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Abstract

Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in
some forests, grasslands and tundras they can make up most of the ground layer biomass. As
such, lichens dominate approximately 8% of the Earth’s land surface. Despite their potential
importance in driving ecosystem biogeochemistry, the roles of lichens as drivers of community
processes and ecosystem functioning have attracted comparatively little attention. Here, we
review the role of lichens in terrestrial ecosystems and draw attention to the important, but often
overlooked role of lichens as ecological drivers. We start by assessing characteristics that vary
among lichens and that may be important in determining their ecological role; these include their
growth form, the types of photobionts that they contain, their key functional traits, their water
holding capacity, their colour, and the levels of secondary compounds in their thalli. We then
assess how these differences among lichens influences their impacts on ecosystem and
community processes. As such, we consider the consequences of these differences for
determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass
and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates
in moderating decomposition. We then consider how differences among lichens impacts on their
interactions with consumer organisms that utilize lichen thalli, and that range in size from
microfauna (for which the primary role of lichens is habitat provision) to large mammals (for
which lichens are primarily a food source). We then address how differences among lichens
impact on plants, through for example increasing nutrient inputs and availability during primary
succession, and serving as a filter for plant seedling establishment. Finally we identify areas in
need of further work for better understanding the role of lichens in terrestrial ecosystems. These
include understanding how the high intraspecific trait variation that characterizes many lichens

impacts on community assembly processes and ecosystem functioning, how multiple species
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I. Introduction

Lichens are symbiotic associations between a heterotrophic mycobiont (i.e., fungus) and one or
more autotrophic photobionts (green algae and/or cyanobacteria). Lichens are generally slow-
growing, long-lived and stress-tolerant, but they show a wide diversity of growth forms (Fig. 1).
As such, some are prostrate and have leaf-like structures, while others have complex three-
dimensional structures that resemble minute forests. Lichens occur in most terrestrial ecosystems;
often they occur as minor contributors, but in some forest, grassland and tundra ecosystems they
make up a large proportion of the ground layer biomass. Further, they frequently dominate in
habitats that are too nutrient-poor, too dry, or too cold to support a complete or permanent cover

of plants. As such, lichens dominate approximately 8% of the Earth’s land surface (Ahmadjian,
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1995), and most of the land surface in xeric high latitude and high elevation ecosystems. More
than 18,000 species of lichens exist world-wide and at higher latitudes the number of lichen
species exceeds the number of vascular plant species (Nash, 2008). As such, Norway host 1.5
times more lichen than vascular plant species and there are 190 times more lichen than vascular
plant species in Antarctica.

Most literature about how autotrophs affect ecosystem processes has focused on vascular
plants, and over the past 25 years an enormous literature has emerged on how plant species
differences drive ecosystems (Hobbie, 1992; Grime, 2001; Wardle, 2002). As such, it is well
recognized that vascular plant species identity influences biogeochemical processes through
determining the quantity and quality of litter that enters the soil, and inputs of nitrogen (N)
through biological N, fixation. In contrast, despite their importance in many ecosystems
worldwide, the roles of lichens as drivers of community processes and ecosystem functioning
have attracted less attention and are often overlooked. This is despite their potential importance in
driving ecosystem biogeochemistry. As such, most lichen species capture nutrients from the air
and roughly 10% of them fix atmospheric N, through their association with cyanobacteria. These
nutrients trapped by lichens reach other ecosystem components through leaching, decomposition
and consumption by animals. Further, lichens also provide habitats for various invertebrates that
may or may not use them as a food source.

Many studies on vascular plants have shown that the effect of species on ecosystem
processes depends on their functional traits (Cornelissen ef al., 1999; Diaz et al., 2004;
Kurokawa, Peltzer, & Wardle, 2010), and that variation in functional traits may have a more
important direct role than macroclimate in driving ecosystem processes (Cornwell et al., 2008).
This has led to calls for a shift from species-centred to traits-centred approaches in understanding

community and ecosystem processes (McGill et al., 2006; Violle & Jiang, 2009). However, the
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importance of functional traits for driving ecological processes in other ecologically important
autotrophs such as lichens has seldom been acknowledged (e.g. Lang et al., 2009; Asplund &
Wardle, 2013). Despite this, lichens have a distinct suite of functional traits that are analogous to
the types of functional traits frequently studied for vascular plants (Cornelissen et al., 2007), and
that potentially provide a mechanistic framework for understanding their contribution to
community and ecosystem processes.

In this paper we will review the role of lichens in terrestrial communities and ecosystems.
We will start by discussing the functional characteristics of lichens, with particular focus on their
traits and functional groupings because of their potential importance in driving lichen species
effects on community and ecosystem processes. We will then explore the role that variation
among lichens has in determining ecosystem carbon (C) and nutrient fluxes, for instance by
affecting the decomposition and nutrient loss from their residues. Following that, we will discuss
how differences among lichens affect their interactions with animals and plants, and the
ecological consequences of these effects. By addressing these topics in combination we will draw
attention to the important but often overlooked role of lichens as community and ecosystem
drivers, and will identify areas which are in need of further work for better understanding the role

of lichens in terrestrial ecosystems.

I1. Characterizing the diversity of lichen growth forms and functional

characteristics

How lichens drive communities and ecosystems are regulated by a number of ways in which

lichens differ. These include their growth form, associations with symbionts, functional traits,

Asplund, J. & Wardle, D.A. (2017) How lichens impact on terrestrial community and ecosystem properties.
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capacity for water retention, colour and secondary chemistry (Fig. 2). We now explore each of
these characteristics in turn.

