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Abstract 

Salmon price is highly volatile and hard to predict. This obscures planning decisions and raises 

financing costs for market participants. This study considers hedging the spot price uncertainty with 

salmon futures contracts. It employs a new framework of hedging under square loss, consisting of a 

new objective function, an optimal hedge ratio and a measure of hedging effectiveness. The new 

framework aims at minimizing the expected squared forecast error. It generalizes the classical 

minimum variance hedging as it relaxes the assumption of known expected prices. The salmon 

futures contracts deliver satisfactory hedging performance, albeit constrained by low liquidity. 

Therefore, I suggest holding the contract through maturity rather than closing the futures and the 

spot positions simultaneously. This strategy alleviates the liquidity issue and saves transaction costs. 

All things considered, hedging with salmon futures is a moderately effective way of handling the 

salmon price uncertainty. Importantly, the empirical results differ starkly under the two different 

hedging frameworks. Hence, it is crucial to choose the new framework when expected prices are 

unknown.  

(JEL: Q14, G13, C53) 
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1.  Introduction 

Salmon price is highly volatile and hard to predict (Oglend, 2013; Bloznelis, 2016b, 2017b). Large 

unexpected price fluctuations complicate business management and financial planning for market 

participants. Salmon farmers and processors tailor their operation schedule to match the profit-

maximizing production path, which depends on the future spot price of salmon. Exporters and 

retailers buy fish in the spot market and need to plan their future expenditures based on price 

expectations. The high uncertainty over future realizations of the spot price requires them to be 

flexible and financially solid enough to withstand large unexpected increases in costs or decreases in 

revenues. Unsurprisingly, the high price uncertainty is perceived negatively by market participants 

(Jensen, 2013), and there is broad demand for risk management solutions such as hedging. 

The objective of this study is to design a feasible hedging strategy for the spot price of salmon 

and evaluate its effectiveness. The study employs a new framework of hedging under square loss 

aimed at minimizing the expected squared forecast error, which was first outlined in Bloznelis 

(2016a). It considers hedging the spot price uncertainty with salmon futures contracts four, eight and 

13 weeks ahead. Three different hedging strategies are compared, two of them classical and one 

unorthodox (in which the futures contract is not liquidated simultaneously with the spot position but 

rather kept until maturity); the latter is especially useful when the hedging instrument has low 

liquidity. Out-of-sample performance evaluation suggests that hedging with salmon futures is a 

moderately effective way of managing the price uncertainty. 

The novelty of this work is twofold. First, it presents a new framework of hedging under square 

loss, defined by a new objective function, a corresponding optimal hedge ratio and a measure of 

hedging effectiveness. The new framework generalizes the classical minimum variance hedging 

(Johnson, 1960; Stein, 1961; Ederington, 1979) which is inappropriate when assets and/or hedging 

instruments have unknown expected prices. The new framework naturally accommodates both 

known and unknown expected prices and thus applies broadly in commodity and financial markets. 
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Its relevance is only limited by the choice of the loss function (but the underlying idea extends to 

alternative loss functions as well).  

Second, the study suggests a simple yet effective hedging strategy that is feasible under low 

liquidity, unlike its traditional counterparts. It is also applicable to a wide spectrum of futures 

markets with low or high liquidity where the futures contracts are cash settled. On the whole, this 

work is of immediate relevance to hedgers in commodity and financial markets and may bring 

particularly large benefits when dealing with unknown expected prices, cash settled futures 

contracts, and illiquid hedging instruments. Also, policymakers will benefit from the new hedging 

framework as it elicits the fundamentals of hedging under square loss and exposes a major fallacy of 

the standard approach. Avoiding such fallacies and having a solid grasp of the principles of hedging is 

instrumental in designing functional incentive schemes and regulating the markets effectively. 

Academic literature on hedging the salmon price uncertainty is nascent. Bergfjord (2007) offers 

a hypothetical discussion on hedging the spot price risk with salmon futures contracts as he examines 

the perspectives of several newly established futures exchanges; however, no empirical investigation 

is supplied. Bergfjord (2009) reports a survey on risk perception and risk management of Norwegian 

salmon farmers. They appear to be only moderately risk averse, but they consider the future spot 

price of salmon to be the most important source of uncertainty. Misund and Asche (2016) is perhaps 

the only applied study focusing directly on price hedging in the salmon market. The authors employ 

the classical minimum variance hedging framework and consider using salmon futures contracts as a 

hedging instrument for salmon price risk. Several different models are applied for estimating optimal 

hedge ratios, some of them only in-sample (making the resulting hedge ratios impossible to use in 

real time) while other also out of sample (and thus applicable in real time hedging). For the period 

2006-2014, the out-of-sample optimal hedge ratios yield almost 30% reduction in variance when 

hedging 4-5 weeks ahead, while a naïve ratio of unity yields almost 40%. While Misund and Asche 

(2016) operate under the classical framework of minimum variance hedging, this study shows that 

this framework is inappropriate when expected prices may be unknown, such as in the case of 
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salmon. Therefore, market participant demand for risk reduction might not be fully met. Meanwhile, 

the current study applies the new, appropriate framework, and thus offers a timely response to a 

pressing issue.  

The remainder of the article is structured as follows. Section 2 focuses on measures of 

uncertainty. Section 3 presents hedging and discusses objective functions, optimal hedge ratios and 

measures of hedging effectiveness. Section 4 provides an introduction to the salmon market and 

overviews the peculiarities of hedging the future spot price of salmon with salmon futures contracts. 

It also presents three hedging strategies and explains the rationale behind them. Econometric 

methodology and a review of the data are laid out in Section 5. Empirical results are to be found in 

Section 6, followed by a conclusion in Section 7. 

2.  Measuring uncertainty 

2.1 Uncertainty and forecast error 

Market participants such as salmon farmers face uncertainty over what the salmon spot price will be 

in the future. Currently, at time �, the price is ��. In the future, at time � + ℎ, where ℎ > 0, the price 

will be ���	. At time �, a farmer does not know ���	, but he/she has some idea of what it could be. 

He/she may have a density forecast or at least a point forecast for ���	. Let us consider the point 

forecast and let us denote it �̂��	|�, indicating that it is a point forecast of ���	 made at time �.  

Since forecasts are hardly ever perfect, the farmer makes a forecast error �

��	|� ≔ ���	 −

�̂��	|�. The error is realized (becomes known) at time � + ℎ; before that, at time �, �

��	|� is a 

random variable. It is the probabilistic properties of �

��	|� that characterize the price uncertainty 

the farmer is facing at time �. These properties allow us to investigate the uncertainty from a 

quantitative perspective, to measure it, and to connect the practical interpretation of uncertainty 

with its mathematical characterization.  

Any and all probabilistic properties of �

��	|�, including those characterizing uncertainty, can 

be extracted from the probability distribution function of �

��	|� and the corresponding probability 
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density function. For example, if large (negative or positive) errors are relatively likely to be realized, 

i.e. their probability density is high, then the uncertainty is high. If they are unlikely, i.e. their 

probability density is low, the uncertainty is low. Conversely, by high uncertainty we mean that large 

(negative or positive) errors are relatively likely to be realized, i.e. their probability density is high. 

Meanwhile, by low uncertainty we mean that such errors are unlikely, i.e. their probability density is 

low. This is how we interpret the probability distribution of �

��	|� in terms of uncertainty, and also 

how we translate the practical understanding of uncertainty into probabilistic characteristics of 

�

��	|�. 

2.2 Distributional moments that reflect uncertainty 

It is not always convenient to work with the probability distribution function of a random variable. 

Instead, some summary characteristics may be simpler to handle yet still serve the purpose of 

characterizing uncertainty. See Table 1 for a schematic overview. For example, one such 

characteristic is the first absolute moment E����

��	|���, where E��∙� denotes the mathematical 

expectation conditional on the information available at time �. When E����

��	|��� is large, the 

probability density of large errors must be high and hence the uncertainty is high; when 

E����

��	|��� is small, the probability density of large errors must be low and hence the uncertainty 

is low. Conversely, high uncertainty translates into high probability density of large errors and thus 

large values of E����

��	|���; and low uncertainty translates into low probability density of large 

errors and hence small values of E����

��	|���. Thus E����

��	|��� is informative of the magnitude 

of uncertainty and in general is a sensible measure of uncertainty. See Figure 1 for some illustrations 

of diverse forecast error distributions, their summary characteristics, and their implied uncertainty. 

