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Abstract

In PV (photovoltaic) solar power plants, high reliability of critical assets must be ensured—
these include inverters, which combine the power from multiple solar cell modules. While
avoiding unexpected failures and downtime, maintenance schedules aim to take advantage of
the full equipment lifetime. Predictive maintenance schedules trigger maintenance actions by
modelling the current equipment condition and the time until a particular failure type occurs,
known as residual useful lifetime (RUL). However, predicting the RUL of an equipment is
complex in this case since the equipment condition is not directly measurable; it is affected
by numerous error types with corresponding influencing factors. This work compares statistical
and machine learning models using sensor and weather data for the purpose of optimising
maintenance decisions. Our methods allow the user to perform maintenance before failure
occurs and hence, contribute to maximising reliability.

We present two distinct data handling and analysis pipelines for predictive maintenance: The
first method is based on a Hidden Markov Model, which estimates the degree of degradation
on a discrete scale of latent states. The multivariate input time series is transformed using
PCA to reduce dimensionality. This approach delivers a profound statistical model providing
insight into the temporal dynamics of the degradation process. The second method pursues
a machine learning approach by using a Random Forest Regression algorithm, on top of a
feature selection step from time series data. Both methods are assessed by their abilities
to predict the RUL from a random point in time prior to failure. The machine learning
approach is able to exploit its favourable properties in high-dimensional input data and
delivers high predictive performance. Further, we discuss qualitative aspects, such as the
interpretability of model parameters and results. Both approaches are benchmarked and
compared to one another. We conclude that both approaches have practical merits and may
contribute to more favourable decisions and optimised maintenance operations.
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Chapter 1

Introduction

Over the recent years, climate change has lead to an increased focus on the human’s impact
on the environment. As a consequence, large scale plans have been rolled out to minimise
environmental pollution, and several countries have committed to reducing carbon emissions
in the Paris agreement [2]. A key to achieve the goals in this agreement, is replacing fossil
energy sources with renewable energy sources [3]. In practice, this means that the demand
for electrical energy produced in a non-polluting way is growing [4]. To meet this increased
demand, effective and reliable methods of harvesting energy must be used.

One of the largest sources of energy accessible to humans is the sun. With almost 4 million
exajoules reaching the surface of the earth, and 50000 of them being easily harvested, this
is a great potential to be exploited [3]. The potential of harvesting solar energy is widely
perceived, hence the installed capacity of photovoltaic (PV) solar power has increased 7.7
times since 2012 [5]. The increased capacity indicate large growth in this industry, due to
improved technology and demand for "green" power. Combined, these factors have allowed
new companies to start producing solar power. An example of such a company is Scatec
ASA.

Scatec ASA was founded in 2007 as a Norwegian startup company in solar power, having
its first installation in Italy in 2009. Since then, their business has expanded to numerous
countries across almost all continents of the world. As of today, their global portfolio contains
1894 MW in solar power [6] for grid production, and the number is growing. Scatec also
pursues projects in remote industrial sites not being able to connect to the grid. Across all
renewable energy sources, the company has a capacity of 3.5 GW in operation and construction
across four continents. Thereof. 380 MW of this originate from the Benban solar plant in
Egypt [6], the largest solar power source in Scatec’s portfolio, split across six sub-plants.

1.1 Background

While the capacity of renewable energy is increasing, there are requirements to the quality
and reliability of the power produced in the power grid. In order to comply with grid regulations,
a certain amount of energy needs to be produced at a given time. The reason for such regulations
is to contain the power frequency of the grid. Containing the frequency is important in the
process of providing the consumers with power that is safe to use in their devices. If the
frequency deviates too much from the target value for the grid, it can have cause deprecation
of electric devices, as well as hazard in using them [4]. As a consequence, strict rules apply
for producers of power to the grid [7], and oblige them to monitor and optimise the reliability
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2 CHAPTER 1. INTRODUCTION

of their production assets.

Despite high quality standards and good routines for commissioning, the probability for
failure in production equipment is present at all times during operation [8] [9]. Against
all precautions, random production equipment failures are possible and in general hard
to predict [8]. The distribution of failure as a function of equipment lifetime can be seen
in Figure 1.1. The Figure’s phase 1 shows that the distribution of failure is high in the
beginning of equipment lifetime, known as burn in. The high failure rate in this phase is
caused by faulty mounting, production error in the equipment, incompatibility, etc. [8].
Phase 2 displays that there is a constant failure rate once the equipment has passed the burn
in phase. Phase 3 shows that the equipment reaches a state of wear-out towards the end of
the lifetime. In this phase, the failure rate increase exponentially.

Figure 1.1: The Weibull bathtub curve, showing the rate of failure for electrical equipment as a function of
life time. Phase 1 is the Burn in when the equipment is newly installed. Phase 2 is the equipment Operation
life, where the equipment is running properly and fine-tuned. Phase 3 is when the equipment is becoming of
age, and starts to get worn out.

1.1.1 Scatec photovoltaic solar power plants

Scatec uses PV (photovoltaic) technology in solar power plants. PV is one out of three main
technologies in the solar power industry, and by far the most used [10]. Summarised, the
PV technology works by the illumination of modules consisting of positively and negatively
charged semiconductor materials in cells. In turn, the illumination of the cells leads to electron
movement, giving electric energy. The modules are connected in serial, in strings. Strings
can either be connected directly to a string inverter or in parallel to form an array; which
is connected to a central inverter. For the Benban plant, central inverters are in use. The
inverters turn DC power produced by the solar cells into AC power, compatible with the
Grid. Central inverters are mostly used in utility-scaled power plants [11]. One of the downsides
to this approach is that it makes the consequence of inverter failure quite large; if the inverter
has downtime, the number of modules affected will be much larger than with the string
inverter approach. Thus, the operation of inverters is highly critical for power production,
which is a good reason for close monitoring of these components.
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1.1.2 Maintenance

Failures have potential to cause a lot of damage and loss; especially if they happen unexpectedly.
A severe failure in equipment can have large consequences both in terms of HSE (Health,
Environment and Safety) and economy. The HSE perspective is triggered by the risk of using
or being near a piece of malfunctioning equipment. In the case of power plants, electrical
hazards may occur. As for the economic perspective, such failures can take a long time to
repair, leading to production loss and occupation of personnel resources. The maintenance
organisation will have to find necessary spare parts and mobilise personnel, which is considered
to be a significant part of repair time in maintenance [9].

Maintenance is defined as any work done to prevent or correct failure [9]. In general, one
distinguishes between two main categories; preventive and corrective maintenance. The
difference between them is that preventive maintenance is done prior to failure; in order
to prevent it, whereas corrective maintenance is done as a consequence of failure, in order
to restore the intended function of the component [9] [12]. Preventive maintenance is often
considered the better option of the two when unexpected failure and downtime has a large
consequence.

Preventive Maintenance has two main approaches: Periodic preventive maintenance and
condition based maintenance. Periodic preventive maintenance is done based on an interval
in time or use. For instance, changing engine oil and oil filters on a car every year, or every
5000km driven; The first instance is calendar based, and the latter is usage based [9]. Condition
based maintenance, as the word suggests, involves monitoring the condition of the equipment,
and performing maintenance when needed [9] [8]. The monitoring can be done both by
manual inspection or installing sensors [13]. Predictive maintenance falls under this category,
and differs from the condition based maintenance in that it estimates the time until a failure
will occur. The hierarchy of maintenance can be seen in Figure 1.2.

Figure 1.2: The maintenance hierarchy, showing the various approaches for maintenance, on their timing
and decision base.

Unplanned corrective maintenance activities generally has a large negative effect on efficiency
and productivity [14] [15]. During all the reaction and repair time, the equipment will not be
in operation, leading to lost potential production. The impact of a failure will be multiplied
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if multiple equipment or multiple parts of equipment are harmed when it occurs. In a preventive
maintenance activity the possibility for planning is better. For planned activities, the time to
repair is significantly lower [9], and can, in the case of solar power, take place when there is
no potential to produce power (e.g. at night). Such advantages are the reasons why organisations
choose a preventive maintenance approach for their critical equipment. Performing periodic
maintenance actions to prevent failure is the most common strategy.

The key principle of the periodic preventive maintenance approach is to replace parts on
equipment after predefined time intervals, which is less costly than letting the equipment fail
at an inconvenient time [8]. However, these intervals leads to parts being changed potentially
at an early point, leaving a large part of their lifetime unused. The difference between interval
length and potential lifetime is known as unused lifetime, and is a large cost factor in periodic
maintenance [16] [9] [17]. Imagine changing the engine of a car every two years, when the
potential lifetime of the engine is four years, leading to the maintenance being twice as
expensive as necessary. Such replacements are wasteful, and not sustainable when it comes
to both human and material resources. Authors of [18] claim that 30% of periodic preventive
maintenance is necessary, another 30% is wasteful, and 30% more is directly harmful. The
latter is due to the increased failure rate in the period after the installation of new equipment
or parts [9].

To avoid unnecessary or even harmful periodic activities, some companies are performing
maintenance based on the condition of the equipment or parts. The condition of a part or
equipment can be estimated through manual inspection done by people or measurements
done by sensors surveying the equipment. As manual inspection can be less accurate due
to human error [19] and lack of detail and consistency in measurement [9], sensor values are
considered the best option for most applications [9]. When these sensor values are used or
analysed to estimate RUL (residual useful lifetime) of equipment, it is known as predictive
maintenance. Predictive maintenance is made possible by technological advances in computational
methods and hardware for data analysis. Such RUL analysis can be done in three ways;
Predicting failure based on values exceeding thresholds [20], mathematical models - model-
driven or through data analysis - data-driven. The latter is often done by means of machine
learning algorithms and expert knowledge.

Deciding between periodic, corrective and predictive maintenance is a key decision when
it comes to saving costs. Predictive maintenance may not be feasible if the consequence of
failure is small, therefore does not justify the procurement of condition monitoring equipment.
In this case, one can use the run-to-failure approach involving corrective maintenance, repairing
the equipment only when it fails. Other cases disfavouring predictive maintenance is if failure
happens at regular intervals, or if the replacement of parts has a low cost. In this case it is
easy to perform periodic maintenance at the correct time prior to failure.

For solar power, predictive maintenance has a large, unused potential [21]. Today, a common
mindset is to "install and forget" plants [21] - meaning that the plants are maintained to a
low degree, due to the high reliability of their components. This mindset leads to unexpected
failures and downtime, in turn leading to lost production, increased cost and reduced power
quality. Based on reports from pilot projects in solar plants, significant improvements can be
made in solar plants if predictive maintenance is implemented [22]:

• Costs can be reduced by 12%

• Uptime can increase by 9%
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• Risks for HSE and quality can be reduced by 14%

• Lifetime of assets increase by 20%

For energy producers in the solar power market like Scatec, predictive can be a very good
investment.

1.1.3 Predictive maintenance

The occurrence of papers related to predictive maintenance have increased significantly over
the last years. According to these, there are two main types of predictive maintenance. The
first type is model based predictive maintenance, which is mainly based on mathematical
functions describing the equipment degradation [23]. An example of such an algorithm is
Archard’s wear law, being used by the authors of [24], among others. The law is based on
volume loss due to the normal force, force of contact, sliding distance and a wear constant.
In order to set up the model properly and achieve accuracy in the model based method,
one needs access to a high level of domain knowledge and observations of failure [25]. Since
profound expert knowledge is often unavailable, the model is not applicable in many cases.
The second type of predictive maintenance is data driven predictive maintenance. Here, data
from equipment is analysed with machine learning or statistical methods. The objective of
these is to find measurement variables correlating with degradation or indicating impending
failure [13] [26]. Data is most commonly sampled by sensors, but can also be read manually.
Two important aspects for data-driven predictive maintenance is to monitor the equipment as
it runs until failure (also known as Run-To-Failure (RTF) approach [27], presented in chapter
1.1.2), and to measure the correct parameters prior to failure [26]. The focus of this work will
be on the data-driven approach.

