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Abstract: Recent advances in robot and sensor technology makes it possible to survey a large
number of plants in a non destructive and cost efficient way. The present research approach
includes measurements with VIS/NIR multispectral camera mounted on UAV and robot and
traditional manual ground measurements. The analysis presented here, aims (1) to evaluate the
use of multispectral imaging from drone and robot as phenotyping tools, (2) to compare images
from drone and robot to see how they can complement each other for an optimized analysis
of the plants and (3) to study the reflectance response of various plant species exposed to two
different regimes of fertilizers. The sensors on UAVs provide a unique perspective of the growth
of the plants revealing the map of the variations within the field of study.
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1. INTRODUCTION

New approaches are necessary to meet the goals of in-
creased food production. Plant breeding can play a key
role by developing cultivars with higher yield potential
and better adaptation to stress. Progress in breeding de-
pends on the ability to design crosses with complementary
traits, and then perform effective selection among the
offspring. This requires precise and cost-effective methods
to evaluate large numbers of plants across relevant envi-
ronments and stresses. Traditional data capture based on
low throughput and manual methods is labour-intensive
and prone to human errors. While the costs of sequencing
and genotyping have dropped dramatically over the last
decade, the labour cost has increased and phenotyping
has now become the biggest bottleneck for realizing the
full potential of genomics in plant breeding.

The reflectance of electromagnetic energy by the crop
canopy at different wavelengths is predictive of important
physiological traits such as leaf nitrogen content, photo-
synthetically active biomass, leaf chlorophyll and plant wa-
ter status. Direct measurements are closely associated with
grain yield, but destructive and time consuming. Canopy
reflectance may therefore replace traditional methods to
screen large numbers of field plots in a fast and cost-
effective manner. Spectral measurements have tradition-
ally been obtained using hand-held or tractor-mounted
sensors (Andrade-Sanchez et al., 2014), but multispectral
imaging now offers the possibility to combine spectral radi-
ation with spatial information and thus perform a simul-
taneous phenotyping of both the physical structure and
physiological conditions of plants (Araus and Cairns 2014).
Even a simple RGB camera can be used to extract parame-
ters related to biomass and plant physiological status, but
more information can be obtained by multispectral and

hyperspectral cameras that include a larger proportion of
the electromagnetic spectrum. Some wavelengths contain
more biologically relevant information than others, and
several spectral indices like the NDVI (normalized dif-
ferential vegetation index) and EVI (enhanced vegetation
index) are widely used.

These recent advances in machine vision and imaging
have resulted in several new robotic systems developed for
high-throughput phenotyping. Autonomous ground robots
have been developed for information gathering, such as
Bonirob (V2) (Bangert et al., 2013), the RIPPA (Robot
for Intelligent Perception and Precision Application) from
University of Sydney and the Thorvald robot used in
this work (Grimstad et al., 2015). Airborne cameras have
also gained much interest. In particular, UAVs and au-
tononomous aircrafts have been used both commercially
and in several different research projects (Chapman et al.,
2014). The Flourish project aims at combining the aerial
survey capabilities of a small autonomous multi-copter
UAV with a multi-purpose agricultural Unmanned Ground
Vehicle (UGV) (Liebisch et al., 2016), taking advantage of
the main positive aspects of each system.

A strategic collaboration has been initiated at the Nor-
wegian University of Life Sciences, where research groups
across departments and disciplines are joining forces to
explore how multispectral imaging can be used as a pheno-
typing technology in plant breeding research. This includes
the development and testing of multispectral imaging in
visible and near infrared wavelengths of plants in field
trials, using cameras mounted on an autonomous field
robot and on an Unmanned Airborne Vehicle (UAV). This
equipment is part of a common sensor lab that has been
established at the university, which also serves many other
research purposes. Based on pilot projects run during
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the summer of 2016 there are plans to upgrade the field
research station with new facilities for high-throughput
field phenotyping. Examples of ongoing research and some
preliminary results from the pilot project comparing the
use of robot and drones in field trials are presented.