[Table 1 about here] 

[Figure 1 about here] 

Similarly, consider the second moment E���

��	|�� �. When E���

��	|�� � is large, the probability 

density of large errors must be high and hence the uncertainty is high; when E���

��	|�� � is small, 
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the probability density of large errors must be low and hence the uncertainty is low. Conversely, high 

uncertainty and the corresponding high probability density of large errors produce large values of 

E���

��	|�� �; and low uncertainty produces small values. Just like the first absolute moment, also the 

second moment is informative of the magnitude of uncertainty and thus makes sense as a measure 

of uncertainty. Whether to use the first absolute moment or the second moment depends on the 

loss function that is relevant in a particular application. The first absolute moment is applicable under 

absolute loss, while the second moment applies under square loss.  

2.3 Distributional moments that fail to reflect uncertainty 

On the other hand, not all summary characteristics of the forecast error distribution adequately 

reflect uncertainty. That is, some or all values of these characteristics are not informative of the 

magnitude of uncertainty. Consider the first moment, or the mathematical expectation E���

��	|�� 

as an example. If E���

��	|�� is large (negative or positive), the uncertainty is high, because a large 

E���

��	|�� implies that large errors are relatively likely to be realized and that large positive errors 

do not outweigh large negative errors nor the other way around. But if E���

��	|�� is small (close to 

zero), the uncertainty may be either low or high. E.g. if E���

��	|�� = 0, i.e. E���

��	|�� is the 

smallest possible, �

��	|� may be zero with probability one, that is, there may be no uncertainty at 

all as the price may be forecast with perfect accuracy (zero error); see panel c) of Figure 1. 

Alternatively, if E���

��	|�� = 0, then �

��	|� may have a symmetric heavy-tailed distribution 

where large errors are likely and thus the uncertainty is high; see panel b) of Figure 1. Since a small 

E���

��	|�� is perfectly compatible with both low and high uncertainty, it is not informative of the 

magnitude of uncertainty. Hence, E���

��	|�� does not make sense as a measure of uncertainty. 

Similarly, consider the second central moment, or variance Var���

��	|�� ≔ E� ���

��	|� −

E���

��	|�����. When it is large, large errors (either negative or positive, or both, depending on 

E���

��	|��) are likely and the uncertainty is high. But if variance is small, the uncertainty may be 
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either low or high. E.g. if variance is zero, �

��	|� may be zero with probability one, indicating 

complete certainty; see panel c) of Figure 1. On the other hand, if variance is zero, the forecast error 

distribution may have all of its mass concentrated at a large (negative or positive) value, meaning 

high uncertainty because large errors are guaranteed; see panel d) of Figure 1. Indeed, small variance 

is compatible with both low and high uncertainty. Therefore, small variance is not informative of the 

magnitude of uncertainty, and hence variance is not a valid measure of uncertainty.  

However, there is one condition under which variance becomes a sensible measure of 

uncertainty; the condition is that the mathematical expectation be zero. If the expectation is zero, 

variance equals the second moment:  E���

��	|�� = 0 ⇒ Var���

��	|�� = E���

��	|�� �. Since the 

second moment adequately reflects uncertainty, the expectation being zero ensures that variance 

does, too. The expectation being zero is an important special case in which variance is transformed 

from an otherwise invalid measure of uncertainty to a valid one; it happens as variance turns into the 

second moment. Consequently, for all practical purposes of measuring uncertainty, it is always safer 

and simpler to use the second moment in place of variance. First, if the two coincide, there is no loss 

by using the second moment. Second, if they do not coincide, it is only the second moment that is a 

valid measure of uncertainty while variance is not. Section 3 will scrutinize the second moment and 

variance in the context of hedging. 

2.4 Asset price vs. forecast error 

Uncertainty and its measurement have been explained above with the help of the forecast error. One 

may ask whether it is necessary to employ the forecast error in the explanation. For example, could 

uncertainty be characterized by the probabilistic properties of the asset price alone, without 

referring to the forecast error? Would the first, the first absolute, the second or the second central 

moment of the asset price itself reflect uncertainty?  
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The answer is, no. Fundamentally, uncertainty arises when a market participant does not know 

how the asset price is generated.2 Uncertainty refers to the gap between the market participant’s 

beliefs about the price-generating process (and thus his/her price forecasts) and the actual process 

(the realizations). Hypothetically, if the asset price were generated in a deterministic way and there 

were no randomness involved, there would still be uncertainty as long as the market participant did 

not know the deterministic mechanism that generated the price. In summary, considering the asset 

price alone is not sufficient to characterize uncertainty. 

3.  Hedging under square loss 

3.1 Objective of hedging 

3.1.1 Classical objective 

Hedging is “making an investment to reduce the risk of adverse price movements in an asset” 

(Investopedia, n.d.).3 The goal of hedging is to lower price risk, or price uncertainty (Hull, 2012, p. 11). 

More precisely, the purpose of hedging is defined by an objective function. When hedging the price 

uncertainty of an asset ℎ periods ahead, a popular objective is to minimize the variance (conditional 

on the information available at time �) of the portfolio price, 

Var��!��	� = E� ��!��	 − E��!��	���� → min& , (1) 

where ! = !�(� = � − () is the price of the hedge portfolio; � is the price of the original asset; ) is 

the price of the hedging instrument; and −( is the portfolio weight of the hedging instrument; ( is 

also known as the hedge ratio. The (negative of the) hedge ratio reflects the hedger’s exposure to the 

                                                           
2 In this work, the notion of uncertainty is different from the notion of risk. Risk arises when the price 

generating mechanism is known but is stochastic, such as a roulette or a dice throw. Meanwhile, uncertainty 

refers to situations where the mechanism is unknown, regardless of whether it is deterministic or stochastic. 

(However, the term risk will appear in fixed expressions such as price risk, risk reduction and risk management.)  

3 See Bloznelis (2017a) for an introduction into hedging under square loss and a detailed presentation of a new 

hedging framework based on Bloznelis (2016a). 
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hedging instrument’s price as a fraction (or a multiple) of the exposure to the price of the original 

asset.  

The objective in equation (1) does not directly relate to uncertainty, as discussed in Section 2.4. 

So how is it linked to minimization of uncertainty, if at all? An additional assumption is necessary to 

make the connection. 

Assumption 1: The hedger knows the mathematical expectation (conditional on the information 

available at time �) of the portfolio price at a future time � + ℎ, and uses it at time � as a point 

forecast for the portfolio price at � + ℎ: !̂��	|� = E��!��	�. 

Under Assumption 1, we can rewrite Var��!��	� as  

Var��!��	� = E� ��!��	 − E��!��	���� = E� ��!��	 − !̂��	|����, (2) 

which is the second moment of the forecast error !��	 − !̂��	|�. As discussed in Section 2.2, this is a 

valid measure of uncertainty under square loss. Let us call it the expected squared forecast error of 

the portfolio price !��	 and denote it 

ESFE��!��	� ≔ E� ��!��	 − !̂��	|����. (3) 

Assumption 1 turns the hedging objective in equation (1) into minimization of the second moment of 

the forecast error, or the expected squared forecast error, 

ESFE��!��	� → min& , (4) 

which corresponds to minimization of uncertainty under square loss. 

