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Abstract 

 

Structural variants (SVs) are an important emerging class of genomic variation with pivotal implications 

for evolution, adaptation, and phenotypic diversity. As a cold-water salmonid fish displaying extensive 

niche variation and life history plasticity, the Arctic charr (Salvelinus alpinus) serves as an ideal model 

to elucidate the genomic underpinnings of adaptability. This study performs an integrated analysis to 

comprehensively characterize the SV landscape across 30 genomes of farmed Arctic charr strains. 

Using a multi-algorithm approach employing Delly, Manta and Smoove for variant detection, overall 

47,966 high-confidence were identified, including deletions, duplications, inversions and 

translocations. The results show variable numbers of SV’s between individuals, ranging from 71,866 to 

128,116 per fish, and reveal that chromosome 36 is enriched for SVs, containing up to 23% of all 

structural variations. Additional analyses with sequencing coverage data further support the 

inferences that patterns in chromosome architecture lead to increased structural variation 

susceptibility. This project substantiates the ability to reliably capture SVs from short-read 

resequencing but also highlights limitations when using short-read data. By enumerating SVs 

differentiated among domesticated strains, this study potentiates future research into SVs allele 

distributions, segregation, and trait associations in selective breeding programs. Overall, the analytical 

framework and genomic resources developed considerably advance characterization of structural 

variation spectra in this salmonid species. 
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Chapter 1 Introduction 
Global aquaculture production has expanded steadily over the past decades, providing a crucial source 

of affordable protein to a growing human population (FAO 2022). Selective breeding programs have 

played a key role in the continued growth and advancement of aquaculture production. Traditionally, 

aquaculture breeding relied on phenotypic selection and family-based models (Zhang et al., 

2022)(FAO, 1995). However, the integration of genomic information and technologies is transforming 

breeding approaches, The study conducted by Houston et al., (2020) thoroughly investigates the 

progress and effectiveness of genomics in aquaculture breeding, highlighting its transformational 

impact. Molecular marker data enables more accurate and accelerated genetic improvement through 

genomic selection and marker-assisted selection (Zenger et al., 2019). While single nucleotide 

polymorphisms (SNPs) have been the main genetic marker previously, but recent studies increasingly 

highlight the importance of structural variants as sources of genetic variation that impact quantitative 

traits and adaptive potential. For example, a comprehensive analysis of Atlantic salmon genomes by 

(Bertolotti et al., 2020) identified 15,483 high-confidence SVs using whole-genome sequencing of 492 

individuals. This research accurately recovered population genetic patterns and provided insights into 

the role of SVs in genome evolution and genetic basis of domestication-related traits. Such findings are 

especially relevant for aquaculture like Arctic char, as they offer new perspectives on the genetic 

factors influencing key trait variations and domestication processes. Similarly, in livestock the recent 

study by Steensma et al., (2023) reveals how SVs also act as important markers of genetic variation 

affecting quantitative traits and adaptive abilities. These insights could help guide breeding programs 

to use SVs for boosting beneficial traits in aquaculture species including Arctic char. Characterization 

of SVs has important applications in animal genetics and breeding, particularly for agricultural species. 

In cattle, widespread SVs were found to be breed-specific, enabling genomic prediction of complex 

traits (Koufariotis et al., 2018). In pigs, thousands of SVs correlate with economically-relevant 

phenotypes such as meat quality, reproduction, and growth (Zong et al., 2023). In chickens, over 

49,000 SVs among diverse breeds impact genes controlling metabolic and immune traits (Zhang et al., 

2022).  

 Based on this understanding, genomic selection (GS) is one such approach that uses genome-wide 

molecular markers to predict breeding values for quantitative traits (Meuwissen et al., 2001). By 

genotyping SNPs and SVs effects across the genome, GS can predict genomic estimated breeding 

values (GEBV) early in life with increased accuracy compared to pedigree-based models. This enables 

higher selection intensity, reduces generation interval, and facilitates selection for traits that are 

difficult or expensive to measure directly such as disease resistance and product quality traits (S. Liu 

et al., 2015; Vallejo et al., 2017).  

GS is most advanced in salmonid breeding, where it has been adopted by major breeding companies 
over the past decade. The implementation of GS in Atlantic salmon is associated with rapid genetic 
gains per generation for key traits such as harvest weight and fillet color, as well as reduced rates of 
early maturation (Tsai et al., 2015).  Beyond salmonids, GS has shown strong promise in other 
aquaculture species. Recent studies have demonstrated its application in about 20 different species, 
significantly enhancing accuracy in breeding values, particularly for growth and disease resistance 
traits (Allal & Nguyen Hong Nguyen, 2022). The AquaIMPACT project further illustrates this point, 
revealing that accurate genomic selection can be achieved in species like rainbow trout with fewer SNP 
markers, thereby reducing costs and facilitating wider adoption in aquaculture breeding programs 
(AquaIMPACT, 2023). This adaptability of GS, especially for traits not directly measurable in 
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broodstock, such as product quality and disease resistance, underscores its potential across various 
aquaculture species (AquaIMPACT, 2023).  While GS is still being optimized in many aquaculture 
species, collectively these studies demonstrate its advantages in accelerating genetic improvement 
(Houston et al., 2020). Key factors influencing GS success include marker density, population size, 
pedigree structure, and trait architecture. As genotyping costs continue to decrease, the use of GS is 
expected to expand and benefit additional aquaculture breeding programs.  

 

1.1 Applications of Marker-Assisted Selection 

  
In addition to genomic selection, marker-assisted selection (MAS) makes use of genotype-phenotype 

associations to select for specific genes or loci affecting quantitative traits. MAS has been applied in 

aquaculture breeding both independently and in conjunction with GS models (Abdelrahman et al., 

2017; Z. J. Liu & Cordes, 2004). Target traits include growth rate, processing yield, flesh quality, 

appearance traits, disease resistance, temperature tolerance, and age at maturation. Major target 

genes that have been integrated into MAS include the growth hormone transgene in Atlantic salmon, 

myostatin variants for enhanced muscle mass, and the RYR3 gene affecting muscle fiber density 

(Abdelrahman et al., 2017). Another significant example of MAS in aquaculture is the use of a 

quantitative trait locus (QTL) for resistance to infectious pancreatic necrosis virus (IPNV) in Atlantic 

salmon. This QTL, linked to the epithelial cadherin (cdh1) gene, accounts for most of the genetic 

variation in resistance to the virus. Implementing this QTL in MAS has led to a dramatic reduction in 

the number of IPN outbreaks in salmon farms, indicating the pivotal role of MAS in enhancing disease 

resistance in aquaculture breeding programs. This approach has been crucial in the aquaculture 

industry, as IPNV is one of the most prevalent and economically damaging diseases in farmed Atlantic 

salmon. The discovery and application of the cdh1 gene in MAS illustrate how targeted genetic 

interventions can substantially improve the sustainability and productivity of aquaculture operations, 

making disease resistance a top priority for breeding companies By incorporating markers associated 

with key traits into selection decisions, MAS provides a means to directly target and optimize specific 

phenotypic outcomes. 

The implementation of both GS and MAS is the development of abundant, validated SNP markers 

across genomes of farmed species. SNPs are single base pair changes representing the most abundant 

form of genetic variation. SNP discovery in aquaculture species has been enabled by high-throughput 

sequencing technologies. Medium to high-density SNP arrays have now been developed for most 

major aquaculture species including Atlantic salmon (Houston et al., 2014), rainbow trout (Palti et al., 

2015), catfish (Z. Liu et al., 2016), Pacific white shrimp (Yu et al., 2015),) and scallops (Gutierrez et al., 

2017). These SNP resources are being utilized for a multitude of applications beyond genomic 

selection, including assessing genetic diversity, mapping quantitative trait loci (QTLs), determining 

parentage, and enabling selective breeding through marker-assisted introgression from wild relatives 

(Abdelrahman et al., 2017). A primary use of SNP markers is to conduct genome-wide association 

studies (GWAS) to identify QTLs associated with complex polygenic traits (Yáñez et al., 2023). The 

discovery and testing of trait-associated SNPs allows for subsequent integration into GS models and 

MAS programs. In Atlantic salmon, GWAS using a SNP array led to the identification of markers for 

resistance against the Salmon Rickettsial Syndrome (SRS), one of the most costly diseases in salmon 

aquaculture (Correa et al., 2015). Genome-wide SNPs have also been used to dissect the genetic 

architecture of complex traits including growth, fillet color, and texture in rainbow trout (Gonzalez-

Pena et al., 2016). The ability to rapidly generate genome-wide SNP datasets has been pivotal in 

enabling selective breeding efforts that align with aquaculture industry goals. 
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1.2 Structural Variants: An Emerging Frontier in Aquaculture Genomics 

Structural variations (SVs) are defined as large genomic variations encompassing DNA segments 
typically ranging from 50 base pairs to megabases in size. The primary classes of SVs include deletions, 
insertions, duplications, inversions, and translocations (Diblasi et al., 2023; Escaramís et al., 2015; 
Mahmoud et al., 2019; Balachandran & Beck, 2020). Where deletions represent loss of genomic 
sequence, insertions constitute gain of sequence. Duplications create additional copies of pre-existing 
sequences. Inversions rearrange the orientation of genomic segments . Translocations occur when 
sections are relocated to new positions, either within or between chromosomes (Figure 1). 

 
Figure 1.  Schematic of common structural variation types. Illustration depicting the four predominant 

categories of genomic structural variations. Figure from (Stenløkk, 2023). 

In addition to these cardinal types, SVs exhibit tremendous variability in size, origin, recurrence, and 

effects. SVs were initially discovered through karyotype analyses over a half-century ago (Yang, 2020). 

However, the true extent of SVs was not revealed until the advent of whole-genome array and 

sequencing platforms in the 2000s (Feuk et al., 2006). In addition to their pivotal roles in genomic 

evolution and adaptation, SVs have been associated with diverse phenotypic consequences in humans, 

model organisms, aquacultural and agricultural species. Comprehensive characterization of SVs is 

therefore crucial for understanding genetic variation and its implications for health, disease, and 

evolutionary fitness. 

While SNPs have dominated molecular breeding applications, there is growing recognition that SVs 

represent a significant form of underutilized genetic variation for selective breeding programs. Studies 

across diverse species have shown that SVs account for more divergent genomic content between 

individuals than SNPs (Redon et al., 2006; Chaisson et al., 2015). This suggests that SVs likely contribute 

to phenotypic variation. However, the focus has remained on SNP markers as they are easier to 

genotype. Recent advances in long-read sequencing technologies have enabled considerable progress 
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in the detection and analysis of SVs across diverse genomes (Jiang et al., 2022; Sakamoto et al., 2021). 

Additional research is still needed to optimize computational pipelines for identifying SVs from short 

reads in aquaculture species. Improving methods for SV discovery could lead to better understanding 

of how SVs influence productive traits. Incorporating SVs into genomic selection models may 

strengthen predictions of breeding values and rates of genetic gain over the exclusive use of SNPs. 

