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ABSTRACT In this paper, a new hybrid model is developed to improve the accuracy in the prediction
of the longitudinal dispersion coefficient (Kx) and the derivation of novel optimized explicit equations for
natural streams. For this purpose, an artificial neural network (ANN) is hybridized with particle swarm
optimization (PSO) and cat swarm optimization (CSO) algorithms. The CSO and PSO are used to find the
optimum values of biases and weights in ANN structure and formulate the results as novel explicit predictive
equations than the classical black-box methods. The hydraulic parameters of the natural stream and some
geometric parameters were utilized for the model developments. Eight different input combinations are used
as the input vectors to ANN, ANN-PSO, and ANN-CSO models, whereas the dispersion coefficient (Kx) is
the target model output. The developed models are trained and tested by a comprehensive reference data sets
measured on streams in the United States, that were used previously by Tayfur and Singh (2005) in ANN
models. The main aims, novelty, and contributions of the present study are 1) improving the accuracy of
classical ANN-based Kx predictions by hybridizing with CSO and PSO. 2) Performing sensitive analysis
of ANN, ANN-CSO, and ANN-PSO based on input combinations 3) derivation of novel explicit optimized
ANN-CSO, ANN-PSO, equations for predicting Kx rather than the classical ANN black-box methods. The
results depicted that the highest accuracy and superiority were attained by the ANN-PSO model, with input
variables of B, H, U, U∗, followed by ANN-CSO and ANN. By using the optimized trained black box ANN
models, two novel explicit predictive equations are derived, and their results are compared with the empirical
equations. Comparative assessments confirmed significant improvements in the hybrid equations’ results
than the classical ANN and previously published equations. The developed novel equations can be used to
estimate the Kx in one-dimensional pollutant transfer models that are essential for the pollution studies in
environmental river engineering practices.

INDEX TERMS Longitudinal dispersion coefficient, PSO, CSO, ANN, natural rivers, explicit equation
derivation, streamflow, optimization.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

I. INTRODUCTION
The study of pollutant and contaminant transport in the
natural streams is important in several aspects such as quality
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management, pollution control of the chemical and biolog-
ical processes, hydro-ecological studies and environmental
impact assessments [1], [2]. Hazardous pollutants and efflu-
ents, when discharged to the streams, in the mixing pro-
cess, dispersed transversely, vertically, and longitudinally
by advective and dispersive processes. At a distance down-
ward from the source injection, the longitudinal dispersion
becomes the essential mechanism and quantified by the lon-
gitudinal dispersion coefficient (Kx) [3]. Kx is a crucial factor
in studying the environmental hydraulics of water quality
in rivers [4], [5]. In applied aspects of river engineering
such as pollutant transport, the dominant process is one-
dimensional [6], and the longitudinal dispersion acts as the
most crucial parameter in modeling the fate of contami-
nants chemicals, nutrients, sediments and river water quality
[1], [7]–[9]. The longitudinal dispersion process as the pri-
mary mechanism in applied river quality studies is simulated
by the conventional advection-dispersion equation [10]:

∂C
∂t
+ u

∂C
∂x
= Kx

∂2C
∂2x

(1)

where C is the average of mass concentration (mg/l) in
cross-section, t is the time (s) in unsteady modeling, u is
the longitudinal velocity (m/s), x is the longitudinal coor-
dinate (m), and Kx is the longitudinal dispersion coefficient
(m2/s) [11]–[13]. It is possible to obtain Kx by solving the
advection-diffusion equation [9]. Therefore, the development
of the empirical-based formulas for the Kxin terms of the
basic features of the rivers has been considered [14], [15].
For complex case studies such as the natural rivers with
large transverse velocity shear, the dispersion coefficient esti-
mation is time-consuming with a high level of uncertain-
ties [10], [16]. According to the previous studies, the flow
depth (H), section width (B), mean flow velocity (U), bed
shear velocity (U∗), river shape parameter (b), channel sin-
uosity (s) in river sections and the combinations of them
(e.g., the flow discharge, Q) are the most influential param-
eters for determination of the Kx [17]–[21]. Based on these
hydraulic and hydrodynamic parameters, several researches
were carried out to develop a formula for estimation of the
Kx based on the following representation [5]:

Kx = f (H ,B,U , u∗, b, σ,Q) (2)