2. MATERIAL AND METHODS
2.1 Study site

A set of 24 spring wheat cultivars and breeding lines
representing the yield progress over the last 40 years in
Norway (Lillemo and Dieseth., 2011) was planted in a
yield trial at Vollebekk research station in As, south-
eastern Norway. Two nitrogen (N) fertilization levels were
applied: 75 and 150 kg N/ha (named high-N and low-N
hereafter) representing the typical N fertilization levels of
the 1970s and today. The trial was laid out in an alpha-
lattice split plot design with two reps of each variety within
each N-level as displayed in Fig. 1. . The trial was planted
on May 12, using a seeding rate of 23 g/m2. The plots
were 1.5 m wide and 4 m long, and with a 1 m alley
between plots. The trial was treated with herbicides and
fungicides following normal agronomic practice in order to
get a true measure of grain yield in the absence of any
biotic stress. The following traits were measured manually
during the growing season: heading date, maturity date
and plant height. Heading is the phase in the plant
development when a head emerges from the sheath of
the upper leaf. When all plants had matured, the whole
trial was harvested using a plot combine. The samples
were weighed to calculate grain yield, and the samples
were analysed to obtain standard grain quality parameters
1000-kernel weight, hectoliter weight and protein content.

2.2 Robotic System

The robot used in this work is the Thorvald I agricultural
platform. The robot is powerful enough to perform energy-
demanding operations as well as possessing the beneficial
properties of lightweight, autonomous robots. The Thor-
vald platform was designed and built at the Norwegian
University of Life Sciences. It has a low center of gravity,
and a total mass of approx. 150 kg. For monitoring and
surveillance, the robot is sufficiently light weight not to
damage the plants and the soil and to maintain a long
operation time. The robot has individual steering motors
for each wheel, which makes it highly maneuverable, and
the frame members and frame joints are made somewhat
flexible to ensure that all wheels will remain in contact
with the ground, even in rough terrain. The robot is
depicted in Fig. 2.

In addition to the ground vehicle, a UAV was also used
to obtain remote images covering the whole field. A DJI
Phantom3 drone was used, that can carry small pay-
loads such as light-weight cameras. The drone was pre-
programmed to take several pictures of the entire field
and the pictures were then post-processed and stitched
together to make a complete map of the field.

2.3 Imaging

The research approach considered in this study included
measurements with a multispectral camera with three
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Fig. 1. Map of the 24 spring cultivars laid out in an alpha-
lattice split plot design with two reps of each variety
within each N-level

Fig. 2. The Thorvald I robot used for the field tests

broad band spectral channels: green, red and near infrared
(NIR), one narrow band channel and an RGB sensor
(Parrot Sequoia, Micasence.com). The wavebands for the
four sensor bands of the Parrot Sequoia camera are shown
together with typical reflectance spectra of a healthy and
a stressed plant in Fig. 3. As can be seen on the figure,
healthy vegetation reflects a very high amount of the solar
radiation in the NIR part of the electromagnetic spectrum.
These wavelengths can not be seen by the human eye,
which is why the plants look green to humans, as there is
a small increase in the reflection in the green part of the
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Fig. 3. Typical reflectance spectra of soil, a healthy and a
stressed plant, with wavebands of the Parrot Sequoia
camera (Micasence.com)

visible wavelengths. The NIR sensor on the camera can
detect the NIR reflection of the plants and the relation
between the NIR reflectance and the red band reflectance
indicate something about the health of a plant. In order
to compute the reflectance in all the bands independent
of the light conditions of the moment of the measurement
a standardized white calibration plate reflecting 100% of
the solar radiation was recorded before each set of images
and a sunshine sensor connected to the camera corrected
for varying light conditions during the measurements. The
camera was mounted both on the UAV and the robot. On
the robot the camera was attached to a rack with fixed
distance to the ground, the camera looking down on the
plots (at nadir). The sunshine sensor was placed on top of
the rack. The robot was programmed to drive along each
of the 14 plot rows taking 2 images of each plot. On the
UAV the camera was attached underneath the drone and
the sunshine sensor on top. The camera was programmed
to record images at regular time intervals during the flight.
The UAV was programmed to fly over the field at a fixed
height of 15m above ground, in straight lines and with
constant speed taking regular images in order to cover the
whole field.

2.4 Data analysis

The multispectral images obtained from the UAV were
first uploaded to the Atlas software (Micasence.com)
where the individual frames were stitched together to a
map. The algorithm uses a combination of GPS cordinates
and image features to stitch the images correctly together.
The software outputs a map in each of the wavelength
bands: green, red, NIR and narrow band. In addition a dig-
ital elevation map is generated, which is a 3D representa-
tion of the terrain (Li et al., 2005). These are georeferenced
images and can be integrated directly into a map of the
area (e.g. Google map). The georeferenced multispectral
images were then further analysed using selfwritten scripts
in the Python software. Maps of the NDVI were computed
as a subtraction of the red reflectance values from the NIR,
divided by the sum of NIR and red bands according to the
equation (1):
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NIR-R
NDVI="""°" 1
NIR+ R’ (1)

where NIR and R are the reflectance values in the near
infrared and red wavebands, respectively. The values of
NDVI goes from -1 to 1 and values for vegetation are
generally between 0.4 and 1.

