
Decision Support Systems 178 (2024) 114106

Available online 15 October 2023
0167-9236/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Locally interpretable tree boosting: An application to house price prediction 

Anders Hjort a,b,*, Ida Scheel a, Dag Einar Sommervoll b,c,d, Johan Pensar a 

a Department of Mathematics, University of Oslo, Norway 
b Eiendomsverdi AS, Norway 
c School of Economics and Business, Norwegian University of Life Sciences (NMBU), Norway 
d NTNU Trondheim Business School, Norway   

A R T I C L E  I N F O   

Keywords: 
Gradient boosted trees 
Generalized additive models 
Explainable boosting machines 
Interpretable machine learning 
House Price prediction 

A B S T R A C T   

We introduce Locally Interpretable Tree Boosting (LitBoost), a tree boosting model tailored to applications where 
the data comes from several heterogeneous yet known groups with a limited number of observations per group. 
LitBoost constraints the complexity of a Gradient Boosted Trees model in a way that allows us to express the final 
model as a set of local Generalized Additive Models, yielding significant interpretability benefits while still 
maintaining some of the predictive power of a Gradient Boosted Trees model. We use house price prediction as a 
motivating example and demonstrate the performance of LitBoost on a data set of N = 14382 observations from 
15 different city districts in Oslo (Norway). We also test the robustness of LitBoost in an extensive simulation 
study on a synthetic data set.   

1. Introduction 

The Gradient Boosted Trees (GBT) model has become a popular 
model choice among statisticians and data science practitioners due to 
its record of producing predictions with impressive accuracy in a wide 
variety of applications [6,9]. Despite its predictive accuracy, it can often 
be challenging to apply the model in real-world applications where 
interpretability is essential due to the black-box nature of the model. 
Explaining or interpreting decisions from prediction models can be 
particularly important in high-stakes decisions within fields such as 
medicine, finance, or criminal justice. Using explainable models has 
become even more critical in recent years in the EU after the introduc
tion of the General Data Protection Regulation (GDPR) laws, which 
according to Goodman and Flaxman [13], induces a “right to explana
tion” to decisions made by algorithms of significant importance. 
Coussement and Benoit [7] give a review of the challenges in applying 
data science in decision support systems, and conclude that the “wide
spread adoption of data science and analytics goes hand in hand with the 
increasing need for interpretability.” For these reasons, among others, 
several explanation frameworks have been developed for black box 
models like GBT, with SHAP (SHapley Additive exPlanations; [22]) or 
LIME (Local Interpetable Model-agnostic Explanations; [25]) being 
among the most popular alternatives. These tools are examples of post- 
hoc explanation approaches that approximate the relationship between 

feature values and predictions from the underlying model to provide a 
human with a helpful explanation. While such methods can help explain 
complex black box models, some critics advocate using inherently 
interpretable models rather than post-hoc explanation tools, especially 
for high-stakes decisions [27]. 

A specific example of machine learning models used to make high- 
stakes decisions is in the realm of Automated Valuation Models 
(AVMs) for house price prediction. Financial institutions often rely on 
AVMs to estimate the value of dwellings, subsequently using these es
timates as the basis for decisions about mortgages, property tax, or in
surance premiums [12]. Recent years have seen an increase in the use of 
black box machine learning models for this purpose [29], which also 
leads to increasing challenges related to model interpretability, given 
the implication of these decisions for homeowners and financial 
institutions. 

A Generalized Additive Model (GAM; [15]) is a class of models that 
relates the univariate response variable y to some feature variables x1,… 
, xp according to 

g(E(y) ) = f0 + f1(x1)+….+ fp
(
xp
)
, (1)  

where g(⋅) is a link function, f0 is an intercept and f1(x1),…, fp
(
xp
)

are 
referred to as the shape functions or partial effect of x1,…,xp, respectively. 
GAMs are widely considered a fully interpretable class of models [30] 
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due to their additive nature, which allows us to visualize fj
(
xj
)

to learn 
about the specific effect of feature xj. Another appealing consequence is 
that the final prediction is a sum of the contributions from each shape 
function fj

(
xj
)
. Recent research efforts by Lou et al. [20] and Lou et al. 

[21] shed light on the connection between the full-complexity GBTs and 
the interpretable GAMs; using trees with a tree depth of one, referred to 
as tree stumps, removes any interactions terms and thus effectively makes 
the GBT into a GAM. It also demonstrates that GAMs with tree stumps 
tend to outperform GAMs created with splines, which is the traditional 
approach presented by Hastie and Tibshirani [15]. 

The drawback of the additive structure of a GAM is the lack of 
interaction terms. This is problematic in settings where the data stems 
from an underlying process of heterogeneous groups for which the 
mapping between the features and the response might vary. The housing 
market is a textbook example of such heterogeneity, in the sense that the 
effect a specific feature has on the sale price can differ dramatically 
based on which geographical region or city district the dwelling comes 
from. The intuitive handling of a categorical variable xc, representing, 
for example, a city district, in a GAM is to include it as a one-hot encoded 
variable, resulting in a fixed effect for each category. While this might 
capture the signal in the data well for certain groups, a more flexible 
model is generally preferable. Another option is to train separate models 
for each city district, that is, to train individual models only on the 
subset of the training data from the corresponding city district. This 
approach will result in tailored models for each category but also pre
vent information sharing between the groups during training. 

This paper introduces LitBoost (Locally Interpretable Tree Boosting), 
a tree-based boosting model that retains the interpretability benefits 
offered by a GAM while still producing locally adaptive and accurate 
predictions. We achieve this by modifying the standard GBT framework 
to allow for trees deeper than stumps but by carefully limiting in
teractions to only those involving the feature that defines a grouping 
structure. The resulting model is a collection of K local models that are 
jointly trained, meaning that each model has had access to data from the 
other groups during training. LitBoost allows each local model to borrow 
strength from similar groups in a manner that would not have been 
possible if the models were independently trained, that is if we train K 
entirely separate local models. To facilitate information sharing in the 
construction of the decision trees, we propose multi-hot encoding, a 
feature engineering technique for the grouping variable that allows for 
more flexible splits. 

We evaluate our method on a data set of N = 14382 observations 
from the housing market in Oslo (Norway) from 2018. We also 
demonstrate the idea on a synthetic data set inspired by a well-known 
simulation setup proposed by Friedman [10]. This simulation study al
lows us to control the between-group similarities, thus investigating how 
the proposed model performs under different levels of heterogeneity 
between the groups. 

The main contribution of this paper are: (i) We introduce LitBoost, a 
constrained version of GBT that makes the final model fully interpret
able, (ii) We introduce a novel proximity measure to quantify the data 
sharing between the groups in the training process, and (iii) We 
contribute to the AVM literature by demonstrating the performance of 
LitBoost on a novel data set of transactions from the housing market in 
Oslo (Norway). 

The rest of the paper is structured as follows. Section 2 gives an over
view of the related literature before Section 3 outlines the details of GBT, 
GAM, and the link between them, and subsequently introduces our pro
posed method, LitBoost. Section 4 introduces the housing market appli
cation along with a data set, consisting of transactions from the Norwegian 
housing market, and demonstrates the performance of LitBoost on the data 
set. Section 5 presents a simulation study where we evaluate the perfor
mance of LitBoost in a controlled setting and for different configurations of 
the data generating process. Section 6 concludes and highlights some 
challenges and opportunities for further research. 