Lichenized fungi form vegetative structures that are much more complex than those of
other fungi. There is a great variability in the physical structure of lichens and they are
traditionally divided into three main morphological groups: crustose, foliose and fruticose.
However, there is a high level of morphological diversity within these groups which results in
contrasting functional characteristics. Crustose lichens are tightly adhered to their substrate (often
tree bark or rock, but sometimes evergreen tree leaves in moist forests) from which they cannot
be removed without destruction. Some are very thin and do not produce much biomass,
suggesting that their direct role in biogeochemical cycling probably is limited. However, other
crustose lichens, particularly those that are endolithic (i.e., growing inside rocks), may induce
rock weathering through both physical processes (via hyphal penetration and
expansion/contraction of lichen thalli) and chemical processes (via excretion of various organic
acids) (Chen, Blume, & Beyer, 2000). Furthermore, many crustose lichens are grazed by
invertebrates (Baur, Froberg, & Baur, 1995). Meanwhile foliose (i.e., leaf-like) lichens are
loosely or tightly attached to their substrate. The lobes of these lichens sometimes overlap like
tiles, and the lower side often has a tomentum or anchoring rhizinae, which helps generate
favourable microclimate and microhabitat conditions for different invertebrates. Fruticose lichens
always stand out from the surface of their substrate. These are hair-like, strap-shaped or shrubby,
with considerable variation in branching pattern. Their size varies from minute species of 1-2 mm
to species up to 10 m long. An extreme growth form of these fruticose lichens includes vagrant
epiphytic lichens that lack holdfasts in mature specimens, and that occupy the air spaces between
branches of trees. Such lichens (e.g. Usnea longissima) can be >1 m long and their hair-like

tissues tend to degrade when in direct contact with the tree branch (Gauslaa, 1997).
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In addition to their growth form, lichenized fungi also vary in their associations with their
photobionts, and this can have important ecosystem-level implications. Chlorolichens have green
algae as their only photobiont, whereas cyanolichens have cyanobateria as their only photobiont,
while cephalolichens have green algae as their main photobiont but also contain cyanobacteria in
localized internal or external structures (i.e., cephalodia). The most obvious difference between
these groups is that those lichens which contain cyanobacterial symbionts commonly fix N, and
thus have a higher N concentration. However, these groups also differ in their water relations,
which in turn influence both their physical structure and water holding capacity. As such,
chlorolichens and cephalolichens readily activate their photosynthesis in equilibrium with high
ambient air humidity (Lange, Kilian, & Ziegler, 1986), and some of them even prefer habitats
that are deficient in liquid water such as below overhanging rocks or on the leeside parts of lower
old spruce trunks. Meanwhile, cyanolichens need liquid water to activate photosynthesis (Lange
et al., 1986), which explains why they are most abundant in rain forests and open sites with
frequent heavy dewfall.

Lichens have a high diversity of functional traits associated with resource uptake and
retention (Cornelissen ef al., 2007; Asplund & Wardle, 2013), which may potentially play an
important role in determining their effects on ecological processes (Lang et al., 2009) and
associated invertebrate communities (Bokhorst ez al., 2015). These traits include thallus nutrient
content, defence compounds, specific thallus mass (STM; the equivalent of plant’s specific leaf
mass or the reciprocal of specific leaf area) and water-holding capacity, and are analogous to
vascular plant leaf functional traits that are widely recognized as important ecological drivers
(Table 1). However, very few studies have sought to characterize the variation of lichen
functional traits that occur in natural communities, or whether lichens show trade-offs in traits

between those that are characteristic of rapid resource acquisition versus resource conservation in
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the manner frequently shown for vascular plants (Grime et al. 1997; Diaz et al. 2004; Grime et
al., 1997; Wright et al., 2004; Diaz et al., 2004). Recently, it has been shown that within
species variation in lichen functional traits can be more important than variation among species
(and thus species turnover) in determining overall community-level measures of trait variation
(Asplund & Wardle, 2014). This contrasts with what is usually found for vascular plants where
across-species variation species turnover is usually more important (Kichenin et al., 2013;
Siefert et al., 2015). For example, thallus nutrient concentration, a functional trait known to be
important in driving thallus decomposability (Lang ef al., 2009; Asplund & Wardle, 2013), can
show tremendous variation not only across but also within species (Palmqvist et al., 2002;
Asplund & Wardle, 2014). This high intraspecific variability is linked to the considerable ability
of lichens to absorb and accumulate nutrients from atmospheric sources (Nash, 2008). Likewise,
several studies have revealed that STM can show considerable variation within species (Snelgar
& Green, 1981; Gauslaa et al., 2009; Solhaug et al., 2009; Asplund, Sandling, & Wardle,
2012).

Lichens vary greatly in their ability to retain moisture, and this has important ecological
implications. Some lichens (e.g. those that are thin and pendulous) generally have a limited
ability to retain water (Esseen ef al., 2015), even though they quickly take up water from humid
air. Meanwhile, some other lichens (typically thick or gel-like foliose cyanobacterial lichens)
have the ability to retain water for lengthy periods (Lange et al., 1993; Lange, Belnap, &
Reichenberger, 1998; Gauslaa & Solhaug, 1998; Lange, 2000). The water holding capacity of
lichens is strongly positively correlated with their STM both within and across species (Gauslaa
& Coxson, 2011; Merinero, Hilmo, & Gauslaa, 2014; Esseen et al., 2015). There appears to be
a trade-off between the flexible and rapid moisture uptake strategy characteristic of thin

chlorolichens that utilize humid air every night, and the conservative water storage strategy of
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cyanolichens that limit their photosynthesis to rarer rainy periods (Gauslaa, Coxson, & Solhaug,
2012). In lichen-dominated epiphytic communities, there is a need for frequent rain to sustain
high cyanolichen and cephalolichen biomass and thus high N,-fixation rates. In this light,
epiphytic lichens may play an important role in the partitioning of moisture derived from
precipitation and thus the humidity of the forest interior (Van Stan II & Pypker, 2015). In some
sites with low rainfall, fruticose epiphytic lichens absorb moisture from fog and thereby supply
underlying soils with water, in turn enhancing the availability of soil moisture for tree growth
(Stanton & Horn, 2013; Stanton, Armesto, & Hedin, 2014).

Lichens vary hugely in colour from almost white to black. This variation in spectral
characteristics results in large differences in thallus surface temperatures (Kershaw, 1975;
Gauslaa, 1984). As such, in cold environments dark pigmented lichens may elevate temperatures
above 0 °C and induce melting of the surrounding snow, thereby enabling them to utilize snow-
melt water (Kershaw, 1983). Variation in pigmentation among lichens may also affect
microclimate at the soil surface (Kershaw, 1978). As such, the light-coloured, mat-forming
lichens can increase the albedo of the land surface by around 1 % (Stoy ef al., 2012). Further, the
surface and internal temperature of limestones are higher below the black-coloured Verrucaria
nigrescens than below the light grey V. baldensis, and this contributes to increased rock
weathering (Carter & Viles, 2003, 2004).

