
Philosophiae Doctor (PhD)
Thesis 2022:21

Mike Riess

Essays on predictive
and prescriptive
process monitoring

Essays om prediktiv
og preskriptiv
prosessovervåking

Philosophiae D
octor (PhD

), Thesis 2022:21
M

ike Riess

Norwegian University of Life Sciences
School of Economics and Business

Essays on predictive and prescriptive process
monitoring

Essays om prediktiv og preskriptiv prosessovervåking

Philosophiae Doctor (PhD) Thesis

Mike Riess

School of Economics and Business
Norwegian University of Life Sciences

Ås (2023)

Thesis number 2022:21
ISSN 1894-6402

ISBN 978-82-575-1896-7

Supervisory team

Joachim Scholderer, Professor (main supervisor)
School of Business and Economics
Norwegian University of Life Sciences

Evaluation committee

Paul Grefen, Professor (1st opponent)
School of Industrial Engineering
Eindhoven University of Technology

Patrick Mikalef, Professor (2nd opponent)
Faculty of Information Technology and Electrical Engineering
Norweigan University of Science and Technology

Daumantas Bloznelis, Associate Professor (committee coordinator)
School of Business and Economics
Norwegian University of Life Sciences

©Mike Riess, 2023
All rights reserved. No part of this publication may be reproduced or transmitted, in any
form or by any means, without permission.

Summary

This PhD thesis addresses problems related to proactive methods of decision sup-
port in business processes. These methods include predictive process monitoring,
which aims to warn about potential problems before they occur, and prescriptive
process monitoring which seek to proactively remedy predicted issues before they
materialize. Four different studies are performed with the aim of improving methods
within this area.

Paper one addresses the issue of early warning performance in predictive process
monitoring. Specifically, this paper focuses on remaining cycle time prediction from
open cases in business processes. The main goal of this paper is to understand how
temporal weighting of the L1 loss function influence so-called earliness performance
(the ability to make accurate early warnings). To investigate this, three different loss
functions with temporal decay are introduced and evaluated across four real-world
event-logs. This study also introduces a new aspect of performance evaluation of
remaining time predictions, called Temporal Consistency (TC). The TC represents
the degree to which a remaining time prediction model generates predictions that
are monotonically decreasing as time passes. The results show that adding temporal
decay to the L1 loss function can lead to better earliness performance. In particular,
it was found that the proposed exponential temporal decay loss improved the ear-
liness performance in two of the four evaluated settings. It was also found that all
the evaluated loss functions had problems with respect to the temporal consistency
performance criteria. This problem became most expressive for the longest traces
with little support, where the remaining time prediction would change direction by
a large amount.

Paper two offers an alternative to the traditional approach to model evaluation
commonly used in predictive process monitoring, by proposing an open source sim-
ulation framework for the generation of synthetic event-log data. Firstly, a review
of the current literature in this area was examined in order to provide an overview
of current capabilities and potential gaps. From this review, a set of design criteria
was formulated, and a new framework covering these areas was proposed. The re-
sulting framework is based on well-known parametric distributions and intended for
the generation of event-log data from theoretical business processes while providing

iii

the capability to add systematic variation to the processes. The proposed frame-
work is mainly intended for testing the influence of data-related hypotheses on the
performance of models in predictive process monitoring. The framework enables
systematic variation of process memory (in the context of a Markov chain), the en-
tropy of workflows, activity duration distributions, and process stability. Detailed
documentation on the implementation, as well as a demonstration of the framework,
was performed. The resulting framework is open source and thereby freely available
online.

Paper three addresses the issue of customer loyalty in customer service settings.
In this study, a prescriptive method is proposed to improve customer loyalty by
dynamically changing the priority of the queue in a customer service process. The
proposed method uses predicted throughput/cycle time to further predict the condi-
tional customer loyalty score after case closure (measured via Net promoter score).
The proposed method is compared to the first-come first served (FCFS) queue dis-
cipline, as well as two predictive methods utilizing the shortest remaining time first
(SRTF) and longest remaining time first (LRTF) disciplines. The methods are eval-
uated based on an agent-based simulation model, calibrated from historical data of
a customer service process in a European internet and telecommunications services
provider. The results show that the proposed method does improve simulated cus-
tomer loyalty scores in situations with inadequate staffing. However, the proposed
method yields similar results to that of the LRTF approach, as both methods rely
on the prediction of case cycle time. Introducing a service level of a maximum
of 60 hours of waiting time (to avoid starvation), caused all approaches based on
predicted cycle time to have identical performance to that of FCFS.