How restrictive is Assumption 1? It requires knowledge of the expectation of the future portfolio 

price, which is not innocuous in the context of financial markets. There are markets and forecast 

horizons (and thus hedging horizons) where such an assumption might be plausible; e.g. stock or 

foreign exchange markets in short time horizons can be assumed to have zero expected returns, 

implying that E��!��	� = !�, which allows using !� as a point forecast at time �. But there are other 

markets where this assumption is too strong and likely to be violated, e.g. markets of seasonal 

commodities such as wheat, live cattle, gas or electricity in forecast horizons equal to a fraction of 
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the seasonal period; there the expected return is clearly nonzero but generally unknown, so a point 

forecast satisfying !̂��	|� = E��!��	� is unavailable. The salmon market also belongs among the 

latter. When the expected value is unknown, the objective in equation (1) does not correspond to 

uncertainty minimization in equation (4) and is not a valid goal from a hedger’s perspective. Thus a 

replacement objective is needed. 

3.1.2 New objective 

When Assumption 1 holds, minimization of portfolio variance coincides with uncertainty 

minimization under square loss. Let us generalize the hedging objective to correspond to uncertainty 

minimization under square loss when the assumption is relaxed. Such a general objective is given in 

equation (4) and is to minimize the second moment of the forecast error, or the expected squared 

forecast error. Thus the objective in equation (4) corresponds to uncertainty minimization regardless 

of whether Assumption 1 holds. As such it is a valid replacement of variance minimization in hedging 

exercises.  

While the classical and the new objective coincide under Assumption 1, let us examine how they 

differ when the assumption is violated. It is straightforward to show that the expected squared 

forecast error is greater than or equal to the variance of the portfolio price, 

ESFE��!��	� = E� ��!��	 − !̂��	|����                                                             

          = E� ��!��	 − E��!��	� + E��!��	� − !̂��	|���� 

                          = E� ��!��	 − E��!��	���� + E� ��!̂��	|� − E��!��	���� 

                  = E� ��!��	 − E��!��	���� + �E��!̂��	|� − !��	���  

= Var��!��	� + Bias���!̂��	|��                        

≥ Var��!��	�,                                                     

(5) 
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where Bias���!̂��	|�� ≔ �E��!̂��	|� − !��	��� ≥ 0 denotes the squared bias of the forecast.4 This 

decomposition also illustrates that low variance is perfectly compatible with high uncertainty 

whenever there is a high squared forecast bias. Moreover, a decrease in variance due to hedging is 

compatible with an arbitrarily large increase in the expected squared forecast error and thus 

uncertainty! This happens when the increase in the squared forecast bias is greater than the 

reduction in variance: 

Var��!��	� < Var�����	�    holds simultaneously with    ESFE��!��	� > ESFE�����	� 

if 

Bias���!̂��	|�� − Bias����̂��	|�� > Var�����	� − Var��!��	�. 

(6) 

 

(7) 

Therefore, pursuing variance minimization due to equation (1) when aiming at reduced uncertainty 

may be a dangerous and detrimental strategy, bringing an increase in uncertainty despite a reduction 

in variance.  

3.2 Optimal hedge ratio 

3.2.1 Derivation 

The hedge ratio ( that optimizes the objective function is called the optimal hedge ratio (OHR) or the 

risk-minimizing hedge ratio. Chen et al. (2003) provide a review of solving for and estimating optimal 

hedge ratios under different assumptions for a variety of objective functions. The optimal hedge ratio 

due to the objective in equation (4) for hedging ℎ weeks ahead, (	,2342∗ , is not included there. It can 

be found by taking the derivative of the objective function with respect to the hedge ratio and 

setting it to zero, which yields 

                                                           
4 This is an unorthodox definition of forecast bias. Here, the forecast itself is fixed (nonrandom) and the 

expectation is taken over the distribution of the target variable. It is opposite to the classical notion of bias of a 

forecast-generating process, where the target is fixed and the expectation is taken over the distribution of the 

forecast which is a random variable. 
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(	,2342∗ ≔ E�����	)��	� − �̂��	|�E��)��	� − )6��	|�E�����	� + �̂��	|�)6��	|�
E��)��	� � − 2)6��	|�E��)��	� + )6��	|�� . (8) 

A feasible sample counterpart, (6	,2342∗ , is obtained by substituting the unknown theoretical 

quantities in equation (8) by their sample analogues: E�����	� with �̂��	|�, E��)��	� with )6��	|�, 

E�����	)��	� with E8�����	)��	�, and E��)��	� � with E8��)��	� �, to yield 

(6	,2342∗ ≔ E8�����	)��	� − �̂��	|�)6��	|� − )6��	|� �̂��	|� + �̂��	|�)6��	|�
E8��)��	� � − 2)6��	|�)6��	|� + )6��	|��  

= E8�����	)��	� − �̂��	|�)6��	|�
E8��)��	� � − )6��	|��                                       

= Cov< �����	, )��	�
Var< ��)��	� .                                                          

(9) 

Here, Cov< �����	, )��	� ≔ E8�����	)��	� − �̂��	|�)6��	|� and Var< ��)��	� ≔ E8��)��	� � − )6��	|��  are 

estimates of conditional covariance Cov�����	, )��	� and conditional variance Var��)��	�, 

respectively. Given a conditional mean model for �� and )� with respective additive innovations =� 

and >�, we may further express (6	,2342∗  as  

(6	,2342∗ = Cov< ��∑ =��@	@AB , ∑ >��@	@AB �
Var< ��∑ >��@	@AB � . (10) 

Assuming that the innovations from different time periods are conditionally uncorrelated, 

Cov��=�, =C� = Cov��=�, >C� = Cov��>�, >C� = 0 for � ≠ �, we obtain a simplification of (6	,2342∗ , 

(6	,2342∗ = ∑ Cov< ��=��@, >��@�	@AB
∑ Var< ��>��@�	@AB

=: (6	,2342∗∗  (11) 

which we denote (6	,2342∗∗ . This hedge ratio can be readily used in applications, its inputs being 

forecasts of the conditional variance matrices of the additive errors from the conditional mean 

model for �� and )�. 

3.2.2 Comparison with classical optimal hedge ratio 

The optimal hedge ratio stemming from the objective in equation (4) differs from the optimal hedge 

ratio due to the objective in equation (1), the latter being 



14 

 

(	,FGH∗ = Cov�����	 , )��	�
Var��)��	�  (12) 

(Johnson, 1960, Ederington, 1979). At the same time, the empirical optimal hedge ratio in 

equation (9) is the same as the commonly used empirical counterpart of equation (12), (6	,FGH∗ : 

(6	,FGH∗ = Cov< �����	, )��	�
Var< ��)��	� = (6	,2342∗ . (13) 

This might appear paradoxical since the theoretical optimal hedge ratios due to equations (8) and 

(12) differ. But there is nothing wrong with that; both empirical ratios, (6	,2342∗  and (6	,FGH∗ , are derived 

by substituting the population quantities by their sample counterparts. The differences between the 

theoretical ratios (	,2342∗  and (	,FGH∗  happen to cancel out because of the substitution, which then 

leads to the empirical ratios becoming the same, (6	,2342∗ = (6	,FGH∗ . However, (6	,2342∗  and (6	,FGH∗  need 

not always be the optimal estimators of (	,2342∗  and (	,FGH∗ , and hence other empirical counterparts 

of the theoretical optimal hedge ratios may be considered. There is no reason to maintain that all 

empirical counterparts of (	,2342∗  and (	,FGH∗  should coincide, because the latter are not equivalent.  

3.3 Hedging effectiveness 

3.3.1 Measures of hedging effectiveness 

Given an estimated optimal hedge ratio and point forecasts of the prices of the original asset and the 

hedging instrument, a hedge portfolio can be formed and its price predicted. Hedging effectiveness is 

assessed by comparing the predicted price with its actual realization in the future. In order to match 

the hedging objective function due to equation (4) with a measure of hedging effectiveness, absolute 

hedging effectiveness is defined as the expected squared forecast error of the hedge portfolio’s 

price. In other words, absolute hedging effectiveness is the realized value of the objective function. 

