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Abstract: In this paper, a robust adaptive control strategy is proposed to synchronize a class of
uncertain chaotic systems with unknown time delays. Using Lyapunov theory and Lipschitz
conditions in chaotic systems, the necessary adaptation rules for estimating uncertain parameters and
unknown time delays are determined. Based on the proposed adaptation rules, an adaptive controller
is recommended for the robust synchronization of the aforementioned uncertain systems that prove
the robust stability of the proposed control mechanism utilizing the Lyapunov theorem. Finally,
to evaluate the proposed robust and adaptive control mechanism, the synchronization of two Jerk
chaotic systems with finite non-linear uncertainty and external disturbances as well as unknown fixed
and variable time delays are simulated. The simulation results confirm the ability of the proposed
control mechanism in robust synchronization of the uncertain chaotic systems as well as to estimate
uncertain and unknown parameters.

Keywords: adaptive controller; unknown time-delayed chaotic system; robust synchronization
uncertainty; Lyapunov theory; chaotic system; chaos theory

1. Introduction

The dynamic behaviors of a chaotic system looks like a random behavior. But in reality, the behavior
of chaotic systems follows a natural order. On the other hand, the dynamic behavior of these chaotic
systems is entirely dependent on the initial conditions, so that with the slightest change in these
conditions, the behavior of these systems undergoes extreme changes [1]. Due to the properties of
chaotic systems (quasi-random dynamic behavior and drastic dependence on initial conditions), it is
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difficult to control these systems [2]. Accordingly, this challenge has become a fascinating topic for
researchers in various fields [3]. One of the significant issues in the field of control of chaotic systems
is the synchronization of such systems in the presence of various disturbances and uncertainties so
that, by designing a control strategy, the dynamic behavior of the slave system follows the dynamics
of the master system [4-6]. This issue was first introduced by Pecora and Carroll [7]. Owing to the
highly substantial applications of synchronization such as secure communications, chemical processes,
biological systems, and information processing, numerous control approaches have been submitted to
synchronize chaotic systems. Among these techniques the active control method [7], adaptive control
strategy [8,9], adaptive observer base control strategy [10], sliding mode control method [11],
predictive control [12], Linear feedback control [13], back-stepping control [14], robust control
method [15], etc. can be mentioned. In many real and engineering systems comprising biological,
physical, electrical, chemical, and communication systems, various uncertainties and time delays
are unavoidable and create a lot of changes in the dynamic behavior of these systems and increase
the complexity of the systems models. In these systems, achieving the desired behavior is hard and,
therefore, the issues of stability and control of these systems have turned out to be a crucially important
and a considerable topic. Accordingly, researchers have developed a variety of control strategies
for synchronizing systems with uncertainty [16-18] and systems with a time delay [19-23]. In [16],
fuzzy-neural network control for synchronization of uncertain chaotic systems is presented. In [20],
an iterative learning controller to synchronize two non-linear systems with free time delay and couple
free is proposed. An adaptive fuzzy controller design for synchronizing a class of uncertain non-linear
systems is proposed in [17]. In [22], an adaptive intelligent controller is introduced to control uncertain
systems with time delay. An observer-based fuzzy adaptive output feedback controller [21] is designed
to control the stochastic system with time delay. In [19], the design of a synchronization controller
based on robust adaptive neural networks for a class of time-delay uncertain chaotic systems is yielded.
Adaptive synchronization has been proposed for a class of time-delay uncertain chaotic systems via
fuzzy fractional-order neural networks [23].

Due to the increasing complexity of time-delayed systems, the synchronization of time-delayed
chaotic systems with the application approach in secure telecommunications has also received great
attention from researchers in this field. For example, finite-time synchronization of non-identical
chaotic systems with multiple time-varying delays and bounded disturbances was investigated in [24].
Chen et al. [25] adopted an improved synchronization to synchronize time-delayed chaotic Lur’e
systems using sampled-data control. Also, in [26], Zheng et al. proposed a novel synchronization
criterion of chaotic Lur’e systems with time delays using sampled-data control. A control strategy
for heterogeneous uncertain chaotic systems with a time delay [27] is proposed in which a robust
framework for synchronization error estimation is presented. To illustrate the proposed approach in
engineering applications, thishas been exploited for secure communication via multiple heterogeneous
chaotic systems. In [28], an observer-based sliding mode control method is proposed to synchronize
the time-delayed chaotic neural networks with unknown perturbation. The utilization of the proposed
controller for the master and slave chaotic systems with non-identical structure as well as the slave
system with unknown disturbance is the advantage of the proposed procedure.

