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Abstract

This thesis examines key aspects of the salmon industry, including financial effects of cli-

mate change, market volatility, price predictions, and the role of news on market prices.

The work consists of four research articles that offer practical insights to various stake-

holders in the salmon market, thus adding to the growing body of literature in the field

and enhancing the understanding of the salmon industry.

The first article underlines the importance of climate-related financial disclosures in

the salmon industry. It showcases a trend of increased transparency, encouraged by orga-

nizations such as the TCFD and CDP, leading to better practices in addressing climate-

related risks. This shift benefits not only the companies themselves but also investors and

policymakers, enabling sustainable decision-making.

The second study investigates the prediction of salmon market volatility using a deep

learning technique known as LSTM. The findings reveal that the LSTM model did not

outperform the benchmark ARMA model in forecasting accuracy, suggesting that the

salmon market volatility may not exhibit complex temporal patterns that can be effec-

tively captured by LSTM.

In the third article, the effectiveness of a hybrid VAR-LSTM model is tested against a

traditional VAR model for predicting salmon spot prices. The study suggests that the hy-

brid model does not significantly improve salmon price forecasting, suggesting that salmon

price series do not exhibit (exploitable) non-linear patterns. This result implies the effi-

ciency of the salmon market, where new information is swiftly identified and incorporated

by investors.

The final study investigates how news affects the stock prices of major salmon com-
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panies. This paper brings attention to the need for industry-specific sentiment analysis

tools (“lexicons”). In addition, it addresses the competition within the global salmon

market and discusses factors contributing to market volatility, with Covid-19 identified

as a major influence.

Overall, this research contributes to the existing knowledge by enhancing the under-

standing of climate-related disclosures, improving prediction models for market volatility

and prices, and offering insights into the effects of news on the market. These findings have

significant implications for the salmon industry and could assist policymakers, companies,

and investors in making informed decisions, promoting the industry’s resilience and sus-

tainability. Furthermore, these findings provide insights into potential future trends and

price fluctuations in the salmon industry, which are crucial for efficient market operation

and strategic planning.

10



Norsk sammendrag

Denne avhandlingen undersøker nøkkelaspekter ved lakseindustrien, inkludert de finan-

sielle effektene av klimaendringer, markedsvolatilitet, prisprognoser og nyheters rolle på

markedsprisene. Arbeidet består av fire forskningsartikler som tilbyr praktiske innsikter

til ulike interessenter i laksemarkedet.

Den første artikkelen understreker betydningen av klimarelaterte finansielle avsløringer

i lakseindustrien. Den viser en trend med økt transparens, oppmuntret av organisas-

joner som TCFD og CDP, noe som fører til bedre praksis i håndtering av klimarelaterte

risikoer. Denne endringen gagner ikke bare selskapene selv, men også investorer og beslut-

ningstakere, ved å muliggjøre bærekraftig beslutningstaking.

Den andre studien fokuserer på å forutsi laksemarkedets volatilitet ved hjelp av tradis-

jonelle tidsseriemodeller og en dyp læringsmetode kalt LSTM. Funnene avslører at LSTM

presterer bedre, spesielt for langsiktig prognose, noe som gjør det mulig for markeds-

deltakerne å ta informerte beslutninger om risikostyring og produksjonsplanlegging.

I den tredje artikkelen testes effektiviteten av en hybrid VAR-LSTM-modell mot en

tradisjonell VAR-modell for å forutsi lakse spotpriser. Studien antyder at den hybride

modellen ikke forbedrer laks prisprognosen betydelig, noe som antyder at laksepriser ikke

viser ikke-lineære trender. Dette resultatet antyder effektiviteten i laksemarkedet, der

prisendringer raskt blir identifisert og innarbeidet av investorer.

Den endelige studien undersøker hvordan nyheter påvirker aksjekursene til de største

lakseselskapene. Denne artikkelen retter oppmerksomheten mot behovet for bransjespe-

sifikke verktøy for sentimentanalyse (“leksikoner”). I tillegg tar den opp konkurransen i

det globale laksemarkedet og diskuterer faktorer som bidrar til markedsvolatilitet, med
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Covid-19 identifisert som en hovedpåvirker.

Denne forskningen bidrar til eksisterende kunnskap ved å forbedre forståelsen av kli-

marelaterte avsløringer, forbedre prognosemodeller for markeds volatilitet og priser, og

tilby innsikt i effekten av nyheter på markedet. Disse funnene kan hjelpe politikere,

selskaper og investorer med å ta informerte beslutninger og bidra til bransjens mot-

standsdyktighet og bærekraft. Videre kan resultatene gi veiledning til markedsdeltakere i

håndtering av potensielle fremtidige trender og prisfluktuasjoner, og fremme mer effektive

praksis innen lakseoppdrettsindustrien.
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Synopsis

5.1 Introduction

The purpose of this thesis is to provide a comprehensive analysis of the critical features

that constitute the salmon markets. These characteristics are of significant interest to a

wide range of market participants, including farmers, processors, and investors. In today’s

era, where sustainable food production is a major concern, investors are increasingly aware

of the economic implications of climate change for salmon farming companies. Therefore,

their demand for climate-related financial disclosure has surged. Additionally, salmon is a

volatile commodity, and the increasing demand for salmon over the past few decades has

led to high salmon prices and subsequently heightened volatility, particularly since the

mid-2000s. This volatility poses a significant concern for many market participants, such

as farmers, processors, traders, and hedgers, who must prepare for future uncertainty.

Therefore, forecasting salmon market volatility is crucial for reducing future uncertainty

for all salmon market participants. Furthermore, predicting salmon spot prices using a

variety of factors that provide predictive information on the future development of the

salmon spot price is essential for salmon market participants. Finally, news related to the

salmon market can influence trading behavior in the market. Studying the drivers of the

salmon market and investor sentiment using news articles enables policymakers to gain a

better understanding of what drives the market.

This thesis comprises two co-authored papers: “Climate risk and financial disclosure in

salmon aquaculture” and “Salmon price movements and trading behaviors around salmon

market news”, and two single-authored papers: “Forecasting Salmon Market Volatility
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using Long Short-term Memory (LSTM)” and “Multi-step ahead forecasting of salmon

spot prices using a hybrid deep learning model”. These research articles offer a compre-

hensive understanding of the salmon market features by using qualitative information to

understand investors’ sentiment around potential financial impacts of climate change on

salmon farming producing companies, forecasting salmon market volatility and prices us-

ing traditional time-series models and deep learning techniques, and examining the factors

driving salmon markets as well as the investors’ sentiment using textual analysis. These

articles will provide a better understanding of the salmon market factors for all market

participants as well as policy makers and regulators. Furthermore, they will encourage

aquaculture economists to explore the potential of machine and deep learning techniques

within the field of financial economics for salmon markets.

The remainder of the introductory section presents the background of the research,

detailed problems encountered during the research construction, the data used, the meth-

ods used in the research articles, a summary of the research articles, and the contributions

and limitations of the research.

5.2 Overview of the salmon farming industry

The farming of Atlantic salmon had its roots in experimental ventures during the 1960s,

which eventually evolved into an established industry in Norway during the 1980s (Mowi,

2020). In the subsequent decade, Atlantic salmon farming underwent a process of com-

mercialization (Y. Liu et al., 2011), ultimately becoming a commercially viable industry

during the 1980s (Asche & Bjorndal, 2011). The industry grew rapidly and continuously,

such that by the late 1990s, farmed salmon surpassed wild capture in terms of production

volume. Figure 5.1 shows that since 2012, global production of farmed salmon has ex-

ceeded two million metric tonnes. Despite stagnation in export volume of other species,

the volume of farmed salmon has continued to increase, such that by the end of 2021,

salmon represented approximately 40% of the quantity of all seafood species exported

from Norway and 60% of the value (see Figure 5.1).

The initial introduction of farmed salmon into commercial markets resulted in con-
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Figure 5.1: Comparison of the Volume in Metric Tonnes and Value in 1000 Tonnes of
salmon and all species exported from Norway from 2012 to 2021. Source: Norwegian
Seafood Export Council (2022)

siderably higher prices than wild salmon. Nevertheless, technological advancements have

facilitated a gradual reduction in the price of farmed salmon from the 1980s through the

early 2000s. However, since then, prices have been rising slowly due to a variety of factors

such as limited availability of production sites (Hvas et al., 2021), slower productivity

growth (Oglend, 2013; Vassdal & Sørensen Holst, 2011), stricter industry regulation (As-

che & Bjorndal, 2011), increasing feed costs (Iversen et al., 2020), and a surge in demand

(Brækkan et al., 2018). Figure 5.2 provides an overview of annual Norwegian farmed

salmon export prices and production costs from 2008 until 2020. It is evident that the

export price of salmon in 2020 has more than doubled compared to the price in 2008.

Although production costs are also increasing, they remain significantly below the levels

of the export prices. This trend supports the rapid growth of the industry in recent years.

The Norwegian aquaculture industry has become one of the most significant export

industries of Norway, second only to oil and gas, since its inception. The salmon farming

sector is a significant constituent of the Norwegian aquaculture industry (Asche, 2008),
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Figure 5.2: Salmon Export Price and Production Costs (including delivery costs) mea-
sured in NOK/kg. Source: Norwegian Directorate of Fisheries (2022)

leading Norway to become the world’s largest salmon producer, responsible for over 50% of

the total production (Hersoug, 2021). While other countries such as Chile, Scotland, and

Canada have also been involved in salmon farming to a lesser extent, the natural condi-

tions have placed severe limitations on the geographical distribution of salmon producers

worldwide, due to factors such as sea lice and disease problems. As depicted in Figure 5.3,

the global production volume distribution of salmon as of 2019 highlights this constrained

distribution. With the growing demand for salmon, Bjørndal and Tusvik (2019) suggest

that technological advancements such as land-based aquaculture could play a significant

role in shaping the dynamics of the salmon market.
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Figure 5.3: Distribution of farmed Atlantic salmon production volume across countries,
2019. Source: Marine Harvest (2020)

5.2.1 Supply and Demand for salmon

The supply of farmed salmon is subject to various factors with varying time horizons.

Long-term factors, such as the availability of production sites and industry regulations, as

well as medium- and short-term factors, such as the amount of young fish put into seawater

for growing, the pace of growth and mortality, and the farmer’s slaughtering schedule, all

play a crucial role in determining the supply of farmed salmon. Fish growth is influenced

by numerous factors, including seawater temperature, feeding intensity and frequency,

and feed properties. Although the seawater temperature is beyond the farmer’s control,

the farmer can regulate the speed of growth by adjusting feeding practices. Disease

precautions, such as vaccination and treatments against parasites, are also applied at

different stages of production to manage production risks, which may include outbreaks

of infectious diseases, unexpected water temperature changes, storms, and damage to
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farming facilities that may lead to fish escapes.

Price is a key determinant of salmon supply, and farmers aim to harvest when it is

most profitable for them. Specifically, when the salmon spot price is high, the farmers

tend to be more eager to harvest to make a profit. However, considering that the salmon

market is highly volatile (Bloznelis, 2016; Guttormsen, 1999; Oglend, 2013; Oglend &

Sikveland, 2008), it is difficult for farmers to plan the production process early enough to

avoid causing price fluctuations (Asche, 2008). Furthermore, the salmon spot price is not

the only price that affects supply, as the expected future price can also impact supply,

given that farmers are interested in how the salmon price will look in the future. Several

studies have analyzed the effects of price on salmon supply, with Landazuri-Tveteraas

et al. (2018) finding evidence of price causality from export to retail level, and Asche

et al. (2014) indicating that the supply chain for fresh salmon fillets can be characterized

by a high degree of price transmission. However, Asche, Cojocaru, et al. (2018) showed

that the salmon supply chain remains semi-automated, with less control over production

processes.

Numerous factors also affect the demand for salmon, including the current price and

lagged price effects, the price of substitutes such as wild salmon and trout, consumer

income, and regulations. For instance, partial or complete trade restrictions for Norwegian

salmon have been introduced and subsequently revoked repeatedly over the years. Media

coverage may also affect demand by altering consumer tastes, with recurrent attacks on

pollution caused by the industry’s practices and spread of parasites from salmon farms

(P. Liu et al., 2016), as well as fish escapes from farms into the wilderness increasing wild

salmon mortality (Jonsson & Jonsson, 2006). On the other hand, salmon has long been

recognized as a healthy food by dieticians, which boosts demand. Many studies have

analyzed the global and country-level demand for salmon, including Asche (1996), Asche

et al. (1998), Xie et al. (2009), Xie and Myrland (2011), and Asche et al. (2019).
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5.2.2 Salmon Markets

Numerous stakeholders within the salmon market rely on the evolution of salmon prices

to inform their future operations. However, due to the inherent volatility of salmon as a

commodity (Guttormsen, 1999), it presents challenges for market participants, including

farmers, processors, traders, and hedgers, to effectively strategize. Specifically, farmers,

who are responsible for salmon production, seek to maximize profits by harvesting at

optimal times (Asche, 2008). High salmon spot prices often incentivize farmers to in-

crease harvesting activities, thus generating profits. Nonetheless, given the pronounced

volatility of the salmon market (Bloznelis, 2016; Guttormsen, 1999; Oglend, 2013; Oglend

& Straume, 2019), formulating long-term production plans to mitigate price fluctuations

proves arduous.

Harvesting decisions by farmers can influence market volatility, subsequently affecting

other market participants’ operations. For instance, processors’ operational plans hinge

upon anticipated input costs, dictated by salmon spot prices. Lacking control over produc-

tion, processors remain entirely reliant on the trajectory of salmon spot prices. Further-

more, traders strive to minimize salmon acquisition costs while preserving profitability,

though heightened market volatility can jeopardize their operations. Other participants,

such as hedgers, similarly depend on salmon price forecasts. Consequently, the elevated

volatility of the salmon market exacerbates uncertainty surrounding future price trends.

In response to these concerns, Fish Pool, a futures exchange dedicated to salmon, was

founded in 2006 in Bergen, Norway, with the aim of offering hedging opportunities within

the salmon market. Futures contracts are available for each month, extending up to 60

months into the future. It is important to note that contracts with maturities exceeding

twelve months are rarely traded; in fact, even contracts of similarly long maturity exhibit

low trading volumes. It is plausible that the market’s low liquidity is partially attributable

to the wide array of available maturities, resulting in a lack of concentration that deters

potential buyers and sellers. Contracts are settled against a monthly benchmark index

known as the Fish Pool Index. This monthly index is calculated as an equally-weighted

average of the relevant weekly index values, with each trading month consisting of either
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four or five complete weeks, as specified in the trading rules (Fish Pool, 2017a). The

weekly index is derived from several price indices that should represent the spot price

of 3-6 kg salmon. While the weights of the various component indices have historically

fluctuated, the dominant component has consistently been the spot price by NOS, later

substituted by NASDAQ. The current composition of the weekly index is available on the

Fish Pool website (Fish Pool, 2017b).

Fish Pool’s inception has sparked significant debate among aquaculture economists.

Since its establishment, Fish Pool has enabled trading in financial derivatives tied to the

price of Norwegian farmed Atlantic salmon. However, many aquaculture economists have

questioned Fish Pool’s effectiveness (Bloznelis, 2018b; Oglend, 2013), with research show-

ing that salmon price volatility has doubled since its introduction and remains persistently

high. Several studies have investigated the efficiency and role of the salmon futures mar-

ket (Ankamah-Yeboah et al., 2017; Ewald et al., 2017; Larsen & Asche, 2011; Misund &

Asche, 2016; Solibakke, 2012), particularly in relation to the spot market (Asche et al.,

2016a, 2016b; Chen & Scholtens, 2019). There have been concerns raised about the mar-

ket’s low liquidity and infrequent trading (Andersen & de Lange, 2021; Bloznelis, 2018a;

Dahl et al., 2021; Ewald et al., 2022). Nonetheless, a study suggested that the majority of

salmon price fluctuations share common factors, thus justifying the presence of a salmon

price index (Oglend & Straume, 2019). Consequently, while Fish Pool offers futures con-

tracts with the intention of providing hedging opportunities for market participants, the

persisting concerns about market efficiency, liquidity, and price volatility suggest that the

benefits and effectiveness of these contracts in managing risk exposure remain a matter

of debate.

5.2.3 Sustainability of the Salmon Industry

Climate change poses substantial fiscal challenges for the aquaculture sector, particularly

salmon cultivation, due to its unpredictable nature and the potential for significant eco-

nomic repercussions (Asche, 2008; Asche et al., 2022; Asche et al., 2017; Misund, 2017).

While some research has explored price fluctuations resulting from climate change (Asche
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et al., 2019; Asche et al., 2017), inquiries into the financial consequences of climate-related

hazards, categorized as physical or transition risks (TCFD, 2017), are sparse.

Climate-related financial risks are generally divided into physical or transition risks

(TCFD, 2017). Physical risks encompass threats associated with economic damages orig-

inating from the direct impacts of climate change (Bovari et al., 2018; Dafermos et al.,

2017, 2018; Dietz et al., 2016; TCFD, 2017). Conversely, transition risks relate to the

challenges companies encounter due to market disruptions and policy implications stem-

ming from the shift towards a low-carbon economy (Battiston et al., 2017; Dafermos et al.,

2018; Leaton, 2011; Stolbova et al., 2018; TCFD, 2017).

Examples of physical risks include the following. Salmon farming, conducted in open

cages, faces climate-related hazards such as widespread disease outbreaks, feed waste

pollution, and algal blooms (Abolofia et al., 2017; Asche, 2008; Asche et al., 2021; Asche

et al., 1999; Asche, Sikveland, et al., 2018; Fischer et al., 2017; Torrissen et al., 2013).

Climate change may intensify these risks through consequences such as elevated water

temperatures, increased precipitation, rising sea levels, and extreme weather events (De

Silva & Soto, 2009), leading to financial losses (Olaussen, 2018; Pincinato et al., 2021).

Persistent physical risks demand climate adaptation from industry firms (De Silva &

Soto, 2009). Temperature-dependent dynamics of salmon lice and the danger of algal

blooms can lead to disease outbreaks and augmented production costs (Abolofia et al.,

2017; Asche et al., 1999; Jansen et al., 2012; Torrissen et al., 2013). As a result, salmon

aquaculture must address these climate-related hazards to ensure financial sustainability.

Transition risks can influence the industry through elevated carbon taxes, stringent

regulations, and challenges in feeding practices. High carbon taxes can affect air cargo,

exacerbate price volatility, and ultimately impact profitability (Asche et al., 2019). Reg-

ulatory measures can shape the industry’s growth and price fluctuations (Asche et al.,

2017; Hersoug et al., 2019). Furthermore, soy-based feeding practices raise environmental

concerns, such as deforestation in the Brazilian Amazon (Dou et al., 2018; Sun et al.,

2018). Therefore, transitioning to a low-carbon economy presents multiple challenges for

the salmon aquaculture industry, and it is essential for companies to address potential
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climate-related financial impacts to maintain their profitability and reputation (TCFD,

2017).

5.3 Research Objectives and Contributions

Examining the volatility of salmon prices, the impact of salmon-related news on price

trends, and the potential financial ramifications of climate change on the salmon farming

industry are critical research domains within the field of salmon production and market.

Precise understanding of these subjects is vital for various market participants, including

farmers, processors, traders, hedgers, investors, as well as policy makers and regulators.

In particular, anticipating future salmon spot prices is crucial for strategic planning

among stakeholders in the salmon market, such as farmers, processors, traders, and

hedgers (Bloznelis, 2018b; Oglend & Sikveland, 2008). Spot prices exhibit greater volatil-

ity and are more challenging to predict than production or consumption volume, thereby

contributing substantially to uncertainty in future revenues and costs for market partici-

pants. Consequently, developing a more comprehensive understanding of price volatility

and enhancing forecasting models for future salmon spot prices is imperative.

Prior studies have utilized standard econometric models to forecast salmon price

volatility (Bloznelis, 2016; Oglend, 2013; Oglend & Sikveland, 2008). However, to the

best of my knowledge, no study has yet attempted to employ deep learning techniques,

such as neural networks, to estimate and forecast salmon price volatility. Research from

various fields has applied machine learning and deep learning techniques for forecasting

volatility and prices of other commodities as well as stocks, yielding promising results

(Kim & Won, 2018; Parot et al., 2019; Ramyar & Kianfar, 2019). Therefore, the second

paper of this thesis aims to forecast salmon market volatility using a Recurrent Neural

Network (RNN) variant, the Long Short-term Memory (LSTM).

Similarly, Zitti (2023a) investigates the forecasting performance of a hybrid archi-

tecture model that integrates a conventional multivariate forecasting model, the Vector

Autoregressive (VAR), with the LSTM deep learning technique. This approach seeks

to address the limitations of traditional statistical methods, which are unable to detect
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complexities and non-linearity in financial data series. Employing a hybrid architecture

technique can be advantageous when forecasting over longer horizons, as deep learning

techniques like LSTM can identify long-term patterns and handle long minimal time lags

(Hochreiter & Schmidhuber, 1997).

Nonetheless, forecasting salmon prices and volatility is not the sole concern of salmon

industry participants, such as investors and farmers, as well as policymakers. Examining

climate-related risks specific to the salmon industry and exploring the extent to which

some publicly listed firms have implemented climate-related financial disclosures is of

significant importance to market participants and regulators. Initiatives like the Task

Force for Financial Disclosures (TCFD) and the Carbon Disclosure Project (CDP) aid

companies in comprehending the external effects of their unsustainable practices, thereby

maintaining transparency for their investors. The growing demand for climate-related fi-

nancial disclosures and the industry firms’ responses are discussed in Zitti and Guttormsen

(2022).

The responses of salmon markets to future price expectations and climate-related

expectations (at the firm level) do not solely determine salmon market behavior. While

a substantial portion of the salmon market literature concentrates on analyzing market

volatility (Dahl & Oglend, 2014; Dahl & Yahya, 2019; Oglend, 2013; Oglend & Sikveland,

2008), the fourth paper of this thesis expands upon this body of work by investigating

which types of news influence the market and the mechanisms underlying these effects

(Knoppe et al., 2023). Given that investor behavior is shaped by news surrounding their

invested securities, the paper examines news articles pertinent to salmon production and

their impacts on stock prices. This study employs text mining techniques in conjunction

with the Vector Autoregressive (VAR) model to explore the relationship between investors’

trading behavior and salmon market-related financial news. The focus on stock prices is

informed by the findings of Dahl et al. (2021), which suggest that the salmon stock market

exhibits greater reactivity than commodity prices.

The primary objectives of this thesis are to underscore the significance of understand-

ing salmon price volatility, the influence of salmon-related news on price trends, and the
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potential financial implications of climate change on the salmon farming industry. The

goals of the studies discussed entail the development of enhanced forecasting models for

future salmon spot prices, the application of deep learning techniques such as LSTM for

market volatility prediction, the examination of climate-related risks and financial dis-

closures within the industry, and the exploration of the relationship between investors’

trading behavior and salmon market-related financial news, employing text mining tech-

niques.

5.4 Data

5.4.1 Data Sources

Data sources relevant to analyzing climate-related financial disclosures, modeling salmon

prices and their volatility, as well as examining the impact of salmon-related news, are

plentiful and generally of high quality. Table 5.1 displays the data series and their re-

spective sources. The columns "Range" and "Frequency" indicate the specific ranges and

frequencies employed in the four research papers, although they do not necessarily en-

compass all available ranges and frequencies at the sources. The majority of the datasets

utilized in this thesis are publicly and freely accessible, with a few exceptions (refer to

Table 5.1). The papers focused on predicting volatility and prices primarily use weekly

data, and most of the data obtained from these sources are in weekly frequency. The text

data employed in the fourth paper of this thesis is daily, as stock prices are available on

a daily basis and the two datasets are made consistent. The data procured for evaluating

the responsiveness of salmon firms to their climate-related risks is obtained annually, as

these reports are intended for annual publication.

5.4.2 Data Limitations

The collected data sets offer crucial insights into the salmon market, but it is essential

to acknowledge certain data limitations in some research papers. Specifically, in Zitti

(2023a), both NOS and NASDAQ Salmon Index data were utilized, yet there are incon-
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Table 5.1: Data sources

Object Range Frequency Source Access

Status categories &
Scores

2016 - 2021 Annual CDP https://www.cdp.
net/en

Salmon spot price
(NOS price)

2007W27:
2013W13

Weekly NOS Upon request from:
https://salmonprice.
nasdaqomxtrader.com

Salmon spot price
(NASDAQ Salmon
Index)a

2013W14:
2020W53

Weekly NASDAQ Upon request from:
https://salmonprice.
nasdaqomxtrader.com

Salmon export volume
(SSB volume)

2013W14:
2020W53

Weekly Statistics
Norway
(SSB)

https://www.ssb.no/
en/statbank

Salmon futures prices 2013-01-01 –
2020-12-31

Daily Fish Pool https://www.fishpool.
eu

Soybean prices
(Chicago Board of
Trade (CBoT))

2013W14:
2020W53

Weekly Refinitiv Private Access

EUR/NOK exchange
rate

2013W14:
2020W53

Weekly Norges
Bank

https://www.
norges-bank.no/
en/topics/

Shares Pricesb 2013W1:
2022W53

Daily/
Weekly

Refinitiv Private Access

News Articles 2012-11-28 –
2022-07-08

Daily IntraFish Private Access
from: https:
//www.intrafish.com/

Note: “W” denotes week, e.g. 2013W14 denotes 2013 week 14; The range for the frequencies are as used
in the four research papers; wider ranges and/or extra frequencies may also be available at the sources.
aThe range is up to 2020W53 as the same data series was used for the second and third research article.
bShares Prices are utilised for constructing the Share Price Index (SPI) used in research articles 3 and 4
where the frequency of the data series is daily and weekly, respectively.
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sistencies in their definitions. NOS represents the prices paid by exporters to salmon

farmers, while the NASDAQ displays prices received by salmon exporters from interna-

tional buyers, leading to a variation in the exporter’s margin. Moreover, the NASDAQ

survey’s inclusion criteria are more flexible compared to the NOS survey, which could

cause NASDAQ to encompass a larger spot market share than NOS—although this may

not always be true in practice. Nonetheless, in Zitti (2023a), a structural break-point

was identified from 2012 week 18 to 2019 week 51, and the study’s sample begins from

2013W1, based on similar findings from Bloznelis (2016). Consequently, the discrepancy

between NOS and NASDAQ spot prices was not an issue.

Additionally, in Zitti (2023a), a univariate-based forecasting study was conducted,

favoring the use of spot prices over futures prices to predict volatility. This preference is

due to the salmon futures market’s low liquidity, which trades less than 10% of the physical

market volume (Fish Pool, 2020), and infrequent trades. Although this method may

constrain the capture of forward-looking information, the salmon futures market remains

thin due to the absence of speculative traders and sporadic trades. Consequently, salmon

spot prices were chosen over futures contract prices, under the assumption that their

lagged transformations carry more predictive information than salmon forward prices.

In Zitti (2023b), three distinct models were employed, with each containing varying

predictor variables. In this multivariate-based approach, multiple data sets were incor-

porated. Similar to Zitti (2023a), the salmon spot price series served as the predictive

variable, while export volume, futures contract prices, soybean prices, EUR/NOK ex-

change rates, and share prices acted as predictor variables. Given the multivariate pre-

dictive study’s structure, futures contract prices were included as a predictive variable

since they carry significant information regarding the future development of salmon spot

prices. However, the study’s aim was to forecast weekly salmon spot prices for various

forecasting horizons, with each horizon using a distinct model format. For example, if

the forecasting horizon is 26 weeks (approximately 6 months), the futures contracts’ ex-

planatory variable is represented by contracts maturing 6 months after their issue date.

This method’s drawback is that the futures contract price reflects the anticipated spot
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price for an entire month rather than a week, potentially decreasing forecast accuracy for

predicting weekly salmon spot prices due to the approximated number of weeks within

a month, half year, and one year. Despite this limitation, futures contract price series

were still utilized as predictor variables, as they offer valuable information for the future

development of the spot price series.

In Knoppe et al. (2023), the text data is confined to news articles published on In-

traFish between 2016 and 2022, containing specific keywords related to salmon, prices,

and finance. This constraint may exclude crucial information about the salmon mar-

ket not covered by IntraFish or not encompassed by the chosen keywords. Furthermore,

eliminating non-relevant information, such as journalist names and quantitative data, can

decrease the information available for analysis. Another limitation when using text data

is that the data pre-processing methods are restricted. Despite cleaning the data to the

best of our ability, some noise might still persist, potentially impacting topic modeling.

However, these limitations can be easily addressed when identified by the authors.

While data limitations are a significant concern for most articles presented in this

thesis, for Zitti and Guttormsen (2022), the data collection does not hinder the arti-

cle’s results, as the hypothesis question can be addressed even with a limited data set.

Nonetheless, since the article relies on publicly available data on companies’ climate-

related financial reporting habits for various reports, it is essential to consider that the

available data for some reports may be insufficient throughout the years. If more data

were available, the research conclusions would have been more robust.

Lastly, in all the research articles, the data set is restricted to a specific time frame.

Although the chosen time period is suitable for the research questions raised in each paper,

the results may not be generalizable to other time periods. Moreover, the data sources

may have been altered or updated since the data collection period ended, which could

affect the relevance of the results for current market conditions and the implementation

of new policies and regulations.
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5.5 Methodology

In this section, I will discuss some of the key methodologies employed throughout the

technical articles of this thesis. This discussion will not include any information about

Zitti and Guttormsen (2022), as this article is a qualitative study that does not incorporate

econometric or statistical analysis. I will begin by addressing some of the data pre-

processing methodologies applied in Zitti (2023a), Zitti (2023b), and Knoppe et al. (2023).

Following that, I will outline the models that have been utilized to address the research

questions of each of these research article.

5.5.1 Data pre-processing requirements

Seasonal Adjustment

Seasonal adjustments were implemented in research articles Zitti (2023a) and Zitti (2023b)

due to the seasonality characteristic of salmon production caused by supply and demand

factors. Seasonality in supply and demand creates patterns in salmon price and produc-

tion volume. Modelling seasonality in weekly time series is complex, so these articles

employ a technique introduced by Hyndman and Athanasopoulos (2018) and applied by

Bloznelis (2018b) that uses regression with autoregressive moving average (ARMA) errors,

incorporating Fourier terms as regressors.

The regression with ARMA error is given by the following equations:

yt = β0 + β1x1,t + · · · + βKxK,t + ut (5.1)

ut = ϕ1ut−1 + · · · + ϕput−p + ϵt + θ1ϵt−1 + · · · + θqϵt−q (5.2)

where, y represents the dependent variable, x1 through xK are independent variables, and

ϵ is an independent and identically distributed error. When implementing the model in

the articles, xi,t, where i = 1, . . . , K, takes the form of Fourier terms and dummy variables

that represent seasonal effects. The number of Fourier terms, up to 26 pairs for weekly

data, was selected by minimizing the Akaike information criterion (AIC), as was the order
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of the ARIMA model (Hyndman & Athanasopoulos, 2018).

In the salmon spot price and export volume series, four dummy variables were in-

troduced for the weeks before and after Christmas (including Christmas week) and four

more for the same weeks around Easter (including Easter week). For the soybean series,

17 dummy variables were constructed to specify weeks from May to August. The seasonal

component, composed of the Fourier terms and the seasonal dummy variables, is subse-

quently subtracted from the original series to generate the seasonally-adjusted version.

Seasonal dummy variables are not employed for adjusting futures price variables, as the

underlying of a future contract is the average FPI recorded over a month, not a week.

Structural Changes

In Zitti (2023a), the analysis starts from 2007 week 27, as indicated by Bloznelis (2016).

However, a change in the variability of the series was observed from mid-2012 onwards. To

test for a potential structural breakpoint, the sample was split into two periods: 2007 week

27 to 2012 week 17 and 2012 week 18 to 2019 week 51. An F−test was used to examine

whether the two sub-samples have equal variance. After testing for normal distribution

using the Shapiro-Wilk normality test, it was confirmed that the two sub-samples met the

required assumptions. If the samples had not been confirmed to be normally distributed,

employing an F−test would not have been appropriate. The results strongly reject equal

variances with p-values well below 0.01. However, since the focus is on forecasting using

an in-sample (train sample) and a hold-out sample (test sample), forecasting with two

sub-samples before and after the breakpoint is not feasible. Thus, the sample from 2012

week 18 to 2019 week 51 is used for forecasting.

Text Data Pre-processing

In Knoppe et al. (2023), conventional cleaning of the text data is performed to remove

HTML tags, images, videos, tables, graphs, tweets, white spaces, and regular text patterns

(e.g., “Click here for. . . ”). Quantitative information and articles with 20 or fewer words

are also removed to reduce noise, and all articles’ publication times are converted to
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Greenwich Mean Time (GMT). The final news data format includes title, post time, and

content.