2. Related methods 

A Gradient Boosted Trees model (GBT) [9,11] fits a sequence of 
decision trees, each new tree successively trained on the errors from the 
previous one. GBT has become among the most precise prediction tools 
in machine learning for tabular data thanks to its flexible nature and 
ability to capture intricate and non-linear relationships with multiple 
high-order interactions. Numerically efficient implementations, such as 
XGBoost [6] and LightGBM [18], have further increased their 
popularity. 

A Generalized Additive Model (GAM) [15] is any model that takes 
the additive form 

g(E(y) ) = f0 + f1(x1)+…+ fp
(
xp
)
, (2)  

where the functions fj
(
xj
)

are referred to as shape functions. Although 
splines historically have been the preferred functional form of the shape 
functions [30], Lou et al. [20] proposed to train a GAM by using a GBT 
but limiting the tree depth in each tree to one. Furthermore, Lou et al. 
[21] expanded upon this work by introducing the GA2M model, a GAM 
that allowed a carefully selected set of pairwise interactions, yielding the 
additive form of 

g(E(y) ) = f0 + f1(x1)+…+ fp
(
xp
)
+

∑

k,l∈ℐ
fkl(xk, xl), (3)  

where ℐ denotes the set of interactions included in the model. To select 
ℐ, Lou et al. [21] propose an algorithm that greedily includes an 
interaction pair fkl(xk, xl) based on an approximation of its predictive 
power. Nori et al. [24] have released an efficient implementation of the 
GA2M model under the name Explainable Boosting Machines (EBM). In 
addition to quick interaction detection, EBM applies cyclic boosting to 
speed up training. Cyclic boosting cycles through the features system
atically in a round-robin fashion instead of the more standard boosting 
procedures, which greedily choose which feature to split on in each 
iteration. 

Other approaches for training the shape functions fj
(
xj
)

have also 
been proposed. Agarwal et al. [1] introduce the Neural Additive Model 
(NAM), which learns the shape functions fj

(
xj
)

using deep neural net
works, such that the resulting model still is a fully interpretable GAM. 
Furthermore, GAMI-Net [31] expands upon the NAM model to include 
carefully selected interaction pairs fkl(xk, xl) which are also trained by a 
neural network. The interactions in GAMI-Net are chosen similarly as in 
GA2M, albeit with additional constraints relating to the heredity of the 
included features. 

GAMs with interactions are part of a wider model class called 
Structured Additive Regression (STAR) models [8], which take the form 
g(E(y) ) = h1(x̃1) + … + hq

(
x̃q
)

where each argument x̃j contains a sub
set of x1,…,xp. As an illustrative example with p = 4 features, the set of 
possible STAR model specifications includes, but is not limited to, model 
specifications such as g(E(y) ) = h1(x1, x2) + h2(x3, x4) or g(E(y) ) =

h1(x1, x2, x3)+ h2(x4). The STAR formulation makes q shape functions, 
each possibly multivariate, rather than the univariate shape functions 
fj
(
xj
)

used in a GAM. Mayer et al. [23] points out that a STAR model can 
be trained using the XGBoost machinery using the existing methodology 
for feature interaction constraints, which allows the user to specify the 
features allowed to interact within a single decision tree. 

The idea of utilizing tree-based models to create local models for 
specific data groups has also been explored. Sigrist [28] introduces 
Gaussian Process Boosting (GPBoost), which combines tree boosting 
with grouped random effects in a way that aims to model correlations 
between categorical groups in the data set. Outside of boosting, Zeileis 
et al. [32] introduce an ensemble of segmented tree models where local 
interpretable models are fitted to different parts of the feature space, 
defined as the levels in a tree structure. Here, the feature space seg
mentation and the local models’ training are done in a joint fashion. 
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In summary, the links between the additive class of GAM models and 
tree-based machine learning models like GBT have been explored in 
various ways in the literature, with the recently introduced EBM as a 
notable example. Most of these methodological advances are motivated 
by a desire to maintain the interpretability of a GAM while improving 
the predictive accuracy through more flexible shape functions. The 
motivation behind our research follows the same lines but focuses on the 
particular task of training a set of locally interpretable models given 
some available grouping structure in the data. 

3. Methodology 

In this section, we briefly present Gradient Boosted Trees (GBT) and 
Generalized Additive Models (GAM), two popular methods for predic
tive tasks, before introducing our proposed model, Locally Interpretable 
Tree Boosting (LitBoost). In addition, we introduce multi-hot encoding, 
a feature preprocessing technique that allows LitBoost to utilize infor
mation across groups in a more flexible way. Finally, we present a novel 
groupwise proximity measure that quantifies the information sharing 
across groups during training. 

3.1. A decision tree 

Consider a supervised machine learning problem where the goal is to 
build a prediction model f(x) that returns a prediction ŷ ∈ ℝ based on 
features x ∈ ℝp. A flexible way to build this prediction model is to train a 
decision tree based on some available training data, containing obser
vations of the form (x, y), and a loss function that quantifies the differ
ence between the model predictions and the actual values. Let h(x; q)
denote the output of a decision tree with tree structure q. Encoded in the 
tree structure is the division of the feature space into J distinct and non- 
overlapping regions, each denoted by ℛj and equipped with a value vj ∈

R for j = 1,…,J. Formally, we then have that 

h(x; q) =
∑J

j=1
vj⋅I

(
x ∈ ℛj

)
.

The regions ℛj are usually created to minimize the total variance of 
the y values in each of the leaf nodes, meaning that the decision tree 
finds splits that group observations with a similar response. This 
approach was first introduced by Breiman et al. [4]. 

3.2. Gradient boosted trees 

A Gradient Boosted Trees model trains a sequence of trees such that 
the next tree is trained on the residuals of the previous tree. After 
training a sequence of M such trees, the final prediction is then given by 

f (x) =
∑M

m=1
η⋅hm(x; qm),

where hm is the output function of tree number m in the sequence and η ∈

(0, 1] is a regularization parameter known as the learning rate. The 
number of trees M, the learning rate η, and the tree depth are hyper
parameters that affect the performance of the model and rate of 
convergence of the training process. The hyperparameters can be tuned 
based on the application at hand. Increasing the tree depth will allow the 
model to detect more interactions but also increase the risk of over
fitting. XGBoost [6] uses a default tree depth of 6, whereas LigthGBM 
[18] constrains the complexity of the trees by limiting the number of leaf 
nodes a default maximum number of 32. 

