficiency of 1.68. Utilizing freely available Sentinel-2 data seems to enhance the AGB

estimation efficiency and reduce cost and extensive fieldwork in inaccessible areas.

Keywords: aboveground biomass; Sentinel-2; generalized linear model; model-assisted

estimation; relative efficiency



1. Introduction

Forests are paramount in regulating the global environment, mainly through sequestering
carbon [1]. They are particularly important these days to combat the changing climate, which
affects people’s life in many aspects. Due to the multiple significance of forest resources,
information about the resource base, its spatial distribution and spatio-temporal changes have
become a global concern. The information is a basis to make decisions when planning and
assessing impacts regarding mitigation and adaptation to global climate change [2-4]. As aresult
of a series of international dialogues, the conference of the parties to the United Nations
Framework Convention on Climate Change (UNFCCC) have passed several decisions to combat
the impacts of climate change through sequestering carbon in the living biomass, which mainly
includes forests. Incentivizing the REDD+ (Reducing Emission from Deforestation and Forest
Degradation, Sustainable Forest Management and Conservation) programs was one of the main
issues in the Paris agreement in 2015 [4]. All these programs, initiatives and treaties require

information about the resource stock and trends of changes over time.

The current tradition of measurement, monitoring and change estimation for forest resources
relies mainly on field-based sample surveys (FBSSs). The FBSS methods of data collection are
limited in developing countries due to high costs, logistical challenges and limited field
access[5]. As a result, many of the national forest inventory programs in developing countries
are still dependent on field inventories conducted with relatively small sample sizes and thus,
have high uncertainties in the estimates[6]. Studies about uncertainties of emission reduction
in Ethiopia indicated that the estimates based on FBSSs with small sample size are not
sufficiently precise to support decision-making [7]. Therefore, it is important to look for
alternative approaches that can reduce costs and contribute to improving precision of estimates
from pure FBSSs. In recent years, remotely sensed (RS) data and associated estimation
techniques have become viable options to support quantification of resource stocks in a cost-
effective way in areas inaccessible for traditional FBSS [8-10]. Previous research has shown that

RS data can help reducing FBSS efforts without loss of precision of estimates [11].

RS data and technologies have improved over the last few decades and are becoming vital tools
for enhancing quality and ensuring accessibility of spatial information to users across the world.
Following the developments, there are many sources of useful satellite RS data for estimation of
forest resource parameters including aboveground biomass (AGB). Landsat and Sentinel are
some examples of such satellite programs, which provide freely available data [12,13]. Images
of Landsat-8 (L8) and Sentinel-2 (S2) are useful for AGB estimation in various forest ecosystems

[14-18]. However, data with higher spatial resolution are often considered better [19,20].



PlanetScope (PS) images are among potentially applicable commercial satellite RS data, which
have 3 m spatial resolution and are acquired daily. These characteristics of the images make the
PS data suitable for REDD+ MRV (measurement, reporting and verification) systems [20].
Compared to the L8 and S2 images, fewer studies have been carried out on biomass estimation

using the PS images [21].

Various studies used either SB reflectance values, Sls or texture solely or in combination for AGB
modelling. A study by [22] on AGB estimation using Landsat TM data in the Brazilian Amazon
indicated that a combination of SB and texture variables improved AGB estimation. The study
showed the importance of texture information particularly in primary forests where there are
complex forest structures. The visible and shortwave infrared-1 bands correlate strongly with
AGB, particularly in forests with simple stand structures. Therefore, the visible, near-infrared,
Red-edge (for S2) and shortwave infrared-1 SB of each satellite mission and the texture
variables of the PS SB reflectance are among the independent variables subject to analysis in the
current study. The texture information of L8 and S2 images were not used due to the courser

resolution of these images as compared to the PS images.

A study of AGB estimation using Landsat images in North-western Turkey revealed that SIs were
better in estimating AGB in that forest type as compared to SB reflectance values [23]. However,
sensitivity of SIs to biomass vary between environments and forest types [24-27]. According to
the research findings by [24] in India, a significant correlation was observed between AGB and
simple ratio (SR), difference vegetation index (DVI), normalized difference vegetation index
(NDVI), soil adjusted vegetation index (SAVI) and modified soil adjusted vegetation index
(MSAVI). Gizachew et al. [14] found that NDVI, enhance vegetation index (EVI), SAVI, MSAVI,
and normalized difference moisture index (NDMI) had significant correlation with total AGB in
the Miombo woodlands of Tanzania. Furthermore, atmospherically resistant vegetation index
(ARVI) of L8 imagery was used for AGB estimation in Mount Tai, China [17]. A similar study in
southern Portugal indicated that SIs are useful as predictors of AGB [28]. Imran et al. [29] in
their study in Pakistan found that red-edge normalized difference vegetation index (RENDVI)
has greater correlation with AGB than the individual SBs. Together with other SIs mentioned
above, the red-edge simple ratio (SRRE) index was used for estimating AGB of mangrove forest
in the Philippines [21]. Motohka et al. [30] studied normalized difference green index (NDGI) as
a good phenological indicator of various ecosystems in Japan. According to the study by [31],
data collected using unmanned aerial vehicles for monitoring post-fire recovery of pine forests
in the Mediterranean areas indicated excessive green index (ExGI) as a useful variable for

estimating DBH, which is a default predictor of AGB allometry. In another study, ExGI was used



for discriminating vegetation types in the USA and Canada [32]. Furthermore, Sls that are
indicators of leaf greenness and used in different applications including crop monitoring and
discriminating vegetation like the green leaf index (GLI) and vegetation index (VI), were
included in the current list of potential predictor variables to test if they relate to AGB. Table 1

shows detailed descriptions of the SIs explored in this study.

Table 1. Description of spectral indices (SIs) used as candidate independent variables for

aboveground biomass (AGB) modelling in this research.

si E A Reference(s)
Xpression General Relationship with AGB
NDVI (NIR ~ R) 33,34 14,24
NR+R) [33,34] [14,24]
SR NIR/R [35] [24,28]
VI G/R [36]
DVI NIR - R [37] [24]
ExGI 2xG—(B+R)
GLI G-R+(G-B) [38]
2xG+ R+B
EVI 2.5 (NIR = R) 39 14
o X
(NIR+6XR—75xB+1) 391 (14]
SAVI (NIR = R) 15 40 24
—_— X .
(NIR + R+ 0.5) a5 (401 (24]
— 2 _ —
MSAVI 2xNIR+1 (\/(Z(NIR) +1)2 - 8(NIR R)) [41] [24]

2

NDMI (NIR = SWIR1) 42 14
(NIR + SWIR1) (421 (14]

NDGI G- R) [30]
G +R)
ARVI % [43] [17]
SRRE NIR/RE [44,45] [21]
RENDVI (NIR — RE) [46] [29]
(NIR + RE)

¢See Table 2 for description of the acronyms of the SBs used in the expressions of the SIs in this
table.

