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ABSTRACT

Aquifer thermal energy storage (ATES) systems offer reduced energy costs, lower carbon emissions, and increased energy resilience. The

feasibility, however, depends on several factors and usually require optimization. We study an ATES system with injection and extraction

wells (cf. graphical abstract). The purpose of the investigation was to calculate the recovery factor of an ATES system with a cyclic repetition

of injection and pumping. In the paper, we discuss analytical and numerical radial solutions of differential equations for heat transport in

water-saturated porous media. A similar solution was obtained for a 2-D-horizontal confined aquifer with a constant radial flow. Numerical

solutions were derived by using a high-resolution Lagrangian approach suppressing spurious oscillations and artificial dispersion. The numeri-

cal solution and the analytical solutions give consistent results and match each other well. The solutions describe instantaneous and delayed

heat transfer between fluid and solid, as well as time-varying water flow. In hydrological terms, these solutions are relevant for a wide range

of problems where groundwater reservoirs are utilized for extraction and storage (namely, irrigation; water supply; geothermal extraction).

Key words: analytical solution, energy efficency, energy transport, heat transfer in porous media, Lagrangian approach, similarity solution,

thermal energy

HIGHLIGHTS

• Analytical and numerical solution of symmetric aquifer thermal energy storage is analyzed.

• Numerical solution for coupled non- equilibrium temperature for liquid and solid phase is presented.

• Energy efficiency of a simplified aquifer thermal energy system for cyclic pumping and injection system is calculated for different grain size

as a function of time.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Heat transfer in porous media has received considerable attention and has been the topic of a number of investigations during
the last decade (Bejan & Kraus 2003). A driving force for research on this subject is engineering applications, such as geother-
mal systems (Ganguly & Kumar 2014), heat exchangers (Diao et al. 2004), thermal insulation (Kim et al. 2010; Birhanu et al.
2015b), safety issues regarding storage of nuclear waste (Sun et al. 2010), flow in porous media is in the context of nuclear
waste repositories (Medici & West 2022), and nested shallow geothermal systems (García-Gil et al. 2020).

In addition to equations for the fluid flow, the mathematical model of heat transfer in porous media is given by second-order

partial differential equations for heat energy conservation and flow in themodel domain. Two kinds ofmodels can be applied to
investigate thermal characteristics of conduction and advection within a porousmedium, namely, a thermal equilibriummodel
and a thermal non-equilibrium model (Yang et al. 2011). The difference between the two models is the thermal coupling

between the liquid and the solid phases. For the equilibrium model the coupling is modeled as an instantaneous heat transfer.
This assumption is close to the reality for homogeneous aquifers with solid particles ofminor size (diameter dp , 1mm). For the
non-equilibriummodel, there is a time delay attached to the heat transfer between the twophases. In the literature of transport in
porousmedia, this model is usually called the double porosity model which may also be expanded to a dual permeability model

(Stadler et al. 2012). The dual permeabilitymodel refers to a conceptual framework used in hydrogeology to describe subsurface
fluid flow in heterogeneous porous media. This model accounts for two distinct types of permeabilities within the subsurface:
matrix permeability, which characterizes fluid flow through the bulk of the rock matrix, and fracture permeability, which per-

tains to fluid flow through interconnected fractures or fissures within the rock. Fractures play a significant role in the dual
permeability model by providing preferential pathways for fluid movement, often exhibiting significantly higher permeability
compared to the surrounding matrix. These fractures can significantly influence the overall flow behavior and fluid transport
://iwaponline.com/hr/article-pdf/54/11/1432/1328186/nh0541432.pdf
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in the subsurface, enabling faster movement of fluids and altering the distribution of groundwater, solutes, and contaminants. In

essence, fractures are integral components in the dual permeability model, introducing complexity and heterogeneity that can
have substantial implications for various subsurface processes, including groundwater flow, contaminant transport, and
resource extraction (Aguilar-López et al. 2020; Agarwal et al. 2021).

Researchers have highlighted different analytical and numerical methods to find the solution for this model based on differ-
ent physical phenomena. Bear & Cheng (2010) presented the solution of heat transfer in porous media for 1-D by using the
similarity solution method. A 2-dimensional (2-D) numerical model for heat transport in a heterogeneous porous aquifer ther-
mal energy storage (ATES) system is presented by Ganguly et al. (2014). They considered the transient heat transport

phenomenon in a heterogeneous porous aquifer due to hot water injection and validated the solution analytically.
Underground thermal energy storage (TES) systems can be broadly categorized into four main types, each with its unique

characteristics and applications. These categories are tank TES, pit TES, borehole TES, and aquifer TES (also known as

ATES). Tank TES and pit TES are constructed independently of the geological conditions of the aquifer and remain unaffected
by groundwater flow. This is achieved by incorporating an insulation layer on the outer surface of the container or structure. In
contrast, borehole TES operates as a closed-loop system, storing energy by utilizing ground heat exchangers within the aquifer.