There is considerable variation among lichens in their production of carbon based
secondary compounds (CBSC), and in total more than 800 compounds have been described
(Huneck & Yoshimura, 1996; Huneck, 2001). These are commonly week phenolic acid
derivatives and all are produced by the fungal partner. Most of them are unique to lichenized
fungi with only a few also produced by non-lichenized fungi. These compounds have likely

evolved to protect the lichens from a suite of physical and biotic stressors, such as light damage

10
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and attack by predators and pathogens (Lawrey, 2009; Solhaug & Gauslaa, 2012). Further, they
likely play a key role in driving lichen-mediated ecosystem processes and community assembly
(Asplund & Wardle, 2013; Asplund, Bokhorst, & Wardle, 2013; Asplund et al., 2015). These
CBSCs are often present in concentrations ranging from 1 to 5 % of thallus dry mass, but in the
widespread epiphyte Hypogymnia physodes can reach over 20% (Solhaug et al., 2009).
Considerable variation in CBSC concentration exists not only among but also within lichen
species (Culberson & Culberson, 1958; McEvoy, Gauslaa, & Solhaug, 2007; Vatne, Asplund, &
Gauslaa, 2011; Asplund & Wardle, 2014). For instance, concentrations of CBSCs in the lichen
Lobaria pulmonaria varies from 0.7 to 13 % depending on thallus size, elevation and pH
(Asplund & Gauslaa, 2007; Vatne et al., 2011). In addition to phenolic compounds, some
cyanobacteria (Nostoc sp.) in lichen symbioses produce microcystins which are a group of cyclic
petide hepatotoxins (Oksanen et al., 2004; Kaasalainen et al., 2012), although the ecological

role of these toxins is not well established.

II1. How variation among lichens affect ecosystem nutrient and carbon flux

(1) Biogeochemical nutrient cycling

While plant dominated communities gets most of their nutrients from the soil or from nutrients
cycled within the system, lichen-dominated ecosystems obtain a relatively larger part of their
nutrients from outside the ecosystem. This is because lichens lack roots and instead take up
significant nutrient pools from wet and dry depositions that originate primarily from outside the
ecosystem. They do this efficiently because they have a large surface area relative to their
biomass, and because their surfaces lack cuticles and stomata, which make them very effective at
absorbing nutrients. In addition, lichens can accumulate concentrations of these captured

11
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nutrients that are vastly in excess of their physiological needs. However, lichens differ
tremendously in their capacity to capture nutrients from outside the ecosystem and this depends
on their characteristics. Some lichen growth forms, especially fruticose hair-like lichens, are
particularly effective at capturing both dew and fog, which is often more rich in nutrients than is
rain (Nash, 2008). For example, the epiphytic chlorolichen Ramalina menziesii in an oak
woodland was shown to capture 2.85 and 0.15 kg ha™ y”' of N and phosphorus (P), respectively,
from sources outside the ecosystem (Knops, Nash, & Schlesinger, 1996). Another study showed
that this species alone was responsible for 13 % of the total annual canopy turnover of N, 4 % of
P, 7 % of potassium (K), 1 % of calcium (Ca), 3 % of magnesium (Mg) and 8 % of sodium
(Boucher & Nash, 1990). Further, fruticose lichens, which have a relative large surface area,
appear to be better at capturing elements than are foliose lichens (Yemets, Solhaug, & Gauslaa,
2014). However, foliose lichens are generally richer in N, P and Ca than are fruticose lichens
(Mangelson et al., 2002; Asplund & Wardle, 2013). Because of their capacity to take up and
accumulate nutrients, lichens can in some ecosystems store a substantial proportion of the total
nutrients present in the ecosystem. For example, in an open Picea mariana woodland in northern
Québec, mat-forming terricolous lichens covering 97 % of the ground surface contained up to 20
% of the total biomass, 25 % of the N and 12 % of the P in the ecosystem (Rencz & Auclair,
1978; Auclair & Rencz, 1982).

Approximately 10% of all lichen species contain N»-fixing cyanobacteria. Because
lichens often grow in nutrient-poor ecosystems, those containing cyanobacteria can greatly
increase the inputs of N to the ecosystem. For instance, Pseudotsuga menzeisii forests in Oregon
support a high abundance of the N-fixing Lobaria oregana that contributes approximately 50 %
of the total ecosystem N input (Denison, 1973). Further in a synthesis of 17 studies, Nash (2008)

lists estimations of lichen N, fixation contributions to the N economy for various ecosystems.
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These values vary from 0.04-0.21 kg N ha™ y' in tundras and forests in subarctic Alaska in
which Peltigera spp. is the dominant lichen (Gunther, 1989)to 16.5 kg N ha™ y' in old growth
Pseudotsuga forests in NW USA in which Lobaria oregana is dominant (Antoine, 2004).
However, Nash (2008) also notes that most estimates (and particularly the highest ones) are

somewhat inaccurate and may be unreliable due to various methodological flaws.

(2) Litter decomposition

There 1s a substantial literature focused on understanding how vascular plant traits and litter
quality govern variation in litter decomposition rates among plant species, and these show
decomposition to be associated positively with nutrient concentrations and specific leaf area, and
negatively with concentrations of lignin and secondary defence compounds and leaf dry mass
content (Cornelissen et al., 1999; Pérez-Harguindeguy et al., 2000; Cornwell et al., 2008;
Makkonen ef al., 2012). However, although several studies have quantified rates of
decomposition of lichen litter (Wetmore, 1982; Guzman, Quilhot, & Galloway, 1990; Knops et
al., 1996; Esseen & Renhorn, 1998; Coxson & Curteanu, 2002; Caldiz, Brunet, & Nihlgard,
2007; Campbell, Fredeen, & Prescott, 2010), these have each considered too few species to
enable reliable evaluation of which lichen functional traits are important in regulating
decomposition. However, two recent comparative studies have shown that lichen decomposition
is related to a spectrum of thallus traits that are broadly analogous to leaf traits known to regulate
vascular plant litter decomposition. Specifically, Lang et al. (2009) found lichen litter
decomposition to be positively related to thallus metabolic carbohydrates, lipids, N, Ca, K, pH
and amino acids, while Asplund and Wardle (2013) showed lichen decomposition to be related to

thallus N, P and pH. Further, Asplund & Wardle (2013) showed through removing thallus CBSCs
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by means of acetone rinsing that CBSCs are powerful regulators of lichen decomposition, and
that all CBSCs that reduced decomposition also deterred lichenivorous snails. They also found
foliose lichens to decompose quicker than did fruticose ones, which probably is due to them
having a higher N content.