As the measure depends on the scale of the variables, its interpretation might not be universally 

intuitive. Therefore, this study proposes a relative measure of hedging effectiveness that has a more 

convenient interpretation. It is the relative reduction in the price uncertainty due to replacing the 
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unhedged spot position with the hedge portfolio. More precisely, the relative measure of hedging 

effectiveness is the relative reduction in expected squared forecast error (RRESFE): 

RRESFE ≔ ESFE�����	� − ESFE��!��	�
ESFE�����	� = E� �����	 − �̂��	|���� − E� ��!��	 − !̂��	|����

E� �����	 − �̂��	|����
. (14) 

RRESFE compares the expected squared forecast error of the portfolio price with the expected 

squared forecast error of the spot price. The measure is theoretical as it involves theoretical 

moments of random variables. If the theoretical quantities are replaced by their empirical 

counterparts based on a sample of forecasts and corresponding realizations, we obtain an empirical 

relative measure of hedging effectiveness, the relative reduction in mean squared forecast error 

(RRMSFE): 

RRMSFE ≔
1
L ∑ ��M�	 − �̂M�	|M��NMAB − 1

L ∑ �!M�	 − !̂M�	|M��NMAB
1
L ∑ ��M�	 − �̂M�	|M��NMAB

. (15) 

Here, the subscript O indexes the time periods in which forecasts are made and L is the sample size. 

3.3.2 Properties and use of effectiveness measures 

RRESFE lies in the interval �−∞, 1], and larger values indicate greater hedging effectiveness. If the 

uncertainty over the portfolio price is zero, RRESFE is at its upper bound of unity, or 100%, 

RRESFE = 1 ⇔ E� ��!��	 − !̂��	|���� = 0. This is the case of perfect hedging effectiveness when all 

of the uncertainty is eliminated by hedging, which may be rare in practice. However, it is enough to 

achieve positive effectiveness to conclude that hedging works in the desired direction, i.e. reduces 

uncertainty, RRESFE > 0 ⇔ E� ��!��	 − !̂��	|���� < E� �����	 − �̂��	|����. Meanwhile, a value of 

zero suggests that hedging has no effect on uncertainty, RRESFE = 0 ⇔ E� ��!��	 − !̂��	|���� =

E� �����	 − �̂��	|����. In other words, the uncertainty over the price of the portfolio is as large as the 

uncertainty over the price of the original asset. Finally, negative values of RRMSFE signal that 

hedging is detrimental, i.e. the uncertainty associated with the portfolio price is greater than the 
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uncertainty over the original asset’s price, RRESFE < 0 ⇔ E� ��!��	 − !̂��	|���� > E� �����	 −

�̂��	|����. If the uncertainty over the price of the original asset is zero, E� �����	 − �̂��	|���� = 0, 

RRESFE is ill-defined; but then no hedging is needed since there is no uncertainty to be reduced. The 

range of the empirical measure RRMSFE and the interpretation of its values are analogous to those 

of RRESFE. 

When measuring hedging effectiveness empirically, estimation errors are unavoidable, and 

hence the measured values are imperfect reflections of the true underlying values. Given a measured 

value one may be interested in whether the corresponding underlying value is different from zero. 

This is equivalent to asking whether hedging has any genuine effect on price uncertainty. The null 

hypothesis of equally great price uncertainty under hedging versus no hedging can be tested by the 

Diebold-Mariano test of equal predictive accuracy (Diebold & Mariano, 1995; Harvey et al., 1997). A 

rejection of the null hypothesis would attest the effect of hedging is genuine, while a failure to reject 

would indicate the evidence is insufficient to conclude so. Testing the difference between the 

underlying effectiveness and an arbitrary value other than zero is a trivial extension. 

The hedging effectiveness measured by the RRESFE or RRMSFE depends on the forecast 

accuracy of the original asset’s price. Ceteris paribus, the lower the accuracy, the higher the 

measured effectiveness. The best available forecast of the original asset’s price should be used to 

obtain a fair estimate of hedging effectiveness, as otherwise the measured hedging effectiveness 

could be artificially inflated by using an unnecessarily poor forecast for the original asset. 

Caution is needed when comparing RRESFEs or RRMSFEs across models. If the point forecasts 

of the future spot price, �̂��	|�, differ across models, the models with less accurate spot price 

forecasts will by construction tend to yield higher hedging effectiveness. Therefore, direct 

comparability of RRESFEs or RRMSFEs requires �̂��	|� to be the same across models.  
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3.3.3 New measures vs. classical measure 

Even though the use of the RRESFE and RRMSFE is justified by the objective function of hedging 

under square loss, we may want to consider it in light of the classical measure of hedging 

effectiveness. The golden standard in the hedging literature is Ederington’s measure defined as the 

relative reduction in variance (RRV; Johnson, 1960, Ederington, 1979), 

RRV ≔ Var�����	� − Var��!��	�
Var�����	� . (16) 

Clearly, RRV is a special case of RRESFE; using equation (5), the latter can be expressed as 

RRESFE = �Var�����	� + Bias����̂��	|��� − �Var��!��	� + Bias���!̂��	|���
Var�����	� + Bias����̂��	|�� . (17) 

Under Assumption 1, i.e. when the expected prices are known and are used as point forecasts, 

Bias���̂��	|�� = Bias��!̂��	|�� = 0, and RRESFE collapses to RRV. Therefore, RRV may be a natural 

measure for applications in markets where both the asset price and the portfolio price have known 

expected returns (e.g. zero expected returns in liquid stock markets over short time horizons) which 

are used as point forecasts. However, RRV does not accommodate cases where prices of individual 

assets (such as salmon) and/or hedging portfolios have unknown expected returns and thus where 

Bias���̂��	|�� ≠ 0 and/or Bias��!̂��	|�� ≠ 0. It is because RRV neglects the squared bias terms as 

can be seen by comparing equations (16) and (17). In other words, RRV is not a valid measure of the 

reduction in uncertainty due to hedging whenever Assumption 1 fails. Hence, RRV does not suit the 

case of the salmon spot price. See also Lien (2005) for a discussion on appropriateness (or lack 

thereof) of Ederington’s measure under different conditions. 

3.3.4 Determinants of hedging effectiveness 

When measured by RRESFE, hedging effectiveness is to a large extent determined by the relevance 

of the hedging instrument. In turn, the relevance depends on the magnitude of correlation between 

the unexpected shocks to the price of the original asset and the hedging instrument. If the 

unexpected shocks are strongly correlated between the two, hedging effectiveness will be high; 



18 

 

there will exist a hedge ratio ( such that ���	 − �̂��	|� and −(�)��	 − )6��	|�� will be close in 

expectation, i.e. E� ������	 − �̂��	|�� − (�)��	 − )6��	|����� = E� ��!��	 − !̂��	|���� will be low, 

yielding a value of the RRESFE close to unity.  

For a given asset and a fixed hedging instrument, hedging effectiveness will depend on two 

properties, (1) the accuracy of the point forecasts �̂��	|� and )6��	|�, and (2) the accuracy of the 

conditional variance forecast for the pair of random variables ���	 and )��	. First, accurate point 

forecasts of the spot price and the hedging instrument’s price will yield an accurate forecast of the 

price of the hedge portfolio, for any given hedge ratio. The direction of this factor’s effect on hedging 

effectiveness is unclear; while an accurate spot price forecast alone reduces the RRESFE, an 

accurate forecast of the portfolio price increases the RRESFE. Second, the conditional variance 

forecast determines the estimate of the optimal hedge ratio. The more accurate the forecast, the 

more accurate the estimate and therefore the higher the hedging effectiveness. In conclusion, 

achieving high hedging effectiveness requires finding a relevant hedging instrument and accurately 

predicting ���	, )��	, and their conditional variance matrix. 