This stored energy can then be supplied to buildings for either heating or cooling purposes (Lin et al. 2019). ATES is an
example of technology where subsurface storage and transport of heat are used to save energy. ATES systems may utilize
inter-seasonal heat storage, which means storage of excess energy from summer that is used in winter time for heating pur-

poses. For cooling purposes low-temperature water is extracted from cold wells and heated water is injected into hot water
wells (Birhanu et al. 2015b). Thus, ATES installations actively store cooled and heated groundwater in the ground from
respective heating and cooling mode cycles (Dickinson et al. 2009). An ATES system involves both the flow of water and
heat transport. In order to predict the performance and efficiency of an ATES system, one possibility is to run detailed numeri-

cal simulations, and researchers have long highlighted numerical modeling for the analysis and optimization of ATES systems
(Lee 2011). In some cases, the injection and pumping wells may be simplified to a classical dipole geometry. In this case, the
flow field may be simplified to axis symmetry where the flow velocities are governed by the injection/pumping rate and the

aquifer porosity. In the present study, the advantage of a simplified flow field is utilized, and the transport equation is
solved using simple analytical and numerical methods to assess the energy efficiency of an idealized ATES system. Numerical
solutions to transport problems are usually affected by artifacts, and because all mathematical models are simplifications of

reality, boundary conditions should be specified with great precautions. Birhanu et al. (2015a) showed that the most evident
boundary condition of temperature at the top of an unconfined aquifer gave unphysical energy efficiency for simulation exper-
iments of a real ATES system. In this study, analytical solutions are employed to assess the quality of numerical simulations
through the execution of (simple) numerical experiments. This study aims to bridge the existing research gap by addressing

the complexities associated with radially symmetric ATES problems. Our primary objectives are as follows: (i) to examine
both analytical and numerical radial solutions for the differential equations governing heat transport within water-saturated
porous media; (ii) To obtain numerical solutions by employing a high-resolution Lagrangian approach that effectively elim-

inates unwanted oscillations and artificial dispersion. (iii) To determine the recovery factor for an ATES system through a
cyclic process involving injection and pumping. An experiment that is conducted involves an idealized ATES production
sequence, wherein hot water is repeatedly injected and pumped within a confined aquifer. The performance of the alterna-

tive solutions is quantified by a recovery (or efficiency) factor. To fulfill these objectives, our study employs a comprehensive
research methodology encompassing analytical derivations, numerical simulations, and practical case studies. Existing
analytical solutions will be modified and expanded upon while implementing numerical models that incorporate the

radially symmetric characteristics of aquifers. The combination of theory and application will provide valuable insights
into the optimization and management of thermal energy storage systems in such aquifers.

2. MECHANISMS AND EQUATIONS

A thermo-hydraulic analysis requires the calculation of simultaneous water and heat transport in an aquifer consisting of a

solid porous medium (s) with pores filled with water (w). The water flow depends on the properties of the water as well
as the solid, and the gradient of the hydraulic head, as stated in Darcy’s law (Molson et al. 1992; Nield & Bejan 2013):

q ¼ �rgk
m

r p
rg

þ z
� �

¼ �Krf: (1)
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Here, q is the specific discharge or the Darcy velocity, k is the intrinsic permeability tensor, z is the elevation of the piezo-

metric head relative to a datum level, p is the fluid’s pressure, r is the water mass density, g is the acceleration of gravity, and m

is the dynamic viscosity of water. Furthermore, K ¼ rgk=m is the hydraulic conductivity and f ¼ p=rgþ z is the hydraulic
head. The volume average velocity differs from the velocity of the water in the pores, the so-called seepage velocity,

u ¼ q=n, where n is the (effective) porosity (Kangas & Lund 1994). The water density and, more pronounced, viscosity
varies with temperature. However, in this context, we will assume that the flow field represented by q is unaffected by temp-
erature changes. Assuming that the solid matrix as well as the water are incompressible, mass conservation combined with
Darcy’s law leads to the Poisson equation for the hydraulic head:

r � [�Krf] ¼ Qw(t), (2)

where Qw(t) is a source/sink term.
The heat energy content per aquifer volume unit may be written:

(rc)mTm ¼ rwcwTwnþ rscsTs(1� n), (3)

where c is the specific heat, and subscripts w and s refer to water and solid. At a local temperature equilibrium, where

Tw ¼ Ts ¼ T , the heat content may be expressed as (rc)mT , where (see Kangas & Lund 1994; Hecht-Méndez et al. 2010):

(rc)m ¼ rwcwnþ rscs(1� n), (4)

see Kangas & Lund (1994) and Hecht-Méndez et al. (2010). In the following, we will use the convention rmcm for (rc)m. The
water flow causes the advection of heat:

qc ¼ (rwcwTw)q, (5)

whereas conduction/diffusion of heat takes place both in the solid and the liquid:

qw ¼ �nlwrTw, (6)

qs ¼ �(1� n)lsrTs, (7)

and lw,s is the heat diffusion coefficients. If the two media are at a local thermal equilibrium, the volume average diffusive
heat flux may be expressed by:

qT ¼ �lmrT , (8)

where lm is a bulk aquifer heat diffusion coefficient (see Kangas & Lund 1994; Nield & Bejan 2013).

