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Abstract: The discussion of what matter and mass are has been going on for more than 2500 years.
Much has been discovered about mass in various areas, such as relativity theory and modern quantum
mechanics. Still, quantum mechanics has not been unified with gravity. This indicates that there is
perhaps something essential not understood about mass in relation to gravity. In relation to gravity,
several new mass definitions have been suggested in recent years. We will provide here an overview
of a series of potential mass definitions and how some of them appear likely preferable for a potential
improved understanding of gravity at a quantum level. This also has implications for practical things
such as getting gravity predictions with minimal uncertainty.
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1. Mass and Gravity: A Short Historical Perspective

The atomists Democritus and Leucippus, who lived around 500 B.C., assumed that
all matter and energy ultimately consisted of indivisible particles with spatial dimensions;
see [1,2]. Next, let us move forward to Isaac Newton, who had similar ideas as the ancient
atomists about the ultimate building blocks of nature. In his book Optick [3], published in
1704, Newton wrote:

“All these things being consider’d it seems probable to me, that God in the Beginning
form’d Matter in solid, massy, hard, impenetrable, movable Particles, of such Sizes and
Figures, and in such Proportion to Space, as most conduce to the End for which he
form’d them; and that these primitive Particles being Solids, are incomparably harder
than any porous Bodies compounded of them; even so very hard, as never to wear or
break in pieces; no ordinary Power being able to divide what God himself made one
in the first Creation. While the Particles continue entire, they may compose bodies
of one and the same Nature and Texture in all Ages; But should they wear away, or
break in pieces, the Nature of Things depending on them, would be changed. Those
minute rondures, swimming in space, from the stuff of the world: the solid, coloured
table I write on, no, less than the thin invisible air I breathe, is constructed out of
small colourless corpuscles; the world at close quarters looks like the night sky–a few
dots of stuff, scattered sporadically through and empty vastness. Such is modern
corpuscularianism.”

In his more famous book Principia [4], first published in 1686, Newton also indicated
that ultimate particles have spatial dimensions, or extension in space:

“The extension, hardness, impenetrability, mobility, and vis inertiae of the whole,
result from the extension, hardness, impenetrability, mobility, and vires inertiae of the
parts; and thence we conclude the least particles of all bodies to be also all extended
and hard and impenetrable, and moveable, and endowed with their proper vires inertia.
And this is the foundation of all philosophy. Moreover, that the divided but contiguous
particles of bodies may be separated from.”
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This is in contrast to modern physics’ hypothesis that elementary particles can even
be point particles and, yes, that even all the mass and energy of the observable universe
can fit inside a singularity, something that would be impossible in atomism and Newton
theory. Newton, in Principia, also mentioned indivisible time, which is discussed in detail
in [5]. Newton further defined mass as the quantity of matter, or in his own words:

“The quantity of matter is the measure of the same, arising from its density and
bulk conjunctly. It is this quantity that I mean hereafter everywhere under the name of
body or mass.”

What is often forgotten in modern physics is that Newton’s gravity force formula, that
he only stated by word in Principia, had no gravity constant and corresponds to:

F =
Mnmn

R2 (1)

On purpose, we use a different notation of the mass than in today’s modified Newton
force formula. We use Mn and mn for the mass rather than M and m to make it clear this is
Newtonian mass, not the modern kilogram mass. The original Newton formula was used
at least as late as 1873, which is also clear from Maxwell’s [6] famous book A Treatise on
Electricity and Magnetism, where he defined gravitational acceleration as simply g = Mn

R2

rather than the modern g = GM
R2 and also discussed the meaning of the Newtonian mass to

some extent; something we soon will get back to. Actually, Maxwell used the notation m
R2

for the gravitational acceleration, but here, we have used Mn, again to distinguish it from
the kilogram mass and also to distinguish the large mass in the Newton formula from the
small. The Newton gravitational formula was successfully used for 200 years without any
gravitational constant.

The so-called Newton gravitational constant was actually first introduced in 1873
by Cornu and Baille [7]. They gave the formula F = f Mm/R2, where f was the gravity
constant. Boys [8] in 1894 is likely the first to use notation G for the gravity constant.
Einstein [9] used the notation k for the gravity constant at least as late as 1916, and Max
Planck used the notation f to at least 1928. It is naturally only of cosmetic interest if one
uses f , k, or G for the gravity constant. What is important here is that the gravity constant
was introduced hundreds of years after Newton invented his gravitational force formula,
and researchers had used it successfully for a long series of gravity predictions with no
knowledge of any gravity constant. We think it is no coincidence the gravitational constant
was introduced about the same time as the kilogram mass became the new mass standard
in scientific circles, not only for smaller masses but now also for astronomical objects. The
Newton gravity force formula is today known as:

F = G
Mm
R2 (2)

Thüring [10] has correctly pointed out that the gravity constant was inserted somewhat
ad hoc and that it also cannot be associated with a unique property of nature. This will
all become clearer in this paper. It is also often claimed that Cavendish [11] measured
the gravitational constant. This is not true, as is pointed out in several papers [12–14].
Cavendish just measured the density of the Earth relative to a known uniform substance.
What is true is that a Cavendish apparatus can also be used to measure the gravitational
constant after one has defined the kilogram mass of the large balls in the Cavendish
apparatus, but Cavendish never tried to do this.

The gravitational constant was invented to make one standardized system universal
for all masses, including astronomical mass or what can better be described as gravitational
mass, for astronomical predictions are almost always related to gravity, and one went for
the kilogram in this standardization process. That it was the kilogram is not important
here; it could just as well have been the pound. What is important is that one now wanted
to use a humanly-defined, arbitrary clump of matter as mass standard rather than, for
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example, the somewhat mysterious mass that came directly out of Newton’s formula, but
that had been used successfully for several hundred years. It will become evident that
this could be viewed as a misstep, potentially contributing to the limited advancements
in quantum gravity research. In this paper, we will delve deeper into our understanding
of the mass related to gravity, as well as the gravitational constant. Surprisingly, even the
standard theory of gravity appears to contain quantum aspects when examined at a deeper
level, which are connected to the Planck length and the reduced Compton frequency in the
gravitational mass. We will soon explore these aspects further. Hence, we may be closer to
a quantum theory of gravity than we previously assumed.

2. Different Mass Definitions in Gravity; Which One Is Preferable?

We will below briefly examine some of the mass definitions; we will compare them
in terms of how complete the mass definition is and what are the plus and minus with
the different definitions. Our focus in this article is mass in relation to gravity. In physics,
gravity theory spans from Newton to Einstein, and that has been successful at predicting
accurately many observations for large macroscopic and larger size objects such as moons,
planets, and suns; see, for example, [15]. On the other hand, we have quantum mechanics
that has been successful at describing the atomic and subatomic world; see, for example, [16].
In standard theory, it has not been possible to bridge these two theories together; that is, to
unify gravity with quantum mechanics. A key to achieve this is, therefore, in our view, to
understand mass more deeply in relation to gravity, which is the aim of this article.

2.1. Kilogram Mass

In 1799, the Kilogramme des Archives protype was designed as the weight of 1 dm3

water at the temperature of its maximum density, about 4 Celsius. Later, a kilogram
prototype stood in Paris. However, the kilogram was hardly used yet in the rest of Europe.
The kilogram mass definition of mass was first accepted in scientific circles across Europe
after 20 May 1875 when the meter convention was signed in Paris by 17 nations. The
international prototype of the kilogram was the kilogram standard from 1889 to 2019.