3.3. Generalized additive models 

A Generalized Additive Model is any model that takes the form 

g(E(y) ) = f0 + f1(x1)+ f2(x2)+…+ fp
(
xp
)
, (4)  

where x1, …, xp are features, E(y) is the expected value of the response y, 
g(⋅) is a link function and f1(⋅),…, fp(⋅) are called shape functions. This 
general formulation encapsulates a variety of statistical models. For 
instance, we obtain the traditional linear regression model by using the 
identity link function g(E(y) ) = E(y) and letting fj

(
xj
)
= βj⋅xj for j = 1,

…,p. 
The simplest form of decision trees are trees with only a single split, 

referred to as tree stumps. Using tree stumps, each tree divides the feature 
space into two regions, 

ℛ1 = {x : xi ≤ a}, ℛ2 = {x : xi > a}

for some value a. Note that each tree in the GBT will then be a simple 
step function that only utilizes one of the p covariates. Although one tree 
stump will provide a quite coarse binary split of the xi feature space, an 
aggregation of multiple binary splits on xi will generate a non-smooth 
and possibly rather complicated function fj

(
xj
)
. Thus, training a GBT 

with tree stumps makes it possible to express the final model as a GAM, 
as tree stumps do not introduce interactions. To visualize the shape 

function pair 
(

xj, fj
(
xj
) )

we can accumulate all the trees that split on xj 

and discard the other trees. This procedure can be repeated for all the p 
covariates, resulting in the additive structure of a GAM. 

To increase the expressiveness provided by standard GAMs, Lou et al. 
[21] propose to modify the GAM framework to be of the form 

g(E(y) ) =
∑p

j=1
fj
(
xj
)
+

∑

k,l∈ℐ
fkl(xk, xl), (5)  

where the latter term involves a small set of carefully chosen pairwise 
interactions ℐ. The identification of the relevant interactions is an 
important computational bottleneck. In principle, we must evaluate the 
predictive power of all combinations of possible pairwise interactions to 
determine the optimal ℐ. However, since this is usually computationally 
infeasible, Lou et al. [21] use a greedy forward stagewise selection 
strategy called FAST to identify the interactions in ℐ. FAST approxi
mates the true gain in predictive power adding fkl(xk, xl) by taking the 
average of the response in various subsets of the (xk, xl) feature space, 
which makes it possible to evaluate all possible pairs at reasonably low 
computational and memory costs. An efficient implementation of 
models in the form of (5) was released by Nori et al. [24] under the name 
Explainable Boosting Machine (EBM). 

3.4. Interpretability in tree-based models 

A significant drawback of GBT with deeper trees is the lack of 
interpretability. While a single decision tree may be easy to inspect, a 
sequence of M trees quickly becomes hard to understand as the number 
of trees is increased. A single tree of depth D divides the feature space 
into at most 2D distinct regions while also introducing a potentially large 
number of interactions between the covariates, making it difficult to 
isolate the effect of each covariate. 

Unlike with a GAM, the shape functions fj
(
xj
)

are not readily avail
able with GBT. Tools exist to visualize marginalized shape functions for 
deeper trees, most notably through a partial dependence plot. To generate 
a partial dependence plot for covariate xj we must marginalize out the 
effect of all the other covariates x1,…, xj− 1,xj+1,…, xp. Greenwell [14] 
presents a practical way of estimating the partial dependence plots, 
essentially by keeping xj fixed while changing the other features in a 
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discrete grid and storing the prediction for each grid point. While the 
partial dependence plot gives a hint about the contribution of a covar
iate to the final prediction ŷ, it does not give a perfect explanation in the 
following sense. Due to the interaction terms that are introduced by 
having deeper trees, a partial dependence plot of 

(
xj, ŷ

)
will not reveal 

to us the exact prediction corresponding to a set of feature values 
(
x1,…, xp

)
. Instead this plot will give us the prediction given xj, aver

aged over all the other input variables. Thus, the partial dependence plot 
cannot decompose any prediction ŷ in the same additive manner as a 
GAM. 

In the case of EBM, where additional interaction pairs (xk, xl) are 
included in the model, one can still visualize the model through the 
shape functions fj

(
xj
)
. However, in addition, one needs to resort to, for 

example, heat maps fkl(xk, xl) in the two-dimensional (xk, xl) space. 
Although most humans find it easier to visually analyze a one- 
dimensional shape function fj

(
xj
)

than a heat map fkl(xk, xl), Lou et al. 
[21] argues that this is still intelligible. 

3.5. LitBoost 

Instead of using a single interpretable model (GAM or EBM), we 
propose using a collection of local interpretable models defined by some 
designated grouping variable xc. To efficiently train the proposed model 
class using existing and highly optimized GBT implementations, we 
introduce LitBoost (Locally Interpretable Tree Boosting), a method for 
training a collection of local and interpretable tree boosting models 
through interaction constraints. For the sake of simplicity, consider a 
prediction problem with a numerical variable x1 and a categorical var
iable xc, where xc ∈ {A,B,C,D}, that is, we have K = 4 distinct groups. 
Fig. 1 shows a simple decision tree that divides the (x1, xc) space into 
four distinct regions. The tree can be expressed as a prediction function 
f(x1, xc) that returns the prediction v1, v2, v3, v4 depending on which leaf 
the observations belong to. Due to the nature of the categorical xc, we 
can express f(x1, xc) in an additive manner as 

f (x1, xc) = f A1 (x1)+ f B1 (x1)+ f C1 (x1)+ f D1 (x1) = f xc1 (x1),

where the subscript indicates which feature the shape function belongs 
to, and the superscript indicates which of the K local models the shape 
function belongs to. 

Fig. 2 displays visually how the tree in Fig. 1 can be re-expressed as a 
decomposition of four local models. We can further generalize this idea 
to the more general case where we have p model features x1, .., xp in 
addition to the categorical feature xc with ∣xc∣ = K, as 

f
(
x1, ..,xp, xc

)
=

∑K

xc=1

∑p

j=1
f xcj

(
xj
)
, (6)  

where subscript j indicates the feature and superscript xc indicates which 
of the K groups (or local models) the shape function belongs to. The 
Local GAM for a given group A can thus be expressed as 

f
(
x1,…, xp|xc = A

)
=

∑p

j=1
f Aj
(
xj
)
. (7) 

This type of decomposition is not possible in any decision tree. The 
nature of the tree-based models is to search greedily for the split that 
improves some objective function. A decision tree with a tree depth of 
more than one could thus consist of a split on, e.g., x1 followed by x2, 
creating an interaction between x1 and x2. To be able to enforce the 
model structure described in (7) from a jointly trained model, we must 
impose feature interaction constraints. More specifically, we only allow 
interactions between the categorical covariate xc and one other covari
ate at the time. Explicitly, within one tree, we will allow either of the 
interactions (xc, x1), (xc, x2), …, 

(
xc, xp

)
, but not any other. If a tree has 

made a split on xj, it must either continue to split on xj or split on xc. The 
conditional GAM structure of (7) is maintained regardless of tree depth 
as long as the interaction constraints are imposed. 

Training the K local models jointly with interaction constraints al
lows the model to borrow strength between the groups in a way that is 
impossible if we independently train K separate models on subsets of the 
data. Each decision tree has access to data from the other groups, thus 
allowing multiple splits on xj that will be common between all groups 
before creating local effects by splitting on xc. 

We have now discussed a handful of standard model specifications 
based on boosted trees in addition to the introduction of LitBoost. As a 
summary to aid the reader, Table 1 shows an overview of the methods 
presented in this work. 