Looking forward, a better characterization of structural variants and their associations with complex 

traits has the potential to further advance selective breeding. Continued research and optimization of 

genomics tools will ensure that aquaculture productivity can keep pace with global food demands in a 

responsible and sustainable manner. 

1.3 Formation and Prevalence of Structural Variations  

SVs arise primarily through errors in DNA replication and repair mechanisms. Non-allelic homologous 

recombination (NAHR) between repetitive elements or segmental duplications on different 

chromosomes is a major driver of recurrent SVs (Burssed et al., 2022). NAHR is stimulated by repetitive 

sequences, but the presence of repetitive elements explains only a fraction of NAHR-derived SVs, 

indicating involvement of additional genomic architectural features. Non-homologous end joining 

(NHEJ) also generates rearrangements, particularly non-recurrent SVs, at double-stranded breaks 

(Chang et al., 2017). Replication-based mechanisms such as fork stalling and template switching 

(FoSTeS) produce rearrangements including deletions, duplications, and complex SVs. FoSTeS occurs 

when the replication fork stalls and switches templates, resulting in abnormal joining and 

rearrangement (Mani & Chinnaiyan, 2010). Finally, retrotransposition via long interspersed nuclear 

elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses results in 

de novo insertions throughout the genome (Carvalho & Lupski, 2016).  

The prevalence and spectrum of SVs has been characterized through whole-genome sequencing of 

diverse populations. For instance, a study by Chaisson et al. (2019) found that SVs affect 4.8-9.5% of 

the human genome sequence, corresponding to 84-164 Mb of cumulative SVs per diploid genome. In 

contrast, SNPs impact only about 0.1% of the human genome. This disparity emphasizes the substantial 

scale and sequence diversity shown by SVs. A similar trend is observed in non-human species, with SVs 

affecting about 7% of the chimpanzee genome (Sudmant et al., 2013) and 4-5% of the cattle genome, 

where over 5 million SVs were identified (Koufariotis et al., 2018). Notably, in the marine teleost 

Chrysophrys auratus, a study revealed that SVs outnumber SNPs by a threefold ratio, significantly 

contributing to genomic variation and potentially affecting ecological and evolutionary processes 

(Catanach et al., 2019). Collectively, these analyses demonstrate the pervasive distribution and 

variable scale of SVs across diverse eukaryotic genomes, underscoring their greater cumulative impact 

on genomic content and architecture compared to smaller variations like SNPs. Collectively, these 

analyses demonstrate the pervasive distribution and variable scale of SVs across diverse eukaryotic 

genomes. Compared to smaller variations like SNPs, SVs have a much greater cumulative impact on 

genomic content and architecture. In addition to effects on phenotypes, SVs play a pivotal role in 

genomic evolution through their ability to generate genetic diversity (Hollox et al., 2022). SVs are a key 

source of inter-individual genetic variation within populations, as well as divergence between species 

(Mérot et al., 2020). 

Structural variants (SVs) play a crucial role in shaping genetic diversity and driving evolutionary 

processes in natural populations (Kirkpatrick & Barton, 2006;Ravinet et al., 2017). However, the 

significance of SVs in aquaculture setups differs in its implications. Within the scope of this thesis, the 

focus is on studying structural variants (SVs) present in aquaculture populations, but the 

methodologies and insights gained can be applicable and valuable to studies on SVs in wild populations 

The evolutionary dynamics of these populations are predominantly determined by controlled breeding 
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practices and artificial selection, as outlined by Gjedrem et al. (2012). This shift in focus signifies a 

transition from the general evolutionary significance of structural variants (SVs) to their particular 

effects within regulated, production-oriented settings. In contrast to wild populations, in which 

structural variations (SVs) play a crucial role in driving adaptation and speciation (Lamichhaney et al., 

2015;Todesco et al., 2020), aquaculture conditions exhibit a more deliberate and targeted selection 

process.  

 

1.4 Tools for SV detection and sequencing 

Despite the significant evolutionary implications of SVs, several inherent challenges have historically 

hampered their comprehensive discovery and analysis compared to smaller sequence variants like 

SNPs (Alkan et al., 2011). The larger size of SVs (>50 bp) means they cannot be directly assayed by 

conventional approaches optimized for SNPs such as genotyping arrays (Wellenreuther & Bernatchez, 

2018). Many SVs occur in repetitive regions of the genome difficult to characterize with short-read 

sequencing (Chaisson et al., 2019). SV breakpoints are also prone to imprecise mapping, complicating 

localization (Huddleston & Eichler, 2016). However, recent advances in high-throughput sequencing 

are enabling more accurate SV detection. Long-read technologies from Pacific Biosciences (PacBio) and 

Oxford Nanopore Technologies (ONT)  can directly span repetitive segments and with effort allow 

researchers to phase SVs (Sedlazeck et al., 2018; Leung et al., 2022). Emerging long-range scaffolding 

approaches produce highly contiguous de novo assemblies ideal for discovering SVs and resolving 

complex regions (Bachtrog & Charlesworth, 2022). Combining multiple modes of evidence from both 

long and short reads improves accuracy (Audano et al., 2019; Chakraborty et al., 2016). Hybrid 

assembly approaches that integrate multiple modes of evidence from both long-read and short-read 

sequencing technologies have emerged as a strategy for improving SV detection accuracy by leveraging 

complementary strengths (Fan et al., 2017; Sedlazeck et al., 2018). Long-read sequencing generates 

reads from tens to hundreds of kilobases in length, capable of directly spanning repetitive segments 

and capturing large structural variants in a single read (Jain et al., 2018). Steady advances have led to 

substantial improvements in data accuracy with  PacBio's HiFi sequencing achieving error rates as low 

as 0.1-0.5% , representing over a 10-fold increase in accuracy compared to their previous chemistry. 

Oxford Nanopore Technologies has also made strides with their R14 flow cells, attaining median Q 

scores over 30 and estimated error rates below 5% for certain applications (Oehler et al., 2023). This 

is a notable enhancement from the 10-15% error rates routinely seen in early nanopore data (Ardui et 

al., 2018). While higher errors were acceptable in the past due to long-read sequencing's ability to 

characterise complex genomic regions, these new chemistry versions provide the best of both worlds 

- long reads with precision approaching short-read platforms. Short-read sequencing (e.g. Illumina) 

produces high accuracy data (error rates <1%) in vast volumes, but is limited in resolving complex 

regions and large variants beyond the read length (Chaisson et al., 2015). Integrating long and short 

reads in a hybrid assembly framework combines these complementary strengths to improve SV 

detection. Long reads can be aligned to an assembly graph or scaffolds constructed from more 

accurate short reads, encouraging the short reads to correct errors in the long reads (Koren et al., 

2012). Discordant paired-end alignments and changes in read depth from short reads provide 

orthogonal signals to nominate SVs, which are then validated by alignment of long reads spanning the 

variant breakpoints (Chaisson et al., 2015). Joint analysis algorithms integrating multiple data types 

have shown dramatically improved sensitivity and precision. For instance, NanoSV achieved >95% 

precision and sensitivity by combining illumina, 10X Genomics linked-reads and PacBio long reads 

(Cretu Stancu et al., 2017). By overlaying multiple modes of evidence, hybrid approaches overcome 

limitations of individual technologies for more comprehensive and accurate SV detection. 
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The optimal approach for a given study depends on the biological question, samples, and resources 

available. Generating a high-quality reference assembly provides a crucial foundation for accurate SV 

calling (Rhie et al., 2021). For population-level analyses, moderate genome coverage (10-30X) of 

multiple individuals using short or long-reads can identify segregating SVs (Chiang et al. 2017). 

Comparing long-reads directly to a reference assembly is very effective for genotyping all SV types 

(Huddleston & Eichler, 2016). Combining orthogonal short and long-read evidence increases validation 

(Audano et al., 2019). Overall, applying complementary methods tailored to the study system enables 

rigorous SV analysis. 

According to (Illumina), their sequencing platforms short-read sequencing platforms have continued 

to drive genomics over the past decade. Through iterative advances, Illumina sequencing now 

routinely generates hundreds of gigabases per run with available read lengths including 50bp, 100bp, 

150bp or 300bp and accuracies exceeding Q30 (99.9%). This has enabled population-scale projects like 

the 100,000 Genomes Project (UK, 2018) and the All of Us Research Program (Denny et al., 2019). 

However, short-reads perform poorly in repetitive regions and cannot phase variants over long 

distances (Sedlazeck, Lee, et al., 2018). 

1.5 Motivations for Studying Arctic Charr Structural Variation 

The recent sequencing of the Arctic charr genome has opened exciting opportunities to explore the 

structural genomic variation underlying this species’ adaptation. While numerous studies have 

speculated about the presence and adaptive significance of SVs, thorough investigation and validation 

has been lacking. Comprehensively evaluating SVs differentiated among divergent Arctic charr 

populations promises fundamental insights into the genomic basis of adaptability and its ecological 

speciation. From an applied perspective, Arctic charr represent an economically important emerging 

aquaculture species across Nordic regions, due to its delicate flavour and attractive pink colour 

(Helgadóttir et al., 2021; Pappas et al., 2023; Pappas & Palaiokostas, 2021). Overall, comprehensive 

analysis of Arctic charr structural variation has both basic and applied merits warranting in-depth 

investigation. 

This thesis aims to develop a catalogue of structural variants in this species by optimizing and 

benchmark different computational tools designed for genome-wide SV discovery using short read 

data as input. 

Achieving this objective will significantly advances understanding of the genomic understanding of 

Arctic charr’s adaptability. Furthermore, the methodologies and resources produced will broadly 

empower structural variant studies in other non-model organisms. 

 

1.6 Study Specie: The Arctic Charr  

Aquaculture rearing and selective breeding of Arctic charr provides a model system to study genomic 

diversity, adaptation, and traits of commercial interest. Characterizing structural variation in farmed 

strains compared to wild populations can reveal impacts of domestication and artificial selection. 

Investigation of structural variants in the genomes of aquaculture stocks may uncover rearrangements 

related to productivity, growth, disease resistance, and other agro-economically important attributes. 

Additionally, The Arctic charr (Salvelinus alpinus) has become a key model species for studying the 

genetic basis of adaptation, evolution, and early ecological speciation using genomic approaches. This 

cold-water fish lives in freshwater lakes, rivers, and coastal marine environments across the Northern 

hemisphere (Klemetsen et al., 2003). In contrast to most other salmonid species that have anadromous 

life cycles, Arctic charr generally reside in freshwater throughout their lives, with only limited migration 
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between interconnected water bodies, particularly in coastal river systems. The different charr morphs 

within these populations exhibit niche segregation and differences in feeding habits, which can lead to 

variations in parasite species and abundance (Jonsson & Jonsson, 2001). 

Distinct morphs demonstrating adaptations to ecological niches characterized by water depth, 

available prey, and other limnological factors have evolved (Adams et al., 1998). For instance, dwarf, 

normal, and piscivorous morphs can be found coexisting and occupying distinct trophic roles in a single 

lake (Moccetti et al., 2019). Arctic charr thus represents an intermediate stage in the speciation 

continuum, with intraspecific phenotypic variation approaching interspecific differences normally seen 

between distinct species (Jonsson & Jonsson, 2001; Anders Klemetsen, 2010). 