The rate at which N is released from lichens during decomposition also varies between
lichens with differing functional characteristics. For instance, Campbell et al. (2010) found N to
quickly be released without initial N immobilization from the N-fixing lichens Lobaria
pulmonaria and Nephroma helveticum. They argued that the relatively high N mineralization
rates from these lichens may be due to the lack of lignin and the fact that their N occurs in labile
proteins, chitin and nucleic acids (Dahlman ef al., 2003) which can be solubilized and rapidly
leached during the early stages of the decay process (Rai, 1988). In contrast, rapid release of N
during decomposition was not found to occur for two chlorolichens, i.e., Alectoria sarmentosa
and Platismatia glauca, probably because of their low initial N concentration (Campbell et al.,
2010). Meanwhile, Asplund & Wardle (2013) did not find any difference in N release during
decomposition between N,-fixing and non N,-fixing lichens. Lichen growth form also seems to
play a role in the release of N. For example, Asplund et al. (2013) found that epiphytic fruticose
lichens, which have a large surface area, release more N than do epiphytic foliose lichens during
decomposition, despite the higher initial N concentration of foliose lichens. They also found that
most foliose lichens growing on rocks rapidly lost N but this was probably due to many of them
having a high initial N concentration. Further, P has been shown to be released quickly during
decomposition from a variety of species of lichens, including cyano-, cephalo- and chlorolichens
(Caldiz et al., 2007; Campbell et al., 2010; Asplund et al., 2013), and most of the P in the
thallus is frequently released within 5 months (Campbell ef al., 2010; Asplund ef al., 2013). In

contrast, litter of Cladonia spp. growing on nutrient poor soils can retain or even accumulate P
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during decomposition (Moore, 1984; Asplund et al., 2013). Other elements such as K which are
present as dissolved monovalent ions can also be readily released early during the decomposition
of lichen thalli (Caldiz et al., 2007; Campbell ef al., 2010) in much the same manner as is often
observed during plant litter decomposition (Lousier & Parkinson, 1978).

A vast body of literature has explored the impact of soil invertebrates on vascular plant
litter decomposition (Petersen & Luxton, 1982; Kampichler & Bruckner, 2009), and has
revealed that these effects are driven by invertebrates consuming and fragmenting litter,
dispersing microbial propagules, and stimulating soil microbial activity (Parkinson, Visser, &
Whittaker, 1979; Seastedt, 1984). In contrast, only a few studies have investigated whether
lichenivorous invertebrates may play a role in lichen decomposition. For instance, McCune and
Daly (1994) found half-lives of decomposing lichen litter to be two to nine times shorter in the
presence of animals larger than 1 mm than when these were excluded. Similarly, Hypogymnia
physodes thallus litter decomposed 1.9 times faster when animals sized 0.5 - 3 mm had access to
it (Biazrov, 1995). Further, Asplund et al. (2013) showed that micro-arthropods can increase
decomposition rates of lichens, but that their effects can be mitigated by high levels of CBSCs in
the lichen thalli that deter lichen-feeding activity. Some lichen CBSCs degrade fairly quickly
during thallus senescence, suggesting that they only impact micro-arthropods during early stages
of decomposition (Asplund & Wardle, 2012). However, other compounds are more recalcitrant
and thus increase in concentration relative to thallus litter mass, and are therefore likely to have
longer term effects on micro-arthropod feeding activity (Bidussi, Solhaug, & Gauslaa, 2016).

Some studies that have quantified decomposition rates of lichen and vascular plant litter
in the same study have shown that lichen litter often decomposes more slowly (Moore, 1983,
1984; Wardle et al., 2003). However, the lichen species that have been used in these

comparisons (i.e., Cladonia spp.), have thalli that are very nutrient poor and generally decompose

15

Asplund, J. & Wardle, D.A. (2017) How lichens impact on terrestrial community and ecosystem properties.
Biological Reviews, 92, 1720-1738.



O©CoONOOOPRWN -

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

Biological Reviews Page 16 of 51

considerably more slowly than do thalli from most other lichens species (Asplund & Wardle,
2013). In a litter-bed experiment comparing decomposition rates of 27 bryophytes, 17 lichens and
five vascular plants, lichens overall had comparable decomposition rates to those of vascular
plants, whereas bryophytes had the slowest decomposition (Lang et al., 2009). Meanwhile, Vogt
et al. (1983) found that the pendulous epiphytic lichen Alectoria sarmentosa decomposed much
more quickly than associated vascular plant litter.

Like plant leaves, epiphytic lichen material falls to the ground before decomposing. A
number of studies have quantified litter-fall of lichens, primarily in temperate and boreal forests
(e.g. Esseen, 1985; Knops et al., 1996; Stevenson & Coxson, 2003; Caldiz & Brunet, 2006).
However, because lichen litter usually falls in clumps and is therefore very spatially scattered,
lichen litter-fall is often underestimated (McShane, Carlile, & Hinds, 1983). In temperate and
boreal regions the majority of lichen litter-fall occur during autumn and winter and especially
during stormy events (Esseen, 1985). This litter-fall hugely varies between stands, and lichen
litter deposition of between 13 and 320 kg ha year has been reported (Caldiz & Brunet, 2006;
Campbell et al., 2010; Rawat, Upreti, & Singh, 2011) . This variation mainly reflects the
standing crop in the stand and especially that of pendulous lichens which tend to fragment more
easily than do other fruticose and foliose lichens. As such, the annual turnover of pendulous
lichen is commonly 10 % (and up to 30 %) of the standing crop, while the turnover of foliose
lichens is usually a few percent (Stevenson & Coxson, 2003). However, because epiphytic lichen
litter is generally more nutrient rich than is tree leaf litter, its role in nutrient cycling is
disproportionate to the biomass of its litter-fall. For example, in an oak woodland, litter inputs
from the dominant non N-fixing lichen Ramalina menziesii was found to contain twice as much
N as did oak leaf litter (Knops et al., 1996). The relatively high nutrient concentrations in lichen

litter compared with vascular plant leaf litter are in part because plants remobilize and resorb
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their nutrients before leaf abscission, which lichens cannot. However, mat-forming lichens,
continuously die-off at the bottom creating necromass which leads to nutrients in the senescing
parts then being partially recycled internally, leading to less nutrients being released to the
ecosystem (Crittenden, 1991).