For this purpose, several methods including empirical/
mathematical based equations [22]–[25], statistical and
regression-based equations [14], [17], [26], [27] and in recent
years different models of soft computing such as adap-
tive neuro fuzzy inference system (ANFIS), support vector
machine (SVM), Gene expression programming (GEP) and
ANN [3], [6], [9], [11], [12], [28]–[31] were used to predict
and develop a formula that can be used in the estimation of Kx
in natural rivers. Most of the recent studies discussed that new
flexible structure-based models such as ANN outperformed
the older rigid structure but simple models [11]–[13], [15].
Although artificial intelligence-based models showed superi-
orities in Kx estimation, yet, the main challenging problem

that limited their applicability is their black-box nature. Soft
computing techniques work as a black-box model in which
the process of a phenomenon is not considered in mod-
eling, and the governing relationship is just based on the
input-output data without providing explicit estimation equa-
tion [32], [33]. The ANN is the most widely used method in
water resourcesmodeling [4], [20], [34]–[36].Multilayer per-
ceptron (MLP) with a feed-forward back-propagation algo-
rithm is one of the most popular types of ANN, which was
used for forecasting hydrological variables such as drought,
streamflow, evaporation, etc. [37]–[42]. The capability of
ANN-based models in fast learning and using noisy data
made them accessible during the past decades [43]. However,
the same as other methods it has some shortcomings. Among
all, as the procedure of training is based on finding the
optimum solution as the best fit, it may trap in local instead
of the global optimum. Another drawback in ANN models is
operating at much slower speeds compared to the acceptable
level and slow training algorithms such as gradient meth-
ods [20], [43]. The meta-heuristic optimization algorithms
showed considerable achievements in previous studies and
the literature reported great enhancement in model perfor-
mances. Moreover, their hybridization with the ANN aimed
to overcome the problem of local optimum and avoid local
minima that convergence rates of heuristic methods to the
global minimum can be faster than back propagation.

To remedy these problems, several optimization algorithms
have been developed during the past decades. In recent years,
nature-inspired optimization algorithms are proposed to find
the global optimum in optimization problems. For estima-
tion of the Kx, different optimization algorithms, including
genetic algorithm (GA) [20], [28], [44]–[46], PSO [6], Differ-
ential Evolution (DE) [30], [44], and Genetic Programming
(GP) [9], [31], [48], [11] were used. All of these studies come
in with major drawbacks. The main drawback is their inap-
plicability for explicit future estimation of the Kx, without
providing explicit equation based on the results. Nearly all
of these studies are based on a black-box framework and
based on the knowledge of the authors, there is no explicit
optimized ANN-based equation for Kx estimation. On the
other hand, in natural streams, the need and emphasis is on
explicit estimation for the Kx, not on the black box models.
Thus, further attempts are still vital to hybridize ANNmodels
with more robust recent optimization techniques in order to
result in an accurate, explicit equation for the estimation of
longitudinal dispersion coefficient, especially for future use
in one-dimensional water quality studies.

There is a need to develop objective procedures for the
explicit derivation of new predictive equations based on opti-
mized black-box models of ANN for longitudinal pollutant
dispersion coefficient using multiple variables that affect
the Kx values. This will be accomplished by the establish-
ment of a hybridizing scheme that requests evidence from
multiple sources of hydraulic, geometry, and sheer force
and will, therefore, empower better estimation of the Kx
based on the inherent knowledge. This study directed to
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FIGURE 1. The ANN model structure for the prediction of Kx.

deal with the complex dependent interactions between var-
ious dispersion related parameters and generation of explicit
prediction equations. To achieve this aim, CSO and PSO
are used to train the ANN and derivation and amplify-
ing of dependence structure of the Kx in equation-based
forms. This will extend our knowledge into the applica-
bility and white box status of ANN-based results than
the black box results and improve our ability to illustrate
them.

In this paper, motivated by the satisfactory performance
of PSO and CSO algorithms, and to overcome the previ-
ously mentioned shortcomings, the ANN hybridized with
CSO and PSO algorithms. Another main contribution of the
present study is that for the first time, an explicit optimized-
based equation for accurate determination of the longitudi-
nal dispersion coefficient was developed. In this study, the
authors proposed a new methodological framework for the
derivation of explicit equations for the longitudinal pollu-
tant dispersion coefficient using black-box models of hybrid
ANN that empowers us to compute an intelligence-based Kx.
Also, the traditional ANN was used for modeling, and the
improvements in the results are compared with the hybrid
models and previous results of ANN in Tayfur and Singh
(2005) study and previous empirical equations. The database
used in this research is a worldwide-accepted real dataset
in studies of Kx over natural rivers provided in Tayfur and
Singh (2005). Training and testing of models are accom-
plished using this dataset, and the obtained results of differ-
ent models with various input parameters are evaluated by
virtue of several graphical and statistical indices. In the final
step of the current study, two explicit predictive equations
are provided, and a comparison is drawn between devel-
oped equations with some well-known empirical equation
of Kx.