3.4 Workflow of hedging 

The workflow of hedging can be summarized as follows. Consider a system of prices of the original 

asset and the hedging instrument. First, estimate a statistical model for the conditional mean vector 

and the conditional variance matrix. Second, obtain point forecasts and forecasts of the conditional 

variance matrix ℎ steps ahead, where ℎ is the hedging horizon. Third, calculate the optimal hedge 

ratio from the forecasted conditional variance matrix. Then form a hypothetical hedge portfolio of 

the original asset and the hedging instrument based on the optimal hedge ratio, and calculate its 

point forecast. Fourth, assess the forecast accuracy out of sample for the original asset’s price and 

the price of the hedge portfolio. Fifth, evaluate hedging effectiveness in absolute and/or relative 

terms based on the forecast accuracy. 
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4.  Hedging in the salmon market 

4.1 Salmon farming industry and price of salmon 

Commercial farming of salmon started in 1970s in Norway.5 The industry expanded rapidly so that by 

late 1990s the salmon aquaculture production had soared past the capture fisheries. In 2014, the 

global farmed salmon production stood at around two million metric tons, valued roughly at 

14 billion dollars. About 55% of the volume is of Norwegian origin; the other major salmon producers 

are Chile, Canada and Scotland. Farmed salmon is consumed all over the world; the largest markets 

are the EU (51% of global consumption) and the U.S. (24%). 

The price of the Norwegian farmed Atlantic salmon experienced a continuous decline from the 

1980s until the break of the millennia. The decrease is attributed to technological improvement and 

fast supply growth (Asche & Bjorndal, 2011, p. 43-48). The price trend reversed in the early 2000s 

likely because of slower technological progress, reduced supply growth due to limited availability of 

suitable production sites, increasing raw material costs (Asche and Oglend, 2016) and increased 

demand from the emerging markets. 

The price of salmon is volatile and difficult to predict (Bloznelis, 2016b, Bloznelis, 2017b). In 

other words, there is high uncertainty over the future spot price of salmon. The uncertainty may 

arise due to supply and demand factors. On the supply side, there are several production risks, such 

as infectious disease (e.g. infectious salmon anaemia), biological conditions (e.g. presence or absence 

of toxic blooming algae), parasites (e.g. salmon lice) and the uncertainty in future water temperature 

(suboptimal temperature leads to slower growth of fish). On the demand side, price uncertainty may 

be affected by unexpected changes in consumer tastes resulting from positive or negative publicity 

(e.g. reports on health gains from a salmon-rich diet or concerns over pollution from the salmon 

farms); or changes in prices of substitutes or complements, or purchasing power. In the short term, 

                                                           
5 This section is largely based on the information in Marine Harvest (2015). 
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the supply factors likely dominate the demand factors in causing large unexpected price fluctuations; 

see Oglend and Sikveland (2008) and Oglend (2013) for further discussion.  

4.2 Salmon futures market 

A large share of salmon is sold on the spot market, but forward contracting is also substantial (Larsen 

& Asche, 2011). Since mid-2006 there exists a futures exchange for salmon, Fish Pool, based in 

Bergen, Norway. Monthly contracts for one to 60 months ahead are available for trading. The 

contracts are cash settled; hence, no physical fish is bought or sold at Fish Pool. The underlying of a 

futures contract is the average price of (one tonne of) salmon sold in the spot market over a given 

month. The contract reference price is the Fish Pool Index (FPI), a weighted average of three 

(previously two to five) price indices that may be considered representative of the spot price of 3-

6 kg salmon. Empirically the FPI is almost indistinguishable from the regular spot price. The futures 

market suffers from low liquidity as its turnover matches only about a tenth of the physical market 

volume (Fish Pool, 2015) and the trades are rather infrequent. Fish Pool also provides clearing 

services for salmon forward contracts. 

4.3 Salmon futures as a hedging instrument 

Since the FPI is very similar to the spot price, the underlying of a futures contract is approximately 

equal to the average spot price over a given month. Therefore, shocks to the futures price should to 

a large extend coincide with shocks to the spot price over that month. This makes the salmon futures 

contract a natural hedging instrument for the spot price over monthly periods. That is, the exposure 

to the uncertainty over the future spot price may be hedged by taking an offsetting position in the 

futures market. The hedging effectiveness should be the highest for a farmer selling an equal amount 

of fish every week of the month, because then the spot position matches the underlying of the 

futures contract the closest. The hedging effectiveness may be lowered by deviations in volume sold 

from week to week and/or variations in fish quality resulting in discrepancies between the FPI and 

the price obtained by the farmer.  
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4.4 Hedging strategies 

When hedging a given spot position with salmon futures contracts, a market participant has to 

decide which contract to trade and at what times. This study examines three alternative hedging 

strategies. Two of them are classical (Hull, 2012, p. 55), while the third one is unorthodox and is 

suggested so as to avoid some undesirable features of the first two. Suppose the original asset to be 

hedged is salmon that will be sold on the spot market on the fourth week of January, 2017. Suppose 

for concreteness that the current date is the last week of December, 2016. The first (classical) 

hedging strategy is to sell a January contract in the last week of December and buy it back in the 

fourth week of January; this strategy is denoted F0. The second (classical) hedging strategy is to sell a 

February contract in the last week of December and buy it back in the fourth week of January 

(denoted F1). The third (unorthodox) hedging strategy is to sell a January contract in the last week of 

December and keep it until expiration (maturity), which is in the second week of February6; this 

strategy will be denoted M (due to “maturity”).7 The only difference between M and F0 is that the 

January contract is held until maturity rather than bought back in the fourth week of January. For an 

illustration of the contracts used in F0, F1 and M and their respective holding periods, see Figure 2. 

The three strategies are generally applicable when hedging the price uncertainty of any commodity 

or financial asset for which a futures market exists and the relevant contracts are available for 

trading. The M strategy also requires that the futures contract be cash settled. 

[Figure 2 about here] 

The first strategy, F0, may provide an effective hedge as the unpredictable shocks to the price of 

a futures contract (here the January contract) close to maturity should be highly correlated to the 

unpredictable shocks hitting the spot price. However, F0 may be difficult to implement due to the 

                                                           
6 The salmon futures contracts are traded not only until the end of the underlying month (in this case, January) 

but also for up to two additional weeks (in this case, until the second week of February).  

7 I am not aware of previous studies mentioning the M strategy, thus the design of the strategy might be a new 

contribution to the hedging literature.  
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lack of liquidity in the salmon futures market, especially as the trading volume might decrease when 

the contract approaches the expiration date. Also, low liquidity may make the contract price volatile 

and the shocks to it less correlated with the shocks to the spot price, thus reducing the hedging 

effectiveness. The two other strategies circumvent these issues.  

The second strategy, F1, partly bypasses the problems of liquidity and price volatility as the 

February contract is relatively far from expiration in the fourth week of January. (The liquidity 

problem is reduced but not entirely solved, because even the most liquid salmon futures contracts 

are only thinly traded regardless of the time to maturity.) However, this comes at a price of 

potentially lower shock correlation; the underlying of the February contract is the average FPI over 

February, and the unexpected shocks affecting February’s FPI may not be highly correlated with the 

shocks affecting the spot price of the fourth week of January, against which we wish to hedge. 

Nevertheless, using F1 is common practice in some futures markets (Hull, 2012, p. 55).  

The third strategy, M, also mitigates the liquidity problem as the contract is never bought back 

but rather held until expiration. M is also cost effective since commissions associated with buying the 

contract back are avoided. However, the unpredictable component of the January contract price at 

its expiration date could be less correlated with the unpredictable shocks to the spot price of the 

fourth week of January. It is difficult to foresee which of the three strategies should be the most 

effective in the case of salmon. Their relative performance will be revealed by empirical analysis in 

Section 6. 

M is different from F0 and F1 in that the outcome of hedging becomes known with a delay, as 

the futures contract is not liquidated simultaneously with the spot position but rather kept until 

maturity. In the case of salmon futures, the contract expires in the second week after the underlying 

month. Thus in practice the delay is between two and six weeks, depending on which week of the 

month is being hedged. Consequently, the uncertainty over the price of the hedge portfolio due to M 

is prolonged, and the hedger needs to attend to margin calls on his/her futures position for a longer 

period. Furthermore, the effectiveness of M as measured by RRESFE is not directly comparable to 
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that of F0 or F1 because the nominal difference in effectiveness between M and F0 or F1 should be 

considered in light of the prolonged exposure to uncertainty due to M.  