This signature adaptability of Arctic charr is encouraged by high levels of genetic variation accrued and 

maintained within genetically distinct populations (Brunner et al., 2001;Kapralova et al., 2011). 

Microsatellite studies have uncovered some of the highest genetic diversity. Significant allele 

frequency differences and fine-scale local adaptation are evident even across small spatial scales such 

as among interconnected lakes (Fraser & Bernatchez, 2005; Kapralova et al., 2011). Overall, the 

extensive phenotypic plasticity coupled with abundant genetic variation make Arctic charr a 

compelling model for genomic studies of rapid adaptation. Elucidating the genetic basis underlying this 

diversity promises to reveal key insights into the genomic architecture of adaptability and the drivers 

of ecological speciation. 

The extensive genetic diversity observed within and among Arctic charr populations provides both 
opportunities and challenges for developing selective breeding programs. On one hand, the high levels 
of natural variation offer a rich resource to select for desired traits related to growth, disease 
resistance, flesh quality, and other aquaculture-relevant characteristics (Kapralova et al., 2011). The 
fine-scale local adaptation evident across interconnected environments also suggests genomic variants 
conferring plasticity that could enable adaptation to changing conditions (Fraser & Bernatchez, 2005). 
Capturing these adaptive alleles through genomics-guided breeding could produce resilient strains 
tailored to specific aquaculture settings. 
However, the same diversity also poses challenges. High genetic differentiation between populations 
means breeding values for traits estimated in one population may not predict performance well in 
other populations (Sae-Lim et al., 2016). Connectedness between breeding populations is required for 
effective genomic selection. The diversity may also reflect high levels of inbreeding within small 
isolated populations, necessitating careful management of inbreeding depression in a breeding 
program. Nevertheless, applying genomic tools to understand the architecture and selective pressures 
shaping diversity will be key to harnessing the variation through selective breeding for continued 
advancement of Arctic charr aquaculture. 

1.7 Emergence of Genomic Resources for Arctic Charr 

Early genomic research in Arctic charr focused on targeted investigations of specific molecular 

markers, genes, and chromosomal regions (e.g. Brunner et al., 2001; Ferguson et al., 1991). 

Technological advancements in high-throughput sequencing over the past decade have enabled 

genome-wide analyses to interrogate genetic architecture, adaptation, and evolutionary relationships 

in this species (Christensen et al., 2021). For instance, SNP arrays and genotyping-by-sequencing 

approaches have empowered population genomic studies revealing neutral and adaptive genetic 

structure among Arctic charr populations (Bourret et al., 2013; Kapralova et al., 2011). Additionally, 

recent years have seen major improvements in Arctic charr genome resources to facilitate more 

detailed genetic investigations. 

 



   

 

8 
 

1.8 Structural Variant Detection Pipeline used in this research  

 

In this research, structural variants were identified using three complementary detection tools: Delly 

v1.1.6 (Rausch et al., 2012), Manta v1.6.2 (Chen et al., 2016), and Smoove v0.2.5 (Pedersen, 2020). 

Employing multiple tools accounts for the complexity of accurately detecting SVs and addresses 

inherent limitations of individual programs. 

The rationale for a multi-tool approach stems from SVs' intricate nature and current computational 

challenges in reliably identifying them. Each tool utilizes distinct algorithms suited to detecting certain 

SV types and sizes, leading to variances in sensitivity, specificity, and efficacy. For instance, one tool 

may excel at finding large SVs while another is optimized for complex genomic rearrangements. By 

integrating strengths across tools, the research aims to improve overall SV detection reliability and 

comprehensiveness. 

The selection of Delly, Manta, and Smoove was based on their distinct methodologies and proven 

performance in previous studies. Delly demonstrates robust detection across SV types like deletions 

and translocations. Manta is optimized for precisely calling SVs and indels, especially in cancer 

genomics. Smoove efficiently handles large datasets while maintaining high SV calling accuracy. 

1.8.1 DELLY v1.1.6 

The C++ integrated software programme DELLY combines split-read analysis paired-end mapping, 

making it an excellent SV detector. In order to successfully detect and genotype SVs, the tool employs 

the 'delly call' command. A reference fasta file and a BAM file that has been sorted are required for 

this procedure. This command demonstrates how to use DELLY to detect several types of SVs, such as 

deletions (DEL), duplications (DUP), inversions (INV), and insertions (INS) and breakends (BND), A 

breakend is one breakpoint or disrupted endpoint of a structural variant (SV). Most SV detection 

involves finding paired breakends that reveal the variant type and size. However, limitations can result 

in single breakends being detected without identifiable pair. These lone breakends indicate a genomic 

SV but lack information to categorize the specific type. Hence, they classified as BND. You may easily 

convert the resultant data from its original BCF format to the simpler and more readable VCF format 

with Bcftools (H. Li, 2011). Detailed information on SVs, including their types, chromosome locations, 

genomic positions, reference and changed sequences, quality scores, and other pertinent parameters, 

are included in the final result. 

1.8.2 Manta v1.6.2 

Manta employs a robust C++ programming to lead the field in precise  SV identification from genomic 

sequences. Its specialized diploid-aware algorithm efficiently analyzes both short-read Illumina and 

long-read sequencing data to pinpoint SVs with accuracy. By integrating paired-end and split-read 

evidence, Manta can adeptly detect complex events like Breakends and tandem duplications. Its 

streamlined "manta" command-line workflow allows straightforward inputs of alignment files in BAM 

or CRAM formats to initiate intricate SV analysis. 

1.8.3 Smoove v0.2.5 

Based on go-based programming, this software demonstrates exceptional proficiency in streamlining 

the complicated procedure of structural variation (SV) detection. Smoove functions by effectively 

utilizing preexisting tools such as Lumpy and SVTyper, simply integrating them into a single workflow. 

The collaboration leads to a highly effective approach for accurately detecting deletions, duplications, 

and other SV categories. The command-line interface of the tool, known as 'smoove', simplifies the 

execution of SV analysis by simply using input BAM files and a reference genome. The output 

generated by Smoove, which is formatted as Variant Call Format (VCF), provides a substantial amount 
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of data. This comprehensive description allows researchers to obtain a concise and accurate 

understanding of the structural variants, including their positions and distinctive features. In this 

thesis, we applied a robust computational strategy to detect structural variants (SVs) in Arctic charr 

(Salvelinus alpinus), leveraging the high-throughput SV detection capabilities of Smoove. We executed 

a multi-step pipeline that included individual SV calling, stringent quality control, and cross-caller 

variant comparison to distill a consensus SV profile. 

1.9 Anticipated Research Outcomes and its significance 

 

A key outcome of this research is to benchmark alternative SV calling programs for their accuracy and 

efficacy. By assessing different SV calling approaches, this study will help refining protocols for variant 

detection in genomics research by utilizing short read data as input. 

Another major goal is constructing a comprehensive catalog of SVs in Arctic charr. It will enable 

researchers and breeders to pinpoint genetic markers associated with desirable traits, thereby 

optimizing breeding strategies for improved productivity and sustainability in aquaculture. 

Additionally, the findings could potentially be used in comparative genomics analysis with other 

salmonids (farmed or wild). Contrasting SVs across related species will provide insights into the genetic 

architecture of shared and unique traits, advancing knowledge in evolutionary biology and 

aquaculture. 

Chapter 2 Methods and Materials 
2.1 Sample Collection  

The samples utilized in this study consisted of 30 Arctic charr (Salvelinus alpinus) obtained from a 

commercial aquaculture facility in Norway. The library preparation and DNA sequencing were 

performed at the Norwegian Sequencing Center. The 30 Arctic charr DNA libraries were sequenced 

using an Illumina HighSeq-4000 platform to generate 150 bp paired-end reads with ~30X genome 

coverage depth.  

2.2 Coverage Analysis by mosdepth (v 0.3.5) 

Genomic coverage for binary alignment/map (BAM) files was computed using Mosdepth (version 

0.3.5) (Pedersen & Quinlan, 2018), an ultra-rapid tool designed and optimized specifically for 

calculating depth distribution across genomic regions. Mosdepth demonstrates superior 

computational performance over other coverage calculators like SAMtools depth and BEDTools 

genomecov by utilizing a concatenated hash table and space-efficient binary format (Pedersen & 

Quinlan, 2018).  

2.2.1 Workflow Implementation 

An automated Bash script (run_mosdepth.sh) was developed to enable batch processing of Mosdepth 

across 30 BAM files. The script contained a loop to iterate through each input BAM file stored in the 

specified directory. For each BAM file, the script executed Mosdepth with the following optimized 

parameters: 

Interval size: 100 bp (non-overlapping 100 bp windows used to calculate coverage metrics, balancing 

resolution and speed) 

Fast mode: Enabled to accelerate computation 

Per-base report: Disabled to reduce output volume 
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The Arctic charr reference genome assembly (Salpinus_reference/Arthur_CHR_polished.fasta) was 

provided as a benchmark to calculate coverage aligned to genomic coordinates. The scripts and its 

documentation for run_mosdepth.sh is provided in my GitHub repository (Syed-NMBU, 2023), 

specifically at this link. 

In the output Analysis, mosdepth output files containing coverage distributions, regional metrics, and 

summary statistics.The coverage data visualization was performed using a custom R script. This script, 

developed for generating chromosomal coverage plots for each sample, utilized various R packages 

including ggplot2, dplyr, viridis, ggrepel, and patchwork. The script facilitated the creation of multi-

panel figures, such as 'Average Coverage Depth Across Chromosomes' (Figure 3), 'Comprehensive 

Chromosomal Coverage Depth Analysis for Samples 01 to 10' (Appendix C, Figure C1), and 'Sequential 

Chromosomal Coverage Depth Profiles for Samples 11 to 20' (Appendix C, Figure C2), which are 

essential for assessing variability in coverage depth across samples. The script and its documentation 

are accessible on my GitHub repository at this link. 

2.3 Delly: v1.1.6 (Chen et al., 2016) 

2.3.1  Computational Framework and Dataset 

Analysis was conducted using the Delly SV caller (version 1.1.6) (Rausch et al., 2012), specifically 
optimized for high-throughput sequencing data. The integrity and uniformity of the reference genome 
sequence, Salvelinus alpinus reference genome (Arthur_CHR_polished.fasta), were maintained across 
all samples to ensure consistency in SV detection. 
SV calling was executed through a batch script (1_run_delly_analysis.sh), utilizing the singularity 
container technology to encapsulate the Delly environment, thereby ensuring reproducibility across 
computational environments. Binary Call Format (BCF) files were generated for each sample, followed 
by conversion to Variant Call Format (VCF) for downstream analysis using BCFtools. The Delly program 
was executed with default parameters. The script is accessible for review and use at my GitHub 
repository (Syed-NMBU, 2023). In the data processing phase, a custom script, 2_delly_vcf_filtering.sh 
(available at Syed-NMBU, 2023)  was utilized. This script was specifically designed to filter Variant Call 
Format (VCF) files generated by Delly, focusing on calculating and annotating structura variant lengths 
(SVLEN) where not initially provided, and filtering variants based on size criteria, particularly those 
exceeding 50 base pairs. This step was crucial for ensuring the accuracy and relevance of the structural 
variant data used in subsequent analyses. 