3.6. Multi-hot encoding of categorical variable 

The conventional way of handling categorical variables in decision 
trees is to transform them into binary indicators, often referred to as one- 
hot encoding [3,6]. A categorical variable xc with K levels G1,…,GK is 
transformed into K new features by means of the indicator function xci =

I(xc = Gi), such that xci takes the value 1 if the data point is part of the 
group Gi and the value 0 otherwise. Another option is integer encoding, 
which does not create K new features but maps the categories of xc to a 
set of integer values. While this might be intuitive if the levels of xc have 
some inherent ordering, for instance, if xc represents university grades 
ranging from A to F, this is seldom the case for categorical variables. 

A challenge with applying one-hot encoding is that the decision trees 
are forced to create splits that partition the feature space into two highly 
imbalanced nodes, where one of the K categories is present in one node 
while all the other (K − 1) categories are present in the other node. This 
is exemplified in Fig. 1, where the left branch of the tree splits on {A} in 
one node and {B,C,D} in the other. Although this might be unprob
lematic if K is reasonably small, it might pose a problem as K grows, in 
particular, since it limits the flexibility of a tree in terms of finding a 
good partitioning based on xc. 

To overcome this, we introduce multi-hot encoding, a method for 
enriching the data set with additional xc related columns before training. 
We translate xc to a set of binary indicator features in a similar fashion as 
one-hot encoding, but in addition, add a feature that take value 1 if xc is 
part of a set of categories. Consider, for instance, the three-hot encoded 
variable 

xcijk = I
(
xc = Gi ∨ xc = Gj ∨ xc = Gk

)
, (8)  

where ∨ is the “or” operator. With (8), xcijk gets the value 1 if xc is part of 
either group Gi, Gj or Gk. The benefit of introducing multi-hot encoding, 
in addition to one-hot encoding, is that it allows the model to identify 
similar clusters of categories and use these in the splitting process. It is 
likely to lead to more efficient training in the sense that the algorithm 

Fig. 1. A simple decision tree dividing the feature space into four regions with 
predicted value v1, v2, v3, v4 in the four regions. The first split is made on x1, 
with values smaller than 1 going to the left and values larger than (or equal to) 
1 going to the right. The second split is on the categorical feature xc, with 
different splits on each side of the tree. 
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will achieve better predictions and quicker convergence in the training 
error, as the model shares data between similar groups in a way that is 
not possible with one-hot encoding. 

An example that exploits two-hot encoding of xc ∈ {A,B,C,D} can be 
seen in Fig. 3. Due to the added flexibility given by the two-hot encod
ing, the tree model can split the feature space into groups consisting of 
two and two groups in a manner that would not have been possible with 
one-hot encoding. However, when applying multi-hot encoding, one 
should be aware that the number of new columns might quickly become 
infeasibly large if K is high. Depending on the implementation and tree 
model being applied, this might lead to computational challenges. 

3.7. Groupwise proximity measure 

Since the local models are trained in a joint fashion it will allow two 
groups to borrow strength from each other during training in a way that 
would not be possible if each local model were trained independently. 
The amount of data sharing will vary for different pairs of groups, and as 
a way of quantifying it, we define a measure based on the proximity 
matrix of each decision tree. Breiman [3] defined the proximity between 
observation a and observation b in a decision tree with structure q as 

Proxq(a, b) =
{

1 if a and b are in the same leaf,
0 otherwise. .

The proximities between observations can be aggregated to a 
groupwise proximity measure that quantifies the similarity between 
group Gi and group Gj, two levels of xc, as the mean proximity between 
every pair of observations across the two groups: 

H̃q
(
Gi,Gj

)
=

1
NiNj

∑

a∈Gi

∑

b∈Gj

Prox(a, b; q), (9)  

where Ni and Nj denotes the total number of observations in the 
respective groups. The value of H̃q

(
Gi,Gj

)
should be interpreted as the 

mean number of times an observation from Gi is in the same leaf as an 
observation in Gj. A high value of H̃q

(
Gi,Gj

)
indicates a significant de

gree of information sharing between the groups; since the observations 
often land in the same leaf of the decision tree, the predictions of new 
test instances from group Gi will be affected by the training instances 
from Gj and vice versa. This, in turn, might indicate a degree of simi
larity between the training samples from Gi and Gj. 

Furthermore, we can aggregate the proximity measure over all the M 
trees in the sequence, yielding 

H̃
(
Gi,Gj

)
=

1
M

∑M

m=1
H̃qm

(
Gi,Gj

)
,

where qm encodes the tree structure of tree m. Finally, we normalize the 
proximity measure in a way that ensures H̃(Gi,Gi) = 1 for every group 
Gi, and our final measure is thus given by 

H
(
Gi,Gj

)
=

H̃qm
(
Gi,Gj

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

H̃qm (Gi,Gi)H̃qm
(
Gj,Gj

)√ . (10) 

A few comments to guide the reader in their interpretation of 
H
(
Gi,Gj

)
are in order. H

(
Gi,Gj

)
will be a value between 0 and 1 that 

quantifies how often observations from group Gi and group Gj are placed 
in the same leaf during the training process, implying the degree of in
formation sharing between the groups during training. For a given 
group, for instance, G1, we can study the (K − 1) groupwise proximity 
measures H(G1,G2),…,H(G1,GK) and use this as an indication of which 
groups that are most similar to G1 based on the tree structures. It is also 
natural to think in terms of a groupwise proximity matrix, which will be 
a symmetric K × K matrix with value 1 on the diagonal and H

(
Gi,Gj

)
on 

position (i, j). As an extreme example, if one trains K local models 
without data sharing, the proximity matrix reduces trivially to the 
identity matrix. 

With the use of deeper trees, one could expect to see a decrease in all 
H
(
Gi,Gj

)
values since deeper trees partition the feature space into more 

subsets, effectively making the proximity matrix Proxq(a, b) sparser. One 
must therefore be careful when analyzing and comparing groupwise 
proximity measures across different data sets and models, but instead 

Fig. 2. Four local models fA
1 (x1), fB

1 (x1), fC
1 (x1), fD

1 (x1) that still conveys the same information as the tree f(x1, xc). The leaf values v1, v2, v3, v4 are mapped to the same 
parts of feature space as in Fig. 1. 

Table 1 
A comparison of the methods used in this work.  

Model Training type Interactions Interpretability 

GBT Gradient boosting Higher-order Partial dep. Plot 
EBM Cyclic gradient boosting Pairwise interactions, automatically detected Shape functions and interaction heat maps 
GAM Gradient boosting None Shape functions 
LitBoost Gradient boosting Only involving user-specified categorical variable xc Local shape functions for each group  

Fig. 3. A decision tree with two-hot encoding, allowing splits that are not 
merely of type one-against-the-rest. 
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use it as an explanatory tool to gain insights about a specific data set and 
a specific model trained on this data set. 