Image texture analysis was carried out for the high-resolution PS images to assess the role of
pixel resolution in identifying spatial variations of image values and thus providing potentially
useful variables for AGB modelling. Several studies indicated that image texture variables can
improve AGB estimation, especially in dense tropical forests [17,22,47]. The most common
method of calculating image texture variables is the grey level co-occurrence matrix (GLCM).
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The dry Afromontane forests in Ethiopia are attributed to areas with an altitude range from
1500 to 3400 m above sea level; mean annual temperature of 14 - 25°C; and mean annual
precipitation of 400 - 1700 mm [48]. These forests are of great ecological and economic
importance [49,50]. They contribute to the national and international initiatives towards
biodiversity conservation and to the mitigation of the global climate change [49]. Although the
dry Afromontane forests are important forest types in Ethiopia and have various purposes [51],
they are under pressure from the local community for expansion of agriculture, settlement and

fuelwood collection [50,52].

Some studies (e.g. [11,14,53]) evaluated the use of RS data for biomass estimation in small study
areas in the region of east Africa. However, to the best of our knowledge, except some efforts
related to the use of Landsat images for land cover classification and mapping, data from the
mentioned satellite missions subject to analysis in the current study have never been used to
assess AGB of Afromontane forests in Ethiopia. AGB of trees is the weight of all living material
of trees above the soil surface including the stem, stump, branches, bark, seeds and leaves. AGB
estimates, which can be converted to carbon stock estimates, are required in forest
management, and particularly in implementation of the REDD+ programs that are underway in
Ethiopia. Therefore, this study was initiated with the aim of introducing the possibility of
supporting and enhancing the estimation of AGB from traditional FBSSs with data from the three
satellite programs. The image-derived data were used to construct AGB prediction models.
These models will serve as non-destructive spatially explicit tools for AGB prediction and

estimation.

Because there is little current experience with what types of variables extracted from the
satellite systems in question that would be useful for AGB modelling, the first objective of this
study was to explore what kind of variables extracted from the different satellite programs
might be useful for AGB modelling in the dry Afromontane forest. The second objective was to
evaluate to what extent such RS data could help improving the precision of AGB estimates

beyond the precision of a pure FBSS in these forests.



2. Materials and Methods

2.1. Description of the study area

The study was conducted in Degaga-Gambo forest in south-central Ethiopia. It belongs to a state-
owned enterprise, Oromia Forest and Wildlife. The study area is located on the eastern
escarpment of the central rift valley of Ethiopia, in the Horn of Africa (Figure 1). It extends
geographically from 38°45’ to 38°56’ E longitude and from 7°13’ to 7°33’ N latitude. The forest
has an area of 14,176 ha. The altitude of the study area ranges from 2100 to 2730 m above sea
level. The study area has a bimodal rainfall distribution. The main rainy season is from July to
September while the short rainy season is from March to May [54]. The mean annual

precipitation and temperature in the area are 1245 mm and 14.9°C.

The forest area has both natural and plantation forest types. The major species of plantation
forest compartments, which are mostly found in the lower elevations, are Cupressus lucitanica,
Pinus patula, Grevillea robusta and different Eucalyptus species. The natural forest has high tree
species diversity. The dominant tree species observed in the natural forest include Syzygium
guineense, Afrocarpus falcatus, Juniperus procera, Pitosporum viridiflorum, Maesa lanceolate,
Millettia ferruginea, Croton macrostachyus and Maytenus arbutifolia. The objectives of the
enterprise are production of lumber and poles from the plantations and conserving the natural
forests. The natural forests are home to a wide range of wildlife species and are source of water
for the downstream areas. Nevertheless, the forests are under severe pressure. lllegal cutting of
trees and land use change for settlement and farmland expansion are the common problems in

the area.

The forest has complex vertical and horizontal structures. Besides the species diversity, there is
large variability in tree height and wood basic density of the study forest. The mean (and range)
of observed tree height was 13.9 m (4.9-40.1 m); while the mean (and range) of wood basic

density (g cm-3) for tree species in the forest was 0.588 (0.426-0.979) [55].
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Figure 1. Location of the study area and distribution of the field sample plots (SPs). A band
combination of SWIR-NIR-R (in the order of R-G-B) of L8 image was used to enhance the

appearance of vegetated areas (in green).

2.2. Field data collection

The sampling frame was defined to include the Degaga-Gambo forest territory, which contains
both the natural and plantation forest types. Circular sampling plots (SPs) of 17.85 m radius
aligned in a systematic grid at an interval of 1.2 km were used for field data collection (Figure
1). One hundred and eleven plots (from the natural forests, plantation forests and other
categories like clear-cut, cropland, settlement and grassland cover types) were sampled from
February 2018 to January 2019. Handheld global positioning system (GPS) receiver was used to
navigate to the pre-defined locations of the SPs. Then, precise coordinates of the plot centres
were determined using differential GPS and global navigation satellite system (GLONASS)
measurements. Two Topcon legacy-E + 40 dual frequency receivers were used for this purpose
[56]; one serving as base station and the other as a rover field unit. The receivers record pseudo-

range and carrier phase of GPS and GLONASS.

The base station was set up at Wondo Genet College of Forestry and Natural Resources campus.
The Euclidean distance between the base station and the plot centres ranged between 21.7 and

57.2 km with an average distance of 41.8 km. In order to determine the position of the base



station using precise point positioning, the GPS and GLONASS data were recorded continuously
for 24 hours [57]. At the plot centres, the rover was mounted on a 2.98 m carbon rod and
recorded for 41.5 minutes on average using a one-second logging rate. The recordings were
post-processed using the Magnet tools software [58]. The standard error of the post-processed

planimetric plot coordinates ranged from 0.017 to 1.111 m with a mean of 0.232 m.

In each of the SPs, we recorded species names and measured diameter at breast height (DBH),
i.e. the diameter of trees at 1.3 m above the ground, for all the trees with DBH 2 5 cm. Calliper or
diameter tape was used for DBH measurement depending on tree size. Tree height
measurements were carried out for 10 trees selected systematically in each of the plots using a
Haglof vertex laser 5 instrument [59]. Height of the trees for which height were not measured

were predicted using height-diameter models developed based on the sample trees [14].