The major contributions and novelty of the developed
framework in this study are summarized as follows:

• In the current study, a novel hybrid algorithm for train-
ing ANN entitled ANN-CSO, is developed and its
performance is evaluated with ANN-PSO and stand-
alone ANN.

• The developed hybrid models of ANN-PSO, ANN-CSO
are used to provide two explicit predictive equations for
Kx via an optimal solution.

• Development of a new methodological framework for
equation derivation based on ANN optimized models
that empower us to use the results of ANN-based models
in other studies.

The remainder of the paper is organized as follows. At first,
an overview of the ANN, PSO, CSO are presented. After that,
an explanation of the collected data and train-test subsets are
provided and previously published equations for Kx estima-
tion are presented. Then modeling hybridization framework
also included with evaluation criteria, and finally, the appli-
cation results, discussion, and conclusions of the study with
recommendations for future are provided.

II. MATERIAL AND METHODS
A. ARTIFICIAL NEURAL NETWORKS
Artificial neural network (ANN) widely used in water
resources researches during the past decades. The multi-
layer perceptron (MLP) has three or more layers, includ-
ing input, one or more hidden, and one output layers. The
output is generated from the summation of the weights
from the preceding layer in a node, adding bias and deriv-
ing the output through a transfer function [40]. ANN as a
black-box model, with a non-linear relationship between the
input and output parameters as displayed in Figure 1 was
utilized for the Kx predictions. Figure 1 displays an MLP
network with four input variables of (B, H, U, U∗), one hid-
den layer with arbitrary neurons, and one output parameter,
Kx. The input-output formulation of neurons in the hidden
layer is calculated by the action of the nonlinear transfer
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function as [34]:

f (Ynet) = f

(
N∑
l=1

wl,iXi,j + αl

)
(3)

In which, Xi,j is the input vector, ynet is the output of the
network, wi,j is the connection weights from the input node to
hidden nodes, ai are the bias values of nodes, and N is equal to
the number of input parameters. f() is the nonlinear activation
function which in this study is the ‘tansig’ function:

yj =
2(

1+ exe(−2xj)
) − 1 (4)

In which, Xj is the input, and Yj is the output of the activation
function. The wi,j, and bi are the unknown constants that
should be determined by the training scheme and in the
current study are decision variables in the optimization space.
The output of the model is Kx and calculated as:

Kx = f0

∑
j

wml f

(∑
i

wl,iXl + bi

)
+ bm

 (5)

Here, wm,l is the connection weights of the hidden node to
the output node, and bm is the bias for output node. There-
fore, we have used one hidden layer ANN hybridized with
PSO, CSO learning schemes, and the best explicit equation is
derived finally. For this purpose, the weights and biases are
used as the decision parameters tominimize themean squared
error (MSE) as the goal function:

MSE =
1
N

N∑
i=1

(
Kxo − Kxp

)2 (6)

where Kxo and Kxp are observed and predicted values of the
Kx and N is the number of training sets.

B. CAT SWARM OPTIMIZATION ALGORITHM
One of the nature-inspired meta-heuristic optimization algo-
rithms is Cat Swarm Optimization (CSO), which was pro-
posed in 2007 by. Guo et al. [50] and improved in 2015 by
Bozorg-Haddad [51]. The CSO is inspired by the cats’ behav-
ior. For this purpose, two modes, including seeking mode
and tracing mode are proposed. Seeking and tracing modes
are related to resting the cats and chasing the prey, respec-
tively. The mixture of these two modes will result in a global
solution. Based on Chu and Tsai (2007) and Bozorg-Haddad,
(2017), the hybridized framework is provided in Figure 2,
in which five steps are considered for CSO algorithm as
follows:
(1) Initialization: in this step, cats are generated and dis-

tributed randomly into M-dimensional solution space
(Xi,d ), and a random velocity assigns to each cat (vi,d ).

(2) Based on the mixture ratio (MR), the population of the
cats divides into two subgroups (seeking and tracing
modes).

(3) Evaluation: evaluate the fitness function of each cat.
If the current position of the cat leads to a better fitness

function, then save the position of the cat as the best
solution (Xbest ).

(4) Movement: moving the cats based on the seeking and
tracing modes according to the decision made up in
step 1 [52].

(5) If the stopping criteria are satisfied, the algorithm will be
terminated. Otherwise, steps 2 to 5 will be repeated.

C. PARTICLE SWARM OPTIMIZATION ALGORITHM
PSO is a meta-heuristic method, which was inspired by the
swarming habits of animals such as birds or fish. It combines
two methodologies: artificial life and evolutionary compu-
tation [53]. Based on this algorithm, a group of particles
is distributed in the N-dimensional space that N shows the
number of variables, which must be optimized [54]. Each
particle in the search space maintains the position, velocity,
and individual best position.