A divided approach between the work done on data driven predictive maintenance on sensor
data, is how the failure prediction problem is solved in a machine learning manner; some
choose to do a binary failure/no failure classification problem [28] [29] [12] [30] [31] [32] [33].
For these cases, a classification algorithm is trained to recognise failure. Using this approach,
the algorithm will return e.g. 0 when no failure is present, and 1 if failure is present. An
alternative approach is to solve the failure prediction problem as a regression problem -
estimating the level of degradation and the RUL (Residual Useful Lifetime) [13] [34] [8] [16]
[35] [36] [37]. A regression algorithm is then trained on the data to estimate the degradation
or RUL with a number.

The approach used by the author of [13] uses a Random Survival forest to group individual
components with similar degradation profiles and estimate the reliability function of these.
Then, a LSTM (Long Term Short-Memory) RNN (Recurrent Neural Network) is used to
estimate the state of health on the equipment. RNN’s are also used by the authors of [35],
where they are compared to an approach with a Deep Belief Network feeding data into a
Feed Forward Network for prediction of RUL. The authors of [34] test several regressors;
Linear Regression, Random Forest Regression and Symbolic Regression to estimate RUL.
Their work presents that the prediction quality of the algorithms increase as the RUL approach
0.
The Random Forest based methods is also used by the authors of [36], using Random Forests
with feed-forward-propagation, compared to ANN’s (Artificial Neural Networks). A slightly
different approach compared to the above is used by the authors of [8], using a statistical
method - ARMA (Auto Regressive Moving Average) to predict the future development of a
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parameter, and then using a General Linear Model to predict the RUL based on the output
from ARMA.

1.1.4 Predictive maintenance in photovoltaic solar power plants

There are numerous works related to predictive maintenance in PV plants. Several approaches
are examined and reviewed [21]:

• Manual diagnostics - Manual inspections done on site [38] [39]

• FMEA - maintenance based on equipment criticality [40] [41]

• Machine learning and forecasting based on manual measurements [42], [43]

• Real-Time Sensors monitoring the values in the system [44] [45] [46]

Arguably, some of the points above are not to be considered predictive, as they do not include
analysis of the data and RUL estimation. In fact, merely a minority of the papers discussed
in the literature study [21] actually fit into the definition of predictive maintenance according
to Section 1.1.2 - the majority tackles fault detection and monitoring, and other factors
concerning PV plants. As this thesis aims to estimate the RUL, these are less relevant here.
However, a relevant piece of information in these papers is provided by the parameters monitored
in the implementations.
The authors of [47] monitor the following parameters: current, power, module temperature,
solar radiance and losses. Combined, these parameters indicate whether it is likely that a
failure occurred or not. The authors of [48] use the I-V curve, comparing the current and
voltage with regards to the power output. The I-V curve analysis is a method mostly used in
failure detection for modules, as different failure types tend to have different characteristics
on this curve. A similar approach is taken by the authors of [28].
Meanwhile, authors of [49] only use current and temperature to model the potential output,
and compare to the actual output. Thereby, a gap between potential and actual output can
indicate an error. The approach in the mentioned paper use sensor values with one hour
interval. On the contrary, authors of [50] claim that the sample frequency should be on 5-15
minutes for failure detection. Authors of [51] suggest that one hour interval for measurements
actually gives a better accuracy in fault detection than 10 minute sample interval.
The differences in conclusions between these papers can be explained by the fact that predictive
maintenance and anomaly detection problems are quite variable from different domains,
applications and geographical locations [26]; even solar plants with the same technology can
have different failure patterns due to local variables geographically, human factors, etc.

1.1.5 Data-driven operation and maintenance in Scatec

In 2021, a PhD thesis was published at the University of Oslo in cooperation with Scatec,
using the same data, which will be used in this thesis [1]. The PhD thesis presents ways to
filter out irrelevant data for fault detection on different type of equipment, so that the data
used for analysis is as relevant as possible.
Figure 1.3 provides an overview on inverter data, which is suggested to be filtered out in [1],
divided into 3 categories.
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Figure 1.3: Preprocessing and data filtering pipeline suggested by [1]

The basic filters contains the most obvious data to filter out: Nighttime data without power
production, nonphysical data (obvious erroneous sensor measurements), data missing and
stale - outdated data.
Adjustable filters are to be adjusted for the use. Low irradiance, cloudy conditions and high
angle of incidence are related to the weather conditions. Unstable performance is related to
other failures happening.
The distributed operation filters are based on the operation on equipment connected to the
inverter to analyse. A failure in these could affect the input of the inverter and be misinterpreted
as a failure in the inverter.
In addition to suggesting data to be filtered out for detecting failure, the thesis also discussed
the importance of dividing soiling from degradation in online fault detection. The main
difference is that soiling is caused by accumulation of dust on the solar panels, while degradation
means that the equipment is affected by wear-out.
Statistical methods are used to distinguish between external factors and systematic errors
such as soiling and seasonal changes from degradation. As well as the statistical analysis of
electrical data, imaging and are also used to detect failure and degradation in equipment [1].
The PhD thesis presents the following aspects:

• Ways to assure data quality for different analysis purposes,

• A setup for string-level fault detection based on data from one of the solar plant, using
numerical tools

• Correlation between hot-spots and performance in solar panels

• A proof of concept combined soiling and degradation detection algorithm based on
a Kalman Filter, STL.model (Seasonal- and Trend decompositioning using Locally
estimated scatterplot smoothing) and a year-on-year-model. This model also estimates
degradation rates of solar modules.
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However, the PhD thesis does not investigate and exploit the full potential of statistical and
machine learning models for predictive maintenance.

Another master thesis done in cooperation with Scatec, [11], discusses the use of machine
learning algorithms to detect power loss and abnormal behaviour in solar plants, based on
operational data. The thesis use inverter data combined with weather data and string data.
Predicted power production based on weather conditions are compared to actual power
production in current and voltage to detect loss and events when the deviance between
potential and actual power production reaches a certain threshold. The loss and events
detected originated from the modules and strings connected to the inverter. The author
of [11] also presents machine learning algorithms being able to detect strings with decreased
performance. Several regression algorithms are used in the thesis to estimate the predicted
power production based on solar conditions. In this way, large deviance could be detected
and raised as potential loss or decreased performance.

The work of this thesis is related to the foundation laid and have some similarity with the
data structure in the work done by the authors of [11] and [1].
On the other hand, these works are more focused on detecting events and losses that has
already occurred - except for the solar module degradation rate model from the author of [1].

1.2 Data infrastructure

With the transition towards Industry 4.0, more companies see large value in digitisation and
make large investments in this area. Scatec is no exception, and have put large amounts of
resources towards digitisation in operation and maintenance.

Maintenance data

For asset management, work planning and spare part management, Scatec has implemented a
cloud based EAM (Enterprise Asset Management) system from Hexagon, called HxGn EAM.
This system provides good opportunities for customisation and data exchange, and has been
in use since 2019. The information available in an EAM system includes historic events and
work done on equipment. If equipment fails, the technicians are to select standard codes for
the following:

• Problem code - Symptom of failure

• Failure code - How the equipment has failed

• Cause code - The cause of the failure

• Action code - The actions performed to correct the failure

Failure events are known in the system as work orders, and are separated by types and codes.
An example case of the system, is if an inverter fails. Here, a work order for repairing the
inverter will be created, and assigned to a technician. The technician will change the status
of the work order to "In progress", and complete the work. When finished, the technician
will register the time spent to correct the failure, parts that have been used, as well as the
closing codes. The closing codes are structured in a hierarchy, so if the technician selects
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FAIL - failure as problem code, the cause code will be restricted based on that choice. The
failure code can for instance be INV-IGBT - Power Block IGBT, leading to the options for
cause code are restricted only to those related to internal failures. A potential cause code in
this case could be high temperature. In the same manner, the action codes are restricted
based on the choice of cause code. REPL - Replacement can be an action code for this
example case.

Operational data

Scatec has a regional process monitoring and control centre for each continent, called CMC.
This centre has the overall responsibility of monitoring plant activity and system status, as
well as alarms on monitored equipment. The monitoring is done in a SCADA (Supervisory
Control And Data Acquisition) system, a database system for monitoring operation in the
plants. Operation is monitored using live measures from equipment in operation, such as
voltage, temperature, operational status, etc. Weather conditions are also monitored; temperature
and radiance shows the conditions for producing solar power and can assist in decision-
making. Combined, SCADA-data can assist in condition monitoring, as they are thoroughly
captured from several aspects of the equipment. Therefore, this data will be the key input to
the algorithms for predictive maintenance in this thesis. All data from sensors in the plant
are stored and visible in the SCADA system in real-time, and historically in a multivariate
dataset with 1 minute resolution. Alarms are raised in this system based on threshold values
set on sensor values. When such an alarm occurs, the CMC operator can escalate the alarm
into a work order in the EAM system through an integration between the two systems. This
integration was implemented in the middle of 2020, and allows for tracking where and when a
failure has occurred.

1.2.1 Data acquisition

A significant part of work done for the purpose of predictive maintenance is the data acquisition;
failure prediction is not feasible without monitoring the correct aspects on the equipment.
Therefore, the idea of predictive maintenance should be considered already on the drawing
board when setting up sensors [52]. A good way to ensure that the right parameters are
chosen to be monitored, is to perform an FMEA (Failure Mode and Effect Analysis) of the
equipment. An FMEA will return which failures can happen, and what their consequence
will be. From there, one can determine relevant parameters from experience and thereby help
indicate the development of the failures one would like to predict [20]. The data needs to
be recorded at a sufficient quality and fit into the system, like described in the ISO 8000-8
standard. In this standard, there are three aspects of data quality to take into account:

• Syntactic quality: How well does the data fit into the data system? This involves
whether or not it fulfils technical requirements.

• Semantic quality: How representative the data is for what it is measuring? Does it
correspond with the real world?

• Pragmatic quality: Can the data be used for the desired objective?

A strength in the data acquisition from the SCADA system used in this thesis, is that each
measurement is recorded with a quality index indicating whether the sample is reliable
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or not. The quality index is triggered by the sensor status, but it is no warranty against
measurement errors. The index can be used to filter out some extreme data.
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1.3 Objective

The objective of this thesis is to combine data from the SCADA-system and weather stations,
as input for data-based predictive maintenance models. In particular, the work aims to make
use of two approaches:

• One machine learning regression algorithm based on a Random Forest Regressor trained
on output from measurement variable engineering using the TSFRESH method

• One statistical approach using an HMM (Hidden Markov Model) will be used to estimate
the hidden state - degree of degradation on the equipment, based on the output from a
PCA (Principal Component Analysis) dimensionality reduction.

After developing the necessary concepts and implementations, the goal is to compare both
approaches with each other from both, a quantitative and a qualitative viewpoint. Experimental
evaluations are based on data collected from inverters in the Benban plant in Egypt, restricted
to a single failure type. The methods will be evaluated by relevant metrics on their output,
defining the quality of prediction. A common benchmark process for comparing the two
approaches will be presented. Domain experts were consulted regarding which features they
believed to be important to monitor in order to forecast the error in question for this thesis,
but there was little knowledge about such features.

The ultimate goal for both approaches is to estimate the current condition on inverters, with
respect to their risk of failure. The risk of failure will be for one agreed-upon failure type.
Transferring to a predictive maintenance approach for the inverters will reduce the impact of
failure on production and reliability in the solar plant. An endpoint of such an algorithm, is
the ability to pinpoint the measurement variables which are correlating with the RUL. This
will help the plant personnel to interpret the parameters as an indication of which condition
the equipment is in. The two methods used for this purpose can be re-used for predictive
maintenance in other domains, using time series data.