2.3. Plot level AGB estimation

Plot level AGB (Mg hal, mega grams per hectare) was estimated by aggregating the predicted
individual tree AGB in the respective plots. For predicting tree AGB in the natural forests, the
allometric model constructed by [55] was used. This model has DBH, height and wood basic
density as predictor variables. Wood basic density values were obtained from [60]. For
plantation forests, tree AGB was estimated using species-specific allometric models.
Accordingly, for Cupressus lusitanica, we used the model by [61] with DBH and height as
predictor variables. For Eucalyptus species and Grevillea robusta, models by [62,63] were used,
respectively, having DBH and height as predictor variables. The plot level AGB values ranged
from 0 to 845.7 Mg ha! with a mean and standard deviation of 184.35 Mg hat and 155.8 Mg ha-

1, respectively.

2.4. Satellite image acquisition

Satellite images acquired in January 2019 were considered since this is the dry season when
most of the undergrowth vegetation dries up and is easier to distinguish from the trees. This
time window was also within the field inventory period. Additionally, selected images were
restricted to those with cloud cover < 5%. A detail description of the images used in this study
is given in Table 2. Single tiles of each of the L8 and S2 products were downloaded from the
USGS Earth Explorer website [64]. Both images were Level-1C products, which means that the
images were corrected for any possible topographic and geometric errors. The processing level
of the L8 image used in this study was L1-TP, which is a Level-1 precision and terrain corrected
product. Besides terrain and topographic correction, radiometric correction has already been

done for S2 products prior to delivery. The SB (spectral band) used in this study (i.e., blue (B),



green (G), red (R), near infrared (NIR), shortwave infrared-1 (SWIR1) (for both L8 and S2), red-
edge (RE) (only for S2)) have spatial resolutions of 30 m for L8 and 10 or 20 m for S2.

We downloaded the PS Ortho Scene Product (Level-3B) from the Planet Explorer website [65].
Six scenes of orthorectified scaled Top of Atmosphere Radiance (at sensor) image were
downloaded to cover the study area. These images contain information about the B, G, Rand NIR

SBs.

Table 2. Major characteristics of Landsat-8 (L8), Sentinel-2 (S2) and PlanetScope (PS) systems

and properties of images used in this study.

Path/row Cloud Product .
. . Date of . Spectral Spatial
Satellite Sensor or tile ‘i cover processing .
acquisition bands? resolution
number (%) level
] B,G, R NIR, )
L8 OLI 168/055 16/01/2019 0 L1-TP SWIRL 30 m:all SB
B, G,R,RE, 10 m: visible,
S2 MSI T37NDJ 14/01/2019 3 Level-1C NIR SWIRL NIR; 20 m: RE,
’ SWIR1
Scene-
4-band frame 3B-Analytic- .
PS imager; NIR filter f?:::eds 27/01/2019 0 MS B, G, R, NIR 3m:all SB

Source: USGS Earth Explorer [64] for L8 and S2; Planet Explorer [65] for PS.

a OLI stands for operational land imager.

b B, G, R, NIR, SWIR1 and RE represent the blue, green, red, near-infrared, shortwave infrared-1
and red-edge spectral bands, respectively.

2.5. Image processing and independent variable definition

In the current study, we first evaluated a great number of potential candidate variables that
could be useful for AGB modelling. A series of image processing techniques were applied on the
satellite images to get the independent variables. First, atmospheric correction was done using
the QGIS software version 3.1.0 [66] and python codes. For L8 and S2 images, the semi-
automatic classification plugin (SCP) of QGIS was used for running the dark-object subtraction
(DOS-1) algorithm, which removes the dark pixels that result from atmospheric scattering. The
satellite images were transformed from spectral radiance to top of atmosphere reflectance
values based on the conversion factors in the metadata file that comes along with the image files.
However, the PS images were processed using the empirical line correction for conversion of

radiance to reflectance values indicated in Equation 1:

Reflectance = Gain X Radiance (Input data) + Offset 1

The radiances of the input images were converted to reflectance values and atmospheric

correction applied since variables from multiple images were compared. In addition to variation
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in the sensors, the three sets of images were acquired in different dates although within 13 days
of maximum gap among them. Furthermore, six scenes of the PS imagery covered the area of
interest. After atmospheric correction, all the images became Level-2A products, which have
pixels with surface reflectance values suitable for calculating Sls (spectral indices) and texture
variables used in this study. Atmospherically corrected SBs, which were used for creating Sls
and texture variables shown in Table 1 and Table 3, respectively, were selected for this study.
Descriptions of the GLCM image texture data derived from the PS images are presented in Table
3. Texture information of the L8 and S2 images were not used due to the coarse spatial
resolutions. Sentinel Application Platform (SNAP) software version 7.0.0 [67] was used for
calculating the texture variables. Processing parameters of window size of 11 pixels x 11 pixels,
angle in all directions, probability quantization with level of 128 were set to obtain the texture
data used in the current study. This processing window size was set to provide an equivalent
area to the field SPs.

Table 3. General description of the GLCM texture features used in this study.

GLCM Textured Expressione Description
N-1
Contrast Z pij X (i — )2 Contrast and dissimilarity indicate the
Lj=0 amount of local grey level (GL) variation in
N-1 an image. Large values mean presence of
Dissimilarity z pij X |i—jl edges, noise or wrinkled features.
i,j=0
N ( f
. ij Measures the smoothness (homogeneity) o
Homogeneity (IDM) LT+ G- )2 the GL distribution of an image.
1]=
N he d f orderl f
ASM measures the degree of orderliness o
ASM Z (pi']‘)z s g .
. pixel values in an image.
1,)=
Energy ASM Energy is a measure of uniformity.
Maximum probability maximum (pi,j) Maximum probability of the GL values.
N-1 It measures the degree of randomness of
Entropy Z pij X (—InPii) pixel values in an image. Entropy is
ij=0 inversely related to uniformity.
GLCM mean wo=INZEIX (i) 5wy = 2Nb) X (piy) Mean of GL distribution of the image.
. % = Zhzopij X (i — )% GLCM variance is a measure of dispersion
GLCM variance 2 N-1 ) 2 P
s% = Xij=oPij X G — 1) of GL distribution.
N-1 . .
)X (i— W
. pi; X [M] Correlation indicates linear dependency of
Correlation ij L . .
5=0 s2; X 57 GL on their neighbouring pixels.

d1DM and ASM stand for inverse difference moment and angular second moment, respectively.
¢ Where p;; is the probability of finding the GLCM relationship at cell (i, j) and is calculated as:
Vi Ne

= ;such that Y;\C
ENZh Vij Y

pij = })(pi_j) =1; Vj; =greylevel value in a cell (i, j) of the image window,
N = Number of grey levels in the image as specified by number of levels in the quantization
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Area-weighted mean and standard deviation (hereafter referred to as mean and standard
deviation, respectively) of all the variables were extracted to each SP using QGIS. These were
used as independent variables of the models constructed from each RS data, the details of which

are explained in the following sections.