A peculiar feature of M is that for a period of time the futures contract is held without a 

matching position in the spot market. On the first look, this could be perceived as speculative 

behaviour and a source of added uncertainty. However, this is precisely what facilitates hedging in 

illiquid futures markets where buying the contract back shortly before maturity is difficult or 

impossible. Furthermore, it leads to significantly reduced uncertainty, as will be seen from the 

empirical results. Whenever the hedging effectiveness of M exceeds that of F0 it is precisely because 

of the “speculative” element, as it is the only difference between F0 and M. In summary, a hedger 

will accept M and benefit from it regardless of the “speculative” element as long as M will reduce 

uncertainty, which is the goal of hedging.  

4.5 Hedging one week vs. one month 

Hedging the price uncertainty for a particular week using a monthly futures contract is less effective 

than hedging the price uncertainty for a whole month, as long as the trading volume is approximately 

equally distributed across the different weeks of the month. This is because the underlying of a 

futures contract closely matches the physical position for the given month rather than any particular 

week. If the price faced by a market participant closely matches the market average price, the 

salmon futures contract kept until maturity would offer a nearly perfect hedge for a whole month’s 

physical position. More formally, we would have ���	 ≈ )��	 and �̂��	|� ≈ )6��	|�, and hence !��	 ≈

!̂��	|� ≈ 0 for ( = 1. Thus there are good grounds to expect E� ��!��	 − !̂��	|���� ≈ 0, which 

means the objective function given in equations (4) reaching its global optimum. However, if the 

production volume is distributed unequally across the weeks in a month, the physical position will 

not match the underlying of the futures contract closely and hedging with salmon futures will be less 

effective. 
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5.  Methods and data 

Hedging requires predicting the prices of the original asset and the hedge portfolio, which involves 

estimating the optimal hedge ratio. The latter is based on the predicted conditional variance matrix 

of the original asset’s price and the price of the hedging instrument. Therefore, we need to model 

the conditional variance matrix and hence also the conditional mean vector of the spot price and the 

hedging instrument’s price, as outlined in Section 3.4. The conditional mean and variance models are 

estimated in rolling windows spanning 209 weekly observations (four years), and out-of-sample 

forecasts are obtained. Forecast accuracy is estimated on out-of-sample data and used to assess the 

hedging effectiveness. 

5.1 Conditional mean model 

Salmon price is known to be seasonal (Asche & Guttormsen, 2001). Seasonal adjustment is 

performed using regression with ARMA errors following Hyndman (2014). The regressors are Fourier 

terms and Christmas and Easter dummies. The set of the Fourier terms is made of pairs of sin�∙� and 

cos�∙� series with periodicity of 1 year, ½ year, ¼ year, etc. The lag order of the ARMA model for the 

regression errors is allowed to be any subset of an ARMA(4,4) specification. The number of the 

Fourier terms and the ARMA lags are selected simultaneously using the Akaike’s information 

criterion (AIC) (Akaike, 1974). The salmon futures prices are seasonally adjusted using the same 

method.  

Asche et al. (2016) find cointegration between the spot and the futures price of salmon. By the 

Granger representation theorem (Engle & Granger, 1987), the (seasonally-adjusted) spot and futures 

prices follow a bivariate vector error correction model (VEC model, or VECM): 

Δ ���
)�� = �VBV�� �1 W� ���XB

)�XB� + YBΔ ���XB
)�XB� + ⋯ + Y[Δ ���X[

)�X[� + �=�>�� ; (18) 

here Δ denotes difference operator such that Δ]� ≔ ]� − ]�XB; VB, V� are loading coefficients; 

�1 W�′ is the cointegrating vector, such that �1 W� ���
)�� is a stationary process while �� and )� 
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individually are integrated processes; YB to Y[ are 2 _ 2 coefficient matrices; and =� and >� are zero-

mean, non-autocorrelated error terms. A cointegrating vector �1, W�′ = �1, −1�′ is arbitrarily 

imposed as the seasonally-adjusted spot and futures prices are close to being equal. Fixing W at 1 will 

prevent imprecise estimation of the cointegrating vector due to the small sample size of the rolling 

windows. (Unrestricted VEC models where W is determined by the data have also been estimated, 

and the modelling results are very similar to the case of W = 1.) The lag order of the VECM is selected 

using AIC. AIC-based choice tends to yield the model that produces the smallest squared one-step-

ahead forecast error among the set of candidate models (Konishi & Kitagawa, 2008, p. 249-250), 

which is exactly what is needed when selecting a forecasting model under square loss.  

5.2 Conditional variance model 

The conditional mean model will produce point forecasts and also in-sample residuals. The latter will 

be used for modelling the in-sample conditional variance matrix. Its diagonal elements are specified 

using univariate generalized autoregressive conditional heteroskedasticity (GARCH) models 

(Bollerslev, 1986), and the off-diagonal elements by a dynamic conditional correlation (DCC) model 

(Engle, 2002). This is a standard approach in financial applications due to the model’s relatively 

simple specification, fast estimation and good forecasting performance (ibid.). The DCC model has 

been used for modelling commodity prices in Bekkermann (2011), Creti et al. (2013) and Mensi et al. 

(2014), among other. 

Let `� denote the scalar error term (the innovation) of the conditional mean model and let a�� 

denote the conditional variance of a time series process `� given the information up until the time 

period � − 1. A GARCH(1,1) model for `� is specified as follows: 

`� = a�b�,                             
a�� = c + d`�XB� + ea�XB� , 
b�  ~ g. g. h. �0,1�,                

(19) 

where c, d and e are nonnegative constants and h is a probability distribution. The index (1,1) in 

the model name indicates the use of lagged innovation and lagged conditional variance from one 
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period before. In principle, higher-order lags indexed by �i, 
� could be invoked; however, the (1,1) 

specification is often found to be sufficient in financial applications (Hansen & Lunde, 2005) and is 

widely used in practice; see e.g. Dawson et al. (2000), Szakmary et al. (2003), Yang et al. (2005), and 

references therein. 

 A bivariate DCC(1,1) model treats the conditional correlation between a pair of innovations in a 

similar way as to how a GARCH(1,1) model treats the conditional variance of an innovation. Given the 

standardized innovations bB,� and b�,� from the GARCH models for the error terms =� and >� of the 

spot price and the hedging instrument’s price, respectively, a DCC(1,1) model specifies the law of 

motion for the conditional correlation matrix j� with a typical element k@,l,� as follows: 

i@,l,� = �1 − m − n�k@,l + mbo,�XBbp,�XB + ni@,l,�XB (20) 

with m and n being nonnegative constants, k@,l  the unconditional correlation, and i@,l,� the so-called 

conditional quasi-correlation, where g, q ∈ {1,2}. The proper conditional correlation is obtained as 

scaled conditional quasi-correlation, 

kB,�,� = iB,�,�
uiB,B,�ui�,�,�

. (21) 

Scaling due to equation (21) ensures the conditional correlation lies strictly between negative one 

and one. If the univariate GARCH models producing bB,� and b�,� from =� and >� fit well, scaling 

should have a negligible effect. Therefore, for illustrative purposes one could think of the conditional 

correlation being approximately a GARCH-type process, 

kB,�,� ≈ �1 − m − n�kB,� + mbB,�XBb�,�XB + nkB,�,�XB. (22) 

Similarly to GARCH, the index (1,1) in the DCC model indicates use of one period’s lag of the 

standardized innovations and the conditional (quasi-) correlation. While higher lag orders could be 

considered, the relatively short time series at hand prompt the use of the most parsimonious (1,1) 

specification.  
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5.3 Data on salmon spot and futures prices 

The spot price of the Norwegian farmed Atlantic salmon is obtained from NASDAQ. It is due to a 

weekly survey from 2007-2015, reflecting prices in Norwegian kroner per kilogram (NOK/kg) paid by 

exporters to salmon farmers (until 2013 week 13) and received by exporters from foreign buyers 

(from 2013 week 14). The difference between the former and the latter period is adjusted for by 

subtracting NOK 0.75/kg from the latter period’s prices, following the practice of Fish Pool (Fish Pool, 

2014). The price, its seasonally adjusted version and the seasonal component are depicted in the top 

row of Figure 3.  