lm ¼ nlw þ (1� n)ls, (9)

see Kangas & Lund (1994) and Nield & Bejan (2013). Other expressions for lm, e.g. porosity-weighted geometric and har-
monic means are also discussed in the literature (Nield & Bejan 2013). In addition, the heterogeneity of the pores induces
a certain amount of thermal dispersion, parametrized, in its simplest form as:

qd ¼ rmcmâjqjrT : (10)

Here, â is the thermal dispersivity length, and the total diffusion flux becomes qT þ qd (Bakr et al. 2013).
://iwaponline.com/hr/article-pdf/54/11/1432/1328186/nh0541432.pdf
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If a thermally insulated aquifer with initial temperature Tw = Ts and q ¼ 0, energy conservation implies that the system

attains an equilibrium temperature Tm equal to the weighted mean:

Tm ¼ rwcwn
rmcm

Tw þ rscs(1� n)
rmcm

Ts: (11)

How fast the temperature equilibrium between water and solids is reached depends on the efficiency of the energy
exchange between the two media. It turns out to be reasonable to express the heat exchange per time and volume unit as:

P ¼ h(Tw � Ts), (12)

where h is a heat transfer coefficient (Kreith et al. 2011; Nield & Bejan 2013). The coefficient varies with temperature and the

flow, in particular, for large flows. Following the discussion in Nield & Bejan (2013), hmay be expressed as: h ¼ awshv, where
aws ¼ 6(1� n)=dp is the surface area of the water/solid interface per volume unit. For low Reynolds numbers, hv may be
expressed as:

hv ¼ 5lH
2dp

,
1
lH

¼ 1
2

1
lw

þ 1
ls

� �
: (13)

Here, dp is the size of the grains making up the solid. solid. The expression for h then becomes:

h ¼ 15lH(1� n)d�2
p : (14)

A rough estimate of the time scale Dt toward thermal equilibrium may be obtained from the energy exchange per time unit
at the start of the heating, P ¼ h(Tw � Ts), compared to the required amount of energy to be transferred,
E ¼ (1� n)rscs(Tw � Ts):

Dt ¼ E
P
¼ 1

15
rscs
lH

d2
p: (15)

The time scale is thus only dependent on basic material constants and the grain size. With typical values for rock:

Dt[s] � 0:15� (dp[mm])2: (16)

A similar time scale may actually be derived from the heating of spheres discussed in Gockenbach & Schmidtke (2009).
For an elemental aquifer volume R with boundary @R, the solid’s integral conservation law reads:

d
dt

ð
R
(1� n)rscsTsdV þ

ð
@R

(1� n)(�lsrTs) � n̂ds ¼
ð
R
h(Tw � Ts)dV : (17)

Note that since the solid is not moving in this case, there is no advective heat for the solid phase. Similarly, the integral
conservation form for heat in the water is:

d
dt

ð
R
nrwcwTwdV þ

ð
@R

[rcwTwq� nlwrTw] � n̂ds ¼ �
ð
R
h(Tw � Ts)dV : (18)
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The differential forms of the conservation laws with the assumptions above become:

(1� n)
@

@t
(rscsTs)� (1� n)r � (lsrTs) ¼ h(Tw � Ts), (19)

n
@

@t
(rwcwTw)þr � (rwcwTwq)� nr � (lwrTw) ¼ �h(Tw � Ts): (20)

We observe that when Tw is kept constant and diffusion is neglected, the natural time scale (inverse rate of change) in
Equation (19) is essentially Dt. For dp less than about a millimeter, the thermal equilibrium is virtually spontaneous and

we may assume that Tw and Ts are equal.
For the case where T ¼ Tw ¼ Ts, we obtain by adding Equations (17) and (18):

d
dt

ð
R
cmrmTdV þ

ð
@R

[rwcwTq� lmrT ] � n̂ds ¼ 0, (21)

and the corresponding differential form:

@(cmrmT )
@t

þr � (cwrwTq)�r � (lmrT ) ¼ 0: (22)

If the parameters like c, r, l, and the flow q are assumed to be independent of T, then dividing through with cmrm in
Equation (22) leads to:

@T
@t

þr � (kT )� lr2T ¼ 0, k ¼ rwcw
rmcm

q, l ¼ lm
rmcm

: (23)

In our model, the flow q is caused by water injected or pumped with a discharge rate Q(t) from a well located at the origin.
When Q(t) . 0, water is injected from the well into the aquifer, causing a flow away from the well. During pumping, Q(t) , 0

and the flow is directed toward the well. Utilizing the symmetric geometry of the aquifer near the well, the flow is q ¼ qdir in
which the discharge velocity qd ¼ Qd=rd�1 where:

Qd ¼

Q
HW

for d ¼ 1 (linear flow),

Q
2pH

for d ¼ 2 (radial flow),

Q
4p

for d ¼ 3 (spherical flow):

8>>>>><
>>>>>:

(24)

The width W and height H are constants characteristic of the aquifer. In this case, Equation (23) becomes:

@T
@t

þ kd
rd�1

@T
@r

¼ l

rd�1

@

@r
rd�1 @T

@r

� �
, kd ¼ rwcw

rmcm
Qd: (25)

Using the same symmetry considerations in the non-equilibrium case, Equations (19) and (20) become:

@Ts

@t
¼ ls

rscs

1
rd�1

@

@r
rd�1 @Ts

@r

� �
þ h
(1� n)rscs

(Tw � Ts), (26)

@Tw

@t
þQd

n
1

rd�1

@Tw

@r
¼ lw

rwcw

1
rd�1

@

@r
rd�1 @Tw

@r

� �
� h
nrwcw

(Tw � Ts): (27)
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3. ANALYTICAL SOLUTIONS

Analytical solutions express the relation between the principal variables involved directly. This provides basic insight into the
problem without any further numerical evaluation. Besides this intuitive conceptual advantage, the classical application of
analytical solutions is practical parameter estimation and sensitivity analysis. In practical hydrology, physical parameters

like permeability or storage capacity are not always accessible for direct measurements. Response functions (namely, hydrau-
lic head and temperature) on the other hand, are usually more easy to monitor. In such cases, the physical parameters are
estimated by solving the inverse problem. Before the advent of computer technology, this was done by dimensionless

solutions of the analytical expression, which provided tables or so-called type-curves. The inverse problem was solved by
curve fitting of the empirical data to the analytical type curve. Today, analytical solutions are applied in a similar way, but
the curve fitting is substituted by numerical perturbation of the involved variables. Sensitivity analysis is another example

where the application of analytical solutions is convenient. After the estimation of optimal parameters, the relative impact
of the uncertainties might be evaluated by simple numerical perturbation of the involved parameters. Here, in this context,
the motivation for using analytical expressions of the transport equation is due to the numerical challenge of solving the trans-

port equation if advective flow is dominant. In such cases, numerical solutions are prone to numerical dispersion. Even
though analytical solutions simplify real transport, numerical artifacts do not affect the solutions. Therefore, by using the
same simplified velocity field for both the analytical and the numerical solutions, the performance of the numerical algorithm
can be evaluated directly by using the analytical solutions as benchmarks.

The formation of a hot water plume in a local thermal equilibrium aquifer will be examined, which is generated by a con-
stant hot water source located at the origin. Consider Equation (25) for convenience normalized such that kd ¼ 1 and with
initial and boundary conditions:

T (r, 0) ¼ 0, T(0, t) ¼ 1, lim
t!1

T(r, t) ¼ 0, r, t . 0: (28)

If the diffusion term is negligible, Equation (25) becomes a simple hyperbolic equation which, for any initial temperature
distribution, T (r, 0) ¼ f(r), has the solution T (r, t) ¼ f(rd � dkdt). In particular, for the conditions in Equation (28), the hyper-
bolic solution is the moving front T(r, t) ¼ Hc(rd � dkdt) whereHc(x) is the complementary Heaviside function (¼ 1 for x � 0,
¼ 0 for x . 0). Since rwcw is typically about twice as large as rscs, the ratio rwcw=rm

cm depends on the porosity n and varies

between 1 and 2. The temperature front thus moves significantly faster than the discharge velocity q, but slower than the aver-
age seepage velocity, u ¼ q=n.
3.1. The 1-dimensional (1-D) case

When d ¼ 1 Equation (25) becomes:

@T
@t

þ k1
@T
@x

¼ l
@2T
@x2

, (29)

where we choose the more standard spatial variable x rather than r. In this case, a well-known similarity variable is

h ¼ (x� k1t)=
ffiffiffiffiffi
lt

p
, which, inserted into the equation results in:

2
d2T
dh2 þ h

dT
dh

¼ 0, (30)

with the general solution T (h) ¼ C1erf(h=2)þ C2. However, no solution from this collection satisfies the boundary condition
T (0, t) ¼ 1. Nevertheless, the similarity solution of the closely related problem satisfying the initial values T (x, 0) ¼ Hc(x),
x [ R is a good approximation:

T (x, t) ¼ 1
2
erfc

x� k1t

2
ffiffiffiffiffi
lt

p
� �

: (31)
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A modification of this solution, satisfying all conditions in Equation (28) exactly has been derived from Ogata & Banks

(1961); see also Bear & Cheng (2008, Eq. 6.4.30):

T(x, t) ¼ 1
2

erfc
x� k1t

2
ffiffiffiffiffi
lt

p
� �

þ exp
k1x
l

� �
erfc

xþ k1t

2
ffiffiffiffiffi
lt

p
� �� �

: (32)

The similarity solution Equation (31) and the exact solution Equation (32) are presented in Figure 1 together with the
hyperbolic front solution T (x, t) ¼ Hc(x� k1t). As expected, the similarity solution in Equation (31) does not satisfy the
boundary conditions at x ¼ 0. Still, as l tends to 0, the solution approaches the hyperbolic front, and Equation (31) becomes

a very good approximation.