2.6. Variable selection and model fitting

The purpose of the AGB regression modelling was to construct models with variables from the
RS data as predictors and which could be used to enhance the precision of the overall AGB
estimates for the study area. For the AGB estimation we used a model-assisted approach to
inference (see details in section 2.8) because that would allow a direct comparison of the
uncertainty of the AGB estimate with similar uncertainty estimates obtained for the pure field-
based estimate. In model-assisted estimation, the model form and the predictors selected for
the model should be determined independent of the sample at hand [68]. In model-assisted
inference, no claim of a true model is necessary. A poor choice of model form and predictors
would have negative consequences in terms of efficiency [69](p. 238), but would not invalidate
the unbiasedness of the estimator. If, however, the choice of model form and the choice of
predictors were sample-based, e.g. by choosing predictors by optimizing the predictive power
of the model for the sample at hand, there would be a risk of overfitting and underreporting of

uncertainty [70].

On this background, we found ourselves in a dilemma in this study. On one hand, we had no
prior information about useful variables derived from the given RS data for AGB modelling for
the particular forest types under study. Neither had we any experience with suitable model
forms for the study area. On the other hand, if model selection and variable selection were

optimized for the given sample, overfitting would be a likely consequence.

To balance these conflicting requirements, we first did a screening of the variables mentioned
above to gain first-hand experience with the three types of satellite data for the current forest
types. We then chose a model-form a priori and allowed only a small number of predictors to be

included in the model. In the modelling phase, we paid special attention to any sign of overfitting.

Thus, in the first phase of the analysis, Pearson’s correlation coefficient was used to explore the
relationships of individual independent variables with AGB. Those variables that had significant
correlation with AGB were used as potential variables for the AGB model fitting. Furthermore,

correlation analysis was done for each pair of independent variables within each satellite data
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source to evaluate the level of intercorrelation between them. Results of the correlation analysis
indicated that most of the variables were strongly intercorrelated (Figure 2). Hence, variable
screening was employed to reduce the redundant information emanating from those strongly
intercorrelated variables. Results of the initial analysis using more complex models showed
overfitting problems, which was manifested in accuracy difference between training and
validation results for each model. Such sever overfitting was observed for models with more
than two variables. Because of the risk of overfitting, we restricted selection of independent
variables in the models to a maximum of two variables only. The results from the analysis of

models with more than two variables are not documented any further.

The relevant variables of each satellite data source were related to plot-level AGB using the

logarithmic link function in a generalized linear model (GLM) of the form:

In (y)) =Bo+ Zieq BiXi (2)

where y; is ground reference AGB (Mg hal), [, is intercept, f; is coefficient of the

independent variable (X;), and iis index of an individual independent variable.

This model form was chosen since it provides valid estimates where true zeroes are included in
the estimate of AGB, which has positive continuous numerical values. A study of AGB prediction
using topographic variables in human-impacted tropical dry forest landscapes of Mexico
indicated that GLM estimation technique improved predictions [71]. Thus, the mean of SBs and
SIs of L8 image were candidate independent variables for the L8 model. The mean and standard
deviation of the SBs and SIs of S2 image were candidate independent variables for the S2 model.
The mean and standard deviation of SBs, SIs and texture features of PS bands were used as

candidate independent variables for the PS model.

2.7. Model validation

We evaluated the performance of the models using a leave one out cross-validation technique.
The cross-validation was used to assess overfitting. Each model was validated in terms of
coefficient of determination (R2), root mean squared error (RMSE, %), mean deviation (MD, %),
and Akaike Information Criterion (AIC) as determined by Equations 3 - 8. The AIC was used to

evaluate the maximum likelihood of the model parameters.

R? = 1 — Residual deviance 3

Null deviance



RMSE = |Z¥0L, (y; — 9)? 4)

RMSE

RMSE% = —— x 100 (5)
MD = =¥, (v — 9i) (6)
MD% = % x 100 7
AIC = —2InL[BK)] + 2k 8)

where y; and §; are the ground reference and predicted AGB (Mg ha-1) in the it: SP, and ¥; is the
mean of ground reference AGB ( Mg ha?) of all SPs; n is the sample size; L[G(k)] is the
likelihood function of the observations, B(k) is the maximum likelihood estimation of the
parameter f3, given the number of parameters of k within the model. The maximum likelihood
estimation enables choosing the parameter that makes the likelihood of having the observed
data a maximum fit with the dependent variable (AGB) without causing an overfitting issue.
When comparing models, the model with a smaller AIC is better than the one with a higher AIC.
In addition to the validation metrics indicated above, we did qualitative evaluation based on
visual comparison between the predictions using the selected models in each satellite data
source and false-colour composite (i.e. band combination of NIR-R-G in the R-G-B channels)

depiction of the S2 image.

2.8. Population level estimation and efficiency assessment
Based on the SP inventory data, for the sample size of 111 plots of about 1,000 m? area, the
estimator of the mean AGB for the population and estimator of its variance were calculated by

Equations 9 and 10, respectively [69]:

~ 1

ffield = - Xiz1 Vi 9)
. 1 -

var(fifiela) = =g Zim1 0 — Afiera)® (10)

where y; is AGB (Mg ha'1) of the ith SP in the sample and n is the sample size.

The 95% confidence interval (CI) of fifelq Was calculated using Equation 11:

CI = fifielg £ t X SE(fifie1q) (11)

where SE({iielq) = +/Var(fifelq) is the standard error (SE) of [ifelq and t is student’s t at

significance level of 0.05.