The kilogram is related to weight, and mass is not weight, but already in Principia,
Newton pointed out that weight is proportional to the amount of matter for a given
gravitational field. That is, one object weighing twice as much as another when measured
at a location with the same distance to the center of the gravitational object—in our case,
the Earth—then also has twice the amount of mass.

When it comes to gravity theory, modern physics gives little insight into what mass
is. The weak equivalence principle between inertial mass and gravitational mass is often
discussed. Standard quantum mechanics, which describes the behavior of matter at the
quantum level, has not yet been successfully integrated with the theory of gravity. De-
spite numerous attempts and some progress, there is a general consensus that a major
breakthrough is still needed in this area, as evidenced by sources such as [17–20].

In 2019, the kilogram was redefined as being linked to the Planck constant in con-
nection to the watt balance; see [21–23]. However, this redefinition has not significantly
contributed to the understanding of how mass works at the quantum level in relation to
gravity within standard physics.

2.2. Deeper Understanding of Kilogram Mass

Arthur Holy Compton [24] in 1923 expressed the Compton wavelength of an electron
as the following function of the kilogram mass of the electron:

λ =
h

mc
(3)
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We [25,26] were possibly the first to simply think about solving this for mass m and
claiming any kilogram masses can be expressed by the formula:

m =
h
λ

1
c
=

h̄
λ̄

1
c

(4)

where λ̄ = λ
2π is the reduced Compton wavelength and h̄ = h

2π is the reduced Planck
constant also known as the Dirac constant. Solving the Compton wavelength formula
for m is trivial, yet it has not received much attention despite its potential significance, as
will become apparent when we explore its implications for gravity. Some will perhaps
think that one can only, at best, do this for an electron, as Compton came up with the
Compton wavelength from scattering electrons with photons, and this gave a measure
of the Compton wavelength for electrons. There has also been discussed the Compton
wavelength of the proton; this was possibly first discussed by Levitt [27] in 1958, and has
later been discussed by, for example, [28]. Likely only elementary particles such as the
electron have a single Compton wavelength related to physical aspects of their structure.
Moreover, composite particles have an aggregated Compton wavelength that is the sum of
the Compton wavelengths of the elementary particles comprising their mass. However,
calculating the aggregated Compton wavelength in a composite particle is not as simple as
pure addition; it must be determined using the following formula:

λ =
1

∑n
i

1
λi

=
1

1
λ1

+ 1
λ2

+ 1
λ3
· · · 1

λn

(5)

This is discussed in detail in [29] and can even be used to find the Compton wavelength
of the mass-energy equivalent in the whole observable universe, fully independent even of
knowledge of G and h̄, see [30]. There is an additional small adjustment for binding energy
(see, for example, D’Auria [31]), but it is always less than 1% and typically considerably
less than 1%, so even ignoring it, one will be quite accurate.

Next, we will look closer at the kilogram mass in relation to gravity, but at a deeper
level than you will find in even advanced physics books and papers. Our approach will be
simple, but this does not imply that it cannot give deep new insight into gravity. As gravity
physics has stagnated, the approach has mainly been to add more and more complexity in
math and in fancy terms on the “top” of existing theory, but such an approach has, in our
view, led to little. The people involved in adding complexity to a fundament when they
do not understand gravity at depth will naturally often claim something different; they
have built their career on putting out papers with more and more complexity that fewer
and fewer researchers can understand. However, one thing we have in common: complex
theories in quantum gravity and our simple approach, that will come clearer in this paper,
both assume the Planck scale plays an important role in quantum gravity theory.

The Planck units were published by Max Planck [32,33] in 1899 and 1906. He assumed
there were three important universal constants: the speed of light, the Planck constant,
and the gravitational constant. Furthermore, Planck utilized the Boltzmann constant
(kb), which, in essence, simply serves as a conversion factor between temperature and
energy, specifically relating joules to temperature. Then, combining these with dimensional

analysis, he derived a unique length: lp =
√

Gh̄
c3 , time: tp =

√
Gh̄
c5 , mass: mp =

√
h̄c
G , and

temperature: Tp = 1
kb

√
h̄c5

G . These are today known as the Planck units.
Mathematically, we can easily solve the gravity constant from the Planck mass formula.

This gives G = h̄c
m2

p
. This was done in 1984 by Cahill [34,35], who suggested that the gravity

constant was likely a composite constant and that the Planck mass was more fundamental.
Cohen [36] derived the same formula for G but correctly pointed out that, as no one had
been able to find a way to find the Planck mass or other Planck units without first knowing
G, this would just lead to a circular problem that not seemed possible to solve. This has
been repeated at least as late as 2016; see [37]. In other words, G seemed much more
fundamental than the Planck units, as the Planck units could be derived from G and c and
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h̄, but G seemed like it could not be derived from any Planck unit as one had to know G to
find these.

However, in 2017, we [38] showed for the first time how one could find the Planck
length independent of any knowledge of G and showed that the Planck length can be found
using a Cavendish appartus as given by

lp =

√
h̄2π2LR2θ

MT2c3 (6)

In the equation above, h̄ represents the reduced Planck constant, L denotes the distance
between the two small balls in the apparatus, R is the distance between the center of the
large ball and the small ball, T stands for the measured oscillation period, c indicates the
speed of light, θ refers to the measured angle of deflection, and M is the mass in kilograms
of one of the large balls in the Cavendish apparatus.

To determine the mass of the large ball in the Cavendish apparatus, one can use a
standard weight balance to find its relative weight in comparison to the old (pre-2019 NIST
standard) prototype of the kilogram. It is important to note that while knowledge of G is
not required to find the kilogram mass of the large balls in the Cavendish apparatus, one
does depend on the kilogram definition of mass, as well as on the calibration of the Planck
constant to the chosen clump of matter known as the kilogram. The gravitational constant
G in relation to the kilogram is actually only needed to find the kilogram mass of objects
that are so large that we cannot find their weight by a balance weight. Astronomical objects
such as the Earth and the Moon naturally fall into this category.

Recent research [39] has shown that the Planck length can also be determined in a
Cavendish apparatus using the following equation:

lp =

√
λ̄M2π2LR2θ

T2c2 =
πR
Tc

√
λ̄ML2θ (7)

In this equation, λ̄M denotes the reduced Compton wavelength of the large mass in
the Cavendish apparatus. Importantly, this approach does not require any information
about the kilogram or the Planck constant but instead relies on the reduced Compton
wavelength of the mass in question. The reduced Compton wavelength of any mass can be
determined independently of knowledge of h̄ or the kilogram mass of the mass in question,
as discussed in [39,40].