2.3.2 Data Normalization and Merging 

The normalization step corrected for any inconsistencies in reference allele representation across the 
individual VCF files, facilitating a coherent merged dataset. The BCFtools 'norm' command was 
employed for this purpose, ensuring the harmonization of SV calls prior to merging. The merging 
process was meticulously logged, capturing every step and error to ensure transparency and 
traceability of the pipeline execution, BCFtools 
‘merge’ command was used. The script with detail merging commands available here. 
The filtered, normalized SV datasets were subject to detailed statistical analysis using BCFtools  (H. Li, 
2011) and custom R scripts to quantify the frequency and types of variants across the genome and for 
visualization with R code (Available at: Syed-NMBU, 2023) 
Data Management, all intermediate and final datasets were systematically stored on a project-
designated SCRATCH storage space on Orion, adhering to a pre-defined directory structure and file 
naming convention to facilitate efficient data management and retrieval. 

2.3.3 Materials 

Genomic Data 
 Arctic charr sequencing data: 30 samples (BAM format) 

Software and Tools 
 Delly SV caller (version 1.1.6) (Rausch et al., 2012) 
 BCFtools (version 1.12) (H. Li, 2011) 

https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Mosdepth-analysis/run_mosdepth.sh
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/R_scripts/coverage_plot_with_line_plot
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Delly_scripts/run_delly_analysis.sh
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Delly_scripts/2_delly_vcf_filtering.sh),
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Delly_scripts/3_merge_vcfs.sh
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/R_scripts/SV_Count_per_SVtype
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 Singularity container (delly_1_1_6_ha41ced6_0.sif) (Kurtzer et al., 2017) 
Reference Genome 

 Salvelinus alpinus reference genome (Arthur_CHR_polished.fasta)  
Computational Resources 

 Orion high-performance computing cluster 
Scripts and Commands 
Detailed scripts used for SV calling, quality filtering, normalization, and merging are available in 
(https://github.com/Syed-NMBU/StructVar_ComparativePipeline/tree/main). 

2.4 Manta v1.6.2 (Chen et al., 2016) 

2.4.1 Computational Workflow 

Structural variants were identified using Manta (version 1.6.2), a tool designed for the rapid and 

precise analysis of structural variants in genomic data. Each Arctic char sample was processed 

separately, yielding three primary VCF outputs: candidateSmallIndels.vcf, candidateSV.vcf, and 

diploidSV.vcf, each uniquely annotated with genomic coordinates. The computational process was 

conducted on a high-performance computing cluster (HPC) using the SLURM workload manager. 

Specific parameters included a single task (--ntasks=1), 15 CPUs per task (--cpus-per-task=15), 60G 

memory allocation (--mem=60G), and a run time limit of 48 hours (--time=48:00:00). This setup was 

crucial for managing the computational demands of processing high-throughput sequencing data. 

Scripts written in Bash were used for the Manta workflow (Available at: Syed-NMBU, 2023), including 

configuration (configManta.py), execution (runWorkflow.py), and post-processing steps. Significantly, 

the output VCF files from Manta already contained the SVLEN (structural variant length) column. For 

data refinement, the bcftools view command was applied to exclude structural variants smaller 

than 50 base pairs, ensuring the retention of variants larger than this threshold. This filtration was vital 

in isolating and analyzing structural variants of substantial size, for the accuracy and relevance of this 

genomic study with other tools. The bcftools v1.12 (Danecek et al., 2021) is used for filteration of all 

files (Appendix A, Script A.1) 

2.4.2 Normalization and Merging of VCFs 

Post-processing involved normalizing primary VCF files for each sample using BCFtools norm. This step 

was critical in unifying the SV calls, addressing multi-allelic records, and standardizing SV 

representations across the dataset. After that a custom script (VCF_merge) was utilized in which 

BCFtools merge command is used to merge the normalized VCF files from all 30 samples, creating a 

consolidated VCF file containing all unique SVs from 30 samples detected by Manta. 

2.4.3 Materials 

Genomic Database 

A reference genome for Arctic charr (Salpinus_reference) previously constructed at CIGENE was made 

available to this work and used for read mapping and SV calling. 

2.5 Smoove v0.2.5 (Pedersen, 2020) 

In this thesis, we applied a robust computational strategy to detect structural variants (SVs) in Arctic 

charr (Salvelinus alpinus), leveraging the high-throughput SV detection capabilities of Smoove. We 

executed a multi-step pipeline. 

2.5.1 Computational Workflow 

The SV calling was initiated with individualized processing of samples. A unified automated script 

run_smoove.sh was build to process samples 1 through 30. Each sample underwent SV calling where 

Smoove was invoked within a controlled singularity container environment, ensuring computational 

reproducibility. The BAM files, served as the input, and the SV calling was conducted in a sample-

specific directory to streamline data organization and log collection. The ouput VCF files are filtered to 

https://github.com/Syed-NMBU/StructVar_ComparativePipeline/tree/main
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Manta_scripts/run_manta.sh
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Manta_scripts/VCF_merge
https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Smoove_scripts/run_smoove.sh%22
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remove SVs in the range from 1 to 49 bp, by using bcftools view command (Appendix A, Script 

A.1). 

2.5.2 Normalization and Merging  

BCFTOOLS, a renowned tool for its precision in VCF file manipulation, was employed to normalize and 

standardize the genomic coordinates and allele representations within the merged VCF file against the 

reference genome, ensuring uniformity across the dataset. Normalization served as a pivotal step, 

rectifying allele inconsistencies and facilitating subsequent genomic queries. Following SV detection 

and normalization, a custom script (vcf_merge) merged the individual .vcf.gz files into a singular, 

cohesive VCF file for further SV analysis. 

2.5.3 Materials 

Bioinformatics Tools 

 

 Smoove v0.2.6 (Pedersen, 2020) 

 BCFtools (H. Li, 2011) (for VCF normalization and merging) 

 Computational Resources 

Orion 

 

 

2.6 Comparing Tools by SURVIVOR v1.0.7 (Jeffares et al., 2017) 

We utilized three structural variant (SV) detection tools to comprehensively identify SVs from the Bam 

files and for comparison, DELLY, Manta and Smoove. Each tool was independently applied to the 30 

Bam files, resulting in 90 VCF files containing putative SVs identified per sample. To construct an 

integrated overview of SVs across samples and tools, we utilized SURVIVOR to harmonize and merge 

the SV calls  

Per-Tool Merging, The SURVIVOR merge command was utilized to consolidate 30 VCF files from each 

structural variant (SV) detection tool into a single, unified VCF file per tool. The unique SV catalogue 

results from Delly, Manta and Smoove with each VCF file. The key parameters were a max breakpoint 

distance of 100 bp (to merge proximal SVs) and a minimum tool support of 1 (to retain all SVs 

regardless of sample overlap). 

Final Merging, The 3 merged tool-specific VCF files were integrated using a final SURVIVOR merge step 

to create a comprehensive dataset with all identified SVs with one final VCF. The same inclusive 

parameters were used as before.The final merged VCF file was subjected to comparative analysis to 

identify common SVs supported by multiple tools. 

 

Chapter 3 Results 
3.1 Coverage analysis 

 

Sequencing was performed on 30 arctic charr samples. After aligning reads to the reference genome 

sample coverage statistics were calculated using the mosdepth package. The analysis generated global 

distribution files, region-specific distribution files, summary statistics files, and per-window depth files 

for each sample.  

https://github.com/Syed-NMBU/StructVar_ComparativePipeline/blob/main/Smoove_scripts/vcf_merge
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3.1.1 Mean Coverage depth per sample 

 

With an estimated reference genome size of 2.147 gigabases (Gb), the mean sequencing depth across 

the 30 samples (Sample_01 to Sample_30) ranged from 10X to 14.4X coverage. The overall average 

sequencing depth across all 30 samples was calculated to be 11.19X with a standard deviation of 0.98X. 

Most samples displayed mean depths within this typical range. However, two samples, Sample_25 and 

Sample_26, exhibited markedly higher mean depths of 13.61X and 14.41X respectively. Additionally, a 

subset of samples showed slightly lower than average mean depths below 10X, specifically Sample_01 

(9.97X), Sample_09 (9.96X), Sample_11 (9.97X), and Sample_19 (9.96X) (Figure 2). 

 

 

Figure 2. Sequencing coverage of 30 Arctic charr Samples 

 

3.1.2 Per chromosome coverage statistics 

 

Each sample comprising of 39 chromosomes (sal01 to sal39). The chromosome sizes ranged from 25Mb 

(25,575,790; sal39) to 106Mb (106,341,530; sal10). Across samples, coverage depth per chromosome 

varied from 7.9X (sample 1, sal 25) to 30.56X (sample 26, sal 17), indicating moderate variability 

between samples and substantial variability between chromosomes. The mean coverage depth across 

all chromosomes and samples was 11.38X. Of 39 chromosomes, 17 (sal17) showed high coverage 

depth in all samples, ranging from 16.41X (sample 23) to 30.56X (sample 26) (Figure 3). 
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Figure 3. Chromosomal coverage depth analysis for Sample 26 with maximum, second maximum and minimum mean 
coverage points representing with red dots. 

Several additional large coverage spikes were noted for sample 14's chromosome 19, reaching 12.53X 

depth, and sample 25’s chromosome sal20 with 16.05X. Figure 3 presents the average coverage depth 

across chromosomes for sample 26, with sal17 showing high coverage depth across all samples. This 

trend is consistent across all samples as shown in Figures C1, C2 and C3 in the Appendix C. 

3.2 Delly, SV detection 

 

Delly identifies five classes of structural variations (SVs): deletions (DEL), duplications (DUP), inversions 

(INV), insertions (INS), and breakends (BND) as shown in figure 4, which indicate the presence of a DNA 

rearrangement with broken ends. After filter-based normalization, specifically filtering out SVs smaller 

than 50bp in size and normalizing the vcf files retaining variants greater than 50bp, between 70,866 

and 128,116 SVs were detected per individual. SVs were detected per individual with an average of 

97,341. 
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Figure 4. Distribution of Structural Variations by Type Across 30 Samples:  This bar chart categorizes the number of structural 
variations (SVs) identified in 30 samples using the DELLY SV caller. Each bar represents a single sample, with the length 
corresponding to the count of SVs detected. The structural variations are color-coded according to type, providing a 
comparative overview of the SVs. 

Across all samples, Deletions were the most common SV class (mean 39,574), representing genomic 

deletions. BND is the second most variant type (mean 31,573), followed by fewer duplications (mean 

18,935) and insertions (mean 3,658) and inversions (mean 5,315). The ratio of deletions to duplications 

was ~2:1 in most samples. 