Similarly, we estimated the mean AGB for the entire study area using the selected regression
model for each satellite data source. For this purpose, the study area was tessellated into grid
cells of 31.64 m x 31.64 m providing a total of N (141,604) population units. The size of the grid
cell size was chosen to be equivalent to the SPs. Area-weighted mean and standard deviation of
the variables used in the regression models were extracted for each grid cell using QGIS. AGB
was predicted for each population unit (i) in the map of the tessellated granules using the
selected regression models for each satellite data source and is represented by ;. Because the
prediction relied on field data collected based on probability sampling inside the population of
interest, we adopted generalized model-assisted regression estimators. The mean and the

variance estimates were computed using Equations 12 and 13, respectively [69] (p.231):
~ 1aN -~ 1on ~
fimage = § Zi=1¥i + - Xia(vi — 91) (12)

where fljmage is the mean remote sensing-assisted estimate of AGB (either L8, S2 or PS). The

first term in this estimator (% N . 91) is the mean of the model predictions (§;) forall population

. 1 o . .
units, and the second term (; YL:(Fi — i) is an estimate of the mean error calculated over the

sample units and compensates for systematic model prediction errors.

o~ A 1 —
Var(Uimage) = mZ?ﬂ(Si - 8)2 (13)

The SE of the mean AGB estimators (i.e. SE(fifelq) and SE(flimage)) were calculated by taking

the square root of the respective variance estimators var(fisielq) and var(flimage)-

The study assessed the gain in precision of AGB estimation with the use of the three types of RS
data. The measure of quantifying such a gain in precision of using RS data over the pure field-
based estimates was expressed using relative efficiency (REf). REf quantifies the magnitude of
estimated variance of a remote sensing-assisted estimate of mean AGB to a field-based estimate.
It was computed by Equation 14 as the ratio of the variance of the field-based estimates to the
remote sensing-assisted estimates:

REf = var(fifield) (14)

var(flimage)
When REf is greater than one, it is interpreted as the amount of additional precision gained due

to the use of the RS data for estimating mean AGB.



3. Results

3.1. Relationship of independent variables with AGB

Examination of the relationship of individual RS variables with AGB demonstrated that many of
the candidate variables were reasonably related with AGB. Correlation coefficients were
translated to descriptors like ‘weak’, ‘moderate’ and ‘strong’ relationships according to the
scheme used by [72]. The mean SB reflectance values of the three satellite data sources had
negative moderate correlation with AGB (Table 4). On the other hand, the mean values of most
Sls tend to show moderate positive relationship with AGB with some exceptions (for instance,
mean ExGI of S2). It was revealed from the exploratory analysis that standard deviation of Sls of

S2 and PS images and texture variables of PS images had moderate relationships with AGB.

For the L8 category of independent variables, the mean Sls were less correlated with AGB as
compared to those of the SBs. Table 4 shows that from the SIs, the mean NDMI had considerable
relationship while that of ARVI, NDVI and SR have weaker performance. The mean values of all
SBs were moderately related to AGB with correlation coefficients ranging from -0.38
(NIR_mean) to -0.48 (SWIR1_mean). The strength of association of AGB with NIR_mean was
equivalent to that observed with the strongly correlated SI (i.e. the NDMI_mean), which was

0.39.

From the S2 variables, the mean of both SBs and SIs showed reasonable association with AGB.
Similar to the L8 variables, the mean of SBs had stronger relationship than that of the SIs except
the mean ExGI, which had the strongest relationship. The peculiar behavior of ExGI comes from
the fact that it is just a difference of SBs. Likewise; standard deviation of the SIs (namely GLI,

NDGI and VI) had strong positive association with the dependent variable.

Similarly, for the PS variables, the mean of SBs of G, R and B showed the strongest relationship
with AGB followed by that of VI and NDGI Sls. The mean and standard deviation of the texture
data had moderate relationship with AGB (Table 4).



Table 4. Correlation of relevant independent variables (see Tables 1, 2 and 3 for definitions)
derived from L8, S2 and PS images with AGB. The notations for SB and SI variables of all the
image types are MMM_mean or MMM _std representing the mean and standard deviation of the
variable MMM, in respective order. For texture variables of the PS data, BnXXX_mean is the mean
of the mentioned (XXX) texture variable of the SB Bn where n =1, 2, 3, 4 for B, G, R, NIR,

respectively. Similarly, BnXXX std is the standard deviation of the texture variable as described

above.
L8 S2 PS

Variable correlation Variable correlation Variable correlation
NDMI_mean 0.39%** GLI_std 0.44%** VI_mean 0.44%**
ARVI_mean 0.27** NDGI_std 0.43%** NDGI_mean 0.44%**
NDVI_mean 0.23* VI_std 0.43%** B4ASM_std 0.37***
SR_mean 0.19* NDMI_mean 0.31%** B4ENE_std 0.35%**
NIR_mean -0.38%** NIR_mean -0.42%** NIR_mean -0.38***
B_mean -0.47%+* R_mean -0.43*** B3VAR_mean -0.39%**
R_mean -0.42%** B_mean -0.46%** B2VAR_mean -0.39%**
G_mean -0.45%** RE_mean -0.48*** B1VAR_mean -0.39%**
SWIR1_mean -0.48%** G_mean -0.49%** B3MEA_mean -0.40%%*
SWIR1_mean -0.49*** B2MEA_mean -0.40%**
ExGI_mean -0.51%** B1MEA_mean -0.40***
B_mean -0.46***
R_mean -0.46***
G_mean -0.48%**

* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001.

3.2. Variable selection for the prediction models

Correlation analysis indicated that independent variables of each satellite data source were
strongly intercorrelated (Figure 2). Therefore, the variables that fit well with AGB in the GLM,
and which had no significant collinearity problem, were selected for the AGB prediction models.
As a result, the means of NDMI and NIR variables were less intercorrelated and became
predictor variables for one of the L8 models. Besides, a simple model with the most strongly
correlated variable (SWIR1) with AGB was considered as another candidate model in this

category.

Similarly, the mean of SWIR1 and standard deviation of GLI were selected as predictor variables
for the two-variable S2 model. The standard deviation of GLI had strong positive correlation
with AGB (Table 4) and was less correlated with the mean of SWIR1 variable (Figure 2), which
was already in the model. Moreover, the single variable model with a predictor variable of mean

of ExGI and another one with mean of SWIR1 SB were other candidate models of the S2 category.

From the PS data, the mean of G reflectance had the strongest correlation with AGB. Thus, one

of the PS models contains independent variables composed of the mean reflectance of G SB and

17



standard deviation of the ASM texture variable of the NIR SB. The mean of B4ASM was the least
intercorrelated with the mean of G SB. The other simple model was the model with a predictor

variable of the mean of G SB reflectance only.