The presence of lichens, either when alive or as litter, can also affect the decomposition of
associated plant litter. For instance, oak leaf litter was found to lose mass less rapidly during
decomposition when in the presence of lichen litter, despite the lichen litter decomposing quicker
than the oak litter (Knops et al., 1996). This was proposed as due to the dominant lichen R.
menziesii having a poor water retention capacity, leading to the decomposer community being
more impeded by moisture limitation (Matthes-Sears, Nash, & Larson, 1986a, 1986b). In
contrast, Vaccinium myrtillus litter decomposed more quickly in Cladonia mats than when the
lichens had been removed, likely because of a more favourable microclimate and moisture
conditions in the mats (Stark et al., 2000). Meanwhile Wardle et al. (2003) found that vascular
plant litter decomposition was largely unaffected by whether or not it was mixed with litter from
the lichen Cladonia stellaris, although the decomposition of the lichen litter was impeded by the
vascular plant litter. However, too few studies have been performed to determine what types of
lichens, or what lichen characteristics, exert the greatest positive or negative effects on other

litters, or the role of environmental context on these effects.

IV. How variation among lichens affects their interactions with consumers

(1) Lichen food webs

Despite the antibacterial and antifungal properties often ascribed to their CBSCs, lichens provide

microhabitats for numerous eukaryotic and prokaryotic microorganisms, (Lawrey & Diederich,
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2003; Grube & Berg, 2009). Indeed, recent work has highlighted the role of lichen-associated
bacteria as an important component of the lichen meta-organism, challenging the traditional view
of lichens simply being a symbiosis between a fungus and one or two photobionts
(Aschenbrenner et al., 2016). Bacterial cell densities in lichens dramatically exceed those in or
on vascular plant leaves (Cardinale et al., 2008; Grube et al., 2009; Saleem, 2015), and they
likely play an important role in lichen-mediated food webs through serving as food for nematodes
and protozoa. Bacteria varies hugely in numbers and diversity between lichen species, and this is
largely driven by differences in lichen growth form and photobiont type (Hodkinson et al.,
2012). The variation with photobiont type is likely to be due to the green algal symbionts
providing mainly sugar alcohols and the cyanobacterial symbionts providing glucose, and
because only the cyanobacteria provide N through biological fixation (Elix & Stocker-Worgétter,
2008). Bacterial symbionts can contribute functionally to the lichen by providing resistance to
biotic and abiotic stresses, biosynthesis of vitamins, detoxification of inorganic substances (e.g.
arsenic, copper and zinc) and nutrient supply including N,-fixation (as reviewed by Grube,
Cardinale, & Berg, 2012; Aschenbrenner ef al., 2016).

The lichen thallus hosts aquatic microfauna (i.e., those that live in water films), such as
nematodes, protozoa, rotifers and tardigrades (Fig. 3) (Gerson & Seaward, 1977). As such, there
are complex food webs inhabiting the lichen thallus. For instance, fungal-feeding nematodes
likely feed on the lichen mycobiont while bacterial-feeding nematodes (which can be abundant in
lichen thalli; Bokhorst ef al., 2015) feed on various bacterial symbionts. There is also a relatively
high abundance of predacious nematodes at least in epiphytic foliose lichens (Bokhorst et al.,
2015), and these are likely to feed on various lichen-associated microfauna. The knowledge of
how these aquatic faunal communities varies between lichens is limited, although densities of

rotifers and tardigrades are greater on lichen species that have a higher biomass (Stubbs, 1989).
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Further, Bokhorst ez al. (2015) showed that the diversity, but not the abundance, of lichen-
associated nematodes increases with increasing thallus mineral nutrient concentration. They also
showed large differences in nematode community composition between between lichens that
occupy different growth substrates, and lichens that grow on rocks supported a much higher
density of omnivorous nematodes than did epiphytic and terricolous lichens. Bokhorst et al.
(2005) also found large differences in nematode community composition between lichens with
and without N,-fixation capability, due in part to higher abundances of bacterial-feeding
nematodes in N»-fixing lichens that are adapted for feeding on their cyanobacterial symbionts.
Further, a diverse group of terrestrial invertebrates feed on and seek shelter on or in
lichens (Fig. 3). These include species of gastropods, springtails, mites, beetles, moth larvae and
woodlice (Gerson & Seaward, 1977). For instance, springtails use lichens for both food and
shelter, and the undersides of lichen thalli can be almost completely covered with springtails
(Leinaas & Fjellberg, 1985). Further, lichenivorous psocids and mites are fed upon by both
pseudoscorpions and true bugs that lives on the lichens (Gerson & Seaward, 1977). Among
lichenivorous invertebrates, gastropods play a particularly important role, and Asplund (2010)
lists 64 species of terrestrial gastropods known to feed on lichens. Lichenivorous gastropods are
found worldwide and feed on calcicolous lichens in limestone grasslands (e.g. Froberg, Baur, &
Baur, 1993) or rocky deserts (Shachak, Jones, & Granot, 1987), and on epiphytic lichens in
temperate broadleaved and boreal forests (Asplund ez al., 2010b). A few snail species are
specialized lichen-feeders or feed predominantly on lichens (Kerney, 1999), and thus depend
heavily on lichens as a food resource. Some snails even have specialized radulae that enable them
to graze off epi- and endolithic lichens from rocks (Schmid, 1929; Breure & Gittenberger,
1981). Further, the foliose lichen Xanthoria parietina provides the snail Balea perversa with all

essential elements and nutrients necessary for its growth and reproduction (Baur & Baur, 1997).
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In addition to serving as a food source, lichens provide gastropods with shelter from predators
and desiccation. For instance, B. perversa seeks protection under thalli of X. parietina that also
serves as its food supply (Baur & Baur, 1997). Some snails may also use lichens to conceal
themselves; for example the snail Napaeus barquini actively covers its shell with lichens
(Allgaier, 2007).

Snails show clear preferences for different lichen species based on the functional
characteristics of the lichens (Baur, Baur, & Froberg, 1994; Asplund et al., 2010b; Asplund &
Wardle, 2013). Co-existing snail species may prefer different lichen species, and weight increase
in juvenile snails varies greatly depending on which lichen species the snails are fed (Baur, Baur,
& Froberg, 1992; Baur et al., 1994; Froberg et al., 1993). One major driver of lichen
palatability is their secondary chemistry; The presence of CBSCs is an important determinant of
lichen palatability and the removal CBSCs greatly increases the consumption of lichens by snails
(Gauslaa, 2005; Poykko, Hyvérinen, & Backor, 2005; éernajové & Svoboda, 2014), as we
discuss below. Furthermore, Asplund & Wardle (2013) found that generalist snails preferred
fruticose to foliose lichens, and foliose chlorolichens over cephalo- and cyanolichens.
Meanwhile, unlike what is often found for vascular plants (Mattson, 1980), Asplund & Wardle
(2013) did not find any relationship between thallus consumption by snails and concentrations of
thallus N or P across 28 forest lichen species. Further, Asplund ef al. (2010a) found that lichens
exposed to N fertilization (and which were more N-rich) were actually less preferred by
lichenivorous gastropods. They attributed this to lower supply of energy in terms of mannitol in
fertilized thalli. In contrast, Asplund, Gauslaa, & Merinero (2016) showed that snails prefer thalli
from L. pulmonaria that had a lower C : N ratio as a consequence of infection by the parasitic