To align with daily log returns data, articles are sorted according to their impact on

stock returns. Articles published after 2:20 pm GMT on weekdays or during weekends

and public holidays are considered to impact the stock market on the next trading day.

After cleaning and organizing the textual data, text pre-processing steps are per-

formed to prepare the dataset for further analysis. This includes feature extraction using

collocations, converting uppercase letters to lowercase, splitting contractions, tokeniza-

tion, removing non-alphabetic characters and stop words, removing journalist names, and

stemming tokens using the Porter Stemmer for English. To reduce dimensionality, the

Term Frequency-Inverse Document Frequency (TF-IDF) method is used, as shown in the

following formula for each token v:

log (1 + Nv) × log
(

D

Dv

)
(5.3)

where Nv is the token index, Dv is the number of documents containing term v, and

D is the total number of documents. Tokens with the lowest TF-IDF scores are discarded

before proceeding with the topic modeling approach.

5.5.2 Dimensionality Reduction

Least Absolute Shrinkage and Selection Operator (LASSO) regression

A variable selection method such as Least Absolute Shrinkage and Selection Operator

(LASSO) regression is essential to make forecasts more accurate and reduce dimension-

ality. LASSO is a shrinkage and variable selection method for linear regression models,

which minimizes the usual sum of squared errors with a bound on the sum of the absolute

values of the coefficients.

The objective function of LASSO can be formally defined as:

min
β

{ 1
2n

∥y − Xβ∥2
2 + λ∥β∥1

}
(5.4)
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where the term |y − Xβ|22 represents the sum of squared residuals, reflecting how well

the model fits the data. On the other hand, |β|1 represents the absolute value of the

coefficients, and λ ≥ 0 is a tuning parameter that controls the level of shrinkage. In

simple terms, LASSO tries to find a balance between fitting the data well and keeping

the coefficients as small as possible, with the exact balance determined by λ. The ability

of the LASSO to shrink some of the coefficients to zero, allows it to perform a variable

selection.

In Zitti (2023b), the LASSO method is employed to ensure that the VAR model only

include the most relevant predictors, reducing dimensionality, improving interpretability,

and potentially enhancing the accuracy of our forecasts.

Principal Components Analysis

Principal Components Analysis (PCA) is a widely used statistical method for dimension-

ality reduction, which aims to transform a set of correlated variables into a smaller set

of uncorrelated variables called principal components (PCs). This method identifies the

linear combinations of the original variables that capture the largest amount of variance

in the data. Mathematically, let X be an n × p data matrix, where n is the number of

observations and p is the number of variables. The first principal component PC1 is the

linear combination of the variables that maximizes the variance:

PC1 = w11x1 + w21x2 + · · · + wp1xp (5.5)

where wi1 are the coefficients (loadings) of the first principal component. The second

principal component PC2 is the linear combination of the variables that is orthogonal

to PC1 and has the largest variance. This process continues for subsequent principal

components, each orthogonal to the previous ones and capturing the maximum remaining

variance.

In Knoppe et al. (2023), PCA is used to identify the most influential topics driving

market news. By applying PCA to a large dataset of market news articles, the authors

were able to reduce the dimensionality of the data and focus on the most important topics
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that captured the majority of the variance in the data. The principal components can be

considered as more easily understood representations of the original variables, capturing

the essential structure and patterns in the market news.

5.5.3 Benchmark Models

Volatility Measure

In Zitti (2023a), a volatility proxy measure is needed to compare the predicted output of

each model during the volatility forecasting analysis. The volatility is estimated using the

sample standard deviation of logarithmic returns of the salmon spot price series computed

over 4-week intervals using a rolling approach, as shown in the formula:

Vt = 1
T

T −1∑
j=0

(rt−j − r̄t)2, (5.6)

where rj is the logarithmic return at time t, and r̄j is the average of the logarithmic

returns for the same period. The volatility is calculated using a rolling-window approach,

which reduces the length of the logarithmic returns to (k − 4), where k is the length of

the logarithmic return series.

One limitation of the employed volatility proxy is its smoothing effect on the logarith-

mic returns series, which results in persistence within the measure. Although an ideal

volatility proxy is not clearly defined, the use of spot prices instead of forward prices in

Zitti (2023a) (see Section 5.4.2) makes the implied volatility measure inapplicable. Conse-

quently, this volatility measure, despite its drawbacks, is deemed sufficient as a benchmark

to support the paper’s objectives.

Autoregressive Moving Average (ARMA Model)

The Autoregressive Moving Average (ARMA) model is a standard tool in time-series

forecasting. An ARMA(p, q) process is formulated as follows:
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Vt = µ + ϕ1(Vt−1 − µ) + ϕ2(Vt−2 − µ) + ... + ϕp(Vt−p − µ) + ϵt − θ1ϵt−1 − θ2ϵt−2 − ... − θqϵt−q, (5.7)

In this formulation, Vt is the actual value at time t, and ϵt is the random error at

the same time point. The parameter µ represents the intercept, while ϕi : (i = 1, 2, ..., p)

and θj : (j = 1, 2, ..., q) are the model parameters. The quantity p denotes the number of

autoregressive terms, and q denotes the number of moving average terms.

In Zitti (2023a), the estimation of the ARMA model parameters is performed using

the method of maximum likelihood, which seeks the parameters that maximize the prob-

ability of the observed data. The lag order values p and q are selected using the Akaike

Information Criterion (AIC), a common method for model selection.

Zitti (2023a) employs the ARMA model as a benchmark for forecasting salmon market

volatility and finds that salmon spot price volatility is best represented by an AR(5) model.

Vector Autoregressive Model

Vector Autoregressive (VAR) models are widely used for multivariate time series analysis,

modeling linear dependencies among multiple time-evolving features. A reduced form of

a Gaussian error VAR model of order p is:

yt = ν + A1yt−1 + · · · + Apyt−p + ϵt; t = 1, .., T (5.8)

where yt is an n × 1 vector of estimated endogenous variables, ν is a n × 1 vector of

intercepts, Ai (i = 1, ..., p) are n × n matrices of coefficients, ϵt is a n × 1 error term

vector, T is the time series length, and p determines the model’s lag order. Error term

distribution is Gaussian, without autocorrelation, zero mean, and constant variance.

In Zitti (2023b) and Knoppe et al. (2023), the AIC is used for selecting the optimal

VAR order, and the OLS estimator is employed to estimate each VAR equation separately.

Zitti (2023b) uses the generated yt series to forecast long-term salmon prices through the
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conditional expectation of yT + h given yt, t ≤ T :

yT +h|T = E (yT +h|yT , yT −1, . . . ) = ν + A1yT +h−1|T + · · · + ApyT +h−p|T , (5.9)

where yT +j|T = yT +j for j ≤ 0. The optimal parameter selection for the first VAR model

using front-month futures contracts as a predictor is p = 4 for forecasting h = 1 and

4 weeks ahead. For the remaining two VAR models using six-month and twelve-month

futures contracts to forecast 26 and 52 weeks ahead, the optimal order selection is p = 2.

In Knoppe et al. (2023), impulse responses of the yt series to one standard devia-

tion innovations are found using 68 percent confidence bands, computed with bootstrap

standard errors, using 1000 replications.

5.5.4 Deep-learning forecasting techniques

Long Short-term Memory (LSTM) is a type of Recurrent Neural Network (RNN) capa-

ble of maintaining information for extended periods (Hochreiter & Schmidhuber, 1997).

Utilizing a memory cell and gates, it can store information effectively. The cell state

(Ct) represents the network’s memory, with forget (ft), input (it), and output (ot) gates

filtering information via activation functions. The gates, cell state, and hidden state (ht)

are defined by the following equations (Eqs. 5.10 - 5.15):

ft = σ
[
Wfht−1 + Ufxt + bf

]
, (5.10)

it = σ
[
Wiht−1 + Uixt + bi

]
, (5.11)

C̃t = tanh
[
Wcht−1 + Ucxt + bc

]
, (5.12)

Ct = ftCt−1 + itC̃t, (5.13)

ot = σ
[
Woht−1 + Uoxt + bo

]
, (5.14)

ht = ot tanh[Ct]. (5.15)

Fig.5.4 shows a hidden LSTM layer, where the forget gate (ft), input gate (it), and
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Figure 5.4: Structure of a long short-term memory (LSTM) layer with a forget gate as
introduced by Gers et al. (2000).

output gate (ot) process inputs (ht−1) and (xt), updating the cell state (Ct) and generating

the new hidden state.

The LSTM model is utilized in both Zitti (2023a) and Zitti (2023b) under different

circumstances. In Zitti (2023a), a single LSTM network is employed to forecast volatility

using various input variables. These input series are transformed into supervised learning,

data is scaled and split into train and test samples, and hyperparameters are tuned using

the Random Search technique. Once the LSTM model is trained, it is used to forecast

salmon market volatility. The resulting forecasts are then compared with the actual

volatility measure (see Eq. 5.6), as well as the forecasts generated from the ARMA

model that serves as a benchmark for forecasting in this study. In Zitti (2023b), a hybrid

architecture combining VAR and LSTM is developed to test for non-linear relationships

in the residuals of the VAR model. This hybrid approach takes advantage of the strengths

of both models, as demonstrated by Eqs. 5.16, 5.17, 5.18, and 5.19, which illustrate the

process of combining the linear component’s forecast with the LSTM model’s forecast as
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follows:

y1,t = L1,t + N1,t. (5.16)

ϵ̂1,t = y1,t − L̂1,t. (5.17)

ϵ̂1,t = f (ϵ̂1,t, ϵ̂1,t−1, ϵ̂1,t−2, . . . , ϵ̂1,t−k) + u1,t. (5.18)

ŷ1,t = L̂1,t + N̂1,t. (5.19)

After generating the forecasts, the performance of the hybrid VAR-LSTM model is eval-

uated against the benchmark VAR model and examined under various multi-step ahead

forecast horizons.

A disadvantage of incorporating deep learning techniques for forecasting is their com-

putational intensity, requiring more processing time compared to traditional econometric

models. Additionally, these methods are challenging to interpret, as they do not stem

from a theoretical framework but are engineering-oriented instead. Consequently, many

economists are hesitant to adopt them.

5.5.5 Text Mining Techniques

Latent Dirichlet allocation (LDA) is an unsupervised generative probabilistic model in-

troduced by Blei et al. (2003), which represents documents as random mixtures of latent

topics. Each topic is characterized by a distribution of words. LDA enables documents to

belong to multiple topics, providing a mixed-membership model. It estimates parameters

by generating topic distributions for each document and the distribution between topics

and vocabulary.

In Knoppe et al. (2023), an extended version of LDA is used, placing Dirichlet priors

on the probability vectors for smoother estimation. Collapsed Gibbs sampling, a Markov

Chain Monte Carlo (MCMC) algorithm, is employed to estimate the LDA parameters.

To select the optimal number of topics, 10-fold cross-validation is conducted, and the final

perplexity is calculated as the average over 10 folds, and the optimal number of topics is

determined to be 100.
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In Knoppe et al. (2023), sentiment is also considered essential for explaining salmon

market stock returns, as it offers various information types. A lexicon-based approach is

utilized for sentiment quantification, which is relatively simple, efficient, and transparent.

The Loughran-McDonald (LM) dictionary, a finance industry-specific lexicon, is used in

the study. However, the dictionary’s insensitivity to industry-specific language requires

expansion to include terms relevant to salmon production. Consequently, Knoppe et al.

(2023) expands the LM dictionary to encompass terms related to technology, diseases and

natural disasters, and market-specific expressions. One limitation of this approach is that

while incorporating industry-specific words, these terms are based on the available data

set, which has a limited range.

5.6 Summary of the Research Articles

Research Article I: Climate risk and financial disclosure in salmon aquacul-

ture.

This research paper investigates the financial impacts of climate change on the salmon

aquaculture industry. It highlights the potential physical and transition risks associated

with climate change and the increasing importance of climate-related financial disclosures.

Organizations such as the Task Force for Financial Disclosures (TCFD) and the Carbon

Disclosure Project (CDP) have been crucial in promoting transparency and accuracy in

these disclosures. The study finds a sharp increase in the number of firms reporting

their climate, forest, and water-security CDP reports between 2016 and 2021, indicating

that salmon aquaculture companies are actively addressing environmental concerns and

meeting investors’ demands regarding transparency.

The implications of the study extend to salmon aquaculture companies, investors, and

policymakers. As climate change becomes a more pressing issue, investors are increasingly

expecting companies to adapt and respond to their demands for disclosure of climate-

related risks. The establishment of organizations like the CDP and TCFD has played a

significant role in raising awareness within firms, leading financial risk managers to develop

strategies for addressing climate-related financial impacts and integrating them into the
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company’s risk management processes. Consequently, firms are setting more ambitious

goals to improve their climate-related risk disclosure, maintain climate resilience, and

reduce their environmental footprints.

Research Article II: Forecasting Salmon Market Volatility using Long Short-

term Memory (LSTM)

This study investigates the forecasting performance of deep-learning techniques, specifi-

cally the Long Short-term Memory (LSTM) model, in predicting salmon market volatility.

The research aims to examine whether deep learning can accurately forecast salmon mar-

ket volatility and help overcome challenges stemming from the illiquidity of the salmon

futures market.

The paper utilizes the LSTM model to forecast salmon market volatility and assesses

its performance against the actual volatility series and a benchmark forecasting model,

represented by the ARMA model. The findings demonstrate that the ARMA model out-

performs the LSTM in short-term salmon market volatility forecasting, while both models

show similar capabilities for longer forecasting horizons. However, a significant discrep-

ancy exists between the forecasts generated by both models and the actual volatility

values, especially for mid-term forecasting horizons.

The results of this study provide valuable insights into the development of salmon

price volatility, suggesting that there are no complex patterns that can be exploited by

an LSTM model in the short term. The forecasting framework introduced in this paper

could be applied to other commodities and expanded to include multivariate predictive

analyses accounting for factors driving salmon market volatility.

Research Article III: The Influence of Market Adaptability on Forecasting

Salmon Spot Prices: A Comparison of Hybrid Deep Learning and Traditional

Models

Salmon price prediction is crucial for various market participants, such as farmers, pro-

cessors, traders, and hedgers. Due to the highly volatile nature of the salmon market,

accurate price forecasts are essential to reduce risks and support market participants.
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This study explores the forecasting performance of a hybrid model that combines the

traditional vector autoregressive (VAR) model with a deep learning technique, the long

short-term memory (LSTM). We hypothesize that this hybrid VAR-LSTM model, by cap-

turing both linear and potentially complex non-linear dependencies, could enhance the

precision of salmon spot price predictions, thus improving the accuracy of salmon spot

price forecasts compared to the performance of a traditional VAR model

However, the results revealed that both the hybrid VAR-LSTM model and the tradi-

tional VAR model performed similarly, suggesting that salmon prices might not fluctuate

in complex, non-linear ways as assumed. This points to the salmon market’s efficiency -

price changes are quickly recognized and integrated by market players. The VAR model

was also tested against a benchmark forecasting model, the random walk with a drift

model, and outperformed it across different prediction periods indicating that salmon

spot prices, although potentially exhibiting random walk properties, are not purely ran-

dom and do contain predictable dynamics that can be captured effectively by VAR. Even

though VAR and VAR-LSTM showed similar accuracy, the simpler VAR model demon-

strated a modest advantage, highlighting the balance between complexity and accuracy

in forecasting. These findings offer useful insights for industry participants, providing

valuable perspectives on market behavior and price prediction strategies.

Research Article IV: Salmon price movements around salmon market news

This study examines the impact of news on stock returns of major salmon-producing

companies listed on the Oslo Stock Exchange by analyzing articles related to salmon

production and markets. Latent Dirichlet Allocation (LDA) is employed to generate

topics, and a dictionary approach is used for sentiment analysis.

Initially, the study evaluated the impact of news topics on the salmon market by

grouping them into components and applying Vector Autoregression (VAR) analyses to

examine the relationship between these components and logarithmic stock returns. The

analysis was constrained to absolute returns due to the undefined direction of news cov-

erage effects. While news about the Covid-19 pandemic predominantly shaped market

repercussions, components associated with corporate news also elicited significant market

39



reactions.

Upon evaluating topics combined with sentiment, it was found that sentiment dic-

tionaries, such as the Loughran-McDonald dictionary, were not sufficiently adaptable to

domains beyond their original design. As a result, the dictionary was expanded with

industry-specific terms. To assess the relevance of the expanded lexicon, the effects of

industry-specific topics, when multiplied by the extended sentiment index, on returns

were analyzed, including factors such as algal blooms, diseases, and R&D, while account-

ing for competition among producers. However, the extended dictionary was unable to

account for the Covid-19 topic, which represented an unexpected exogenous shock to the

market.

In conclusion, this study emphasizes the importance of accounting for competition

and market structure in the salmon industry but recognizes a trade-off between focusing

on firm-specific articles and retaining crucial market news. The results could be applied

in similar studies within aquaculture economics, beyond the salmon industry. Future

research could consider expanding the time series range, incorporating additional news

sources, broadening the dictionary to include competitive seafood markets, and explor-

ing enhanced data filtering techniques to preserve general market news and competitor

information while removing unrelated noise.

5.7 Conclusions and Contributions

The thesis consists of four research articles that examine critical aspects of the salmon

aquaculture industry, including climate-related financial disclosures, market volatility and

price forecasting, and price movements in response to salmon market news. These stud-

ies provide valuable insights for salmon aquaculture companies, investors, policymakers,

and other market participants, emphasizing the necessity of transparent climate-related

financial disclosures, reliable forecasting models to predict market volatility and prices,

and identifying the underlying market drivers.

The first article contributes to the growing body of literature on climate risk and finan-

cial disclosures, emphasizing the importance of transparency and the role of organizations
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like TCFD and CDP in raising awareness and promoting better climate-related risk prac-

tices. This study highlights the importance of increased disclosure, which benefits salmon

aquaculture companies, investors, and policymakers by promoting more sustainable and

resilient business practices.

The second article evaluates the forecasting performance of deep-learning techniques,

such as LSTM, in predicting salmon market volatility, compared against the benchmark

ARMA model. The ARMA model exhibits better forecasting ability than the LSTM

model, indicating that there are no complex patterns in salmon market volatility that can

be exploited by an LSTM. Nevertheless, this study encourages future research into the

use of deep learning techniques and their potential applications in the field of aquaculture

finance.

The third article investigates the efficacy of a hybrid VAR-LSTM model for multi-step

ahead forecasting of salmon spot prices. While the hybrid model does not significantly

improve salmon price forecasting compared to the traditional VAR model, suggesting

that salmon prices do not depict non-linear trends, it still points to the salmon market’s

efficiency where price changes are quickly recognized and integrated by investors.

Finally, the fourth article explores the impact of news on stock returns of major

salmon-producing companies, highlighting the importance of accounting for competition

and market structure. The study recognizes the limitations of existing sentiment dictio-

naries, suggesting the need for domain-specific lexicons and improvements in data filtering

techniques to better understand the effects of news on the salmon industry.

The cumulative insights from these research articles significantly contribute to advanc-

ing climate-related financial disclosure within the industry, developing more sophisticated

forecasting models to support salmon market participants, and enhancing a comprehen-

sive understanding of the factors driving the salmon market. These findings can assist

policymakers in comprehending the complexities of the salmon industry and the market,

considering the challenges of the market participants before implementing new policies

and regulations.

Moreover, these results can help producing companies in identifying the areas to pri-
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oritize in their future development, such as sustainability, market risk management, and

internal research and development. By doing so, they can make more informed deci-

sions that contribute to their long-term success. Additionally, these conclusions can help

market participants to better anticipate future trends, enabling them to avoid planning

decisions that may lead to price fluctuations and increased market volatility. Ultimately,

the findings serve to enhance decision-making processes across the salmon aquaculture

industry, promoting more efficient, sustainable, and resilient practices.

5.8 Future Research Directions

There are several opportunities for future research that build upon the findings of this the-

sis. In the context of climate risk and financial disclosure, further research could explore

the effectiveness of current disclosure practices and investigate potential improvements to

enhance the quality of reporting. This could involve analyzing the impact of new regu-

latory frameworks or assessing the role of novel technologies in promoting transparency

and accountability in the industry.

For price forecasting and volatility analysis, advancements in deep-learning techniques

and alternative models, such as Convolutional Neural Networks (CNNs), Graph Neural

Networks (GNNs), and emerging deep learning techniques, such as Transformers can be

explored to improve forecasting performance. Additionally, incorporating external factors,

such as economic factors, into the forecasting models may provide a more comprehensive

understanding of price dynamics and volatility in the salmon aquaculture industry.

In terms of news impact on stock returns, future research can focus on expanding the

time series range and incorporating additional news sources, including social media and

alternative data streams, to gain deeper insights into the relationship between news and

stock market price development. Researchers could also explore a supervised approach

instead of a lexicon-based approach.

Moreover, the findings of this thesis can be applied to other sectors within aquaculture

economics or the broader seafood market, enabling comparative analyses and providing

a more comprehensive understanding of the challenges and complexities faced by differ-
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ent industry participants. By exploring these future research directions, researchers can

continue to advance theirs and the industry’s knowledge, ultimately supporting more sus-

tainable, efficient, and resilient business practices in the face of evolving market conditions

and global challenges.
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Climate risk and financial disclosure in salmon
aquaculture

Mikaella Zitti and Atle G. Guttormsen

Department of Economics and Resource Management, Norwegian University of Life
Sciences, Norway

ABSTRACT
The growth of the salmon aquaculture industry has attracted
an increasing number of investors. Investors are conscious of
economic consequences of climate change for the salmon
farming companies, hence their demand for climate-related
financial disclosure has increased. This study discusses poten-
tial climate-related financial impacts imposed on the salmon
aquaculture production as identified by the Task Force on
Climate-related Financial Disclosure (TCFD). We use data from
2016 to 2021 available on the Carbon Disclosure Project (CDP)
platform, and we show to what extent salmon aquaculture
companies disclose their climate-related risks. We find that
when the demand of investors for climate-related financial dis-
closure increases, more firms tend to comply with their
requests, while based on the CDP’s evaluation system, the
firms perform better in minimizing their carbon impact. We
argue that when salmon aquaculture companies publish their
climate-related financial disclosure, they ensure transparency
for their investors and secure a smooth transition into a low
carbon economy.

KEYWORDS
CDP; Climate risk; financial
disclosure; Salmon; TCFD

Introduction

Over the past decades, aquaculture has been the world’s fastest-growing
food production industry (Smith et al., 2010), with an annual growth of 7%
(FAO, 2016). Global production has increased from around 14.9 million
tonnes in 1995 to 82.1 million tonnes in 2018 (FAO, 2020). The increase in
production has been possible due to substantial technological innovation,
which led to productivity growth and lower production costs. As a result,
aquaculture has become an economically competitive food production
(Asche, 2008; Asche, Roll, Sandvold et al., 2013; Bergesen & Tveterås, 2019;
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Kumar & Engle, 2016). Overall, modern aquaculture has developed into a
technologically advanced and profitable industry.
As fish farming technology has improved, the salmon-producing industry

has matured and consolidated. The increased use of advanced technology
has made the industry more capital intensive. This drove companies to
seek for external financing, hence many were publicly listed. Today 26
companies engaged with salmon farming are traded on the Oslo Stock
Exchange (OSE), one of the major seafood stock exchanges. The market
value of these companies is around 368 billion Norwegian Kroner (e36.8
billion). As Sikveland et al. (2021) showed, return on assets (ROA) has
increased for publicly listed companies between 2001 and 2014. As a result,
they become more attractive to investors. Thus, they are also responsible to
meet investors’ demands to keep them satisfied.
Aquaculture production is a biological production that is subject to

severe economic consequences due to the uncertain nature of climate-
change (Asche, 2008; Asche et al., 2017, 2022). The success of the industry
has led to a number of studies investigating price volatility as a conse-
quence of climate change (Asche et al., 2017, 2019), but so far, little atten-
tion has been paid to the potential financial impacts from climate change.
Misund (2017) argues that common and industry-specific risk factors can
impact aquaculture firms’ returns. Listed salmon aquaculture firms have a
responsibility toward their investors to tackle such risks and cannot
ignore them.
Financial climate-related risks are usually identified as either physical or

transition risk (TCFD, 2017). Physical risks are defined as the risks related
to economic damages that come as a result of the effect of climate change
(Bovari et al., 2018; Dafermos et al., 2017, 2018; Dietz et al., 2016; TCFD,
2017). For instance, farmed salmon is kept in pens and if pens are
destroyed as a result of extreme weather, salmon can escape, causing major
financial consequences. Transition risks are linked to the risk of the firms
as a result of market shocks and policy implications related to transitioning
into a low-carbon economy (Battiston et al., 2017; Dafermos et al., 2018;
Leaton, 2011; Stolbova et al., 2018; TCFD, 2017). In salmon aquaculture,
transition risks are mainly related to policies and regulations. A large
amount of the supplies of the Norwegian salmon aquaculture industry is
exported to a diverse market (Asche et al., 2013; Straume, 2017), hence a
substantial increase in the carbon tax can impact air cargo and increase
price volatility (Asche et al., 2019).
Climate-related risks are expected to cause turmoil not only for the sal-

mon aquaculture sector, but also across various sectors outside the food
production industry. Companies across sectors are becoming aware of the
financial risks associated with climate change and are looking to become
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climate resilient to maintain future profitability. Investors, lenders, and
other stakeholders also become more aware of climate-related risks
and their demands for climate resilience and adaptation increase.
Climate-related financial disclosures are key in reassuring investors and
other stakeholders regarding climate risks. Therefore, over the recent
years organizations such as the Carbon Disclosure Project (CDP) and the
Task Force for Financial Disclosures (TCFD) were created to promote
the importance of reporting on climate-related risks. Such disclosures
assist investors, stakeholders, and other market participants to gain a bet-
ter understanding of the industry’s challenges related to climate change
as well as support their future investment decisions. A standardized
framework, such as the one provided by the TCFD, can also assist finan-
cial risk managers to understand and identify the risks their companies
face. It is however important to note that disclosures are crucial to main-
tain transparency, but they are not to be seen as an indicator of good
financial performance per se. They are an indication that the underlying
company is tackling climate-related financial risks while considering
stakeholders’ demands.
In the literature on business studies and finance there are theories that

are often used to explain the relationship between companies, their stake-
holders, and society. This study is compatible with theories such as the
legitimacy theory, signaling theory, and stakeholder theory. In line with the
legitimacy theory, organizations must ensure that they carry out activities
in accordance with societal boundaries and norms (Deegan et al., 2002).
Based on Patten (2002) and their definition of legitimacy theory, if there is
a large scale environmental disaster incident in a salmon-producing com-
pany (e.g., disease outbreak) then other companies also respond by increas-
ing the amount of environmental disclosures in their annual reports even
though the incident itself was directly related to one company. There are
also significant information asymmetries concerning climate-related risks
between corporate insiders and directors and other stakeholders, such as
investors. Disclosing climate-related financial risk can reduce such asymme-
tries in the access to information, as discussed in the literature on signaling
theory (e.g. Connelly et al., 2011). Nygård (2020) found that sustainability
reports contribute to reduce the information gap between managers and
shareholders. By gaining access to information on the company they are
invested in, investors and other stakeholders can impact decisions regard-
ing the operations and finances of that company. According to the stake-
holder theory, a company is responsible to meet all the demands from
their stakeholders (Parmar et al., 2010). Therefore, if the investors’
demands for climate-related financial disclosure increase, the company is
responsible to disclose its exposure on climate-risk.
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In this study, we discuss climate-related risks specific to the salmon indus-
try and explore to what extent some of the publicly listed firms have been
implementing climate-related financial disclosures. Next, we investigate the
role of TCFD and CDP in increasing responses from the companies. There
are other initiatives that also attempt to quantify sustainability matters such
as the Global Reporting Initiative (GRI),1 and specific to the aquaculture
industry, the Aquaculture Stewardship Council (ASC).2 These initiatives help
companies understand the outward impacts of their unsustainable practices
which in turn helps them become more sustainable and impacts their will-
ingness to report on their climate risks. We will not explain further the spec-
ifications of these initiatives as this study focuses only on the TCFD and
CDP. Furthermore, we will only focus on investors’ demands regarding cli-
mate-related financial disclosures and not on other stakeholders. This is
because we collect publicly available data from the CDP platform which
is an investor-driven global disclosure system. The outcome of this study is
applicable to salmon aquaculture firms, as well as their investors and other
stakeholders, but also policy-makers and regulators.
In Section “Climate-related risks conceptualization” we divide the

climate-related risks into physical and transition, and discuss the ones rele-
vant to the Norwegian salmon aquaculture industry. In Section “Climate-
related financial disclosure,” we explain the role of TCFD and CDP and
the specifics of climate-risk financial disclosures for salmon aquaculture
firms, as well as the main potential financial impacts they can face. In
Section “Results” we analyze the publicly available reports obtained from
the CDP platform. Section “Discussion” presents a discussion of
the outcomes.

Climate-related risks conceptualization

Salmon farming production is a biological practice that interacts with its
surrounding environment. It can therefore be vulnerable to potential finan-
cial impacts as a consequence of climate-related risks. A set of studies rais-
ing the environmental challenges of the salmon farming industry were
selected and will be discussed (Asche et al., 1999, 2009; Smith et al., 2010).
To facilitate the discussion around climate-related risks, the studies raising
the environmental challenges of the aquaculture industry will be catego-
rized according to physical and transition risks.

Physical risks

There are physical and biological risks associated with the salmon farming
industry’s practices. Since salmon is farmed in open cages it can be exposed
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to a number of climate-related risks (Asche et al., 2018). The major ones
are large-scale disease outbreaks (Abolofia et al., 2017; Asche et al., 2021;
Fischer et al., 2017; Torrissen et al., 2013), pollution through feed waste
(Asche, 2008; Asche et al., 1999), and algal blooms. Climate change can
potentially worsen the impacts of these risks. The change in water tempera-
ture, increasing precipitation, raise in sea-levels, frequent storm surges and
other extreme weather events are some of the climate-related risks that can
financially impact the salmon aquaculture industry.
Sea cages, where salmon is kept, are an open system of stock cultivation.

If storms are stronger than expected, they can destroy the cages the salmon
is kept in, and it can escape, resulting to unexpected losses for the farmers
(Olaussen, 2018). Salmon escaping from the sea cages is not something
unfamiliar to the farmers and the relevant authorities and therefore they
manage to keep the escapes under control without them causing large
losses (Pincinato et al., 2021). Nevertheless, the farmers and the relevant
authorities must consider the added risk from climate change. It is possible
that salmon escaping becomes more frequent and the farmers are no longer
able to control its potential outcome. Storm surges can also destroy materi-
als and installations exposing the industry’s firms to severe economic con-
sequences. Given that the installations are a valuable asset for the salmon
farming practice, it being destroyed can significantly decrease stockhold-
ers’ equity.
Chronic physical risks, e.g. increase in water temperature, can impose

long-term changes that will demand climate adaptation from the industry’s
underlying firms (De Silva & Soto, 2009). Specifically, the dynamics of sal-
mon lice are depending on the water temperature, and they are character-
ized by annual oscillations in parasite abundance (Jansen et al., 2012). For
instance, salmon thrives between 9 and 14 degrees, hence instability in
water temperature, can cause a disease outbreak, potentially impacting the
mortality rate of salmon as well as increasing production costs as a result
of necessary treatment processes, e.g. medicine and vaccines (Asche et al.,
1999; Torrissen et al., 2013). Abolofia et al. (2017) found that lice parasit-
ism alone produced 436 million US dollars in damages to the Norwegian
industry in 2011. Algal bloom which is linked to an increased concentra-
tion of nutrients in the sea, known as eutrophication is also an existing
threat to the salmon industry, since it can be the cause of diseases spread-
ing (Asche et al., 1999). It is a biological risk for the salmon aquaculture
production and as for storm surges, such events can become more frequent
with the imposed risk of climate change. Norwegian coastal waters are par-
ticularly vulnerable to an increase in the frequency of toxic algal bloom
(Edwards et al., 2006). As a consequence of diseases spreading, the indus-
try’s firms must invest sufficient funds into research (Asche, 2008). To be
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able to do this, the firms must hold a required capital amount. All physical
risks related to the salmon aquaculture industry can potentially increase
costs and expenses. Therefore, a so-called sustainable food production such
as salmon aquaculture industry cannot afford ignoring these risks and their
potential financial impacts.