The distribution and total number of structural variants (SVs) identified by Delly were assessed on a 

per chromosome basis (Figure 5). 
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Figure 5. Structural variation distribution and coverage across chromosomes in a single sample This graph illustrates the 
number of structural variations (SVs) detected across 39 chromosomes in a single sample alongside the corresponding 
sequencing coverage (line). The y-axis on the left quantifies the SV count pr chromosome, while the y-axis on the right 
measures the sequencing coverage depth. The bar graph's color gradation represents individual chromosomes, and the line 
graph overlays the coverage, offering insight into the density of SVs in relation to sequencing depth, as determined by DELLY 
analysis. 

 

Across all samples, chromosomes 19 and 36 consistently contained the greatest number of SVs 

compared to all other chromosomes, with an average SV count of 11,500 and 11,800 respectively 

versus 2500 for all other chromosomes combined. 

In contrast, chromosomes 14, 29 and 33 showed the lowest SV numbers on average, ranging from 

1,209 to 1,908 SVs across samples. 

However, a subset showed more variable numbers of SVs, with some samples exhibiting up to 3-fold 

differences versus averages. For example, chromosome 17 ranged from 1,116 SVs in sample 11 to 

3,040 SVs in sample 26. These findings are graphically presented in Appendix D, Figure D1, which 

provides a detailed visual comparison of SV frequencies across all chromosomes and samples. 

Delly Structural Variant Merging 

Delly was used to call SVs in each sample individually, and gave the total sum of SVs across all 30 

samples as 2,885,011. Many of these calls result from the same SV being detected in multiple samples. 

We collapsed the raw SVs into a merged, consolidated dataset using the bcftools merge command 

which reduced the total Delly unique SV count to 1,550,299.  

 

3.3 Manta, SV detection 

Manta was utilized to detect structural variants (SVs) including deletions, duplications, insertions and 

breakends (Figure 6) . Between 17,185 (sample 23) to 30,946 (sample 26) total SVs were detected per 

individual fish genome. 
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Figure 6. Distribution of detected structural variations by type across different samples: This bar chart shows the number 
and types of structural variations (SVs) identified across 30 samples using Manta. Each bar represents a Sample, segmented 
by color to indicate the quantity of different SV types detected. The x-axis quantifies the number of SVs, while the y-axis lists 
the samples. The color key at the bottom corresponds to the different SV types, facilitating a comparative analysis of the 
structural variation distribution between samples.. 

Deletions represented the predominant SV type, ranging from 7,407 (sample 11) to 20,756 (sample 

26) per genome. Duplications, insertions and breakends occurred at lower but variable frequencies, 

together comprising 15-25% of SVs depending on sample. No inversions were identified across any 

sample by Manta. A subset of genomes showed substantially higher SV counts, including samples 25 

and 26 containing 26,216 and 30,946 total SVs respectively. In contrast, samples 11 and 23 displayed 
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comparatively fewer SVs. 

The total SVs per chromosome were quantified to assess inter-chromosomal variability (Figure 7).   

In Appendix D, Figure D2 provides a detailed visual summary of the structural variations observed 

across all samples. SVs showed non-random genomic distribution, with certain chromosomes 

emerging with high number of SVs. Significantly, chromosome 36 with the highest SV burden 

(Appendix E, Figure E1), ranging from 711 SVs (sample 11) to 1,568 SVs (sample 26) (Figure 7). Other 

SV-rich chromosomes included 1, 3, 4 and 38, each averaging 900-1,300 SVs across samples. 

In contrast, chromosomes 13, 14, 25, 29 and 33 showed the lowest SV numbers, generally below 550 

SVs per sample. While the chromosome with most SVs remain consistent, total SVs varied from 17,185 

(sample 23) to 30,946 (sample 26) per fish. Samples 25 and 26 again displayed high SV content, 

implying heightened genomic variability.  

Manta Structural Variant Merging 

To determine number of unique SVs detected by Manta, individual outputs were consolidated and 

redundancy (re-calls of the same SV across samples) removed. While the un-consolidated collection 

totaled 652,365 SVs, the aggregated merged file reduced this number to 221,309. The merged Manta 

variants could then be integrated and contrasted with the merged 1.5 million Delly and Smoove callsets 

using Survivor, giving a broad portrait of structural mutation spectra in the population. 

Figure 7. Correlation Between Structural Variations and Sequencing Coverage for Chromosomes in a Single Sample: This 
figure represents a dual-axis chart where the bar graph depicts the number of structural variations (SVs) detected across 
chromosomes for a single sample, and the line graph shows the corresponding sequencing coverage. The x-axis mentions 
the chromosomes, while the left y-axis scales the number of SVs detected, and the right y-axis measures the sequencing 
coverage. The bars are color-coded to differentiate between the chromosomes, and the coverage line provides context to the 
SV detection efficiency, highlighting the variability and density of SVs in relation to the sequencing coverage. 
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3.4 Smove, SV detection 

Smoove can detect four classes of structural variation including deletions, duplications, inversions, and 

breakends (Figure 8). Between 7,746 (sample 11) and 20,789 (sample 26) total SVs were detected per 

fish genome. 

Across all samples, a total of 449,767 SVs were identified. Deletions were the most prolific SV class, 

accounting for 85% of calls (n= 384,727). Duplications occurred at a 6-fold lower frequency (n=30,962), 

followed by much lower inversion (n=5,454) and breakend (n=28,624) numbers. 

 

Figure 8. Distribution of Structural Variations by Type Across 30 Samples: This figure provides an overview of the structural 
variations (SVs) detected across 30 samples by Smoove, with each sample represented by a group of four bars. Each bar within 
a group corresponds to a different type of SV, color-coded for distinction. The y-axis indicates samples, while the x-axis 
represents the count of each SV type. The visualization facilitates a comparative analysis of the prevalence and variety of SVs 
in each sample. 

Deletion counts per individual aligned with previous callers, ranging from 6,557 (sample 11) to 17,545 

(sample 26). Samples 25 and 26 again displayed exceptional SV content, with 15,413 and 17,545 

deletions called respectively. As with Delly and Manta, samples 11 and 23 showed markedly fewer 

deletions. 
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Figure 9. Number of Structural Variations and Sequencing Coverage per Chromosome in a Single Sample: This graph 
illustrates the count of structural variations (SVs) detected across each chromosome in a single sample, detected using 
Smoove. The bar graph indicates the number of SVs per chromosome, with each bar's color representing a different 
chromosome on basis of their sizes, Blue are the largest, red are the smallest in size. Overlayed on the bar graph is a line plot 
that depicts sequencing coverage, allowing for a direct comparison between SV frequency and coverage depth on a per-
chromosome basis. The bottom panel displays the relative sizes of each chromosome, providing context for the SV distribution 
in relation to chromosome length. This figure encapsulates the correlation between chromosomal architecture and the 
incidence of structural genomic variations within the sample. 

Prominently, sal 36 consistently emerged as an SV dense chromosome, with events ranging from 501 

(sample 11) to 1,420 (sample 26), as illustrated in figure 9 for single sample, and in appendix D, figure 

D3 for all samples. Several other chromosomes also harbored extensive structural mutations, including 

chromosomes 1, 3, 10 and 38. Chromosome 1 displayed the top range, spanning 403 SVs (sample 11) 

up to 1,571 variants (sample 26). In contrast, chromosomes 13, 14 and 29 comprised SV deserts, 

typically containing well under 400 events. 

Notably, while the ranking of chromosomal counts was stable across samples, the degree of SVs 

fluctuated. Particularly for high SV count regions like chromosome 36, samples 25 and 26 reached over 

1,400 events, whereas sample 11 showed only 501 variants - a 3-fold difference. 

While exhibiting generally consistent patterns, Smoove reported lower raw SV numbers than prior 

methods. This likely reflects algorithmic differences in variant classification thresholds. 

Smoove structural variant merging 

Across all samples, the raw Smoove outputs contained 449,767 total SVs when aggregated across 

individual sample callsets. As with Delly and Manta, this initial tally double-counted signals shared 

between closely related fish. Using the same bcftools merge approach, the per-sample Smoove VCF 

files were consolidated into a unified variant set. Collapsing common variants reduced the overall 

events to 116,940 in the merged output.  

The set of 116,940 non-redundant calls represents Smoove's highly specific portfolio of highest-

confidence predictions, which can be intersected with the more sensitive Delly and Manta approaches.  
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3.5 Delly, Manta and Smoove VCF filter 

Delly output underwent standardized filtering to mark variants as "PASS" or "LowQual" prior to 

comparison with Manta and Smoove. Across all Delly calls in the merged file, 270,406 (19%) variants 

were assigned a PASS filter status, while the remaining 1,279,893 (81%) calls were labelled as LowQual. 

Unlike Delly, Manta classified variants dichotomously as either "PASS" or non-PASS, without a specific 

"LowQual" designation. Manta calls comprised 370,334 (57%) PASS and 282,031 (43%) non-PASS 

variants. In the Smoove output VCF file, none of the 116,940 total variants were specifically designated 

with a "PASS" label in the FILTER column. Rather, all calls displayed alternative entries lacking a 

"LowQual" or failed designation. 

Table 1. Quality Assessment of Structural Variant (SV). This table outlines the quality categorization of SVs identified by 
three tools: Delly, Manta, and Smoove. The 'Total SVs' column indicates the total number of SVs detected by each tool. 'PASS' 
represents the number of SVs classified as high quality, 'Low Quality' indicates SVs deemed of lower reliability, and 'No Quality 
Status' shows SVs without a specified quality assessment. The 'PASS Percentage' column provides the percentage of total SVs 
that met the high-quality criteria. 

Tool Total SVs PASS Low 

Quality 

No 

Quality 

Status 

PASS 

Percentage 

Delly 1,550,299 270,406 1,279,893 - 18% 

Manta 221,309 77,877 - 143,432 35% 

Smoove 116,940 116,940 - - 100% 

 

3.6 SURVIVOR, Per-tool merging 

The trio (Delly, Manta and Smoove) respectively contained 1,054,878 , 164,587 and 78,268 SVs (Table 

2). 

Table 2. Summary of Structural Variant (SV) Counts from Initial Detection to Post-Merge and SURVIVOR application. The 
table outlines the raw SV counts detected by each caller (Delly, Manta, Smoove), the counts following the merging process 
with BCFtools to eliminate redundancy, and the final counts after integration with the Survivor tool to establish a consensus 
across tools 

SV Caller 

Raw Output 

(SVs) 

Post-Merge Output 

(SVs) by BCFtools 

Integrated Callset 

(SVs) by Survivor 

Delly 2,885,011 1,550,299 1,054,878 

Manta 652,365 221,309 164,587 

Smoove 449,767 116,940 78,268 

 

 

Table 3. Comparative Analysis of SV callers.  This table presents a summary of structural variants (SVs) detected by three 
tools: Delly, Manta, and Smoove, categorized into five types—Deletions (DEL), Duplications (DUP), Insertions (INS), Inversions 
(INV), and Translocations (TRA). The counts of each SV type are listed alongside the total number of SVs detected by each 
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tool. The 'Command Used for Merging' column specifies the SURVIVOR command parameters utilized for merging SVs from 
different files into a consolidated VCF file for each tool. 