fungus Plectocarpon lichenum.
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Lichen traits also affect communities of other lichen-associated invertebrates. For
instance, Bokhorst ez al. (2015) found that thallus nutrient status (i.e., N concentration and N to P
ratio) positively affected the diversity and abundance of both mites and springtails and also
altered their community composition. Consequently, N,-fixing lichens, which are richer in
nutrients, tended to support more (and different species of) springtails and mites. Several studies
have also shown that foliose lichens usually support more springtails and mites than do fruticose
or crustose lichens (André, 1983, 1984, 1986; Colloff, 1988; Bokhorst et al., 2015), although
André (1984) found high numbers of the mite Dometorina plantivaga in crustose lichens only.
Further, Sechting & Gjelstrup (1985) found that foliose lichens supported more springtails
relative to mites than did fruticose lichens. These studies in combination point to lichen growth
form as an important regulator of both the abundance and community composition of
microarthropods (André, 1985). A possible explanation for the higher abundance of invertebrates
on foliose compared with fruticose lichens is the favourable microclimatic conditions and shelter
provided by the interface between the lichen thallus and its substrate (Sechting & Gjelstrup,
1985). In this light, springtails may completely cover the underside of those foliose lichens that
provide them with both food and shelter (Leinaas & Fjellberg, 1985).

The importance of lichens in driving invertebrate communities is further demonstrated by
the positive correlation often observed between arthropod density and biomass of lichens across
communities (Stubbs, 1989; Pettersson et al., 1995; Gunnarsson, Hake, & Hultengren, 2004).
This is true both for arthropods that feed on lichens such as mites and springtails, and for higher
trophic levels, such as spiders. The greater spider density in communities that support a higher
biomass of epiphytic lichens has been explained in terms of lichens increasing the structural
complexity of the habitat (Gunnarsson ef al., 2004). However, lichens with identical structural

complexity can support different densities of spiders through supporting contrasting amounts of
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prey (i.e. lichenivorous springtails), due to variation in defense compounds (Asplund et al.,
2015). Likewise, passerine birds that feed on invertebrates are more abundant in forests that
support a high lichen biomass due to increased abundance of prey (Pettersson ef al., 1995).
Lichens are also utilized by vertebrate fauna (Fig. 3). A number of bird species use
lichens as nesting material or as camouflage or decoration (Richardson & Young, 1977). In
addition, flying squirrels make nests of lichens, predominately fruticose lichens of the genus
Bryoria, on which they also feed. A number of mammals feed to varying extents on lichens in
different regions of the world, including deer, elk, ibex, gazelle, musk ox, mountain goat, polar
bear, lemming, vole, tree mouse, marmot, squirrel and monkeys (Seaward, 2008). Of these,
reindeer and caribou (hereafter reindeer) that inhabit circumpolar northern latitudes are especially
dependent on lichens. As such the winter diet of reindeer is more than 50 % lichen material, and
these include mat-forming as well as epiphytic and saxicolous lichens (Scotter, 1967; Gaare &
Skogland, 1975; Boertje, 1984). The vast majority of lichens consumed by reindeer are
fruticose, and mainly of the genera Cladonia, Bryoria, Alectoria and Stereocaulon (Holleman &
Luick, 1977; Danell et al., 1994). These species are common in reindeer habitats and their
growth form makes them easily accessible. Similar to reindeer, snob-nosed monkeys inhabiting
north-western Yunnan, China depend on lichens as winter fall-back food; during seasons with
low food availability, lichens can constitute up to 97% of their diet (Grueter et al., 2009). These
monkeys prefer fruticose lichens such as U. longissimi and Bryoria spp. which are easy to grab,
and only occasionally feed on the smaller foliose lichens (Kirkpatrick, 1996; Grueter ef al.,
2009). Because of their preference for Usnea longissima, these monkeys tend to occupy relatively
high and cold elevations, where lichens are more abundant than in the milder lowland (Grueter et

al., 2012).
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(2) Defence

Already in the 19" century, Zukal (1895) suggested that CBSCs in lichens serve as defences
against lichenivores. However, Zopf (1896) found that snails did not discriminate between potato
slices smeared with lichen CBSCs and those without CBSCs. A few years later Stahl (1904)
found that removal of CBSC by a sodium bicarbonate solution made the lichen more attractive to
the snail Cepaea hortensis. In more recent times studies have utilized 100 % acetone to non-
destructively remove CBSCs from living but air dry lichens; this enables comparisons between
lichen material which does versus does not have CBSCs present (Solhaug & Gauslaa, 1996,
2001). This approach provides a unique way to test the role CBSCs play in lichen-invertebrate
interactions while avoiding other confounding factors, and it has been used in several studies to
show that lichen CBSCs do indeed deter invertebrates. (Reutimann & Scheidegger, 1987;
Gauslaa, 2005; Poykko ef al., 2005; Asplund & Wardle, 2013; Cemajové & Svoboda, 2014;
Asplund et al., 2015). For instance, Gauslaa (2005) offered the snail C. hortensis the choice
between lichens with and without CBSC and found a significant preference for the acetone rinsed
thalli in 14 out of the 17 tested lichen species. Meanwhile, Poykko ef al.(2005) found higher
survival rates of larvae of the moth Eilema depressum when reared on acetone-rinsed Vulpicida
pinastri and Hypogymnia physodes than on control (non-rinsed) thalli, but found no effect of
acetone rinsing on survival rates on Parmelia sulcata and Xanthoria parietina. The effect of
acetone rinsing is highly variable between lichen species because CBSCs vary hugely both
qualitatively and quantitatively among them. In general, CBSCs that are restricted to the cortical
layer, such as atranorin, parietin and usnic acid and that protect the lichen from high solar

radiation, are less effective against lichenivorous snails (Gauslaa, 2005, 2009; Asplund, Solhaug,
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& Gauslaa, 2010c). In contrast, some medullary CBSCs are very effective against lichenivores,
such as the yellow vulpinic acid (Gauslaa, 2005).