Data on the salmon futures prices is provided by Fish Pool. The prices are converted from daily 

to weekly by taking the last price of each week. Taking the last instead of the average price should be 

beneficial for forecasting as the last price reflects the most recent information. (In practice, taking 

weekly averages instead does not materially change the results.) The front month salmon futures 

price is shown in the bottom row of Figure 3.  

 [Figure 3 about here] 

6.  Results 

Out-of-sample hedging results are discussed in this section.8 Hedging effectiveness and optimal 

hedge ratios are compared across the strategies (F0, F1 and M) and the horizons (four, eight and 13 

weeks ahead). A limited comparison is also made with Misund and Asche (2016) who employ a 

different hedging framework. Empirical results reveal that the optimal hedge ratios are around 0.5-

0.6 on average and that hedging is a rather effective way of mitigating the spot price uncertainty, 

especially in the longer horizons.  

                                                           
8 See Bloznelis (2016a) for results from alternative specifications of the conditional mean and variance models, 

and performance comparisons across different models and weight classes of salmon. 
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6.1 Hedging effectiveness 

Hedging effectiveness as measured by RRMSFE is given in the first column of Table 2. The values 

range from 0.16 to 0.58 indicating a 16% to 58% reduction in the mean squared forecast error when 

using a hedge portfolio in place of an unhedged spot position. To assess whether the reduction in 

uncertainty due to hedging is genuine or just incidental, the Diebold-Mariano test (Diebold & 

Mariano, 1995; Harvey et al., 1997) is employed. The null hypothesis of no reduction in uncertainty, 

or equal predictive accuracy of the unhedged spot position and the portfolio, is rejected in all cases 

except one (for the 4-week hedge using the F0 strategy); see Table 2. Therefore, hedging is indeed 

fairly effective, especially in the longer horizons.  

[Table 2 about here] 

Hedging effectiveness measured by RRV is reported in the second column of Table 2. The 

numbers differ starkly from those due to RRMSFE. This is unsurprising as Assumption 1 is violated in 

the salmon market and the forecast bias for the spot as well as the portfolio price is not zero; see 

columns 3 and 4 of Table 2. For example, the effectiveness of M in the 4-week horizon is as high as 

0.74 according to RRV but only 0.26 when measured by RRMSFE. Therefore, mistakenly using an 

inappropriate measure (RRV) would suggest that three quarters of uncertainty is removed by 

hedging, while the actual number is barely one quarter. The salient mismatch between the empirical 

values of RRV and RRMSFE underlines the importance of choosing the appropriate measure 

(RRMSFE) in applications. 

Misund and Asche’s (2016) rolling-window based strategies yield RRV values of 0.27 to 0.29, 

which are more than twice lower than here. This is likely due to their use of a constant conditional 

mean model as opposed to VECM and also shorter rolling windows (either 20 or 52 weeks against 

209 weeks) which may yield lower estimation accuracy for the optimal hedge ratios.  

Regarding the strategies, F0 beats F1 in the 8-week and 13-week horizons, while F1 is more 

effective in the 4-week horizon. Thus the choice between F0 and F1 should depend on how far in 

advance a position is hedged. The overall most effective hedging strategy is M. However, its 
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effectiveness is not directly comparable to that of F0 and F1, because M yields longer exposure to 

uncertainty due to the delayed liquidation of the futures contract (see Section 4.4). However, for a 

hedger who is willing to wait a few extra weeks until the futures position is closed, the M strategy is 

an effective alternative to F0 and F1. 

Hedging effectiveness increases with the hedging horizon, as should be expected when the spot 

and the futures prices are cointegrated. When two time series share a common stochastic trend, 

their paths are roughly the same in the long run, in spite of any short-term deviations from the 

equilibrium. For an integrated process such as the spot price or the futures price by itself, there is 

high uncertainty (thus low forecast accuracy) over where it might end up in the distant future. 

However, there is considerably less uncertainty (higher forecast accuracy) over the future outcome 

of a stationary combination of two cointegrated processes. This is the intuition behind the increasing 

hedging effectiveness for cointegrated processes in ever longer horizons. 

6.2 Optimal hedge ratios 

The optimal hedge ratios are depicted in Figure 4. In any given panel of the figure, each point in the 

curve corresponds to a hedge ratio obtained from a different rolling window. E.g. the first point in 

the top left graph is dated 2011 week 4 and shows the 4-week hedge ratio calculated from the rolling 

window spanning from 2007 week 1 to 2010 week 52; the second point is dated 2011 week 5 and 

shows the 4-week hedge ratio due to the rolling window covering 2007 week 2 to 2011 week 1; etc. 

Note that the hedge ratio is constant over the lifetime of any given hedge. Meanwhile, the time 

variation in the hedge ratios across the rolling windows is due to the changing period that is being 

hedged and the changing information content based on which the optimal hedge ratio is being 

calculated. 

[Figure 4 about here] 

The variation within each curve in Figure 4 reflects the variation in the optimal hedge ratios 

across the rolling windows. It is quite high for the 4-week hedge but decreases with the hedging 

horizon. This is to be expected; the ℎ-week hedge ratio is the ratio of an ℎ-element sum of predicted 
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covariances over an ℎ-element sum of predicted variances as per equation (11). For the hedging 

horizon ℎ = 4, one element out of four changes in each of the sums when moving from a given 

rolling window to the next one. Meanwhile, for the 13-week hedge only one element out of thirteen 

changes in each of the sums. Thus naturally there is more variation in the 4-week than in the 

13-week hedge ratio.  

The time variation of the optimal hedge ratios in Misund and Asche (2016) is considerably 

higher, most likely because of their shorter rolling windows. Also, the average level of the optimal 

hedge ratios in Misund and Asche (2016) is higher because of the high unconditional correlation 

between the prices of the original asset and the hedging instrument that is a key determinant of their 

optimal hedge ratio.  

From a longer perspective, we see that the hedge ratios for F0 and F1 (and to a small extent also 

for M) were higher in the beginning of the sample but decreased over the first two years, 

representing the rolling windows covering 2007-2010 to 2009-2012. There has been no clear trend 

afterwards. Examining the predicted covariances and variances as in equation (11) does not allow 

drawing broad conclusions with regards to what the underlying driving force has been, since there is 

considerable variation in the covariances and variance across the hedging strategies. 

The estimated optimal hedge ratios differ visibly across the hedging strategies. The average 

hedge ratios are higher for F0 and F1 (around 0.6) than for M (around 0.5). There are substantial 

high-frequency oscillations in the case of M, which can be explained by the nature of keeping the 

futures contract until maturity. Consider using M to hedge ℎ weeks ahead. Take a spot position that 

is in week 1 (the first week) of a month. The futures contract will be acquired ℎ − 1 weeks ahead of 

the target week. It will not be liquidated simultaneously with the spot position in the target week but 

rather kept for another five or six weeks until the contract expires. The value of the spot and the 

futures positions will move together only until and including the target week; after that, only the 

value of the futures position will move as the spot position will have already been liquidated. As per 

equation (11), the sum of the predicted covariances in the numerator will contain only ℎ non-zero 
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elements. Meanwhile, the sum of the predicted variances in the denominator will have ℎ + 5 or ℎ +
6 elements that will all be positive. Thus the hedge ratio, which is the value of the fraction in 

equation (11), will be relatively low in absolute value. Now consider hedging a spot position that is in 

week 4 or week 5 (the last week) of a month. The sum of the predicted covariances in the numerator 

will now contain ℎ + 3 or ℎ + 4 non-zero elements, while the denominator will stay the same as 

before. Since the predicted covariances are likely to be positive for each hedging horizon, their ℎ +
3- or ℎ + 4-element sum will be greater than the sum of just the first ℎ elements. Thus, when 

hedging the last week of a month, the fraction representing the hedge ratio will be relatively large. 

For the weeks in between (week 2 and week 3 in all months, and week 4 in five-week months) the 

effect will be in between these two cases. This explains the observed high-frequency oscillations with 

periods of four or five weeks in the estimated optimal hedge ratios of the M strategy. 