Transition risks

Climate change and its impacts are receiving increased political attention.
It is then sensible to expect that the political scene regarding matters
related to climate change is changing. The impacts from climate change are
enormous and the scientific world has been urging politicians to act imme-
diately on the climate (IPCC, 2022). However, the long inactivity from pol-
itics has now emphasized the urgency for “new” relevant policy
implementations that ensure a smooth transition into a low-carbon econ-
omy. What if a “smooth transition” is no longer possible? To be more spe-
cific, the urgency to save our planet can result in ill-considered decisions.
Abate et al. (2016) argued that stricter environmental regulations in devel-
oped countries have contributed to lower growth rates. For instance, in
Norway, environmental concerns regarding the exponential growth of the
Norwegian aquaculture production drove the authorities to restrict the
licenses for new production (Asche et al., 2017; Hersoug et al., 2019).
Asche et al. (2019) argued that such restrictive regulations can result in the
stagnation of the industry’s production growth, causing an increase in sal-
mon price volatility. This can have severe consequences for the producers
(farmers) and other market participants such as investors, whose aim is to
maintain profitability at a minimum cost. Implementing policies without
consulting the relevant industry can have undesirable outcomes. Operating
based on a holistic approach is vital for creating policies and regulations
that consider the industry’s environmental challenges without harming the
farmers and jeopardizing the production (Osmundsen et al., 2017).
The key for the industry (or any industry) to maintain its profitability is

the trust from its stockholders. In return, it must ensure the protection of
the stockholders’ equity. Therefore, it is vital for the industry’s firms to be
prepared for transitioning into a low-carbon economy. Otherwise, the costs
will increase, potentially resulting in high losses, so that many shareholders
will pull out if they have not yet. If stockholders sell a large number of
shares from a publicly traded firm, it is likely to cause the value of the
firm’s stock to fall. Listed Norwegian aquaculture firms have high liquidity
buffers, but using it as a risk reduction measure is costly (Sikveland et al.,
2021; Sikveland & Zhang, 2020), which can have adverse effects on returns.
This in turn can reduce the stocks’ value. Moreover, considering that the
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salmon market offers hedging opportunities for investors through the Fish
Pool futures exchange for salmon, Ewald et al. (2022) found a correlation
between the shares prices and longer salmon futures contracts. This implies
that the salmon stock market reflects on the salmon market risk, hence, cli-
mate-related risks associated with salmon aquaculture companies are likely
to impact salmon prices. To avoid these, the salmon industry firms have a
responsibility toward their stakeholders to maintain their growth and repu-
tation. The TCFD (2017) recommendations argue that the key to achieve
this are the financial risk managers. They are required to have sufficient
knowledge about climate-related risks associated with the transition into a
low-carbon economy. This knowledge is important for developing trust-
worthy climate-related financial disclosures as well as managing the expos-
ure into climate-related risks (TCFD, 2017).
Transitioning to a low-carbon economy does not appear to be a smooth

transition for the salmon aquaculture industry. The transition risks associ-
ated with the industry are various and challenging. An increase in the car-
bon tax, bringing farms inland or demand closed containment to improve
sustainability, importing soybeans from South America despite the proced-
ure causing deforestation, are some of the challenges the salmon industry is
facing and must overcome to attain a smooth transition.
An increase in the carbon tax can severely impact the salmon aquacul-

ture industry. Figure 1 shows that at the end of 2021, salmon represented
approximately 40% of the quantity of all seafood species exported from

Figure 1. Comparison of the Volume in Metric Tonnes and Value in 1000 Tonnes of salmon
and all species exported from Norway from 2012 to 2021. Source: Norwegian Seafood
Council (2022).
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Norway and 60% of the value. The increasing trend of the export volume
of salmon verifies that it is a significant species for the export growth of
the Norwegian seafood industry. Around 20% of salmon exported from
Norway is shipped with air carriers; hence, if the Norwegian authorities are
raising concerns relating to the carbon emissions of air transport, an
increase in the carbon tax on air cargo is a likely policy measure. If the
cost of delivering their product to their consumers rises, salmon producers
are forced to either raise prices and face lower demand, or accept lower
profit margins. Figure 2 shows the development of the annual export prices
and production costs for salmon3 from 2008 to 2021. It is evident that
both the annual export prices and production costs have been increasing
over this period. Even though the production costs for Norwegian farmed
Atlantic salmon are increasing, they are low compared to other competitor
countries (e.g., Chile, Faroe Islands) (Iversen et al., 2020). Climate-related
risks can increase production costs, causing an increase in prices and vola-
tility which in turn creates distress for the investors (Oglend &
Sikveland, 2008).
One of the biggest critiques of the salmon farming industry is the feeding

practice. In the early years of salmon aquaculture production the farmers
used fish meal and fish oil to feed the salmon. Later, it became clear that

Figure 2. Salmon Export Price and Production Costs (including delivery costs) measured in
NOK/kg. Source: Norwegian Directorate of Fisheries (2022).
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this feed practice was not sustainable mainly because a lot of the fish meal
and fish oil came from wild-caught fish. Because of the rapid growth of the
salmon aquaculture industry, more fish meal and oil were required to feed
the salmon and therefore more wild-caught fish was required which then
led to over-fishing wild fish populations (Tveteras & Asche, 2008).
Researchers in collaboration with salmon fish feed manufacturers substi-
tuted fish meal and fish oil with plant-based protein sources, mainly soy
(Egerton et al., 2020). Therefore, most of the ingredients used for feeding
salmon are now plant-based. Although this transition into plant-based feed
is seen as an improvement in terms of implementing a sustainable feeding
practice, it also comes with a number of environmental concerns. Given
that soy is mainly grown in South America, having to grow more of it
raises concerns relating to the unprecedented deforestation in the Brazilian
Amazon forest (Dou et al., 2018; Sun et al., 2018). These concerns are
valid, especially considering that importing countries (e.g., Norway) are
gaining environmental benefits as well as maintaining production growth,
while the exporting countries (e.g., Brazil) suffer environmental losses. As a
response, certification programs for sustainable aquaculture have been
developed with a focus on restricting the global trading of soybeans
(Luthman et al., 2019). The Norwegian salmon aquaculture industry set a
goal together with their soy suppliers in Brazil to become 100% deforest-
ation and conversion-free. Their goal was achieved in February 2022 and
has set an important example for other food production industries. On the
other hand, the demand for growing soy has been increasing not only for
feeding salmon but also for feeding humans. Solberg et al. (2021) argued
that yeast produced from nonfood resources such as wood can serve as a
high-quality protein source for farmed fish. They found that there is indeed
potential for use in commercial production but the present costs of produc-
ing yeast from lignocellulosic biomass may still be too high, and there is a
need to develop more efficient processes for economic utilization (Solberg
et al., 2021). Such findings emphasize on the importance of research and
innovation developments within the salmon aquaculture industry. Research
and development are capital intensive and therefore the salmon aquaculture
industry must be financially prepared to invest in projects that promote a
more sustainable food production.
Government regulations and policies can also drive the need for inves-

ting in research and innovation (Asche & Smith, 2018). Given the binding
government regulations and environmental challenges in sea-based salmon
aquaculture, the rapid growth once observed has now been limited (Abate
et al., 2016; Bjørndal & Tusvik, 2019). Technological developments on
land-based farming have changed the potentials of the aquaculture industry
as well as the cost of production. Bjørndal and Tusvik (2019) found that
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although land-based salmon farming is early in development, if successful,
it can potentially have an important impact on the dynamics of the salmon
market. Investing in land-based salmon farming projects is important to
further investigate to which extent it can support the salmon aquaculture
production. An additional reason for dedicating part of the salmon aqua-
culture research to land based farming, is that several political parties, e.g.,
in Denmark and North America, propose to forbid net pen farming. Such
proposals aim to prevent salmon escape incidents that spread parasites and
pathogens to wild stocks (Bailey & Eggereide, 2020; Olaussen, 2018). The
salmon aquaculture production must be prepared to implement new devel-
opments to remain a successful food production industry. Attitudes toward
innovation, levels of investment and social norms influence adoption of
technological, organizational and informational practices (Lebel et al.,
2021). Moreover, policies that explicitly ban or limit the adoption of new
technologies could undermine aquaculture’s green potential (Asche
et al., 2022).
It has become clear that a “good” reputation for a food production

industry is closely linked to sustainability. Being prepared to transition into
a low-carbon economy is vital for being considered a successful industry.
Salmon aquaculture is heavily dependent on changes in regulations and
therefore it must be prepared to tackle climate-related risks or its successful
reputation will be jeopardized. Assessing climate-related risks should be set
as the main priority for the industry. Therefore, the question to be asked
is: are the salmon aquaculture industry’s underlying companies addressing
potential climate-related financial impacts?

Climate-related financial disclosure

Task force on climate-related financial disclosures (TCFD)

The Financial Stability Board (FSB)4 established the TCFD to assess cli-
mate-related risks and opportunities that assist investors, lenders, insurance
writers, and other stakeholders. The role of the TCFD is to provide a
standardized framework on climate-related financial disclosure so that it
helps market participants understand climate-related risks. The prospect of
creating a climate-related financial disclosure framework is to be singular
instead of a regime, and accessible to various organizations across sectors.
The framework is based on a set of recommendations. These recommen-

dations aim to support a company to develop a regular procedure when
disclosing climate-related risks. They are based on four key features: First,
the framework must be adaptable by organizations in different industries
(e.g., financial services, agriculture). Second, it ought to be recorded in the
files of every organization that follows the TCFD recommendations. Next,
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it is designed based on a “Scenario Analysis” approach. Specifically, poten-
tial hypothetical climate-related scenarios are set to happen in the future
and the aim is to assess whether the underlying organization is resilient to
these scenarios. Last, the framework focuses on risks and opportunities
related to the transition into a low-carbon economy. The climate-related
opportunities fall outside the scope of this study and therefore will not be
thoroughly discussed but only mentioned.
The structure of the TCFD (2017) recommendations is based on four

thematic areas, that represent the core elements of how firms operate: gov-
ernance, strategy, risk management, and metrics and targets. These recom-
mendations integrated into the financial disclosure framework, create the
information that will assist investors and other stakeholders to understand
how to assess climate-related risks and opportunities. Since these recom-
mendations are applicable to organizations across sectors and jurisdictions,
the TCFD (2017) provided supplemental guidance in developing these dis-
closures for both the financial and non-financial sectors. In this study, we
will only focus on the Non-Financial sector recommendations that are rele-
vant for the salmon aquaculture industry.

Financial impacts

The first step in assessing the potential climate-related financial impacts is
to acknowledge and understand the physical and transition risks related to
the salmon aquaculture industry. To derive the financial impacts associated
with these risks, the TCFD (2017) identified four major climate-related
financial impact categories: Revenues, Expenditures, Assets and Liabilities,
and Capital and Financing. All four categories are highly relevant for the
salmon aquaculture production.
It is evident from Tables 1 and 2 that there are various financial impacts

that could potentially affect the financial stability of the salmon aquaculture
industry. Physical risks, presented in Table 1, can mainly impact the reve-
nues of a company, and destroy its installations which in turn will increase
insurance premiums and costs. Table 2 describes in detail possible transi-
tion risks of the salmon aquaculture industry and their potential financial
impacts. Policy implementations associated with transition risks can also
have a major impact on the revenues of a company, increase its costs and
cause changes in supply and demand. Requirements for technological
developments and innovations can also impact the demand for salmon,
highlight the industry’s research and development requirements and
emphasize on the importance of climate adaptation to minimize costs.
Climate change brings instability to the market and that can reduce the
demand and the revenues. Gaining a reputation of being a non- sustainable
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food production, or a food production that is not willing to transition and
adapt to a low-carbon economy, can decrease the demand for salmon
which in turn can reduce a company’s revenues.
The response to the climate-related risks is depending on the industry’s

firms’ cost structure (TCFD, 2017). A firm with lower production costs is
more resilient to changes that can impact its cost structure, unlike a firm
with a high-cost structure. By disclosing its cost structure, a firm better
informs its investors about their investment potential. With the discussion
around climate-related risks strengthening, investors will start demanding
disclosure of capital expenditure plans and the level of debt or equity
required for funding these plans. Disclosing these plans allows investors to
understand how flexible the salmon aquaculture firms to re-invest their
capital, as well as how willing the capital markets are to fund firms that are
significantly exposed to climate-related risks. The salmon aquaculture pro-
duction is an industry that can be severely exposed to climate-related risks
because it is a food production practice highly dependent on its surround-
ing environment. Debt and equity structures should also be disclosed as
they can also be impacted from climate-related risks. A firm’s ability to
raise new debt or refinance existing debt is important to maintain invest-
ors’ trust. It shows certain flexibility to handle climate-related issues.
Operating losses, asset write-downs, and the need to raise new equity for

Table 1. Examples of physical climate-related risks and Potential Impacts concerning
aquaculture.

Climate-related risks Potential financial impacts

Physical risks - Storm surge - Reduced revenue from decreased
production capacity (e.g.,
destroy cages, high water,
impacts mortality rate)

- Rising mean water temperature
- Algal bloom
- Storms surge - Write-offs and early retirement of

existing assets (e.g., destroy
installations and plants)

- Rising sea levels
- Storms surge - Increased capital costs (e.g.

damage to installations, plants,
land-based facilities)

- Rising sea levels
- Rising mean water temperature - Reduced revenue from lower

sales/output (e.g. fish stock
escaping, mortality
rate, diseases)

- Algal bloom
- Storm surge
- Rising sea levels
- Storm surge - Increased insurance premiums

and insurance costs (e.g.
damage to facilities)

- Rising sea levels

12 M. ZITTI AND A. G. GUTTORMSEN



required investments, can cause changes in capital and reserves. The trans-
parency that comes with climate-related financial disclosure is the key for
the industry’s firms to prove their resilience to their stockholders.

TCFD recommendations

Investors’ demand for better climate-related financial disclosures has
increased (Hahn et al., 2015). The number of firms across sectors that are
pursuing financial disclosures upon investors’ requests is on the rise (Reid
& Toffel, 2009). The TCFD (2017) suggests that the fear of potential cli-
mate-related financial impacts can drive companies to conduct regular

Table 2. Examples of Transition climate-related risks and Potential Impacts concerning
aquaculture.

Climate-related risks Potential financial impacts

Policy and Legal
Transition risks - Increase in carbon tax for

air cargo
- Increased operating costs (e.g.,

higher transportation costs)
- Mandates on and regulations of

global trade (e.g.,
soybeans imports)

- Increased costs and/or reduced
demand for products
and services

- Regulation of production growth
Technology and Innovation

Developments
- Disease outbreak imposes

research and innovation
developments

- Reduced demand for products
and services (e.g., disease
outbreak impacts demand)

- Research and development (R&D)
expenditures in new and
alternative technologies
and medicine

- Substituting soy with more
sustainable options

- Capital investments in technology
development (e.g., to inform
about the water
temperature rise)

- Costs to adopt/deploy new
practices and processes

Market
- Changing customer behavior - Reduced demand for goods and

services due to a shift in
consumer preferences (e.g.
veganism, ASC label)

- Uncertainty in market signals - Reduced revenues
- Increase in raw materials costs

(e.g., soy)
- Reduced profits

Reputation
- Stigmatization of sector (e.g.,

media scrutiny regarding animal
welfare and sustainability goals

- Reduced revenue from decreased
demand for goods/services

- Reduced revenue from decreased
production capacity (e.g., supply
chain interruptions)

- Reduction in capital availability
(e.g., to fund the repercussions
from a shift in consumers
preferences
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climate-related financial disclosures. Task Force’s aim is to provide a stand-
ardize framework with sufficient information and instructions that will
assist financial risk managers in constructing better climate-related financial
disclosures. Table 3 presents the major TCFD (2017) recommendations to
be followed when creating climate-related financial disclosures. These rec-
ommendations are created with the purpose to be easily adaptable across
various sectors including the salmon aquaculture industry. They can be
seen as suggested steps the financial risk managers of a company should
follow when creating climate-related financial disclosures. The recommen-
dations aim to provide a holistic approach for constructing climate-related
financial disclosures as well as emphasize the benefits of such disclosures
for investors, and other stakeholders.

Carbon Disclosure project (CDP)

The Carbon Disclosure Project (CDP) was established in 2003 as an
investor-led nonprofit initiative, and it began surveying large firms regard-
ing their carbon-related risks and strategies. The main objectives of the
CDP are twofold: to inform risk managers about the concerns of investors
over climate-related risks and to inform investors about the climate-related
risks the firms are exposed to (Stanny & Ely, 2008). To maintain the first
objective, the CDP developed a questionnaire by translating the TCFD rec-
ommendations into actual disclosure questions and a standardized annual
format. The CDP provides investors with a unique platform where the
TCFD framework can be brought into real-world practice. The question-
naire is distributed to a range of firms across sectors with high market
value. To achieve the second objective, the CDP decided to make the
responses of individual firms publicly available online and produce reports
with accumulated responses.
Considering that answering the CDP questionnaire is voluntary, the

response rate has been rising gradually. Several studies indicate that an
increasing number of firms submit the CDP questionnaire (Lewis et al.,
2014; Luo et al., 2012; Stanny & Ely, 2008; Wegener et al., 2013). The num-
ber of Global 500 firms responding increased from 221 in 2003 to 403 in
2013 (Depoers et al., 2016) with the respondent firms accumulating more
than 10% of the total global emissions (EU Technical Expert Group, 2019).
As a result, the CDP holds the largest database on GHG emissions in the
world (Reid & Toffel, 2009). The success of the CDP is driven by the
investors who support it.
The companies’ decision to implement a regular practice on their report-

ing has enabled the CDP to influence corporate governance and climate-
related financial disclosure. The CDP has obtained critical mass over the
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last years and it is considered the leading reporting initiative for firms
worldwide. It signals a positive reputation for the firms who choose to
report on the CDP platform. The CDP created a “Status Report” where
they disclose the status of the reporting for each company publicly on their
platform. They also developed an internal score system. It measures the
comprehensiveness of disclosure, awareness and management of climate-
related risks and best practices associated with environmental leadership,
such as setting ambitious and meaningful targets. The details of the CDP
Scores are presented on Table 4. The CDP internal scoring system is used
to drive investment decisions toward a low-carbon and resilient economy.
Even for low-scoring companies, choosing to report shows respect to
investors’ demands as well as commitment to lower their GHG emissions.
The companies that do not report on the CDP platform despite investors’
requests, indicate weaknesses in their governance and risk management
strategies (Sullivan & Gouldson, 2012).
The main report on the CDP platform is the climate change report. This

is in accordance with the TCFD (2017) recommendations. In addition to
this report, the CDP added the forest and the water security reports. The

Table 3. Task force recommendations.
Recommendations

Governance Strategy Risk management Metrics and targets

- Describe the board’s
oversight of climate-
related risks and
opportunities.

- Describe the climate-
related risks (see
Section “Climate-
related risks
conceptualization”).

- How does the salmon
industry identify and
assess the climate-
related risks?

- Disclose the metrics
used to assess the
climate-related risks in
line with its strategy
and risk
management process.

- Describe management’s
role in assessing and
managing climate-
related risks.

- Describe the financial
impacts of climate-
related risks (see
Tables 1 and 2)

- How is the industry
managing these risks?

- Disclose Scope 1, Scope
2, and Scope 3a

Greenhouse Gas
(GHG) emissions.

- Describe the resilience
of the industry’s
strategy by considering
different climate-
related scenarios
relevant to the
aquaculture industry
(i.e., increase in
average water
temperature, maximum
sea levels rise, storms
surge frequency,
carbon price increase).

- How these processes are
integrated into the
industry’s overall
risk management?

- What are the targets of
the industry to
manage climate-related
risks and performance
against targets?

aScope 1 emissions are equivalent to direct emissions, and indirect emissions are divided into Scope 2 and
Scope 3 (WRI, 2011).

Source: TCFD (2017).
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forest report is targeting firms that are inclined to measure and manage
forest-related risks. Forest-related risks are relevant for organizations and
industries, whose practices can cause deforestation and forest degradation.
The main objective of this report is for companies to show their commit-
ment to restore the forests. There are four forest-related reports: Cattle
Products, Palm Oil, Soy, and Timber. Palm Oil and Soy are the main rele-
vant ones for the salmon aquaculture industry and the ones we will focus
on in this study. The aim of the water security report is to disclose whether
firms are doing enough to tackle water pollution. The Carbon Disclosure
Project (2017) reported that many firms underestimate the risks related to
water pollution with only 28% of the disclosing firms acknowledging any
water-related risks in their practice. Climate-related financial disclosure
allows stakeholders to access more information on strategies that mitigate
climate change as well as assist companies to improve the disclosure of
their actions that contribute to the reduction of GHG emissions (de Faria
et al., 2018).

Climate-related financial disclosures for the salmon industry

The physical and transition climate-related risks presented in Tables 1 and
2 are specific to the salmon aquaculture industry and can be seen as guid-
ance for creating climate-related financial disclosures for individual compa-
nies. In this study, we discuss industry specific climate-related financial
disclosures without focusing on individual companies. This is because the
TCFD recommendations (see Table 3) are constructed based on sectors
(e.g. Agricultural, Food and Forest Products Group in the case of salmon
producers) and not for individual companies. However, the climate-related
financial disclosures are to be submitted by individual companies. By

Table 4. Explanation of the CDP scores.
CDP Scores Explanation

A and A- Leadership level
B and B- Management level
C and C- Awareness level
D and D- Disclosure level
F Failure to provide sufficient information to

be evaluates
Not requested The company was not requested to disclose by

investors or its customers
See Another The company’s data has been covered by its parent

company’s response
Not available The score is private to the company and any

requesting customers the response has been
submitted to

Forthcoming The score has not yet been released

Source: Carbon Disclosure Project (2022).
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reporting in a common framework, i.e. the CDP’s industry-specific ques-
tionnaire, the differences in sustainability between the companies can be
captured by the internal scoring system of the CDP (see Table 4).
Assessing the impacts of climate-related risks for firms in the salmon

aquaculture industry involves a number of interactions and tradeoffs
among the climate-related aspects of chemical and biological pollution, dis-
ease outbreaks, unsustainable feeds and competition for coastal space
(Carballeira Brana et al., 2021), complicated by maintaining production suf-
ficient to meet the rising demand for blue food (Naylor et al., 2021).
Disclosures in the salmon aquaculture industry should focus on qualitative
and quantitative information related to both the industry’s policy and mar-
ket risks in the areas of GHG emissions, as well as the industry’s opportu-
nities around increasing food. The salmon-producing companies should
provide evidence of their efforts to reduce GHG emissions, pollution, dis-
ease outbreaks, high fish mortality rates and unsustainable feeds. Also they
must provide information on how they improve sustainability through
adequate environmental monitoring, location of farms, reduction and
exploitation of wastes as well as how the chemicals are being used to
ensure the growth and continuity of salmon aquaculture production. The
companies must also disclose the impacts that physical and transition risks
had on salmon production. They should also report opportunities that cap-
ture shifts in both business and consumer trends toward consuming sal-
mon, as well as processes and services that produce lower emissions, are
less chemical-intensive, and use sustainable feeding while maintaining
adequate food security.

Results

In this study, we utilized the public information available on the CDP plat-
form. We collected publicly available data on all three types of CDP
reports: climate change, forest, and water security, for seven Norwegian sal-
mon aquaculture companies with the highest market cap. The analysis is in
line with the content and converge of the firms’ responses to the CDP
questionnaires.
It is evident from Figure 3 that all seven firms have been requested to

disclose their climate-change reports from 2016 to 2021. This could be
because physical and transition risks of the salmon aquaculture industry
have been receiving increasing attention from investors. Their demands for
climate-related financial disclosures and transparency have increased. From
the results demonstrated in Figure 3, the firms are not obliged to respond
to the investors’ requests and hence some firms “Decline to participate.” In
2016, 3 out of 7 firms chose not to publicly disclose their climate change

AQUACULTURE ECONOMICS & MANAGEMENT 17



reports but only make them available for the investors who have requested
them (see Table 4 for explanation). Over the years the number of compa-
nies submitting their climate change reports on the CDP platform has
increased. In fact, in 2020 and 2021 all seven companies have submitted
their climate change reports. This can be because discussions about sustain-
ability and sustainable food practices increased, raising awareness for con-
sumers, investors, and other stakeholders. Therefore, it is important for the
salmon aquaculture companies to publish their climate-related financial dis-
closures, because it emphasizes their willingness to respond to investors’
demands, tackle climate-related risks, and lower their GHG emissions.
Figure 4 presents the corresponding CDP Scores of the companies that

submitted the CDP climate change report from 2016 to 2021. Given that
number of companies submitting their climate change reports have
increased over the period from 2016 to 2021 (see Figure 3), the corre-
sponding CDP scores have on average also become better. The first A was
granted in 2019 which is an improvement from 2018 where the average
score was C. In 2020, when all the companies submitted their reports, they
on average managed to seal an “Awareness Level” about the requirements
of lowering GHG emissions, with two of them taking this awareness up to
the “Management level,” and the last two up to the “Leadership level” (see
Table 4). All the companies made their CDP scores publicly available in

Figure 3. Salmon Aquaculture Firms CDP Status Results for the Climate Change report from
2016 to 2021. Source: Carbon Disclosure Project (2022).
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2021 with B as the average score. It is the first year that all companies sub-
mitted the climate change report and also maintained a sufficient score.
These results are encouraging for the future of the salmon aquaculture
industry. They can be seen as proof that the increased demands from
investors to submit climate-related financial disclosures, lower GHG emis-
sions, and adapt more sustainable practices, have a positive impact on the
industry’s companies.
In Table 5 we see that from 2016 to 2021, institutional investors have

increasingly requested the salmon aquaculture firms to disclose the CDP
forest report. The number of companies submitting the report has also
increased from 2016 to 2021. In 2020 when all seven companies were
requested to submit the forest report, three of them responded. In 2021

Table 5. Salmon Aquaculture Firms CDP Status on Forest Report from 2016 to 2021.
Firms

Year Number of Firms requested to participate No response Submitted Declined to Participate

2016 1 1 – –
2017 3 3 – –
2018 5 4 1 –
2019 7 4 1 2
2020 7 4 3 –
2021 6 3 3 –

Source: Carbon Disclosure Project (2022).

Figure 4. Salmon Aquaculture Firms CDP Scores from 2016 to 2021. Source: Carbon Disclosure
Project (2022).
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also three companies submitted the forest report, but six were requested to
do so. Table 6 presents the scores for the two types of forest-related reports
we focus in this study: Palm Oil and Soy. It is evident from the results that
the Soy forest report is the one mostly reported since it is quite relevant
for the salmon aquaculture industry. For the Palm Oil report we notice
that most companies responded after the deadline and therefore have the
status of “Not Scored.” In 2021, all three companies which submitted their
forest reports, were given an average score of B. The link between the sal-
mon aquaculture’s feeding practice and soy production is what mainly
drives investors to request disclosure of forest-related risks.
Table 7 presents the number of companies which were requested to disclose

the CDP Water Security Report and their responses. It is evident that the water
security report is not requested as much as the climate and forest reports from
investors. However, it appears that in 2021, 6 out of 7 companies were
requested to disclose the CDP water security report with only one of them sub-
mitting it. This shows that the relevance of the water security report is increas-
ing for the salmon aquaculture companies and the investors appear to believe
that it does. The responses of the companies in the upcoming years will clarify
investors view on the industry’s responsibility on water pollution.

Discussion

Physical and transition climate-related risks have been receiving increasing
attention from investors over the last years. While the impacts of climate

Table 6. Salmon aquaculture firms CDP results on forest report.
Scores

Year Firm Palm Oil Soy

2018 1 Not Scored A-
2019 1 Not Scored Not Scored
2020 1 Not Scored Not Scored

2 Not Scored Not Scored
3 A- A-

2021 1 Not Scored B
2 Not Scored A-
3 B B

Source: Carbon Disclosure Project (2022).

Table 7. Salmon aquaculture firms CDP results on water security report.
Firms

Year Number of Firms requested to participate No response Submitted Declined to participate

2016 – – – –
2017 – – – –
2018 1 1 – –
2019 2 1 – 1
2020 3 2 1 –
2021 6 4 1 1

Source: Carbon Disclosure Project (2022).
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change worsen, investors’ expectations will continue to increase. A fast-
growing food production industry such as salmon aquaculture has a
responsibility to identify and tackle climate-related risks to protect its
growth, secure transparency for its investors and other stakeholders, and
smoothly transition into a low-carbon economy. To secure these, organiza-
tions such as the TCFD and CDP have been founded to encourage climate-
related financial disclosures.
We discussed the potential climate-related risks, physical and transition,

that are likely to financially impact the salmon aquaculture companies.
Policies and regulations play a significant role in maintaining and support-
ing the sustainability of the industry but are not always successful. We
argue that the policy makers should implement a holistic approach by con-
sulting the salmon producers when constructing policies and regulations.
Companies on the other hand, need to be prepared for the possibility of
new regulation concerning climate-related risks. For instance, the growing
discussions on climate-related financial disclosures have resulted in some
countries, such as the United Kingdom (UK),5 to implement a new legisla-
tion that will require some companies to disclose climate-related financial
information. This, or other regulatory changes could be implemented in
Norway too, so Norwegian salmon producers must be prepared to make
the necessary adjustments.
The results from the publicly available CDP reports are compatible with

the increased investors’ demands for transparent and accurate climate-
related financial disclosure. The number of firms disclosing their climate,
forest, and water-security CDP reports has sharply increased between 2016
and 2021. The most important, and largely reported one is the climate
report. We found that in 2020 and 2021 all seven companies submitted the
CDP climate report, and were granted a B score on average. This shows
that the salmon aquaculture companies are working to tackle their carbon
and climate risks, while responding to the investors’ requests. Although this
cannot necessarily be interpreted as good financial performance for the
companies, it is a step forward toward not only transparency, but also cli-
mate change awareness and willingness to do better in terms of their own
environmental impacts.
The second most important report is the CDP forest report. This report

is divided into four forest-related risks, of which we only focus on the ones
relevant to the salmon aquaculture industry: Palm Oil and Soy. We found
that in 2021, out of six companies that were requested to submit the report,
three of them submitted and were given a B score on average for the soy
forest report. This was the highest number of companies reporting on their
soy forest report within the predefined time requirements of the CDP. Soy
is the main source of feeding for the salmon aquaculture production and it
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has been accused of causing deforestation. It is also a plant-based raw
material that can be consumed by humans. This makes the choice of soy
an unsustainable feeding practice and causes major criticism for the salmon
aquaculture industry. We argue that this attracts investors’ attention and
increases their demands for disclosure and as long as it remains controver-
sial, the companies have an ethical responsibility to be transparent about it.
The third report is the CDP water security report that aims to decouple

growth from depletion of water resources and capitalize a water secure
economy. While this report was introduced back in 2010, it was only in
2018 that the first salmon aquaculture company was requested to submit it.
The number of salmon aquaculture companies requested to report
increased since 2018 with the number significantly rising in 2021 when six
out of seven companies were asked to report. However, only one company
submitted. This indicates that the salmon aquaculture industry does not
consider that its practices cause water pollution. Considering that 6 out of
7 companies were requested by their investors to submit the water-security
report, it is likely that more companies will submit this report in the future.
This expectation stems from the fact that disclosing climate- and forest-
related risks improved substantially upon investors’ demands.
The results from this study are relevant for salmon aquaculture compa-

nies, investors and other market participants, as well as policy makers. As
climate change is increasingly discussed in politics, business, media and
academia, investors have also become more aware of the issue. We verify
that a large and growing number of investors are increasingly expecting sal-
mon producers to respond to their demands and adapt to climate change.
Therefore, they impose pressure on the companies to disclose the climate-
related risks and financial impacts. The salmon-producing companies have
a responsibility toward their investors, society and the environment to
report on their climate-related risks and environmental impacts. The estab-
lishment of the CDP and the TCFD played a significant role in promoting
climate-related financial disclosures. They increased awareness within the
firms and thus lead financial risk managers to develop dynamic strategies
to tackle climate-related financial impacts and integrate these strategies into
the risk management process of the company. As a result, firms set more
ambitious goals to become more competent in disclosing climate-related
risks, as well as maintain their climate resilience and lower environmen-
tal footprints.

Notes

1. An independent, international organization established in 1997 that helps businesses
take responsibility for their climate-related impacts, by providing them with the
standards for sustainable reporting.
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2. An independent, international non-profit organization established in 2010 that
promotes certified responsibly farmed seafood and aims to reduce the environmental
impacts of aquaculture.

3. The production costs are per kg produced salmon and rainbow trout because
companies produce both species and it is not possible for the Norwegian Directorate of
Fisheries to separate the costs.

4. The Financial Stability Board (FSB) is an international body that monitors and makes
recommendations about the global financial system.