Later, we have shown how the Planck length and Planck time can be found independent of
G h̄ and even without knowledge of c; see [29,40]. So, now that we know we can easily find the
Planck length independent of G, then we can solve the Planck length formula for G; this gives:

G =
l2
pc3

h̄
(8)

That is, we can now claim the gravity constant is a composite constant consisting of
more important constants; see [41] like the Planck length. While this composite formula
for G may offer limited insight on its own, our aforementioned paper demonstrates that all
observable and verifiable gravity phenomena can be described in terms of the Planck length;
see also Section 7. Furthermore, as we will demonstrate in this paper, the Planck constant
embedded in the composite constant, we will soon see cancels out and is not necessary for
any gravity predictions. Additionally, we will show (in Sections 2.3, 6 and 7) that we can
achieve quantization in gravity without affecting the output predictions. It is when G in its
composite form is multiplied by the mass in kilogram, as expressed in Equation (4) above, we
see something interesting:

GM =
l2
pc3

h̄
h̄

λ̄M

1
c
= c3 lp

c
lp

λ̄M
= c3tp

lp

λ̄M
(9)
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where λ̄M is the reduced Compton wavelength of the mass M. That is, the Planck con-
stant embedded in the gravity constant cancels with the Planck constant embedded in
the kilogram mass. Be aware that all gravity phenomena that are related to something
that we can observe are predicted by GM in the formula for that phenomenon and not
GMm. Two-body problems where we do not have m� M have gravitational parameter
µ = G(M + m) = GM + Gm; in other words, one always has G multiplied by the kilogram
mass when predicting something observable. Actually, c3tp

lp
λ̄M

is equal to c3 times what we
have coined the collision-time mass—something we soon will get back to. The important
point here is that the 1873 form of Newton gravity theory needs G to correct the kilogram
mass into a mass that is related to gravity. It removes the Planck constant embedded in the
kilogram mass and puts the Planck length in. This is naturally not something they had in
mind when inventing the gravity constant, as the Planck constant and Planck units were
not even invented yet in 1873. The gravity constant is what is missing in the kilogram mass
that one finds by calibration, and at a deeper level, this is exactly what is happening when
one gets the Planck constant out and the Planck length into the mass.

The kilogram mass is, in our view, incomplete. The kilogram mass contains infor-
mation that gravity does not care about and that therefore is not needed for gravitation.
Anything about kilogram units cancels out when the Planck constant embedded in G
and M cancels out against each other when they are multiplied with each other as they
do when we are going to predict a gravity-related phenomenon. This means that any
gravitational phenomenon that can be predicted and checked with observations can be
done so without knowing the kilogram mass or the gravitational constant, as demonstrated
in [42]. However, this does not mean that gravity is not dependent on mass, but rather that
important components of gravitational mass are not contained in the kilogram mass, and
also that the kilogram mass contains unnecessary information about gravity.

To work with kilogram mass in gravity therefore leads to unnecessary calibration steps
to make gravity predictions. First, one must find G by, for example, using a Cavendish
apparatus. Next, one must find the kilogram mass of, for example, the Earth, then multiply
these two together to again get rid of the kilogram units that both G and M contain. Why
this is not optimal will become clearer as we look at other mass definition alternatives
to kilogram.

2.3. Collision-Time Mass

We have, in a series of papers [43–45], laid out the foundation and discussed what we
call collision-time mass and collision-length energy. The collision-time mass for any mass
is given by:

mt =
lp

c
lp

λ̄
= tp

lp

λ̄
(10)

where λ̄ represents the reduced Compton wavelength of the mass under consideration.
Therefore, if you are working with a large mass in the Newton formula, the reduced
Compton wavelength would be denoted as λ̄M.

That is, any mass is the Planck time multiplied by a factor lp
λ̄

, where this factor is equal
to the number of Planck mass events per Planck time, and the Planck mass in collision-time
is simply the Planck time. That is correct; we have defined mass as a particular type of
time. This is the time two indivisible particles are standing together in a collision. We
have not just assumed that the duration of this is the Planck time; this is what we find
when calibrating out gravity model to gravity phenomena; see the papers just mentioned
above. The factor lp

λ̄
gives quantization. It is the reduced Compton frequency in the mass

of interest per Planck time.
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The collision-time mass is simply equal to the kilogram mass multiplied by
l2
p
h̄ that

again is equal to multiplying the kilogram mass with G
c3 . Based on this set up, the new

gravity force formula is given by

F = c3 Mtmt

R2 (11)

This gravity force formula has output units m·s−1 while the 1873 Newton gravity
force formula has output units kg·m· s−2. Be aware that the original Newton force formula
also has different output units than these two gravity force formulae, something we soon
will get back to. Still, despite different output units than the 1873 Newtonian modified
gravity force formula, this new gravity force formula gives the same predictions both in
numbers and output units as the one used today. This because the small mass cancels out
in any derivation of something observable, and the gravity constant times the large mass
is identical in our new formula and the 1873 Newton force formula both in value and in
output units—that is, c3Mt = GM.

This means our gravity constant in the new formulation is c3. This has a big advantage
over standard 1873 Newton gravity theory as c has no uncertainty in it. Furthermore, even
if we should just measure it, we need no knowledge of gravity to do so. One can even order
amateur kits and measure the round-trip speed of light with relatively low measurement
uncertainty. That the speed of light is entering the gravity force formula strongly indicates
it is the speed of gravity. In that case, we should also be able to extract it from gravity
phenomena, something that we can easily do, as we have demonstrated in [40]. That the
speed of gravity is the same as the speed of light has been assumed for a long time; see, for
example [46]. However, this has been confirmed first recently by measuring gravitational
waves; see [47]. The approach that we have presented is, however, measuring the speed
of gravity in a much easier way, as we claim to have discovered that the speed of gravity
must unknowingly be embedded in even standard Newton theory.

We naturally also need to know the collision-time mass of the large mass in the gravity
force formula to make any gravity predictions based on Equation (11). This mass we can
find easily from most observable gravity phenomena. For example, we can measure the
gravitational acceleration on Earth by dropping a ball from height H. The gravitational
acceleration is then given by the well known formula:

g =
2H
T2

d
(12)

where Td is the time it took from we adropped the ball until it hit the ground. In other
words, there is no need to know G or the kilogram mass to measure this. The gravitational
acceleration in standard 1873 Newton gravity is given by g = GM

R2 , but that is for prediction.

Similarly, in our theory, it is given by g = c3 Mt
R2 , so now we can set this equal to the measured

g and solve with respect to Mt. We get:

c3Mt

R2 =
2H
T2

d

Mt =
2HR2

T2
d c3

(13)

Now that we know the collision-time of the Earth, we can use it to predict a series of
other gravity phenomena. The formulae are the same as in standard Newton gravity theory,
except M is replaced with Mt, and G is replaced with c3 (see Section 7). On the other hand,
if we should find the kilogram mass of the Earth from gravitational acceleration, we get:
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GM
R2 =

2H
T2

d

M =
2HR2

T2
d G

(14)

In this case, M is dependent on finding the gravitational constant first. That is, to
find the kilogram mass of the Earth, we need to do additional gravitational observations
of a small mass that we have already linked to the kilogram. This can be done in a
Cavendish apparatus. So, finding the kilogram mass of an astronomical object is both more
complicated than finding its collision-time mass, and it also leads to higher uncertainty,
as we need a constant with considerable uncertainty, namely G, while in c there is no
uncertainty. This is discussed at length in [48].

Alternatively, we can model gravity from collision-length energy [45,49] given by:

Eg = lp
lp

λ̄
(15)

This gives a gravity force formula of:

F = c
EgEg

R2 (16)

This is quite similar to the Newton gravity force formula formula, except the large
mass M and the small mass m is replaced with the collision-length energy of the large and
the small mass, respectively Eg and Eg, and the gravity constant G is simply replaced by c.

Again, the gravity constant is just linked to the speed of gravity that again is identical
to the speed of light. Similar to the collision-time mass, the collision-length energy can be
found more easily than the kilogram mass for astronomical objects, like the Earth, and with
less uncertainty in the measurement than for the kilogram of astronomical objects.