Tool DEL DUP INS INV TRA Total Command Used for Merging 

Delly 245,368 322,713 1,798 77,824 407,175 
1,054,878 SURVIVOR merge 

delly_files_list.txt 100 1 1 1 0 

50 merged_delly.vcf 

Manta 92,421 10,349 17,331 9,676 34,831 
164,608 SURVIVOR merge 

manta_files_list.txt 100 1 1 1 0 

50 merged_manta.vcf 

Smoove 59,245 9,845 - 5,385 3,793 
78,268 SURVIVOR merge 

smoove_files_list.txt 100 1 1 1 

0 50 merged_smoove.vcf 

 

Furthermore, The outputs of the three structural variant detection tools Delly, Manta, and Smoove 

were compared across different bin sizes among each other ranging from 0-50 bp to over 1 million bp 

(Figure 10). In the 0-50 bp bin, Delly detected 407,175 variants (38.59% of its total) (Appendix B, Table 

1), while Manta identified 34,852 (21.17% of its total) and Smoove found only 3,793 (4.85% of its total). 

As the bin size increased, the proportion of variants detected by Manta and Smoove increased, while 

Delly's proportion decreased. In the 50-100 bp bin, Manta identified the most variants (40,038, 24.32% 

of its total). Smoove detected the highest percentage of its total variants in the 1000-2500 bp range, 

finding 19,835 variants (25.35% of its total). Meanwhile, Delly maintained higher SV counts across all 

bins (Figure 10, A), but the proportion of its total variants detected in each bin declined steadily as bin 

size increased (Figure 10, B). 
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Figure 10. Distribution of structural variant (SV) with respect to their sizes detected by Delly, Manta and Smoove: Every tool 
is differentiated by its specific color.  
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And if we compare structural variant (SV) detection tools as per their types for example deletion 

revealed distinct performance characteristics across various SV size bins (Figure 11).  

 

Figure 11. Distribution of structural variant (SV) with respect to their sizes detected by three tools (Deletions):  This bar 

graph illustrates the percentage of total deletions detected across various SV size bins by three genomic tools: Delly, Manta, 
and Smoove. Each tool's performance is represented by a distinct color (Delly in blue, Manta in orange, and Smoove in green). 
The SV size bins are plotted along the x-axis, while the y-axis represents the percentage of total deletions detected within 
each bin.  
 

The script and commands used for extracting deletions from per tool output and making the bins is 

available in Appendix A, Script A2 and to view the full data (Appendix B, Table 1 & 2). 

3.7 Final SURVIVOR merging 

 

The three merged, tool-specific VCF files from DELLY, Manta, and Smoove were integrated using a final 

SURVIVOR merge step. The same inclusive parameters were utilized with 100 1 1 1 0 50: 

Table 4. Structural variants overlap and unique counts from final SURVIVOR merged vcf. SUPP_VEC parameter represents a 
binary vector indicating the detection of SVs by each tool, where the order is DELLY (first digit), Manta (second digit), and 
Smoove (third digit). 

Parameter (SUPP_VEC) Description Number of SVs 

100 Detected by DELLY only 879,020 

010 Detected by Manta only 90,282 

001 Detected by Smoove only 7,156 

011 Detected by both Manta and Smoove 3,956 
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101 Detected by both DELLY and Smoove 18,613 

110 Detected by both DELLY and Manta 19,395 

111 
Detected by DELLY, Manta, and 

Smoove 
47,966 

Total  1,103,785 

 

 

 

 

SV Type Description Count 

DEL Deletions 273,703 

DUP Duplications 309,482 

INS Insertions 18,603 

INV Inversions 81,374 

TRA Translocations 420,623 

Total  1,103,785 
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Figure 12. Overlap of detected structural variations between three SV callers: This Venn diagram illustrates the comparative 

results of structural variation (SV) detection across three tools, each represented by a circle. The numbers within the 
overlapping sections indicate the count of SVs identified by multiple methods, underscoring the consensus between the 
techniques. The percentages denote the proportion of shared SVs relative to the total detected by each method. The areas 
exclusive to each circle reflect the unique SVs identified by a single method, highlighting the method-specific sensitivity and 
specificity.  

 

Integration of the structural variant (SV) callsets from DELLY, Manta, and Smoove using SURVIVOR 

merging resulted in 47,966 high-confidence SVs commonly identified by all three tools (Figure 12). 

Further characterization of these consensus SVs revealed their distribution across SV types per 

chromosome (Figure 13). The most prevalent SV type was deletions (DEL) at 41,549, followed by 

duplications (DUP) at 4,623, then inversions (INV) at 1,192 and translocations (TRA) at 602. Assessment 

of the SVs per chromosome showed higher numbers on the larger chromosomes, with sal 1 having the 

most at 2,131 total common SVs and sal10 having 2124 SVs. Chromosome 36 had 1,693 common SVs 

identified by three tools. 

The chromosome with the least common SVs was chromosome 37, with only 530. The SV type 

proportions also differed between chromosomes - smaller chromosomes tended to have relatively 

higher proportions of INV and TRA compared to the larger chromosomes. These analyses help validate 

these regions as SV distributed. 
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Figure 13.  Distribution of structural variations by type at chromosomal level: This horizontal bar chart represents the 

number of SVs, and y axis labeled from sal01 to sal39 (chromosomes). Each group of horizontal bars corresponds to a 
chromosome and they are segmented into color-coded sections that represent different types of SVs. The length of each 
colored segment within a bar denotes the count of SVs of that particular type within the sample. The x-axis quantifies the 
number of SVs detected, facilitating a direct comparison of the variation load between chromosomes. This visualization 
provides an at-a-glance comparative analysis of the structural variation burden across chromosomes. 

3.8 Breakdown of final merged file by SV types 

Deletions 

The three structural variation detection tools exhibited significant imbalance. DELLY identified the 

highest number of unique deletions at 167,338, followed by Manta at 35,541 and a markedly lower 

Smoove-specific of just 3,156. 

However, despite highly uneven tool-specific counts, there was ample consensus where all algorithms 

corroborated shared variants. 41,549 deletions were unanimously called by DELLY, Manta and 

Smoove, representing majority concordance for Smoove and Manta, and DELLY (Figure 14). 
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Figure 14. Overlap of detected deletions between three SV callers: This Venn diagram illustrates the comparative results of 
detected deletions across three tools, each represented by a circle. The numbers within the overlapping sections indicate the 
count of SVs detected by multiple methods, underscoring the consensus between the techniques. The percentages denote 
the proportion of shared SVs relative to the total detected by each method. The areas exclusive to each circle reflect the 
unique SVs identified by a single method, highlighting the method-specific sensitivity and specificity. 

Duplication 

The final merged VCF contained 309,482 total duplication events by the integrated DELLY, Manta and 
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Smoove caller approach (Figure 15).  

 

Figure 15. Overlap of detected duplications between three SV callers: This Venn diagram illustrates the comparative results 
of detected duplications across three tools (DELLY, Manta and Smoove). 

Insertions 

A total of 18,603 genomic insertion events were enumerated across the samples in the comprehensive 

final merged result. For insertions, little overlap was observed, with Delly and Manta 4, and Smoove 

do not detect any insertions (Figure 16). 
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Figure 16. Venn diagram showing overlap and distribution of unique and shared insertion calls between DELLY, Manta and 
Smoove. 

Inversions 

The merged vcf contained 81,374 total genomic inversion events. It includes 1,192 high-confidence 

inversions supported by all 3 tools DELLY, Manta and Smoove. DELLY contributed the vast majority of 

inversion calls, though substantial subsets were discretely identified by Manta and Smoove. A modest 

fraction displayed unanimous multi-tool support (Figure 17). 
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Figure 17. Venn diagram inversions showing overlap and distribution of unique and shared inversion calls between DELLY, 
Manta and Smoove. 
 

Breakends 

Lastly, breakends/translocations contained 420,623 BND/Tanslocations. 
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Figure 18. Venn diagram BND/TRA depicting overlap between unique and shared translocation calls ascertained by DELLY, 
Manta and Smoove. 

DELLY contributed the most sample-specific translocation calls (Figure 18). More moderate subsets 

were discretely identified by Manta and minor contributions by Smoove. A subset of 602 events 

displayed unanimous multi-tool support. 

Chapter 4 Discussion 

 
A holistic overview of samples with mean coverage 

4.1 Chromosome 36: A repeat-rich region 

In my analysis, chromosome 36 stands out as the chromosome with the most SVs detected. This tiny 

chromosome represents just 1.75% of the total DNA content. Yet despite this, between 4.9% (Smoove) 

to 22.9% (Delly) of all detected structural variants mapped specifically to chromosome 36 (Figure 

6,8,10). The density of structural variations (SVs) per chromosome length is also higher versus other 

chromosomes (Appendix E, Figure E1). Notably, chromosome 36 has the highest density of SVs. So, 

maybe these complex, repeat-rich regions could present multiple targets for erroneous 

rearrangements via recombination or replication errors. The sample-specific increase in chromosome 

36's mean sequence coverage provides further evidence for interspersed structural variations. We 

therefore can hypothesize the high SV levels in chromosome 36 mainly derive from this chromosome 

specific structure, probably rich in repeated sequences The repetitive nature of chromosome 36 can 

potentially promote diverse DNA breakage and rearrangement mechanisms. Despite the overall 
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hotspot trend. 

Although, the absolute SV counts differ substantially between the 3 algorithmic approaches. Yet they 

converge on the same patterns of chromosome 36 instability. This is also strengthening the hypothesis 

of higher detected SVs on chromosome 36. 

Certain samples (like Samples 25 & 26) show far higher SV density than others (Appendix E). If we see 

chromosome 36's mean coverage, it is substantially elevated versus the average of ~10X. Across 

samples, chromosome 36 mean coverage ranges from 15.14 to 22.9. This directly fits expectations of 

higher interspersed SVs on chromosome 36.  

In summary, the coverage signals reinforce the patterns of higher SV density and its abundance seen 

through independent SV analysis. By integrating these orthogonal measures, we can achieve 

heightened confidence in deducing the genomic architecture and evolutionary dynamics of tricky 

regions like chromosome 36. Both the SV and coverage data solidify chromosome 36's identity as an 

SV-laden hotspot within the arctic char genome. 

4.2 Chromosome 17’s genomic Architecture 

We observed an intriguing pattern where chromosome sal36 shows the highest levels of structural 

variants across multiple detection algorithms,that could partially be explained by a higher coverage 

than the average 10x, yet sal17 has even higher sequence coverage estimates (spanning 16.4X-30.6X) 

based on aligned BAM files.  This seemingly contradicts initial hypotheses that increased in coverage 

providing more substrate for rearrangement events and elevated SV counts. 