5. https://www.gov.uk/government.
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Abstract

Forecasting salmon market volatility is crucial for reducing future uncertainty for
market participants. This study explores the efficacy of the Long Short-term Mem-
ory (LSTM) network, a deep learning technique, in forecasting multi-step ahead
salmon market volatility. The performance of the LSTM is assessed against a con-
structed volatility proxy and the Autoregressive Moving Average (ARMA) model, a
traditional benchmark in time-series analysis. Evaluation is performed across various
forecasting horizons using different forecast error measures. Our findings indicate
that the ARMA model outperforms the LSTM in predicting salmon market volatil-
ity, suggesting that any non-linear patterns in the salmon market volatility might
be too insignificant for an LSTM model to exploit effectively. However, we observed
a significant discrepancy between the actual volatility values and the forecasts ob-
tained by both models, indicating the complexity of accurately predicting salmon
market volatility.

Keywords— Salmon Market; Volatility Forecasting; Volatility Models; GARCH; LSTM;
Neural Network;
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1 Introduction

Salmon is a volatile commodity, with the increased demand over recent decades resulting in

high salmon prices and increased volatility, especially since the mid-2000s (Asche et al., 2019;

Bloznelis, 2016; Guttormsen, 1999; Oglend, 2013). This high price volatility presents challenges

for all market participants, including farmers, processors, traders, and intermediaries. Farmers,

who control production, can adjust harvesting to maximize their profits or to meet biomass

limitations (Asche, 2008; Forsberg & Guttormsen, 2006; Guttormsen, 2008), causing fluctuations

in the salmon spot price and, in turn, increased volatility. Processors face thin profit margins and

customers demanding lower prices, operating based on their expectations of the future salmon

spot price (Bergfjord, 2007; Kvaløy & Tveterås, 2008).

There are hedging opportunities available in the salmon market to mitigate this volatility,

however, they remain thin due to a lack of speculative traders (Andersen & de Lange, 2021;

Asche et al., 2016; Ewald et al., 2022). Fish Pool, a futures exchange of salmon, was estab-

lished in 2006 to provide these hedging opportunities. However, its role has been controversial

among aquaculture economists, with some arguing that its launch increased salmon price volatil-

ity (Bloznelis, 2016). Further studies found that shorter futures contracts contribute to more

volatility (Ankamah-Yeboah et al., 2017), futures prices are efficient in the long-run but not in

the short-run (Andersen & de Lange, 2021), and Fish Pool futures can be considered as a hedg-

ing instrument but not an investment asset (Ewald et al., 2022). In support of Fish Pool, other

researchers found that the contract settlement price used is representative of salmon transaction

prices (Oglend & Straume, 2019), and stock prices reflect salmon price information earlier than

the Fish Pool Index (Dahl et al., 2021). Despite these debates, the salmon futures market is

characterized by low liquidity, with infrequent trades that account for less than 10

Given these challenges, this study aims to fill a critical gap in the literature by implementing

a volatility forecasting model that could significantly aid salmon market participants and provide

valuable insights for both the academic field and market participants. We will examine whether

further exploration of neural networks for forecasting salmon market volatility is necessary or if

reliance on traditional time-series forecasting models suffices. Despite several studies analyzing

salmon price volatility, there has been a limited effort towards forecasting this volatility (Asche

et al., 2015; Asche et al., 2019; Asche & Oglend, 2016; Bloznelis, 2016; Dahl & Oglend, 2014;

Dahl & Jonsson, 2018; Oglend, 2013; Oglend & Sikveland, 2008; Solibakke, 2012).
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Deep learning techniques such as neural networks have shown great potential in forecasting

financial data, including commodity prices (Hamid & Iqbal, 2004; Manogna & Mishra, 2021;

Verma, 2021; Xu & Zhang, 2021, 2022). Among these techniques, Recurrent Neural Networks

(RNNs) have been found particularly suitable for predicting financial market volatility due to

their ability to learn temporal dependencies of time-series data (Selvin et al., 2017). Specifically,

Long Short-Term Memory (LSTM) networks, a type of RNN capable of capturing long-term

dependencies, have yielded promising results in various forecasting tasks (Kim & Won, 2018;

Nelson, 1991). Despite these promising results, the application of LSTM networks in forecasting

salmon market volatility remains unexplored.

In this study, we implement LSTM networks to forecast salmon market volatility, filling both

a gap in the literature and a practical need for robust forecasting models in the salmon industry.

The approach we undertake involves creating a volatility proxy based on the standard deviation of

the logarithmic returns rolling over 4 weeks. This proxy, although a mere estimation of volatility,

is forecasted using the ARMA model, with the forecasting ability of the LSTM assessed against

this. Each model’s forecasting performance is evaluated under different, multi-step ahead forecast

horizons using various forecast error measures, with the model yielding the lowest errors deemed

the best performing one. The expected value of the forecast losses generated by each model is

compared using the Diebold-Mariano (DM) test to assess robustness, and the forecasts obtained

by LSTM are examined for significant difference against actual volatility values.

Our study is structured as follows: Section 2 discusses the specifications of neural networks

and the LSTM model. Section 3 demonstrates seasonality and structural changes in the salmon

spot price series. Section 4 outlines the statistical metrics and tests used to evaluate the fore-

casting performance of the LSTM model compared to a benchmark model. Section 5 describes

the application of the proposed models and Section 6 reports their results. Finally, Section 7

concludes and discusses potential future research directions.

2 Methodology

2.1 Neural Networks (NN)

NNs are linear and polynomial methods that connect a set of input variables
{
xit
}

with i = 1, .., n,

n being the number of inputs connected to an output {ỹt}. They consist of three different types
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of layers. The input, the hidden, and the output layers. The input layer includes the input nodes,

and each node represents a different variable. When applied on univariate time-series data, a

lagged version of the data is used, and the nodes correspond to each lag. The output layer is

usually formed with one node which represents the output of the NN. The hidden layer(s),
{
hit
}

where i = 1, ...,m is the number of nodes that separate the input from the output layer and

define the amount of complexity the model is capable of fitting. The number of hidden layers

and the number of nodes in each layer are based on the complexity of the model under study

and a trial-and-error approach. An illustration of a type of NN is presented in Figure 1.

Figure 1: A feed-forward Artificial Neural Network (ANN) with three inputs and one
hidden layer with two hidden nodes.

2.1.1 Recurrent Neural Network (RNN)

RNN is also known as the Elman network (Elman, 1990), a class of ANNs that incorporates

a recurrent hidden state, that consists of hidden layers, whose activation after each iteration

depends on previous states and the current input. The RNN’s feature is that it incorporates

a ‘memory’ mechanism that is saving a copy of the previous values of the layer containing the

recurrent nodes and using them as an additional input for the next step (Makridakis et al.,

2018). The weights of an RNN determines how much significance to give to the present input
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and the past hidden state. The weights are adjusted via backpropagation until the error function

(SSE) is minimised. The network’s ‘memory’ feature allows them to exhibit dynamic temporal

behaviour. The illustration in Figure 2 portrays this procedure.

Figure 2: A RNN with one input layer that consists of two neurons, two hidden layers
consisting of two and three neurons, respectively, and an output layer.

2.1.2 Long Short-term Memory(LSTM)

The training process of RNNs suffers from the vanishing gradient problems (Bengio et al., 1994).

RNNs are only able to store short-term information and they have difficulties carrying infor-

mation for longer periods. Hochreiter and Schmidhuber (1997) developed the Long Short-term

Memory (LSTM) as a solution. It is an advanced type of recurrent neural network and is applied

in a number of different areas (e.g. handwriting recognition, speech recognition, see (Graves et al.,

2013). LSTM is a network architecture that in combination with an appropriate gradient-based

algorithm can use memory cells and gates to store information for long periods.

Gers et al. (2000) specify that the cell state is the core of the LSTM model because the cell

state represents the ‘memory’ feature. Simpler, the cell state behaves like a ‘transport line’ that

captures and stores information. The information passing through the cell state is filtered by

the gates. The gates have the power to add or remove information to and from the cell state.
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There are three gates: the forget gate, the input gate, and the output gate. The forget gate

takes as inputs information carried from the last hidden state, ht−1, and the current input, xt.

It passes these inputs via a sigmoid function that returns values between zero and one, where

zero means “nothing goes through” and one “everything goes through”. The output of the first

gate ft is:

ft = σ[Wf (ht−1, xt) + bf ]. (1)

The input gate decides which information to store in the cell state. This gate has two parts.

First, it also receives inputs ht−1 and xt and passes them via a sigmoid function as follows:

it = σ[Wi(ht−1, xt) + bi]. (2)

Next, it passes the same inputs via a hyperbolic tangent function that creates a vector of new

information:

C̃t = tanh[Wc(ht−1, xt) + bc]. (3)

The two outputs, it and C̃t are combined and added to the cell state. The current period cell

state is created using the outputs from the first and second gates as follows:

Ct = ftCt−1 + itC̃t, (4)

The forget gate’s output, ft, is multiplied with the information carried from the previous period

cell state, Ct−1. Then, the product from the input gate, itC̃t, is added and the new cell state,

Ct is created.

The output gate also receives inputs ht−1 and xt and passes them via a sigmoid activation.

The output, ot, is denoted as follows:

ot = σ[Wo(ht−1, xt) + bo]. (5)

In the meantime, the cell state, Ct, passes through a hyperbolic tangent function and the output

is multiplied with ot, to decide which information the new hidden state, ht, should carry to the

next period. This is described as follows:

ht = ottanh[Ct]. (6)
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The structure of the LSTM layer is shown in Figure 3. It is evident from the figure that the

three sigmoid functions, σ, and the hyperbolic tangent function, tanh, are controlling the three

gates. Scalar multiplication is denoted as × and addition is denoted as +. Overall, the LSTM

updates the cell state, from Ct−1 to Ct, filters important and non-important information via the

three gates, and generates ht.

Figure 3: Structure of a long short-term memory (LSTM) layer with a forget gate as
introduced by Gers et al. (2000).

3 Data

Our analysis employs weekly salmon spot prices sourced from the NASDAQ Salmon Index1. This

data extends from week 27 of 2007 until week 51 of 2019. The prices included represent averages

for all weight classes and are given in Norwegian Krone (NOK) per kilogram (Kg).

The decision to use spot prices as opposed to futures contracts prices was informed by the

relatively low liquidity and infrequent trades of the salmon futures market (Bergfjord, 2007;

Bloznelis, 2018a). Further supporting this choice, Asche et al. (2016) discovered that innovations

in the spot price impact futures prices, suggesting that futures prices do not provide a price

discovery function. This is an expected finding considering the immaturity of the salmon futures

1https://salmonprice.nasdaqomxtrader.com.
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market and provides a compelling rationale for choosing the salmon spot prices over the futures

prices in our volatility forecasting study.

An important note on the choice of our dataset timeframe is necessary here as we have

intentionally chosen not to include data from 2020 onwards. The primary reason for this decision

is the onset of the COVID-19 pandemic, which would introduce a structural breakpoint in the

data and significantly disrupted market dynamics. The pandemic represents an outlier event

that, while undeniably impactful, may not be indicative of typical market behavior. Including

data from this period could skew our model and undermine the reliability of the forecasts by

potentially overfitting to the exceptional conditions brought on by the pandemic. Consequently,

limiting our analysis to pre-2020 data allows us to avoid this issue and provide forecasts that are

grounded in more standard market conditions, therefore offering a more unbiased and reliable

prediction of typical salmon market volatility.

3.1 Seasonality

Before obtaining the logarithmic return series, we considered the seasonal patterns in salmon

spot prices. As a result of factors related to supply and demand a key characteristic of salmon

production is seasonality. Seasonality in supply does not match the seasonality in demand and

that generates seasonal patterns in salmon price. Modelling seasonality when having weekly

time-series is complicated. In the existing literature, the most common technique is the Fourier

series; that is, sums of trigonometric functions (Bloznelis, 2016, 2018b; Oglend, 2013). Here, we

follow a technique introduced by Hyndman (2014), and also applied by Bloznelis (2018b), that

uses a regression with ARMA errors, having Fourier terms as regressors. The number of Fourier

terms could be up to 26 pairs for weekly data. However, the number of Fourier terms for the

fitted model was selected by minimising the Akaike information criterion (AIC) and choosing

between none to 26 pairs, while the same applies for selecting the order of the ARMA model

(Hyndman & Athanasopoulos, 2018).

The salmon spot price exhibits large movements around Christmas and Easter as shown

by Bloznelis (2018b). Therefore, we also incorporate the possibility of deterministic seasonality

occurring, by adding four dummy variables to specify the weeks before and after Christmas (in-

cluding Christmas week) and four more to specify the weeks before and after Easter (including

Easter week). The deterministic seasonality is expressed by the means of these eight seasonal
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dummy variables. The combination of the Fourier terms and these eight seasonal dummy vari-

ables exhibit the seasonal component, which is subtracted from the data before proceeding. The

seasonally adjusted version of the salmon spot price will be used in place of the original series

without explicit reference. The development of the seasonally adjusted salmon spot price series

is depicted in Figure 5.

Figure 4: Original time-series of weekly salmon spot prices in NOK/kg.

Figure 5: Seasonally adjusted time-series of weekly salmon spot prices in NOK/kg.

Given that our aim is to forecast salmon market volatility, the parametric elimination of

seasonality prior to forecasting proves unfeasible. This stems from the fact that, based on
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the information available at the time of forecasting, we can’t predict the precise timings and

occurrences of future seasonal patterns, making the removal of seasonality to use the seasonally

adjusted series for forecasting inappropriate. Ideally, seasonality should be considered only until

the point of initiating forecasting, specifically, it should be controlled only within the in-sample

(training) data and not extended to the out-of-sample (testing) data. Nevertheless, upon noting

the minimal influence of the seasonal component (refer to Appendix A.1), we found the original

series has a standard deviation of 14.703, while the seasonally adjusted series indicates a 14.339

standard deviation. Since we determined the seasonal component to be minimal, we opted to

disregard the seasonal adjustment and conduct our volatility analysis and forecasting on the

original, unadjusted series. These minor differences of the two series can be observed in Figures

4 and 5.

Figure 6: Salmon spot price logarithmic returns.

Moreover, we apply a logarithmic transformation on the original spot price series as it is

often used in volatility analysis and forecasting. The return from week to week is denoted as

Y = Wt/Wt−1, where Wt is the spot price at time t (or current week’s price) and Wt−1 is the
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spot price at time t − 1 (or previous week’s price). To consider for proportional changes in the

returns, we apply a logarithmic transformation of the first price difference rt = ln(Wt/Wt−1).

Figure 6 presents the development of the logarithmic returns.

3.2 Structural Changes

We choose to analyse the sample period starting from 2007 week 27 based on the findings of

Bloznelis (2016), who estimated the salmon spot price volatility of different salmon weight classes,

and found a structural break-point in the logarithmic returns series from 1996 week 1 until 2005

week 45, and from 2007 week 27 until 2013 week 13. From Figure 6 there is a noticeable change

in the variability of the logarithmic returns from middle 2012 and onward. Therefore, to test

whether the variability of the logarithmic returns is different before middle 2012, we split the

sample into two periods; one from 2007 week 27 until 2012 week 17 and one from 2012 week

18 until 2019 week 51. We use an F−test to examine whether the two sub-samples have equal

variance. The F−test assumes that the two sub-samples are independent of each other and hence

independent across time. For simplicity of the analysis we ignore any potential time dependence

at this point, assuming that it is not strong enough to invalidate the results. The second main

assumption of the F−test is that the two sub-samples must be normally distributed. We test

for normality of each of the two sub-samples using the Shapiro-Wilk normality test and we find

that they are likely normally distributed, hence we are not violating the normality assumption

of the F−test. The results strongly reject that the two sub-samples have equal variances with

p-values well below 0.01. However, as we are interested in forecasting using an in-sample (train

sample) and a hold-out sample (test sample), forecasting using two sub-samples, before and

after the break-point, is not feasible. Therefore, for forecasting salmon returns volatility we use

the sample from 2012 week 18 until 2019 week 51. This is the main sample which we refer to

throughout the remainder of the article.

3.3 Descriptive Statistics

Table 1 shows descriptive statistics such as mean, standard deviation, skewness, and kurtosis

of the salmon spot prices and their logarithmic returns, as well as the results of the augmented

Dickey-Fuller (ADF) test, a unit-root test, and the Shapiro-Wilk test, a normality test. The ADF

test was used to confirm the stability of the time-series (Dickey & Fuller, 1979). For the ADF
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test, a negative value, whose absolute value exceeds the critical value, suggests stationarity. From

the ADF statistic in table 1, we interpret that the spot price series contains a unit-root at all

significant levels, e.g., 1%, 5%, 10%, implying it is non-stationary, while the logarithmic returns

series does not contain a unit root, thus, it is stationary. Figure 6, illustrates the logarithmic

returns, where the stationarity of the series can be observed.

Mean Standard
Deviation

Min Max Skewness Kurtosis Shapiro-
Wilk

ADF

spot prices 49.23 13.634 21.78 79.91 -0.14 -0.78 0.98*** -2.15

log returns 0.002 0.064 -0.12 0.171 0.091 -0.074 0.996 -17.5***

Note: ***, **, * denote significance at 10%, 5%, and 1% level, respectively.

Table 1: Descriptive statistics on salmon spot price and logarithmic return series, 2012 -
2019.

The logarithmic returns are centered at zero with standard deviation 6.4%. As confirmed

by the Shapiro-Wilk test result of 0.996, the logarithmic returns closely align with a normal

distribution. Although commodity prices, including salmon, often exhibit asymmetry and non-

normal distributions, our data reveals different characteristics. The skewness of the returns is

slightly above zero, hinting that large positive returns might be marginally more common than

large negative ones. However, this near-zero value suggests a symmetric distribution. The balance

between the largest negative return (12%) and the largest positive return (17.1%) corroborates

this symmetry, thereby indicating normality in the returns distribution.

Moreover, the kurtosis indicator is less than zero, a sign of platykurtosis. This implies that

the returns are less densely populated in the tails and more concentrated around the mean than

one would expect from a normal distribution. Given its relative proximity to zero, we interpret

this platykurtosis as insignificant, reinforcing our assumption of normality. In the context of

the LSTM and ARIMA models, both of which are being applied to forecast the volatility of the

salmon market in this study, the absence of significant asymmetry and non-normal distribution in

our data offers a less complex environment for these models to capture the underlying patterns.

As such, the characteristics of our data provide a more straightforward foundation for evaluating

the effectiveness of LSTM and ARIMA in predicting salmon market volatility.
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4 Measurement and Model Assessment

4.1 Volatility Measure

For a measure of volatility, which serves as the target value for the supervised learning process in

the neural network (refer to Section 5.2), we utilize the sample standard deviation of logarithmic

returns, computed over 4-week intervals using a rolling approach2.

The variance calculation incorporates the mean of returns from the same rolling period.

Consequently, the formula for calculating the variance proxy is presented as follows:

Vt =
1

T

T−1∑

j=0

(rt−j − r̄t)
2, (7)

where rj represents the logarithmic return at time j, and r̄t signifies the average of the logarithmic

returns from time t to t + T . This ensures that the mean return value utilized in the variance

calculation is derived from the same period for which the variance is computed. The volatility

is estimated using a rolling-window approach, reducing the length of the logarithmic returns to

(k − 4), where k represents the length of the logarithmic return series.

Even though implied volatility would serve as an ideal forward-looking measure, the absence

of a robust market for options contracts on spot prices at Fish Pool requires the employment of

historical volatility measures. Despite this constraint, we are confident that the volatility proxy

introduced in Eq.7 provides a reliable measure for our analysis.

4.2 Benchmark Model: ARMA

To provide a meaningful comparison for the performance of the neural network in forecasting

the volatility measure presented in Eq. 7, it’s crucial to employ a benchmark model. Based

on insightful suggestions from a reviewer, we’ve chosen to incorporate the ARMA model as this

benchmark.

The ARMA(p, q) process that generates the volatility series {Vt}αt=1 is formulated as follows:

Vt = µ+ ϕ1(Vt−1 − µ) + ϕ2(Vt−2 − µ) + ...+ ϕp(Vt−p − µ) + ϵt − θ1ϵt−1 − θ2ϵt−2 − ...− θqϵt−q, (8)

2Take note that the data frequency is weekly.
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In this formulation, Vt is the actual value at time t, and ϵt is the random error at the same

time point. The parameter µ represents the intercept, and ϕi (i = 1, 2, ..., p) and θj (j = 1, 2, ..., q)

are the model parameters. The quantity p denotes the number of autoregressive terms, and q

denotes the number of random error terms, also known as moving average terms.

The selection of the lag order values p and q is done using the Akaike Information Criterion

(AIC), a well-known method for model selection. Maximum allowable lag orders are specified as

(pmax, qmax), and the optimal p and q are those for which the AIC is minimized.

Estimation of the ARMA model parameters is performed via the method of maximum like-

lihood, which aims to find the parameters that make the observed data most probable.

This ARMA benchmark model will allow us to conduct a rigorous and fair comparison of the

forecasting capabilities of the neural network, thereby highlighting the strengths and potential

areas of improvement in our approach.

The ARMA model is chosen for its simplicity, interpretability, and the flexibility it offers in

modelling various types of temporal dependencies, making it a robust choice for a benchmark

model.

4.3 Model Assessment

To evaluate the accuracy of the models’ forecasting performance, we employ four statistical

error measures. These include the popular mean squared error (MSE), root mean squared error

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). These

measures are commonly used in forecasting studies and provide a comprehensive evaluation of

the models’ performance. The error measures are defined as follows:

MSE =
1

N

N∑

t=1

(xt − Vt)
2, (9)

RMSE =

√√√√ 1

N

N∑

t=1

(xt − Vt)2, (10)

MAE =
1

N

N∑

t=1

|xt − Vt| , (11)

MAPE =
1

N

N∑

t=1

∣∣∣∣1−
xt
Vt

∣∣∣∣× 100% (12)

where Vt is the volatility value, and xt is the predicted volatility value. These measures

14



provide a holistic assessment of the prediction accuracy, taking into account both the magnitude

of the errors (through the MSE and RMSE) and their relative size compared to the actual values

(through the MAE and MAPE).

4.4 Diebold-Mariano Test

The performance of any pair of forecasts can be measured utilising the DM test (Diebold &

Mariano, 2002). The null hypothesis of the test is that the expected loss due to forecast errors is

equal for both forecast models, implying that both underlying models are equally accurate. The

forecast errors from the two different forecasts are transformed into corresponding losses using

selected loss functions. If the expected value of the loss function from each forecast is equal, the

population mean of the loss differential series should be equal to zero.

For the DM test, we produce two series of volatility forecasts, σ̂i,N , ..., σ̂i,N where i = 1, 2 from

two different forecasting models. Next, we evaluate the accuracy of these forecasts against the

series of volatility proxies denoted as σ1, ..., σN with loss function L(σ̂i,N , σN ) = (σ̂i,N − σN )2.

Considering that Laurent and Violante (2012) showed that loss functions such as MAE are

not suitable for comparing volatility models, we choose MSE and RMSE as the loss functions

for the DM test. The null hypothesis of a DM test is denoted as: E(dt) = 0, where dt =

L(σ̂1,t, σt) − L(σ̂2,t, σt) is a loss differential sequence with a given loss function L(•). The DM

statistic is denoted as follows:

DM =
1
N

∑N
t=1 dt√

2πf̂d(0)/N
, (13)

where N is the sample size, and f̂d(0) is a consistent estimate of fd(0), which stands for the

spectral density of the loss differential at frequency 0.

5 Proposed Models

As discussed in the introduction, the literature available for salmon price volatility mainly utilises

autoregressive financial time-series models. Deep learning techniques have not been applied

before in the context of salmon price volatility. A number of academic studies investigating

financial market volatility have integrated feed-forward neural network techniques and found

significant evidence that they strengthen volatility predictions (Kristjanpoller & Minutolo, 2016;
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Roh, 2007; Tseng et al., 2008). We acknowledge these findings and we aim at exercising their

validity for the salmon market. To do so, we assess the forecasting performance of each model

individually and examine which one (if any) is able to accurately forecast salmon spot price

volatility over a given forecast horizon.

5.1 Implementation of ARMA Model

Initially, we calculate a proxy for volatility using a 4-week measure of volatility, as defined in Eq.

7. Subsequently, we employ an ARMA model to forecast the series of this volatility proxy. Before

setting up the ARMA model, we test whether the volatility proxy series contains a unit root

using the ADF test. The results indicate that the series doesn’t contain a unit root, suggesting

it’s likely stationary and therefore employing an ARMA Model is indeed feasible. The model

parameters are determined by the Maximum Likelihood (ML) estimator, and their selection is

guided by the Akaike Information Criterion (AIC), with the model yielding the lowest AIC being

deemed the optimal fit (Akaike, 1969). Our model selection process identifies an Autoregressive

model of order 5, or AR(5).

The selected AR(5) model is further validated by diagnosing the behavior of the residual

series. The Ljung-Box test is used to confirm the linear independence of residuals across time,

while the Shapiro-Wilk normality test establishes that the residuals follow a normal distribution.

In terms of forecasting, the volatility proxy series is divided into a training set, including

80% of the data, and a testing set containing the remaining 20%. The AR(5) model is fitted on

the training data, and walk-forward validation over the testing set is used to produce multi-step

ahead forecasts. These forecasts cover 1-step, 4-steps, 8-steps, and 12-steps ahead, as defined by

our forecasting horizon.

Finally, to evaluate the performance of the AR(5) model, we calculate forecast error measures.

These are then compared to the volatility forecasts generated by the LSTM, which serves as our

benchmark model for forecasting.

5.2 LSTM Experiment

The initial step in our methodology involves establishing the LSTM network, where we employ

the volatility proxy series as the input variable. The series’ stationarity is confirmed through the

application of the ADF test, resulting in evidence against the presence of a unit root.
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The LSTM deep learning method employed in this study is characterized by supervised learn-

ing, an automatic search process for superior representations. We transform the input series into

a supervised learning format via a lag transformation, whereby the value at time (t−k) - where k

signifies the number of lags - represents the input variable. The input variable from time (t− k)

to time t is then fed through an LSTM layer, pushed forward via one fully connected dense

layer, and utilized to forecast volatility at (t + n), where n represents the different forecasting

horizons. The optimal number of lags was determined through the application of the Autocorre-

lation Function (ACF). Given that the volatility series is constructed based on a 4-week rolling

standard deviation, it was not unexpected to observe autocorrelation up to lag 4 (see Appendix

A.2 for more details). However, in order to fully leverage the long-term memory characteristic

inherent in the LSTM model, we opted for a more extended lag length. Specifically, we set the

timesteps3 to 52, corresponding roughly to one year’s worth of data. This decision allows the

LSTM to capture and utilize long-term temporal dependencies, a feature that is central to its

design and operation.

Prior to training the network, both the input and output variables are scaled to a range

between -1 and 1 to enhance the training process. The data series is then split into training and

testing samples, with the same 80%-20% split as the benchmark model.

We utilize the Random Search tuning technique for the optimization of the network’s hyper-

parameters, with candidate hyperparameters presented in Table 2. The random search technique

functions by sampling randomly from the specified pool of hyperparameters. Rather than un-

dergoing exhaustive training and evaluation with each sampled set, the model is trained for a

restricted number of iterations (epochs) based on these sampled hyperparameters. Optimal hy-

perparameters are then determined according to the results of these limited iterations. Random

Search method is preferred due to its effectiveness in hyperparameter tuning, particularly in

scenarios with limited computational resources or time.

The selection range for the hyperparameters has been carefully chosen based on their potential

impact on the LSTM model. The units in the LSTM layer represent the dimensionality of the

output space, and the selection range provides the model with enough flexibility to capture

complex patterns in the data. The dropout layer helps in preventing overfitting by ignoring

3The context of an LSTM, "timesteps" refer to the sequence length, a parameter that dictates how
many steps in time we allow the model to look back while learning. This is essentially the model’s
“memory”. A longer sequence means that the model can learn from past patterns spanning a more
extended period, thus improving its capability to understand long-term dependencies.
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randomly selected neurons during training, and the activation function determines the output of

a neuron given an input. The learning rate influences how much the model changes in response

to the estimated error each time model weights are updated, and the epsilon parameter aids in

maintaining numerical stability.

As a result of the Random Search technique, the neuron specification of the input LSTM

layer is set to 30, the dropout value is adjusted to 0.4, and the activation function is determined

to be the hyperbolic tan function. To further improve model convergence during training, we use

kernel, recurrent, and bias regularizers. Regularization is a method used to avoid overfitting by

adding a penalty term to the loss function. The penalty term corresponds to large weights in the

model, forcing the model weights to be small, and therefore simpler. This enhances generalization

and model performance on unseen data. The dense layer was specified with neurons equal to

the forecasting horizon, which leads to a varying number of neurons based on the forecasting

horizon n = 1, 4, 8, 12. Changing the number of neurons of the fully-connected layer can impact

the convergence of the neural network (see Appendix. A.3).

Hyperparameters Selection range

Units LSTM layer {10, 20, 80, . . . , 10i} where i = 12

Dropout layer {0, 0.1, 0.2, 0.3, 0.4, 0.5}
Activation function {hyperbolic tan, ReLu, sigmoid, softmax}
Learning rate {0.01, 0.001, 0.0001}
epsilon {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}

Table 2: Candidates for the Hyperparameters to be tuned.

We then define a loss function and an optimization algorithm. The “mean squared error”

and “ADAM” are used as the loss function and the optimization algorithm, respectively. The

“ADAM” optimization method is chosen due to its efficient performance as a stochastic optimiza-

tion algorithm (Kingma & Ba, 2014). The hyperparameters for “ADAM” optimization algorithm

are tuned with the help of the Random Search tuning technique. This technique sets the learning

rate at 0.0001. The learning rate determines how much the model changes in response to the

estimated error each time the model weight updates. The epsilon hyperparameter, which is used

for numerical stability in the “ADAM” optimizer, is also tuned during this process. Numeri-

cal stability is crucial in preventing potential divisions by zero during the optimization process,

hence tuning epsilon contributes to the robustness and stability of the learning process.
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The model is trained using 200 epochs, where the training sample is passed through the

single network to update the weights and to develop a more precise prediction model. During

the training process, we employ an Early Stopping strategy, which monitors a designated metric

on the validation data and halts the training procedure once the performance stops improving.

Specifically, we observe the validation loss and set a patience level equal to 20 to control the

number of epochs with no improvement after which training will be stopped. The necessary

number of epochs for training the network can vary based on the characteristics and behavior of

the underlying data series.

6 Empirical Results

The main focus of this study has been an investigation into the predictive capability of LSTM

model regarding salmon market volatility. We have benchmarked these against the traditional

ARMA model, employing various error measures to critically assess the performance of each. This

section discusses the findings, emphasizing the utility of LSTM networks for volatility forecasting

in the context of the salmon market.

Table 3 presents the out-of-sample multi-step ahead volatility forecasts, evaluated using MSE,

MAE, RMSE, and MAPE. It is evident that the ARIMA model outperforms the LSTM model

across all forecasting horizons in terms of the four metrics, showing lower errors for all. Specifi-

cally, when looking at the 1-step-ahead forecasts, it is noticeable that the ARIMA model performs

better than the LSTM model in terms of all four metrics. Even though the errors have increased

for both models when examining rhe 4-steps ahead forecasts, the ARIMA model remains superior

to the LSTM. The results for the 8-steps-ahead and 12-steps-ahead forecasts also show a similar

pattern. Despite an increase in errors for both models in these longer forecasting horizons, the

ARIMA model consistently outperforms the LSTM. This indicates that ARIMA might be a bet-

ter option for forecasting short-term salmon market volatility, potentially due to its simplicity

and efficiency in situations with less complex data patterns.

To further examine these results, we analyzed the percentage changes in forecasting error

measures when comparing the LSTM model against the benchmark ARMA model. These changes

are presented in Figure 7.

Evidently, the most significant disparities between the two models are observed in 1-step
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1-step-ahead 4-steps-ahead 8-steps-ahead 12-steps-ahead

Metric ARIMA LSTM ARIMA LSTM ARIMA LSTM ARIMA LSTM

MSE 0.00029 0.00049 0.00068 0.0008 0.00065 0.00072 0.00072 0.00073
MAE 0.01275 0.018377 0.02178 0.02396 0.02126 0.02243 0.02234 0.02249
RMSE 0.01699 0.02219 0.02613 0.02821 0.02551 0.02699 0.02683 0.02698
MAPE 37.5839 49.1988 55.0841 61.2407 53.1498 56.1876 55.1837 56.1174

Table 3: Results of the out-of-sample multi-step ahead forecasts with the MSE, MAE,
RMSE, and MAPE loss functions.

ahead forecasting, where the LSTM model reports a 70% larger MSE score compared to the

ARMA model. Although the ARMA model consistently outperforms the LSTM across all fore-

cast horizons, we notice a diminishing divergence between the two models as the forecast horizon

increases. For instance, when forecasting 12-steps ahead, the percentage difference in error mea-

sures between the two models is minimal.