In a nutshell, the contribution from this thesis is to deliver a comparison between machine
learning and statistical methods in predictive maintenance. The results from both methods
are considered as a proof of concept for the proposed predictive maintenance frameworks in
the solar industry - with actual prediction of RUL. This thesis differs in the work described
in Section 1.1.5 in that the objective here is to estimate the RUL of a given type, not detect
an occurred failure of an unknown type. This thesis also looks into both statistical and
machine learning models trained on more comprehensive data from the inverters, as opposed
to the previous two being more focused on strings and modules. The use of the methods used
in this thesis could benefit the operation and maintenance in a different way and optimise the
way of handling failures of the decided type.
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1.4 Information security and infrastructure

IT infrastructure is an important aspect in data science projects. Firstly, sensitive data must
be safe - only intended users must have access. The dataset used in this thesis is sensitive, as
it gives details about Scatec’s operation and power production.

Source .csv files containing raw data from the inverters and weather station was stored in
a secure OneDrive location, provided by NMBU. This location is authenticated with MFA
(Multi-Factor Authentication), and is to be considered secure. From the OneDrive location,
they were imported to a local, password protected SQL (Structured Query Language) database
on the author’s computer, using Python files. In these Python files, the data was re-sampled
to the desired resolution (30 minute intervals). In the SQL database, data from the various
sources was merged into views containing only data columns relevant for analysis.

For analysis, a local Jupyter notebook1 was used, along with packages to import data from
the SQL database. Here, data engineering and filtering was performed prior to preprocessing
and analysis. No passwords for the SQL database was stored in any Python files, to protect
the integrity of the passwords. A flow chart showing the data flow and infrastructure can
be seen in Figure 1.4, showing how the data is fetched from the SCADA cloud, stored in a
secure OneDrive location, then fetched and stored in a local database. From there, it was
fetched for analysis in a jupyter notebook file . The dotted line illustrates which parts of the
process were performed on the author’s local computer.

Figure 1.4: Overview on data storage and flows.

1The relevant files used for analysis can be found in https://github.com/Goransg/MasterThesis.



Chapter 2

Methods

This chapter presents the methods applied in the thesis. The first Section 2.1, introduces our
problem setup mathematically. Afterwards, one section is dedicated to each of the two main
modelling pipelines investigated in this work.

2.1 Problem setup

In the following, we assume m maintenance cycles of electrical devices as model input: each
maintenance cycle i ∈ {1, . . . ,m} is defined as a particular device tracked over a time window
{1, . . . , Ti}. The interval starts at t = 1, denoting the first time point after the previous
maintenance action or downtime, and ends at t = Ti, denoting the time of the subsequent
failure. The index denotes a regular (discrete) time step of 30 minutes. According to our
model setup, we restrict to maintenance cycles, which are terminated by one particular error
type. Further, we treat all maintenance cycles as independent and identically distributed,
and hence, as random samples.

For each maintenance cycle, we sample a randomised integer pi ∈ {Ti − Ts, . . . , Ti}, where Ts

is a user defined input to determine how close to the end of the maintenance cycle pi could
possibly be. The objective of sampling pi is to simulate the current point in time, where
the prediction should be made. As model input, we observe a multivariate time series of
historical sensor measurements up to time pi, given as x

(i)
t ∈ Rn, where n is the number of

sensors, and t ∈ {1, . . . , pi}. The goal is to predict the residual useful lifetimes, RULi =

Ti − pi given time series x
(i)
t . We denote our prediction by ŷi, while the actual time until

failure (ground truth) is given by yi = RULi. When evaluating predicted RULs, the deviation
between the predicted value and the ground truth is calculated with three metrics: RMSE
(Root Mean Squared Error), MSE (Mean Squared Error) and R2. For a test dataset with m
observations, the measures are calculated as [53]:

• MSE = 1
m

m∑
i=1

(yi − ŷi)

• RMSE =

√
1
m

m∑
i=1

(yi − ŷi)

• R2 = 1−
∑

i(yi−ŷi)∑
i(yi−ȳi)

Since predictive maintenance requires an assessment of the risk of failure rather than an
exact RUL estimate, another metric is introduced to benchmark both approaches against

13
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each other. Thus, predictions are grouped into three risk classes g1−3, based on the predicted
hidden state for HMM (Hidden Markov Model, presented in Section 2.2.2) and the predicted
RUL from the RFR (Random Forest Regressor, presented in Section 2.3.2).
The same split was performed on the ground truth test data, so that the result of both
algorithms can be evaluated by the same evaluation metric.
Based on the prediction group, the F1-score were calculated for the test data for each of the
methods. The accuracy (micro precision) metric was used for this purpose, as it is suited for
multi-class problems. The F1-score is calculated as follows:
F1 =

∑3
g=1 TPg

m
, where TPg is the number of true positives predicted for the class g [54].

For the analysis in this thesis, the parameters were set to: Ts = 50. This means that the
maintenance cycles were truncated; cut off at a random point between 50 days prior to
failure and one day before failure. Every maintenance cycle is used once, except for maintenance
cycles having m = 1. All samples prior to pi are included. All samples after the point pi are
removed. The algorithm can be seen in 1, and an illustration of the intention of the function
is shown in Figure 2.1.

Algorithm 1 Implementation of truncating maintenance cycles
Input: X grouped by i, Ts

Output: X grouped by i, cut off at a random point pi

for Cycle in {i1, i2, ...., im} do
pi = random.number(max(Ti − Ts, 1), Ti − 2)
Cycle = Cycle[t ≤ pi]
yi = Ti − pi

end for

Figure 2.1: The problem setup for predictive maintenance

After truncating the maintenance cycles, data was standardised. This shifts the data so that
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the mean of each column is 0, and perform scaling leading to the standard deviation per
column being 1. This is done as follows per feature in the dataset:

x′
t =

xi
t − µi

σi

(2.1)

where xt is a given measurement variable in the dataset, µi mean value of xi, and σi is the
standard deviation of xi.

2.2 Hidden Markov Model with Principal Component Analysis

The first approach examined in this paper is the Hidden Markov Model with the result of a
principle component analysis (PCA) as input.

2.2.1 Principal Component Analysis

PCA (Principal Component Analysis) is an unsupervised linear transformation technique
used for feature extraction and dimensionality reduction, which creates new features based
on an input dataset. The method aims to describe a high share of the variance in the dataset
with a low number of features [53]. This is accomplished by identifying correlations between
input variables, which is then used to create new features. In dimensionality reduction, these
features are obtained by projecting the input to a new subspace, which spans along the
directions with highest variance. The new subspace has dimension Q × ñ; as many as or

fewer features than the original dataset X having dimension Q× n, where Q =
m∑
i=1

pi. The new

features are ordered by their contributions to the total variance in the dataset. The principal
components will then be the orthogonal axis to the new subspace.
Summarised, PCA can be conducted in the following steps [53]:

• Perform standardisation on the input dataset, as shown in Chapter 2.1

• Construct the symmetric covariance matrix Σ with dimensions Q× n by computing the
covariance between input variables, pair-wise: Σ ∝ X′X, where X is the Q × n input
matrix with columns X1,...,n.

• Decompose the covariance matrix into its eigenvectors- and values by satisfying the
equation: Σv = λv where λ is the eigenvalue and v is the eigenvector. Sort eigenvalues
in decreasing order.

• Select the first ñ eigenvectors (user input for the number of features).

• Create a projection matrix P from the selected eigenvectors.

• Transform the input data set with dimension Q × n using P, so that the matrix X
reflected on the new feature space is calculated by XP = Z.

The number of features is defined by the user, being prompted with a trade-off between a
low number of features in the new dataset and the amount of explained variance in these
new features [53]. The explained variance for a given eigenvalue λu can be calculated by:
expvaru = λu∑Q

u=1 λu
. A useful tool for this decision is an explained variance-plot, showing the

cumulative amount of explained variance
∑n

u=1 expvaru for each number of features u.
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2.2.2 Hidden Markov Model

The Hidden Markov Model (HMM) is a statistical model based on a Markov chain [55]. A
Markov chain is defined as a sequence of states, where the probability of a given state in the
sequence is only dependent on the state immediately prior to it [56]. This is known as the
first-order Markov property, which the states must satisfy in addition to being finite [57] [58].
In an HMM, we assume these states 1, . . . , N are hidden, and not observable. What we can
observe is the observations xt produced by the hidden state zt at a given time. An arbitrary
family of probability distributions is applicable to model emission probabilities, however, a
common choice is to use the Gaussian distribution, which can be parameterised using a mean
vector and a covariance matrix for each given state.

HMM’s are a class of probabilistic models used to monitor the time-wise development of a
stochastic process [59]. Here, a stochastic process acting like a Markov chain, produces a
hidden state zt at a given time which can only be inferred by a number of new stochastic
processes. All observations xt have a probability distribution for their possible hidden states
[60]. In HMMs, transition matrices (A) are used to describe the evolution of a hidden state
zt over time [58]. The transition matrix contains the probability distribution for which state
the system will be in at the next time step, based on the current state [61]. A simplified
visualisation of the HMM can be seen in Figure 2.2.

Figure 2.2: An example showing how the connection between the hidden states and the observations in a
Hidden Markov Model

In the following, we denote the latent state at time t by zt ∈ {1, . . . , N}, while the observation
at time t is denoted by xt. The state sequence zt is assumed to fulfil the Markov property,
given by the condition independence

P (zt|zt−1, zt−2, . . . , z0) = P (zt|zt−1),

for all time points t. Further, the HMM assumes that the observation xt depends exclusively
on zt, without any other time-related factors.
In a simplified example with discrete observations xt ∈ {1, . . . , k}, an HMM is determined by
3 parameters:

• A transition probability matrix A ∈ RN×N , denoting the probabilities P (zt = h|zt−1 =
j) that the latent state moves from a state h ∈ {1, . . . , N} (rows) to a state j ∈
{1, . . . , N} (columns) in one time step,

• An emission probability matrix B ∈ RN×k, denoting the probabilities P (xt = h|zt = j)
to observe value j ∈ {1, . . . , k} (columns) given the latent state h ∈ {1, . . . , N} (rows)
in the same time step
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• An initial state probability vector π ∈ RN , denoting the discrete probability distribution
P (x0 = h) over all latent states h ∈ {1, . . . , N} at time t = 0.

In this example, the given HMM is determined by the parameter set ρ = (A,B, π).
In real-world settings, observations may be continuous, leading to a continuous emission
distribution, e.g. a Gaussian distribution P (xt|zt) ∼ N(µzt , σ

2
zt). This type of HMM is

called Gaussian HMM (GHMM). In this case, the emission probabilities can no longer be
represented in a probability matrix B, but are implicitly contained in the model parameters
µzt and σzt , which represent the current latent state zt ∈ {1, . . . , N}. Thus, the number of
model parameters increases to one pair (µzt , σzt) for each of the N latent states, summarised
as ρ = (A, π, µ1, . . . , µn, σ1, . . . , σn).
HMMs may incorporate more than one observation variable, which generalises xt ∈ R to a
vector of observations xt ∈ Rn. In the framework of GHMMs, the parameter set generalises
to mean vectors µh ∈ Rn and covariance matrices Σh ∈ Rn×n for each latent state h ∈
{1, . . . , n}. This results in the full parameter set ρ = (A, π,µ1, . . . ,µn,Σ1, . . . ,Σn).
A possible generalisation of the GHMM is the Gaussian Mixture Model HMM (GMMHMM),
which allows each state to define its associated probability via a mixture of Gaussians—
however, this leads to a strong increase in the number of model parameters and thus, has
a higher risk of overfitting, if the data volume is limited [61].