Ultimately, high sequence coverage does not guarantee corresponding surges in SVs. The architecture 

of specific repeats and duplications likely plays a key modulating role. While sal17 might be abundant 

with interspersed duplications that is driving up its coverage, these expanded segments may remain 

in 'stable' orientations that resist rearrangement. In contrast, the SVs on sal36 could exist in inverted 

or otherwise 'unstable' orientations - increasing probability of erroneous deletion, inversion, or shifted 

insertion events during repair or replication (B. Z. Li et al., 2020). The repetitive motifs may also differ 

substantially in length, complexity, or percent match - further influencing structural variability 

(Carvalho & Lupski, 2016). 

In addition, high-identity repeats pose bioinformatic challenges, with assemblies based on  short-read 

sequencing often collapsing such regions into single contigs (Treangen & Salzberg, 2012; Wang et al., 

2021). This can obscure the full extent of underlying SVs detectable from long-read or linked-read 

technologies. Nevertheless, the multiple algorithms applied here reliably detect elevated SVs on sal36 

relative to other regions. 

We conclude that chromosome architecture (repeat density/orientation/identity repeats) can 

modulate more SVs than simple coverage metrics. Further high-resolution characterization of sal17's 

versus sal36's repetitive motifs will clarify the differential impacts on variant accumulation. 

4.3 Delly, Manta and Smoove, VCF filter 

The LowQual categorization indicates lower confidence structural variations. Sources of uncertainty 

include technical artifacts, false signals from repetitive regions, or insufficient supporting evidence 

meeting callers' statistical filters. In contrast, obtaining a PASS designation marks the validated variant.. 

However, true events can still be present among the more abundant LowQual class depending on 

balance of precision versus sensitivity. As the Delly results made up 84% of total SVs in the merged 

outputs are low quality, the PASS/LowQual ratios for this caller weigh heavily on overall quality 

designations.  
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The skew towards LowQual calls reinforces the continued challenges of comprehensively capturing 

structural variations in complex genomes. Nevertheless, through integration with complementary 

experiments, even ambiguous initial predictions can lead to discovery of novel variants refining the full 

mutation spectrum of arctic charr diversity.  

The non-PASS calls encompass those failing certain quality or technical filters. As with Delly, sources of 

uncertainty include artifacts, repetitive regions or statistical thresholds. Nevertheless, obtaining a PASS 

label indicates the highest-confidence validated variant set per Manta's probabilistic algorithm. 

Despite no standalone LowQual group, applying orthogonal checks could still help demarcate true 

versus false signals among the 43% non-PASS fraction. 

In comparison to Delly's 19% PASS rate, Manta showed greater relative confidence, with over half its 

calls achieving PASS status. However, Manta's total output was far lower, likely contributing to stricter 

thresholds for passing filters. Integrating the PASS/non-PASS designations from both Manta and Delly 

could help stratify confirmation approaches depending on initial quality grades. Additionally, the lack 

of extreme imbalance in Manta filters highlights its value for substantiating the abundant LowQual 

variants uncovered uniquely by Delly's sensitive approach. 

4.4  Comparative SV: Merged Structural Variant Analysis 

4.4.1 Survivor per tool merging 

 

Our analysis focused on evaluating the performance of three structural variant detection tools, across 

different SV size bins. The 3 output merged files generated by using the SURVIVOR merge tool with a 

minimum SV length filter parameter set to 50 bp. Consequently, the 0-50 bp bin primarily captured 

translocations and other SVs where breakpoint did not allow accurate size determination. Delly 

demonstrated the greatest sensitivity overall for detecting large number of predicted translocations 

and SV breakpoints. Its capacity for capturing these imprecise variants suggests an advantage in 

detection specificity. 

Manta showed particular strength in detecting small to mid-sized SVs in the 50-500 bp range. Its robust 

performance in these categories points to high sensitivity in this size of SV. 

Smoove revealed lower overall counts across most size bins, indicating limitations in sensitivity relative 

to Delly and Manta. However, it provide most detection of SVs in length from 100 to 2500 bp (Appendix 

B, Table B1). 

Moreover, I have selected the main concerning SV type deletion and upon normalization of the number 

of deletions per bin to their respective total per tool, expressed the data in percentage terms to 

facilitate a more direct comparison (Appendix B, Table B2). The analysis highlighted that Manta was 

particularly able at identifying deletions of 200 base pairs (bp) or larger, with its higher SV counts 

observed in the 50-100 bp (29.06%) and 100-500 bp (37.23%) size bins. Smoove showed a comparable 

advantage in the mid-size range, specifically from 200 bp to 10,000 bp, with its highest performance 

in the 1000-2500 bp bin at 28.84%. Delly's performance was more evenly distributed, with a notable 

proportion of deletions (26.39%) detected in the 1000-2500 bp size bin, suggesting a proficiency in 

identifying larger SVs. 

The findings indicate a stratified efficiency of the tools with respect to SV size, with Manta tending to 

capture a higher percentage of smaller SVs, Smoove showing balanced detection across a mid-size 

range, and Delly demonstrating a relative uniformity across a broad SV size spectrum, but with an 

emphasis on SVs greater than 1000 bp. These insights into the performance distribution across SV size 

bins underscore the importance of tool selection based on the SV size range of interest in genomic 

studies. 
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4.4.2 Final merging 

 

As shown in table 3, The final merged VCF file has 1,103,785 total structural variants (SVs) detected by 

unifying three VCFs from three softwares. The SUPP_VEC tag was utilized by SURVIVOR to categorize 

unique and overlapping SVs between the three tools based on the following designations: 100 for 

DELLY-only calls, 010 for Manta-only, 001 for Smoove-only, 110 for DELLY+Manta, 101 for 

DELLY+Smoove, 011 for Manta+Smoove, and 111 for events detected by all three tools. As summarized 

in Table 3, the vast majority of SVs in the final dataset were contributed by DELLY (916,411). 

Comparatively fewer calls were unique to Manta (90,288) and Smoove (7,156). High-confidence SVs 

supported by all three callers comprised 47,966 events. Furthermore, in our study, we detected a 

substantially higher number of high-confidence structural variants (47,966 SVs) in Arctic charr 

compared to the 15,483 SVs reported by Bertolotti et al. (2020) in Atlantic salmon. This difference 

raises several key points for discussion from both biological and technical perspectives. The higher SV 

count in Arctic charr may reflect genuine species-specific genomic differences, given the distinct 

evolutionary trajectories and adaptations of these two salmonid species. Arctic charr genomes may 

have greater underlying genomic complexity, mosaicism, and structural dynamism. However, we must 

also critically evaluate methodological differences including sequencing, reference genomes used, and 

the SV detection and filtering algorithms employed. Our study have used less stringent filtering to have 

a broader view of SVs, leading to a higher but less accurate SV count. Rigorous false positive filtering 

by Bertolotti et al. (2020) likely improved precision and lower their count of high confident SVs. 

The final dataset contains  273,703 deletions, 309,482 duplications and a range of other structural 

variation types. 

A relatively small but significant fraction of 4.6k duplications demonstrated unanimous support. As 

with deletions, the distribution spotlights complementarity between the callers in detecting 

duplications for a holistic overview. 

while DELLY and Smoove contributed minor tool-specific insertion subsets, Manta overwhelmingly 

dominated insertion calls in the ensemble result. This underscores the specialized capacity of Manta 

for sensitively detecting this subclass of structural variation. 

Before merging through SURVIVOR, Manta outputs from the 30 Samples showed no identifiable 

inversions, instead finding deletions, duplications, insertions and breakends. Contrastingly, DELLY and 

Smoove both reported inversion subsets in their discrete VCF callsets. 

However, the final merged SV dataset contained 81,374 total inversion events - including 69k DELLY-

specific, 5.8k Manta-specific, 982 calls supported by both tools and  1.3k calls supported by Manta and 

Smoove. This implies that Survivor enabled interconversion of complex breakpoint-associated events 

initially classified differently. For instance, a complex DELLY event may have been re-designated as an 

inversion after intersecting and merging with another tool's callset. Concordant multi-tool support also 

conferred higher validation confidence for subclass reassignment. 

While the standalone Manta outputs lacked clear inversions, integration with DELLY and Smoove 

events via SURVIVOR merging permitted subclass relabeling - eliciting a more complete view of the 

inversion landscape. 

Before merging VCF files by SURVIVOR, their preliminary analyses revealed that Manta outputs lacked 

explicitly defined inversion events, instead finding deletions, duplications, insertions and breakends. 

Meanwhile, DELLY and Smoove outputs contained recognizable inversion subgroups. 
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Interestingly, the final integrated SV dataset obtained via merging using SURVIVOR contained over 81k 

labeled inversions including major DELLY and Manta contributions. This implies SURVIVOR enabled 

redesignation of complex variants by intersecting the tools' calls. For instance, a Manta breakend 

intersecting a DELLY deletion may have been interpreted as an inversion after merging. Stringent 

criteria would require multi-tool corroboration to enable subclass conversion. 

A similar flow was observed for translocations. While the initial DELLY, Manta and Smoove VCFs lacked 

explicitly defined translocations rather they were having BND, SURVIVOR merging elicited over 420k 

translocation calls - predominantly consisting of DELLY and Manta variants likely reclassified from other 

Rearrangement types. 

In summary, SURVIVOR merging empowered variant subclass conversion, eliciting a more complete 

overview of inversions and translocations by re-interpreting tools' existing call data. 

Finally, In terms of tools’ performance, my findings were aligned with the broader trends noted in 

recent studies. Delly's robust and broad performance across various SV types is consistent with its 

application in diverse genomic studies. Delly uses paired-end (DP) and split-reads (SR) in a stepwise 

manner to detect SVs, which is useful for both germline and somatic SV detection, as highlighted in a 

study by van Belzen et al. (2021). This aligns well with my observation of Delly's sensitivity in detecting 

large numbers of translocations and SV breakpoints. 

Manta which called SVs on paired-end base, its effectiveness in detecting small to mid-sized SVs aligns 

with its design, which is optimized for precise SV calling. Manta consistently shows strong performance 

in studies that evaluate multiple SV detection tools, including its ability to work effectively in an 

integrated approach with other tools (Coutelier et al., 2022). While Delly demonstrates considerable 

detection capabilities across diverse structural variant (SV) types in Arctic charr, it may lack sufficient 

sensitivity for smaller SVs that fall below its optimal detection range. On the other hand, Manta's 

optimization specifically for precise calling of small- to mid-sized SVs could provide depth in cataloging 

smaller events to complement Delly’s range. Integrating these two algorithms by capitalizing on their 

complementary strengths - Delly providing detection breadth in larger SVs and Manta supplying 

precision in smaller variants could enable more comprehensive and detailed construction of an Arctic 

charr SV catalog across a wide size spectrum. Additionally, Manta's efficacy in our SV size range of 

interest could help reveal crucial genetic markers for breeding programs in aquaculture. Therefore, a 

multi-tool approach harnessing the combined detection capabilities of Manta for smaller SVs and Delly 

for larger variants promises the most complete overview of genomic structural variations in this 

species, serving both the key objectives outlined in this thesis effectively. 

Smoove, although exhibiting lower overall counts, was found to be effective in a specific SV size range. 

This is in line with the literature suggesting that no single algorithm can call every type of SV with high 

precision and recall. This necessitates using multiple algorithms for full-spectrum SV detection, as 

suggested by (Kosugi et al., 2019). 