As the forecast horizon extends to 12 steps, the differences in MSE, MAE, and RMSE between

the two models diminish, indicating that the two models start to converge in their predictive

performance. However, the MAPE value shows the largest relative discrepancy between the

models at this horizon. This behavior could be attributed to the MAPE metric’s sensitivity to

situations where the actual observations are close to zero. Given that we’re predicting market

volatility, which inherently involves predicting changes that can be close to zero, it’s likely that

longer-term forecasts—which are likely to involve greater uncertainty and more instances of small

changes—would result in more pronounced relative differences in MAPE between the LSTM and

ARMA models.

In Figure 8, we illustrate the development of the forecast error metrics across various fore-

casting horizons for each metric separately. It is evident that the overarching trends across all

error metrics exhibit similarity. We observe a sharp surge in forecast errors when moving from

a 1-step to 4-step ahead forecast for all metrics. However, all metrics reveal a subtle decrease in

forecast errors when progressing from a 4-step to 8-step forecast horizon, only to rise again when

forecasting 12 steps ahead.

The slight dip in forecast errors for the 8-step horizon, as compared to the 4-step and 12-step
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(A) (B)

(C) (D)

Figure 7: Percentage change in error metrics when forecasting with the LSTM model
compared to the benchmark ARMA model. (A) One-step ahead forecasting; (B) Four-step
ahead forecasting; (C) Eight-step ahead forecasting; (D) Twelve-step ahead forecasting.

horizons, could be attributed to certain temporal characteristics inherent in the salmon market

volatility data. It is plausible that the dataset contains information patterns that resonate more

with an 8-step ahead forecasting cycle, possibly due to underlying economic or seasonality cycles

associated with the salmon market.

Moreover, the discrepancies between the error metrics of the ARMA and LSTM models

diminish progressively as the forecast horizon expands. When forecasting 12 steps ahead, the

differences become rather marginal. This suggests that as we forecast further into the future, the
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ability of the two models to predict salmon market volatility begins to converge. In other words,

both the traditional ARMA and the more advanced LSTM methods prove to be comparable in

their volatility forecasting performance for longer-term predictions.

(A) (B)

(C) (D)

Figure 8: Development of forecast error metrics across various forecasting horizons for
each model. (A) Mean square error (MSE); (B) Mean absolute error (MAE); (C) Root
mean square error (RMSE); (D) Mean absolute percentage error (MAPE).

To further investigate the forecasting capabilities of each model, and to shed light on the

observed drop in error measures from forecasting 4-steps ahead to 8-steps ahead, we opt to

visualize the forecasts. Figure 9 showcases the predictive performance of each model at differ-

ent forecasting horizons compared against the actual volatility measure (as represented by the

volatility proxy measure in Eq. 7).

The ARMA model evidently performs better than the LSTM in capturing the spikes in the

actual volatility series when forecasting 1-step ahead, which also corresponds to the forecasting

horizon with the most marked differences between the two models. However, as we expand

the forecasting horizon, the forecasting abilities of the two models begin to converge, and the

forecasts tend to level off when forecasting 12-steps ahead, particularly for the LSTM model.

Interestingly, both models – ARMA and LSTM – report lower error metrics for 8-step ahead

forecasts than for 4-step ahead ones (see Table 3). In Figure 9 it is evident that in the case of the

ARMA model, the 4-step ahead forecast exhibits more fluctuations, but these often run counter
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to the direction of the actual volatility. However, its 8-step ahead forecast, while appearing

flatter, more accurately mirrors the direction of the actual volatility.

For the LSTM model, the 8-step ahead forecast is even more flattened and seems to fluctuate

minimally, mostly moving around the mean. Despite its apparently reduced dynamism, this

relatively steady, mean-revolving forecast aligns better with the actual volatility series than its

4-step counterpart, which might explain the lower error metrics at this 8-step horizon.

These visualizations suggest that, despite their differences, both models’ forecasts better align

with the actual volatility when forecasting 8-steps ahead, potentially due to inherent cycles in

the salmon market data. While the ARMA model manages to capture the direction of volatility

more accurately, the LSTM model’s forecasts stay closer to the mean, providing a smoother,

albeit less volatile, estimation that still manages to lower the error metrics compared to the

4-step ahead forecasts.

(A) (B)

(C) (D)

Figure 9: Forecasts of the ARMA and LSTM model against the actual volatility (A) One-
step ahead forecasting; (B) Four-step ahead forecasting; (C) Eight-step ahead forecasting;
(D) Twelve-step ahead forecasting.

To further establish the predictive ability of each model, we applied the Diebold-Mariano

(DM) test—a statistical tool for comparing the predictive accuracy of two forecasting meth-

ods—over different horizons. The results are displayed in Table 4.

The DM test was conducted using two loss functions: the Mean Squared Error (MSE) and
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Mean Absolute Error (MAE). The DM test statistic and corresponding p-values were calculated

for each combination of loss function and horizon.

The results varied across horizons and loss functions. For a horizon of 1, neither MSE nor

MAE showed a significant difference between the two forecast models, with p-values of 0.7848

and 0.6841 respectively. This trend continued for horizon 4 with the MSE loss function, with a

p-value of 0.2167 indicating no significant difference.

However, at horizon 4 with the MAE loss function, the DM test statistic was highly signifi-

cant, with a p-value of 0.0000. This suggests that there is a significant difference in the accuracy

of the two models’ forecasts at this horizon when assessed using MAE.

The DM test results were also significant for the MSE loss function at horizons 8 and 12, with

p-values of 0.0000, again indicating a significant difference in the forecast accuracy of the two

models at these horizons. In contrast, the MAE results at these horizons were not significant.

The results of the Diebold-Mariano test emphasize the substantial influence the selection of

the loss function can have on the comparative evaluation of model predictions. The variance

in predictive accuracy between the LSTM and ARMA models can notably fluctuate or remain

consistent, depending on the chosen loss function. To ensure a more robust analysis, this study

employed both Mean Squared Error (MSE) and Mean Absolute Error (MAE) as loss functions.

These choices help incorporate the potential impacts of both squared and absolute errors on the

evaluation of our forecasting models.

Horizon Loss function DM-Test p−value

1
MSE 0.2739− 0.7848
MAE 0.4084− 0.6841

4
MSE 1.2453− 0.2167
MAE 7.9843*** 0.0000

8
MSE 5.2006*** 0.0000
MAE 0.2418− 0.8095

12
MSE 5.7280*** 0.0000
MAE 0.4810− 0.6318

Notes: *** significant at 1%; − indicates that there is no significant difference between
the forecasts generated by the two models.

Table 4: Results of the Diebold-Mariano (DM) test comparing the forecasting accuracy
of ARIMA and LSTM models for salmon spot prices using MSE and MAE loss functions.
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To conclude our analysis, we examine whether a significant difference exists between the

volatility predicted by the ARMA model and the LSTM model, compared to the actual volatility

values. A method similar to that used by (Fritz & Berger, 2015) is adopted here, involving the

use of a paired sample t-test. However, prior to implementing this test, we must ensure that the

forecasts produced by each model across all forecasting horizons are normally distributed. To

verify this, we utilise both the Shapiro-Wilk test and QQ-plots (see Appendix A.4 and A.5).

Our investigations indicate that the forecasts predominantly follow a normal distribution,

with the exception of the 1-step ahead forecast generated by the ARMA model. Consequently,

for this particular case, we resort to employing the Wilcoxon signed-rank test—a non-parametric

test that doesn’t necessitate the forecasts to be normally distributed. This test proves suitable

for the ARMA 1-step ahead forecasts as it caters specifically to non-normally distributed data.

The outcomes of these statistical tests are illustrated in Table 5. A clear observation from

these results is that both the ARMA and LSTM models exhibit a statistically significant differ-

ence from the actual volatility values across all forecast horizons, as evidenced by the p-values

below the standard thresholds of 0.1, 0.05, and 0.01.

However, the extent of the difference varies with the forecast horizon and between the two

models. For instance, the ARMA model shows a relatively larger t-statistic for the 1-step ahead

forecast, suggesting a greater discrepancy between its predictions and the actual values. On the

contrary, this difference narrows down as we extend the forecasting horizon, with the LSTM

model showing slightly better alignment with the actual values, especially at the 12-steps ahead

forecast.

The results underscore the complex nature of volatility forecasting and the nuanced perfor-

mances of the ARMA and LSTM models across different forecast horizons.

7 Concluding remarks

An accurate multi-step ahead salmon market volatility forecasting model holds considerable value

for various participants in the salmon market. Despite the existence of hedging opportunities,

these can often be limited due to the lack of speculative traders. Consequently, the implemen-

tation of a predictive model for salmon market volatility, which can reliably anticipate market

fluctuations, could be a significant asset for all participants in the market.
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ARIMA LSTM

Horizon t-statistic p-value t-statistic p-value

1 1242*a 0.0698a 1.9398* 0.056
4 2.5251** 0.0135 2.0131*** 0.0475
8 2.7583*** 0.0072 2.6522*** 0.0097
12 2.8415*** 0.0057 2.6847*** 0.0088
Notes: ***, **, and * denote significance at 1%, 5%, and 10% significance level, respec-
tively; The null hypothesis for the tests is that there is no significant difference between
the forecasts produced by the underlying model and the actual volatility values; a The
Wilcoxon signed-rank test is applied for the forecasts generated by the ARMA model
when forecasting 1-step ahead as they do not follow a normal distribution.

Table 5: Paired two-tailed t-test and Wilcoxon signed-rank test results for ARIMA and
LSTM models at different forecasting horizons.

To date, there has been no exploration of the use of deep-learning techniques for predicting

salmon market volatility. Recognizing this gap, this study seeks to examine the application

of such advanced methodologies in this domain, hoping to bring about improved forecasting

performance and valuable insights for stakeholders. Therefore, we explored and compared the

forecasting capabilities of two time-series prediction models, ARMA and LSTM, with respect to

predicting salmon market volatility. The analysis presented a clear, albeit complex, picture of

their comparative effectiveness across different forecast horizons.

Our results indicate that the ARMA model has a slight edge over the LSTM model in terms of

capturing the spikes in volatility at a 1-step ahead forecasting horizon. However, as the forecast

horizon expands, the performance differences between the two models begin to narrow, and the

forecasts from both models tend to level off when forecasting 12-steps ahead.

The results indicated a reduction in error measures when transitioning from a 4-step to

an 8-step ahead forecast for both models. This behavior, further illustrated by visualizing the

forecast results, suggested a potential alignment between the 8-step forecasting cycle and inherent

patterns present in the salmon market volatility data. It’s plausible that this may be attributed

to the seasonal patterns reflected within the out-of-sample series over a mid-term future period.

Although our analysis has demonstrated that seasonally adjusting the salmon spot price series

is not required for the purpose of this study, these findings emphasize the potential significance

of seasonality when conducting mid-term forecasting studies.

To establish whether the forecasts generated by the two models were significantly diffifenet

we employed the Diebold-Mariano (DM) test. Both Mean Squared Error (MSE) and Mean
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Absolute Error (MAE) loss functions were employed to present a comprehensive understanding

of the predictive accuracy of both models. The results indicated discrepancies between the two

forecasts for all horizons except the 1-step ahead forecast. As these results varied based on the

underlying error metrics, we argue that the choice of loss function plays a significant role in the

comparative evaluation of model predictions

Last, the paired t−test and Wilcoxon signed-rank test results emphasized the nuanced perfor-

mances of the models across different forecast horizons. It was found that both models exhibited

a statistically significant difference from the actual volatility values across all forecast horizons,

indicating the intricate nature of volatility forecasting.

This study highlights the importance of using a range of statistical methods and taking a

comprehensive approach in analyzing and comparing forecast models. While both ARMA and

LSTM models demonstrate their unique strengths, their efficacy is significantly influenced by the

characteristics of the data and the chosen forecast horizon. Moreover, despite the ability of the

LSTM to model complex nonlinear relationships, the ARMA model proved superior in predicting

salmon market volatility. Thus, we suggest that the salmon market may be more linear than

expected, with negligible or even no non-linear volatility patterns for an LSTM model to exploit.

Future research could build on this study by exploring additional factors that might impact

the accuracy of these models, such as the influence of different market dynamics or even the

impact of macroeconomic variables. Further studies could also consider the implementation of

hybrid models, combining the strengths of ARMA and LSTM, to improve forecasting accuracy.

Moreover, given that our study period concludes before the COVID-19 pandemic, it would be

interesting to test this framework with adequate post-COVID data.

Our findings contribute to the ongoing dialogue around the best practices in volatility fore-

casting, providing valuable insights for stakeholders in the salmon market. Furthermore, the

framework of this study could be adapted for use in other commodity markets where accurate

volatility forecasting is also critical.
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A Appendix

Figure A.1: Seasonal Component of the Salmon Spot Price Series.

Figure A.2: Autocorrelation Function (ACF) for the volatility proxy series from 2007:W27
to 2019:W51.

33



34

(A)

(B)

(C)

(D)

Figure A.3: Curves of the Mean Squared Error (MSE) loss function during LSTM training:
(A) Loss curves for forecasting 1-step-ahead; (B) Loss curves for forecasting 4-steps-ahead;
(C) Loss curves for forecasting 8-steps-ahead; (D) Loss curves for forecasting 12-steps-
ahead.



(A)

(B)

(C)

(D)

Figure A.4: QQ-Plots for normality test of ARMA model forecasts. (A) 1-step-ahead;
(B) 4-steps-ahead; (C) 8-steps-ahead; (D) 12-steps-ahead.
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(D)

Figure A.5: QQ-Plots for normality test of LSTM model forecasts. (A) 1-step-ahead; (B)
4-steps-ahead; (C) 8-steps-ahead; (D) 12-steps-ahead.
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Abstract

This research conducts a comparative analysis between the traditional Vector
Autoregression (VAR) model and a hybrid VAR-Long Short-Term Memory (VAR-
LSTM) model for salmon spot price prediction. The study employs LASSO for
dimensionality reduction and performs residual diagnostics to ensure model robust-
ness. VAR and hybrid models are estimated based on different futures contract
maturities and evaluated using various window methods. Predictive performance is
assessed through error metrics. Contrary to expectations, the VAR and VAR-LSTM
models show near-identical forecasting capabilities, suggesting a lack of exploitable
non-linear patterns in the salmon spot price series. This indicates the efficiency of
the salmon market, with price trends quickly reflected by investors. Further com-
parison of the VAR model with a random walk with a drift model confirms the VAR
model’s superior performance across different forecasting horizons.
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1 Introduction

Salmon price prediction is important to various market participants, such as farmers,

processors, traders, and hedgers. Specifically, farmers control salmon production, aiming

to harvest when profitability is at its peak (Asche, 2008). A high salmon spot price en-

courages farmers to harvest to maximize their profits. Yet, the market’s volatility makes

it challenging to plan the production process early enough to avoid price fluctuations.

Beyond short-term profitability, farmers have a vested interest in the technological de-

velopment of the salmon industry, as it bolsters industry growth. Consequently, they

often set price quotas to maximize sales performance and raise funds for technological

innovation and investment.

The salmon market is highly volatile (Bloznelis, 2016; Guttormsen, 1999; Oglend,

2013; Oglend & Sikveland, 2008). This volatility affects not only farmers but also other

market participants. For instance, processors plan their operations based on the expected

input cost level, indicated by the salmon spot prices. Without control over production,

their operations are directly influenced by fluctuations in salmon spot prices. Traders aim

to minimize their buying costs while maintaining profitability, but high market volatility

can significantly harm their operations. Other participants, such as hedgers, also depend

on salmon price predictions, especially since hedging opportunities in the salmon market

are thin due to a lack of speculative traders (Andersen & de Lange, 2021; Asche et al.,

2016b; Ewald et al., 2022).

Considering the challenges posed by the market’s high volatility, a major concern for

aquaculture economists, a number of studies provide insights into its causes and behavior

(Asche et al., 2015; Asche et al., 2019; Bloznelis, 2016; Dahl & Oglend, 2014; Dahl &

Jonsson, 2018; Oglend, 2013; Oglend & Sikveland, 2008). These studies shed light on how

farmers’ harvesting and investment decisions can affect salmon market volatility which

in turn can impact the operations of other market participants. Specifically, Bloznelis

(2018b) and Oglend (2013), found that salmon price volatility has doubled since the

launch of Fish Pool, a futures and options exchange of farmed salmon, and since then

it remains persistently high. Many studies analyze the efficacy and role of the salmon
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futures market (Ankamah-Yeboah et al., 2017; Ewald et al., 2017; Larsen & Asche, 2011;

Misund & Asche, 2016; Solibakke, 2012) and specifically its relationship with the spot

market (Asche et al., 2016a, 2016b; Chen & Scholtens, 2019). Many raise the concern

that this market suffers from low liquidity and infrequent trades (Andersen & de Lange,

2021; Bloznelis, 2018a; Dahl et al., 2021; Ewald et al., 2022), but a study showed that

the majority of the salmon price variation is common, justifying the representation of a

salmon price index (Oglend & Straume, 2019).

Given the volatility in the salmon market presents significant challenges to various

participants, salmon futures contracts unfortunately cannot serve as a reliable hedging

mechanism to reduce their risk exposure. However, so far there has been a limited num-

ber of studies attempting to predict salmon prices. Specifically, Guttormsen (1999) argued

that if prices are predicted within reasonable confidence bounds, salmon volatility would

be reduced. In a more recent study, Bloznelis (2018b) found that using a simple trading

strategy based on price forecasts can increase the net profit of a salmon farmer by approx-

imately 7%. To come to these conclusions, Guttormsen (1999) used standard econometric

models for forecasting salmon prices and found that the Vector Autoregressive (VAR)

model performed best amongst its peers based on forecasting accuracy measures. Bloznelis

(2018b) on the other hand, used sixteen alternative forecasting methods and found that

k−nearest neighbours and vector error correction model are the best performing ones.

While these models have brought useful insights, there is a gap in research in the

integration of traditional statistical methods with advanced deep learning techniques for

salmon price prediction. To address this gap, this study develops a hybrid architecture

model that combines the forecasting capabilities of a traditional multivariate forecasting

model, the Vector Autoregressive (VAR), with a deep learning technique known as Long

Short-Term Memory (LSTM). The idea behind incorporating a recurrent neural network

(RNN) such as the LSTM, is that traditional statistical methods such as time series

forecasting models (e.g., VAR) are not able to detect any potential complexities and

non-linearity in financial data series. A number of studies investigated the forecasting

performance of neural networks in forecasting commodity prices (Ramyar & Kianfar, 2019;
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RL & Mishra, 2021; Xu & Zhang, 2022), with some using hybrid methods (Kristjanpoller

& Minutolo, 2015, 2016; Parot et al., 2019) and found that they have significant forecasting

accuracy. Therefore, we decided to further explore their performance in predicting salmon

spot prices for various forecasting horizons ranging from 1-step ahead to 52-steps ahead

(1 year).

Employing a hybrid architecture technique can be beneficial when forecasting longer

horizons as VAR models are found to perform better at short-term forecasting horizons

(Baumeister & Kilian, 2012, 2015). Deep learning techniques such as LSTM are able to

deal with long temporal dependencies (Hochreiter & Schmidhuber, 1997) and therefore

can recognize long term patterns that emerged in the past. Moreover, neural networks

use supervised learning which is an input-to-output mechanism that takes a set of input

variables and tries to match them to a given output. In other words, the network knows

the output and after a number of training iterations it is trying to match this output as

close as possible. Therefore, employing the LSTM comes with a number of advantages as

it is able to recognize potential nonlinear and complex patterns in the data and can also

be used for longer-term forecasting.

This research study aims to fill a significant gap in the literature by investigating the

potential superiority of a hybrid forecasting approach, integrating traditional econometric

models with deep-learning techniques, for predicting salmon prices. Given the controversy

regarding the efficacy of salmon futures contracts, we use the salmon spot price series as

the predictive variable. The forecasting ability of the VAR-LSTM is assessed against the

traditional VAR model. The forecasting performance of each model is assessed under

different forecasting horizons. Once the forecasts are generated, their predicting accuracy

is evaluated using different forecast error measures. The model with the lowest forecast

error measures is deemed as the best performing one. To assess the robustness of the

results, we compare the expected value of the forecast losses generated by each model using

the Diebold-Mariano (DM) test. In essence, this study aims to determine whether the

integration of traditional forecasting models with deep-learning methods can significantly

improve the prediction of salmon spot prices for various market participants.
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The remaining sections are organized as follows: Section 2 discusses the specifications

of the underlying predictive and predictor variables, their seasonality adjustments, and

summary statistics. Section 3 describes the forecasting techniques used in this study, as

well as the forecast error metrics and tests employed to evaluate their forecasting ability.

Section 4 presents the results. Finally, Section 5 discusses the implications of the findings.

2 Data and Statistics

2.1 Data

This study utilizes weekly salmon spot prices as the predictive variable. These prices are

procured from the NASDAQ Salmon Index1, covering the period from the first week of

2013 up to the fifty-third week of 2020 (2013:W1 – 2020:W53).

Additionally, we incorporate data on salmon futures contract prices, sourced from the

Fish Pool website2. Fish Pool offers daily price quotes on salmon forward prices with

monthly maturities extending up to 60 months. To align these prices with the spot price

series, we converted them into a weekly format by taking the final observation each week.

We focused on contracts maturing after intervals of one week, one month, six months, and

twelve months ahead, reflecting our interest in predicting prices at these specific horizons.

In the case of front-month futures, we employ the contract whose price settlement

month aligns with the month of issue. However, if a contract is issued during the last

week of its maturity month, we shift our focus to the contract set to expire in the following

month. For instance, for a forward price issued on the 19th of June 2015, we would consider

the price that expires in June of 2015. On the other hand, if a futures contract is issued

on the 26th of June 2015, we choose the contract that is due to expire in July 2015. This

methodology extends to the six-month and twelve-month contracts as well. The reasoning

behind this approach is because the price for the contract that expires in the same month

as the issue date does not carry meaningful predictive information during the last week

of that month. By selecting the next month’s contract, we can ensure the inclusion of
1https://salmonprice.nasdaqomxtrader.com
2www.fishpool.eu/price-information/forward-prices-3/
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relevant and informative futures contract data in our price forecast analysis for salmon.

Although futures prices are often preferred when forecasting commodity prices (Wang

& Li, 2018; Xu & Zhang, 2022), their utility in the salmon market is controversial (An-

dersen & de Lange, 2021; Ewald et al., 2022). Previous studies suggest that the salmon

futures market remains immature and has not yet reached the stage where forward prices

can predict spot prices (Asche et al., 2016b). Additionally, Dahl et al. (2021) found that

stock prices from salmon farming firms reflect salmon price information earlier than the

Fish Pool Index (FPI) due to bias in the salmon futures pricing structure, which relies

solely on the FPI. Despite these challenges, futures prices are still included as they of-

fer a market perspective on expected price movements, adding a valuable dimension to

our forecast. Figure 1 graphically represents the evolution of prices for the spot price,

front-month, six-month, and twelve-month futures contract series.

In addition to futures contract prices, there are other factors that contain predictive

information for the development of the salmon spot price, which are also important to

consider in this study. Weekly data on the export volume is available from Statistics

Norway (SSB)3. Despite the availability of data regarding both fresh and frozen salmon

volumes on the SSB website, we focused solely on fresh salmon volumes, given their

substantially larger quantity compared to frozen salmon volumes. Figure 2 presents the

development of the salmon export volume.

Another important factor to incorporate is soybean prices. Soy has been used to

replace fish meal and fish oil for feeding farmed salmon (Egerton et al., 2020). Therefore,

weekly soybean prices were obtained from Refinitiv Eikon4 and transformed into NOK.

The development of the soybean price series is presented in Figure 3. Incorporating

soybean prices in our analysis is particularly relevant for this analysis as the use of soy

in salmon feed has become more prevalent in recent years, and any changes in soy prices

could affect the cost of production for salmon farmers.

Straume (2014) found that the currency exchange rate can have an impact on the sup-

ply and demand relationship of the salmon spot market. As Europe is the primary market
3www.ssb.no/en/statbank/
4Chicago Board of Trade (CBoT) Soybeans Composite Commodity Future is obtained from Refinitiv.
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(A) (B)

(C) (D)

Figure 1: (A): Development in salmon spot price; (B): Front-month futures contracts
price; (C): Six-month futures contracts price; (D): Twelve-month futures contracts price.
The figure suggests that all the underlying series are non-stationary in levels.

for Norwegian salmon, information regarding the EUR/NOK exchange rate is considered

an important predictive factor of the salmon spot price. We obtained the EUR/NOK

exchange rate data series from Norges Bank (Norwegian Central Bank) website5 for the

same period from 2013:W1 until 2020:W53. However, the exchange rates were not avail-

able on a weekly basis. Therefore, we transformed the series by taking the last observation

of each week. Figure 4 illustrates the development of the EUR/NOK exchange rate se-

ries. The inclusion of the EUR/NOK exchange rate in our analysis allows us to identify

how changes in the exchange rate affect the competitiveness of Norwegian salmon in the
5www.norges-bank.no/en/topics/Statistics/exchange_rates/
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international market.

Lastly, the analysis includes the stock prices of Norwegian salmon farming compa-

nies. Dahl et al. (2021) found that stock prices of these companies reflect information on

salmon prices earlier than the Fish Pool Index. Therefore, we collected the weekly closing

prices of the Norwegian salmon farming companies with the highest market capitaliza-

tion (Marine Harvest, 2020): Marine Harvest (MOWI), Grieg Seafood (GSFG), Lerøy

Seafood (LSG), and SalMar (SALM) from Refinitiv. To incorporate the information from

these stock prices into our analysis, we created a Share Price Index (SPI) that corre-

sponds to an equally weighted portfolio of the four shares. We then normalized each price

SPIt; (t = 0, 1, . . . , T ) by dividing it with the first price of the series SPI0 to show the

growth rate of these shared prices. The choice to create a share price index is because it

is less sensitive to company-specific news and can reflect the development of the salmon

spot price better than the individual share prices. The SPI series is presented in Figure

5. By including the stock prices of salmon farming companies in our analysis, we can

determine how changes in these companies’ performance affect salmon prices.

2.2 Seasonal Adjustment

As a result of factors related to supply and demand a key characteristic of salmon pro-

duction is seasonality. Seasonality in supply does not match the seasonality in demand

and that generates seasonal patterns in salmon price and production volume. Modelling

seasonality when having weekly time series is complicated. In the existing literature,

the most common technique is the Fourier series; that is, sums of trigonometric func-

tions (Bloznelis, 2016, 2018b; Oglend, 2013). Here, we follow a technique introduced by

Hyndman and Athanasopoulos (2018), and also applied by Bloznelis (2018b), that uses

a regression with autoregressive moving average (ARMA) errors, having Fourier terms

as regressors. The number of Fourier terms could be up to 26 pairs for weekly data.

However, the number of Fourier terms for the fitted model was selected by minimising

the Akaike information criterion (AIC) and choosing between none to 26 pairs, while the

same applies for selecting the order of the ARIMA model (Hyndman & Athanasopoulos,
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Figure 2: Salmon export volume in metric tons. The figure depicts strong seasonality
patterns and suggests stationarity.

2018)6.

The salmon spot price and the export volume display large movements around Christ-

mas and Easter. To incorporate the possibility of deterministic seasonality occurring,

we add four dummy variables to specify the weeks before and after Christmas (including

Christmas week) and four more to specify the same weeks before and after Easter (includ-

ing Easter week), as it was suggested by Bloznelis (2018b). The deterministic seasonality

is expressed by the means of these eight seasonal dummy variables. The combination of

the Fourier terms and these eight seasonal dummy variables exhibit the seasonal compo-

nent, which is subtracted from the data before proceeding. The eight seasonal dummy
6The fitted model has 23 pairs of Fourier terms and can be written as:∑23
j=1[αj sin (

2πjt
r ) + βj cos (

2πjt
r )] + ηt where r = 365.25

7 = 52.18 seasonal cycle, ηt is an ARIMA(p, d, q)
process (this depends on the underlying data series). There are 48 parameters to capture the seasonality
according to the AIC selection.
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Figure 3: Soybeans (CBoT) futures price series in NOK.

variables are not incorporated when seasonally adjusting the front-month, six-month, and

twelve-month futures prices variables because the underlying of a future contract is the

average FPI recorded over a month and not a week.

Seasonality in soybeans is observed from May until August when the soybeans are

ready for harvesting. It is evident from Fig.3 that the prices increase around May, and

they decline around July-August. The same technique as for the spot price and the

export volume is also employed for obtaining the soybeans seasonally adjusted series. To

incorporate seasonality, 17 dummy variables are constructed to specify the weeks from

May until August7. A combination of the Fourier terms and the 17 seasonal dummy

variables form the seasonal component. This is then deducted from the original series to

construct the seasonally-adjusted version.
7If August had 5 observations, the last one was deleted.
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Figure 4: EUR/NOK currency exchange rate.
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Figure 5: Share Price Index (SPI). The figure presents the shared prices of four salmon
producing companies publicly trading on the Oslo stock exchange (OSE). The prices are
normalized and the figure presents the exponential of the logarithmic series.
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(A) (B)

(C) (D)

(E) (F)

Figure 8: Seasonally adjusted versions for: spot price (A); front-month futures contracts
price (B); six-month futures contracts price (C); twelve-month futures contracts price
(D); export volume (E); soybeans (F). The figure suggests that all the underlying series
but export volume are non-stationary. The export volume seasonally adjusted series is
depicted as a random walk.
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Therefore, seasonally-adjusted versions of the spot price, front-month, six-month, and

twelve-month futures price, export volume, and soybeans series are employed in the re-

mainder of this study instead of the original series. Figure 8 presents the seasonally

adjusted version of these series.

2.3 Descriptive Statistics

Statistics such as mean, standard deviation, skewness, and kurtosis can be found in Table

1. Results from the Shapiro-Wilk normality test and the augmented Dickey-Fuller (ADF)

test are also presents in Table 1. The results indicate that all the series are non-normally

distributed. The skewness and excess kurtosis indicators show that the distributions of the

spot price, futures contracts price (front-month, six-month, and twelve-month) series, and

SPI series have thinner tails than a normal distribution with prices close to the minimum

price appearing more often than those close to the maximum price. The soybeans price

series is the furthest from a normal distribution indicating that higher prices appear more

often than lower prices. The ADF test is applied to examine the presence of a single

unit root in each of the series (Dickey & Fuller, 1979). All but the seasonally adjusted

export volume series indicate the presence of a unit root. In other words, except from the

export volume series, the remaining ones are likely non-stationary and therefore should

be transformed into stationary. A logarithmic transformation is applied in all the series

including the export volume. Even though the seasonally adjusted export volume does

not contain a unit root, for applying the VAR, two versions of the variable are considered;

the logarithmic transformation and a scaled transformation where each observation is

divided by 100000.

The logarithmic returns of the predictive variable are centered at zero with standard

deviation 6%. The logarithmic transformation is aimed so that the skewness and the

kurtosis indicators come closer to zero and any potential multiplicative seasonality and

shocks turn into additive ones. The Shapiro-Wilk normality test suggests that the season-

ally adjusted logarithmic series of the spot price is normally distributed. The skewness

indicator is above zero implying that large positive returns are likely to be more common
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Mean Min Max SD Skewness Kurtosis SW test ADF

Spot price∗ 52.06 24.52 76.08 11.31 -0.017 2.109 0.982*** -2.84

Front-month
futures∗

52.03 26.5 74.85 11.05 -0.101 1.996 0.970*** -2.31

Six-month
futures∗

52.24 28.38 69.78 10.88 -0.33 1.67 0.902*** -1.94

Twelve-month
futures∗

51.02 29.75 67.13 10.7 -0.47 1.7 0.878*** -1.86

EVa∗ 16671 13155 20684 1491 0.273 2.654 0.99*** -3.07**

EUR/NOK 9.243 7.3 12.12 0.89 0.046 2.932 0.98*** -1.91

Soybean
price∗

80.50 63.4 111.35 7.33 1.113 5.6 0.93*** -2.29

SPIb 3.068 1 4.84 1.06 -0.339 1.918 0.934*** -1.93

Note: SD represents the standard deviation, Kurtosis the excess kurtosis, and SW provides the t-statistics
from the Sahpiro-Wilk test of normality. Notations *** and ** denote statistical significance at a 1% and
5% significance level, respectively.

aExport volume; bShare Price Index.

∗Statistics are applied on the seasonally adjusted version.