Mean values of NDVI for each individual plot were also
computed. The images from the different dates were first
aligned due to slightly different orientations and resolu-
tion. In some cases the GPS signals to the UAV were
unstable and we had to fly manually over the field which
resulted in some maps that did not have full coverage of
all plots. The alignment was carried out by using a com-
bination of GPS coordinates, and an alignment procedure
using a minimum of 4 manually selected reference points.
An automatic edge detection of the plots was complex due
to the varying edges of the plots during the growth period
of the plants. Thererfore, a manual selection of the plots
was carried out on one of the maps and given that all the
maps were aligned, this selection could be used further on
all the maps automatically. In this way, values of all the
plots of all dates coul be computed automatically, once the
selection of the first plot was performed. Only the inner
part of each plot was selected in order to minimize errors
due to edges of plots or small alignment errors. In order
not to include values from soil, all the NDVI values below
0.3 were removed and not included in the analysis.

The DEM frames were used to compute the mean height
for each plot. A background correction of the height
variations in the ground was performed by selecting small
regions around the field and between the plots, computing
the mean values of these regions and then performing
a regression in two directions (x,y) along the rows and
columns of the plots. The modelled background values was
subtracted from the respective mean height value of each
plot.

The images from the robot were read individually into
the computer programme and the mean NDVI values of
each plot was computed as the mean of the two images
obtained. This could be done automatically as the robot
always followed the same route through the plots with two
images per plot.

3. RESULTS AND DISCUSSION
3.1 Robotic system

During the experiments with the robot, several interesting
observations were made. Firstly, the width of the wheels
needed to be narrower, as they touched the wheat as
the robot was moving in the field. Secondly, as the crop
grew higher, the relatively low ground clearance of only
59 cm made the robot bend the crop, which was becoming
increasingly troubling with higher crop. It was also noticed
that it would be nice to be able to change the width of
the robot itself, as the track sizes of the different field
experiments were different. It was therefore decided to
build a second robot, the Thorvald II. This robot has
narrower wheels, a ground clearance of up to 180 cm,
and is completely modular so that it can be re-configured
into a wide variety of designs and widths using only
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Fig. 4. NDVI map of the field from left to right 17.06.2016, 18.07.2016 and 10.08.2016

Fig. 5. The Thorvald II robot specifically designed for phe-
notyping tasks, with narrower wheels, higher ground
clearance, and a modular design allowing us to rebuild
the robot into a wide variety of configurations and
sizes.

standard hand tools. The robot is illustrated in Fig. 5 and
is described in detail in Grimstad and From (2017).

3.2 Agricultural measurements

Three NDVI maps obtained from the UAV from different
dates, 17.06, 18.07 and 10.08 are shown in Fig. 4. There
are several observations to be pointed out from these
maps: i) There are large variations in the field along
the growth season. The NDVI values on the 17.06 have

already reached high values for most of the plots, they have
decreased slightly but remain high on the 18.07 and have
decreased considerably on the map from 10.08. ii) There
is a large variation between the plots, and in particular
it can be noticed that the NDVI for the four middle
blocks are generally higher than for the outer blocks. This
is expected since these blocks recieved a higher dose of
Nitrogen (high-N) than the outer rows (low-N). iii) The
NDVT for the plants exposed to high Nitrogen fertilization
remains higher towards the end of the growth period than
for the plants exposed to low Nitrogen fertilization. iv)
The last image from 10.08 is influenced by lodging of the
plots with long and weak straws.

The time series of the mean NDVTI values for some selected
plots are shown in Fig. 6. We selected the plots that had
full coverage for all the measurement dates. The start
time (day 0) on the figure indicates the date 17.06. The
NDVI clearly increases with time and remains at a high
plateu value for a time period of approximately 15 days.
The highest values for the plots exposed to low-N has a
mean value of 0.92 whereas the mean value for the plots
exposed to high-N is of 0.95. This is also clearly seen on
the maps (Fig. 4). From day 30 to day 60 the NDVT value
decreases rapidly for the plots exposed to low-N. For the
plots exposed to high-N the NDVI remains high up to day
50 and decreases towards day 60 as the grains ripen. The
NDVI values are generally believed to be related to the
yield of crops, which was also confirmed in this study. The
mean value of the measured yield for all the low-N plots
was 528.8 kg/daa versus 680.9 kg/daa for the high-N plots.
This agrees with the mean NDVI measured for the low-N
and high-N plots.
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7. Measurement of maximum NDVI vlaues from
drone images versus ground measurements of yield
for some of the plots (Mirakel, Bjarne, Demonstrant,
SNW1101) with good time coverage was obtained.