3.2. The 2-D radial symmetric case

For a 2-D problem, assuming radial symmetry, Equation (25) becomes:

@T
@t

þ k2
r
@T
@r

¼ l

r
@

@r
r
@T
@r

� �
, (33)

which may be rewritten as:

@T
@t

þ k2 � l

r
@T
@r

¼ l
@2T
@r2

: (34)

Again, it turns out that assuming the similarity variable h ¼ r=
ffiffiffiffiffi
lt

p
, we obtain an equation:

d2T
dh2 ¼ a� 1

h
� h

2

� �
dT
dh

, a ¼ k2
l
, (35)

with general solution:

T(h) ¼ C1

ðh
0
sa�1e�s2=4dsþ C2: (36)
Figure 1 | The 1-D similarity solution Equation (31) and the exact solution Equation (32) compared with the hyperbolic front for two different
values of the diffusion coefficient l.
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The solutions may be written in terms of the incomplete G-function, defined as:

g(x, a) ¼
ðx
0
ta�1e�tdt, G(a) ¼ g(1, a): (37)

The radial 2-D similarity solution becomes:

T (h) ¼ 1�
g

h2

4
,
a

2

� �

G
a

2

� � , (38)

or:

T (r, t) ¼ 1�
g

r2

4lt
,
a

2

� �

G
a

2

� � , (39)

and the solution is shown is Figure 2.

The spherical symmetry 3-D-case is easily seen to have intrinsic scales for r and t involving k3 and l, and no simple simi-
larity solution exists. The scaled equation may however be transformed to a 1-D heat equation with a space-dependent
diffusion coefficient (Philip 1994). Actually, the numerical algorithm below applies a similar transformation.
4. COMPUTATIONAL PROCEDURE

We shall now consider a numerical algorithm for solving Equations (19) and (20), or the equilibrium model Equation (23) in
the case of symmetric geometry. It turns out that the numerical solutions to these problems are nontrivial. They are typically

advection-dominated, and we have already seen in the previous section that the temperature profile is a sharp front moving
away from the source. In the radial and spherical case, the flow becomes very large close to the origin, leading to an almost
hyperbolic equation in this region. Advection-dominated problems are notoriously difficult to solve numerically. Popular

schemes like central differencing schemes result in unstable or spurious oscillatory solutions. Upwind discretization for
the advection term avoids oscillations, but does create artificial diffusion, leading to a smoothed temperature front when
Figure 2 | The exact similarity solution Equation (39) compared with the hyperbolic front for two different values of the diffusion coefficient l
in the 2-D radial symmetric case.
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applied on a coarse grid. Several other methods have been proposed and discussed in the literature, see e.g. Strikwerda (2004)

and LeVeque (1992).
A computational procedure utilizing the special structure of Equation (25) or Equations (26) and (27) is proposed. The pro-

cedure is composed of the well-known Lagrangian approach combined with a coordinate transformation. The idea will first

be explained for the equilibrium case Equation (25).
Before discussing the numerical scheme, it is convenient to say something about the scaling of the problem. Consider a time

scale T for the time t, and R for the space variable r. A reasonable relation between the two scales is Rd ¼ �kdT , R is the
distance a hyperbolic temperature front moves in time T for a constant kd ¼ �kd. The temperature T will typically be

scaled with the temperature of the injected water. With these scales, we get the dimensionless equation:

@T
@t

þ v(t)
1

rd�1

@T
@r

¼ l̂

rd�1

@

@r
rd�1 @T

@r

� �
r . 0, t . 0, (40)

where v(t) ¼ kd(t)=�kd,l̂ ¼ lT =R2. As a curiosity, notice that in the case of a constant kd, by choosing R and T such that
kdT =Rd ¼ lT =R2 ¼ 1, the parameters are completely absorbed, in the sense that also l̂ become equal to one. This is possible
for d ¼ 1 and d ¼ 3, but not for d ¼ 2. However, we will not pursue this curious issue any further here.

To handle the singularities in origin in the radial and spherical cases, we introduce the transformation s ¼ rd=d so that
@s ¼ rd�1@r, valid for all dimensions d. In this case, Equation (40) becomes:

@T
@t

þ v(t)
@T
@s

¼ @

@s
l̂a(s)

@T
@s

� �
, a(s) ¼ (d � s)2(d�1)=d: (41)

Notice that a(0) ¼ 0 for the d � 2, elucidating the hyperbolic nature of the problem close to the origin. The numerical dif-

ficulties of hyperbolic problems can be resolved by using a Lagrangian method: Given a path s(t) in the (s, t) plane. The
solution along this path is T(s(t), t) and the total derivative of T with respect to time becomes:

dT
dt

¼ @T
@s

ds
dt

þ @T
@t

, (42)

which, inserted into Equation (41) gives:

dT
dt

þ v(t)� ds
dt

� �
@T
@s

¼ @

@s
l̂a(s)

@T
@s

� �
: (43)

If we let the path s(t) satisfy ds=dt ¼ v(t), the advection term is eliminated. In fact, the paths s(t) are the characteristics of the
hyperbolic equation we obtain for l̂ ¼ 0. As a result, Equation (41) can be solved as a system of differential equations:

ds
dt

¼ v(t),

dT
dt

¼ @

@s
l̂a(s)