One of the items that can be considered for time-delayed uncertain systems is the uncertainty
of the time delay existingin the system. This issue can pose serious challenges to the controller
design process for a variety of purposes, including the synchronization process. On the other hand,
the uncertainty of the amount of time delay in the system gives rise to an increase in the degree of
complexity of the system model, which can be considered asenhancing the level of data security
in the field of secure telecommunications. Accordingly, this paper deals with an adaptive control
strategy for robust synchronization of uncertain chaotic systems with unknown fixed and variable time
delay. Using Lyapunov’s direct method and the Lipschitz condition in chaotic systems, the update
rules, and the estimation of the unknown parameters are determined to ensure the stability of
the proposed controller. Finally, in order to evaluate the performance of the proposed control
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strategy, the synchronization of two Jerk chaotic systems with unknown fixed and variable time-delay
coupled with uncertainty and disturbance are investigated and simulated. The simulation results
exhibit the effectiveness of the proposed adaptive control method for robust synchronization due
to uncertainty, external distortions, and unknown fixed and variable time-delays. Also, based on
the results, the proposed control strategy has been effective in estimating uncertain parameters and
unknown fixed and variable delays.

This paper is organized as follows: in Section 2, the basic definitions used in this paper are
presented. Adaptive controller design to robust synchronization of fractional order chaotic systems
with unknown time-delay, uncertainty and disturbance is givenin Section 3. The synchronization of
two Jerk chaotic systems with unknown fixed and variable time delay and uncertainty and disturbance
is analyzed and simulated in Section 4, and finally, in Section 5, conclusions based on the stated theories
are presented.

2. Preliminaries and Problem Formulation

In this paper, a class of uncertain chaotic systems with unknown time delay is considered so that
the general form of demonstrating dynamic equations to its companion form in the format of master
and slave systems is defined as follows:

{ Xi:xi+1, 1<i<n-1 (1)
Xn = flx(t=11),8) + Af(x(£),£) + da (£),
and the slave system is written in the following form:
{ yi:yi‘i'l’ 1<i<n-1 @)
Y = 8(y(t=712),8) + Ag(y(t), 1) + da(t) +u(t).

So that x(t), y(t) € R" denote the dynamic states of the master and slave systems,
f(x(t—11),t), g(y(t—12),t) € R nonlinear functions with unknown time delays with delays 71, 7, and
Af(x(t),t), Ag(x(t),t) express nonlinear bounded uncertainties in the slave and master systems. Also,
di(t), da(t) indicate the external disturbances applied to the master and slave systems, and u(t) the
control law applied to the slave system. The differential equations expressed in the forms correspond
to a number of known chaotic systems such as: Van der Pol oscillator systems, Duffing’s oscillator,
Genesio-Tesi’s system, Arneodo’s system, etc. [29].

Definition 1. The master and the slave systems defined in forms (1) and (2) have robust synchronization if for
all conditions governing the system, including external disturbance, uncertainties and unknown time-delays,
for each initial condition, the following condition must be met:

limy oo llyi(t) — x;(E)Il = limiseolle; ()l =0, i=1,...,n. 3)

Therefore, ¢;(t) describes the synchronization error of the master and the slave systems.
Accordingly, the differential equations of the synchronization error dynamics for uncertain master and
slave chaotic systems with unknown time-delay express in forms (1) and (2) are defined as:

{ & = i1, 1<i<n-1 4
en = (y(t =), t) + A (x(t), 1) +da(t) = (f(x(t = 71), £) + Af(x(), ) +di (1)) + u(t).

Therefore, in this paper, we seek to design a robust adaptive controller to perform
robust synchronization of chaotic systems (1) and (2) in the presence of external disturbances,
bounded non-linear uncertainties and existing unknown time-delays in accordance with Definition 1.
Put another way, the proposed designed controller can operate despite the existing conditions in the
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master and slave systems in such a way that the state dynamics of the slave system in a finite time is
in accordance with the behavior of the dynamics of the master system. Also, the adaptation of state
dynamics under the assumed conditions remain stable and robust until the synchronization error tends
to zero.