Fig.

The maximum NDVI measurement for some of the wheat
cultivars (Mirakel, Demonstrant, SW1101 and Bjarne)
were compared with their respective yield measurement,
which is displayed in Fig. 7. A linear fit to the data points
is also shown in the figure. There is a clear correlation
between the maximum NDVI values and the yield. When
comparing the NDVI curves with the heading dates from
ground measurement we note that the heading occurs at
the beginning of the maximum plateau of the NDVI curve
for all the plots and treatments. For all the curves there
seems to be a small dip in the curve just after heading,
however, this needs to be confirmed in further studies.
There does not seem to be any difference between the two
treatments (low-N and high-N) regarding the maximum
reach of the NDVI and hence the heading dates from the
NDVI curves, which is confirmed by the manual ground
measurements: day 18.3 on the curve for low-N and day
18.7 for high-N.

An additional output from the processing of the drone
images is the 3D model of the field in a DEM which makes
it possible to estimate the height of the plants, as shown in
the visualisation of the plot for the date 18.07 in Fig. 8. It
can be seen from the map that the mean plant height varies
for the plots across the field. The estimated heights from
July 18th were compared with the manually measured
heights from end of July and a correlation of 0.68 was
found between them.

of selected plots exposed to low-N

40 50 60 70 Mumber of days

Number of days

(left), High-N (middle) and mean value of low and high

Fig. 8. Mean height of each plot dervied from the Digital
Elevation Map of the field from the stitched drone
images from 18.07. The z-axis shows the height of the
plots.

The robot images from the start of the growth season
contain a few plants close to the ground. However, during
the growth season the plants grow higher, and since the
height of the robot was fixed during this survey the
growing plants reached too close to the robot and the
camera. This was both destructive for the plants and
influenced the images. Since the images were obtained
from nadir they suffered from a few very exposed points
at the top of the plants and shadowed parts underneath.
The sunshine sensor did not perform as expcted in these
conditions and many of the images were saturated and
could not be white reference calibrated. Towards the end
of the season an updated firmware was installed for the
sunshine sensor, which improved the results from the
robot images. The NDVI values computed automatically
from the robot images showed a big decrease in NDVI
around the moment of heading, then an increase. Due
to uncertainties around the saturation, calibration and
shadow effects of the lower parts of the plants these NDVI
values were not used in the analysis of the plots. Examples
of images from the 6 dates during the growth season, 27.05,
16.06, 28.06, 03.07, 18.07 and 04.08 are displayed in Fig. 9
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Fig. 9. Close up of robot images of the cultivar Mirakel
exposed to low-N from different dates during the
growth season. The heading at 03.07 is indicated with
the purple ovals.

for the cultivar called Mirakel exposed to 8 kg of fertilizer.
Sections of the whole images are extracted to show details
of the plants. It can be seen that no heading is present
on the image of 28.06 and that it has occured on the
image from 03.07, which agrees with the manual ground
measurements of the heading date that was also noted to
be 03.07. Possibly the detection of heading could be done
automatically on the images from the robot by spectral
analysis or spatial pattern recognition.

It is clear that the images from the drone and the robot did
not provide the same information in this survey. Whereas
the NDVI maps from the drone provide indications on the
yield and time of heading, robot images obtained closer to
the plants could be used to study close up features of the
plants. In order to get reliable NDVI measurements also
from the robot, two cameras at different angles could be
used, one at nadir and one at e.g., 50 degrees. The images
obtained at the 50 degrees angle will be able to capture
larger parts of the plants. This is especially true in the case
where the plants have grown high, and the nadir images
will only measure the surface covering the ground.

4. CONCLUSION

The integration of multispectral sensors on UAV and
robot provides an enhanced and flexible measured survey
solution with accurate data captured on site. The cali-
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brated NDVI images obtained by aerial sensing confirm
the measurements carried out at ground level and could
be used to compute heading dates and yield estimate.
Sensors and methods developed for UAVs are not directly
applicable for ground robots. However, the images from
the robot display close details of the plants that can be
explored further by the means of advanced image analysis.
In future works one would like to expand the sensors to
hyperspectral camera. Pre-defined spectral indices such
as NDVI might lead to an over-simplified or even mis-
leading interpretation as they consider only a few distinct
wavelengths. By covering a wider spectral range with high
spatial resolution up to centimeters, the new measurement
capabilities with the integrated methodology will advance
the prediction accuracy of different traits of the plants.
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