4. Oslo housing price application 

4.1. The Norwegian housing market 

Norway has a high ownership rate compared with the Organisation 
for Economic Co-operation and Development (OECD) average and a 
strong tradition for owning rather than renting.1 Most homeowners get a 
mortgage to finance the acquisition, often up to five times the annual 
salary. For this reason, banks desire to continuously monitor the fair 
value of the dwellings being used as collateral. While physical inspection 
often is the optimal way to assess the value of the dwelling, it is often not 
feasible to manually appraise hundreds of thousands of dwellings 
regularly. Therefore, most banks rely on Automated Valuation Models 
(AVMs) instead. An AVM is a statistical model used for estimating the 
fair value of a dwelling at the current time, given the characteristics of 
the dwelling. Using AVMs to estimate dwelling values is not a novel idea, 
and Bailey et al. [2] and Rosen [26] are early examples of applying 
regression models to appraise a portfolio of dwellings statistically. 
Although different statistical models might be favorable in different 
markets and geographical regions, the majority of modern AVM 
research suggests that tree-based models like random forest and gradient 
boosted trees [16,17,19] often outperform traditional statistical 
methods such as linear regression or nearest neighbor regression. 

4.2. The Oslo data set 

We use a data set of all arms’ length transactions of apartments in 
Oslo (Norway) from 2018. Oslo is the capital and largest city in Norway. 
The total number of observations in the data set is N = 14382, where 
each data point represents a single sale, i.e., a transaction of one 
dwelling. Each transaction includes a sale price (the response variable in 
the regression) and p = 14 covariates for each transaction. These fea
tures contain information that is typically of high importance to 
homeowners, for instance, the dwelling size (in m2), the number of 
bedrooms, the floor the apartment is on, and the age of the building. 

The data set also includes information about the area surrounding 
the dwelling. The data set is based on a division of Oslo into grids of size 
250 × 250 meters. We utilize this to measure the number of nearby 
amenities, like shops, schools, and churches, in the closest eight grid 
cells to the cell of the targeted dwelling. This information is summarized 
in the covariates NearbyHomes and NearbyBuildings. This information 
is valuable to potential buyers of an apartment, as it gives insight into 
essential neighborhood characteristics. 

Furthermore, Oslo is divided into K = 15 distinct and non- 
overlapping city districts. These city districts are depicted in Fig. 4 
with color coding showing the mean price per square meter. The prices 
are measured in thousands NOK.2 We have concentrated the analysis on 
sales registered as apartments, thus excluding other estate types such as 
row houses, detached homes, and duplexes. This will naturally lead to a 
higher density of transactions from central areas, as detached homes 
often dominate the areas outside of the city center. 

A summary of the data is provided in Table 2. 
Fig. 4 shows a map of the 15 city districts present in the Oslo data set. 

The city districts are color-coded according to the mean sale price 
(million NOK) per city district. This reveals a higher average sale price 
pattern in the western parts of the city, with Frogner and Ullern as the 
areas with the highest average price. Similarly, the city districts with the 

lowest average sale price in the data set are the north-eastern districts of 
Stovner and Grorud, as well as the south-eastern district of Søndre 
Nordstrand. 

4.3. Simulation setup and implementation details 

We compare the performance of LitBoost with GBT, GAM, and Local 
GAM. At each experiment, we sample a fixed number of observations per 
city district for training and use the rest of the data for testing. We vary 
the number of observations per group in the range 
(10,20,40,80,160,320), but also report the results when 50% of the 
original data is sampled for training, and the other 50% are used for 
testing. This is referred to as Nmax, since the number of observations 
differs between groups in the complete data set. 

We repeat each experiment 20 times to account for randomness in 
the data set splitting and report the average Root Mean Squared Error 
(RMSE) across the 20 simulations. The performance of LitBoost is re
ported in two different variants: One with the presence of both one-hot 
and two-hot encoded variables for city districts and one with only one- 
hot encoding. 

LitBoost can, in practice, be run by using the XGBoost library in R [6] 
and utilize the built-in interaction_constraints functionality. This func
tionality permits the user to send a list of pairwise column names into 
the training of the XGBoost model, constraining the XGBoost model to 
only include the interactions that are featured in the user-specified list. 

Each model is trained using the XGBoost library in R [6], with a 
learning rate of η = 0.01, and a total number of M = 2000 iterations per 
model. We use a tree depth of 1 for the GAM and the Local GAM, and a 
tree depth 3 for LitBoost. For the GBT model, we include a version with a 
tree depth 3 (the same as LitBoost) and a version with a tree depth 6 (the 
default option). All models are trained on the squared error loss func
tion, which is also the default option in XGBoost. We also report the 
results using EBM as the base model instead of GAM, including one 
pairwise interaction. In this case, we use the interpret package [24] to 
train the EBM and the Local EBM. In the LitBoost variant where one 
additional interaction is allowed, we identify the best interaction (xk, xl)

by training a simple model fkl(xk, xl) on the residuals of the model 
without interactions. While this is not computationally optimal, it is a 
brute-force application of the idea presented in Nori et al. [24]. We then 
allow XGBoost to utilize the identified interaction in addition to the 
interactions involving the city district variable, as described in Section 
3.5. 

4.4. Results 

The results are summarized in Fig. 5, showing that LitBoost performs 
significantly better than the global GAM but worse than both GBT 
models for the larger sample sizes. LitBoost yields significantly better 
performance than the Local GAM when N per city district is moderate, 
although the gap in performance between the two decreases as N in
creases. This is as expected in the sense that when the number of ob
servations in each group is sufficiently large, entirely local models can 
capture all the specific effects of this city district quite well, but they 
struggle when N is small. This also highlights the advantage that Lit
Boost gains from sharing information between groups during training, 
yielding excellent accuracy in comparison to the other methods when N 
is small. 

We also see a slight improvement in LitBoost when using two-hot 
encoded variables. This is because the tree models are better equipped 
to identify clusters of similar city districts when they are allowed to split 
using two groups simultaneously in the splitting process. Inspection of 
feature importance values for LitBoost with two-hot encoding shows 
that the model can identify city districts that make sense in terms of 
geographical distance and socioeconomic similarities. For instance, the 
most important two-hot encoded variable based on feature importance 
from XGBoost is the one that includes Sagene and Gamle Oslo, two city 

1 OECD Affordable Housing Database, accessed 2nd of January 2023. 
https://www.oecd. 

org/housing/data/affordable-housing-database/  
2 1 NOK ≈ 0.1 USD as of June 22nd, 2023. 
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districts that are close both geographically and in terms of the mean 
price level. 

We repeat the same experiment but include an additional interaction 
fkl(xk, xl) in LitBoost. We thus compare with EBM instead of GAM. The 
results, shown in Fig. 6, are similar to those without interactions pre
sented in Fig. 5. Once again, LitBoost with two-hot encoding is per
forming at the level of the benchmark model GBT when N is small, with 
GBT doing progressively better as N grows. The EBM follows LitBoost 

somewhat closer than what the GAM did in Fig. 5, which demonstrates 
the benefit of including an interaction. Although the Local EBM improve 
significantly as N grows, they cannot surpass the EBM even for the 
maximum number of observations. This contrasts the performance of 
Local GAM in Fig. 5, which performed significantly better than the GAM 
as N grew. This highlights how much a global model can improve by 
including only one carefully selected interaction. 