Assumption 1. Uncertain external disturbances dy (t), dy(t) and uncertain bounded non-linear uncertainties
Af(x(t),t) and Ag(x(t), t) in master and slave systems (1) and (2) satisfy the following conditions:

IAf(x(8), Il < arhi(x), 16g(y(E), DIl < azha(y), lld1 (£l < y1 and [ld2 (8] < y2. ®)

Thus ||-|| signifies the norm Iy and a1, ap, y1,y2 are the values of the unknown real positive constant. Also,
hi(+), ha(-) are generally known functions.

Assumption 2. The non-linear functions f(x(t —11),t), g(y(t —12),t) € R containing the unknown time
delays in the master and slave chaotic systems defined in general forms (1) and (2), for each x(t), y(t) € R,
provide the following Lipschitz conditions:

[f(x(t=11)) = fx(t=21))| < Bllx(t = 1) = x(t =2l < my|(t=11) = (£ = 27)|

= milt1 — 11| = m[71,

lg(y(t—12)) = g(y(t—12))| < Blly(t = 2) — y(t = )|l < ma|(t —12) = (£ 22)|
= ma|T2 — 12| = mzrfz)~

(6)

where, 11, To € R denote unknown time delays, 11, T2 € R represent unknown time delays estimation,
I, I, my and my are positive and unknown constants.

3. Adaptive Controller Design for Robust Synchronization of Fractional Order Chaotic Systems
with Unknown Time Delay, Uncertainty and Disturbance

In this section, the objective is to present a robust adaptive control strategy for robust
synchronization of the aforementioned chaotic systems, given the structure of uncertain chaotic
systems with unknown time delays defined in forms (1) and (2), in bounded time provided condition in
Definition 1 are met. In the following, we prove that in order to fully synchronizethe systems described
in forms (1) and (2) in a finite time, at least two controllers u(t) and u(t) are required to stabilize the
synchronization error dynamic equations, based on which (4) is rewritten as below:

éi:€i+1/ i:1,2,...,n—2
ep—1 = en + uo(t), (7)
en = 8(y(t—12),t) + Ag(x(t), 1) +da(t) = (f(x(t—1),t) + Af(x(t),t) +d1(t)) +u(t),

Theorem 1. A necessary condition for the robust synchronization of the chaotic systems described in Forms (1)
and (2) in a finite time is that the controller uo(t) in (7) must be designed in the following form:
up(t) = K'E, (®)

where, E = (e1, ey, ..., en) represent the error synchronization dynamics, K' = (Ky, Ky, ..., Ky_q,—1) and
real values of K; must selected such that eigenvalues A; fori =1, 2,..., n—1in system (7) satisfy the Hurwitz
stability conditions.
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Proof. According to the proposed structure based on (7), n — 1 controlled synchronization error
dynamics are presented in the following linear form:

er = e,
e =e3,
)
n—2 = ey_1,
en_1 = en +up(t).

If up(t) is designed in the form (8) then the linear time invariant (LTI) dynamic system (9) is
converted to the following form:

ey = e,
e =e3,
(10)

én—z = €n-1,
ey_1 = Kie1 + Koer + ...+ K_16,1.

It is clear that according to Herwitz’s stability theory in LTI systems, if K; values for
i = 1,2,..., n — 1, are chosen that all eigenvalues A; of the LTI system (10), satisfy conditions
Real(A;) < 0 then, by designing u((t) based on Theorem 1 conditions, all #n — 1 synchronization
error dynamics in the system (7) are stable, and this stability is a necessary condition for robust
synchronization of chaotic systems with synchronization error in form (7). O

Theorem 2. Robust synchronization of the master and slave chaotic systems with uncertainty and unknown
time delays described in forms (1) and (2) is fulfilled if the controller uy(t) characterized in form (8) satisfies the
condition of Theorem 1 and the adaptive controller u(t) is designed as follows:

u(t) = f(x(t—11)) —g(y(t — 22)) —sign(en) (Y1 + P2 + d1h1(x) + d2h2(y)) — koen, (11)

so that kg is a desired positive real value and the adaptation laws in the controller (11) are determined as follows:

@ = ~lenll (x) —may, ?Zz = —leqlha(y) — noaa,
. )71 = —lex| - 773)71/ 772 = —ley| - 774)72/ (12)
T1 = —lelsign(t1) — ns71, T2 = —lexlsign(t2) — n6T2,

where n; fori =1, 2, ..., 6 are constant and positive values and a1, &z, y,, Vs, T1, T2 denote the estimation
errors of uncertain and unknown parameters in the master and slave systems of (1) and (2).

Proof. Based on the direct method of the Lyapunov theory, the following function is proposed:

~~~~~~ 1 — — —_ — — —_
= 5(67,2 +a1? + @ + 1% + 72 T + mato?). (13)

The derivative of the proposed Lyapunov function (13) is yielded in the following form:

V:enén+

2
(aia; + yiy; + miTiT;). (14)

i=1
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Based on the error dynamics ¢, in the differential equations of synchronization error (7) and its
substitution in (14), the proposed derivative of the proposed Lyapunov function can be illustrated in
the following new form:

V=en(g(y(t—Tz))+Ag(X(tl)+dz(f)—f(x(t—T1)) Af(x(t)) —dr(t) + u(t))

_ — (15)
+ .Zl(aiai +Yivi +miTT).
=
If in Equation (15), u(t) is expressed as follows:
u(t) = —g(y(t=12)) + f(x(t = 11)) — koen +u(t), (16)

where % and %, denote estimation of the unknown delays 71 and 77 in the master and slave systems
(1) and (2), and ky is an arbitrary positive constant, then (15) is rewritten as follows:

V = en(g(y(t=12)) = g(y(t = 12)) + Ag(x(t)) + da(t) + f(x(t ~ 1))
—f(x(t—11)) - Af(x ())— 1(£) = koen + u(t)) (17)
(a,

2
—0—2 aaz—l—yl)/l—i—mfz Ti).

Applying the first norm Iy, it is explicit that (17) can be rewritten as follows:

V < leal((g(y(t - 12)) - g(y(t - fz>>| + |ag(x(e)] + Idz B)
+f(x( t—flz))—f( t=11)) |+)Af D)+l —koek (15
+equ(t) + Z (aia, al+7/7/,+mﬂf TZ)

=1

Based on the assumed conditions for disturbances and uncertain uncertainties in the master and
slave systems provided in Assumption 1, (18) is revised as follows:

V < leal(|g(y(t - 2)) — g(y (f —12))| + adla(y) + 72
+|f t—Tl f(x(t—’cl |+a1h1(x) -l-)/l)—k(]e% + equ(t) (19)

+ z(aal+7171+MTT)
Due to the fulfillment of Lipschitz conditions (6) by non-linear functions withunknown time
delays in the master and slave systems in accordance with Assumption 2, (19) is presented as follows:
V< Ienl(ml 1| + azhz(}/) +y2+m[T| + arh (x) + ?/1) — ko + enti(t)

(20)
+ Z (aia, al +7/17/Z + m;T; TZ)

where a1, ay, y1, y2 are generally unknown positive values and (), hy(-) are known functions. If
u(t) is defined as:
u(t) = —sign(en) (Y1 + P2 + dahi (x) + d2ha(y)). (21)

Then (20) is converted to the following form:

V < leal(mafTa| + @aha(y) + 72 + ma[T1] + @k (x) + 71) - koen?
2

—_— _ (22)
+ ‘21 (aiai +yiy; + mﬂm).
1=
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If the adaptive rules are defined in the following form:

a = —lenlhy (x) = man, ?372 = —lenlha(y) — noaa,
. y1 = ~leal =m371, 7, = ~leal = may2,
Ty = —lenlsign(t1) — 1571, T2 = —leulsign(72) — neTa.

Then, (22) becomes the following form:

V < —koen® — man? — maan® — 371 — maya? — st — neta < V. (23)

Thus, n = min(m1, n2,..., 16, ko). Therefore, based on (23), it was verified that using the designed
up(t) = KTE and u(t) in form (11) and the adaptive rules determined in form (12), all the dynamics of
synchronization error in differential equations are converged to zero asymptotically. In other words,
condition (3) is met in Definition 1 and all estimation errors of the uncertain and unknown parameters
ai, az, Y1, Y2, 11, T2 have been converged to zero. O

4. Simulation Example and Results

In this section, applying the adaptive control strategy proposed in the previous section, the robust
synchronization of two Jerk chaotic systems with uncertainty and bounded external disturbances as
well as unknown time delays is simulated and evaluated. The state space equations of the Jerk system
are described as follows [30]:

= x3(t), (24)

where, ¢1 and ¢; are system parameters and f(.) is a piecewise linear function that is defined as follows:

F(0),8) = 30 =) [ (6) + 1] = pe (6) = 1] + w3 (1)

where, vy, v; are constant values. Accordingly, the dynamic equations of Jerk chaotic master and slave