Correlation
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Figure 2. Intercorrelation among independent variables derived from (A) L8, (B) S2, and (C) PS

images. See Table 4 for description of the notations used to represent the independent variables.

3.3. Selected AGB models for each image type

Table 5 shows detailed description of the candidate AGB models for each image type. Two
candidate models were obtained from the L8 data. There was marginal difference between the
single and two-variable models with AIC of 1403.31 and 1402.68, respectively. The model
calibration RMSE of the single and two-variable models were 70.22% and 71.06% of the mean
AGB, respectively. Likewise, the respective model validation RMSE values were 73.23% and
73.31% of the mean AGB. As clearly revealed in these model metrics, there is concern of less
responsiveness of the selected variables for the AGB estimates in the two-variable model. The
presence of two variables in the model did not significantly improve the model performance.

Therefore, the model with the mean of SWIR1 reflectance as the only predictor variable was

selected for AGB estimation.

Three models were selected as candidates from the S2 variables. Two of them were with single
predictor variable while the third has two variables (Table 5). The model with the mean of ExGI
as a predictor variable had a larger validation RMSE (73.80%) than the other models and had
an overfitting problem. The model with predictor variable of the mean of SWIR1 was better than
the one with the mean of ExGI. However, the two-variable model had even greater performance
among the S2 category of models. The two-variable S2 model with predictor variables of the
mean of SWIR1 and standard deviation of GLI had the least AIC value among the models

(1385.06) and minimal overfitting problem (Table 5). Additional indicators of the model fit and
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validation results of this model were also better than the other models in the category. This
model explained 40.96% of the variability in the ground reference AGB unlike the selected L8

and PS models, each of which explained less than 30%.

Two candidate models were obtained from the PS data. The two-variable PS model contains the
mean of G reflectance and standard deviation of B4ASM texture as predictor variables. However,
this model revealed a severe overfitting problem. The model RMSE and validation RMSE were
70.19% and 79.48%, respectively. Thus, the single variable model with the mean of G reflectance
was selected for AGB estimation in this category. It had model calibration and validation RMSE
of 71.79% and 75.17%, respectively. Overall performance of the selected PS model was slightly
lower than the S2 models but similar to that of the selected L8 model (Table 5). The validation
results of all the three selected models for AGB estimation indicated that the models have
sensible performance in predicting AGB for the data with which they were not trained. The
scatter plot of fitted versus ground reference AGB values shown in Figure 3 indicates a
reasonable predictive power of the models given the complex settings of the study area.
Pearson’s correlation coefficients of the model predicted and ground reference AGB in the SPs
revealed that the S2 model predictions were more correlated with the ground reference AGB
than the other two models. The S2 model predictions had correlation coefficient of 0.64 with the

ground reference AGB.

Table 5. Models and performance indicators for mean AGB estimation in the Degaga-Gambo

forest using independent variables from L8, S2 and PS images.

Calibration Validation Prediction

Image Model AlC RMSE (%) RMSE (%) Correlationf

AGB = exp(6.0703 — 93781 x NIR_mean + 3.5489 x NDMLmean) ~ 140268 2.0 135.20 055

L8 (70.22) (73.31)
AGB® = exp(6.9967 — 16.1492 x SWIRL_mean) 1403.31 (17311.6060) (17335_'203(; 0.54
AGB® = exp(6.1310 — 11.4874 x SWIRL_mean + 12.7865 x GLLstd) ~ 1385.06 (16149.5578) (1627%'172‘; 0.64

S2 AGB = exp(7.1200 — 51.3576 x ExGl_mean) 1400.00 [1629%967) (1733%001) 0.56
ACB = exp(6.9968 — 15.2480 X SWIR1_mean) 1402.00 [1730%393) (1733%76(; 0.54

o AGB = exp(10.0593 — 56.0248 x G_mean + 1.1545 x B4ASM_std)  1402.55 [1720?'149% (17497.;}38(; 0.55
AGB® = exp(11.7696 — 75.2766 x G_mean) 1406.00 [17312_'739‘3 (173:'1578) 0.52

Mean and std refer to the area-weighted mean and standard deviation of the image-derived variables
within the grid cells.

@ Selected model for AGB prediction from each image type.

f Pearson correlation coefficient between ground reference and model-predicted values of AGB for the
models in each image type. The square of these coefficients is the same as the R2 of the models, which was

determined using Equation 3.



The L8 and PS models had equivalent performance and explained a considerable amount of the
variation in the FBSS estimate of mean AGB with R? of 29% and 27%, respectively, given the

complex forest structure and topography in the study area.
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Figure 3. Relationship of ground reference versus predicted AGB using selected models of (A)
L8, (B) S2, and (C) PS data. The dashed red and grey solid lines (overlapping) represent the

identity and the correlation function, respectively.

Although the general trend of the error distribution of the three selected models looks similar,
prediction errors of the L8 and PS models spread out at small and large AGB more than the S2
model did (Figure 3). The extents of deviation of predicted values from the ground reference
AGB differ for each model especially at the smaller and larger AGB values. With this variability
maintained, the selected models of all the three image data inflated predictions of small AGB,
particularly those below approximately 300 Mg ha-l. For SPs with large AGB, the predictions

using all the three models were smaller than the ground reference values.

Figure 4. Understory vegetation in a forest SP. The understory Vgetation that was not
measured during the forest inventory could have influenced the image values and thus their

relationship with AGB.
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The L8 and S2 models had smaller prediction error at the smaller AGB end than at the large AGB

levels. Generally, the predictive power of the S2 model prevailed over that of the other models.

3.4. Estimation and mapping of AGB using the selected models

Table 6 shows the estimated mean AGB, estimates of mean deviation, SE of the mean AGB
estimates and REf for the selected models of the three image categories presented in Table 5.
The estimates of mean AGB were 179.67 Mg ha't, 177.79 Mg ha! and 184.27 Mg ha-! when using
the L8, S2 and PS model predictions, respectively. The model-assisted estimates of the mean
AGB for all the three categories of models were within 95% CI of the mean AGB estimate based
the field data only (i.e. 155.15 - 213.76 Mg ha'1). The estimated mean AGB using the PS model
was closer to the field-estimated mean AGB (i.e. 184.35 Mg ha-!) than the estimates using the
other models. The estimated mean AGB using the L8 and PS models had the largest and smallest
MDs, respectively. The AGB estimate based on the PS model was relatively less precise followed
by the L8 model. The estimation results revealed that the L8 and PS models resulted in

equivalent estimation efficiencies (i.e., 1.40 and 1.37, respectively).