Suppose an N-dimensional search space. The PSO algo-
rithm starts with a position of i-th particles of the swarms
Pi = (pi1, . . . piN ) and the velocity Vi = (vi1, . . . viN )
which moves them to a new location Xi = (xi1, . . . xiN ) [55].
In each iteration, the particles are updated by the two best
values, the personal best position (Pbest) and the best value
among all personal bests (Gbest). Each particle’s velocity is
updated based on the following equation:

vi (t + 1)

= ωvi (t)+ c1r1
[
x̂i(t)− xi(t)

]
+ c2r2 [g(t)− xi(t)] (7)

where ω is the inertial coefficient, c1 and c2 are the acceler-
ation coefficients in the range of [0,2], r1 and r2 are random
values (0 < r1, r2 < 1) which regenerated in every update
with uniform distribution, vi (t) and xi (t) are the particle’s
velocity and position at time t, respectively and x̂i (t) is the
particle’s individual best solution at time t. Also, the location
of particle i can be calculated according to the following
equation:

xi (t + 1) = xi (t)+ vi (t + 1) (8)

This algorithm is repeated until the stopping criteria satisfy.
The flowchart of the PSO algorithm and its calculation pro-
cedure hybridized with the ANN in the Kx estimation is
presented in Figure 3.

D. HYBRIDIZATION FRAMEWORK AND
EVALUATION CRITERIA
As stated, we hybridized the PSO andCSO algorithms to train
the ANN model and find the unknown values of weights and
biases in equations 3, 4, and 5 by minimizing the objective
function in equation 6. The model development framework
and the flowchart of the study presented in Figures 2 and 3.
As these figures show at first, we used train sets to find the
best values of weights and biases in ANNby theminimization
of the objective function by using the PSO and CSO algo-
rithms. In iterative ANN-PSO and ANN-CSO algorithms,
the optimized values of ANN weights and biases are derived
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FIGURE 2. Flowchart of ANN-CSO model for estimating Kx.

and associated with the final network of models compared
to the classical ANN structure to simulate the test data set.
Moreover, the optimized weights and biases are implemented

in the model structure to derive optimal explicit equations for
the Kx. In order to evaluate the improvements of developed
hybrid, the same train and test sets and the corresponding
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FIGURE 3. Flowchart of ANN-PSO model for estimating Kx.

input parameter combinationwith the study in 2005 by Tayfur
and Singh [3] are used. The primary input vector includes
B, H, U, and U∗ parameters. Additional seven combinations

of inputs used as a sensitivity analysis in the model eval-
uations and are presented in Table 1. Overall, 36 differ-
ent models (three training schemes: PSO, CSO, classical
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TABLE 1. Different input combinations used for hybrid ANN models.

back-propagation with eight input combinations; eight mod-
els of Tayfur and Singh [3]; four empirical equations) are
used. The results are compared with the results of eight mod-
els in Tayfur and Singh [3] and four empirical equations of the
Kx as provided in Table 1. Researchers have developed sev-
eral empirical equations for prediction of Kx based on clas-
sical regression methods that are presented in Table 1. these
equations calculates the Kx values using parameters based on
the average conditions of river flow including average depth,
average velocity, shear velocity and width of river. In the
current study the presented empirical equations in Table 1 are
compared with the results of explicit optimized equations
based on ANN-CSO, ANN-PSO. The results of all 36 mod-
els are evaluated by the use of the RMSE, mean absolute
error (MAE), Nash-Sutcliffe Efficiency (NSE), coefficient
of determination (R2), index of agreement (d), persistence
index (PI), confidence index (CI), and relative absolute error
(RAE).The formulation and detailed description of these
statistical indices are presented elsewhere [37], [56]–[60].
Furthermore, scatter plots, trend comparisons, box plot of
errors, Taylor diagrams and error frequency distributions
were used for graphical verification of model results. The
accuracy of predictive models in training and testing steps
is evaluated. The preference is to the R2, NSE followed by
RMSE and RAE for validation of the models results over
unseen data in the testing stage.