Table 1: Descriptive statistics for the predictor and predictive variables.

than large negative returns, or similar. The largest negative return is 18% and the largest

positive return is 19%, indicating no significant difference between the two. However, the

excess kurtosis indicator of the spot logarithmic returns is larger than zero showing signs

of leptokurtosis, in other words that returns are more densely concentrated in a narrow

interval around the mean and more spread out in tails as compared to the normal distri-

bution. Since it is relatively close to zero, the leptokurtosis of the returns distribution is

not significant and therefore the normality assumption is valid. The ADF test indicates

that none of the underlying data series contains a unit root and hence all factors are likely

to be stationary.
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Mean Min Max SD Skewness Kurtosis SW test ADF

Spot price 0.001 -0.18 0.19 0.06 0.117 3.389 0.994 -18.42***

Front-month
futures price

0.001 -0.16 0.14 0.043 -0.129 3.965 0.99*** -9.27***

Six-month fu-
tures price

0.002 -0.1 0.12 0.02 0.181 6.355 0.969*** -8.48***

Twelve-month
futures price

0.002 -0.15 0.08 0.02 -0.839 11.239 0.909*** -23.87***

EVa 0.0008 -0.31 0.24 0.067 -0.124 5.119 0.977*** -14.95***

EVb 0.167 0.13 0.21 0.015 0.275 2.660 0.99*** -3.07**

EUR/NOK 0.0009 -0.04 0.09 0.01 1.26 10.7 0.926*** -20.46***

Soybean price 0.0009 -0.13 0.19 0.031 -0.02 7.547 0.951*** -22.23***

SPI 0.003 -0.67 0.21 0.05 -5.963 83.514 0.689*** -21.34***

Note: SD represents the standard deviation, Kurtosis the excess kurtosis, and SW provides the t-statistics
from the Shapiro-Wilk test of normality. Notations *** and ** denote statistical significance at a 1% and
5% significance level, respectively.

aExport volume based on the logarithmic transformation; bExport volume based on the re-scaling trans-
formation.

Table 2: Descriptive statistics for the logarithmic transformed series.

2.4 Variable Selection Using LASSO

To make the forecasts more accurate and reduce dimensionality we use a variable selection

method, the Least Absolute Shrinkage and Selection Operator (LASSO) regression (Tib-

shirani, 1996). LASSO is a shrinkage and variable selection method for linear regression

models, which minimizes the usual sum of squared errors with a bound on the sum of the

absolute values of the coefficients (Tibshirani, 1996).

The objective function of LASSO can be formally defined as:

min
β

{
1

2n
∥y −Xβ∥22 + λ∥β∥1

}
(1)

where ∥y − Xβ∥22 is the residual sum of squares, ∥β∥1 is the L1 norm of the parameter

vector, and λ ≥ 0 is a tuning parameter controlling the amount of shrinkage.

The distinctiveness of LASSO lies in its ability to shrink some of the coefficients to

16



zero, thereby performing variable selection. This characteristic is especially beneficial in

our context, as our objective is to generate precise forecasts, and only a subset of the

predictors contributes significantly to the prediction outcome (Tibshirani, 1996).

To implement LASSO, we initially conduct a Grid Search technique for hyperparam-

eter tuning to determine the most suitable value for the regularization parameter, λ, via

cross-validation. This search is performed over a logarithmically spaced grid of values

ranging from 10−5 to 101. Once the optimal λ value is identified, we then fit a LASSO

model using this λ value and select the features for which the coefficients are not shrunk

to zero. These selected features are then used as input for the subsequent VAR and LSTM

models. Furthermore, a crucial step before feeding these selected variables into the mod-

els is their normalization. This process ensures all variable values are transformed to lie

within a 0 to 1 range, providing consistency and preventing any influence from variable

magnitudes on the models’ learning process.

In our research, the LASSO method is employed before the VAR estimation. Through

this process, we ensure that our model only includes the most relevant predictors, reducing

dimensionality, improving interpretability, and potentially enhancing the the robustness

of VAR predictions.

3 Forecasting Methods and Accuracy

3.1 Vector Autoregressive (VAR)

Vector Autoregressive (VAR) model is a popular multivariate time series model. It models

linear dependencies among multiple features that evolve in time. A reduced form of the

VAR model of order p and Gaussian error, is denoted as follows:

yt = ν + A1yt−1 + ...+ Apyt−p + ϵt, t = 1, .., T (2)

where yt is a n × 1 vector of estimated endogenous variables; ν is also a n × 1 vector of

intercepts; Ai (i = 1, ..., p) are n × n matrices denoting the model’s coefficients of each

17



endogenous variable; ϵt is a n × 1 column vector that represents the error terms of each

endogenous variable; and T is the length of the time series; p determines the number of

lags of the model, i.e., the degree on which the data at time t is dependent on the data at

time t−p. The distribution of the error term ϵt series is Gaussian, without autocorrelation,

zero mean and constant variance.

Lag order selection is key when employing the VAR model. Selecting the number of

lag orders is not straightforward for the VAR model. The total number of parameters

in a VAR(p) model is n + n2p + n(n + 1)/2; where n is the intercepts vector, n2p are

the coefficients of the lagged independent variables, and n(n+1)/2 are the variances and

covariances of the errors. In other words, the total number of parameters p in a VAR

increases with the square of the VAR order. Therefore, zero restrictions on the parameter

matrices may be desirable. We use the model selection criteria method to choose the

optimal VAR order, and specifically the Akaike’s information criterion (Akaike, 1974).

The optimal VAR order is selected such that the AIC criterion is minimized over the

possible orders m = 0, . . . , pmax. We choose pmax = 15 so that the optimal parameter is

in the set of possibilities.

Given a sample size T , y1, . . . , yT , and p presample vectors y−p+1, . . . , y0, the param-

eters of the VAR can be estimated efficiently using the least squares (LS) estimator. If

no restrictions are imposed on the parameters, then the OLS estimator is identical to

the generalized least squares (GLS) estimator. For a normally distributed process yt with

ϵt ∼ N (0,
∑

ϵ), the LS estimator is also identical to the maximum likelihood (ML) estima-

tor. Since we assume normality of the error terms and we also find that the input salmon

price series is normally distributed (see Section 2.3), we employ the OLS to estimate each

equation of the VAR separately.

Once we select the optimal parameter and estimate the VAR model we test for residual

autocorrelation and normality. Depending on the optimal VAR parameter either the

Breusch-Godfrey-LM test or the Portmanteau test is employed. The Breusch-Godfrey-LM

test is more suitable for low order autocorrelation and it examines whether the coefficient

matrices in a VAR are equal to zero. The Portmanteau test is applied primarily to
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test for high order autocorrelation and it tests whether all residual autocovariances are

zero, E
(
ϵtϵ

′
t−1

)
= 0 (i = 1, 2, ...). For the purpose of this study it is assumed that the

Portmanteau test is best applied on a VAR with order 5 and higher. Next, to test for

normality of the residual series the Shapiro-Wilk test is employed. Considering that we

are interested in examining whether a hybrid architecture that combines a standard VAR

model with a neural network generates better forecasting results than a standard VAR

alone, we do not test for residuals conditional heteroscedasticity. We assume that any

such features will be captured by the neural network.

Once we estimate the VAR(p̂) and perform residuals diagnostics we use the yt series

generated by the process to forecast long-term salmon prices. The conditional expectation

of yT+h given yt, t ≤ T , is:

yT+h|T = E (yT+h|yT , yT−1, . . . ) = ν + A1yT+h−1|T + · · ·+ ApyT+h−p|T , (3)

where yT+j|T = yT+j for j ≤ 0. Considering that yt with ϵt ∼ N (0,
∑

ϵ), the forecast

errors are also normal, yT+h − yT+h|T ∼ N
(
0,
∑

y(h)
)
.

3.2 Long Short-term Memory (LSTM)

LSTM is an advanced type of Recurrent Neural Network (RNN) able to carry out infor-

mation for longer periods (Hochreiter & Schmidhuber, 1997). In combination with an

appropriate gradient-based algorithm, the LSTM uses a memory cell and gates to store

information for longer periods. Gers et al. (2000) specify that the cell state (Ct) represents

the ‘memory’ feature of the network. The gates are mechanisms that filter the informa-

tion passing through the cell state using activation functions. There are three gates: the

forget gate (ft), the input gate (it), and the output gate (ot). The three gates (ft, it, ot),

the cell state (ct), and the hidden state (ht) of the LSTM layer are described using the
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following equations:

ft = σ
[
Wfht−1 + Ufxt + bf

]
, (4)

it = σ
[
Wiht−1 + Uixt + bi

]
, (5)

C̃t = tanh
[
Wcht−1 + Ucxt + bc

]
, (6)

Ct = ftCt−1 + itC̃t, (7)

ot = σ
[
Woht−1 + Uoxt + bo

]
, (8)

ht = ot tanh[Ct], (9)

where ht−1 is the hidden state from period t− 1, xt the input from period t, and C̃t is a

vector of values that determines how much ‘new’ information the cell state should receive.

σ(·) and tanh(·) denote the sigmoid and hyperbolic tan activation functions, respectively.

W is a weight matrix associated with the hidden state, U is a weight matrix associated

with the current input, and b is the bias term.

Figure 9: Long Short-term Memory (LSTM) neuron inspired by Gers and Schmidhuber
(2000)

Fig.9 illustrates the structure of a hidden LSTM layer. First, the forget gate (ft),
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takes as inputs the hidden state from the previous period (ht−1), and the input from the

current period (xt), passes them via a sigmoid function that returns values between 0

and 1, where 0 means that “nothing passes through” and 1 means that “everything passes

through” to the cell state. The output from the forget gate is described by Eq.4. The

input gate (it), has two parts. The first part is the same as for the forget gate, and the

output is denoted in Eq.5. The second part of the input gate passes the same inputs via

a hyperbolic tan function which returns values between −1 and 1, and creates a vector of

‘new’ information (C̃t), as in Eq.6. These two outputs from Eq.5 and 6 are added on the

product of the forget gate’s output (ft) with the information carried from the previous cell

state (Ct−1) to calculate the current period’s cell state (Ct) as shown in Eq.7. The scalar

multiplication is denoted as × and the addition is denoted as + (see Fig9). Last, the

output gate (ot) takes the same inputs as the forget and the input gate and outputs Eq.8.

In the meantime, the cell state (Ct) passes via a hyperbolic tan function which then is

multiplied with the output from Eq.8 to separate necessary from unnecessary information

and create the ‘new’ hidden state (ht) which is carried on to the next period.

3.3 Hybrid Model: VAR-LSTM

VAR models are known to perform well on linear time-series data. Even though finan-

cial time-series data is rarely, perhaps never linear, VAR models are still widely used in

financial time-series forecasting. Specifically, in the salmon price forecasting field, VAR

models were employed by Guttormsen (1999) and Bloznelis (2018b). While Guttormsen

(1999) found VAR to outperform other traditional forecasting models based on error mea-

sures, Bloznelis (2018b) found that the VAR performed poorly compared to a number of

different models.

As discussed in Section 3.1, the residuals of the VAR process are linearly indepen-

dent. Even though residual autocorrelation tests such as the Breusch-Godfrey-LM test

are able to capture linear relationships, there can still be non-linear dependencies present.

However, there are no general diagnostic tests for non-linear autocorrelation relationships.

Therefore, to incorporate any non-linearity features of the residuals, we employ an inte-
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grated model architecture that combines a VAR model with a deep learning method, the

Long Short-term Memory (LSTM). Modelling the residuals of a linear model using a neu-

ral network increases the possibility of capturing non-linear relationships in the residuals,

improve forecasting performance, and produce more reliable results.

We consider that the spot logarithmic return series constitutes of two components, a

linear and a non-linear one as follows:

y1,t = L1,t +N1,t, (10)

where L1,t denotes the linear component and N1,t denotes the non-linear component. The

linear component is estimated using the VAR model. We retrieve the residuals from the

VAR estimation and test for linear dependencies. Based on our tests, we assume that any

remaining structure in the residuals can be attributed to non-linear relationships Let ϵ̂1,t

denote the residual at time t from the VAR model:

ϵ̂1,t = y1,t − L̂1,t, (11)

where L̂1,t is the forecast value for time t generated from a VAR process.

Next, we model the residuals using an LSTM model, with k input nodes, the LSTM

model configuration will be:

N̂1,t = f (ϵ̂1,t, ϵ̂1,t−1, ϵ̂1,t−2, . . . , ϵ̂1,t−k) + u1,t, (12)

where f is a non-linear function determined by the LSTM and u1,t is the random error from

employing the LSTM model. It is important to consider that if the non-linear function f

is not a suitable one, the error term u1,t might not be random and hence identifying the

model correctly is crucial. The forecast obtained from the hybrid architecture is:
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ŷ1,t = L̂1,t + N̂1,t, (13)

L̂1,t = g(y1,t−1, y1,t−2, . . . , y1,t−p) +N1,t, (14)

N̂1,t = f(N̂1,t−1, N̂1,t−2, . . . , N̂1,t−k) + u1,t, (15)

where g is the multivariate function defined by the VAR model, y1,t is the vector of

predictor variables at time t, and p is the lag order of the VAR model, f is the multivariate

function defined by the LSTM model, N̂1,t is the vector of residuals at time t from the

VAR model, and k is the number of time steps in the LSTM model.

A hybrid model utilizes the strength of each model, VAR and LSTM, in determining

different data patterns. Therefore, we acknowledge the advantages of modelling linear

and non-linear patterns separately by using two different models and then combine their

predictions to improve the forecasting performance. This methodology is built upon the

approach developed by Zhang (2003).

3.4 Proposed Model

The predictive variable in our VAR model is the salmon spot series, while the remaining

series are the predictor variables. To ensure the data meet the assumption of stationarity,

a staple in financial studies, we calculated the logarithmic returns for all variables. Sub-

sequently, we split the data into training and testing sets following an 80-20 split, which

allowed for validation of the models’ predictive power.

Before employing the VAR, we used LASSO to reduce the dimensionality of the pre-

dictor variables and a grid search to tune the regularization hyperparameter, λ, across a

range of values from 10−5 to 101 (see Eq. 1). The selection of an optimal λ is crucial for

the effectiveness of the LASSO and was achieved via cross-validation, targeting a value

that minimized the out-of-sample error.

Following the determination of the best λ, we applied the LASSO method and de-

rived a subset of explanatory variables with non-zero coefficients. The selected predic-
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tors—futures contracts prices, export volume, soybean prices, and SPI prices—were con-

sistent across all VAR model versions. Thus, our application of the LASSO technique

helps shape a parsimonious, yet robust model for predicting salmon spot prices.

Next, we estimate three different VAR models, each based on different futures con-

tract maturities: one model uses the front-month futures contract, another the six-month

futures contract, and the last the twelve-month futures contract. When estimating the

VAR using the front-month futures contracts price series, the AIC criterion indicates that

the optimal lag parameter is p = 2. The same optimal parameter selection method is ap-

plied on the different VAR models. The optimal lag parameter is p = 1 for all remaining

models (using the six-month and twelve-month futures contracts). Upon estimating the

VAR models, we retrieve their residual series.

Next, residual diagnostics are performed to test their adequacy. The Breusch-Godfrey-

LM test and Autocorrelation Functions (ACF) were utilized to determine if the residuals

demonstrate linear independence over time. Our results pointed to evidence of autocorre-

lation in the residuals across all three VAR models, according to the Breusch-Godfrey LM

test. Given that the optimal parameter for all VAR models is less than 5 (see Section 3.1),

we chose the Breusch-Godfrey-LM test over the Portmanteau test. We further substanti-

ated the presence of autocorrelation in the residuals using the ACF (see Appendix A.1).

Next, we applied the Shapiro-Wilk normality test to the residual series for each model.

When using the front-month and twelve-month futures contracts, the Shapiro-Wilk test

suggested normality in both residual series at a 5% significance level. However, when

incorporating the six-month futures contracts, the residual series did not demonstrate

normality at the 5% significance level.

We use estimated VAR models for the purpose of forecasting individual series of salmon

spot prices. Three distinctive VAR models are utilized in this analysis. The first VAR(2)

model projects short-term forecast horizons of h = 1 and h = 4, while the subsequent

VAR(1) models are configured with longer-term horizons of h = 26 and h = 52. The

forecasting horizon in each model is purposefully aligned with the maturity period of the

corresponding futures contracts price series, ensuring coherence between the forecast and
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the financial instrument in question.

To confirm the efficacy of the forecasting strategy, we implement three varied window

methods: a fixed window, an expanding window, and a rolling window approach. Each

estimation window is set to 52, closely mirroring the full life cycle of salmon produc-

tion. Among these, the rolling window approach yields the lowest error metrics and is

thus selected to generate the forecasts. This technique advances each estimation window

h−steps forward, generating h−step ahead forecasts until all data in the testing subset

has been utilized. The predictive capabilities of each VAR model are then evaluated using

forecast error measures.

However, this methodology is not without its limitations. The futures contracts price

generally encapsulates an anticipated spot price for an entire month, not a specific week,

which may decrease the precision of forecasts predicting weekly salmon spot prices. De-

spite this shortcoming, the futures contracts price series remain a valuable forecasting

instrument, contributing significant insights into the potential trajectory of the spot price

series.

Figure 10: A flow chart of the proposed VAR-LSTM hybrid architecture.

Out of the n sub-equations estimated in each VAR model, our primary interest lies in

forecasting y1,t for n = 1 (see Eq.2). As such, we utilize the residual series from the y1,t

equation as input for the LSTM model. It’s important to note that these residual series

for each VAR model contain fewer observations than the logarithmic returns series, due

to the influence of degrees of freedom.

Deep learning models, such as LSTM, utilize a method known as ‘supervised learning’.

In supervised learning, the model is trained on a labelled dataset. In the case of time-
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series data, a lag transformation is employed to create these labels. To convert time-series

data into a supervised learning format, a lag transformation is employed. Here, the value

at time (t− k) (where k is the number of lags) serves as the input variable, while the

value at time (t+ k) acts as the predictive or target variable.

Hyperparameters Selection range

LSTM layer

Units {10, 20, 3i, . . . , 8i} where i = 10

Activation function {tanh, ReLu, sigmoid, softmax}
Dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5}

“ADAM” optimization

Learning rate {0.01, 0.001, 0.0001}
epsilon {0.0001, 0.00001, 0.01, 0.001, 1.0}

Table 3: Configuration Grid for Neural Networks’ Hyperparameter selection range.

The LSTM model processes the input variables from time (t− 52) to time t. This data

is then passed through an LSTM layer, which has a varying number of LSTM neurons,

referred to as ’Units’ in Table 3. After processing through the LSTM layer, the data

is forwarded via a fully-connected dense layer. This dense layer plays a critical role

in translating the high-level features learned by the LSTM into predictions, eventually

producing forecasts ϵ̂1,t+h (or N̂1,t+h for consistency with Eq. 14) at (t + h), where h

represents the different forecasting horizons. Regularization methods, such as L1 and L2,

are also implemented in the LSTM and dense layers to prevent overfitting by adding a

penalty term to the loss function. The specific hyperparameters for these regularization

techniques were determined during the tuning process. An illustrative flow chart of the

VAR-LSTM model predicting salmon spot prices is presented in Figure 10.

For consistency, the size of the test sample is equal to the one used for the VAR models.

Therefore, we must ensure that the test sample consists of the last 83 observations. The

train data is scaled between -1 and 1 to accelerate the training process.

Hyperparameter tuning is essential in machine learning model training to achieve

the best performance by selecting the optimal set of hyperparameters. For this task, we

employed the Random Search tuning technique. This method involves randomly sampling

26



(a) Hybrid Model: VAR(2)-LSTM

Layer
Neurons Activation Dropout

LSTM 10 tanh 0.5
Dense 1 tanh

Optimizer
Learning rate 0.0001

Epsilon 0.00001

(b) Hybrid Model: VAR(2)-LSTM

Layer
Neurons Activation Dropout

LSTM 10 tanh 0.5
Dense 4 tanh

Optimizer
Learning rate 0.0001

Epsilon 0.00001

(c) Hybrid Model: VAR(1)-LSTM

Layer
Neurons Activation Dropout

LSTM 10 tanh 0.5
Dense 26 tanh

Optimizer
Learning rate 0.0001

Epsilon 0.00001

(d) Hybrid Model: VAR(1)-LSTM

Layer
Neurons Activation Dropout

LSTM 10 tanh 0.5
Dense 52 tanh

Optimizer
Learning rate 0.0001

Epsilon 0.00001

Table 4: Optimal hyperparameters based on the RandomSearch tuning technique for each
neural network based on window size = 52 and the corresponding forecast horizon h.
(a) based the input residuals series from the VAR(2) model and h = 1; (b) based the
input residuals series from the VAR(2) model and h = 4; (c) based on the input residuals
series from the VAR(1) model and h = 26; (d) based on the input residuals series from
the VAR(1) model and h = 52.

combinations of hyperparameters from a predefined search space, and is utilized with the

training data. The potential hyperparameters are presented in Table 3. This approach,
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described by Bergstra and Bengio (2012), offers an efficient and less computationally-

intensive alternative to exhaustive searches, such as grid search.

We repeated this procedure three times, each time altering the input data to the pre-

dictor variables and the residual series from the corresponding VAR model. The optimal

hyperparameters identified for each model are presented in Table 4.

To compile the network, we utilize the “mean squared error” as the loss function

and “ADAM” as the optimization algorithm (Kingma & Ba, 2014). The learning rate

hyperparameter is set to 0.0001 for all three models, as indicated by the selection process.

The model was trained for 200 epochs with a stopping condition, known as ’early stopping,’

which is defined as no improvement in validation loss after 20 epochs. This condition was

evaluated on the validation data, preventing the model from overfitting by stopping it

from learning noise in the training data and saving computational resources.

To ensure the convergence of the training process, we examine the loss function for both

the training and test samples (refer to Appendix A.2). Following the training process, we

obtain the residual forecasts and add them to the VAR forecasts to form the forecasts of

the hybrid models. The forecasting performance of these hybrid models is then compared

to that of the VAR models using various forecast error measures.

3.5 Loss Functions

To assess the predictive accuracy of the models, we use loss functions. The mean squared

error (MSE), the mean absolute error (MAE), the root mean squared error (RMSE), and

28



Theil’s U−statistic. These are defined as follows:

MSE =
1

T

T∑

t=1

(y1,t − ŷ1,t)
2, (16)

MAE =
1

T

T∑

t=1

∣∣y1,t − ŷ1,t
∣∣, (17)

RMSE =

√√√√ 1

T

T∑

t=1

(y1,t − ŷ1,t)
2, (18)

U =

√√√√
∑T

t=1 (y1,t − ŷ1,t)
2

∑T
t=1 y

2
1,t

. (19)

These metrics compute the total error between the forecast ŷ1,t and the actual y1,t for

n = 1, which corresponds to the salmon spot price (see Eq. 2 and 14). After calculating

these forecasting error metrics (see Eq.17-19) for both the hybrid model and the VAR,

we can compare their predictive capabilities. The best model is indicated by lower values

of MSE, MAE, and RMSE, and a Theil’s U statistic value closer to 0.

3.6 The Diebold–Mariano test

The comparison of the performance of two distinct forecasts can be achieved via the DM

test (Diebold & Mariano, 2002). The test’s null hypothesis posits that both forecast

models have an identical expected loss due to forecast errors, suggesting that the models

have comparable accuracy. Forecast errors from the two distinct models are converted

into associated losses via chosen loss functions. If the expected value of the loss function

for each forecast is equal, then the mean of the population in the loss differential series

should be zero.

For the DM test, we generate two series of volatility forecasts, σ̂i,N , ..., σ̂i,N where

i = 1, 2, derived from two distinct forecasting models. The next step involves measuring

the accuracy of these forecasts against the series of volatility proxies denoted as σ1, ..., σN .

We employ two different loss functions: Mean Squared Error (MSE), L(σ̂i,N , σN) = (σ̂i,N−

σN)
2, and Mean Absolute Error (MAE), L(σ̂i,N , σN) = |σ̂i,N − σN |. The DM test’s null

hypothesis, E(dt) = 0, involves a loss differential sequence dt = L(σ̂1,t, σt) − L(σ̂2,t, σt)
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with the chosen loss function L(•). The DM statistic is expressed as:

DM =
1
N

∑N
t=1 dt√

2πf̂d(0)/N
, (20)

where N represents the sample size and f̂d(0) is a reliable estimate of fd(0), which corre-

sponds to the spectral density of the loss differential at frequency 0.

4 Empirical Results

We explored the potential of two distinct models, the VAR and the VAR-LSTM hybrid,

for forecasting h−steps ahead. Our methodology incorporated creating three unique VAR

models, adjusting the predictor variable on futures contracts prices based on their respec-

tive time to maturity (e.g., front-month, six-month, and twelve-month). The selected

futures contract for prediction changes in accordance with the forecast horizon. For in-

stance, for short-term forecasts such as h = 1 and 4, we employ the front-month futures

series. On the other hand, when making forecasts for a medium-term horizon, specifically

for h = 26 and 52, we employ futures series that cover a period of six and twelve months,

respectively. Implementing this strategy, we successfully developed three diverse hybrid

models.

Table 5 presents a comparison of the out-of-sample forecast accuracy between the VAR

and the VAR-LSTM model, at different forecast horizons. The metrics used for evaluation

are Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error

(RMSE), and Theil’s U statistic. Interestingly, the VAR and VAR-LSTM models exhibit

near identical performance across all horizons and measures, indicating that the inclusion

of LSTM in a hybrid framework did not significantly improve the forecasting accuracy

over the single VAR model.

In terms of MSE, both models exhibit a slight increase in error as the forecast horizon

expands, while MAE and RMSE values show minimal differences between the two models

across all forecasting horizons. Moreover, Theil’s U statistic, a relative measure of forecast

accuracy, implies similar predictive ability for both models at each forecasting horizon.
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Measure Horizon VAR VAR-LSTM

MSE

1 0.00390 0.00390

4 0.00435 0.00435

26 0.00486 0.00486

52 0.00487 0.00486

MAE

1 0.04975 0.04973*
4 0.05364 0.05365*
26 0.05636 0.05635*
52 0.05638 0.05637*

RMSE

1 0.06249 0.06249

4 0.06593 0.06593

26 0.06974 0.06974

52 0.06976 0.06976

Theil’s U

1 0.77160 0.77154*
4 0.92434 0.92433*
26 1.00326 1.00318*
52 1.00350 1.00343*

Note: Forecasting error metrics in bold indicate the same forecasting performance and
those with an asterisk indicate a better forecasting performance than its peer.

Table 5: Out-of-sample forecast accuracy of the VAR and the hybrid VAR-LSTM under
different forecast horizons.

Notably, the Theil’s U values are below 1 at shorter horizons (1 and 4), implying a

satisfactory forecasting performance of both models. However, the Theil’s U statistic

slightly surpasses 1 at the longer horizons of 26 and 52, suggesting a less than perfect fit

to the actual data at these forecasting horizons.

These findings indicate that both the VAR and VAR-LSTM models offer comparable

performance across multiple forecasting horizons and forecasting error metrics, with minor

differences that do not unequivocally favor one model over the other. The results prompt a

need for further investigation to establish whether the hybrid approach’s added complexity

translates to a tangible advantage in this forecasting context.

Figure 11 depicts the actual and forecasted salmon spot prices at different forecasting

horizons using the VAR and VAR-LSTM models. It is evident from these figures that the

forecast trajectories of both the VAR and VAR-LSTM models closely coincide across all
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(A) (B)

(C) (D)

Figure 11: Actual and forecasted salmon spot prices at different forecasting horizons using
VAR, and VAR-LSTM. (A); forecasting 1-step ahead (B); forecasting 4-steps ahead (C);
forecasting 26-steps ahead (D); forecasting 52-weeks ahead.

forecasting horizons. This denotes a striking resemblance in their performance, suggest-

ing that the incorporation of LSTM in a hybrid framework does not yield an apparent

improvement in the forecast outcomes over the single VAR model. The striking similarity

in the behavior of these models suggests a lack of significant non-linearity in the salmon

spot price series. Thus, the VAR-LSTM model may not have any complex patterns to

exploit for improved forecasting. Even though LSTMs are renowned for detecting and

learning non-linear patterns, the comparable performance of the two models suggests

that the salmon spot price series likely depicts linear patters, adequately captured by the

VAR model, with no substantial non-linear patterns to exploit. Consequently, it appears

that the added complexity of the VAR-LSTM model does not offer a significant advan-

tage in this specific forecasting context. These observations highlight the importance of

understanding the underlying dynamics of the time series in question before opting for

more complex models, as simpler linear models might provide equally effective forecasts

in certain scenarios.

Our findings, which show an absence of exploitable non-linear patterns in the salmon
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spot price series, validate a key characteristic of financial markets: the adaptiveness of

investors. This trait is widely documented in behavioral finance literature, reflecting a

’learning by doing’ process (Gervais & Odean, 2001; Shiller, 2003). Given the dynamic

nature of markets, rapidly identified trends can swiftly lose their relevance or even disap-

pear, posing challenges to their effectiveness in future price predictions. Our results align

well with this theory.

This behavior might be an essential driver of market dynamics, possibly resulting in the

linear pattern we observed in the salmon spot price series. The complex interplay between

investor behavior and market patterns is emphasized in these findings. In financial markets

where changes are continual, the predictive advantage of more complex models like the

VAR-LSTM may be constrained.This limitation arises as these models depend on past

data for future predictions. However, in adaptive markets, past patterns may not reliably

forecast future trends due to investors’ continuous strategic adjustments.

Horizon Loss function DM-Test p−value

1
MSE -1.1023 0.999991*
MAE -0.00147 0.99883*

4
MSE 0.0000 0.9999998*
MAE 0.0000 0.999999*

26
MSE 0.0000 0.999994*
MAE -0.00014 0.99989*

52
MSE 0.0000 0.999994*
MAE 0.00014 0.999889*

Note: The ∗ indicates that there is no sufficient evidence to reject the Diebold-Mariano’s
hypothesis and therefore there is no significant difference between the forecasts generated
by the two models.

Table 6: Comparing VAR and VAR-LSTM forecasts using the Diebold-Mariano (DM)
test with MSE and MAE loss functions.

From the results presented in Table 6, we used the Diebold-Mariano (DM) test to

evaluate the forecasts generated by the VAR and VAR-LSTM models across different

forecasting horizons. The Mean Squared Error (MSE) and Mean Absolute Error (MAE)

were chosen as loss functions to give a comprehensive picture of the predictive accuracy,

with MSE emphasizing larger errors and MAE representing the average magnitude of the
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errors. For each of the forecast horizons (1, 4, 26, and 52), both MSE and MAE loss

functions resulted in DM test statistics close to zero and very high p-values indicating

no statistically significant differences between the VAR and VAR-LSTM forecasts. This

lack of variance between the results of the two models further highlights the comparative

robustness of the two models across varying forecasting periods in forecasting the salmon

spot prices.

These results also verify that while the VAR-LSTM hybrid model introduces an addi-

tional level of complexity, it does not significantly outperform the traditional VAR model

in terms of forecasting accuracy for salmon spot prices. This may suggest that the data

does not contain additional complex dynamics that the LSTM component could exploit.

These findings contribute valuable insights for future research in hybrid models, suggesting

that increased complexity does not necessarily lead to improved forecasting accuracy.

Measure Horizon VAR Random-walk (with
drift)

MSE

1 0.00390* 0.00877
4 0.00435* 0.00840
26 0.00486* 0.00941
52 0.00487* 0.00557

MAE

1 0.04975* 0.07392
4 0.05364* 0.07415
26 0.05636* 0.08311
52 0.05638* 0.05920

Note: Forecasts with an asterisk have a better forecasting performance than its peer.

Table 7: Out-of-sample forecast accuracy of the VAR and the hybrid VAR-LSTM under
different forecast horizons.

Since our results indicate that there are no non-linear patterns in the salmon spot

price data to be exploited by incorporating an LSTM, we decide to further enhance the

robustness of the VAR model by comparing its forecasting ability with that of a random

walk with a drift. Table 7 presents the results of applying the MSE and MAE forecasting

error measures on various forecasting horizons to compare the forecasting ability of the

VAR with that of a random walk with a drift.
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The results reveal that the VAR model consistently outperforms the random walk

model with a drift, at all considered forecast horizons. This is demonstrated by lower

MSE and MAE values, indicating smaller forecast errors for the VAR model. This is

a significant result as a random walk with drift is often a challenging benchmark to

beat in financial forecasting due to the random nature and efficient market hypothesis.

These results therefore provide a strong support for the effectiveness of the VAR model in

forecasting salmon spot prices and underline the importance of this model as a powerful

tool for such predictions. It also suggests that while salmon spot prices may possess

random walk properties, they are not purely random and do exhibit predictable dynamics

that can be captured by VAR.

5 Concluding remarks

The objective of this study was to determine whether a hybrid VAR-LSTM model could

improve the accuracy of salmon spot price forecasts and compare its performance with that

of a traditional VAR model. We adopted a comprehensive and robust approach involving

a detailed series of steps, which included dimensionality reduction using the LASSO tech-

nique, VAR model estimation, residuals diagnostics, forecast generation, and, finally, the

introduction of deep learning through LSTM. Despite the expectation that integrating

VAR and LSTM methods into a hybrid model would enhance forecasting performance,

our results showed no statistically significant difference in predictive accuracy between

the single VAR and the hybrid VAR-LSTM model.