2.4. Newton Gravitational Mass

Back to the original Newton gravity force formula as it was given in Principa, it was
given as (but only in words by Newton):

F =
Mnmn

R2 (17)

Then, the gravitational acceleration is given by:

g =
Mn

R2 (18)

Since gravitational acceleration has dimensions [L · T−2], this means the mass in the
Newton formula must have dimensions [L3 · T−2]. See [50] for a detailed discussion. We
are naturally not the first to find this out. If one reads the book A Treatise on Electricity and
Magnetism by Maxwell [6] published in 1873, this is exactly what he said are the dimensions
of mass, or what Maxwell called mass in the astronomical system, as it the dimension
of mass derived from original Newton gravity. Maxwell also mentioned gravitational
acceleration as the formula above without any gravitational constant, and this is how he
derived the dimensions of the Newtonian mass that he called astronomical mass units.
The gravitational constant was not yet invented. Actually it was invented in the same
year Maxwell published his book A Treatise on Electricity and Magnetism; likely, it was
invented some months later, as Maxwell’s book was published in February. Maxwell
also mentioned the standard unit of mass in the United Kingdom as avoirdupois pound
preserved in the Exchequer Chambers. Furthermore, he mentioned grain, which he said is
defined to be the 7000th part of this pound. Maxwell mentioned the gram based on the
kilogram preserved in Paris. So, the gravity constant was invented to make these human
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arbitrary mass definitions, such as kilogram, also the mass standard in the astronomical
system linked to gravity. This, we think, could have been a mistake as one could have got
much faster to the bottom of what gravitational mass really is by digging deeper into the
Newtonian original mass formulation instead.

The Newton formula in this form, without any knowledge of any gravity constant or
other constants, can be used to predict all that the modern 1873 Newton version can do,
except the kilogram mass of objects; this is well demonstrated in [50]. The Newton mass, or
astronomical mass as Maxwell called it, is the gravitational mass, as the mass is derived
from gravity. So, to understand gravity, we must understand this mass from a deeper level.

From a deeper quantum perspective, this mass can be interpreted in several ways. In
the special case, one links length to time through the speed of light, and then we have c = 1.
The formula is actually a special case of the collision-time gravity force formula given a
bit further above, so it is also compatible with that mass is simply collision-time, but then
again, we must set c = 1. Newton could theoretically have been able to do this even in
his time period, as he mentioned about how fast the speed of light is based on how long it
takes to travel from the sun to the Earth.

Alternatively, if we should allow different units for length and time, then the Newton
gravitational mass must, at a deeper level, be:

Mn = c2 l2
p

λ̄M
(19)

There is nothing wrong about calling this mass, as this can also be written as:

Mn = c2lp
lp

λ̄M
= c3tp

lp

λ̄M
(20)

The last term lp
λ̄

is the number of collisions between indivisibles per Planck time
as discussed in [45]. The mass is therefore the quantity of matter, as indeed suggested
by Newton, and it is even now linked to the idea of indivisible corpuscular particles, or
indivisibles that Newton claimed was the behind all his philosophy in Principia. We can
see that Mn alone are exactly the same as GM when broken down to the quantum level, by
comparing Equations (9) and (20).

2.5. Time-Speed Mass

We [51] introduced what we called time-speed as a mass concept in 2014. Then, we
simply assumed mass consisted of colliding indivisible particles, that we assumed have a
minimum length. We did not know what this minimum length was but speculated it could
be the same as the Planck length. Still, we did not, at that time, know how to ever find out
what the minimum length of this particle was. Some years later, we figured out how to
indirectly measure the diameter of this particle based on a gravity theory assuming there
was a minimum spatial dimension particle. When this model was calibrated to gravity, it
was clear its diameter was the Planck length. This mass is given by:

ms =
lp

λ̄

1
c

(21)

This mass has incorporated the Planck length, the Compton wavelength, and the
speed of light. So, in this sense, it contains, as we will see, all that is needed for gravity.
The reduced Compton wavelength is the distance between particles as described in [51].
The speed of light is how fast these particles move when not colliding, as measured with
Einstein synchronized clocks. Still, the mass definition was not too intuitive, and neither
optimal nor complete for gravity modeling.

One of the drawbacks of this mass is that the gravitational constant must contain the
Planck length in addition to the speed of light (speed of gravity). This mass definition
is, we would say, more complete than the kilogram mass even if many will feel it is less
intuitive, but that is likely because they are used to working with the kilogram mass.
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Still, it is not a complete mass description for modeling gravity. Also, this mass must be
fixed with a gravity constant that is unnecessarily complex, even if less complex than G
when understood from a deeper perspective. We just include this mass to show that there
is a series of ways to define mass that is at least just as good as the kilogram mass for
gravity purpose. If the mass is not complete for gravitational modeling, one needs to fix
the mass with what is lacking in the mass using a gravitational constant that has this in
it from calibration or otherwise. We will soon see that any mass definitions that lead to a
gravitational constant that contains more than the speed of light can be seen as incomplete.

The gravitational force, when using time-speed as mass, must be given by (see [52]):

F = Gs
Msms

R2 = lpc3 Msms

R2 (22)

That is, the gravitational constant is now given by Gs = lpc3. This gravitational
constant contains less information than the standard gravity constant. It contains only lp
and c while G embedded contains h̄, lp, and c as understood from a deeper level, since we

have G =
l2
pc3

h̄ . The reason the gravity constant needs to contain less information than G is
that the mass is more complete. Still, this mass and its corresponding gravity constant is
also not that intuitive and also not complete. This gravity force formula, despite different
output units, also gives all the same predictions as standard Newton gravity theory when
it comes to predictions for observable gravity phenomena. This is because we have:

lpc3Ms = c3Mt = GM (23)

Again, it is only the large mass multiplied with the gravity constant that is used in
gravitational predictions where m� M, so if the gravity constant times the large mass is
the same in different theories both in number outputs and units, then they will predict the
same in numbers and output units. However, some choice of mass and gravity constant
is much more intuitive than others. The time-speed mass formulation has one similar
drawback as the kilogram mass: it needs us to find a constant with large uncertainty in it to
find the mass of the astronomical object. Collision-time mass does not have this problem as
it seems to be complete for gravity modeling.

A long series of other mass detentions can be made but, as we soon will see, only the
Newtonian type of mass and the collision-time mass are complete masses for gravitational
purposes.

3. Mass Definition Comparison

In Table 1, we show a series of masses we have discussed above and additional series
of possible mass definitions. We claim that only the collision-time mass and collision-length
energy of these are intuitive. These do not require any more fundamental aspects than time
and space, but it is a particular type of time and space, indirectly observable in the form of
collision-time and collision-length.

Only collision-time and collision-length, in addition to the Newtonian types of masses,
are complete for modeling gravity. One of the Newton types of mass is identical to collision-
time mass when setting c = 1. All other masses in the table require much more complicated
gravitational constants. This is needed to fix these incomplete mass descriptions into
what these complete masses already have, as is shown more clearly in Tables 2 and 3,
that we will soon come to. Anything with kilogram related to it is almost the worst in
term of completeness as it, from a deeper fundamental perspective, contains the Planck
constant that is only needed in the gravitational constant to cancel it out from the mass that
contains kilogram.
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Table 1. The table shows different mass definitions, their dimensions or units, and our comments
on the mass intuition, completeness in relative to model gravity, as well as how easy the mass is to
measure for macroscopic object.