The Hidden Markov Model can be trained in an unsupervised way that will find the hidden
state zt corresponding to each observation xt in the dataset, based on its values. It is trained
with time series observations X as input, as well as their length.
There are three main tasks related to HMMs [59]:

• Evaluation - finding the likelihood of the observed sequence X given the model ρ and
the sequence. This is known as the forward algorithm.

• Applying the Viterbi algorithm to find the most likely state sequence zt given the
model ρ and the sequence.

• Using the Baum-Welch algorithm to find the model that maximises the probability of
the observation xt.

The number of states N in an HMM is a user defined input. Another user defined input
is the type of covariance matrix to be created, which determines the shape and number of
parameters associated with the estimation of Σzt . Common options here are:

• Full - The covariance matrix has an unrestricted covariance matrix with covariance
between each input feature per state

• Diagonal - The covariance matrix contains a diagonal covariance matrix per state

• Spherical - The covariance matrix contains one variance value per state, applied for all
input features

• Tied - One full covariance matrix used for all states

For this use, one strength of the Hidden Markov Model is that the user can determine initial
matrices for probabilities, and select which are to be trained by the model [62].
In terms of predictive maintenance, we assume that the hidden state zt of each time point
in the data will be the equipment state of health. For the application in this paper, the
evaluation will be the most relevant problem type - finding the most likely sequence of health



18 CHAPTER 2. METHODS

states for the equipment. The observations in use are the sensor readings from the SCADA
system. Therefore, the HMM will return which hidden state, or condition, being most likely
to have produced the observation xt [57]. The transition matrix will describe the probability
distribution for the development of equipment moving to a new risk of failure.. This matrix
can in turn be used to determine at what time the system is most likely to be in the final,
failed state.

The HMM is a data driven, computationally efficient modelling method, which is has optimal
performance with few features [55]. Therefore, the PCA is a good option to decrease the
number of features to optimise the input for the Hidden Markov Model.
Hidden Markov models are widely used in life-science. For instance, the authors of [63] use
Hidden Markov models for system segmenting uncharacteristic genome DNA sequences into
exons, introns and intergenic regions. This paper uses an HMM implementation called VEIL
(Viterbi Exon-Intron Locator).
Another use of HMM’s is emotion recognition through speech, presented by the authors
of [64]. In this work, continuous HMM’s are compared with Gaussian Mixture Model HMM’s.
The result were a higher degree of emotion recognition than for humans, using 7 hidden
states.
Analysis of human and animal behaviour is also a common use for HMM’s. The authors of
[65] presents an HMM that recognises simple human actions, like simple manual operations.
The results were a framework to be used for learning human actions from observing them.

2.2.3 Post-hoc analysis

In order to compare the location of the predicted states relative to the actual RUL, a Wilcox
signed-rank test is a possible approach, as well as the Student’s t-test [66]. The strength
of the Wilcox Signed Rank test compared to Student’s t-test is that it uses the signs and
relative magnitudes of data instead of the actual data [67]. The Wilcox signed-rank test is
applicable for non-gaussian distributions, and can be summarised in three steps for comparing
two lists of data, as done by the authors of [67]:

• Omit zero-valued differences between the data lists, sort the residual differences in an
ascending order according to their value. Assign them rank number 1,2,3 etc.

• Summarise the positive and negative differences separated.

• The null hypothesis is that the positive and negative rank numbers have no difference.
A p-value is then found by comparing the sums with regards to a hypothesis assuming
that the differences observed are random variations. The p-value combined with a
significance threshold will indicate whether the null hypothesis can be rejected or not.

The null hypothesis of the Wilcox signed-rank test is that two groups of data are described
with the same mean values, in this case, RUL.

Predicting time until high-risk state with Hidden Markov Model

An intuitive way to use the Hidden Markov Model for predictive maintenance is to define a
state threshold, triggering a maintenance action when exceeded. For instance, if under the
assumption of N = 10 states, a maintenance action can be triggered once the predicted state
state exceeds 7.
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In addition to this, the output from the trained model can be used in numerous ways to
retrieve ŷ, the predicted RUL.

Estimating time steps to high-risk state using Monte Carlo simulation The Monte
Carlo is a statistical simulation used for predicting possible outcomes based on statistics.
Random numbers are used together with probabilities to simulate the most likely outcome of
an event or sequence [68].
For Hidden Markov Models, we can use the probability distribution from the Hidden Markov
Model to simulate the most likely outcomes from each hidden state [69]. For this thesis, we
use the Monte Carlo simulation to simulate the number of steps from the system being in
state zt to being in the final, high-risk state zN .
This simulation will be done by initiating the simulation at state zt, then use random choices
to simulate the transition between states, based on the transition probability matrix A. This
operation will be done a given amount of times or until the state reaches zN . The predicted
amount of steps from state zt to the final state zN will be the mean value of the steps made
in the simulations. The implementation of the Monte Carlo simulation is shown in 2. A
similar is used by the authors of [55].

Algorithm 2 Implementation of the Monte Carlo algorithm for predicting time until high-
risk states

Input: ẑ ∈ {1, 2, . . . , N}
Output: T̂ ∈ {T̂1, T̂2, . . . , T̂(N)}

for State in {1, 2, . . . , N} do
steps = 0
z = State
while z ̸= N do

z = random.choice(z ∈ {1, 2, . . . , N}, probabilities = {az})
steps+ = 1

end while
T̂State = steps

end for

Calculating the expected hitting time of high-risk state A more theoretic approach
to calculating the time until the system reaches high-risk states is to calculate the expected
hitting time. In this method, the the values from the transition probability matrix A is used
to calculate the time it will take for the system to move from the current state zt to state zN .
The first hitting time Ti is defined as Ti = min{t ≥ 0 : zt = N} where i is a subset of the
state space z [70]. In the case of this study, it will be the final state; the state of failure.
The mean hitting time for zN is defined as T̄iN = E(TN |z0 = z) and is calculated by:

T̄iN =

0 for zt = N

1 +
∑
s ̸=N

otsTsN for zt ̸= N (2.2)

Where ots is the probability of transition between the current state zt and any given state
zs. This method takes all possible state-transitions from zt to zN , and calculates the mean
hitting time in steps [71]. The mean hitting time approach is used by the authors of [61].
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Estimating the time until high-risk state based on historical values The most
practical and data driven method for estimating the time until high-risk state is to use the
historical RUL values that from the data that the algorithm is trained on, for each state. In
this method, the RUL for all predictions of a state zt are taken into account and averaged. In
other words, based on the historical data, what has the time until high-risk state been when
the system has been in the current state zt? When this value is calculated, the predicted
state is decoded to an expected residual time until high-risk state in a one-to-one relationship.

2.3 Time series feature extraction and
Random Forest Regressor

The second examined approach in this thesis is to extract new features from time series data,
using the TSFRESH (Time Series Feature Extraction based on Scalable Hypotesis tests)
package. The new features are used as input for an RFR (Random Forest Regressor) machine
learning algorithm.

2.3.1 Time series feature extraction

TSFRESH is a feature extraction method which is well suited for IoT and Industry 4.0
applications, such as predictive maintenance [72]. The reason for this is that it takes metadata
into account and opens to use different types of information per sample. Theses types includes
[73]:

• Temporally Invariant Information (i.e. manufacturer of component)

• Temporally variant information with values changing in a volatile manner (i.e. operation
status)

• Temporally variant information where values are continuously changing (i.e. temperature)

The values from the selected time window will then be aggregated to one line per object (ID),
with new features describing the time series [72]. These features include, among others, mean
values, max/min values, median, number of peaks, etc. For instance, the formula for the

mean value for a measurement variable xi in a maintenance cycle m will be x̄i =

pi∑
t=1

x
(i)
t

pi
.

The Python package also contains a feature selection algorithm, taking the new features
from TSFRESH and the target values as input. Features are selected using an automatically
configured feature significance hypothesis test, testing whether the feature xf is relevant for
predicting the target value t or not [73]. Where any feature any feature f ∈ {1, . . . , n} is
relevant for predicting the value t only if xf and t are statistically independent.
From this hypothesis test, a p-value; the probability value for the feature being relevant, is
computed. The hypothesis test is:
Hf

0 = {f is relevant for predicting y}, Hf
1 = {f is not relevant for predicting y}

Lastly, these p-values are reviewed by comparing them to the false-discovery rate to using
the Benjamini-Yekutieli procedure [74]. Here, p-values less or equal to a critical value based
on the false discovery rate, are rejected [75]. The feature selector will in this way find the
most useful attributes to predict the target value [73]. By performing this feature selection
algorithm the advantage is that the removal of redundant and irrelevant features lowers the
probability of overfitting in the machine learning model [74].
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The TSFRESH approach allows for large scale compression of the number of data points, by
increasing the number of features. As seen in Figure 2.3, one time cycle for one ID (object)
generates one row containing data with 789 new features per column in the original dataset,
generated by a total of 77 different functions. A table showing all the functions used in
this package can be seen in Appendix B. The table shows all functions used to generate
new features, before any feature selection is conducted. Some of the functions involved will
create several new column, with quite similar values. The multiple columns can be seen
as redundant, and should be removed if they do not hold important information. Another
aspect to consider about these functions is that they only extract information about one
input feature at a time, meaning e.g. ratios or correlation between input parameters are not
included. In real-world industrial applications, reducing the number of samples as we do with
TSFRESH is a big advantage given their tendency of having large numbers of samples [76].

Figure 2.3: How the TSFRESH extracts a multivariate feature matrix from time series input.

In the work done by authors of [73], it was found that the TSFRESH method is more efficient
when PCA is conducted on the output from TSFRESH, which is caused by the presence of
many correlated attributes in datasets from real-world industrial applications. These could be
eliminated by a feature selection algorithm, but exploited by a PCA to give more described
variance. Another reason for the advantage of PCA is that machine learning algorithms
perform worse on sparsely populated data. Decreasing the number of features and increasing
their variance could be a great advantage in machine learning when the number of features is
large [53]. However, the PCA will give less insights about what is used for making decisions.
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2.3.2 Random Forest Regressor

The RFR (Random forest regressor) is a supervised machine learning model, modelling a
continuous output. The principle is to train an ensemble of deep Decision Tree machine
learning models whose predictions are combined to obtain a "total" prediction. Individual
Decision Trees are trained on different subsets of the training data with ns features called
bootstrap samples, and individually fitted to these subsets [53]. For a dataset with n features,
the number of features in each subset is by default: ns =

√
n. This can, however, be tuned to

a higher value for increased stability or decreased value for an increased degree of randomness
[53].

Training each tree is done by grouping data and splitting it repetitively. The splitting is
performed by selecting a random number of features without replacement. Then, one split is
selected by optimising a threshold with respect to the Mean Squared Error between predicted
value and ground truth. Splitting is repeated d times, where d is a user input parameter
defined as tree depth. Because of these splits in the data, Decision Tree and RFR algorithms
are able to handle non-linear relations between input and target.

The criteria and "pipeline" for splitting has the same architecture as a tree. The prediction
of each tree is based on which final group, or leaf, the sample ends up in. Figure 2.4 demonstrates
the described behaviour. In the RFR, the standard value for maximum depth d is blank,
meaning that the splitting will be repeated until every leaf is pure or contain less than a
given amount of samples. As a consequence, they often suffer from high variance individually,
meaning they are overfitted to the subset of the data they are trained on. To control the
degree of overfitting, an adequate selection of d is crucial [53]. In the RFR, results from all
decision trees in the ensemble are combined by using the mean value. This makes the model
less prone to overfitting, as the different Decision Trees are trained on different subsets of the
data, hence will weight the attributes and values differently.