The estimate based on the S2 model was the most precise among the three model-assisted AGB
estimates with SE of 11.40 Mg ha-l. As a result, the REf of the mean AGB estimate using the S2

model (i.e. 1.68) was greater than what we obtained by using the other two models.

Table 6. Estimated mean AGB (Mg ha'1), mean deviation (MD) in Mg ha-1, standard error (SE) of
the mean estimates (Mg ha'1) and relative efficiency (REf) when using the selected models to

assist in the estimation.

Estimator data source Estimated mean AGB Estimated MD SE REf
Model-assisted; L8-model 179.67 1.71 12.49 1.40
Model-assisted; S2-model 177.79 0.62 11.40 1.68
Model-assisted; PS-model 184.27 -0.13 12.62 1.37

Field-based 184.35 - 14.79 -

Visual inspection of the predicted AGB using the three selected models and the false colour
composite of the S2 image shows convincing AGB distribution across the landscape. As expected,
the patches of bare land in the study area (shown in different shades of grey in Figure 5-D) have
small AGB predictions using all the models while the dense forest areas (coloured red in Figure
5-D) yielded greater predicted AGB values. The map revealed that AGB predictions using the
selected models had many similarities, which also was confirmed by similarities in the estimated
uncertainties (Table 6). The proportion of each category of AGB predictions and their
distribution patterns in the maps clearly indicated the spatial consistency of AGB predictions

across the area for the selected models.
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Figure 5. Visual representation of a portion of the predicted AGB using the selected models of
(A) L8, (B) S2, (C) PS and (D) false colour composite (NIR-R-G in the R-G-B channels) of the S2
image of the study area acquired on 14 January 2019. Values within the bar graph are area

proportions of predicted AGB for each class of AGB (shown in the legend) for the population.
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4. Discussion

4.1. Variable exploration for estimating AGB and model selection

The observed moderate relationships of independent variables of the RS data with AGB
demonstrated the potential of optical RS data for developing models to enhance AGB estimation.
The observed negative correlation coefficients between the mean of SB reflectance and AGB
agree with results of similar studies conducted in various forest types [14,73,74]. The negative
correlation coefficients indicate the inverse relationship between reflectance values from the
SBs and AGB. This relationship in the current study could be explained by a shadow effect within
the complex forest stands where AGB is large [75, 76]. The presence of scattered big trees in SPs
with large AGB result in large shadows. Additionally, such an effect might be related to large
canopy water content, which is directly linked to photosynthetic efficiency [77]. The reflectance
of the SBs from uniform forest stands like young plantations is large but they have relatively

small AGB.

The positive relationship of most of the SIs with AGB found in this study is in accordance with
previous research findings [14,28,74]. Besides the mean of Sls in each SP, the standard deviation
of some SIs had also remarkable potential to relate with AGB. Neesset et al. [11] got similar
results in Tanzania. Reviewed literature indicated that application of some of the Sls like the GLI,
ExGI and NDGI have been limited to assessing grass biomass and crop cover or yield estimation.
However, the current study showed that they had great potential to predict AGB in this type of
forest. Thus, an in-depth study is required to understand the potential of such SIs for AGB

estimation in different forest types.

It was revealed from the correlation analysis that most of the predictor variables in each satellite
data were intercorrelated. Lu et al. [78] found a similar result for estimation of AGB in wheat
using unmanned aerial vehicle. Among the SBs, the visible and the shortwave infrared bands,
which are affected by atmospheric interference and shadow, were more strongly
intercorrelated [75]. Besides, SIs and texture variables were derived from these interrelated
SBs. Therefore, the observed intercorrelation among the independent variables was likely to

happen. This suggests the importance of a careful screening of RS variables for AGB modelling.

Furthermore, inter-resolution comparison of SBs showed that the limited spectral properties of
the PS images might have restricted their potential to characterize AGB. For example, AGB
correlated similarly with the G SB from each of the three image sources regardless of the
differences in spatial resolution. The study results showed that the same SB across the

resolution gradient characterized AGB similarly, indicating only a minor impact of pixel
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resolution on the quality of the AGB models if only SBs are related to AGB (Table 4). We observed
that the S2 data contain a range of SBs that were more sensitive to AGB than the PS data, which

have a higher spatial resolution.

Based on the relationship of the independent variables with AGB, we identified useful variables
and models for each satellite data source. For example, exploration of the L8 data revealed that
the NDMI showed a stronger correlation with AGB than other SI variables including the NDVI.
This might be due to the improvements in the NDMI to detect leaf water content at the canopy
level [50]. Previous research indicated that NDMI is useful for predicting forest attributes,
including biomass [29,64]. The NDVI, which is the most popular SI for AGB modelling mostly in
the temperate and boreal forests, was not a good predictor of AGB in the current study. Sader et
al. [26] got similar results indicating unsuitability of NDVI for estimating AGB in tropical dense

forests.

However, for the L8 data, AGB had a stronger correlation with SBs than the SIs mentioned above.
Even among the SBs, AGB strongly correlated with the mean of SWIR1. The significance of the
SWIR1 variable for AGB modelling was according to the results of other studies [18]. A study of
biomass estimation using RS data in India indicated that biomass models using the SWIR bands
were more reliable than those using short-wavelength SBs like the visible bands, which are more
sensitive to atmospheric effects [79, 80]. For green vegetation, reflectance in the SWIR spectral
regions is controlled by the amount of water in the leaf biomass of the canopy. There is low
diffuse of light at the SWIR wavelengths, and hence shadows are contrasted. The presence of
thick layers of fragmented tree canopy and shadows in SPs with large AGB yielded low
reflectance in the SBs, including the SWIR1 SB as indicated with the negative coefficient in the

selected model.