6.3 Economic significance of hedging effectiveness 

How attractive is hedging with salmon futures contracts in practical terms? The 4-week hedging 

effectiveness of the F1 strategy yields a RRMSFE of 28%. For ease of interpretation, let us view this 

in terms of root mean squared forecast error (rootMSFE); the reduction in uncertainty due to 

hedging is from rootMSFE of NOK 3.9/kg to NOK 3.3/kg, which is not substantial; see the last three 

columns of Table 2. Adding the poor liquidity of the futures market and the transaction costs, the 

4-week hedge is unlikely to attract considerable interest. Meanwhile, the RRMSFE of 54% (F0) or 

58% (M) for the 13-week hedge yields a reduction in the rootMSFE from NOK 6.4/kg to NOK 4.4/kg 

(F0) or NOK 4.1/kg (M), respectively. A reduction of NOK 2.0/kg or higher is tangible from a practical 

perspective; e.g. it is on the scale of a salmon farmer’s net profit (or loss) per kilogram in times of 

medium or low spot prices. Also, recall that hedging effectiveness would likely increase if monthly 

rather than weekly spot positions were hedged, and nearly perfect hedges could be expected (see 

Section 4.5). This makes hedging with salmon futures even more attractive.  

Why then are there so few trades at Fish Pool? The possible reasons could be, (1) a lack of 

speculative interest and thus a lack of counterparties to the potential hedgers, (2) an increasing 
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vertical integration in the salmon industry that provides implicit hedging within a vertically integrated 

company, and (3) a lack of independent studies assessing the hedging effectiveness and supplying 

reliable and timely information for the futures market participants. The latter reason is addressed by 

the current study. 

7.  Conclusion 

There is high price uncertainty in the Norwegian farmed salmon market. The spot price is volatile and 

hard to predict, which complicates operations management and financial planning and is regarded as 

a major problem by the market participants. A standard way of risk management in commodity and 

financial markets is hedging. This study considers hedging the uncertainty in the future spot price of 

salmon with salmon futures contracts. A new framework of hedging under square loss is presented. 

It generalizes the classical framework of minimum variance hedging and includes a new objective 

function, a new optimal hedge ratio and a new measure of hedging effectiveness. The new objective 

is to minimize the expected squared forecast error of the hedge portfolio. It is naturally applicable 

not only under known but also unknown expected prices, where the classical objective of variance 

minimization loses relevance. The new optimal hedge ratio is similar to the classical one; the same 

estimator for the optimal hedge ratio can be used in both the classical and the new framework. 

Hence, the standard approach to choosing the optimal hedge ratio may still be employed. The new 

effectiveness measure is the relative reduction in the expected squared forecast error. It assesses the 

predictability of the portfolio price relative to that of the original asset. While the classical 

effectiveness measure – the relative reduction in variance – fails in absence of unknown expected 

prices, the new measure works well regardless. The differences in hedging effectiveness measured by 

the classical versus the new measure are stark, and empirical results due to the two measures may 

lead to considerably different economic implications, as evidenced by the case of salmon. All things 

considered, choosing the new hedging framework is critical in applied work, especially when the 

expected prices are unknown.  
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The salmon futures contracts are found to be a moderately effective hedging instrument for the 

salmon spot price; however, their appeal may be limited by low liquidity. Fortunately, holding the 

contract through maturity is not only easier in presence of liquidity problems but also cheaper than 

closing the contract simultaneously with the spot position. If low liquidity of the salmon futures 

contracts were still a problem even when holding the contract through maturity, hedgers would have 

to rely on the ongoing vertical integration in the salmon industry, which provides implicit hedging 

within a company, or on increased use of salmon forward contracts.  

Overall, the failure of the classical hedging framework in absence of known expected prices 

suggests that hedging under square loss should be reconsidered in a number of commodity markets 

such as wheat, live cattle, gas and electricity. Hedging effectiveness should be re-evaluated using the 

proper effectiveness measure, which may lead to finding different optimal hedging instruments 

and/or hedging strategies than before. Accordingly, policymakers might need to review the current 

regulations and incentive schemes so as to encourage effective measurement and management of 

risk. The crucial questions to be answered are, how the optimal hedging instruments and strategies 

due to the new framework differ from the classical ones, and what implications this bears for 

hedgers, speculators and the practice of risk management in commodity and financial markets. 
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Appendix A: Tables 

Table 1   Some measures of uncertainty and their characteristics 

Measure (moment of 

forecast error distribution) 

Value Magnitude 

of 

uncertainty 

Is informative of 

the magnitude of 

uncertainty 

Minimizing the measure 

is equivalent to 

minimizing uncertainty 

First moment, i.e. 

mathematical expectation 

Close to zero Unknown No No 

Far from zero High Yes  

First absolute moment Close to zero Low Yes Yes 

 Far from zero High Yes  

Second moment Close to zero Low Yes Yes 

 Far from zero High Yes  

Second central moment, i.e. 

variance 

Close to zero Unknown No* No* 

Far from zero High Yes  

Note: * except when the first moment is zero. 
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Table 2   Hedging results 

Hedging strategy 

and horizon 

RRMSFE RRV Bias  
(spot) 

Bias  
(portf.) 

rootMSFE 
(spot) 

rootMSFE 
(instr.) 

rootMSFE 
(portf.) 

4 weeks ahead        

F0 0.16 0.64 0.35 0.44 3.88 3.07 3.54 

F1 0.28** 0.76 0.35 0.41 3.88 2.63 3.28** 

M† 0.26** 0.74 0.35 0.40 3.88 3.49 3.34** 

8 weeks ahead        

F0 0.43** 0.73 0.50 0.48 5.10 3.81 3.85** 

F1 0.40** 0.78 0.50 0.62 5.10 3.40 3.96** 

M† 0.45*** 0.75 0.50 0.45 5.10 4.69 3.78*** 

13 weeks ahead        

F0 0.54** 0.67 0.57 0.56 6.39 5.26 4.35** 

F1 0.44** 0.77 0.57 0.78 6.39 4.37 4.77** 

M† 0.58** 0.69 0.57 0.46 6.39 6.07 4.13** 

Note: Relative reduction in mean squared forecast error (RRMSFE), relative reduction in variance 

(RRV), forecast bias of the spot and the portfolio prices, and root mean squared forecast error 

(rootMSFE) of spot price, hedging instruments’ price and hedge portfolios, 2011 week 1 - 2015 

week 17. *, ** and *** mark significance at 10%, 5% and 1%, respectively, with regards to the 

Diebold-Mariano test. The null hypothesis in the first column is that hedging effectiveness is zero. 

The null hypothesis in the last column is that the forecast accuracy (measured by mean squared 

forecast error) of the portfolio is equal to that of the spot price. Note that the two hypotheses are 

algebraically equivalent. † The effectiveness of the M strategy is not directly comparable to the other 

two strategies because the futures contract is liquidated with a delay; see Section 4.4 for details. 
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Appendix B: Figures 

Figure 1   Measures of uncertainty for different forecast error distributions 

Low uncertainty  High uncertainty 

a) Light-tailed distribution, symmetric around zero  b) Heavy-tailed distribution, symmetric around zero 
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Figure 2   Contracts and holding periods for different hedging strategies 

 

Note: Contracts and holding periods for strategies F0 (top), F1 (middle) and M (bottom) for a hedge 

starting in the last week of December, targeted at hedging a spot position in the fourth week of 

January.  
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Figure 3   Salmon spot price and front month futures price 

 

Note: Salmon spot price (top row) and salmon front month futures price (bottom row); original (left), 

seasonally adjusted (middle), and seasonal component (right); 2007 week 1 - 2015 week 17. 
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Figure 4   Optimal hedge ratios 

 

Note: Optimal hedge ratios for the different hedging strategies (across rows) and hedging horizons 

(across columns), 2011 week 1 - 2015 week 17. Horizontal lines mark 0, 1 and the mean of the 

optimal hedge ratio over the period. 
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