Mass or Energy
Label Mass Dimensions or

Energy Intuition Completness Measure for
Gravity

Collision-time mt =
lp
c

lp

λ̄
[T] High High Easy

Collision-length Eg = lp
lp

λ̄
[L] High High Easy

Kilogram modern
physics m kg [M] Low Low Medium

Kilogram deep
understanding m = h̄

λ̄
1
c kg [M] Medium Low Medium

Joule (deep
understanding) E = h c

λ = h̄ c
λ̄

kg ·m2 · s−2 Medium Low Medium

[M · L2 · T−2]

“Newton”
alternative-1 mn = c2lp

lp

λ̄
[L3 · T−2] Medium High Easy

“Newton”
alternative-2 mn =

lp
c

lp

λ̄
& c = 1 [T] High High Easy

Time-speed ms =
lp

λ̄
1
c [T · L−1] Medium Medium Medium

Frequency per
Planck time m f =

lp

λ̄
High Medium Medium

Planck length
times Frequency me = lp

c
λ̄

[L · T−1] Medium Medium Medium

Frequency per
second my = c

λ̄
[T−1] High Low Medium

c2 times Planck
time frequency mx = c2 lp

λ̄
[L2 · T−2] Medium Medium Medium

Joule per Planck
time mz = h̄ lp

λ̄
kg ·m2 · s−1 Medium Low-medium Medium

Kilogram per
Planck time mk = h̄

λ̄
1
c

lp
c

kg · s Low Low-medium Medium

Table 2. The table shows different mass definitions and gravity constants needed for each mass
definition. All these mass definitions, when multiplied with their corresponding gravity constant,
give the same results both in output units and value. The M subscript on the reduced Compton
wavelength is just to make it clear that this is the reduced Compton wavelength of the large mass in
the gravity force formula.

Mass or Energy Label Mass or Energy Gravity Constant Gravity Contant Times
Mass

Kilogram M G GM = c2lp
lp

λ̄M

Kilogram (deep) M = h̄
λ̄M

1
c G =

l2
pc3

h̄
lpc3

h̄ M = c2lp
lp

λ̄M

Collision-time Mt =
lp
c

lp

λ̄M
c3 c3 Mg = c2lp

lp

λ̄M

“Newton” alternative-1 Mn = c2lp
lp

λ̄M
1 MN = c2lp

lp

λ̄M

“Newton” alternative-2 Mn =
lp
c

lp

λ̄M
c3 = 1 c3 Mn = c2lp

lp

λ̄M

Time-speed Ms =
lp

λ̄M

1
c lpc3 lpc2

h̄ Ms = c2lp
lp

λ̄M

Frequency per Planck time M f =
lp

λ̄M
lpc2 lpc2 M f = c2lp

lp

λ̄M

Planck length times
Frequency Me = lp

c
λ̄M

lpc lpcMe = c2lp
lp

λ̄M
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Table 2. Cont.

Mass or Energy Label Mass or Energy Gravity Constant Gravity Contant Times
Mass

Frequency per second My = c
λ̄M

l2
pc lpcMy = c2lp

lp

λ̄M

c2 times Planck time
frequency

Mx = c2 lp

λ̄M
lp lp Mx = c2lp

lp

λ̄M

Joule per Planck time Mz = h̄ lp

λ̄M

lpc2

h̄
lpc2

h̄ Mz = c2lp
lp

λ̄M

Kilogram per Planck time Mk = h̄
λ̄M

1
c

lp
c

lpc4

h̄
lpc4

h̄ Mk = c2lp
lp

λ̄M

Table 3. The table shows different mass definitions and the corresponding gravity constant and
gravity force formula. All these formulae, when divided by the small mass, give the same output
units and predictions, except some of the formulae give higher uncertainty in the output. Some of the
mass definitions are much more intuitive and so is the gravity constant for these.

Mass or Energy Label Mass or Energy Gravity Constant Gravity Force Dimensions Accuracy Intuition

Kilogram M G F = G Mm
R2 kg ·m · s−2 Less Low

Kilogram (deep) M = h̄
λ̄M

1
c G =

l2
pc3

h̄ F =
l2
pc3

h̄
Mm
R2 kg ·m · s−2 Top Less

Joule (deep) E = h c
λM

= h̄ c
λ̄M

GE =
l2
p

h̄c F =
l2
p

h̄c
EE
R2 kg ·m · s−2 Less Less

Collision-time Mt =
lp
c

lp

λ̄M
c3 F = c3 Mtmt

R2 L · T−1 Top Good

Collision-length Eg = lp
lp

λ̄M
c F = c EgEg

R2 L · T−1 Top Good

“Newton” alternative-1 Mn = c2lp
lp

λ̄M
1 F = Mn Mn

R2 L4 · T−4 Top Less

“Newton” alternative-2 Mn =
lp
c

lp

λ̄M
c3 = 1 F = c3 Mn Mn

R2 = Mn Mn
R2 L4 · T−4 Top Less

Time-speed Ms =
lp

λ̄M

1
c lpc3 F = lpc3 Msms

R2 T−1 Less Less
Frequency per Planck

time M f =
lp

λ̄M
lpc2 F = lpc2 M f m f

R2 L · T−2 Less Less

Planck length times
Frequency Me = lp

c
λ̄M

lpc F = lpc Meme
R2 L3 · T−3 Less Less

Frequency per second My = c
λ̄M

l2
pc F = l2

pc Mymy

R2 L · T−3 Less Less
c2 times Planck time

frequency
Mx = c2 lp

λ̄M
lp F = lp

Mxmx
R2 L3 · T−4 Less Less

Joule per Planck time Mz = h̄ lp

λ̄M

lpc2

h̄ F =
lpc2

h̄
Mzmz

R2 kg ·m · s−3 Less Less
Kilogram per Planck

time Mk = h̄
λ̄M

1
c

lp
c

lpc4

h̄ F =
lpc4

h̄
Mkmk

R2 kg ·m · s−1 Less Less

When it comes to how easy it is to measure the mass, we are thinking about mass
used to predict gravitational phenomena, as is the purpose here. Only for the masses
that are marked as high in relation to Completeness for gravity we have also marked as
“easy” to measure. All these masses marked as easy can be extracted directly from one
observable gravity phenomena without doing any other gravity calibration first to find
the gravitational constant, or without defining a clump of matter and calling it kilogram
or pound first. This is because these complete masses maximum need a gravity constant
that is the speed of light. All the other masses need one to first calibrate a gravity constant,
which can be quite complicated and lead to larger uncertainty in the measurement of the
mass as discussed in detail in our recent paper [48]. There will, for this reason, be smaller
uncertainty in the gravitational mass measures for the complete masses than for any of the
other masses.

Table 2 demonstrates that all these different mass definitions, when multiplied by their
corresponding gravity constant, give exactly the same output units and results, despite the
different mass and different gravitational constant. All outputs from the gravity constant
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multiplied by the mass are, at the deeper level, equal to c2lp
lp
λ̄

. The small mass in the gravity
force formula will always cancel in derivations to get formulae that can predict anything
observable, and, at the deeper level, all these, when used in their respective gravity force
formulae, will predict the same. However, some of them are much easier to use as well as
more intuitive and lead to lower uncertainty in gravity predictions. Please note that all
mass definitions, when multiplied by their respective gravity constant, contain the term lp

λ̄
.