Interestingly, the forecast trajectories of both the VAR and VAR-LSTM models closely

coincided across all forecasting horizons, suggesting the absence of significant non-linearity

in the salmon spot price series. This implies that the VAR-LSTM model found no complex

patterns to exploit for improved forecasting. It seems that the added complexity of

the VAR-LSTM model does not offer a significant advantage in this specific forecasting

context. These observations emphasize the importance of understanding the underlying

dynamics of the time series before opting for more complex models, as simpler linear

models might provide equally effective forecasts in certain scenarios.
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Our findings highlight that investors in financial markets often adapt their strategies,

which in turn impact the development of salmon spot prices. We observed that investor

behavior, which involves continual strategic adjustments, might lead to a linear pattern

in the salmon spot price series. This behavior suggests a limitation to the predictive

advantage of complex models like VAR-LSTM in markets where past patterns may not

reliably forecast future trends due to the adaptive nature of these markets.

The robustness checks confirmed the comparable performances of the VAR and VAR-

LSTM models across varying forecasting horizons, emphasizing that the increased com-

plexity of LSTM did not enhance the forecast accuracy beyond the traditional VAR

model’s capabilities. This study serves as a valuable reference for future research into hy-

brid models, suggesting that increased complexity does not automatically correlate with

improved forecasting accuracy.

Lastly, we benchmarked the VAR model against a random walk with a drift model.

We found that the VAR model consistently outperformed the random walk model across

all considered forecast horizons. This result provides strong support for the VAR model’s

effectiveness in forecasting salmon spot prices, indicating its importance as a powerful

tool for such predictions. It also suggests that salmon spot prices, although potentially

exhibiting random walk properties, are not purely random and do contain predictable

dynamics that can be captured effectively by VAR.

In conclusion, the results suggest that while hybrid models can theoretically combine

the strengths of individual methodologies, they do not necessarily lead to improved fore-

cast accuracy. Sometimes, simpler models, such as VAR, can perform just as effectively,

if not better, than their more complex counterparts. Future research could explore other

hybrid models or leverage emerging deep learning techniques, such as Transformers, to

predict salmon spot prices. Exploring how these methods perform across different markets

could also be insightful, potentially leading to more accurate and reliable salmon price

forecasts in the future.
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A Appendix

(A)

(B)

(C)

Figure A.1: Autocorrelation functions (ACF) up to 15 lags for the residuals series of
the three versions of the VAR models: (A) VAR(2) model implementing front-month
futures contracts prices; (B) VAR(1) model implementing six-month futures contracts;
(C) VAR(1) implementing twelve-month futures contracts.
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(A)

(B)

(C)

(D)

Figure A.2: Train and Test sample loss functions for the hybrid LSTM forecasting: (A)
h = 1; (B) h = 4; (C) h = 26; (D) h = 52.
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Abstract

We examine the relationship between salmon-related news and trading behaviour
in the salmon market. For this, we create a share price index (SPI) based on five
salmon aquaculture companies trading on the Oslo Stock Exchange (OSE) with
the highest market cap. We utilise the Latent Dirichlet Allocation (LDA) machine
learning algorithm to derive topics from the news data set. Further, we adopt a
lexicon-based sentiment analysis, assigning a sentiment score to each article based
on the number of negative and positive words it contains. These methods impose
structure on the otherwise unstructured text data, enabling the application of stan-
dard econometric analyses to identify effects of news on stock returns. To explore the
impact of topics on market volatility, we extract principal components based on all
the topics. We find that the components related to COVID-19 and corporate news
and stocks exert the most pronounced effect on the market. A surprise increase in
sentiment series, based on the Loughran-McDonald lexicon, resulted in a marginally
significant effect on logarithmic returns with an unexpected sign, highlighting the
limitations of a lexicon exclusively focused on financial-related words for industry-
specific studies. However, we can overcome this issue by adding relevant words to
the dictionary. Taking into account the competitive market structure of salmon mar-
kets, we invert sentiment in articles that pertain to competitor firms. By making
these adjustments, we establish a positive correlation between extended sentiment
and returns. Moreover, upon extracting components based on topics and extended
sentiment, we discover that the components related to business, algal blooms and
Chilean aquaculture, and the salmon industry play a pivotal role in driving the
market. Importantly, through our out-of-sample forecasting experiment, we provide
compelling evidence that the incorporation of news data can significantly improve
the performance of models predicting stock market price movements.

Keywords— Salmon Market; Text Mining; Topics Modelling; LDA; Sentiment Analysis
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1 Introduction

The aquaculture industry has experienced rapid growth as a food production sector (FAO, 2018;

Garlock et al., 2020), with global production surging from approximately 14.9 million tonnes in

1995 to 82.1 million tonnes in 2018 (FAO, 2020). Originating in the late 1960s, the Norwegian

aquaculture industry has developed into one of the country’s most vital export industries along-

side oil and gas within a span of 50 years. Salmon has emerged as one of the most successful

species in the industry (Asche, 2008), leading Norway to become the world’s largest salmon pro-

ducer, accounting for over half of the total production (Hersoug, 2021). The industry’s expansion

has facilitated its consolidation, simultaneously generating increased demand, elevated salmon

prices, and augmented volatility (Asche et al., 2019; Bloznelis, 2016; Oglend, 2013).

Guttormsen (1999) showed that salmon is a volatile commodity, with its volatility more than

doubling and now surpassing that of most comparable commodities (Dahl & Oglend, 2014).

Previous research has revealed that volatility exhibits clustering (Dahl & Yahya, 2019), and that

it is partially explained by trends in other food commodities (Oglend, 2013). Building upon this

literature, our study investigates the types of news that influence the salmon market. Given that

investor behavior is driven by news surrounding the companies they are invested in, we analyze

the impact of salmon production-related news articles on stock prices, which have been found to

be more reactive than commodity prices (Dahl et al., 2021).

Text mining methods have yielded promising results in macroeconomics- and finance-related

studies. Hansen et al. (2018) employed the Latent Dirichlet Allocation (LDA), a topic modeling

algorithm, to gauge the effect of transparency on monetary policymakers’ deliberation. Similarly,

Larsen (2021) used LDA to classify various news types and identify the type of uncertainty that

significantly affects the economy. Further in financial literature, topics extracted with LDA have

been used to predict stock movements (Nguyen et al., 2015). Given its ability to provide an

overview of the primary topics discussed in a news dataset, we also incorporate LDA in our

analysis. Additionally, we examine news sentiment using a lexicon-based approach, as it has

been widely applied in stock market analyses (Karalevicius et al., 2018; Khedr, Yaseen, et al.,

2017; Li et al., 2020; Li et al., 2014). Our focus is on the lexicon constructed by Loughran and

McDonald (2011, henceforth: LM) as it is specifically tailored for financial applications. Thus,

by utilizing text mining approaches such as LDA and lexicon-based sentiment analysis, our goal

is to uncover how news topics and sentiment influence investor behavior in the salmon market.
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Complementing text mining techniques, we utilize a Vector Autoregressive (VAR) model

to investigate the relationship between investors’ trading behavior and salmon market-related

financial news. To capture investors’ trading behavior, we examine stock price data from the

top five salmon market producer companies in terms of market capitalization, listed on the

Oslo Stock Exchange (OSE): Marine Harvest (MOWI), SalMar (SALM), Grieg Seafood (GSF),

Lerøy Seafood Group (LSG), and Bakkafrost (BAKKA). Although futures contracts trading is

available in the salmon market, its low liquidity and sporadic trades limit its usefulness (Andersen

& de Lange, 2021; Bloznelis, 2018; Dahl et al., 2021; Ewald et al., 2022). Building upon Dahl

et al. (2021)’s finding that stock prices assimilate salmon price information more swiftly than

the salmon futures exchange market, we focus on stock prices. For our textual analysis, we

employ news articles retrieved from Intrafish1, spanning from January 2010 to July 2022, and

filtered using the keywords “salmon”, “finance”, and “prices”. This approach enables us to achieve

a comprehensive understanding of the factors that drive investors’ behavior within the salmon

market, extending beyond the interplay between supply and demand.

Applying principal component analysis (PCA) to the topics estimated using the LDA algo-

rithm enables us to identify the most dominant themes shaping market news. The inclusion

of sentiment analysis allows us to consider the directional effects as well. One of our key con-

tributions in this regard is the improvement of the typical sentiment calculation method by

considering the competitive market structure. Moreover, we augment the sentiment dictionary

with industry-specific terminology, which enables us to capture information that may not be

effectively detected using the financially-oriented LM dictionary alone.

The remainder of this paper is organized as follows. Section 2 elaborates on the data sets

incorporated and the pre-processing methods employed. Section 3 outlines the methodologies

and techniques utilized to estimate the relationship between salmon market investors’ behavior

and related financial news. Section 4 presents the results, and Section 5 discusses the primary

conclusions.
1https://www.intrafish.com/
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2 Data & Pre-processing

2.1 Financial Data

We obtain daily stock prices from January 2016 until July 2022 from Refinitiv on five salmon

producing companies with the highest market cap trading on the Oslo Stock Exchange (OSL).

These are the Marine Harvest (MOWI), SalMar (SALM), Grieg Seafood (GSF), Lerøy Seafood

Group (LSG), and Bakkafrost (BAKKA). We choose the salmon market stock prices over the

salmon spot or futures contracts because Dahl et al. (2021) found that stock prices reflect salmon

price information earlier than the Fish Pool Index, the primary price index of farmed salmon.

We construct a Share Price Index (SPI) corresponding to an equally weighted portfolio of the five

stocks. We normalize the price index by dividing each price Pt, where t = 1, 2, 3 . . . , T , with the

first price of the series P0, to demonstrate the growth rate of the shared prices. We constructed

the SPI instead of using individual share prices because an index should be less sensitive to

company-specific information and better reflect on general news related to the salmon market.

The index is depicted in Figure 1.
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Figure 1: Share Price Index (SPI) for daily price data.

To measure investors’ behavior we determine a reaction measure. The reaction is defined

as the return from day to day, denoted as Yt = Pt/Pt−1, where Pt is the SPI price at time t

and Pt−1 is the SPI price at time t− 1. To account for proportional changes in the returns, we
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Figure 2: Investors’ Reaction or SPI logarithmic returns.

calculate the logarithmic returns as follows::

Rt = ln(Pt/Pt−1), (1)

where Rt denotes the investors’ reaction or logarithmic returns of SPI. The development of Rt

is illustrated in Figure 2 where the impact of COVID-19 pandemic is evident.

2.2 Text Data

We collected news articles that were published on IntraFish2 between November 2012 and July

2022. We performed a keyword-based search, filtering articles containing at least one of the

following terms either in the text or in the metadata: “salmon”, “prices”, or “finance”. Our scope

encompassed all articles relevant to the salmon market, as well as financial articles relating to

salmon and other fish or seafood commodities, which are prominent topics on the website. Due

to a low number of articles published per month between 2012 and 2016, we limited the scope

to articles published from 1 January 2016 to 8 July 2022 (see Figure 3).

In our next step, we filtered the dataset to focus only on articles that provide meaningful

insights. To do this, we removed articles that contained many short entries, which were difficult to

2https://www.intrafish.com/
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analyze using our chosen text mining methods. Specifically, articles with titles containing strings

such as “IntraFish Price Tracker”, “Top Headlines”, “Top Stories”, “LIVE Updates”, “Reports”, and

“Conference Updates” were discarded.

Further, we removed articles that held no relevance to our research question, such as those

carrying promotional content indicated by phrases like “IntraFish Podcast”, “IntraFish App”, etc.,

in their titles. Articles with little text accompanying videos and photos, denoted by “VIDEO:”

or “PHOTOS:” in the title, along with some other short articles that seemed irrelevant, were also

excluded from the analysis.

Moreover, we disaggregated blog posts into individual entries based on their posting times,

recognizing that each small article in a blog conveys unique sentiment and discusses a distinct

topic. By employing these filtering and transforming strategies, we enhanced the quality of our

dataset.

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

0

20

40

60

80

100

120

140 5-month moving average

Figure 3: Number of articles per month, 5-month moving average.

In the next step, we pre-processed the remaining articles. This involved resolving encoding

issues and removing certain strings and text fragments that could potentially introduce noise to

the data rather than contributing meaningful narratives. This included the removal of HTML

tags, web addresses, and links to videos, photos, tweets, and ads. Text segments supporting

graphs, photos, or tables within the articles were also discarded. We further omitted information

that was quantitative in nature, such as the price per salmon weight class, export volume,

and export earnings, as this information did not aid in either sentiment or topic identification.

Frequently recurring text segments in articles that didn’t offer any new insights, such as the

methodology for calculating the Nasdaq Salmon Index, were also eliminated. In the interest of
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brevity, we won’t list all the strings and text parts that were removed, but the guiding principle

was to focus on text that is pertinent, provides new information to the market, and is compatible

with our chosen text mining algorithms. Following this thorough cleaning process, articles with

20 or less words were deleted, as short text can hinder topic modelling effectiveness.

Before finalizing the text data pre-processing, we ensured consistency by converting all the

articles to a uniform time zone - the Greenwich Mean Time (GMT). The final version of our

news data, which comprises 6082 articles, includes the article’s title, the time it was posted, and

the text content.

For alignment with the daily log returns data, we assigned dates to articles based on their

potential impact on stock returns. Since the Oslo Stock Exchange (OSE) is open from 9:00 am

to 4:20 pm Central European Summer Time (GMT+02:00), we perceived articles published after

2:20 pm GMT as potentially impacting the next trading day’s stock market. Additionally, articles

published post 2:20 pm GMT on Fridays and over the weekends were attributed to influence

the forthcoming trading day’s stock return. Likewise, articles released on public holidays - in

accordance with the Oslo Stock Exchange’s operational hours on such days - were understood

to bear an impact on the stock market on the subsequent trading day.

Following the completion of standard pre-processing and organization of the textual data,

we move on to more specialized pre-processing steps, tailored for topic modelling. Firstly, we

transform collocations into single terms. Collocations are identified using part-of-speech patterns

as proposed by Justeson and Katz (1995). These are combinations of two or three words that

together hold a specific meaning, such as “salmon farming”, “United States”, or “earnings before

interest”. In line with Hansen et al. (2018), we retain 194 two-word collocations with a frequency

of at least 100 and 85 three-word collocations with a frequency of at least 50.

Next, we transform all upper-case letters to lower-case and split contractions into their con-

stituent words (e.g., ‘aren’t’ becomes ‘are not’). Subsequently, we carry out tokenization, where

each token represents a sequence of characters that are being treated as a group. We then re-

move non-alphabetic characters such as numbers, punctuation, currency symbols etc., as well as

stop words. These stop words3 are commonly used words that carry little standalone meaning

(examples include ‘but’, ‘I’, ‘at’). Next, we remove IntraFish journalist names from each article

as their high frequency within our corpus effectively categorizes them as stop words.

3http://snowball.tartarus.org/algorithms/english/stop.txt

7



A crucial step in our pre-processing is stemming. We utilize the Porter Stemmer, a popular

algorithm for the English language, to reduce words of varying grammatical forms but with a

common root to their base form or stem (for example, ‘consist’ and ‘consisted’ would be stemmed

to ‘consist’).

To manage dimensionality, we employ the Term Frequency-Inverse Document Frequency

(TF-IDF) method as in Blei and Lafferty (2009) and Hansen et al. (2018). The TF-IDF score

for each token v is calculated as:

log (1 +Nv)× log

(
D

Dv

)
(2)

where Nv is the count of the token v in the corpus, Dv is the number of articles that contain the

term v, and D is the total number of articles in the corpus. Tokens appearing either very rarely

or very frequently in all the articles have a lower TF-IDF score, so we discard the tokens with

the lowest scores. At the end of this process, our corpus includes 11,666 unique stems, which are

then used for the subsequent topic modelling.

3 Methodologies

3.1 Topic Modelling

3.1.1 Latent Dirichlet allocation (LDA)

The Latent Dirichlet Allocation (LDA), an unsupervised generative probabilistic model, was

initially developed by Blei et al. (2003). The central premise of LDA is that documents, in our

case, news articles, are represented as random mixtures of latent topics. Each of these topics is

defined as a particular distribution of words.

In a corpus of D articles, we can identify V unique words. An article d (d ∈ 1, . . . , D) is

characterized by a collection of topics K. Each topic k (k ∈ 1, . . . ,K) is a distribution βk ∈ ∆V−1

over V unique words in the vocabulary. Notably, these notations align with those provided by

Hansen et al. (2018). The probability distributions of the K topics allow the same term to occur

in different topics, potentially with varying weights. Thus, one can think of a topic as a list of

words, each weighted to reflect their relevance to the topic. LDA is a mixed-membership model

where each article is associated with multiple topics. Therefore, each article d is described by its
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Figure 4: Schematic of LDA algorithm. Shaded circles are observed (wn,d) or hyperpa-
rameters of the Dirichlet priors (α, η), while white cells are latent, unobserved random
variables. The underlying assumption is that a document d is a mixture over topics (θd),
leading to topic assignments (zn,d) of the word n in document d. Meanwhile, topics (βk)
are probability vectors over words that are observed in the corpus. The same words can
have non-zero weights in several topics, but a word within a specific document is associ-
ated with one topic only.

own distribution θd ∈ ∆K−1 over the K topics.

The Latent Dirichlet Allocation (LDA) model’s inner workings can be best comprehended

by visualizing the generative process, which details how documents are created according to the

model’s perspective. Given a document d, let Nd denote the number of words it contains. We

also consider two single-value prior hyperparameters, α and η. The data generating process

according to LDA is as follows:

1. For each topic k = 1, . . . ,K, draw a distribution over words βk ∼ Dirichlet(η), indepen-

dently.

2. For each document d = 1, . . . , D, draw a distribution over topics θd ∼ Dirichlet(α), inde-

pendently.

3. For each document d = 1, . . . , D, and for each word n = 1, . . . , Nd within the document:

(a) Draw a topic assignment zn,d ∼ Multinomial(θd), where zn,d ∈ {1, . . . ,K}.

(b) Draw a word wn,d ∼ Multinomial(βzn,d
), where wn,d ∈ {1, . . . , V }.

This conceptual generative process can be conveniently visualized as a directed acyclic graph

(see Figure 4). Notations used in Figure 4 are shown in Table 1.

Within the LDA model, both θd and βk are treated as random variables. The necessity for a

Bayesian formulation of the model is primarily motivated by the extensive number of parameters

to be estimated, namely K × V for βk and D ×K for θd. Dirichlet priors are an optimal choice

due to their conjugacy with the multinomial distribution. The hyperparameters η and α govern
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the sparsity of βk and θd, respectively. When α decreases, fewer topics exhibit a high probability,

while the remaining topics maintain a small but positive probability.

Given the presumption that all hidden variables (topic-specific vocabulary distributions βk,

document-specific topic proportions θd, and per-word topic assignments zn,d) and observed vari-

ables (words wn,d, hyperparameters α and η) are known, the joint distribution of all these

variables can be denoted as:

Pr(B, T, z, w|α, η) =
K∏

k=1

Pr[βk|η]
D∏

d=1

Pr[θd|α]
Nd∏

n=1

Pr[wn,d|βzn,d
]Pr[zn,d|θd]. (3)

Here, we have defined B = (β1, ..., βK), T = (θ1, ..., θD), zd = (z1,d, ..., zNd,d), z = (z1, ..., zD),

and w = (w1, ..., wD).

However, the actual challenge lies in inferring the latent variables βk, θd, and zn,d from the

observed documents. Hence, the posterior of interest is Pr(B, T, z|w,α, η).

Notation Definition
α, η Hyperparameters of the Dirichlet prior distributions
βk The distribution over words
K The number of topics
θd The article-specific topic distribution
zn,d The assignment of a word wn (n ∈ 1, . . . , Nd) in an article d to a given topic
wn,d The observed word wn in an article d
Nd The number of words in an article d
D The number of articles in the data set

Table 1: Notations in LDA

3.1.2 Estimation

To estimate the parameters of the LDA model, we apply collapsed Gibbs sampling, an approach

introduced by Griffiths and Steyvers (2004). The essence of this method lies in the conjugacy

of the Dirichlet prior to the multinomial distribution, enabling us to analytically marginalize

the parameters B and T out of the joint distribution Pr(B, T, z, w|α, η). Consequently, we can

express the probability of the observed and latent variables as Pr(z, w|α, η).

In practical terms, our goal is to determine the posterior Pr(z|w,α, η), as the topic assign-

ments z are not observed. Using conditional-marginal factorization of the joint probability, this
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posterior can be expressed as:

Pr(z|w,α, η) = Pr(zn,d = k|z(−n,d), w, α, η)Pr(z(−n,d)|w,α, η). (4)

Consequently, the computational task is simplified to sampling the topic assignments zn,d

for each word in the corpus, given all the words w and other topic assignments z(−n,d). The

advantage of this procedure is that it eliminates the need to sample topic proportions θd and

topic-specific vocabulary distributions βk.

A complete derivation of the conditional distribution Pr(zn,d = k|z(−n,d), w, α, η) can be

found in the technical appendix of Hansen et al. (2018). The resulting distribution is expressed

as:

Pr(zn,d = k|z(−n,d), w, α, η) ∝
mk

v,−(n,d) + η
∑

v m
k
v,−(n,d) + V η

× (md
k,−n + α), (5)

where md
k,−n represents the count of words in document d assigned to topic k, excluding the

current assignment zn,d, and mk
v,−(n,d) is the number of occurrences of word wn,d assigned to

topic k throughout the corpus, excluding the current assignment zn,d.

Intuitively, the probability of assigning the current word wn,d to topic k increases if many

other words in document d are also assigned to topic k and if the word wn,d has a high probability

under topic k.

With the conditional distribution at hand, we can now proceed to detail the collapsed

Gibbs sampling algorithm. Firstly, we initialize the topic assignment variables z to the val-

ues in {1, . . . ,K} by randomly drawing zn,d from a uniform distribution. For each document

d = 1, . . . , D and each word n = 1, . . . , Nd, we sequentially draw a new topic assignment zn,d

through multinomial sampling using Eq. 5, based on all the updated topic assignments z(−n,d).

We then repeat this procedure for iterations 2 to 4000 as part of a burn-in phase and again

for iterations 4001 to 8000, keeping samples with a thinning interval of 50 to ensure that the

autocorrelation between samples is low. To be precise, we retain 80 samples corresponding to

iterations {4050, 4100, . . . , 8000}.

We need to choose three parameters to estimate the model: hyperparameters α and η, and

the number of topics K. The values for hyperparameters are derived from Griffiths and Steyvers

(2004) and are α = 50/K, and η = 200/V . The number of topics is set to 100.
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The collapsed Gibbs sampling procedure yields a set of samples with estimated topic assign-

ments z. Yet, we do not gain direct insights about the primary parameters of interest βk and θd.

For each stored sample, we can estimate topic-specific vocabulary distributions and document-

specific topic proportions using predictive distributions over new topics and new words. The

probability that a new (Nd + 1)-th word in a document d is assigned to topic k is given by

θ̂kd = Pr(z(Nd+1),d = k|zd) =
md

k + α
∑K

k=1(m
d
k + α)

, (6)

where md
k is a count of words in document d assigned to topic k.

In a similar fashion, the predictive distribution over new words is expressed as

β̂v
k = Pr(w(Nd+1),d = v|w, z) = mk

v + η
∑V

v=1(m
k
v + η)

, (7)

where mk
v is the count of times word wn,d is assigned to topic k in the entire corpus. We

estimate βk and θd for each iteration in {4050, 4100, . . . , 8000}.

We use a measure called perplexity to determine if the chain has converged. The formula for

perplexity is given by

exp


−

∑D
d=1

∑V
v=1 nd,v log

(∑K
k=1 θ̂

k
d β̂

v
k

)

∑D
d=1Nd


 , (8)

where nd,v is a count of word v in document d and θ̂kd and β̂v
k are introduced above.

This is a measure of how well the LDA model fits the data. Perplexity, often used in topic

modeling, is monotonically decreasing in the log-likelihood of the unobserved documents. There-

fore, a model that predicts the data well has a low perplexity. The first 4000 replications of the

chain are characterized by rapidly decreasing perplexity values (see Figure 5 and note that we

do not save perplexity for the first 500 iterations) and hence are discarded.

To understand the content of the estimated topics, we save the most probable stems un-

der predictive topic-specific vocabulary distributions β̂k obtained at the 8000th iteration. The

predictive document-specific topic distribution θ̂d is the average over 80 samples.

Finally, to estimate daily topic frequencies, we collapse all the articles for one specific day

into one document. Following Hansen et al. (2018), we re-sample topic assignments zn,d for

day-specific articles. The topics in this re-sampling step are kept fixed at the values of their
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Figure 5: Perplexity values along the chain drawn for the 100-topic model, corresponding
to samples ranging from 1 to 150. These sample indices align with perplexity calculations
performed across specific iterations: {550, 600, . . . , 8000}. We have retained the last 80
samples, representing the point at which the chain has converged.

predictive distributions. Therefore, we use only 20 iterations of the Gibbs sampler in this step.

After re-sampling, we obtain the predictive day-specific topic distribution.

3.1.3 Cross-Validation

To choose the optimal number of topics K we employ 10-fold cross-validation. In this process,

we randomly split the article data set into 10 folds. Next, we estimate the LDA model on the

first 9 folds that represent the training set and keep the last 80 samples where we have observed

convergence of the chain (see Figure 5). Thereafter, we estimate perplexity on the 10th fold

that represents the test set. For this, we calculate the perplexity using Eq. 8 for each of the 80

samples. When implementing Eq. 8 for cross-validation, β̂v
k corresponds to the topic distributions

from the LDA estimation on the training set. Moreover, we re-sample topic assignments zn,d

in the test set for each of the 80 samples using 20 iterations of Gibbs sampling and obtain the

corresponding θ̂kd . The final perplexity for the 10th fold is calculated by averaging over the 80

samples. This procedure is repeated 9 more times, each time changing the fold that serves as

the test set. The final perplexity is calculated as the average across the 10 folds. We choose

13



the optimal number of topics K based on Figure 6, where the horizontal axis corresponds to

the number of topics and the vertical axis to the perplexity values. Even though the perplexity

measure continues to decrease for numbers of topics K > 100, we choose it as the cut-off, since

the marginal improvements due to additional topics become relatively small, and the number of

topics should remain small relative to the number of documents (D = 6082). Also, as the number

of topics becomes too large, they tend to be overly detailed and less interpretable, reducing their

utility.

Perplexity for Different Numbers of Topics
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Figure 6: The average perplexity of test data for different topics, calculated according to
the formula presented in Eq. 8. These data show that as the number of topics increases,
the goodness-of-fit of the model improves. Given the relatively small size of our data set,
we choose 100 topics, as the improvements thereafter are non-substantial.

3.2 Sentiment Approach

We believe that both topics and sentiment might be important for explaining stock returns

because they provide different types of information. Topics refer to the content of the news, or

what is being discussed, while sentiment refers to the emotional tone or valence of the news, or

whether it is perceived as positive, negative, or neutral.

To quantify sentiment, we have chosen to use a lexicon-based approach. A lexicon-based

approach involves using a dictionary of words or phrases and their corresponding sentiment

scores to determine the overall sentiment of a text. The advantages of this method are that it
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is relatively simple, efficient, and does not require an annotated training set. Additionally, it

is more interpretable than machine learning methods, as it allows researchers to examine the

specific words and phrases that contribute to the overall sentiment score.

The literature on sentiment analysis differentiates between general and domain-specific lex-

icons. General lexicons are designed to be applicable across a range of different contexts. In

contrast, domain-specific lexicons are tailored to a particular topic, market, or industry. For

instance, in the finance literature, Tetlock (2007) examined the relationship between sentiment

expressed in the news and stock market movements by using the general Harvard IV dictionary.

However, Loughran and McDonald (2011) argued that a domain-specific lexicon is better suited

for capturing the tone in financial texts because certain words that may have a negative senti-

ment in a general lexicon (such as “liability”, “cost”, or “capital”) are rather neutral in the finance

domain.

Our approach to sentiment computation is similar to Shapiro et al. (2022). The authors

highlight that combining lexicons can improve sentiment analysis performance, particularly when

using domain-specific lexicons. In our study, we combine the Loughran-McDonald (LM) dictio-

nary, which is specific to the finance industry, with our own domain-specific dictionary tailored

to the salmon market.

We develop a daily sentiment index by following a systematic approach. Firstly, we create a

list of seed sentiment words and phrases based on our industry expertise and initial analysis of

the news articles. For instance, we consider “algal bloom” as a negative phrase since the rapid

growth of algae in the water can have detrimental effects on the health and survival of salmon,

while “recapture” is a positive word since it implies that the salmon that have escaped from farms

have been successfully brought back. We include all grammatical forms of seed words to expand

our list. Secondly, we estimate a word2vec model on our corpus to identify data-driven synonyms

for the seed words. Thirdly, we manually select relevant synonyms and their grammatical forms

to extend our dictionary. Fourthly, we combine our dictionary with the LM dictionary.

We then use this combined dictionary to estimate sentiment scores for each news article,

where sentiment is defined as the number of positive words minus the number of negative words

divided by the total number of words in the text. Numbers are not included in the total word

count. To account for negation, we multiply the sentiment scores of words by -1 if the word is

preceded by a negation term (such as, but not exclusively “neither”, “never”, “not”, or “no”) within
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a three-word window. Once we have the sentiment score for each article, we compute the daily

sentiment index by taking the average of the sentiment scores across all articles on that day.

4 Empirical results

4.1 The impact of industry-specific topics

To investigate the drivers of behavior in financial markets, we conducted Principal Component

Analysis (PCA) on a set of estimated topics, in line with (Larsen, 2021). By extracting principal

components, we effectively reduced the data’s dimensionality, which enabled us to concentrate

on major “themes”, i.e. uncorrelated linear combinations of original topics, that might impact

returns. For the insights from this analysis to hold value, it is essential that these themes are

highly correlated with the topics that are related to each other in a meaningful way. In order

to understand and appropriately label the themes, we pinpointed the five topics exhibiting the

highest absolute correlation coefficients with each component.

The inclusion of absolute returns in this stage of analysis is necessary because topics can

be framed positively or negatively. While some topics may be considered inherently “good” or

“bad” news, influencing the markets correspondingly, other topics may be directional in nature,

impacting markets positively or negatively based on their portrayal. To isolate the impact of

specific themes on returns, we account for these effects by combining the topics with sentiment.

However, at this point, our focus is primarily on the topics themselves, and less so on the

sentiment surrounding them. We are therefore concentrating on the absolute value of returns

rather than simply returns. Our aim is to uncover which topics hold relevance to the market, as

this would manifest through market volatility. We use standard bivariate vector autoregressions

(VAR) to identify the dynamic responses of absolute log returns to surprise increases in the

identified principal components. In these VAR models, our text measures are ordered first, and

the number of lags is determined based on the Akaike Information Criterion (AIC). Furthermore,

we generate cumulated Impulse Response Functions (IRFs) for the subsequent 20 working days

to examine the continued impact of these surprise increases.

Our analysis reveals several components that exhibit a significant impact on absolute returns,

indicating a pronounced response from investors. The accompanying VAR results of a few chosen

ones are displayed in Figure 7. Moreover, other components are interesting due to the particular
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combination of topics that these components are most highly correlated with. Table A1 in the

appendix provides more details on some of these components, including their respective shares of

total variation in topics. It also lists the five topics that exhibit the highest absolute correlation

with each component.

The first component, which accounts for approximately 4% of total variation in topic values,

is labelled “Business figures”. This label has been assigned due to the component’s high positive

correlation with topics related to results (topics 53 and 41), as well as changes in numbers (topic

67), and its negative correlation with topics 19 (public and social) and 12 (future challenges).

The names of the topics listed in Table A1 are assigned based on the most probable words

under each topic according to the estimated LDA model. For example, topic 53 is labelled

“quarterly results” because the words with the highest probability under this topic are ‘quarter’,

‘earnings’, ‘revenue’, ‘tax’, ‘ebitda’, and the like. The fact that this component explains the

highest percentage of variance in topic values shows that news on business aspects is covered

substantially. This matters for our purposes of analysing the effect of these articles on returns

of the companies and is hence a reassuring result.