The S2 model used for AGB estimation was the two-variable model with the independent
variables of the mean of SWIR1 and standard deviation of GLI. Inclusion of the standard
deviation of the GLI variable in the S2 model indicates the ability to capture spatial variation in
canopy structure in the forest as the GLI can identify green leaves and stems from the
background soil surface [38]. This variable may reflect the level of disturbance, terrain variation
or presence of very big scattered trees in the natural forest. This variable signifies the
importance of using measures of variability derived from higher resolution images in AGB
modelling. The mean of ExGI was also another variable from the S2 data sensitive to AGB

variability.
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Besides the SBs and Sls, texture variables of the PS images had considerable potential for AGB
modelling. The standard deviation of B4ASM that was included in one of the PS models,
indicating the importance of high-resolution images for AGB modelling. Image texture variables
like the ASM, describe the spatial arrangement of pixels with varying intensities that resulted in
different AGB. The texture variables were able to differentiate between heterogeneous and
homogenous surfaces, which prevailed in the disturbed natural forest patches and young
plantation forests, respectively. This might be the reason for the observed strong positive
relationship of the standard deviation of B4ASM with AGB. Improvement in the model
performance by including this texture variable was in line with the findings of other studies [19,
47, 81]. Nevertheless, the two-variable model containing the standard deviation of B4ASM was
subject to overfitting as compared to the reduced model with the mean of the G reflectance

variable (Table 5).

4.2. Model characteristics and their contribution to enhance AGB estimation

Generally, the selected L8 and PS models explained a proportion of the variability in the ground
reference AGB that was within the expected range, given the complex nature of the forest and
terrain configuration. The calibration RMSEs of the L8 and PS models were 71.06% and 71.79%
of the mean of the ground reference AGB, respectively. This was comparable with the results of
other studies conducted even in intermediate vegetation cover conditions where it is easier to
get a stronger relationship between image data and AGB [68]. The REf of the AGB estimates
based on the selected L8 and PS models were 1.40 and 1.37, respectively. Consequently, there
was similarity in improving the mean AGB estimates based on the L8 and PS models. The REf
when using the L8 model in this study was slightly larger than the findings by Neesset et al. [11]

for Miombo woodlands in Tanzania using the global Landsat products.

The selected S2 model contributed more strongly to improve the precision of the AGB estimates
than the L8 and PS models. This improvement in estimation efficiency contributes to reducing
the number of field SPs required to attain the same precision, to approximately 59% of the

sample size required for a pure FBSS estimate.

The REf when using the S2 model was smaller than that of the RapidEye images used for AGB
estimation in the Miombo woodlands in Tanzania [11]. This might be attributed to the
heterogeneity of the forest in the current study, or the interaction effect of forest types and
spatial resolution of the images. Besides, [11] stated that the small study area covered in their
study might have resulted in overly optimistic results because the remotely sensed data were

very homogenous since they came from only a single scene. On the other hand, the results of the

25



current study were similar to the findings by Navarro et al. [16] who studied AGB of mangrove
plantations using S2 images in Senegal. Thus, the findings of the current study are reasonable
given the heterogeneity of the terrain and forest conditions, which influence the relationship of

image data and AGB [80].

Although there were some variations between the models in this might regard, they were able
to predict only to a limited range of the ground reference AGB. This shows a saturation problem
for which canopy shadow is mainly responsible in the SPs with large AGB. Similar studies in
primary and successional forests in Brazil indicated that shadows were among the main factors
resulting in data saturation, particularly in natural forests with large AGB [76]. Therefore, future
efforts should focus on synchronizing other auxiliary variables like canopy density and canopy
height from airborne laser scanning data with the identified variables to improve model

performance.

During the fieldwork, understory vegetation was observed in SPs (see Figure 4). The inflated
predictions at SPs with small AGB might be attributed to this phenomenon. The field inventory
was limited to trees with DBH 2 5 cm and did not account for the understory vegetation. Dense
understory vegetation composed of saplings, shrubs, lianas and herbaceous species covered
most of these SPs and challenged our movement during the fieldwork. The biomass in the
understory vegetation, which was not accounted for in the ground reference AGB, could have
had a major influence on the SB reflectance values and hence in all the RS variables. This might
partly explain the moderate improvement in precision of the model-assisted estimates of AGB
compared to the pure field-based estimate. As shown in Table 6, the PS-model assisted estimates
had negative MD indicating the greater effect of the inflated predictions at SPs with small AGB
than the reduced predictions at the SPs with large AGB. Thus, the effect of understory vegetation
on the relationship between image-derived variables and AGB was more obvious when using
the high-resolution PS images. A greater compliance of the RS data with AGB would happen for
homogeneous forests in which the understory vegetation cover is minimal and the forest canopy
cover is uniform. Therefore, further studies are needed in pure plantation forests to attain an

optimum efficiency of RS data for AGB estimation beyond the ones we got in this study.

Generally, the findings of the current study were encouraging. We identified relevant variables
extracted from RS data for AGB estimation. The selected models of each satellite data source
based on the identified variables provided reasonable improvements in AGB estimations, which
were reinforced by other research findings. The freely available S2 data were particularly useful.

The research results revealed that S2 images possess sensible spectral and spatial properties
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for AGB estimation. The results of this study will help to satisfy the existing demand for forest
carbon stock assessment by the national REDD+ program in Ethiopia. Enhanced forest
information using the freely available data sources like the S2 would help to improve sustainable
forest management and encourage results-based payments for those who properly manage

their forest resources according to established principles like the REDD+ schemes.

5. Conclusion

Optical RS variables from L8, S2 and PS satellites were studied with the objective of identifying
relevant RS predictor variables that could be used to enhance AGB estimation in a dry
Afromontane forest. Most of the SBs, some Sls and texture variables (listed in Table 4) were
found to be promising variables for predicting AGB. Although some of them were not selected
in the models used for assisting AGB estimation, we identified variables including the mean of
GLI, ExGI and NDGI that were seldom used for AGB modelling but are highly correlated with
AGB. We recommend a detailed investigation of the importance of these variables for AGB

assessment in various forest conditions.

The simple models selected for each satellite data source enhanced AGB estimation. Of the
variables used in the models, the SWIR1 SB, which lacks in the PS data, was a useful variable of
the L8 and S2 images for AGB estimation in this forest type despite the huge differences in pixel
resolution among the image types. The study suggested that the spectral resolution of optical

satellite images was more determinant of AGB estimation than the pixel size.

The use of RS data for AGB estimation improved the precision of estimates. Thus, the remote
sensing-assisted estimation techniques used in this study will complement the FBSS estimates
of AGB by improving accuracy. The study results provide sufficient evidence that the L8, S2 and
PS model estimates could reduce sample size to 71%, 59% and 73%, respectively, of the field
sample size to get the same accuracy with the FBSS estimates. However, the models used for
AGB estimation in this study revealed saturation problem. Therefore, future studies should
focus on refining these limitations using a synergy of different data sources to enhance

estimation efficiency of AGB models beyond the ones achieved in the current study.
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