K
HU∗

=
0.15
8εt

(
U
U∗

)2 ( B
H

)1.67

Deng et al. (2001) [25]

εt = 0.145+

( U
U∗
) ( B

H

)1.38
3520

(9)

Fischer (1975) [6]

K
HU∗

= .011
(
U
U∗

)2 ( B
H

)2

(10)

Seo and Cheong (1998)[17]

K
HU∗

= 5.92
(
U
U∗

)1.43 ( B
H

).62
(11)

K
HU∗

= 10.612
(
U
U∗

)2

For

B
H
> 50

Kashefipour and Falconer (2002) [14]

K
HU∗

=

[
7.428+ 1.775

(
B
H

).62 ( U
U∗

).572]

×

(
U
U∗

)2

For

B
H
< 50 (12)

E. FIELD DATABASE OF KX
As stated previously, geometric and hydrodynamic parame-
ters, including H, U∗, U, and B affect the longitudinal dis-
persion. In this study, the data provided in 2005 by Tayfur
and Singh [3] are used to predict the longitudinal dispersion
coefficient due to their general acceptability in different stud-
ies over the Kx predictions. These field data have measured
Kx on different rivers over 29 rivers in the United States.The
database obtained from Tayfur and Singh [3], and the train
and test sets are the same as used by them. The plots of
distribution and variations of Kx in the train and test steps
versus the other input parameters are shown in Figure 4. The
statistical characteristics of the data in the train, test and all
of the data are presented in Table 2. It is apparent that all
parameters have nearly equal distribution over train and test
subsets and this database covers an extensive range of Kx
ranged from 1.9 to 892m2/s in all, and 1.9 to 837 m2/s in
the train set and 2.9 to 892 m2/s in the test set. Furthermore,
the standard deviation of the Kx values of the training subset
is higher than the test subset and it indicates that using this
dataset, the developed models will provide reliable predic-
tions for unseen data and this will eliminate the overfitting of
models in the training sets.

III. RESULTS AND DISCUSSIONS
A. ALGORITHMS COMPARISONS: ANN-PSO,
ANN-CSO AND ANN
To evaluate the efficiency of developed algorithms, we com-
pare the CSO, PSO algorithm results with the standalone
ANN training algorithm and the best model results are com-
pared with the results of Tayfur and Singh [3]. As presented
in Table 1, we used the main model with input vector of B,
H, U, U∗ and in this section, the comparison of algorithms
is based on this structure. The results of ANN, ANN-PSO,
ANN-CSO and the ANN of Tayfur and Singh [3] in the base
model are listed in Table 3 in the training stage. It can be
detected that the developed ANN-PSO model in the training
stage has the highest R2, NSE and PI values equal to 0.96,
0.96 and 0.94, respectively with the lowest values of RMSE,
MAE and RAE equal to 29.12, 21.74 and 0.24, respectively.
These statistical indices confirm the superiority of the PSO
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FIGURE 4. The plot of the distribution of field Kx data in the train and test sets according to the different input parameters.

algorithm in the training stage in terms of agreement, per-
sistence, confidence and accuracy. Hence, in the training
stage of the basic model, it ranks the first among all other
training methods. In addition, results in ANN, ANN-CSO
and ANN-Tayfur and Singh [3] are so close to each other.
It confirms that hybridizing with PSO would be satisfying for
improving the accuracy of the data-driven model.

To have a clear sight of performances of the developed
models, in Fig. 5a the predicted versus observed values of Kx
in the training stage are plotted. It is clear that the ANN-PSO
model acts significantly better than the previous standalone
ANNmodels, and the ANN-CSO also has better performance
than the standalone ANN models, especially over peak val-
ues of the Kx. These results support the idea of applying
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TABLE 2. Statistical criteria for the train, test and over all of the datasets.

optimization algorithms for the longitudinal dispersion equa-
tion finding. It is apparent that the results predicted by the
ANN-PSO model are superior to the others. The scatter plot
of the training stage is also presented in Fig. 5b that reveals the

superiority of ANN-PSO to the other methods. As described
in the previous sections, the main strategy for improving the
accuracy of the ANN models is using the benefits of hybrid
training methods. Among the different strategies that are
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TABLE 3. Comparison of models results in the train and test stages.

used, the standalone ANN method shows the weakest results
(Fig. 5) and indicates that hybrid models play an effective
role.

A three-aspect comparison based on correlation coeffi-
cient, standard deviation and centered root mean square dif-
ference (RMSD) for each of the models when compared
with each of the observed the Kx data sets (shows with the
actual label in the horizontal axis), is shown in Figure 6a as
Taylor diagram. Taylor diagram is a single diagram that sum-
marizes multiple indices of assessment results, the RMSE,
correlation coefficient, and standard deviation. In Taylor dia-
grams, the performance of models is highlighted by com-
paring the observed and estimated values by visualizing a
series of points on a polar diagram. The reference point is
the observed values located by standard deviation that here is
150 and 205 m2/s in the train and test sets, respectively. The
azimuth angle of the plot displays the correlation coefficient
of observed and estimated Kx values, and the radial distance
from the reference point shows the ratio of normalized stan-
dard deviation of the simulation from the measured values.
Each point in this plot displays the accuracy of each model,
and models with more accurate estimations are closer to the
reference point. The values of the RMSD are shown using
the observed Kx data set as a reference of actual values.
The lowest value for RMSD in the training set is 30 for the
ANN-PSO with the highest value of correlation coefficient,
0.98 in Figure 6a. In addition, the empirical cumulative prob-
ability of absolute error of models in the training stage is
presented in Figure 6b. Based on the results in Figure 6b,
for absolute error of 5 m2/s, the highest probability is 0.9 in
ANN-PSOmodel and shows that with the probability of 90%,
the absolute error of ANN-PSO is lower than 50 m2/s, while
for ANN-CSO, it is equal to 140, in Tayfur and Singh is equal
to 115 and in ANN is equal to 150 m2/s. As this figure shows,