systems based on Equation (24) in the presence of external disturbances, non-linear uncertainties and
unknown time delays are presented in the following form:

)
), (25)
t

(26)
y3(t) = —e1yi(t) = ya(t) — e2y3(t) = g(y1 (t = 12),
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In the simulation process, the disturbances and boundary uncertainties of the system that satisfy
the conditions of Assumption 1 are regarded as:

di(t) = (sin(3t) + (cos(2t))?), da(t) = (0.2sin(t) + sin(mt)), 27)

Af(x(t),t) = 0.1sin(x1 (t) + x2(t) = 5x3(t)), Ag(y(t),t) = 0.3sin(y1(t) + y2(t) —y3(t)).  (28)

Additionally, piecewise linear functions with unknown time delays in the master and slave
systems are illustrated as follows:

fla(t-m),t) = 5 (vo—v1) [|x1 t—11) + 1| = |x1 (t=11) 1|]+le1(f—T1), (29)

NI’—‘ NI>—\

g(y1(t=72),t) = 5(vo—v1) Hyl t—1) +1| = |y (t—12) 1|]+v1y1(t—rz)~ (30)

Established on Equations
follows:

—~

25)—(30), the dynamic equations of synchronization error are defined as

e1(t) = ea(t),

ex(t) = e3(t) +uo(t),

e3(t) = —ere1(t) —ea(t) —ezes(t) — g(ya1(t —72),t) + f(x1(t = 11), 1)
+Ag(y(t),t) = Af(x(t),t) +da(t) —dy(f) + u(t).

By describing 1o (t) = kyeq () + kaez (t) — e3(t), the LTI segment of the synchronization error system
(31) is defined as follows:

(31)

e1(t) = ex(t),
ex(t) = kier(t) +kaea(t).

Therefore kq, k should be determined in such a way that according to Theorem 1 the error
dynamics e1(t), ex(t) in system (32) are stable and u(t) based on a robust adaptive controller designed
based on the adaptive rules in Theorem 2 are considered in form (11).

Accordingly, in order to evaluate the performance of the adaptive control strategy proposed for
robust synchronization of systems (25) and (26), the initial conditions of the master and slave systems
are equal to [-0.5, 0.5, 0.87] and [2, —1, —2], respectively, and are considered, the controller parameters
up(t) are equal to ky = —1, k = —2 and in the controller (11), ky = +1. Moreover, to improve the
controller’s performance in detracting the output chattering rate, instead of the sign(-) function,
the tanh(-) function is exploited in the controller structure (11). In accordance with the aforementioned,
different simulation results are depicted in Figures 1-9.

Figures 1 and 2 exhibit the dynamic behavior of the master and slave systems in the absence of the
proposed controllers indicating the dynamic behavior is chaotic due to the parameters defined above
and external disturbances and uncertainties (27) and (28) applied to the systems. External disturbances
and uncertainties defined in forms (27) and (28) applied into the master and slave systems with time
delays of (25) and (26) are demonstrated in Figure 3.

In Figure 4, it is explicit that the synchronization of uncertain Jerk chaotic systems with unknown
time delays (25) and (26) is adeptly carried out using the proposed adaptive control strategy, and this
synchronization against system disturbances and uncertainties has profited from the desired robustness.
As manifested in Figure 5, all synchronization errors have been converged to zero using the proposed
robust and adaptive control strategy confirming the robust synchronization process of the Jerk master
and slave systems.

(32)
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The control signal based on the proposed adaptive controller for uncertainties and distortions
applied on systems with unknown delay (25) and (26) is depicted in Figure 6. As can be perceived
from Figure 6, the existent chattering rate in the proposed control signal is low portending the effective
performance of the proposed controller in synchronizing the proposed chaotic uncertain systems.
Finally, the estimation errors of the uncertain parameters as well as the unknown time delays in the
master and slave systems are shown in Figure 6, which exhibits the achievement of the proposed
control mechanism in estimating the parameters and updating them using the proposed adaptation
rules with Equation (12).

Also, to evaluate the performance of the proposed control strategy, simulation of the