This term represents the quantization of gravity, as pointed out in Section 2.3. Specifically,
it represents the reduced Compton frequency in the gravitational mass per Planck time,
given that c

λ̄
tp =

lp
λ̄

. This is actually an aggregate of frequency probabilities, a number
lp
λ̄
= 3.5, which is what one get for a mass equal to 3.5 Planck masses, meaning that in a

Planck time observational window, there are for sure three Planck events, and there is a
50% probability of one more.

Masses significantly smaller than the Planck mass are mainly influenced by probability
related to Planck-mass events, while masses much larger than the Planck mass are wholly
determined by determinism. This explains why the force of gravity on any observed
macroscopic object is so predictable (see [43]). Again, the lp

λ̄
is the reduced Compton

frequency per Planck time. The frequency for a mass smaller than the Planck mass is less
than one, and since only integer frequencies can be observed in a given time window, a
frequency below one can also be interpreted as a probability for an observable part of the
frequency occurring within that time frame. For composite particle masses, the term lp

λ̄
is a

probability aggregate where the integer part is typically large. For example, for the Earth,
the integer part is approximately lp

λ̄Earth
=

lp
h̄/(MEarthc) ≈ 2.7532 per Planck time, indicating

that gravity is dominated by determinism. For an electron, the Compton frequency per
Planck time is lp

λ̄e
≈= 4.19× 10−23, which can be seen as a probability for the electron to

be in a collision-state that again is related to gravity in a given Planck-time. Therefore,
the gravitational behavior of the atomic and subatomic world is dominated by probabil-
ity. Based on this deeper understanding, it is reasonable to think that standard gravity
theory to a large degree explains why gravity behaves deterministically for astronomical
objects while probabilities dominate the modeling of gravity for atomic and subatomic
particles. This understanding is already embedded in our theories when viewed from a
deeper perspective.

Table 3 summarizes the masses and their respective gravitational force formulae. The
gravity force formulae and masses’ definitions are different. Still, as the small mass cancels
in all these gravity force formulae, they all give the same output. However, the gravity force
formulae that rely on incomplete mass definitions to model gravity require unnecessarily
complex gravity constants, needed to fix the incomplete mass definitions. We will again
claim only the collision space-time mass and the collision-length energy, as well as the
original Newton mass, can be seen as complete as they do not need to rely on complex
gravity constants to fix the incomplete mass definition. The Newton alternative 1 has
everything incorporated in the mass. This means no gravity constant at all is needed.
However, in our view, this leads to a less intuitive mass than the collision-time, as it leads to
that mass has dimensions [L3 · T−2], so this is less intuitive than having a mass that simply
has dimensions [T]. It is not that it is just dimension [T] but also that in previous work, we
have been able to carefully describe how this is collision-time related to the duration of
indivisible particles standing in collision state, which is the Planck mass at a deeper level.

The other mass, like kilogram, has a mysterious gravity constant G. At a deeper level,

this gravity constant is simply G =
l2
pc3

h̄ . We naturally did not assume this is what Newton
assumed, as he never invented a gravity constant, nor that Cornu and Baille the inventors
of what today is known as Newton’s gravity constant assumed this. The Newton gravity
constant is simply related to what is missing in the kilogram mass to do gravitational
modeling. It is a composite constant, not by assumption, but by calibration. When this is
understood at a deeper level, one understands that the kilogram mass is incomplete for
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modelling gravity without first being fixed by this ad-hoc inserted constant. All the other
mass definitions also lead to gravity force formulae, but any of these mass definitions that
have a gravity constant that contain more than just c can be seen to contain a incomplete
mass defintion. This is not just about aesthetic and intuition; it is also about the reduction
of uncertainty in gravity predictions, as discussed in detail by Haug [48].

4. Kilogram Mass Versus Gravitational Mass

What happened in 1873 with the invention of the gravitational constant was basically
that one wanted to make one mass standard between small masses and large astronomical
masses. As Maxwell indirectly pointed out, the kilogram or pound was not used in the
gravitational force formula before 1873. This is natural, as no gravitational constant was
introduced before 1873. Any human arbitrarily-chosen clump of matter used as mass
standard will require that any other mass will be relative to it. When we say the mass of an
electron is about 9.11× 10−31 kilogram, it means it is this fraction of mass relative to one
kilogram. The pound and the kilogram mass are fractional masses. The mass of an electron
divided by one kilogram is:

me

m1kg
=

h̄
λ̄e

1
c

h̄
λ̄1kg

1
c
=

c
λ̄e
c

λ̄1kg

=
λ̄1kg

λ̄e
≈ 9.11× 10−31 (24)

That is, the kilogram mass of the electron can be seen as a Compton frequency ra-
tio: that the Compton frequency in one electron divided by the Compton frequency in
one kilogram.

The reduced Compton wavelength of one kilogram is given by: λ̄1kg = h̄
1kgc = h̄

c . Now
we can replace that back into the formula above and we get that the mass of the electron in
kilogram divided by the mass of one kilogram must be:

me

1kg
=

λ̄1kg

λ̄e
=

h̄
c

λ̄e
=

h̄
λ̄e

1
c

(25)

This is the same as we get from solving the Compton wavelength formula for m. This
means a kilogram mass (and the same is the case with any human arbitrarily-chosen clump
of matter used as mass standard) gives a frequency ratio. Standard joule energy is also just
frequency times the Planck constant. So, to work just with standard joule energy in relation
to mass, the kilogram mass is sufficient.

Assume a frequency of only two per a given time unit. A frequency alone says nothing
about what is turning it into a frequency of two. For something to be two, there must
be an event that distinguishes it into two parts. We have argued in papers on collision
space-time that this part is the collision between indivisible particles, and that this collision
only has a duration of the Planck time. So, indivisible particles move back and forth at
the speed of light over the reduced Compton wavelength of the particle in question and
collide every reduced Compton time tc = λ̄

c . The collision itself lasts only the Planck
time. These collisions are what, in our view, causes gravity through a likely shielding
effect, so we have a gravity similar to La Sage gravity, see [53,54] and also the detailed
description of our collision time-space theory. The Planck length or Planck time are not
needed for relations between joule energy and kilogram mass, as they both only contain
embedded a frequency but not what distinguishes the different frequency elements, which
is these collisions. So standard gravity theory using kilogram mass must somehow get
this aspect back into the mass being used for gravitational modeling. This is done in
modern Newton gravity as well as in Einstein’s [9] general relativity theory by multiplying
the mass with G. So, modern Newton theory and general relativity also accomplish this,
but they are not aware what G represents in the physical word or why it is needed in
the form it has. It has more or less just become the standard, and very few question
why one has a gravity constant G that is multiplied by M. For example In her recent
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book, “Existential Physics” [55], Hossenfelder makes the claim that “Newton’s constant (G)
quantifies the strength of gravity.” However, this statement is only partially true, or perhaps
even incorrect. While the original Newtonian gravity formula does not include a gravity
constant, it is still capable of accurately predicting all of the same gravitational phenomena
as the modified 1873 formula that does include G. This does not mean that the original
formula was incorrect in its assessment of the strength of gravity. Instead, it is necessary to
include the gravitational constant in order to properly incorporate the Planck Length into
the kilogram mass and remove the Planck constant from the kilogram mass. By doing so,
all the necessary information needed to accurately model gravity can be incorporated.