theANN-PSO estimated theKx valueswith smaller error, and
the probability of the estimated Kx via the ANN-PSO with
a given absolute error in the train stage is higher than the
other models. These results show the accurate performance
of ANN-PSO in the training stage and the other models,
including ANN, and ANN-CSO have similar accuracy in
the training stage. However, the efficiency of models in the
testing stage as an application of the intelligence model is
crucial and in the next section is discussed.

B. ANALYSIS OF THE RESULTS
The results of developed models in the test stage of the
main model with four inputs of B, H, U, U∗ are presented
in Table 3. According to the presented results in this table,
the hybridized models of ANN-PSO and ANN-CSO have
the best performances than the ANN and previous ANN by
Tayfur and Singh [3]. This table shows that the CSO and
PSO training algorithms provide more reliable and accurate
predictions for Kx than the standalone models. For exam-
ple, the R2 values of ANN-PSO and ANN-CSO models
are 0.94 and 0.81, respectively, while the R2 of the ANN
model is less than 0.7. The higher values of R2 in the hybrid
models in the testing stage demonstrates a relatively high
correlation between the observed and estimated values of
Kx. Table 3 also confirms that the hybridizing schemes of
training improve the performance of the standalone ANN
model in the test stage about 34% and 18 % in terms of R2 for
PSO and CSO, respectively. The hybridization of the ANN
model also reduces the RMSE by 55% for PSO and 26%
for CSO. In Figure 7, the observed and predicted values of
Kx in different models at the test stage are presented. The
ANN-PSOmodel provides estimations closer to the observed
values for both large and small values and its predictions in
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FIGURE 5. Comparison of models results in the training stage, a) observed versus predictions b) scatter plot of models.

peak values are useful. Moreover, the ANN-CSO model has
better predictions in the test step than the stand-alone ANN
models.

In Figure 8, the Taylor diagram and cumulative probability
of prediction errors in the test step are presented. As Taylor
diagram in Figure 8a shows, the best model and closer to
the reference point is ANN-PSO with standard deviation
of 235 m2/s close to the 200 m2/s in observed values. This
parameter in ANN-CSO is 275 m2/s, in ANN is 325 m2/s and

in ANN-Tayfur and Singh (2005) is 300 m2/s. The RMSD
values in the train step of ANN-PSO is the lowest and equal
to 60, in ANN-CSO is 120, in Tayfur and Singh (2005) is
170 and in ANN is 190 which confirms the superiority and
great improvements in the ANN-PSO and ANN-CSOmodels
than the others. Also, Figure 8b shows that with probability
of 90%, the absolute error in ANN-PSO and ANN-CSO are
nearly less than 100 m2/s, while these values for ANN and
Tayfur and Singh (2005) are 300 and 350 m2/s, respectively.
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FIGURE 6. a) Taylor diagrams the correlation, RMSD, standard deviation of models versus actual
values in train stage, b) probability of absolute errors.

Again, these values confirm the higher reduction of error
predictions in test stage of ANN-PSO andANN-CSO in com-
parison versus standalone ANNmodels. The result of models
in the test stage in Figures 7 and 8 and Table 4 show that using
PSO and CSO algorithms to train ANN strongly improves
the model accuracy, persistence, reliability and performance.
In the test stage, both PSO and CSO optimization algorithms
are superior to the classical algorithms in the training ANN.
These findings indicate that the proposed hybrid models are
able to provide an accurate estimation of Kx values with
a great performance over various ranges of Kx values in
the current study. The results in Figure 8 evidently con-
firm the improvements in Kx predictions by ANN-CSO and
ANN-PSO versus the previous models of ANN. It is proven

that the developed hybrid models can be used effectively to
predict the Kx coefficient in natural river flows. Higher values
of R2, NSE and d are associated with small values of RMSE,
MAE and RAE in the testing stage of the hybrid models.