The number of decision trees u and their maximum depth d are the most important hyperparameters
to tune for a random forest machine learning model. A high value for u may lead to a better
performance, but also affects the computational costs. The maximum depth d can be used
to limit the risk of overfitting per decision tree. The user further specifies whether the RFR
ensemble shall be optimised with respect to one of the following (most common) metrics:
Mean squared error, Poisson deviance or absolute error.

A useful property of a trained RFR is that it is able to quantify the contribution of each
feature to the data split in each decision tree. The degree of use is aggregated for all Decision
Trees and normalised, and can be displayed using a function for the RFR called feature
importance. This returns a table showing how much each feature "contributed" towards
training the algorithm towards an optimal objective function.

The RFR algorithm differs from to the traditional machine learning algorithms. While the
traditional algorithms often use weights for different features and mathematical predictions,
the RFR use grouping of data. This way, it is able to build complex decision boundaries.
One of the unique features for this algorithm is that one does not make assumptions of
whether the data is linearly separably or not when using the algorithm. This makes it applicable
to a wide range of problems. A particular strength is its performance on high-dimensional
datasets [77]. Another advantage of the RFR is that it is less sensitive to outlier data, since
it the several Decision Trees are trained on different subset of data, the impact of extreme
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Figure 2.4: A decision tree from the experiment in this thesis with max depth = 3.

values will be lower. Other strengths of the RFR is that it requires little hyperparameter
tuning, and does not require scaling of the input data [53]. One drawback for the RFR is
that it tends to be a bit unstable due to its randomised behaviour, especially if the number of
features exceeds the number of samples.
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Chapter 3

Experiments

This chapter describes the experiments conducted in this thesis, as well as their results.

3.1 Experimental setup

The data consists of six sub-plants with 22 inverters each. Each inverter delivers 131 measurement
variables, sampled every minute. These measurement variables include e.g. current, voltage
and temperature in an inverter. Manual filtering described in Section 1.1.5 is applied to the
data, so that only relevant data input is included in the model.

Sensor data is combined with weather data, which is recorded at the same resolution. There
are six weather stations per sub-plant. Every inverter has a respective parent weather station,
which is used to join the two data sources, based in their time stamp. Therefore, each line
contains data from one inverter at one time point, as well as data from the closest weather
station at the same time period. Weather and inverter sensor data are both treated equally
as input variables for the model.

In order to decrease runtimes in the experiment, data has been re-sampled to 30 minute
intervals, using mean value aggregation1. This is due to the large amount of data involved,
as well as the variable experiences in previous work, presented in chapter 1.2.1. In order to
contain the variability in the data while still not making the dataset unbearably large, the 30
minute aggregation was conducted. The fault detection may have been better with a higher
resolution, although it could have lead to the predictive models getting confused around local
minimums and maximums. Another measurement against high runtimes is the removal of
obviously irrelevant input variables, such as manufacturer, being the same for all inverters.

The strength of the mean value aggregation could be that it is better for detecting that
the measurement variables are shifting towards higher or lower values - when they are not
outliers. This can assist in detecting degradation, and could be the reason for the better
performance using the mean value aggregation. The resulting multivariate time series is a
view containing 92 measurement variables, and one row per 30 minutes of operation from
June 2019 up to the beginning of 2022, for each inverter. Out of these columns, 30 of them
contain data indicating distinct error types, leaving 62 columns for analysis after the removal
of these. The removal was done after using these to identify Ti for the decided failure type
per inverter. In Table 3.1 one can see some example rows from the data from the inverters
and the weather stations combined.

1Median value aggregation was also tested, but lead to slightly less accurate predictions.

25
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Inverter Timestamp s1 DC
power

s1 DC
voltage

s1 DC
current

s1 Phase 1
module
temperature

... Status Irradiation
horizontal

Irradiation
incline

01 06.05.2019 08:00 855,19 1193,29 718,75 83,5 ... 164 998,4 1037,0
01 06.05.2019 08:30 1031,68 1143,38 910,16 93,1 ... 164 1025,4 1037,4
01 06.05.2019 09:00 1226,49 1095,22 1123,15 105,3 ... 164 1035,9 1039,4

Table 3.1: A sample of rows and columns in the data used in the experiment, representing the structure and
types of data involved

The failure type to focus on was decided together with the plant team, to ensure that a
degradation related failure was selected. A separate column for RUL - counting the time
until the next failure of the same type, was created by using Ti. The time period between
each failure is identified by a unique maintenance cycle ID. Maintenance cycles are treated as
independent from each other. For each equipment, the last maintenance cycle are removed,
as the failure has yet to occur for these cycles. Figure 3.1 illustrates that the maintenance
cycles are of different lengths, and the distribution is skewed towards the left side of the
X-axis - indicating that the majority of maintenance cycles are shorter than 50 days. As
preprocessing, maintenance cycles shorter than two days were discarded, resulting in a total
of 817 samples to use for training and testing.

Figure 3.1: The distribution of the lengths of maintenance cycles in the data for analysis. The number of
cycles having a length lower than 50 days is the clear majority.

The data was used in two pipelines, which a chart of the data flow in Figure 3.2 shows. As
indicated in the flow chart, the first step consists of data preprocessing by outlier removal
and standardisation. Irrelevant features are removed, along with data from when there was
no production.

The data was split into a training and a test subset, comprising 70% (571 samples) and 30%
(246 samples) of the full dataset, respectively. The selection of samples in the two subsets are
done randomly.
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Figure 3.2: The flow of data in the experiment showing the flow from Raw data on the far left side to
prediction model on the far right, and what is happening in the different steps of the flow.

3.2 Results

3.2.1 Preprocessing

The data was visualised and examined using a box-and-whiskers-plot, which can be seen in
Figure 3.3. This plot shows in which variables there are outliers, for 10 example variables,
anonymised. Variable 2 and 9 have a large number of outliers towards the upper quantile.
Based on the plot, outlier measurements in respectively the lower and upper quantile were
removed, for the variables and quantiles where outlier values were present. This means that
individual rows in the maintenance cycles were removed. In order to remove as little data as
possible, the data was visualised after every removal of outliers. This way, only the necessary
data was removed.
In addition, nonphysical data; samples that have an unrealistically high or low value were
removed as described in Figure 1.3. For instance, this included removing extremely high- or
low temperature measures, pressure measures exceeding the laws of physics, etc.
After the outlier removal, standard scaling was conducted on the data.
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Figure 3.3: A box-and-whiskers-plot showing the distribution of data for 10 measurement variables

3.2.2 Hidden Markov Model with Principal Component Analysis

After the preprocessing, PCA (Principal Component Analysis) was conducted. The number
of principal components was determined based on a graph showing the described variance as
a function of the number of components extracted in the PCA. The explained variance graph
is seen in Figure 3.4, indicating that the PCA has a high explained variance for a low number
of features. Multiple numbers of components were tested here, between 3 components with
63,4% explained variance and 8 components with 79,4% explained variance. This was due
to the explained variance graph had no obvious optimum. Another aspect considered in the
election of components is the fact that HMM’s known to perform better for a low number of
features in the input data. After testing the algorithm performance based on the number of
features in the input data, the choice fell on 3 components due to the results from any higher
number of components returning a HMM with a very sparsely populated transition matrix. A
sparsely populated transition matrix lead to the maintenance cycles going directly from state
1 to the final, failed, state at seemingly random points in time.

The HMM in use is a full covariance mapping. The number of states tested in the model is
5, 10 and 15. For this experiment, the states correspond to the risk of failure relying on the
degree of wear at a given point in time. To achieve robust prediction results, the HMM was
trained with 20 different random seeds. The predictions produced by the different random
states were combined with mean value aggregation rounded to the closest state. The model
was initialised by a start matrix with 100% probability of state 1, in order to reflect the state
of freshly installed equipment - this can be seen in Table 3.2.

State 1 2 3 4 5 6 7 8 9 10
Start probability 1.0 0 0 0 0 0 0 0 0 0

Table 3.2: The probability distribution of the initial state of a sequence in the Hidden Markov Model. A
likelihood of 1.0 for start in in state 1 represents the condition of freshly installed equipment

The transition matrix was initialised as a diagonal matrix, giving zero probability of states
transitioning to a lower state number - since the state represents risk of failure, relying on the
equipment degradation, which can only increase. Probabilities in the upper triangular matrix
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Figure 3.4: The explained variance graph from the PCA, showing the explained variance as a function of
number of samples included. The graph shows a steep slope at the beginning and flattens out at around 15-20
states.

were initiated randomly, then trained using Baum-Welch algorithm. An initial transition
matrix used for the experiment can be seen in Table 3.3.

From state/To state 1 2 3 4 5 6 7 8 9 10
1 0.5 0.175 0.125 0.075 0.05 0.025 0.125 0.0125 0.0125 0.0125
2 0 0.5 0.2 0.125 0.075 0.05 0.025 0.0125 0.0125 0
3 0 0 0.5 0.2 0.125 0.075 0.05 0.025 0.0125 0.0125
4 0 0 0 0.5 0.2 0.125 0.075 0.05 0.025 0.025
5 0 0 0 0 0.5 0.2 0.125 0.075 0.05 0.05
6 0 0 0 0 0 0.5 0.2 0.125 0.1 0.075
7 0 0 0 0 0 0 0.5 0.275 0.125 0.1
8 0 0 0 0 0 0 0 0.5 0.3 0.2
9 0 0 0 0 0 0 0 0 0.7 0.3
10 0 0 0 0 0 0 0 0 0 1

Table 3.3: The transition matrix from the HMM indicating the probabilities of transition between
different states at a given time. The table shows that the lower left diagonal has 0-values, representing
that degradation cannot decrease, but only increase over time

The trainable parameters for each hidden state i were: Transition probability vector Ai, the
mean matrix µi and the covariance matrix Σi.

During training, the full maintenance cycle, ranging from t = 1 to t = Ti was used instead of
the restricted time period {1, . . . , pi}. To allow a fair comparison, testing was performed on
truncated maintenance cycles, t ∈ {1, . . . , pi}.
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Results The prediction by the HMM is a sequence of states showing the evolution of the
latent state in each test sample over time. Figure 3.5 shows how the predicted states are
transitioning towards higher values as the time of failure approaches, in a model with 10
hidden states. The reason for Maintenance cycles 2 and 4 are ended with about 40 and 20
days of RUL, is the truncation described in Section 2.1. The figure shows in some selected
maintenance cycles how the Hidden State evolves over time, as the RUL decreases. An
exception here is maintenance cycle 0, having a low RUL, and failing in state 5.

Figure 3.5: The evolution of the hidden state predicted by the HMM for five sample maintenance cycles as
the RUL decreases for five maintenance cycles. The lines demonstrate how the hidden state changes relative
to the RUL. The first occurrence of the line on the left hand side of the graph indicates the beginning of the
maintenance cycle.

The states predicted for the test data represent risk classes related to the RUL of the device.
As seen in Figures 3.6, 3.7 and 3.8, the RUL is generally lower in samples where the model
has predicted a higher state. These boxplots show that RULs tend to decrease in the earlier
states (indicating a failure at an early time in the maintenance cycle) and in the high states,
whereas RULs are higher in mediocre states. The decline in RULs over the first states can be
explained by the high number of short maintenance cycles in the study, as demonstrated in
the overall cycle length distribution in Fig. 3.1 Note that single states, such as state 2 in Fig.
3.5, are sparsely populated and thus, contain mainly outliers, but do not contribute to the
overall behaviour of the majority of samples.
For the 5 state HMM, Figure 3.6 shows that a correlation can be observed between the RUL
and the predicted hidden state, following an initial life period represented by the first state.
However, the figure also shows that the distribution of the actual RUL is quite high in the
final states, as the higher quantile ends at about 130 days and there are several outliers from
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Figure 3.6: The distribution of actual RUL based on the predicted hidden state for the 5 state HMM, to
show correlation between predicted hidden state and RUL

there towards RUL = 250 days.
However, the number of samples in the final two states is high.