Furthermore, if restricted to selecting one structural variant (SV) detection tool, Manta appears the 

most suitable match given its precision and sensitivity in SV size range of interest. Its efficacy in calling 

small to mid-sized SVs could significantly aid efforts to construct a detailed and comprehensive catalog 

of SVs in Arctic charr - a key goal of this thesis. Additionally, Manta's performance in detecting SVs 

within our targeted range can be invaluable in revealing specific genetic markers for selective breeding 

programs in Arctic charr aquaculture. However, while Manta excels in these aspects, relying on any 

single algorithm has inherent limitations in detecting SVs across the full spectrum of size and type 

distributions. As consistently advocated in genomic literature(Cameron et al., 2019; Gong et al., 2021; 

van Belzen et al., 2021), integrated approaches utilizing multiple complementary tools provide the 
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most complete and accurate SV detection results. Therefore, this thesis strongly recommends 

implementing an ensemble strategy combining Manta's precision in small- to mid-size SVs, Delly's 

detection strengths in larger structural variants, and other specialized tools. This multi-algorithm 

approach will serve the objectives of developing a comprehensive Arctic charr SV catalog and 

identifying genetic markers for aquaculture breeding most effectively - thus advancing the overarching 

goals of this research substantially. 

4.5 Conclusion 

 
This study presents a comprehensive evaluation of structural variation in aquaculture strains of Arctic 

charr, a cold-water salmonid fish of emerging economic importance. Integrated genome-wide analysis 

was performed using multiple specialized algorithms Delly, Manta and Smoove to show patterns of 

genomic rearrangements. 

The results reveal key insights into factors influencing accuracy of SV detection from short-read 

sequences. Despite overall moderate consensus, most calls remained discordant (false positives) 

across approaches. This finding reiterates the ubiquity of tradeoffs between sensitivity and precision 

in variant discovery. Applying orthogonal confirmation and combining complementary methods would 

likely improve performance. 

Nevertheless, intersecting callsets probably captures validated variants for advancing genomic 

selection. The aggregated outputs pointed to exceptional samples and chromosomes, indicating 

instability arising under aquaculture conditions. Exploring SV allele distributions, family segregation, 

and trait correlations promises to reveal its significance. 

Overall, this work enhances knowledge of structural variation spectra differentiating Arctic charr 

strains and benchmarking SV tools. The resources and guidelines will broadly empower SV analysis in 

other non-model species. Furthermore, responsibly incorporating genomic insights could augment 

selective breeding programs.  

Altogether, the multifaceted genomic investigation provides a springboard for elucidating 

rearrangement mechanisms shaping phenotypic diversity across taxa. Continued technological and 

analytical advances will undoubtedly further unravel the evolutionary importance of structural 

variations.  
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Appendices 

Appendix A: Some commands and scripts used in Methods and Materials 

Script A.1: bcftools view Command for SV Length Filtering. This script is utilized for filtering structural 

variants in VCF files, retaining only those variants with lengths of 50 base pairs or greater, thus ensuring 

a focused analysis of significant SVs in the study. 

bcftools view -i 'SVLEN>=50' input.vcf -o filtered_output.vcf 

 

Script A.2: SV Length Distribution Analysis in VCF Files. This script is designed to analyze the length 

distribution of deletion structural variants (SVs) in a VCF file. It utilizes AWK for parsing and calculating 

SV counts within specified bin ranges. The script efficiently segments SV lengths into bins and outputs 

a CSV file summarizing the count of deletions per bin, facilitating a detailed understanding of SV length 

distribution in the dataset. 

Initialization: Setting file paths and declaring bin sizes. 

vcf_path="/path/to/merged_smoove.vcf" 

output_file="output.csv" 

# Define bin sizes 

declare -a bins=(50 100 500 1000 2500 5000 10000 25000 50000 100000 

250000 500000 1000000) 

# Prepare the output file 

echo "Bin,Count" > "$output_file" 

# Function to process each bin 

process_bin() { 

    local start=$1 

    local end=$2 

    local count 

    # Count deletions (DEL) in the bin range using awk 

    count=$(awk -v start=$start -v end=$end \ 

        'BEGIN{FS="\t"; count=0}  

        $1 !~ /^#/ && $8 ~ /SVTYPE=DEL/ && $8 ~ /SVLEN=/ {  

            match($8, /SVLEN=-?([0-9]+)/, arr); 

            svlen=arr[1]; 

            if (svlen >= start && svlen < end) count++ 

        }  
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        END{print count}' "$vcf_path") 

    # Write to output file 

    echo "${start}-${end},$count" >> "$output_file" 

} 

# Process each bin 

prev_bin=0 

for bin in "${bins[@]}"; do 

    process_bin $prev_bin $bin 

    prev_bin=$bin 

done 

# Handle SVs larger than the last bin 

process_bin $prev_bin "Infinity" 

# Display the output 

cat "$output_file" 

Appendix B: Extra Tables 

Table B1. This table shows the total number of SVs detected and distributed per bin and their 

proportions  

 

# Bin Sizes 

Count 

(Delly) 

Count 

(Manta) 

Count 

(Smoove) 

Percentage 

(Delly) 

Percentage 

(Manta) 

Percentage 

(Smoove) 

1 0-50 407,175 34,852 3,793 38.59% 21.17% 4.85% 

2 50-100 20,146 40,038 6,689 1.91% 24.32% 8.55% 

3 100-500 164,981 44,583 15,852 15.64% 27.08% 20.25% 

4 500-1000 118,220 10,160 12,269 11.21% 6.17% 15.68% 

5 
1000-

2500 
92,122 14,162 19,835 8.73% 8.60% 25.35% 

6 
2500-

5000 
41,516 8,174 8,155 3.94% 4.97% 10.42% 

7 
5000-

10000 
26,054 3,910 3,778 2.47% 2.37% 4.83% 

8 
10000-

25000 
25,576 1,887 1,886 2.42% 1.15% 2.41% 
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9 
25000-

50000 
21,491 1,178 1,116 2.04% 0.72% 1.43% 

10 
50000-

100000 
21,003 1,238 1,174 1.99% 0.75% 1.50% 

11 
100000-

250000 
26,352 1,341 1,351 2.50% 0.81% 1.73% 

12 
250000-

500000 
18,877 778 917 1.79% 0.47% 1.17% 

13 
500000-

1000000 
16,610 696 540 1.57% 0.42% 0.69% 

14 
1000000-

Infinity 
54,755 1,611 913 5.19% 0.98% 1.17% 

 Total 1,054,878 164,608 78,268    
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Table B2. This table presents the data of distribution and proportion of Structural Variants (SVs) across 

each bin but only for deletions 

 

# Bin sizes 

Count 

(delly) Count (manta) 

Count 

(smoove) 

Percentage 

(delly) 

Percentage 

(manta) 

Percentage 

(smoove) 

0 0-50 0 0 0 0.00 0.00 0.00 

1 50-100 18210 26853 6599 7.42 29.06 11.14 

2 100-500 22080 34409 13434 9.00 37.23 22.68 

3 500-1000 37599 7792 9952 15.32 8.43 16.80 

4 1000-2500 64743 11598 17088 26.39 12.55 28.84 

5 2500-5000 27553 6722 6785 11.23 7.27 11.45 

6 5000-10000 15395 2735 2733 6.27 2.96 4.61 

7 10000-25000 12008 761 814 4.89 0.82 1.37 

8 25000-50000 8953 402 436 3.65 0.43 0.74 

9 
50000-

100000 
7920 321 422 3.23 0.35 0.71 

10 
100000-

250000 
8066 284 392 3.29 0.31 0.66 

11 
250000-

500000 
4945 158 202 2.02 0.17 0.34 

12 
500000-

1000000 
4285 135 157 1.75 0.15 0.27 

13 
1000000-

Infinity 
13611 251 231 5.55 0.27 0.39 

 Total 245,368 92,421 59,245    
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Appendix C: Detailed Chromosomal Coverage Depth for All Samples
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Figure C1. Comprehensive chromosomal coverage depth analysis for Samples 01 to 10: This figure 

illustrates the average coverage depth across chromosomes for Samples 01 to 10. Each panel 

represents an individual sample, with the y-axis denoting the average coverage depth and the x-axis 

corresponding to the individual chromosomes. Red dots shows the chromosomes of the maximum 

coverage depth, the second highest coverage depth, and the minimum coverage depth within each 

sample, providing critical insights into coverage variability across the genomic landscape. 

 

 

 Figure C2. Sequential Chromosomal Coverage Depth Profiles for Samples 11 to 20: Displayed are the 

average coverage depths across chromosomes for Samples 11 to 20. For each sample, the coverage 

depth is plotted along the y-axis against the chromosome number on the x-axis. Red dots are employed 

to mark the specific chromosomal points exhibiting the maximum, second maximum, and minimum 

coverage depths, thereby showing the distribution and range of coverage across samples. 
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Figure C3. Average coverage depth across chromosomes for samples 21-30, illustrating both the 

typical range and notable outliers. The red dots indicate the maximum, second maximum, and 

minimum coverage depths for each sample. Chromosome sal17 consistently shows higher coverage 

across all depicted samples. 

4.6 Appendix D: Comparative Analysis of Structural Variations and Sequencing 

Coverage Across 30 Samples  
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Figure D1. Comparative Overview of Structural Variations and Coverage across 30 Samples: This 

figure presents a side-by-side comparison of the number of structural variations (SVs) detected and the 

sequencing coverage for each of the 30 samples. Each subfigure corresponds to a unique sample and 

is plotted with the number of SVs on the left y-axis and sequencing coverage on the right y-axis, across 

chromosomes. The bottom panel provides a color-coded reference for chromosome sizes, facilitating a 

correlation between chromosomal length, coverage, and SV detection. This comprehensive visual 

compilation allows for cross-sample comparisons and highlights the genomic architechure. 
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Figure D2. Structural Variations (SVs) and Sequencing Coverage Across 30 Samples: This multi-faceted 

figure illustrates the number of SVs detected by Manta at chromosomal level. Each subplot represents 

the number of SVs and coverage data for one sample, with the number of SVs displayed by the bar 

graph (left y-axis) and sequencing coverage shown by the line graph (right y-axis) across the entire 

chromosomal span. The bottom of the figure features a color-coded key that corresponds to the sizes 

of the chromosomes.This collective visualization allows for cross-sample comparisons of SV distribution 

patterns and coverage metrics. 
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Figure D3. Multi-Sample Analysis of Structural Variations (SVs) and Sequencing Coverage: This figure 

depicts the number of structural variations (SVs) detected alongside the sequencing coverage across 

30 samples, with each sub plot representing a sample. The bar graph in each sub plot shows the count 

of SVs across the chromosomal level, while the overlaid line graph indicates the corresponding 

sequencing coverage depth. Chromosome sizes are provided as a reference in a color-coded key at the 

bottom, facilitating a comparison of SV distribution relative to chromosome length. 
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Appendix E: SV density per chromosomal length 

Figure E1. SV density per chromosomal length 

 

 

 

 



 

 

 