@T
@s

� �
:

The first equation is an ordinary differential equation, whereas the second one is a heat equation with a space-dependent

diffusion coefficient. This can be discretized in space by some appropriate finite difference schemes, e.g.:

dsi
dt

¼ v(t), (44)

dTi

dt
¼ 2l̂

siþ1 � si�1
a(iþ1=2)

Tiþ1 � Ti

siþ1 � si
� a(i�1=2)

Ti � Ti�1

si � si�1

� �
, (45)
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with aiþ1=2 ¼ (a(siþ1)þ a(si))=2, and initial values si(0) ¼ si,0 and Ti(0) ¼ T (si,0, 0). The procedure is significantly simplified if v
is constant, in which case the characteristics s(t) are just straight lines.

The spatial domain can be extended to R by defining a(s) ¼ 0 for s , 0. In this case, we may solve Equation (41) with the
boundary conditions:

lim
s!�1T (s, t) ¼ 1, lim

s!1T(s, t) ¼ 0: (46)

When water is injected, v . 0 and the temperature of the water at the well is T (0, t) ¼ 1. This is realized by choosing
T (s, t0) ¼ T0(s) whenever s . 0 and T (s, t0) ¼ 1 for s � 0. Here, t0 is either the initial time or a switching time, that is when-

ever v(t) changes from negative to positive (from pumping to injection). The procedure is illustrated for the injection phase in
Figure 3.

In order to be able to resolve a sharp front, the characteristics si(t) used in the discretization can be concentrated around it.
Example 1. The algorithm described above is used for solving Equation (40) for d ¼ 2, using k2 ¼ 1, T(0, t) ¼ Tinj ¼ 1 and

T (r, 0) ¼ 0. The exact solution is given by Equation (39). The problem is first solved by the algorithm described above. The
initial computational domain is (� Sint, Sint) where Sint is chosen sufficiently large to avoid any influence from the boundaries.
The concentration of characteristics around the front is achieved by using:

�si ¼ � 1
2
þ i
N

, si(t0) ¼ (sgn(�si))
p�1�spi Sint, i ¼ 0, � � � , N, (47)

where p is a positive integer, the higher p the stronger concentration. In our experiments, we have used p ¼ 3, N ¼ 100 and
Sint ¼ 2:4.

For comparisons, Equation (40) is also solved by a standard difference scheme with constant stepsize. In this case, the
advection term is approximated with an upwind scheme (@T=@r)(ri, t) � (Ti(t)� Ti�1(t))=Dr. For the diffusion term a central
difference scheme is applied. The spatial gridsize is Dr ¼ 0:012.

The problem is solved for different values of l̂, and the results are shown in Figure 4 together with the exact solutions given
by Equation (39). For l̂ ¼ 0:1, the diffusion is large and the artificial diffusion of the upwind method is insignificant. For
smaller values of l̂, the front remains sharp, and the effect of the artificial diffusion of the upwind method becomes quite pro-
nounced. The Lagrangian approach preserves the sharp temperature front.
Figure 3 | The extended domain and the characteristic lines in the injection phase.
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Figure 4 | Comparison of the numerical solutions based on the Lagrangian method, and a classical upwind scheme of the 2-D radial
symmetric case (Equation (40)) for different values of the diffusion parameter l̂. The Lagrangian solution overlaps the exact solution for all
three values of l̂.
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4.1. The non-equilibrium case

The non-equilibrium case, Equations (26) and (27) are now being considered, which, in its scaled form, is presented
as follows:

@Ts

@t
¼ l̂s

rd�1

@

@r
rd�1 @Ts

@r

� �
þ gs(Tw � Ts), (48)

@Tw

@t
þ v

1
rd�1

@Tw

@r
¼ l̂w

rd�1

@

@r
rd�1 @Tw

@r

� �
� gw(Tw � Ts), (49)

where:

l̂s ¼ ls
rscs

T
R2 , l̂w ¼ lw

rwcw

T
R2 , gs ¼

h
(1� n)rscs

T , gw ¼ h
nrwcw

T , (50)

and:

v ¼ Qd

n
T
Rd

: (51)

Again, for a given time scale T it is appropriate to choose a spatial scale R such that v(t) is of the size of 1. The boundary
conditions in the injection case (v(t) . 0) is:

Tw(0, t) ¼ Tinj,
@Ts

@t
(0, t) ¼ gs(Tinj � Ts(0, t)), (52)

with Tinj ¼ 1 if the temperature is scaled.