Lichen CBSCs not only deter lichenivores, but also control how they graze lichens, which
affects lichen fitness. For instance, various lichen feeders, e.g. springtails, moth larvae and slugs
and snails, preferentially attack the cortical layer and often also the photobionts of the lichen, but
stop feeding when they reach the medulla (Hale, 1972; Baur et al., 2000; Backor, Dvorsky, &
Fahselt, 2003; Asplund, 2011b) where the CBSCs are often mostly concentrated (Asplund,
2011b). However, lichens that are treated with acetone, and are therefore low in CBSCs, are
instead grazed perpendicular to the lichen surface which leaves distinct holes through all the
thallus layers. Further, the foliose lichen Nephroma arcticum has large cephalodia (containing
colonies of N-fixing Nostoc spp.) which, unlike the surrounding medulla, lacks CBSCs (Renner,
1982). As such, slugs normally attack the cephalodia rather than the green-algal parts of the
thallus, but when CBSCs are removed by acetone rinsing, slugs do not discriminate between the
two parts (Asplund & Gauslaa, 2010). The high grazing susceptibility of cephalodia in this
species may explain why it is restricted to northern and high elevation locations that support few
gastropods. Several lichen species have higher concentrations or even other types of CBSCs in
their reproductive structures such as soralia and ascocarps (Imshaug & Brodo, 1966; Brodo &
Hawksworth, 1977; Tensberg, 1992; Hyvirinen et al., 2000; Asplund et al., 2010c). As such,
snails completely avoid the soralia of Lobarina scrobiculata which contains five times as much
m-scrobiculin than does the rest of the thallus (Asplund et al., 2010c). Meanwhile, in the absence
of CBSCs, snails are instead more likely to attack the soralia than the somatic parts of the thallus.
This is in line with the optimal defence theory which predicts that that the parts of an organism
that are more likely to be attacked and are more important for species fitness (e.g. reproductive

parts) are typically better defended against consumers (McKey, 1974; Rhoades, 1979).
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Many lichen species are represented by different chemotypes, i.e. morphologically
identical conspecifics containing different groups of CBSCs, and these chemotypes can be used
for studying the ecological role of CBSCs. As such, thalli of one Lobaria pulmonaria chemotype
contains high amounts of total CBSCs including stictic acid and small amounts of constictic,
norstictic, peristictic and methyl norstictic acid, while another contains low total CBSCs and only
norstictic acid (Asplund, 2011a). When growing on the same trees, the chemotype with the
higher total CBSCs was not grazed by gastropods while the chemotype with only norstictic acid
was heavily grazed. This pattern was later confirmed in a laboratory food choice experiment, and
reveals that natural variation in CBSCs at the within-species level can serve as an important
determinant of their susceptibility to their grazing by gastropods (Asplund, 2011a).

Despite the clear effect of experimentally reducing concentrations of CBSC on lichen
palatability, variation in palatability among lichen species does not appear to be closely related to
the total concentration of CBSCs (Asplund & Wardle, 2013; Bokhorst ef al., 2015). This lack of
relationship is likely because of qualitative differences in CBSCs between species and because
different compounds have different levels of biological effectiveness and contrasting roles. As
such, a species with high concentrations of an ineffective defence compound is likely to be more
palatable than a species with lower concentrations of a very effective defence (Gauslaa, 2008). In
this light, an accidental experiment in which the coleopteran Lasioderma serricorne attacked
1440 lichen herbarium specimens showed that the level of consumption was strongly linked to
the qualitative composition of CBSCs in the lichens (Nimis & Skert, 2006).

The CBSCs in lichens can also impact the consumption by mammals, but the literature on
this is very limited. For instance, it is known that the bank vole, Myodes glareolus, prefers
lichens with reduced concentrations of CBSCs (Nybakken et al., 2010). Further, usnic acid, a

common lichen CBSC, has been reported to kill elk (Cook et al., 2007). However, reindeer in
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contrast consume large amounts of usnic acid-containing lichens, because they have an usnic
acid-degrading bacterium (Eubacterium rangiferina) in their rumen that detoxify the lichens
(Sundset et al., 2008, 2010). As such, the presence of usnic acid actually increases the

digestibility of lichens by reindeer (Palo, 1993).

V. How variation among lichens affects their impacts on plants

The numerous ways that communities of plants (mainly trees) impact on lichen community
assemblies, for instance by competition or by providing substrates and modifying environmental
conditions, have been very well studied (Favero-Longo & Piervittori, 2010), and are outside the
scope of this review. Meanwhile, how lichens regulate plant communities have been given much
less attention (Fig. 4).

At the beginning of terrestrial primary succession, N is often the main limiting nutrient,
and pioneer N; fixing plants and lichens may play an important and well known role in driving
initial N build-up of the ecosystem. For example the N,-fixing fruticose lichen Stereocaulon spp.
can dominate the ground cover early in succession in both lava flows and glacial forelands
(Eggler, 1971; Mueller-Dornbois, 1987; Vetaas, 1994). The N,-fixed by lichens, and other N,-
fixing organisms, leads to N build-up that then facilitates colonization by non N,-fixing vascular
plants. In this light, the vascular plants, Festuca octoflora and Mentzelia multiflora, when grown
in desert soil together with the cyanolichen Collema sp., have been shown to grow quicker and
contain higher tissue element concentrations of N, P, K, Ca, Mg and iron than those grown in soil
without the lichen. This is both because the lichens concentrate essential elements in available
forms at the soil surface and because the gelatinous sheaths often associated with the

cyanobacterial symbiont (e.g., Nostoc cells in Collema spp.) contain chelating compounds.
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1

2

2 594 The early colonization by lichens may also induce rock weathering that in turn releases

5

6 595  mineral elements in forms that plants can utilize (Viles, 1995; Chen ef al., 2000; Adamo &

7

8 596  Violante, 2000). Lichen growth form can potentially play a role in governing these rock-

9

1? 597  weathering processes. However, although crustose lichens are more strongly adhered to the rock
12

13 598  (through their entire lower surface) than are foliose lichens, their ability to weather rock and

15 599  release nutrients from it is not necessarily greater (Adamo, Marchetiello, & Violante, 1993).

1g 600  Instead, the freeze-thaw action can be larger on rock surfaces occupied by the bigger foliose

20 601 lichens than those occupied by crustose lichens, which may compensate in part for their weaker
22 602  connection with the rock (Adamo & Violante, 2000). Further, the chemical weathering of rock
o5 603  and release of nutrients from it may also be driven by the amount and types of CBSCs produced
27 604 by the lichens which themselves vary tremendously both among and within lichen species

29 605  (Adamo & Violante, 2000).