Figure 3.7: The distribution of actual RUL based on the predicted hidden state for the 10 state HMM, to
show correlation between predicted hidden state and RUL
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The test results for the 10 state HMM is shown in Figure 3.7. This plot also shows a strong
correlation between the predicted state and the RUL following an initial time period (state 1)
and neglecting sparsely populated states (e.g., state 3). In addition, large amounts of samples
have been predicted for the final states 8-10. Some noteworthy results in this plot is the low
lifetime distribution in state 5 and the low amount of samples in state 3.

Figure 3.8: The distribution of actual RUL based on the predicted hidden state for the 15 state HMM, to
show correlation between predicted hidden state and RUL

As for the 15 state HMM displayed in Figure 3.8, the model has a lower number of samples
past state 3. This indicates that the transition probabilities towards the higher states are low,
hence the maintenance cycles seem to get "stuck" in state 1 and 3.

Due to the large span in lifetimes in the final states of the 5-state model and the low distribution
among states in the 15-state model, the 10 state model was the chosen model for further
analysis. Seemingly, this model has a good trade-off between the distribution among states
and correlation between the model complexity, steered by the number of states, and its
explanatory power.

The correlation between the actual RUL and the predicted state seems to be present in
several cases. In Figure 3.7 one can see some sample test results where the transitions towards
higher states clearly has a high degree of correlation with degradation and RUL.

An interesting observation is that state 3 has only 34 samples. The reason for this is likely to
be outlier data. Nevertheless, the low number of samples in this state makes it neglectably



3.2. RESULTS 33

small - as moving all the samples from this state to any of the other state would hardly make
a difference in its distribution of RUL.

RUL estimation based on the predicted states from HMM was done, by decoding each state
into a RUL value. The RUL value was obtained by calculating the mean RUL value for
each state predicted on the training data. The prediction from this method on the test data
achieved a RMSE of 133.5 and an R2 of -0.45 compared to the actual RUL.

Post-hoc analysis The visualisation of the dynamic of state transitions over time is
provided in Figure 3.9, which takes all maintenance cycles from the test data into consideration.
The intention of the plot is to display the density of transitions between the predicted hidden
states. The vertical blue lines indicate the hidden states, and the size of the blue lines indicate
the number of samples in the hidden state they are representing. The black and grey lines
represents the predicted hidden state for a maintenance cycle moving from one state to
anther. In a nutshell, the graph describes how the predicted hidden state moves from one
state to another as the time passes. The plot shows between which states the highest number
of transitions occur within the test data. Note that transition are restricted to the increasing
order of the states; however, a jump over more than one state in a single time step (e.g., from
state 4 to state 6), is possible. happen for the test data. The figure shows high number of
direct transitions between state 1 and 6, namely 166 out of 179 maintenance cycles leaving
state one directly or indirectly end up in state 6. The majority of the transitions to state
6 come directly from state 1. From state 6, only 63 values moves onto the states above.
However, the percentage-wise most absorptive state is state 8, where only 3 out of 55 maintenance
cycles move on to the final two states, hosting respectively 7 and 12 maintenance cycles.

Figure 3.9: A Sankey plot displaying how the maintenance cycles transition between states in the test data.
The figure shows a lot of cycles migrating to state 6, then fewer moving to and ending at state 8.

To underline the observations about the trained states numerically, predicted by the HMM,
a statistical test was conducted on the RULs for each state predicted, using the pair-wise
Wilcoxon test. This test compared the actual RULs depicted in Fig. 3.6-3.8, in different
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states predicted by the HMM on the test data. Table 3.4 shows the p-values for the different
states, testing whether their expected RULs are equal or not. Any below a significance level
α = 0.01 means that the null hypothesis should be rejected, i.e. a significant difference in the
mean values exists.

State/State 1 2 3 4 5 6 7 8 9 10
1 1 0 0 0.114 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0.18 0 0 0 0
4 0.114 0 0 1 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0.3 0
6 0 0 0 0.18 0 1 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 0 1 0.755 0
9 0 0 0 0 0.3 0 0 0.755 1 0
10 0 0 0 0 0 0 0 0 0 1

Table 3.4: The p-values for the null hypothesis from the pairwise Wilcoxon test states compares
distributions of RULs given the predicted hidden states. Thresholded at 0.01.

In summary, the pairwise test suggests that almost all pairs of states differ in terms of actual
RULs. Only 4 pairs of states cannot be considered to be different according to the given data:
states 1 and 4, states 4 and 6, states 5 and 9, as well as states 8 and 9. While 1, 4, and 6
describe the mainstream pathway at a level of high RULs, states 5, 8, and 9 contain samples,
which are close to an error.

In order to get a pinpoint of what the RUL is in a given hidden state predicted by the HMM,
implementations of all three approaches presented in Section 2.2.3 were tested. An example
of this can be seen in Figure 3.10, where the prediction of RUL is done by running a Monte
Carlo simulation based on the transition matrix A from the HMM. Despite the predicted
RUL from the simulation not being particularly accurate for individual samples, there is
clearly some general resemblance between the graphs in Figures 3.7 and 3.10. The distribution
of predicted RUL moves to the right side of the x-axis of Figure 3.10 as the hidden state
increases, indicating that the output could be useful to give an estimation of RUL. Out of
the three methods discussed in chapter 2.2.3, the Monte Carlo simulation approach was the
method performing best on the test data with regards to the correlation between predicted
hidden state and actual RUL.
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Figure 3.10: The prediction of time to high-risk state from Monte Carlo simulation based on the transition
matrix from the Hidden Markov Model, showing the distribution of the simulated time to high-risk state for
the different states.

3.2.3 Time series feature extraction with Random Forest Regression

With the preprocessed data as input, new features were extracted from the dataset using
the TSFRESH package. No limitations in features was made here, so the extraction takes
all measurement variables in the data from SCADA into account. Based on 55 variables in
the original dataset, the number of extracted features was 41552 after excluding columns
containing information about RUL and inverter ID. After the TSFRESH feature extraction
some of the returned columns contained numerous NaN values. Columns containing exclusively
NaN values were removed along with other columns containing more than 400 (50%) NaN
values, leading to 285 columns being removed. The rest of the columns were imputed using a
built-in function for TSFRESH, using the median value of the columns to fill the NaN values.
As a next step, the built-in TSFRESH feature selection was performed, which calculates
feature significance p-value, followed by a hypothesis test using the Benjamini-Yekutieli
method. The feature selection reduced the number of columns in the dataset to 10970.

The RFR algorithm was trained on the training subset using several parameter setups, and
tested for several parameter setups. The target function to optimise is the Mean Squared
Error between the predicted and the ground truth RULs.

Results On the test data, he machine-learning based pipeline involving TSFRESH feature
extraction and RFR machine learning algorithm achieved the RMSE and R2 scores displayed
in Tables 3.5 and 3.6, respectively.
As a consequence of the results displayed in these tables, the final prediction was made with
a model with u = 100 estimators and a max depth d = 10. In general, the Tables show
that the procedure is rather robust under distinct parameter settings, depicting only minor
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Estimators\Max depth 5 10 15 20 25
100 20.26 20.14 20.20 20.19 20.19
200 20.27 20.18 20.21 20.21 20.21
300 20.26 20.16 20.18 20.17 20.17
400 20.26 20.16 20.18 20.18 20.17

Table 3.5: The RMSE scores produced on the test data by the different parameters for the Random Forest
Regressor

Estimators\Max depth 5 10 15 20 25
100 0.235 0.245 0.240 0.241 0.241
200 0.235 0.242 0.239 0.239 0.239
300 0.235 0.243 0.241 0.242 0.242
400 0.235 0.243 0.241 0.242 0.242

Table 3.6: The r2 scores produced on the test data by the different parameters for the Random Forest
Regressor

changes in both, RMSE and R2.

Figure 3.11 shows the predicted RUL compared to the ground truth, both in mean values
and per sample. The pattern shows that the accuracy in the prediction increases as the
time approaches the failure event. Although there are minor deviations, the general trend
of the plot is suggesting a positive (although not linear) correlation to the ground truth.
Even though outliers exist in the predictions, the correlation between predicted RUL and the
ground truth is obvious.
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Figure 3.11: The predicted RUL compared to the actual RUL. Error bars indicate the standard deviation of
the predicted values

Post-hoc analysis The eight most important features for the prediction, returned by the
RFR can be seen in Table 3.7. The clearly most important feature returned is the symmetry
of the measured variable Total Capacitive Reactive Energy in the inverter. These are features
extracted by the TSFRESH algorithm.

Feature name Importance
Total_Capacitive_Reactive_Energy_in_the_inverter_symmetry_looking_r_0.3 0.37

Section_2_Status_symmetry_looking_r_0.1 0.14
Liquid_Cooling_flow_variance_larger_than_standard_deviation 0.13

Section_2_DC_Power_Measurement_has_duplicate 0.08
Section_1_Phase_3_power_module_temperature_has_duplicate 0.07

Line_Voltage_Measurement_of_Phases_2_and_3_large_standard_deviation_r_0.1 0.07
Section_2_Phase_2_power_module_temperature_large_standard_deviation_r_0.25 0.06

Table 3.7: A list of the most important features as well as their importance returned by the random forest
regressor

For the RFR approach, PCA was also tested on the output of both the raw feature extraction
and the feature selection, reducing the runtime of the RFR significantly. According to the
explained variance plot, a low number (6) of features were required to describe the full variance
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of the dataset. The results, however, demonstrated a worse performance than the variant
without PCA. Hence, PCA was not used in the final prediction.

3.3 Benchmarking the approaches

In order to establish a fair comparison of the performances achieved with the two approaches
presented in the thesis, and to compare their results, a benchmarking experiment is conducted.
In particular, the experiment translates predictions of RUL from the RFR, and hidden
states from the HMM into risk classes. These classes are used to indicate the risk of failure
predicted by the algorithms. There are three risk classes, as described in Section 2.1. In
contrast to RULs, discrete risk classes represent a potential decision taken for the purpose of
predictive maintenance, e.g.

• Ordinary operation, low risk of failure (risk 0)

• Warning state, medium risk of failure (risk 1)

• Maintenance required, high risk of failure (risk 2)

In terms of RULs and hidden states, the three classes were defined as:

Prediction RFR HMM
Risk 1 [0, 5] [8, 10]
Risk 2 (5, 20] [5, 7]
Risk 3 (20,∞) [1, 4]

3.3.1 Results

The micro F1 scores produced by the two models in their benchmark for the test data were
as follows:

• PCA and HMM: 0.42

• TSFRESH and RFR: 0.61

Confusion matrices for both approaches are shown in Fig 3.13 and 3.12. The figures show
that the RFR manages to distinguish class 2 and 3 fairly well, but has a lot of confusion
in true class 1, where it predicts class 2 almost as many times as class 1. Class 1 is only
predicted once when the ground truth is class 2 and 3, and class 3 is rarely predicted when
class 1 is the ground truth. As for the HMM, it has several false positives and false negatives
where the true class is class 1. This could be due to the occurrences of low RULs in states
1,3,5 and 6, combined with the upper quantile of RULs in states 8-10, as seen in Figure 3.7.
However, Class 2 and 3 are distinguished well.
Figure 3.12 shows that when the actual RUL in the training data is below 20 days (Risk
class 1 and 2), the RFR will predict a RUL below 20 in 164 out of 187 times. Overall, when
the model predicts risk class 1 and 2, the actual risk class is the same for 164 out of 183
predictions. This shows a high degree of reliability for this model. Meanwhile, Figure 3.13
shows that the HMM predicts class 1 or 2 for 162 out of 187 actual samples in these classes.
However, it predicts class 1 and 2 incorrectly 32 times.
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Figure 3.12: A confusion matrix showing the predicted classes from the RFR compared to the true classes
for the test samples

Figure 3.13: A confusion matrix showing the predicted classes from the HMM compared to the true classes
for the test samples
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3.4 Hardware and runtimes

3.4.1 Hardware

The computer in use is a Dell Latitude 7400, with a Intel(R) Core(TM) i78665U CPU @ 1.90
GHz processor with a base speed of 2.11 GHz, x64-based. The cache sizes are as follows:

• L1 Cache - 256 kB

• L2 Cache - 1,0 MB

• L3 Cache - 8,0 MB

The RAM size of the computer is 16 GB, DDR4. The hard drive of the computer is a 512
GB Micron 2200S NVMe512GB. Running time on the various approaches and steps can
be seen in Table 3.8, and shows that the TSFRESH feature extraction took a substantial
amount of time for the full dataset.