C. SENSITIVITY ANALYSIS TO THE INPUT FEATURES
In order to investigate the effects of different input com-
binations and evaluate the sensitivity of the hybrid model
results with input parameters, the sensitivity analysis of the
developed ANN-based models were carried out by estimating
the observed Kx values in seven cases (Table 1). These seven
M1 toM7models are trained and tested using the same data as
those used by Tayfur and Singh (2005) and the results of them
are presented here in the testing stages. These seven cases
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FIGURE 7. Comparison of models results in the testing stage, a) observed versus predictions b) scatter plot of models.

are based on the physically meaning of hydraulic flow and
pollutant dispersion as suggested by Tayfur and Singh (2005).
In the M1 model, the input parameters are only U, H, B as
the main hydraulic effective parameters. As the results of
models in Table 4 show, in M1 model, the best results are
derived by the ANN-PSO and ANN-CSO models with R2

values of 0.91 and 0.93 and RMSE values of 83.42 and 81.42,
respectively that confirm 32% and 35% improvements in R2

and 57% and 58% reduction in RMSE values, respectively
than the classical ANN model. In theM2 model, the input
parameter is only flow discharge (Q), indeed it is a prod-
uct of three parameters of U, H, B in case M1. In the M2
model, the best results are those predicted by ANN-PSO and
ANN-CSO with 32% and 8% improvements in R2 values

and 75% and 15% reductions in RMSE values, respectively
compared to the classical ANN model.

InM3, the input vector is onlyU. The velocity and its gradi-
ents are crucial in the magnitude and strength of longitudinal
dispersion in river flows [5]. As the results in this case show,
the accuracy of models reduced, and the R2 values are near
0.4, which show that the geometry parameters are also needed
for a suitable prediction. The M4 uses the velocity U and
the shape parameter (b) as input variables to predict Kx. The
results of the M4models show that using the shape parameter
improves the model accuracy and in this case the R2 values
increased from 0.4 in the M3 model to 0.7 in M4 model.
Also, PSO and CSO basedmodels were superior to the others.
In the M5, the input parameters are velocity U along with the
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FIGURE 8. a) Taylor diagrams the correlation, RMSD, standard deviation of models versus
actual values in test stage, b) probability of absolute errors.

shape factor b and the sinuosity s. This input combination
resulted in the reduction of RMSE from 119.17 to 99.35 for
the ANN-PSO model as the most accurate model in this
class. As M4 and M5 show, the addition of shape factor and
sinuosity to the input vectors increased the accuracy of model
than the M3 model with U input. However, in comparison
with the case M2, using U and B is more effective than using
b and s. In the M6 model, the only input parameter is the
relative shear velocity (U/U∗) that is usually used in empirical
equations of Kx, such as equation 9-12. In the M6 model, the
R2 values are in the range of 0.52-0.61 and relatively smaller
than the values in M1, M2, M4 and M5 models. Finally,
the caseM7 uses U/U∗with b and s as input values and shows
somewhat improvements compared to the M6 model but less
accuracy than the M1, M2, M4 and M5 cases. A comparison

of different input combinations shows that appropriate selec-
tion of the input parameters for prediction of Kx plays a
crucial role in model accuracy.

Figure 9 demonstrates the results of the different models
in the sensitivity analysis of input parameters in terms of
the Taylor diagram. As it can be inferred, the hybridizing
of the ANN with the PSO and CSO algorithms significantly
outperforms the classical ANN results. Overall compari-
son of the sensitivity analysis in Figure 9 reveals that the
ANN-PSO2 model that uses Q as input, ANN-CSO1 and
ANN-PSO1 models that use U, H, B as input are more
accurate and superior than the others. The reason for differ-
ences of the model performances in Figure 9 is related to the
training method and input vectors of each model that could
be disclosed with a look to Table 1. Therefore, it is concluded
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TABLE 4. The results of different models in the sensitivity analysis.
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TABLE 5. Comparison of statistical indicators in hybrid versus empirical equations.

FIGURE 9. Taylor diagram for the results of all different models of
sensitivity analysis in test stage.

that applying hybrid ANN-based models will be suitable if an
appropriate set of inputs is used.