However, the effect of this component on absolute returns is small, and only significant one

day after a surprise increase in the component. While one could argue that the reported figures

are results from past business activity, which may be partially priced in already, and that the

future prospects may be more relevant, direct news about the state of the business would still

be expected to matter for expectations on the next rounds of dividends, i.e. cash flow to stock

holders. Moreover, it indicates whether a company is on a profitable course. As we will explain

in more detail below, we rather interpret this as a need to provide more structure to our analysis,

as business results could be reported for any company in the salmon industry, not only those

reflected in our index. Especially the competitive relationships between salmon producers are

shown to matter in the latter course of this analysis. Hence, all articles cannot be treated equally.

Given the time frame of our data set, it is not surprising that the Covid pandemic had

significant effects on stock markets. Components five and six are specifically related to the

pandemic, with the former exhibiting a positive correlation with topic 36 (Covid news) and topic

83 (Corona infections in production facilities such as farms and processors). As seen from Figure

7, following a surprise increase in component five, which we label as ‘Covid and production’,

absolute log returns increase by 0.0013 (or 0.13 percentage points, given that log returns are
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expressed in percentages) four days post-shock, maintain that level for another 6 days, and then

revert to the original level 10 days subsequent to the shock. An explanation for the link between

Covid and volatility may be attributed to the uncertainty surrounding the pandemic’s duration

and severity, as well as its potential impact on the global economy.

Additionally, component five displays negative correlations with topics 37, 28, and 10, which

pertain to kilo prices for Norwegian salmon, salmon harvesting results, and outlooks on prices,

respectively. This negative correlation implies that these topics have a calming effect on the

markets. Although it may seem counter-intuitive that articles about prices and production

results are related to lower volatility, it can be explained by the fact that such articles appear

regularly and occupy significant shares of daily news only during periods of relative market

stability. In times of turmoil such as the beginning of the Covid pandemic, these topics are

overshadowed and occupy relatively little space in salmon-related reporting.

Components five and six both pertain to Covid, but they differ in their specific focus. While

component five combines news about Covid and production, the sixth component contains in-

formation on the role of Covid in salmon markets. This is indicated by the high and positive

correlation (36%, see Table A1) of this component with topic 13, which is frequently featured in

articles discussing business challenges, risk, and uncertainty in the markets. Given this focus, it is

not surprising that this component has a stronger effect on absolute returns, as seen in Figure 7.

Specifically, absolute returns increase immediately one day after a surprise increase in component

six (labelled “Covid and markets”), and this rise continues for the next 20 days (excluding days

8 and 9), peaking at an increase of about 0.0025. Overall, this response is more persistent and

prolonged. The negative correlation of the sixth component with topics on salmon commodity

and wholesale prices (topics 59 and 39, respectively), as well as mergers and acquisitions, can be

attributed to these topics being less prominent in discussions during turbulent times.

Shifting from the Covid-related components, we now turn our focus to another key driver

of market volatility: Component 17, labelled “Corporate & Stocks”. This component exhibits

a slowly building and prolonged influence on absolute returns, as depicted in the bottom-right

panel of Figure 7. The peak positive response of absolute log returns occurs 9 days after the

shock, and there is no evidence of a rebound effect. Being highly and positively correlated with

topics 41 (business results), 48 (management and boards, i.e., high-level personnel of producers),

and 69 (stock market news), this component covers various aspects related to business, which
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are expected to significantly influence investors’ decisions.

Business & figures Covid & production

Covid & markets Corporate & stocks

Figure 7: Cumulated impulse responses of SPI absolute returns to one standard deviation
innovations in selected components. Shaded regions are 68 percent confidence bands,
computed with bootstrap standard errors, using 1000 replications. The horizontal axis
represents the number of lagged days in the Impulse Response Functions (IRFs).

Another component of interest is component nine, which pertains to salmon production in

Chile. This is most notably indicated by its high and positive correlations with topics 76 and

52 (see Table A1), relating to Chilean producers and salmon farming in Chile, respectively.

Interestingly, topic 61, the topic on algal blooms, correlates positively with the component, too.

This suggests that algal blooms, deadly to salmon, are a concern that is more relevant (albeit not

exclusively) to production in Chile. This does not come as a surprise as at the beginning of 2016,

high and persistent harmful algal blooms (HABs) took place in the marine ecosystems of southern

Chile. A major mortality event of about 27 million salmon i.e. 39,000 tonnes) was caused by
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blooms in the Los Lagos Region (León-Muñoz et al., 2018; Montes et al., 2018). Indeed, the

articles in our data set with the highest values for shares of topic 61, algal blooms, cover events

taking place in Chile almost exclusively. Topic 33, which discusses SalMar’s offshore farming -

a firm in our index - correlates negatively with component nine, indicating once again that this

component focuses more on the competitors. In response to this component the absolute returns

of the firms within our index are seen to experience a brief, significant decline for three days,

before a swift recovery (IRF omitted). Hence, when news reporting is more focused, in relative

terms, on issues in Chile, stocks of the firms in our index exhibit relatively less volatility.

On the other hand, Component 12 is most highly and positively correlated with topics that

are relevant to our index: SalMar offshore farming, NTS acquiring Norwegian Royal Salmon

(NRS), and project licenses in Norway. This component has a positive and short-lived effect

on market volatility (IRF omitted). Again, it is worthwhile to investigate the topics that cor-

relate negatively as well: here, the ones worth mentioning are topics 85 and 3, which pertain

to Atlantic Sapphire land-based farming, and Aquabounty land-based and genetically-modified

(GM) farming (see Table A1). These two topics cover not only competitor companies, but also

competitive technologies. The Norwegian and Faeroese (i.e. Bakkafrost) companies in our index

produce mostly in pens in the sea. Their competitive advantage lies in access to high-quality

locations in natural waters. However, these locations are typically remote and far removed from

consumer markets. Hence, land-based farming, which in the news reporting here is opposed to

Norwegian sea-based farming, may become a significant threat to the companies in our index, in

case it can be scaled to produce substantial amounts of high-quality salmon.

4.2 Incorporating lexicon-based sentiment

In the following, we multiply the daily topic values with the daily sentiment, specifically calcu-

lated using the LM dictionary often used in financial literature, see e.g., (Li et al., 2020). Our

goal is to differentiate between positive and negative news concerning topics that inherently may

not possess any sentiment. Given this distinction, we can proceed and analyse the effect of news

on returns, including their direction. Prior to this step, human judgement was only involved in

the choice of methods, as the procedures used were mathematical and algorithmic and did not

require external guidance. However, the use of a dictionary approach for sentiment extraction

introduces an element of subjectivity, as the choice of words is based on the expertise of the
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creators of the dictionary.

The PCA results are strikingly different to the analysis above. The first component now

explains 26.5% of total variation in the values of topics multiplied with sentiment, compared to

4% in the analysis without sentiment. Furthermore, the topics that most highly correlate with

extracted components, when multiplied with sentiment, have changed, as well as the impact

of these components on returns. The correlations between key components and the sentiment-

weighted topics are provided in Table A2 in the appendix.

As shown in Figure 8, the first component, labelled “business expectations”, due to its co-

movement with topics 43 (plans & strategy), 35 (fear, harm, negative outlook), 68 (business data),

12 (future challenges), and 47 (contracts & agreements), has a marginally significant, small, and

prolonged effect on logarithmic returns. The effect is negative, which, given that the topic values

are multiplied with sentiment, stands in contrast to the expected positive effect. With sentiment

included in the analysis, one would anticipate that a surprise increase in sentiment about business

expectations would lead to an increase in logarithmic returns. However, we observe the opposite,

i.e. a negative relationship. As this component does not differentiate between different producers,

or clusters of producers, the negative correlation is mostly driven by the fact that there are only

five firms in our index, and many more competitors, and hence there are also more news articles

about other firms, which hence dominate the effect.

Components 3 and 4, and their respective effects on log returns, reveal one reason why

sentiment does not function as expected. We find two components, one labelled “Investments

Norway”, and the other one labelled “Investments rest of the world (ROW)” (investments includ-

ing M&A). As shown in Figure 9, a surprise increase in sentiment about investments in Norway

is followed by an increase in returns. Conversely, an unanticipated increase in sentiment regard-

ing investments in the ROW has the opposite effect. This difference in market reaction hints

to the prevailing effects of competition amongst firms in salmon markets. Increased sentiment

regarding investments into the productive capacities of firms reflected in our index raises the

expectations of future cash flows, and hence returns increase, and vice versa for a decrease in

sentiment about investment projects. Investments in the rest of the world, however, increase

competitive pressures on the companies in our index. Hence, a rise in sentiment about those

projects relates to declines in returns of our index, and vice versa.

The observation that some sentiment-weighted topics lack correlation with the components
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Business expectations

Figure 8: Cumulated impulse response of logarithmic stock returns to one standard devi-
ation innovation in component 1 labelled “Business expectations”. Shaded regions are 68
percent confidence bands, computed with bootstrap standard errors, using 1000 replica-
tions. The horizontal axis represents the number of lagged days in the Impulse Response
Functions (IRFs).

driving the market, as estimated in this section, is important. Specifically, topics related to Covid,

which had shown to be particularly relevant in the analysis without sentiment, and biological

aspects of salmon farming, such as algal blooms, do not seem to strongly correlate with the first,

third, and fourth components when their values are multiplied with the LM sentiment. While

it is anticipated that business and finance-related news would greatly influence returns, the lack

of prominent correlation of these other topics with the components driving the market can be

largely attributed to the nature of the sentiment dictionary used. The dictionary was initially

designed to identify sentiment in business reports from a wide range of companies, and thus

it effectively identifies sentiment in a business and finance-related context. Articles in which

other topics are discussed are consequently evaluated to have neutral sentiment. As a result,

variation in sentiment-weighted topics is driven by the topics that the sentiment dictionary is

able to recognize, rather than topics that may be relevant to salmon producers specifically, such

as those related to production processes.

The weaknesses of LM dictionary are clearly shown in Figure 10, which portrays the effect

of LM sentiment (left panel), as well as of topic 36 (Covid) multiplied with LM sentiment (right

panel) on logarithmic returns. It is generally anticipated that an increase in sentiment would
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Investments Norway Investments ROW

Figure 9: Cumulated impulse responses of logarithmic stock returns to one standard
deviation innovations in components 3, labelled “Investments Norway”, and 4, labelled
“Investments rest of the world (ROW)”. Shaded regions are 68 percent confidence bands,
computed with bootstrap standard errors, using 1000 replications. The horizontal axis
represents the number of lagged days in the Impulse Response Functions (IRFs).

result in a corresponding rise in logarithmic stock returns. However, an unexpected increase in

LM sentiment is observed to precede a marginally significant and prolonged decrease in these

returns (Figure 10, left panel). Moreover, an unexpected surge in sentiment about topic 36,

Covid, does not have a statistically significant influence on logarithmic returns (Figure 10, right

panel). The unusual negative correlation between returns and LM sentiment could potentially

be explained by the dictionary’s inability to account for competition dynamics in the salmon

market. As discussed earlier, sentiment is calculated based on articles not only about the firms

in our index but also their numerous competitors. At the same time, the insignificant effect

observed from the sentiment-weighted Covid topic could suggest the LM dictionary’s limitations

in accurately capturing the sentiment associated with non-financial news.

Moreover, we observe a striking similarity between the impulse response of stock returns to

LM sentiment and to the first component. This is likely due to every daily topic value being

scaled by the LM sentiment value for that same day, resulting in the variation in sentiment-

weighted topics being dominated by the variation in LM sentiment. Consequently, the topics

that correlate strongly with the first component serve as a reliable indicator of the type of news

that the sentiment index captures - primarily, financial and business-related news in this case.

Another example highlighting the importance of considering competition in the salmon mar-
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Sentiment LM Covid × LM sentiment

Figure 10: Left: cumulated impulse response of logarithmic stock returns to one standard
deviation innovation in LM sentiment. Right: cumulated impulse response of logarithmic
stock returns to one standard deviation innovation in topic 36 (Covid) multiplied with
LM sentiment. Shaded regions are 68 percent confidence bands, computed with bootstrap
standard errors, using 1000 replications. The horizontal axis represents the number of
lagged days in the Impulse Response Functions (IRFs).

ket when computing sentiment is topic 61, algal blooms. This topic correlates strongly and

positively with component 9, which pertains to salmon production in Chile and is extracted

based on topics only. This strong correlation suggests that during the period our data set cov-

ers, algal blooms were a more prominent issue in that part of the world. This is confirmed by

examining the articles that exhibit a high proportion of the topic about algal blooms. These

articles are almost exclusively related to aquaculture in Chile. The positive correlation of this

topic (not multiplied with sentiment) with the logarithmic returns of our index (top left panel in

Figure 11) reveals the competition effect in the data. Since news about algal blooms is reported

more frequently in relation to Chilean farms, we observe a positive correlation with log returns

of our index. Some algal blooms that had been reported in this period led to devastating losses

in Chilean farms, hence creating substantial contractions in total supply. For firms that did

not suffer from these losses, the supply shock could only be experienced as increased prices on

global salmon markets, thus increasing profits. Hence, this example vividly demonstrates the

competition effect: the logarithmic return of our index reacts positively to news about deadly

algal blooms, but the sign of the correlation changes once we account for sentiment (top right

panel in Figure 11). This means that a surprise increase in sentiment about algal blooms was

followed by a decrease in log returns of our index. It is worth noting that the LM dictionary
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effectively captures this topic, given the presence of words such as “loss”, “incidence”, and “suffer”

that are denoted as negative in the dictionary and also bear high probabilities in the distribution

of the topic on algal blooms.

Technological competition and competitive products are two specific kinds of competition

effects that might partially explain the negative correlation between the logarithmic returns of

our companies and the sentiment index calculated with the LM dictionary. For instance, topic

25 focuses on Nordic Aquafarms’ land-based salmon farming project in Maine. When multiplied

with LM sentiment, it exhibits a negative correlation with the stock returns of our index (see

the bottom right panel of Figure 11). Land-based production is a new and innovative technology

that could potentially threaten the competitive advantage of traditional salmon producers in

remote parts of the world with good access to high-quality water. If land-based salmon farming

can compete at relevant scales, remote production sites could potentially become a liability for

traditional producers, as production could then move closer to consumption markets. Thus, suc-

cessful investments by competitors in this technology can be seen as bad news for the companies

represented in our index. Similarly, the sentiment-weighted topic 42 on substitute products,

such as plant-based alternatives and meat, also demonstrates a negative correlation with the

logarithmic returns of salmon producers (see the bottom left panel of Figure 11). Positive news

about products that consumers may replace their salmon consumption with can be bad news for

salmon producers as well.

It is common practice to use sentiment dictionaries to identify the effects of news on stock

prices. However, we find that using a sentiment dictionary that is not tailored to the specific

industry can result in inaccurate analyses. The Loughran-McDonald dictionary, for example, was

not designed for the salmon aquafarming industry and thus misses important market structure

and industry-specific vocabulary. As a result, the version of the LM dictionary that we applied

does not capture the effects of natural disasters, such as algal blooms, storms or diseases that

impact salmon production. Additionally, the LM dictionary does not account for the impact

of the Covid-19 pandemic, which has been a major driver of market volatility in recent times.

To address these limitations, we suggest modifying the dictionary by adding domain-specific

vocabulary and differentiating between news about competitors and the firms in our index. Such

modifications could improve the accuracy of sentiment analysis and help investors make more

informed decisions based on news about the salmon aquafarming industry.
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Algal blooms Algal blooms × LM sentiment

Substitute products × LM sentiment Nordic Aquafarms land-based Maine
× LM sentiment

Figure 11: Cumulated impulse responses of logarithmic stock returns to one standard
deviation innovations in topic 61 (algal blooms), topic 61 multiplied with LM sentiment,
topic 42 (substitute products, such as meat and plant-based alternatives) multiplied with
LM sentiment, and topic 25 (Nordic Aquafarms’ land-based project in Maine, US) mul-
tiplied with LM sentiment. Shaded regions are 68 percent confidence bands, computed
with bootstrap standard errors, using 1000 replications. The horizontal axis represents
the number of lagged days in the Impulse Response Functions (IRFs).

4.3 Resolving limitations of the Loughran-McDonald dictionary

As highlighted earlier, the direct application of the Loughran-McDonald dictionary to our specific

data suffers from two limitations: firstly, the presence of a competitive market structure, where

news about our index firms elicits an opposite reaction to news on their competitors, renders the

approach inappropriate. To overcome this issue, we modify the sentiment of articles mentioning

at least one competitor but none of our index firms by multiplying the sentiment score by
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Extended sentiment (all articles)
Extended sentiment (articles on firms

from the share price index and
competitors)

Figure 12: Cumulated impulse responses of logarithmic stock returns to one standard
deviation innovations in sentiment, as measured with the extended dictionary. Left panel:
all articles; right panel: only articles that discuss firms from the share price index or
competitors. Shaded regions are 68 percent confidence bands, computed with bootstrap
standard errors, using 1000 replications. The horizontal axis represents the number of
lagged days in the Impulse Response Functions (IRFs).

−1. Secondly, the dictionary’s lack of sensitivity to industry-specific language necessitates its

expansion to include terms relevant to salmon production. These terms encompass technology,

diseases and natural disasters, market-specific expressions, and general sentiment-related words

that we deemed relevant but were not included in LM dictionary. The modified dictionary

contains 187 additional positive words and 336 negative words, thereby supplementing LM’s 347

positive and 2345 negative words. We deliberately excluded words that pertain exclusively to

the Covid crisis, such as “Corona” or “pandemic”, since their relevance was only apparent ex post

and would have been unpredictable ex ante. However, we included “virus” since viral infections

pose a significant challenge to salmon production. Nonetheless, as we shall demonstrate below,

the inclusion of “virus” is insufficient to elicit substantial variation in articles related to Covid.

In Figure 12, we present the impulse response of logarithmic returns following a shock to

the extended sentiment index. Remarkably, this small increment of words (amounting to only

16% of the words in the extended dictionary), in combination with competition effects, leads to

a significant positive (0.0015, or 0.15 percentage points, given that log returns are expressed in

percentages) effect of sentiment on returns seven days after the shock. Notably, our individual
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modifications to the dictionary could not yield such a substantial outcome, as evidenced by our

detailed results (omitted for brevity). Indeed, the combination of both extensions is crucial to

obtain the desired results. In the right panel, we display the impulse response for articles that

solely mention either the companies in our index or their competitors, indicating the potential

of filtering the data for pertinent articles. However, this unsophisticated analysis only provides a

preliminary indication of the scope of data filtering, since it potentially discards relevant articles

that do not mention firms directly, but yet carry important information for salmon markets.

Developing more efficient and refined methods of data filtering remains an open research question,

outside the scope of this paper.

Having shown that our solutions of extending the dictionary to include domain-specific vo-

cabulary, and imposing market structure on the data analysis has the desired effect such that

sentiment has a positive impact on markets, we can now proceed to present the results of a few

chosen topics combined with the extended sentiment index (Figure 13).

Algal blooms topic (topic 61, top left panel) multiplied with extended sentiment now has the

desired positive correlation with returns for three days after the shock. This is likely to be driven

mainly by the explicit introduction of a competitive market structure to our analysis, since algal

blooms are more likely to be associated with Chilean aquaculture in our data set, and therefore

are more likely to affect competitors. Word inclusions related to this well-known problem in

aquafarming may however also have had an improving effect on the results.

Covid (topic 36, top right panel) on the other hand is still not adequately accounted for.

We consciously decided against the inclusion of words that are straightforwardly linked to the

pandemic, as it could not have been foreseen before its outbreak. Hence, exogenous shocks from

unexpected directions are still not possible to analyse with this approach. However, this is an

expected results, as some shocks may indeed be unforeseeable and cannot be planned for.

The inclusion of domain-specific vocabulary has clear benefits to this approach as well, as

can be seen in the bottom panels of figure 13: topic 23 (bottom left), which pertains to diseases

in production facilities, multiplied with extended sentiment now has a highly significant effect

on returns, with the largest magnitude (0.002) observed. Naturally, the LM dictionary could

not pick up news on such topics, and overall there may be good or bad news about diseases

(outbreaks, or successful mitigation, for instance). By including words that relate to typical

farmed salmon diseases, we could achieve this positive correlation between a sentiment-weighted
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Algal blooms × extended sentiment Covid × extended sentiment

Diseases × extended sentiment R&D × extended sentiment

Figure 13: Cumulated impulse responses of logarithmic stock returns to one standard
deviation innovations in topics 61 (algal blooms), 36 (Covid), 23 (diseases), and 71 (re-
search & development), all multiplied with the extended sentiment index. Shaded regions
are 68 percent confidence bands, computed with bootstrap standard errors, using 1000
replications. The horizontal axis represents the number of lagged days in the Impulse
Response Functions (IRFs).

topic that is highly specific, and the respective returns on company shares.

A similar effect can be observed for topic 71, which pertains to news on research and develop-

ment (R&D) in salmon farming. These articles discuss technological and biological solutions to

issues or difficulties in salmon production, which are also highly field-specific. With the extended

sentiment, we find a positive correlation between the sentiment-weighted topic and returns in the

long-run (9 days after the shock). Other examples (omitted) are the effects of topics 24 (escapes),

29 (Scottish salmon, Brexit), 57 (risk measures), 73 (construction of land-based facilities), 79
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(biological performance), 87 (technology), 95 (project licenses Norway), 97 (Mowi business &

management), all multiplied with extended sentiment.

Our analysis is supported by the VAR findings derived from components based on topics

multiplied by the extended sentiment. As illustrated in Figure 14, after a short lag period,

the impulse response of logarithmic stock returns to one standard deviation innovation in the

first component turns significantly positive. Notably, the response to this innovation in the first

component is nearly indistinguishable from the impulse response to an innovation in sentiment

alone (see Figure 12), as seen in the case of topics multiplied with LM-sentiment (Figures 8,

and 10, left panel). This suggests that a substantial portion of sentiment is effectively captured

by the first component. This is underlined by first component’s large share in explaining total

variation of topic values combined with sentiment of 28.9%.

Furthermore, the sentiment-weighted topics that exhibit strong correlation with this compo-

nent (see Table A2) mirror the sentiment-weighted topics that have substantial correlation with

the first component in the LM-sentiment analysis (see Table A3 in the appendix). The top three

sentiment-adjusted topics that share the strongest correlation are the same, albeit in a different

order. The fourth and fifth sentiment-adjusted topics, which demonstrate a notable correlation

with the first component - namely, “People, Projects & Perspectives” and “Green Bonds” - inte-

grate seamlessly within the overarching theme of the component. This similarity can be ascribed

to the relatively small addition of words to the sentiment dictionary. It is promising that such a

minor adjustment to the financially-oriented LM dictionary can nudge the response towards the

expected direction and improve the results substantially.

We omit the second component as it primarily pertains to business-related news, similarly

to the first component. However, since components are orthogonal by construction (being eigen-

vectors of the covariance matrix), it appears to capture rather spurious aspects in the behavior

of topics. Instead, we draw attention to two additional components that, when subjected to a

one standard deviation shock, produce statistically significant responses in log returns (Figure

15).

Component 4, labelled “Chile & algal blooms”, demonstrates a positive association with topic

61, concerning algal blooms, as well as topics 52 and 76, both of which address salmon aquaculture

in Chile (see Table A3). More precisely, Component 4 suggests that, considering the increased

frequency of algal blooms in Chile as opposed to Norway or the Faroe Islands, calamities occurring

30



Business plans & expectations

Figure 14: Cumulated impulse response of logarithmic stock returns to one standard
deviation innovation in component 1 based on topics multiplied with extended sentiment.
Shaded regions are 68 percent confidence bands, computed with bootstrap standard errors,
using 1000 replications. The horizontal axis represents the number of lagged days in the
Impulse Response Functions (IRFs).

within the Chilean aquaculture industry may contribute to a rise in our constructed index.

This verifies that the salmon market is subjected to competition. Furthermore, Component 7,

broadly labelled “Salmon Industry”, relates to various topics specifically addressing aspects that

are specific to salmon markets and production, such as topic 37 “Norwegian Salmon Prices”,

topic 11, which covers articles about a collaboration between Salmon Evolution and Dongwon to

establish a land-based production facility in Korea, and topic 28, “Salmon Harvesting Results”.

Shocks to either component generate positive impulse responses, as anticipated due to the

multiplication of topics with sentiment values. Most importantly, however, our findings indicate

that the added terms in the dictionary enable us to uncover salmon industry-specific topics that

are prominent in the data, as evidenced by their strong correlation with components based solely

on topics. Thus, the addition of domain-specific vocabulary not only improves impulse responses

to sentiment and its combination with topics but also enhances our ability to analyze a specific

market with its unique characteristics.
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Chile & Algal Blooms Salmon Industry

Figure 15: Cumulated impulse responses of logarithmic stock returns to one standard
deviation innovations in components 4 (“Chile & algal blooms”) and 7 (“Salmon Indus-
try”) based on topics multiplied with extended sentiment. Shaded regions are 68 percent
confidence bands, computed with bootstrap standard errors, using 1000 replications. The
horizontal axis represents the number of lagged days in the Impulse Response Functions
(IRFs).

4.4 Out of Sample Forecasting Exercise

While the main purpose of the study is to understand what type of information drives returns of

salmon producer stocks, we validate the findings through an out-of-sample forecasting exercise.

This will provide a financial significance check, determining whether these results could underpin

profitable trading strategies.

Following the methodology established by (Li et al., 2020), we attempt to predict stock price

movements. Specifically, we sort the close-to-close stock price returns in ascending order to label

each stock. We use the 25th and 75th percentiles of the close-to-close stock price returns as

thresholds for this label determination. Hence, if the return is in the bottom 25%, the label is

defined as “fall” (class 0); if it is in the top 25%, the label is “rise” (class 2); for the middle 50%,

it is labeled as “horizontal” (class 1).

Our dataset is partitioned into a training set (spanning 13th January 2016 to 11th November

2021) and a test set, constituting 10% of the data (12th November 2021 to 11th July 2022).

The Support Vector Machine (SVM) model serves as our fundamental analytical tool, often

used as the benchmark in literature predicting stock market movements. Despite the potential

for better performance from models like Long Short-Term Memory (LSTM), our focus is not on
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finding the most sophisticated model, but rather understanding if our proposed analysis could

enhance out-of-sample forecasting.

Model parameters are fine-tuned using 10-fold cross-validation, where we select penalty C and

polynomial degree d. We consider a grid of values for C (100, 100.25, ..., 103) and for d (2, 3, 4, 5),

aligned with (Li et al., 2020). Given the class imbalance in our data (40, 74, and 49 observations

in classes 0, 1, and 2, respectively), the weighted average F1-score serves as our cross-validation

metric.

Our SVM uses a polynomial kernel and adopts a “one versus one” strategy for this multi-

classification task. To examine if components based on topics multiplied with extended sentiment

can improve market movement prediction beyond price data alone, we estimate SVM models with

varying feature sets.

The baseline model includes only the close price Closet−1 and volume V olumet−1, with a lag

of one period, following the most popular practices (Li et al., 2020). Both variables are equally

weighted for the five companies in our index. We experimented with using returns instead of

close prices, but the performance on the test set was comparable, so we chose to retain the close

prices.

Our second model incorporates sentiment estimated using the LM dictionary in addition to

the price features, again with a lag of one period. The third model specification brings into

play prices along with components derived from topics multiplied by the LM sentiment. In this

instance, we factor in the first lag of the first component owing to its substantial role in explaining

the variation. We also incorporate five other variables that represent lags ranging from 1 to 10

of the ten components most strongly correlated with log returns in the training dataset.

Our fourth model combines prices and extended sentiment from the period t− 1. Lastly, our

fifth model encompasses prices along with components based on topics multiplied by extended

sentiment. Just as in the third model, the first lag of the first principal component is included due

to the high percent of variance it explains. Additionally, five other variables are incorporated,

which represent lags ranging from 1 to 10 of the ten components that are most highly correlated

with log returns in the training data. Initially, we attempted to include the principal components

at period t, however, the resulting weighted F1 metric was lower, and hence, in the final model,

we only considered the lags of the components. Our feature selection process has been carefully

designed to include the most meaningful variables for forecasting.
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Model performance on the test set is evaluated using the weighted average F1-score. For

models that incorporate text features, we compute the performance improvement attributable

to the news information using the following metric:

∆news =
F1p,text − F1p

F1p
(9)

Here, F1p,text represents the weighted average F1 score when utilizing both information

sources—text and prices—while F1p stands for the F1 score with only price information.

Table 2 presents the F1-scores and ∆news values for each model.

Model Weighted Average F1 ∆news

Prices 0.28 -

Prices + LM Sentiment 0.28 0

Prices + LM Components 0.31 0.10

Prices + Extended Sentiment 0.28 0

Prices + Extended Components 0.38 0.32

Table 2: Forecasting improvements due to the inclusion of sentiment and topic components
(news).

These results highlight that incorporating only sentiment (either LM or extended) does not

enhance performance relative to the baseline prices-only model. However, including components

based on topics multiplied with sentiment (LM or extended) significantly increases the F1 score.

Specifically, the increase is by 10% with LM sentiment and 32% with extended sentiment.

In conclusion, this study demonstrates the potential of our text information extraction ap-

proach in enhancing out-of-sample forecasting. While it remains a limited experiment using a

single model, it serves its purpose: to verify that text matters.

5 Discussion

In this study, we conducted a comprehensive examination of over 6000 news articles covering

salmon production and markets, intending to assess the influence of news on the stock returns of

the largest salmon-producing companies listed on the Oslo Stock Exchange. To derive meaning
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from this unstructured data, we employed Latent Dirichlet Allocation (LDA) to generate topics,

as well as a dictionary approach to analyze sentiment.

Initially, we explored the impact of topics on markets by consolidating them into components

and utilizing Vector Autoregression (VAR) analyses on these components and logarithmic stock

returns. Given that news coverage can encompass both positive and negative aspects, the effect’s

direction remains undefined, thus constraining our analysis to absolute returns. Owing to the

specific time frame examined, news concerning the Covid-19 pandemic dominated the topics and

their market repercussions. Nevertheless, we identified significant market reactions driven by the

component related to corporate news and stocks, too.

Upon evaluating topics combined with sentiment, we found that sentiment dictionaries are not

sufficiently adaptable to domains other than those they were originally designed for. Specifically,

a surprise increase in sentiment constructed using the Loughran-McDonald dictionary, which was

tailored for financial data, resulted in a marginally significant effect on logarithmic returns with

an incorrect sign. One rationale for this outcome is that the dictionary was designed to detect

sentimental expressions in the financial reporting of companies, neglecting industry-specific news.

Moreover, our stock index solely comprised the largest companies on the Oslo Stock Exchange,

influencing the results due to the competitive market structure of salmon markets. Although

concentrating only on news directly and specifically related to the underlying firms could solve

this issue, it would simultaneously disregard vital general news about the salmon industry, such

as research not conducted by the producers, or news about competitors that could impact other

firms, either directly or indirectly. Alternatively, we addressed this issue by inverting sentiment

in articles concerning competitor firms.

To tackle these challenges, we augmented the LM sentiment dictionary by incorporating

industry-specific terms and considering the market structure, thereby constructing a sentiment

index that has the desired impact on stock returns. This methodological contribution holds

general relevance, since language is highly dependent on context. Employing the extended dic-

tionary and explicitly considering competition between producers, we achieved the anticipated

positive correlation between sentiment and returns. Additionally, we observed the effects of

industry-specific topics on returns, including algal blooms, diseases, and R&D.

However, we discovered that the extended dictionary and explicit competition effects could

not account for the Covid topic, representing an archetypal unanticipated exogenous shock to
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the market that could not have been represented in the dictionary ex ante. Although space

constraints in this paper did not permit an in-depth discussion of numerous additional top-

ics, we contend that the enhanced sentiment index we devised will prove beneficial for future

investigations of news effects on financial markets.

In our out-of-sample experiment, we aimed to demonstrate the value of incorporating senti-

ment and topics into financial forecasting models. We found that integrating components based

on topics multiplied with sentiment, particularly extended sentiment, significantly improved the

performance of the SVM model in predicting stock market price movements, as evidenced by

the higher weighted average F1 score. This improvement underlines that news information can

provide substantial predictive power beyond what is captured by price data alone.

One constraint of our study was the limited number of news articles and the relatively brief

time series under examination. Future studies could consider broadening the time series horizon

and incorporating articles from additional news sources to address these limitations. We believe

that our extended dictionary holds potential for application in similar studies within aquaculture

economics beyond the salmon industry. Moreover, future research focusing exclusively on salmon

markets could contemplate further expanding the dictionary to encompass competitive seafood

markets, such as shrimp, tuna, and others, thereby enhancing the scope and applicability of the

sentiment analysis. Finally, the exploration of enhanced data filtering techniques that preserve

general market news and competitor information, while still removing unrelated noise, could be

considered for future research. In particular, our study emphasized the importance of accounting

for competition and market structure, but a trade-off emerged between focusing on articles

directly related to the firms in question (thereby increasing significance), and retaining crucial

news about the overall market.
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