By applying the transformation s ¼ rd=d and using the Lagrangian approach, we can find the solutions Ts(s(t), t) and
Tw(s(t), t) on the characteristics s(t) from:

ds
dt

¼ u(t), (53)

dTs

dt
� u(t)

@Ts

@s
¼ l̂s

@

@s
a(s)

@Ts

@s

� �
þ gs(Tw � Ts), (54)

dTw

dt
þ (v(t)� u(t))

@Tw

@s
¼ l̂w

@

@s
a(s)

@Tw

@s

� �
� gw(Tw � Ts), (55)
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where u(t) is the velocity of the temperature front, typically u(t) ¼ rvcvn=(rc)mv(t). The formulation is used to construct a

spatial grid which is dense around a sharp solution profile, and moves with it. This is illustrated in the following example.
Example 2. Consider the nondimensional equations Equations (48) and (49), using d ¼ 2 and parameters:

l̂w ¼ l̂s ¼ 10�5, gw ¼ 1, gs ¼ 2, (56)

and a time dependent flow, v(t) ¼ cos (pt). For 0 , t , 1, both injection, 0 , t , 0:5, and pumping, 0:5 , t , 1, are demon-
strated. The equations are solved with the Lagrangian approach, using a central difference approximation for the diffusion
terms, and a downwind scheme:

@T
@s

(si, t) � Ts,iþ1 � Ts,i

Dsi
, (57)

for the advection term. We have used a spatial stepsize Dsi, varying from 1:1 � 10�6 to 0:14 and concentrated around the temp-
erature front of the water. The semidiscretized system is solved by MATLABs ODE15s.

The result of the simulation is presented in Figure 5. We can clearly see how the hot water plume develops with time t. The
concentration of characteristics moves with the temperature front, which remains sharp. At the same time, there is a heat
exchange from water to solid, and the temperature of the water behind the front is reduced at the same time as that of the
solid temperature increases. The diffusion is almost negligible most of the time, but will cause a slight smoothing of the
front. When t ! 1, the front approaches the well with increasing velocity, and the smoothing of the front becomes more pro-
nounced. This example illustrates the numerical challenge, namely the coupling of advective and diffusive physics. Usually,
the numerical solutions of such problems suffer from artifacts such as numerical diffusion and/or oscillations, but in this case,
it is possible to suppress the numerical artifacts to negligible levels.
5. CASE STUDY: TEMPERATURE PROFILE NEAR A WELL IN AN ATES SYSTEM

In this section, we consider the temperature propagation around a hot well in an ATES system. The physical and thermal

properties of the Gardermoen aquifer were obtained from Goshu & Omre (2003) and Tuttle (1997), and are given in
Table 1. The ATES system typically operates in one of the two modes: Injecting hot water during daytime and extracting
it during nighttime, resulting in a full operational cycle of 24 h. Alternatively, the warm water is injected during the

summer months, and extracted in the winter, giving a cycle of one year. In reality, a combination of these is used, but in
our study, we only consider the first modi, assuming the injection and extraction periods to be of equal lengths, 12 h.

The Gardermoen aquifer is a delta structure deposited in a glacio-fluvial/glacio-marine environment during the last degla-
ciation of the Scandinavian crust (approximately. 10,000 B.P., Tuttle (1997)). The river discharge and the sediment load from

the melting glacier were significant, which explains the wide range of grain sizes of the sediments from boulders (dp . 500
Figure 5 | Temperature distribution of water (left) and solid (right) in the aquifer as a function of time t and radial distance r for v(t) ¼ cos (pt).
Hot water is injected for t , 0:5 and pumped for t . 0:5.
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Table 1 | Physical and thermal properties of fluid and aquifer for the thermo-hydraulic modeling of the Gardermoen aquifer

Property Symbol Value

Porosity n 0.1507

Density of fluid rw 1,000 kg/m3

Density of aquifer rs 2,630 kg/m3

Specific heat of fluid cw 4,200 J/kg K

Specific heat of solid cs 800 J/kg K

Thermal conductivity of fluid lw 0.6 W/mK

Thermal conductivity of solid ls 2.0 W/mK

Injection/pumping rate Q 28 m3/h

Temperature of the injected water Tinj 30 °C

Aquifer initial temperature T0 4 °C

Aquifer height H0 24.4 m

Hydrology Research Vol 54 No 11, 1445

Downloaded from http
by NTNU user
on 24 January 2024
mm, at the proximal side of the delta), to fine sand and silt (dp ,� 1 mm) at the distal side of the delta. The ATES system for

this case study was located in the delta foresets with homogeneous fine sand, but it is interesting to compare the energy effi-
ciency of this ATES with alternative locations. We, therefore, let the sediments vary form dp ¼ 1 mm, which corresponds to a
foreset location, to dp ¼ 500 mmmimicking a location close to the glacial portals. In that case, the aquifer permeability would
have been better, but to keep the experiment as simple as possible, we let the pumping rate and the porosity be the same for all

grain sizes. In Table 2, the value of the heat transfer coefficient h, Equation (14), and the time scale toward thermal equili-
brium Dt, Equation (16), for different particle sizes are shown. So, we can conclude that within the time scales given by the
injection/extraction periods, there is almost thermal equilibrium for realistic particle sizes. It is still of interest to see what

happens in the initial injection phase before thermal equilibrium is established, so we will solve Equations (26) and (27).
In a horizontally confined aquifer, we can assume radial symmetry in the vicinity of a well, so d ¼ 2. Initial and boundary
conditions for the first injection phase are:

Tw(0, t) ¼ Tinj, Tw(r, 0) ¼ T0, (58)

@Ts

@t
jr¼0 ¼ gs(Tw � Ts), Ts(r, 0) ¼ T0: (59)

The equations are solved by the numerical approach outlined in Section 4.