D. OPTIMIZED EQUATIONS
As mentioned, another aim of the current study is to derive
predictive equations for Kx based on optimized ANNmodels.
The black-box form of the traditional ANN models is very
complicated and maybe less applicable in future studies for
estimation of Kx. Therefore, here we have used the opti-
mized values of weights in ANN-based structures to find an
explicit equation. The equation-based form of ANN is one
of the advantages of the developed hybrid models in this
study, which is commonly used in pollutant transport models.
As stated in previous sections, the best models in the test stage
were ANN-PSO and ANN-CSO models that use four input

parameters of B, H, U and U∗. Here the optimized equation
of each hybrid model is presented as an explicit equation. The
ANN-PSO based equation is derived as:

A1 = 1+ e−0.02B+0.39H+3.52U+11.37u∗−3.72

B1 = 1+ e0.02B−0.48H+0.69U+11.37u∗+2.37

C1 = 1+ e0.02B+0.87H−3.52U−2.04u∗−4.48

D1 = 1+ e0.03B+1.60H+3.52U−4.49u∗−11.6

Kx =
−124.74

A1
+

374.99
B1

−
517.15
C1

−
636.76
D1

+ 227.59

(13)

It should be noted that the results of this equation are equal
to the results of the developed ANN-PSO model that is pre-
sented in Figures 5 to 8 and Tables 3 and 4.In the same way,
the explicit optimized equation for Kx based on the results
of ANN-CSO model is derived as follows and is equal to the
black-box structure of the ANN-CSO model:

A1 = 1+ e0.04B−0.62H−2.71U+23.26u∗−9.21

B1 = 1+ e−0.023B+1.31H+0.54U+10.18u∗+1.91

C1 = 1+ e0.021B+0.11H+2.04U−3.60u∗−7.25

D1 = 1+ e0.01B+1.07H+2.14U+0.335u∗−7.20

E1 = 1+ e−0.01B−0.24H+7.94U+1.49u∗+2.33

Kx =
471.22
A1

+
315.96
B1

−
306.77
C1

−
818.23
D1

−
583.71
E1

+ 688.54 (14)

It should be noted that the developed explicit equations for
Kx, based on the hybrid ANN models presented above are
valid only for the ranges of data that are given in Table 2.
The accuracy and performance of two newly developed equa-
tions are verified against the empirical equations from previ-
ous studies. In Table 5, the results of equations 13 and 14
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are compared with the results of equations 9-12. As the
results in this table shows, the best accurate equation is
equation 13 and, after that, the ANN-CSO equation. The
statistical indices show that the superiority of developed equa-
tions (13, 14) is confirmed and the previous equations have
low accuracy in this regard and one can easily conclude that
these equations (9-12) do not give acceptable estimations
of Kx. The optimized equations outperformed in terms of
accuracy (R2, RMSE, NSE), persistence index (PI), confi-
dence index (CI), remarkably. Consequently, the ANN-PSO,
ANN-CSO equations derived in the current study have
noticeable improvements in terms of accuracy and correlation
than the previous ones.

The previous studies on the longitudinal dispersion
declared that black-box methods such as ANFIS, GEP, SVM
and ANN models are more accurate and superior than the
empirical equations [11]–[13], [20]. The black-box methods
because of their capability in inferring the nonlinear prob-
lems, outperforms than the regression-based models and the
results of the current study show that by employing meta-
heuristic optimization algorithms in ANN training, the equa-
tions accuracy improved significantly and expected to have
higher accuracy than the previous studies.

IV. SUMMARY AND CONCLUSION
In the current study, two new prediction equations for one-
dimensional longitudinal dispersion coefficient were devel-
oped using hybrid models of ANN-CSO and ANN-PSO. The
performances of these models in different combinations of
input variables are evaluated in standalone form of ANN and
in combination with the meta-heuristic optimization algo-
rithms. The developed models are trained and tested using
the data sets measured on 29 streams in the United States,
that were previously used by Tayfur and Singh (2005) for
the ANN model. Results revealed that the performances of
newly developed hybrid models are highly satisfying and
persistence and they were superior to the classical ANN
and empirical equations in the previous studies. The result
obtained by the hybrid ANN models of PSO and CSO were
close to each other, support the idea of utilizing the meta-
heuristic optimizations in training ANN. The sensitivity anal-
ysis over input parameters used to determine the effects of
hydraulic and geometric parameters in the estimation of Kx.
The results of sensitivity analysis showed that in all of the
input combinations, the ANN-PSO and ANN-CSO models
were superior to the stand-alone ANN models and improve
the performance of the models significantly. As a new con-
tribution and an application of the current study, two explicit
equations are derived for prediction of Kx in terms of B, H, U
and U∗ parameters as input variables. The new equations are
compared with the previous empirical equations and found to
be more accurate and persistent than the previous equations
and in good agreement with observed field values of Kx.

The developed equations are robust techniques and tools
than the classical studies over the black-box ANN-based
models. These new equations can be used to estimate the Kx

in one-dimensional pollutant transfer models that is essential
for the pollution studies in environmental river engineering
practice. As the results of the developed explicit equations
based on ANN-PSO, ANN-CSO models were superior to the
others, it is recommended to apply this technique in other
problems to derive explicit predictive equations.
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