Common for the methods studied in papers one and three is the need for adap-
tation (re-training) if the data-generating process changes over time. This is also
referred to as concept drift, and can greatly reduce the performance of predictive
and prescriptive methods if not addressed in time. Paper four thereby contributes
to this area by performing a literature review on methods for drift adaptation using
a family of optimization algorithms referred to as Metaheuristics. An overview of
the found literature is provided through a qualitative analysis of frameworks in re-
lation to selected theory within Automated machine learning, Data stream mining,
and Concept drift. The results show that the most frequently used Metaheuris-
tics are population-based methods such as Genetic Algorithms and Particle-Swarm
Optimization, and that their utilization for drift adaptation varies from feature se-
lection, hyper-parameter optimization to data window selection. General problems
in terms of model and drift evaluation are found across the included literature,
and suggestions for improvements in future research are made. Analyzing the tem-
poral development across the found studies, it is found that the applications of
Metaheuristics have developed from single Machine learning tasks such as feature
selection to more advanced tasks such as full model selection.

iv

Sammendrag

Denne doktorgradsavhandlingen tar for seg problemer knyttet til proaktive metoder
for beslutningsstøtte i forretningsprosesser. Disse metodene inkluderer prediktiv
prosessovervåking, som tar sikte på å advare om potensielle problemer før de opp-
står, og preskriptiv prosessovervåking som forsøker å proaktivt rette på predikerte
problemer før de materialiserer seg. Det er utført i fire ulike studier med mål om å
forbedre metoder innen dette område.

Artikkel en tar opp spørsmålet om ytelse for tidlig varsling i prediktiv prosessovervåk-
ing. Spesifikt fokuserer denne artikkelen på prediksjon av gjenværende syklustid fra
åpne saker i forretningsprosesser. Hovedmålet med denne oppgaven er å forstå hvor-
dan tidsmessig vekting av L1-tapfunksjonen påvirker såkalt tidlighetsytelse (evnen
til å gi nøyaktige tidlige advarsler). For å undersøke dette, introduseres tre forskjel-
lige tapsfunksjoner med tidsforfall som evalueres på tvers av fire hendelseslogger
fra faktiske bedrifter. Studien introduserer også et nytt aspekt på ytelsesevaluering
av gjenværende tidsprediksjoner, kalt temporal konsistens (TC). TC representerer
i hvilken grad en prediksjonsmodell for gjenværende tid genererer prediksjoner som
avtar monotont etter hvert som tiden går. Resultatene viser at å legge til tidsmes-
sig forfall til L1-tapfunksjonen kan føre til bedre tidlighetsytelse. Spesifikt ble det
funnet at eksponentiell tidsforfall forbedret tidlighetsytelsen i to av de fire eval-
uerte innstillingene. Det ble også funnet at alle tapsfunksjoner som ble evaluert
hadde problemer med hensyn til den TC. Mer spesifikt ble det funnet at for lengre
sekvenser med lite representativitet i data blir dette problemet mest uttrykksfullt.
Rent praktisk betyr dette at prediksjonene i disse tilfellene endrer retning i en høy
grad.

Artikkel to tilbyr et alternativ til den tradisjonelle tilnærmingen av modellevaluer-
ing som vanligvis brukes i prediktiv prosessovervåking. Dette opnås ved å foreslå et
simuleringsrammeverk med åpen kildekode for generering av syntetiske hendelses-
loggdata. Først undersøkes en gjennomgang av gjeldende litteratur på dette om-
rådet. Dette er for å gi en oversikt over egenskaber og potensielle hull. Fra denne
gjennomgangen blir et sett med designkriterier først formulert, og et nytt rammev-
erk som dekker disse områdene foreslås da. Rammeverket er basert på velkjente
parametriske distribusjoner og beregnet for generering av teoretiske forretningspros-

v

esser samtidig som det muliggjør muligheten til å legge til systematisk variasjon. Det
foreslåtte rammeverket er ment for testing av datarelaterte hypoteser om ytelsen til
modeller innen prediktiv prosessovervåking. Rammeverket muliggjør systematisk
variasjon av prosessminne (i sammenheng med en Markov-kjede), entropi av arbei-
dsflyter, aktivitetsvarighetsfordelinger og prosessstabilitet. Det utføres en detaljert
dokumentasjon på gjennomføringen, samt en demonstrasjon av rammeverket. Det
resulterende rammeverket er åpen kildekode og dermed fritt tilgjengelig online.