5.1. Transient injection phase

In Figure 6, we present the temperature profiles for the first few seconds of the injection period. The first rows shows the
situation for particle size dp ¼ 1 mm. Thermal equilibrium happens almost immediately in this case, but the energy
transfer still has an effect in the sense that the temperature front becomes more smooth. Also notice that after
0.15 s, the solid temperature at the wall has reached about two-thirds of the water temperature, while the water is

almost cooled at the front. This is consistent with the fact that (1� n)rscs=(nrwcw) � 2:8, thus we expect the water to
Table 2 | The heat transfer coefficient (Equation (14)) and the estimated time scale (Equation (16)) toward thermal equilibrium for different
particle size

dp 500 mm 100 mm 10 mm 5mm 1mm

h[W=mK] 49.3 1:2� 103 1:2� 105 4:9� 105 1:2� 107

Dt 10.3 h 25 min 15 s 3.8 s 0.15 s
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Figure 6 | The temperature profile of the solid and the water for different values of dp (mm) in 2-D radial flow near a well. The solid lines
indicate the temperature of the water and the broken lines for solid temperature. The upper row emphasizes the water and solid temperature
profile of the same particle size with different timescales while the bottom row emphasizes the water and solid temperature profile of
different particle sizes over the same timescale.
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cool down approximately three times as fast as the solid heats up. The lower row gives the same profile for dp ¼ 5 mm
and dp ¼ 10 mm, and as expected, the heat exchange is significantly slower in these cases. As a consequence, the width

of the front increases.
The similarities of the top left and the lower right plots are depicted in Figure 6. This is due to the fact that the thermal

transfer coefficient h given by Equation (14) is proportional to d�2
p . For the 2-D radial symmetry case, the two solutions

may be proved to be identical up to scalings of t and r.

5.2. Energy efficiency

In this part, we study the energy recovery from an ATES well based on 12-h injection and extraction periods. In general, the

energy transfer E in the well over a time interval t is given by:

E(t) ¼
ð
t

rwcw(Tw,0(t)� T0)Q(t) dt, (60)

where Tw,0 ¼ Tw(0, t) is the water temperature at the well. The efficiency can be measured in terms of the energy recovery

factor given by (Doughty et al. 1982):

u ¼ jE(textraction)j
jE(tinjection)j

: (61)
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Clearly, if the injected water has a constant temperature and the injection rate Q is constant, then

E(tinjection) ¼ rwcw(Tinj � T0)Qtinjection. During pumping, the water temperature at the well will vary depending on the dis-
persion of temperature in the aquifer, which includes natural heterogeneity and the heat transfer between the liquid and
the solid phases. A numerical simulation of the temperature of the water and solid at the well over five consecutive cycles

is given in Figure 7, as well as the recovery rate over these cycles.
We observe that the heat exchange has a significant impact on the efficiency rate for dp ¼ 500 mm, otherwise not. We

notice that the efficiency recovery rate based on this simplified model corresponds well with the rates achieved for an
ATES system in the same aquifer presented in Birhanu et al. (2015a).

The temperature profile over one cycle (injection and pumping) is given for the two extreme cases dp ¼ 500 mm and dp ¼ 1
mm as shown in Figure 8.
6. CONCLUSION

This paper has briefly reviewed the differential equations for heat transport in water-saturated porous media, and presented
numerical and analytical solutions for radially symmetric flows. In particular, a simple similarity solution was obtained for the
heat transfer in a 2 horizontal confined aquifer in local fluid/solid thermal equilibrium. For a time-varying groundwater flow
Figure 7 | The temperature of the water and the solid at the well for five consecutive cycles of 24 h for aquifers of different particle sizes. In
the lower right corner, the corresponding recovery rates.
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Figure 8 | Temperature profiles of the water (solid lines) and the solid (dashed lines) for different particle sizes. The left column shows the
temperature profiles during injection, the right during pumping.
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and different fluid and solid temperatures, that is, the non-equilibrium or delayed case, solutions have to be obtained numeri-
cally. The numerical algorithms have been based on a semi-discrete Lagrangian formulation.

The major conclusions of this study are summarized as follows: (i) the numerical models have enabled us to consider the

primary purpose of this investigation, namely to calculate the recovery factor of a one-well ATES system with a cyclic rep-
etition of injection and pumping; (ii) The performance is found to rely on the overall cycle duration in relation to the
timescale for heat transfer between the fluid and solid. The latter may be linked to the typical grain size dp as shown in
Table 2. For a total cycle of length 24 h, referring to Figure 7, the performance is seen to be virtually independent of the

grain size as long as dp is less than about 100 mm (Dt � 25 min), but significantly affected for ds ¼ 500 mm (Dt � 10 h). In
the latter case, the efficiency is also significantly reduced; (iii) The analytic and numerical solutions should provide a consist-
ent tool for the understanding of water and solid temperatures near wells with radial flows.
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