5. Weak Equivalence Principle

The weak equivalence principle consists of several different aspects related to gravity.
Part of the weak equivalence principle goes all the way back to Galileo Galilei, who
suggested, and to some degree of precision demonstrated, that bodies with different
density all fall at the same rate in a gravitational field. This is naturally only fully true in a
vacuum, and it has been tested and found to hold in extremely high precision experiments
in recent years (see [56–58]). Thus this part of the weak equivalence principle clearly holds.
Moreover, the Newtonians 1/R2 rule has in recent years been tested all the way down
to submillimeter scale (see [59,60]), something that is consistent with all the gravity force
formulae discussed here.

The weak equivalence principle also states that gravitational mass and inertial mass are
equivalent masses (see for example: [61–63]). This has been well tested and is assumed to
be true. We are not at all questioning the validity of these experiments, but we will actually
question whether these experiments have been interpreted correctly in relation to the
kilogram mass and the 1873 version of the Newton gravity force formula. Mathematically,
the weak equivalence principle also holds for Newton theory and is often represented by
the well-known relation:

mia = G
Mm
R2 (26)

The inertial mass mi is on the left side multiplied by the acceleration a. The gravita-
tional masses are assumed to be in the gravity force formula, so both M and m are assumed
to be gravitational masses, as this formula with these masses can be used to successfully
predict a series of gravitational phenomena. It is clear that the inertial mass is in kilograms
(see for example Mana and Schlamminger [64]). It is claimed that the equivalence between
mi = m is well tested. The problem here is that in the gravity force formula as given above,
the small mass m always simply cancels out with mi in derivations for any predictable
phenomena. One then mistakenly thinks that M and m are of the same type of masses,
even in the modified 1873 Newton formula. They are not, however, as the large mass is
fixed by being multiplied by G. It is GM (or c3Mt if one uses collision space-time theory,
see Section 2) that is the gravitational mass. To turn m into a gravitational mass we also
need to multiply it with G. This is done in two body problems where m is not m� M and
its gravitational effect can be ignored. As we have mentioned before, the gravity parameter
is then µ = G(M + m) = GM + Gm, so if the weak equivalence principle really should
hold then we have to compare mi with Gm. Actually, in collision space-time theory, we
have weak equivalence here, as the masses are properly defined, also for gravity.

So, in our view the weak equivalence problem has likely been misinterpreted by
thinking that kilogram mass is the same as gravitational mass. One uses two kilogram
masses that contain no information about gravity, that is, for the inertial mass mi and the
small m in the gravitational force formula, but it does not matter, as they are merely used
in derivations to cancel each other out in order to come up with formulae with which to
predict observable gravity phenomena. In real observable gravitational phenomena, we

end up with well-known formulae such as orbital velocity vo =
√

GM
R or gravitational

acceleration g = GM
R2 , where again the gravitational mass is related to GM and not M or
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m. Two errors do not make one right. That neither the inertial mass mi nor the small
assumed gravitational mass m contain any information needed in a mass to model gravity
is not important, as mi and m are merely used in derivations where they cancel each other
out. We believe that not recognizing the difference between the kilogram mass and the
gravitational mass has prevented the gravity community from examining the true nature
of gravitational mass more closely. This lack of understanding has contributed to slow
progress in unification theories and success in quantum gravity theory. We do not ask
the reader to take this for granted but hope this can at least open up some space for more
scientific discussions about the optimal mass definitions for gravitational mass.

6. Einstein’s Field Equation

The main focus of this paper is on the mass linked to the Newtonian gravitational
force formula, which is considered a good weak field approximation to the general theory
of relativity. An interesting question is whether we can obtain a gravity field equation

with a Planck constant simply by substituting G =
l2
pc3

h̄ into the second part of Einstein’s
field equation [65]. This was actually suggested by Haug in 2016 [66], but without much
discussion. By doing so, we obtain

Rµv −
1
2

gµvR =
8πl2

p

h̄c
Tµv (27)

Based on the rewritten field equation, it seems that the Planck constant might play a
significant role in gravity. However, upon closer study, one will discover that the Planck
constant present in the rewritten field equation will cancel out with the Planck constant
embedded in the stress-energy tensor, making it unlikely to affect predictions about gravity
or quantum gravity. Nonetheless, some experimental studies have suggested that gravita-
tionally induced quantum interference using neutrons depends on both the Planck constant
and gravitational acceleration, see Colella, Overhauser, and Werner [67] and Abele and
Leeb [68]. We will suggest that this may be because one at that time did not fully understand
the kilogram mass and its relation to gravity at a more fundamental level. In the formulae
they used to compare their observed values with their predictions, they included a factor of
m2

n
h2 , where mn is now the neutron kilogram mass (More precisely, in Equation (2) in [67], we

have h−2M2, where M is the neutron mass. Similarly, in Equation (2) in [68] and the lines

below it, we have m2
n

h2 . The Planck constants are needed to cancel out the Planck constants
that are embedded in the kilogram mass. Thus, we can claim that also these gravitational
observations at a deeper level are not related to the Planck constant, but rather to the Planck
length. In their formulae, the Planck length is embedded in the gravitational constant g, as
well as in the reduced Compton wavelength of the gravitational mass.). However, if we
rewrite the kilogram mass in terms of its fundamental components, mn = h̄

λ̄n

1
c , we can see

that the Planck constant that explicitly appears in their formula, is needed to cancel out
with the Planck constant embedded in the kilogram mass. Consequently, their observations
can be predicted completely without relying on knowledge of the Planck constant.

That the Planck constant does not play a role in gravity at what we think is the deepest
quantum level can be observed more easily through the study of the Schwarzschild [69,70]
solution of Einstein’s field equation. When we express G in its composite form and the
mass M in kilograms as M = h̄

λ̄M

1
c , we can rewrite the Schwarzschild solution as follows:
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c2dτ2 =

(
1− Rs

R

)
c2dt2 −

(
1− Rs

R

)−1
dR2 − R2(dθ2 + sin2 θdφ2)

c2dτ2 =

(
1− 2GM

c2R

)
c2dt2 −

(
1− 2GM

c2R

)−1
dR2 − R2(dθ2 + sin2 θdφ2)

c2dτ2 =

1−
2

l2
pc3

h̄
h̄

λ̄M

1
c

c2R

c2dt2 −

1−
2

l2
pc3

h̄
h̄

λ̄M

1
c

c2R


−1

dR2 − R2(dθ2 + sin2 θdφ2)

c2dτ2 =

(
1−

2lp

R
lp

λ̄M

)
c2dt2 −

(
1−

2lp

R
lp

λ̄M

)−1

dR2 − R2(dθ2 + sin2 θdφ2) (28)

Here, we can see that the Planck constant embedded in G cancels out with the Planck
constant embedded in the kilogram mass. Therefore, the Schwarzschild solution, which is
used to derive a series of predictions that actually have been tested against observations,
has no relation to the Planck constant. Although one may mistakenly think that this
approach does not lead to quantization since the Planck constant is typically linked to
quanta of energy in standard quantum mechanics. This would be a mistake as we have
reasons to think the quantization in gravity seems to be linked to the Planck length and
reduced Compton wavelength, which is also consistent with all we have found in Newton
theory (see Table 4, where there are no Planck constants in any of the formulae). Again, the
term lp

λ̄
is the reduced Compton frequency in the gravitational mass per Planck time. The

Schwarzschild radius is now given by:

Rs =
2GM

c2 = 2lp
lp

λ̄M
(29)