32 606 Lichens have been reported to both enhance (Zamfir, 2000; Houle & Filion, 2003) and
34 607 reduce (Deines et al., 2007) vascular plant seedling establishment, and these effects of lichens
608 are dependent on the types of plant and lichen species present and on environmental context (e.g.
39 609  Escudero et al., 2007). As such, ground covered by Cladonia has been shown to stongly reduce
41 610 emergence of seedlings of plant species that depend heavily on light for germination (i.e.

4a 611 Arenaria serpyllifolia and Veronica spicata) relative to those that do not (i.e., Filipendula

46 612 vulgaris and Festuca ovina) (Zamfir, 2000). Further, the physical environment created by

48 613  ground-dwelling lichens may inhibit seeds and seedling radicals from reaching the soil, thereby
51 614  reducing seedling establishment (Deines et al., 2007). In contrast, mat-forming lichens such as
53 615  Cladonia spp. may conserve soil moisture and thus facilitate seedling establishment (Zackrisson

95 616 et al., 1995, 1997). However, these lichens accumulate little organic matter, and N

57

58 617  mineralization rates below these mats are low, which leads to lower N availability under lichens
59
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compared with under plants and bryophytes (Sedia & Ehrenfeld, 2005). This results in a sparser
vascular plant development and a more open forest, which leads to a feedback that in turn
benefits mat-forming lichens (Sedia & Ehrenfeld, 2003).

Because of the rich secondary chemistry of lichens, their CBSCs are often claimed to
have allelopathic effects on plants (Lawrey, 1986, 1995). However, studies finding an
allelopathic effect of lichen CBSCs have often been made in the laboratory through bioassays
that use unrealistically high concentrations of CBSCs or that use water extracts that also contain
many (and often unknown) compounds other than CBSCs. Furthermore, many of these studies
have evaluated the allelopathic effect of lichen CBSCs on crop plants species like tomato, lettuce,
maize or sunflower, that are not naturally exposed to lichen CBSCs (Lascéve & Gaugain, 1990;
Romagni et al., 2000; Lechowski, Mej, & Bialczyk, 2006; Latkowska et al., 2006). However,
in reality very low amounts of lichen CBSC are leached to the soil because of their low water-
solubility (Stark, Kytoviita, & Neumann, 2007), and at ecological relevant conditions the
common lichen CSBC usnic acid does not reach concentrations in the soil that are able to impair
pine seedling growth or mycorrhizal-mediated nutrient uptake (Kytoviita & Stark, 2009). In this
light, we currently do not have a good understanding of the role of allelopathic interactions
involving lichens in natural ecosystems, or convincing and consistent evidence that allelopathic

effects of lichens are actually important.

VI. Conclusions and future directions

(1) In this review we have shown how lichens impact ecosystem processes, notably those that
involve the fluxes of carbon and nutrients, and how this is in turn regulated by the

considerable variation that exists for the functional characteristics of lichens (Fig. 2). We
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have also outlined how this variation impacts on the interactions of lichens with other
primary producers as well as with higher trophic levels, and the consequences of this for

community and ecosystem properties.

(2) Our knowledge about how lichen functional traits (both within and between species) vary

among ecosystems or across environmental gradients is limited, and this topic requires
further attention. Recent studies suggest that lichens show massive within-species
(relative to across-species) variation, especially in comparison with vascular plants
(Asplund & Wardle, 2014). There is a need for studies on how this high intraspecific
variation impacts on lichen community assembly processes and ecosystem functioning, in
the same manner that has recently been done for vascular plants (e.g., Jackson, Peltzer, &

Wardle, 2013; Kumordzi et al., 2015).

(3) Lichens often occur in multispecies mixtures, yet studies to date have almost entirely

considered only the effects of single lichen species. As such, little is known about how
lichen species mixtures, and their functional and taxonomic diversity, affects the key
community- and ecosystem-level processes that they drive. A large number of
experimental studies have addressed how vascular plant biodiversity impacts ecosystem
functioning (and, potentially, ecosystem services) (Cardinale et al., 2012), but this issue
remains unexplored for lichens, despite the relative ease by which they can be

experimentally manipulated, and their importance as ecosystem drivers.

(4) Future studies should also focus on the extent to which lichens, especially early in

succession, influence vascular plant succession and ecosystem development in the longer
term perspective. We show in this review that there are important short term effects, but
how they are manifested in longer term time scales, through for example by influencing

longer term vegetation successional trajectories and soil development, remain unknown.
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(5) Drivers of global change can potentially have important impacts on lichen communities.
As such, both increased temperature and N-deposition are expected to have adverse
effects on many lichen species and induce large shifts in their functional composition
(Bobbink et al., 2010; Elmendorf et al., 2012a, 2012b). Further, land-use intensification
may cause replacements of lichens that have fruticose growth by foliose species (Stofer et
al., 2006). Our review makes the case that functional differences between lichens are
powerful drivers of how they affect communities and ecosystems (Fig. 2), and there is a
need to better understand how global change-driven shifts in the composition of lichen

communities will mediate their impact on ecosystem functioning.
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Figure 1. Lichens show tremendous variation both in terms of their growth form and colour.
Upper three panels (left to right) are the crustose lichens Caloplaca epithallina, Carbonea
vitellinaria and Icmadophila ericetorum. The middle panels (left to right) are the foliose lichens
Lobaria pulmonaria, Arctoparmelia centrifuga and Leptogium saturninum. The lower three
panels (left to right) are the fruticose lichens Cladonia stellaris, Ramalina calicaris and Bryoria

tenuis. Photos are © Einar Timdal.

Figure 2. Lichens vary greatly in terms of growth form, type of photobiont, functional traits,
water holding capacity, colour and secondary chemistry. This variation results in species-specific
differences in the effect lichens have on community and ecosystem properties. Photos are ©

FEinar Timdal.

Figure 3. A wide range of consumer organisms depend on lichens, and these range in size from
microorganisms to large mammals. As such, lichen-consumer interactions operate at a wide range
of spatial scales. For smaller organisms the primary role of lichens is in providing a habitat, while

for larger organisms their primary role is as a food source.

Figure 4. Contrasting mechanisms by which lichens can affect the establishment and growth of
plants, notably during early stages of primary succession. Red (-) and blue (+) = negative and

positive effects of lichens on plants respectively. Illustration by Lennart Asplund.
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