Runtimes in seconds [s] TSFRESH + RFR PCA + HMM
Feature extraction 313274 637
Model training 241 7456

Table 3.8: The runtimes for feature extraction and model training

Clearly, TSFRESH is the major factor impacting runtime in the machine-learning based
pipeline, which is significantly slower than the PCA-based feature extraction in the statistical
approach. However, HMM training requires a longer time than training the RFR, given the
presented parameter settings.



Chapter 4

Discussion

This chapter presents an argumentation of the various aspects related to the methods used in
this thesis work, as well as the alternatives. Results will also be interpreted and discussed in
this chapter.

4.1 Data preprocessing and analysis setup

The outlier removal was done in the analysis step instead of the data importation step due
to the importance of data visualisation in outlier removal. The downside to outlier removal
is the potential removal of important data. Therefore, the approach of removing outliers
based on box and whiskers plots are a method that minimises the amount of important
data removed. It was shown through the improvement in predictive performance after the
introduction of outlier removal that the outlier removal helped the analysis significantly. The
amount of removed data was optimised with regard to the predictive performance.

An advantage when training machine learning algorithms and models is to ensure that the
dataset is balanced. For this thesis, the distribution of maintenance cycle lengths is heavily
biased towards the lower end of the scale, as shown in Figure 3.1. The large number of short
maintenance cycles has a potential impact on the predictive performance of the methods
presented, i.e. their reliability could be low when the RUL is large. On the other hand, this
distribution could increase the prediction accuracy when the RUL is low, since there are more
training data in this part of the maintenance cycle.

The holdout method used in this thesis was a rather simple one, only including training and
test data, with a size ratio of 0.3. Splitting the data in three was considered, to be able to
have an unseen validation data validation set in addition to the two mentioned above. This
was however discarded, as the amount of data is limited in this thesis; An additional split
would potentially affect the quality of model training. At the same time, the number of
hyperparameters to tune in this thesis is arguably low, compared to other existing models
such as ANN (Artificial Neural Networks) etc. Nevertheless, a cross-validation could have
been possible, but was not used due to the stable performance for the models across several
hyperparameter setups.

A key assumption in this thesis is that two maintenance cycles are independent of each other.
This means that different maintenance cycles for one equipment are treated in the same way
as maintenance cycles from distinct inverters. This could lead to important information not
being taken into account for in the RUL prediction:

• The inverter might have some ageing effect, shortening the maintenance cycles when
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the inverter ages

• Different inverters might have individual differences. This could include service history,
production variations, etc.

For instance, if an inverter is located in a place with heavy wind or sand accumulation, hence
has a quicker degradation, the algorithms are not able to take this information into account.
The age and history of the inverters are also not taken into account as a consequence of this
assumption. However, parts of this information is indirectly provided by the model input
data: the number of days the inverter has been on and the number of days the inverter has
been feeding power into the grid are two examples. This provides some information about the
age of the inverter.

An essential decision was to determine that the highest ending point for a maintenance
cycle is 50 days before failure, when truncating the maintenance cycles. This results in a
maximum number ground truth RUL of 50 days. The reason for this decision was to be able
to capture the degradation better in long maintenance cycles, as these cycles would show
how the equipment degrades from ageing. Another aspect is that degradation is most likely
less visible for larger RUL values. The downside to this is the lack of testing predictions for
RUL> 50, especially for the TSFRESH - RFR method. It also means that the predictions
from the algorithm built in this thesis could be unreliable when RUL > 50.

4.2 PCA and Hidden Markov Model

One crucial assumption in the HMM is that the current state is only dependent on the
previous state in the sequence. This is known as the first Markov property, as presented in
Chapter 2.2.2 it is assumed once the HMM is used. In a degradation process, this assumption
might be dependent on the error mechanism. If a component is slowly degrading and ageing,
it is fair to assume that the degree of degradation only will increase over time. This will
also be the case if the degradation happens at a uniform rate. For these cases, the only
relevant state of degradation is the current state. For an error event occurring in a volatile
manner, the first Markov property may not be fulfilled, as the speed of the degradation prior
to the current time could be relevant to detect a trend in the degradation. For the error type
chosen in this thesis, instances of both cases seem to be present in the data - as the length of
maintenance cycles ranges between 1 and 600 days. This taken into account, the HMM may
not be able to give an accurate state representing the probability of failure for maintenance
cycles where the degradation is volatile. This could be part of the reason why there are some
failures occurring while the model is predicting a low state number.

An important aspect to the HMM is the start probability matrix, which is specified as user
input and not trained by the model. The probability of starting in state 1 was set to 100%
by the author, but this may not always be the case in real-life applications. For any installed
part, there are scenarios where the initiation in state 1 may not be accurate. The first scenario
is one where the part is faulty from the manufacturer due to production errors, or damage in
transportation and storage. The probability of such events are low, but present. The second
scenario is if the part is installed in a faulty manner. This is a type of error that is always
present when humans are involved [19].

As seen in chapter 3.2.2, the HMM does not deliver accurate RUL predictions using the
methods presented in this thesis. Even though a correlation between the predicted RUL and
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the ground truth can be identified as shown in Figure 3.10, there are multiple of predictions
of RUL= 0 when actual RUL is high, and vice versa. However, an interesting aspect shown in
Figures 3.5 and 3.7 is the correlation between the predicted states and the actual RUL.

HMM being a statistical model, deep insights can be gained from the trends and indicators
leading up until the time of failure. A clear tendency is that the predicted state is increasing
while the RUL is decreasing. The final three states 8-10 have a low RUL. These could be
used for indicating that there is an increased risk for failure in the inverter, although not
covering all single errors exhaustively.

An interesting observation is that single, lower states, such as state 5 in Figure 3.7 also has a
distribution of low RUL. State 5 could be interpreted to represent the increased risk of failure
in the earlier stages of component lifetime, as seen in Figure 1.1. However, it is questionable
whether the Weibull bathtub curve actually is applicable to the case at hand, as only a
part of the inverter is changed on failure, and not the full inverter. Although the bathtub
curve could be applicable to the part installed, every maintenance cycle will not have a full
bathtub curve for the inverter itself. Nevertheless, the risk of failure will always be present.
The Sankey plot in Figure 3.9 indicates that few maintenance cycles actually end in state
5 for the test data, although it is clear from the low mean RUL in state 5 that a failure is
imminent in this state. Together with Maintenance cycle 1 in Figure 3.5 failing at an early
point in time while in state 5, this strengthens the theory about state 5 indicating a risk of
early failure. One can also see in Figure 3.5 that there exists some low RUL values in the
lower state numbers. This could be owed to the fact that the risk of failure is always present,
and some failures will happen unexpectedly. Some of the low RUL values shown in low states
could also be caused by the imbalanced dataset in use.

The strong correlation between predicted hidden state and actual RUL indicates that the
predicted hidden state could be used to indicate risk of failure - indicating for the plant
personnel that the risk of failure is high and the equipment should be inspected when the
predicted state is for instance 5 or 8-10. Therefore, the HMM could be useful for predictive
maintenance, despite not providing a specific prediction on RUL. A downside to the approach
of PCA and HMM is that it is not possible to trace back the model prediction to a particular
feature due to the PCA transformation. The new representation of features from the PCA
together with the complicated interpretation of a HMM gives the user little to no information
about the key factors leading to the decision in the process. This is not optimal, since the
user benefits from insights into feature relevance in the model.
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4.3 Time series feature extraction combined with Random
Forest Regression

The pipeline using TSFRESH combined with RFR (Random Forest Regressor) predicted
directly the RUL on a random time in the maintenance cycles. For the TSFRESH feature
extraction, all functions were implemented on all sensors, leading to an immense amount
of features extracted. Even though possibilities existed to select which functions to use on
which sensor, these were not exploited since it could potentially lead to important information
not being extracted. However, a reduced number of features would have reduced the computational
burden associated with the method.

Considering the decision of hyperparameters for the RFR based on performance on the
test data, as shown in Chapter 3.2.3, there was indeed a risk of the model overfitting to
the test data. However, the difference in performance were not significant for the different
hyperparameters tuned, as seen in Tables 3.5 and, 3.6. Therefore, the degree overfitting
towards the test data is to be considered neglectable for the RFR model used here.

In comparison with other regression algorithms, the performance of the RFR is higher than
any other regression algorithm tested for the prediction of RUL, arguably because of the
nonlinear nature of the RFR. Preliminary tests were conducted using: SVR (Support Vector
Regressor), Linear Regression and RNN (Recurrent Neural Networks). Despite the clear
correlation between the ground truth and predicted RUL, there are some inaccurate predictions.
Prediction errors are obviously correlated with the RUL: the longer the RUL, the higher
the number of outlier predictions. The inaccuracy for higher RULs could be caused by the
algorithm not being able to detect degradation due to its lack of presence at early points in
the maintenance cycle. Alternatively, it could also be due to inadequate training data caused
by the unbalanced distribution of cycle lengths. The imbalanced distribution could also be
the reason for the strong correlation between prediction and ground truth towards RUL
= 0, as the majority of maintenance cycles range in this period. The problem of imbalanced
distribution could have been resolved by re-using long maintenance cycles multiple times;
ending a maintenance cycle at several random points pi and treating the new maintenance
cycles as independent ones. The downside to this would be that the algorithm could have
overfitted towards unique trends in individual maintenance cycles, making the generalisation
poor. In addition, the assumption that maintenance cycles are independent would be breached.
Synthetic measurements were also considered for balancing the dataset, but this was not
pursued due to the risk of unrealistic samples being generated.

A positive side to the RFR and TSFRESH method is that it offers a clear indication of
feature importance. The TSFRESH algorithm pursues a consistent naming scheme based
on features from the original input data, making it possible to identify both the important
measurement variables to monitor, and which events are acting as degrading for the object.
For instance, if the number of peaks in current is an important feature to predict the RUL,
it is an indication that peaks in current are events that are degrading the equipment and
eventually contribute to the failure occurring.

Regarding the feature importance returned by the RFR, a major point of criticism is that
they can be affected by random correlation [78]. This is logical, as the selection of features
for any given Decision Tree in the Random Forest based on a random initialisation [53]. A
suggestion of making this more reliable comes from the authors of [78], saying that a "drop-
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out" procedure for columns should be followed when training a Random Forest algorithm.
This is done by training one Random Forest model while leaving out one column at a time,
resulting in training as many RFR models to train as there is features in the input dataset.
The suggested approach was considered for this thesis, but could not be pursued due to the
vast amount of features put into the RFR (10970), which would lead to an extreme time
consumption for the algorithm, which makes it less feasible. One can indeed see that there
is likely to be some spurious correlations in Table 3.7, confirming the theory. In line 4 and
5 from the top, there are features measuring the number of duplicate values in a feature.
While this could be an indication of how long the equipment has been running, given that
the occurrence of a duplicate value is random, this would lead to the amount of duplicates
increasing over time. From another viewpoint, duplicate measurements in module temperature
and power measurement are not a choice of features to indicate equipment degradation.