It might be surprising to see that the Local EBM in Fig. 6 seemingly 

Fig. 4. A map of the K = 15 city districts in the data color-coded according to the mean sale price (in million Norwegian kroner). The city districts with lower average 
sale prices have a blue color, whereas the city districts with higher average sale prices have a red color. The empty city district east of Frogner is a district (Sentrum) 
without any observations. 

Table 2 
The variables in the data set with summary statistics for the numerical variables.  

Variable Unit Mean St. Dev. Min Max Type 

Sale Price NOK (mill.) 4.44 1.97 1.1 45.0 Numerical 
City District1 – – – – – Categorical 
Sale Date months 6.34 3.23 1 12 Numerical 
Altitude m 91.43 61.99 0 480 Numerical 
Size m2 65.43 23.74 15 267 Numerical 
Floor2 – 3.01 1.90 − 3 14 Numerical 
Bedrooms – 1.78 0.76 0 9 Categorical 
Dwelling Age years 61.47 37.13 0 189 Numerical 
Balcony3 – 0.75 0.43 0 1 Binary 
Elevator3 – 0.37 0.48 0 1 Binary 
Units On Address4 – 20.45 28.51 0 274 Numerical 
Coast Distance m 3197 2411 5 12,201 Numerical 
Lake Distance m 969.60 500.34 32 3018 Numerical 
Nearby Homes5 – 2820 1591 100 6746 Numerical 
Nearby Buildings5 – 166.3 145.32 6 1323 Numerical  

1 There are 15 distinct city districts in the data set. 
2 If the dwelling has multiple floors, this variable will be the lowest floor. 
3 In cases where the information is missing, this is set to 0. 
4 In apartment buildings multiple dwellings might have the same address. 
5 Norway is divided into squares of 250m× 250m. This variable counts the number of homes or other buildings (stores, schools, churches) in all the adjacent squares 

to the square where the targeted dwelling is, i.e., the 8 neighboring squares.  
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performs worse than the Local GAM in Fig. 5, as the EBM is simply a 
GAM with a single additional interaction allowed. This is most likely due 
to differences in the implementation of the gradient boosting method 
between the GAM and the EBM, as described in Section 3.3, and one 
should keep this in mind when comparing the performance directly 
between the two. 

Fig. 7 displays the mean RMSE per city district for the GBT with 
depth 6, LitBoost, the Local GAM, and the GAM. The errors are the 
average of 20 simulations, each with N = 80 per city district. The figure 
reveals that the errors are, unsurprisingly, higher in the city districts 

with the highest sale price, such as Frogner and Ullern. Interestingly, the 
Local GAM displays a quite volatile performance across the districts, 
clearly outperforming GBT in the areas with lower sale prices (Alna, 
Grorud, Stovner, Søndre Nordstrand) but performing worse in more 
expensive regions such as Frogner, Gamle Oslo, and Nordre Aker. 

LitBoost performs slightly worse than Local GAM and GBT in the 
areas where sale prices are on average lower. Even if we have a rela
tively modest number of observations per group, it seems to be enough 
for the Local GAM to learn a meaningful model in these areas, most 
likely due to the homogeneity of the dwellings that are often present in 

Fig. 5. Mean RMSE of 20 simulations with varying number of observations per city district for GBT with two different tree depths, GAM, Local GAM, and LitBoost 
with and without two-hot encoded variables (2HE). The rightmost value on the x axis, Nmax, refers to the setting where 50% of the full data set is used for training and 
the rest for testing, giving an unequal number of observations per group. The prediction errors are measured in million NOK. 

Fig. 6. Mean RMSE of 20 simulations with a varying number of observations per city district for GBT with two different tree depths, EBM, Local EBM, and a LitBoost 
model that allows for one additional interaction. The results for LitBoost are reported both with and without two-hot encoded variables (2HE). The rightmost value 
on the x axis, Nmax, refers to the setting where 50% of the full data set is used for training and the rest for testing, giving an unequal number of observations per group. 
The prediction errors are measured in million NOK. 
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these city districts. The LitBoost, the GAM, and, to some degree, the GBT 
model struggle in these areas relative to the Local GAM. 

However, the opposite is true for areas like Nordre Aker and Vestre 
Aker, where LitBoost significantly outperforms the Local GAM and GBT. 
We also see slightly lower errors for LitBoost compared to GBT in Grü
nerløkka and Østensjø. Overall, the results suggest that LitBoost per
forms at approximately the same level as GBT in most city districts and 
slightly better than GAM on average for the considered sample size. 

4.5. Shape functions 

The shape functions fSize for the GAM, Local GAM, and LitBoost can 
be seen in Fig. 8. This shows the effect of the size of a dwelling, measured 
in m2, on the final prediction. The size of a dwelling is widely regarded 

to be among the most important determinants for the final sale price, so 
it is interesting to study its shape function(s). While the GAM learns a 
single shape function for every city district, the Local GAM learns a 
separate shape function fSize for each city district, completely indepen
dent of each other. The LitBoost shape functions display the same trends 
as the Local GAM shape functions but are pushed toward the general 
global trend. This type of “regularization” can be essential in parts of the 
feature space where one city district has very few observations, such as 
for small values of xSize. 

The shape functions produced by LitBoost inherit the interpretability 
benefits of the GAM. Practitioners can study the shape functions for a 
specific city district of interest, revealing how the prediction model 
behaves in different parts of the feature space. Similar plots of 
(

xj, fj
(
xj
) )

can be produced for every covariate xj. In addition to the 

Fig. 7. Mean RMSE per city district over 20 simulations with N = 80 observations per city district in the training set for GBT, GAM, Local GAM, and LitBoost. The 
prediction errors are measured in million NOK. 

Fig. 8. The shape function fSize for the GAM, LitBoost, and Local GAM. The shape function shows how much the contribution fSize changes when the covariate value of 
size is changed. 
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global interpretability offered by the shape functions, one could also 
create local explanations for specific predictions by studying how much 
each shape function fj

(
xj
)

contributes toward the final prediction for 
that dwelling, which can be highly useful for practitioners. The shape 
functions for the other numerical features for LitBoost, GAM, and Local 
GAM are shown in Appendix B. 

4.6. Groupwise proximity measure 

Fig. 9 shows a symmetric 15 × 15 matrix with the average groupwise 
proximity measure between the city districts in Oslo. The highest 
numbers are typically found close to the diagonal, which is expected as 
the groups are sorted based on price. This trend indicates that most 
groups primarily borrow strength from city districts with comparable 
prices. The low numbers in the upper left and lower right corners signal 
the same effect: the local models associated with the more expensive 
districts borrow less strength from data from less expensive districts and 
vice versa. 

The lower left area of the matrix generally has higher values than the 
upper right corner, indicating that the borrowing of strength is greater 
between the six or seven city districts with the lowest mean price than 
the six or seven with the highest mean price. This suggests that city 

districts with lower average prices more often borrow strength from 
each other than those with higher average prices. One possible expla
nation is that the cheaper city districts are dominated by apartment 
blocks that share the same size, number of bedrooms, and other char
acteristics. In contrast, the luxurious areas often are more heteroge
neous, with a greater variety of dwelling characteristics. 