synchronization process for master and slave systems (25), (26) with unknown variable time delays is
shown in Figures 8 and 9. The results indicate the capability of the proposed control strategy for the
aforementioned systems with unknown variable time delays.

(a) (b)

x4t

Figure 1. Exhibits chaotic behaviors of the fractional-order modified Jerk system without the controller.
(a) The phase portrait of the master system (25), (b) the phase portrait of the slave system (26), (c) the
plan x, — x3 of master system, and (d) the plan y, — y3 of the slave system.
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| | 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 2. Representation of the dynamics of the master and slave systems (25), (26) without the
controller. Solid lines are the dynamics of the master system and dotted lines are the dynamics of the

slave system.
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Figure 3. Disturbances (41 (t), da(t)) and uncertainties (Af(x(t),t), Ag(y(t),t)) in the master and slave
systems (25), (26).

Time (s)

Figure 4. Representation of the robust synchronization presses of the master and slave systems (25),
(26) based on the proposed adaptive control strategy where it is activated at t = 5s.
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Figure 5. Synchronization error dynamics of unknown time-delay Jerk master slave chaotic systems
(25), (26) using the proposed robust adaptive control strategy where it is activated at t = 5s.
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Figure 6. Control signal based on the proposed robust adaptive control strategy (11) where it is
activated att = 5.
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Figure 7. Estimation errors of unknown parameters in systems (25), (26) based on the proposed robust
adaptive control strategy (11) where it is activated at ¢t = 5 s, and the defined adaptation laws (12).
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Time(s)

Figure 8. The robust synchronization presses of systems (25), (26) with unknown variable time delays
based on the proposed adaptive control strategy where it is activated at t = 5. Solid linesare the
dynamics of the master system for 7; = 0.45, dashed-dotted lines are the dynamics of the master
system based on step-change 71 = 0.45to 71 = 0.5 at t = 38.45 s, and dotted lines are the dynamics of
the slave system based on step-change 1) = 0.1to 7 = 0.7 att = 38.45s.

8 T T T

’ 0 10 20 30 40 50 60 70 80 90 100
Time(s)
Figure 9. Controller signals based on the proposed robust adaptive control strategy (11) where it
is activated at t = 5. The solid line is the control signal based on the fixed unknown time delays
71 = 0.45, 17 = 0.1 and the dotted line isthe control signalbased on step-change of unknown variable
time delays 71 = 0.45to 7y = 0.5att =3845sand 7 = 0.1to7; = 0.7 at t = 38.45s.

5. Conclusions

In this paper, a novel adaptive control strategy for robust synchronization of two uncertain chaotic
systems with unknown time delays is presented. System uncertainties have been applied in the form
of external disturbances and bounded non-linear uncertainties in master and slave chaotic systems
with unknown time delays. In the proposed control mechanism, two controllers are utilized, and the
robust stability of the controllers is proved by Lyapunov theory in the form of theorems. Adaptation
rules for estimation of the uncertain parameters and unknown time delays in master and slave chaotic
systems have also been proposed, and the capability of these rules to estimate uncertain parameters
and unknown time delays has been proved using Lyapunov theory. Finally, to evaluate the proposed
adaptive control mechanism, two uncertain Jerk chaotic systems with unknown fixed and variable time
delays have been simulated. The simulation results reveal the proficiency of the proposed method in
robust synchronization of the aforementioned systems and desired estimation of uncertain parameters
and unknown fixed and variable time delays of the systems.
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