4.4 Method comparison

Summarised, both methods tested in this thesis have their strengths and drawbacks. The
HMM gives a good understanding of the dynamic of the risk of failure along the time axis.
Based on the predicted state in a given point in time, one can make assumptions about
the risk of failure. Meanwhile, the weaknesses of the HMM method is the strength of the
RFR method; the RFR have transparency when it comes to the factors contributing to
the predicted results, and it predicts the estimated RUL in days. It has a strong predictive
performance when the RUL approaches 0, although there are inaccuracies when the RUL is
higher. In fact, the RFR approach has overall a considerably better performance than the
HMM approach according to the benchmark results, despite some less confusion between
class 2 and 3. When considering the benchmark results for the methods presented in Section

3.3.1, it is worth bearing in mind that the interpretation is more rigid when evaluating results
of classification. Whereas the evaluation of regression algorithms takes into account how
wrong the prediction of the model is, while a classification evaluation returns either right or
wrong. Therefore, the results presented for the common benchmark method may be slightly
conservative, and highly affected by the class limits set.
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Chapter 5

Summary and conclusion

In this thesis, two different methods for estimating risk of failure for predictive maintenance
in solar plant inverters are presented, evaluated and compared.
Both methods had the same data input; sensor data aggregated to 30 minute periods, split
into maintenance cycles based on occurrence of a certain failure type. Irrelevant features and
outlier data rows were removed, as well as samples from periods with no power production.
The maintenance cycles were truncated to end at random points, to represent the actual use
of the methods; estimating RUL (Residual Useful Lifetime) or risk of failure at a given point
prior to failure. The first method includes a PCA (Principal Component Analysis) providing
input to a HMM (Hidden Markov Model). The PCA reduces the number of input features
for the HMM, which has optimal performance on a low number of input features. This model
returns 10 different states, representing the risk of failure at a given point in time. The
second method consist of a time series feature extraction function called TSFRESH (Time
Series Feature Extraction based on Scalable Hypotesis tests), summarising a maintenance
cycle with several rows of time steps into one row with an increased amount of columns
compared to the original. The output from TSFRESH was used in a RFR (Random Forest
Regressor), estimating the RUL for the equipment.

The results from the methods tested this thesis shows that there exists possibilities in implementing
methods for predictive maintenance in solar plants. It also indicates that the semantic and
pragmatic quality of the data being samples on site today is sufficient for estimating the time
until a certain failure occurs. Therefore, the cost of installing new sensors can be saved.

For the case and failure type studied in this thesis, the TSFRESH combined with RFR could
be used for estimating the RUL for the determined failure type. Despite some outliers in the
predicted value, the prediction as the RUL approaches 0 increases in quality. This indicates
that there exists information about degradation in the data.

The HMM can be used for indicating the risk of failure at a given time in the maintenance
cycle. A maintenance cycle entering state 5, 8, 9 and 10 indicates that there is increased risk
of failure, and that the equipment should be monitored closely.

Individually or combined, the experiments in this thesis has shown that the methods presented
are able to provide useful information about the condition of the component, and deliver
early warnings of impending failures. Such warnings could lead to increased preparedness
for impending failures among the plant personnel, potential for early intervention to avoid
failure, or indication that a risk-based inspection should be performed on the equipment. In
addition, the feature importance indicates which features are critical to monitor in order
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to indicate the equipment health with regards to the determined error type. Therefore,
the conclusion is that both methods serves as proofs of concept, and could be applied for
predictive maintenance in the solar industry. Nevertheless, there will always occur failures
that are unexpected, but the methods presented in this thesis could help in giving an early
warning for some occurrences.

5.1 Future work

The proofs of concept shown in this thesis could be a first step towards implementing predictive
maintenance for degradation related failures in solar plants. Together with domain experts,
failure types relevant for predictive maintenance could be identified and pursued. Failure
events should also be validated against the downtime registry per inverter.

The methods in this thesis could be tested on data from various locations individually, and
evaluated. If the results are promising, there could be potential for implementing the presented
methods in e.g. the SCADA system, and from there indicate to the CMC or the plant personnel
which devices are at risk of failure.

The methods of this thesis could also be refined and fine-tuned; for instance, several approaches
for the re-sampling of maintenance cycles could be tested, as well as up-sampling of maintenance
cycles with high duration.

Features identified as important from the Random Forest could be advantageously analysed,
and methods suggested by [78] applied to find the reliability of the feature importance found
in this thesis.

The input data for analysis in this thesis could be combined with data from the EAM (Enterprise
Asset Management) system to train models based on what work has been conducted to
correct failures. In turn, the resulting models could be used to provide further information
than provided in this thesis; namely what is the action needed to prevent the impending
failure, which is known as Prescriptive maintenance.
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Appendix A

Glossary

FMEA Failure Mode and Effect Analysis

RUL Residual Useful Lifetime

EAM Enterprise Asset Management system

SCADA Supervisory Control And Data Acquisition

PV plants Solar plants using PhotoVoltaic solar cell technology

SOH State Of Health

HSE Health, Environment and Safety

CMC Central Monitoring Centre

The Grid The power supply in a region or nation

Soiling The accumulation of dust and sand on solar modules

TSFRESH Time Series FeatuRe Extraction based on Scalable Hypothesis tests

HMM Hidden Markov Model

RFR Random Forest Regressor

MFA Multi-Factor Authentication

SQL Structured Query Language
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Appendix B

Exhaustive list of attributes generated by
TSFRESH

Table B.1 contains all features generated by the TSFRESH algorithm. The list is fetched
from [79].

Attribute function Description
abs_energy(x) Returns absolute energy of the time series feature, the

sum over the squared values
absolute_maximum(x) Returns the highest absolute value of the time series

feature
absolute_sum_of_changes(x) Returns the sum over the absolute value of consecutive

changes in the time series feature
agg_autocorrelation(x, param) Descriptive statistics on the autocorrelation of the time

series feature
agg_linear_trend(x, param) Calculates a linear least-squares regression for values of

the time series feature
approximate_entropy(x, m, r) Vectorized Approximate entropy
ar_coefficient(x, param) The unconditional maximum likelihood of an

autoregressive AR(k) process.
augmented_dickey_fuller(x, param) Does the time series feature have a unit root?
autocorrelation(x, lag) The autocorrelation of the specified lag for the time

series feature
benford_correlation(x) Useful for anomaly detection applications
binned_entropy(x, max_bins) First bins the values of the time series feature into

max_bins equidistant bins
c3(x, lag) Uses c3 statistics to measure non linearity in the time

series feature
change_quantiles(x, ql, qh, isabs,
f_agg)

First fixes a corridor given by the quantiles ql and qh of
the distribution of x.

cid_ce(x, normalize) An estimate for complexity in the time series feature
count_above(x, t) The percentage of values in the time series feature that

are higher than a threshold t
count_above_mean(x) The number of values in the time series feature that are

higher than its mean
count_below(x, t) The percentage of values in the time series feature that

are lower than s threshold t
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count_below_mean(x) The number of values in the time series feature that are
lower than the mean of the time series

cwt_coefficients(x, param) A Continuous wavelet transform for the Ricker wavelet.
energy_ratio_by_chunks(x, param) Calculates the sum of squares a data group and express

it as the sum of squares over the whole time series
feature

fft_aggregated(x, param) The spectral centroid (mean), variance, skew, and
kurtosis of the absolute Fourier transform spectrum

fft_coefficient(x, param) The Fourier coefficients of the one-dimensional discrete
Fourier Transform

first_location_of_maximum(x) The first location of the time series feature’s maximum
value

first_location_of_minimum(x) The first location of the time series feature’s minimum
value

fourier_entropy(x, bins) The binned entropy of the power spectral density of the
time series feature, using the welch method

friedrich_coefficients(x, param) Coefficients of a polynomial equation fitted over the
time series feature

has_duplicate(x) If there are duplicates in the time series feature
has_duplicate_max(x) If there are duplicates for the max value in the time

series feature
has_duplicate_min(x) If there are duplicates for the max value in the time

series feature
index_mass_quantile(x, param) Indicates which quantile the majority of data mass for

the time series feature exsist
kurtosis(x) The degree of kurtosis of the time series feature
large_standard_deviation(x, r) Whether the time series feature has large standard

deviation
last_location_of_maximum(x) The last location of the maximum value for the time

series feature
last_location_of_minimum(x) The last location of the minimum value for the time

series feature
lempel_ziv_complexity(x, bins) A complexity estimate for the time series feature
length(x) Returns the length of the time series feature
linear_trend(x, param) A linear least-squares regression for the values of the

time series feature versus the sequence from 0 to length
of the time series feature minus one

linear_trend_timewise(x, param) A linear least-squares regression for the values of the
the time series feature versus the sequence from 0 to
length of the the time series feature minus one

longest_strike_above_mean(x) The length of the longest data sequence in the time
series feature that is bigger than the mean value of the
time series feature

longest_strike_below_mean(x) The length of the longest data sequence in the time
series feature that is smaller than the mean value of the
time series feature

matrix_profile(x, param) The matrix profile mean plus the Tukey’s five number
set
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max_langevin_fixed_point(x, r, m) Largest fixed point of dynamics in the time series
feature estimated from a polynomial describing the time
series feature

maximum(x) The maximum value of the time series feature
mean(x) The mean value of the time series feature
mean_abs_change(x) Average over first differences in the time series feature
mean_change(x) Average over differences the time series feature
mean_n_absolute_max
(x, number_of_maxima) The arithmetic mean of a number of absolute maximum

values of the time series feature
mean_second_derivative_central(x) The mean value of a central approximation of the

second derivative
median(x) The median value of the time series feature
minimum(x) The minimum value of the time series feature
number_crossing_m(x, m) The number of times the time series feature has crossed

the value m
number_cwt_peaks(x, n) Number of different peaks in the time series feature
number_peaks(x, n) Number of peaks in the time series feature
partial_autocorrelation(x, param) The value of partial autocorrelation function at a given

lag
percentage_of_reoccurring_
datapoints_to_all_datapoints(x) The percentage of recurring data points in the time

series feature
percentage_of_reoccurring_
values_to_all_values(x) Percentage of values that are redundant in the time

series feature
permutation_entropy(x, tau,
dimension)

Permutation entropy of the time series feature

quantile(x, q) Calculates the q quantile of the time series feature
query_similarity_count(x, param) A similarity measure for the time series feature
range_count(x, min, max) Number of observed numbers in the interval (min, max)
ratio_beyond_r_sigma(x, r) Ratio of values more than r times the mean of the time

series feature
ratio_value_number
_to_time_series_length(x) An indicator of how often recurrent errors occur
root_mean_square(x) The root mean square of the time series feature
sample_entropy(x) The sample entropy of the time series feature
set_property(key, value) A decorator that sets the property key of the function

to value
skewness(x) The skewness of the time series feature
spkt_welch_density(x, param) The cross power spectral density of the time series

feature at different frequencies
standard_deviation(x) The standard deviation of the time series feature
sum_of_reoccurring_data_points(x) Sum of all recurrent datapoints in the time series

feature
sum_of_reoccurring_values(x) Sum of all recurrent values in the time series feature
sum_values(x) The sum of the time series feature
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symmetry_looking(x, param) Boolean telling whether the distribution of the time
series feature looks symmetric

time_reversal_asymmetry
_statistic(x, lag) Returns the time reversal asymmetry statistic of the

time series feature
value_count(x, value) Count occurrences of value in the time series feature
variance(x) Returns the variance of the time series feature
variance_larger_than
_standard_deviation(x) Is variance higher than the standard deviation?
variation_coefficient(x) Returns the variation coefficient of the time series

feature

Table B.1: An exhaustive table showing all the feature extraction functions in the TSFRESH package.
Several of the functions return several columns.
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