5. Simulation study on synthetic data set 

This section performs a simulation study of LitBoost on synthetic 
data, which allows us to control the differences between the groups by 
adjusting the data generating process. We first introduce the data 
generating process and then show results with and without interactions 
under three different configurations of the data generating process. 
Finally, we study some of the shape functions produced by LitBoost and 
analyze the groupwise proximity measures.3 

Fig. 9. A matrix with the groupwise proximity measure for the city districts in Oslo. A red indicates a high level of proximity between the city districts, and a blue 
indicates low proximity. This shows the average of 20 simulations, each time with a subsample of N = 2000 observations used to train the model, to work around 
memory allocation challenges when N gets larger. The groups are sorted from the lowest mean price per square meter (Stovner) to the highest mean price per square 
meter (Frogner). For any given row (or corresponding column), the numbers represent the proximity between that city district and each of the others. 

3 The R code used to train LitBoost, display shape functions, and generate the 
synthetic data used in this section is available at Github: https://github. 
com/adhjort/LitBoost 
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5.1. The data generating process 

We are following a similar simulation setup as the one suggested by 
Friedman [10]:  

which contains both linear terms, non-linear terms, and interaction 
terms, as well as five features that are not included in the outcome 
model. Thus, this data-generating process is well suited to studying 
additive models with certain interactions allowed. In order to test the 
model introduced in Section 3, we edit the data generating equations in 
(11) to facilitate different effects for different categories. In order to 
achieve this, we introduce a new variable xC that assigns each obser
vation uniformly to one of K groups. Furthermore, we modify the model 
parameters in the original scheme based on which group the observa
tions come from. Formally,  

where aC, bC, cC, dC are thus group-specific parameters for each category. 
This way, we can control the similarity between the groups: Choosing a1,

…, aK to be very close will lead to a similar data generating process for 
each group, whereas choosing very different values a1,…, aK will lead to 
large between-group differences. The within-group variance is the same 
for all groups, controlled by σ2

ε . 
A plot of the true data generating shape functions from (12) can be 

found in Fig. 10. Here we have chosen K = 3 and model parameters a =

(5,10, 15),b = (15,20, 25),c = (5,10,15),d = (3, 5, 7). This illustrates 
how all three groups follow the same trend, but the trend differs in in
tensity based on the values of the model parameters. The first two fig
ures show f1 plotted against x1 and x2, respectively, which is a projection 
of a three-dimensional surface (x1, x2, sin(πx1x2) ) onto x1 and x2, 

explaining why the data in these figures look noisier than the data in the 
final three figures. These figures also reflect what a GAM trained on this 
data will do, as interaction effects between x1 and x2 are projected onto 
the univariate shape functions corresponding to covariate x1 and x2. 

5.2. Simulation setup 

We simulate from the data generating process presented in (12) with 
K = 9 distinct groups. To emulate a setup where there are clusters of 
groups that display similar trends, as seen in the Oslo housing data set, 
we generate the hyperparameters as follows: 

a1, a2, a3 ∼ N
(
5, σ2) a4, a5, a6 ∼ N

(
10, σ2) a7, a8, a9 ∼ N

(
15, σ2)

b1, b2, b3 ∼ N
(
15, σ2) b4, b5, b6 ∼ N

(
20, σ2) b7, b8, b9 ∼ N

(
25, σ2)

c1, c2, c3 ∼ N
(
5, σ2) c4, c5, c6 ∼ N

(
10, σ2) c7, c8, c9 ∼ N

(
15, σ2)

d1, d2, d3 ∼ N
(
3, σ2) d4, d5, d6 ∼ N

(
5, σ2) d7, d8, d9 ∼ N

(
7, σ2).

The fact that we draw the first three groups from the same distri
bution, the second three groups from another distribution, and the final 
three groups from the third distribution, creates three clusters of similar 
groups. The cluster information is not available to the methods during 
training, but this will test the models’ ability to identify and borrow 
strength between similar groups. The σ2 parameter can be varied in 
order to control the differences between the three clusters in the sense 
that higher σ2 values will make the three clusters less distinct and in
crease the difference within each cluster. In contrast, smaller σ2 values 
will make the within-cluster differences smaller and the between-cluster 
differences relatively larger. By studying the resulting groupwise prox
imity measures, we can understand how LitBoost borrows strength be
tween groups under different values of σ2. 

We once again run 20 simulations, sampling a new data set according 

Fig. 10. The data generating process with three different groups, N = 300 observations per group and parameters a = (5, 10,15), b = (15,20,25), c = (5,10,15),
d = (3, 5,7). 

x1,…, x10∼
iid Unif [0, 1]xC ∼ {1, 2,…,K}y = aC⋅sin(πx1x2) + bC⋅(x3 − 0.5)2

+ cC⋅x4 + dC⋅x5 + ε, ε ∼ N
(
0, σ2

ε
)
, (12)   

x1,…, x10∼
iid Unif [0, 1]y = 10⋅sin(πx1x2) + 20⋅(x3 − 0.5)2

+ 10⋅x4 + 5⋅x5 + ε, ε ∼ N
(
0, σ2

ε
)
, (11)   
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to (12), with newly sampled parameters a, b, c, d each time. We vary σ2 

using the values (0.01,1, 5), and let the number of observations per 
group go from N = 10 to N = 320. We use σ2

ε = 0.1 for every group. We 
report the results for LitBoost in two variants, one that includes one-hot 
encoding only and one that includes both two- and three-hot encoding. 
We also report the results when one general pairwise interaction is 
allowed, in which case we compare with EBM instead of GAM. 

5.3. Results 

The results are reported as a function of N per group in Fig. 11. 
Similar to the results on the Oslo housing data set, the Local GAM dis
plays poor performance when the number of observations per group is 
small, but it gets increasingly precise with growing N. LitBoost, both 
with and without the additional three-hot encoded variables, out
performs the Local GAM but struggles to beat GBT due to the interaction 

Fig. 11. Mean RMSE of 20 simulations with a varying number of observations per group for GBT, GAM, Local GAM, and LitBoost with and without three-hot encoded 
variables (3HE). The three panels display simulations with σ2 = 0.01 (left), σ2 = 1 (middle) and σ2 = 5 (right). 

Fig. 12. Mean RMSE of 20 simulations with a varying number of observations per group for GBT, EBM, Local EBM, and LitBoost that allow for one additional 
interaction. The three panels display simulations with σ2 = 0.01 (left), σ2 = 1 (middle) and σ2 = 5 (right). 
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term in the true model. Interestingly, the GAM delivers results on par 
with the GBT and LitBoost when N is small, but the latter two models 
improve significantly as N is increased. 

When we increase σ2, thus making the clusters less distinct, the 
overall performance of all models is reduced compared to the case where 
σ2 = 0.01. Interestingly, while the GAM performs considerably worse 
compared to the other models for higher σ2, LitBoost improves 
compared to the other models. The regularizing effect of the interaction 
constraints may hinder the model from overfitting to noise in the data 
set, explaining why LitBoost outperforms the full complexity model 
GBT. There is no improvement in performance when including three-hot 

encoded variables for σ2 = 0.01 and σ2 = 1, but a slight improvement is 
observed for σ2 = 5. 