In the standard interpretation of general relativity theory, it is assumed that no mass
smaller than half the Planck mass can have a Schwarzschild radius. This is because the
Planck length is believed to be the shortest possible length [71,72], and a proton or electron,
for example, would have a Schwarzschild radius much shorter than the Planck length. For
instance, the Schwarzschild radius of a proton is given by 2GMpr

c2 ≈ 2.49× 10−54 m, which
is much smaller than the Planck length lp ≈ 1.62× 10−35 m. However, a new interpretation
was suggested earlier [43] that introduces probabilities into gravity without altering the
general relativity theory or Newton’s theory, except for replacing G with the composite
form and the mass as done above. In this framework, the Schwarzschild radius of a proton
or electron is related to twice the Planck length multiplied by the factor lp

λ̄M
. When the

mass M is smaller than the Planck mass, the factor lp
λ̄M

is less than one. As explained in
Section 2.3 and discussed in more detail in Ref. [43], this factor should be interpreted as a
frequency probability. This means that masses smaller than half the Planck mass also have
a Schwarzschild radius of approximately the Planck length, but that this radius fluctuates
in and out of existence at the reduced Compton frequency of the particle in question. See
the aforementioned paper for a deeper discussion on this. Thus, from this new perspective,
both general relativity and Newtonian gravity are probabilistic below the Planck mass.
This should not be taken for granted, but we believe that this framework is worthy of
further study.

7. Gravity Predictions

All the various gravitational masses and gravitational constants listed in Tables 1–3
yield identical gravitational predictions. This is especially evident when each mass and
gravitational constant is expressed in terms of their respective components, such as the
Planck length, the speed of light, and the reduced Compton wavelength, as shown in
Table 4. In this table we only show four of the different mass or energy definitions, but we
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have tested it out on all the mass definitions and respective gravitational constants given in
Tables 1 and 2.

Table 4. The table demonstrates that when different mass or energy definitions are used in conjunction
with their corresponding gravitational constant, they all yield the same gravitational predictions and
ultimately converge to the same formula. Although we have only displayed this phenomenon for
four of the mass definitions provided in the table above, we have verified that it holds true for all of
the definitions listed in Table 2. The variable H in the Newton’s cradle formulae below represents the
height of the ball drop. Additionally, the variable x represents the spring displacement.

Prediction From Macroscopic Surface Level to Deepest Level

Gravity acceleration g = GM
R2 = Mn

R2 = c3 Mt
R2 =

c2Eg

R2 =
c2 lp

R2
lp

λ̄M

Orbital velocity vo =
√

GM
R =

√
c3 Mt

R =

√
c2Eg

R = c
√

lp
R

lp

λ̄M

Orbital time T = 2πR√
GM

R

= 2πR√
Mn
R

= 2πR√
c3 Mt

R

= 2πR√
c2 Eg

R

= 2πR

c
√

lp
R

lp
λ̄M

Velocity ball Newton cradle vout =
√

2 GM
R2 H =

√
2 Mn

R2 H =
√

2 c3 Mt
R2 H =

√
2 c2Eg

R2 H = c
R

√
2Hlp

lp

λ̄M

Frequency Newton spring f = 1
2πR

√
GM

x = 1
2πR

√
Mn
x = 1

2πR

√
c3 Mt

x = 1
2πR

√
c2Eg

x = c
2πR

√
lp
x

lp

λ̄M

Gravitational red shift
z =

√
1− 2GM

R1c2√
1− 2GM

R2c2

− 1 =

√
1− 2Mn

R1c2√
1− 2Mn

R2c2

− 1 =

√
1− 2cMt

R1√
1− 2cMt

R2

− 1 =

√
1− 2Eg

R1√
1− 2Eg

R2

− 1 =

√
1− 2lp

R1

lp
λ̄M√

1− 2lp
R2

lp
λ̄M

− 1

Time dilation
TR = Tf

√
1− 2GM

Rc2 = Tf

√
1− 2Mn

Rc2 = Tf

√
1− 2cMg

R = Tf

√
1− 2Eg

R =

Tf

√
1− 2lp

R
lp

λ̄M

Gravitational deflection (GR) θ = 4GM
c2R = 4Mn

c2R =
4cMg

R =
4Eg
R = 4 lp

R
lp

λ̄M

Advance of perihelion σ = 6πGM
a(1−e2)c2 = 6πMn

a(1−e2)c2 = 6πcMt
a(1−e2)

=
6πEg

a(1−e2)
=

6πlp

a(1−e2)
lp

λ̄M

The different methods when not going to the deepest level, however, necessitate dis-
tinct inputs. Some of these inputs, such as the gravitational constant G and the kilogram
mass M, necessitate more calibration than the original Newton mass Mn and its gravi-
tational constant, which is simply 1, or the collision time-mass where the gravitational
constant is simply c3. Regardless, all the definitions of mass and corresponding gravitational
constants result in the same output, both in terms of output units and numerical values.

When broken down to the quantum level, all the formulae yield equations located
on the far right of the table. It is essential to note that these formulae all contain the factor

lp
λ̄M

, which we interpret as the quantization of gravity [43,73], as discussed in Section 2.3 of

this paper. This quantization factor lp
λ̄M

simply represents the reduced Compton frequency
per Planck time, eliminating the need for the Planck constant in gravitational predictions
despite quantization. In our view, there is an embedded quantum gravity theory even
in standard Newtonian and general relativity theories, but this can only be understood
when G is replaced with its composite form and the kilogram mass with its form M = h̄

λ̄M

1
c .

From a deeper perspective, all the gravitational predictions (at least the ones in the table
below) are dependent on the Planck length and the reduced Compton wavelength of the
gravitational mass, as well as naturally occurring variables such as the distance to the
center of the gravitational object R.

8. Conclusions

We have discussed a series of different mass definitions in relation to gravity. The
kilogram mass is clearly not the optimal mass, as it is incomplete, but fixed with an ad hoc
inserted constant invented in 1873, there is the so-called Newtonian gravitational constant
that Newton never invented, used, or needed. Few researchers seem aware of Newton’s
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original view on matter and that his original gravity force formula was F = Mnmn/R2.
The mass in his formula seems to be superior to the kilogram mass when working with
gravity, and it is also compatible with a quantum gravity theory that has defined mass as
collision-time linked to the Planck scale. Collision time-mass and Newtonian mass, which
can also be seen as the same type of mass at the deeper level, are mass definitions that are
complete with respect to containing information needed to model gravity. Therefore, this
mass does not need to be fixed with any ad hoc inserted gravity constant, that again needs
calibration to be found by, for example, a Cavendish apparatus.

When the mass definitions are complete then the gravitational constant is never more
complicated than containing just c, or even this can be incorporated into the mass definition.
When the mass is incomplete, as is the case for kilogram mass or in another newly suggested
mass definition known as time-speed, then one needs more complex gravity constants
than are necessary for complete mass definitions in relation to gravity. This leads to larger
uncertainty in predictions as one needs to find the gravity constant in a way that increases
the overall uncertainty in the gravity predictions. The optimal mass definition is not only
more intuitive, but it also even has practical implications on gravity predictions as one gets
lower uncertainty in the prediction.

This also means anyone using gravity theory with G, without understanding and
discussing it as a composite constant, has not looked at their own theories from the deepest
possible level. We strongly encourage the gravity research community to start paying
attention to that G is a composite constant needed to fix an incomplete mass. We have good
reasons to think part of the stagnation in quantum gravity research is simply linked to
improper understanding of the gravity constant and the kilogram mass from a deeper per-
spective. Hopefully, this paper will be fruitful for further discussions and paths to gravity.
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