Fig. 12 displays the result when one additional pairwise interaction is 
allowed in LitBoost, and EBM is used for comparison instead of GAM. 
The interaction in LitBoost is again detected using the data-driven 
technique described in Section 4. 

LitBoost performs even more impressive in this setup, generally 
outperforming the state-of-the-art GBT. Given that the true simulation 
setup only contains a single interaction between x1 and x2, and that the 
data-driven interaction detection method can detect this most of the 
time, the constraints imposed on LitBoost are, in this case, advantageous 

Fig. 13. Shape functions for f1(x1) for the simulated Friedman data set with σ2 = 1 and N = 1000 observations in each group.  

Fig. 14. Groupwise proximity measures for the synthetic Friedman data simulation. A high value between group i and group j shows that observations from these 
groups often end up in the same leaf, indicating that they borrow strength from each other to a high degree. The three panels show simulation results with different σ2 

values. Each 9 × 9 matrix shows the average across 100 simulations with N = 100 observations from each group. 
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compared to GBT that is more likely to adapt to noise in the data sets. 
Again, both the EBM and the Local EBM perform significantly worse 
than LitBoost, highlighting the strengths of LitBoost also when addi
tional interactions are allowed in the model. 

5.4. Shape functions 

Fig. 13 shows a plot of (x1, f1(x1) ) for the GAM, Local GAM, and 
LitBoost when trained on the Friedman data set with σ2 = 1 and N =

1000 observations per group. While the GAM enforces similar shape 
functions for all the nine groups, the Local GAM creates completely local 
effects, and the LitBoost shape functions behave as a regularized version 
of the Local GAM shape functions. The shape functions look reasonable 
compared to the true data generating mechanisms, as displayed in 
Fig. 10. The presence of the three clusters, which we introduced through 
choices of hyperparameters in the data generating mechanism, is also 
clearly captured in the shape functions from LitBoost. 

5.5. Groupwise proximity measure 

Fig. 14 shows the 9 × 9 groupwise proximity matrix for the 9 
different groups in the simulated data set, averaged across 100 simula
tions within each σ2 value. The clusters of groups introduced in the data 
generating process are, to some degree, captured by the groupwise 
proximity matrix. The cluster comprising groups 4,5 and 6 has higher 
internal proximity than the other clusters. For instance, H(G4,G6) =

0.96 in the simulation with σ2 = 0.01, indicating that Group 4 shares 
data with group 6 almost as often as it shares with itself. This trend is less 
clear when σ2 = 5, which can be attributed to the generally higher noise 
level in the data generating process and thus less distinct cluster 
structure. 

Furthermore, the cluster of groups 1, 2 and 3 rarely shares infor
mation with the cluster of groups 7, 8 and 9. This is an intuitive result, 
given that the data from these two clusters are generated with very 
different parameters. The clusters are most distinct when σ2 is low, as 
there is little noise in the data generating process. 

6. Conclusion 

Due to their flexible nature and high predictive accuracy, tree-based 
supervised machine learning methods are popular among researchers 
and data scientists. When faced with data sets that include data from K 
different (and known) groups, we have studied three possible modeling 
approaches from the existing literature:  

1. Train a Gradient Boosted Trees (GBT) model, which generally yields 
accurate predictions but is hard to interpret. 

2. Train a Generalized Additive Model (GAM), which is easy to inter
pret, but does not necessarily adapt well to each group in the data set.  

3. Train a Local GAM, i.e., a set of local models that will be specifically 
tailored to each city district at the cost of only using a fraction of the 
available data in each model. 

To reap the interpretability benefits of a GAM while getting accuracy 
closer to GBT, we propose Locally Interpretable Tree Boosting (Lit
Boost). This hybrid option trains K local models – one per group in the 
data set – while still borrowing strength from the other groups in the 
data set during training. To achieve this, we modify the standard GBT 
framework by imposing interaction constraints that only allow in
teractions that involve the categorical group variable xc. By doing so, we 
can achieve the favorable interpretability attributes of a GAM (or EBM), 
yet may get closer to the prediction accuracy of a full complexity GBT. 

The results on N = 14 382 observations from the Oslo (2018) data set 
indicate that LitBoost performs close to the full complexity GBT, often 
considered the state-of-the-art in house price prediction problems, and 

significantly better than a traditional GAM. The relative performance of 
LitBoost is best when the number of observations in each group is small, 
whereas the Local GAM improves its accuracy as N per city district in
creases. Similar results are achieved in an extensive simulation study on 
a synthetic data set, where we control the variance between the groups 
in the data-generating process. LitBoost outperforms GBT on the syn
thetic data set when we allow for one interaction, which is expected 
since the underlying data-generating process only contains one inter
action. An inspection of the shape functions from LitBoost on the syn
thetic data set indicates that the model correctly identifies the local 
effects for each group. The borrowing of strength across groups helps 
LitBoost to be more robust to overfitting to group-specific effects, which 
is also evident when studying the shape functions for each group. We 
also introduce the groupwise proximity measure, which quantifies the 
degree of data sharing between groups during training. This serves as 
another diagnostic tool that can be used to get some insight into the 
behavior of the LitBoost model. 

In this work, we focused on GAM and EBM as base models, but recent 
research by Mayer et al. [23] has indicated some interesting links be
tween black box models like GBT and the class of Structured Additive 
Regression (STAR) models. An interesting way forward is to apply the 
idea of jointly training local models with STAR as base models, which 
could yield higher predictive accuracy while maintaining some inter
pretability benefits. Furthermore, investigating methods to scale up the 
multi-hot encoded variables efficiently is also something that could 
improve performance further, as the number of new columns quickly 
explodes if we go beyond two- or three-hot encoding. Finally, the 
groupwise proximity measure used to analyze the similarities between 
groups could be further improved by extending its applicability to be 
comparable across simulations and models. While the application in this 
work is centered around house price prediction, this work also con
tributes to the larger and ongoing debate regarding the existence of a 
trade-off between interpretability and accuracy in machine learning 
methods. More specifically, this work builds on the recent and signifi
cant research by Lou et al. [21], Chang et al. [5], Nori et al. [24], and 
Mayer et al. [23] to bridge the gap between the modern class of methods 
based on gradient boosting and the traditional additive models pre
sented by Hastie and Tibshirani [15]. The results presented here 
demonstrate that the performance of fully interpretable models such as 
GAMs can be even closer to that of full complexity models with careful 
engineering based on domain knowledge. 
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Appendix A. Code 

Code for for training and prediction with LitBoost in R can be found at https://github.com/adhjort/LitBoost. The data generating process from the 
simulation study in this work is also available here. 

Appendix B. Shape functions, the Oslo data set

Fig. B.15. All shape functions 
(

xj, fj
(
xj
) )

for LitBoost.   
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Fig. B.16. All shape functions 
(

xj, fj
(
xj
) )

for GAM.   
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Fig. B.17. All shape functions 
(

xj, fj
(
xj
) )

for the Local GAM.  
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