Artikkel tre tar opp spørsmålet om kundelojalitet i kundeservicesettinger. I denne
studien foreslås en preskriptiv metode for å forbedre kundelojalitet ved dynamisk
å endre køens prioritet i en kundeserviceprosess. Den foreslåtte metoden bruker
spådd gjennomstrømning/syklustid for ytterligere å forutsi den betingede kunde-
lojalitetsscore etter saksavslutning (målt via Net promoter-score). Den foreslåtte
metoden sammenlignes med først-til-mølla-disiplinen (FCFS), samt to prediktive
metoder som bruker den korteste gjenværende tid først (SRTF) og lengste gjen-
værende tid først (LRTF) disipliner. Metodene er evaluert basert på en agent-
basert simuleringsmodell, kalibrert fra historiske data fra en kundeserviceprosess
i en europeisk internett- og telekommunikasjonsleverandør. Resultatene viser at
den foreslåtte metoden forbedrer simulerte kundelojalitetsscore i situasjoner med
utilstrekkelig bemanning av kundeserviceprosessen. Imidlertid gir den foreslåtte
metoden lignende resultater som LRTF-tilnærmingen, ettersom begge metodene er
avhengige av prediksjonen av sakssyklustid. Innføring av et servicenivå på maksi-
malt 60 timers ventetid (for å unngå at kunder blir værende bak i køen) reduserte
ytelsen til alle tilnærminger basert på predikert syklustid til å være identisk med
førstemann til mølla.

Felles for metodene som er studert i artikkel en og tre er behovet for tilpasning
(gjenopplæring) dersom den datagenererende prosessen endres over tid. Dette blir
også referert til som konseptdrift, og kan i stor grad redusere ytelsen til prediktive og
foreskrivende metoder hvis de ikke blir adressert i tide. Artikkel fire bidrar dermed
til dette området ved å utføre en litteraturgjennomgang om metoder for tilpas-
nins av konseptdrift ved bruk av en familie av optimaliseringsalgoritmer referert til
som metaheuristikker. En oversikt over funnet litteratur gis gjennom en kvalitativ
analyse av rammeverk i forhold til utvalgt teori innen automatisert maskinlæring,
datastrømmining og konseptdrift. Resultatene viser at de mest brukte metaheuris-
tikkene er populasjonsbaserte metoder som genetiske algoritmer og partikkelsver-
moptimalisering, og at deres utnyttelse for drifttilpasning varierer fra valg av vari-
able, hyperparameteroptimalisering til datavinduvalg. Generelle problemer når det
gjelder modell- og driftevaluering finnes på tvers av den inkluderte litteraturen, og
forslag til forbedring i fremtidig forskning blir derved gitt. Ved å analysere den
tidsmessige utviklingen på tvers av de funnet studiene, er det funnet at bruken
av metaheuristikker har utviklet seg fra enkle maskinlæringsoppgaver som valg av
variable til mer avanserte oppgaver som full modellvalg.

vi

Acknowledgements

First of all, I would like to thank my supervisor Joachim Scholderer who have been
a big help during the whole process of this PhD project. I have very much enjoyed
our conversations and collaboration during this period. I am deeply thankful for
the many opportunities you have given me to learn and grow as a researcher. I also
appreciate all the support and advice you have given me in hard periods.

Next, I would like to thank the School of Economics and Business at NMBU for the
opportunities you have given me to help teach and supervise students throughout
the PhD-period. This has been both exciting and meaningful. Thanks to Pål
Bjørnhaug Johannsen and William Irving for their support, and to Erik Henning
Edvardsen and Andreas Rosendahl Hansen for their help with proof-reading of this
dissertation.

A big thank you to my parents Gitte, Carsten and Anders: You have taught me
important values, which have brought me where I am today, and you have supported
me every time I needed it. Also a thank you to Wini who have been full of good
advice and support when it was needed the most.

Finally, a deep-felt thank you to the woman in my life, Monika, who gives me
energy, advice, and who made the two years of pandemic and home-office bearable.
I would like to dedicate this work to you, as you have been so understanding and
supporting during the whole PhD-period.

Oslo, Mar,
2023

Mike Riess

ix

Table of Contents

Summary . iii
Sammendrag . v
Acknowledgements . ix
Table of Contents . xi
List of Figures . xiii
List of Tables . xv
List of Acronyms . xvii

List of Publications xvii

1 Introduction 1
1.1 Problem statement . 2
1.2 Theory and previous research . 4

1.2.1 Business processes . 4
1.2.2 Business process management 5
1.2.3 Descriptive, predictive and prescriptive analytics 9
1.2.4 Predictive process monitoring 11
1.2.5 Prescriptive process monitoring 14
1.2.6 Business process simulation models 17
1.2.7 Concept drift . 18

2 Research questions 21

3 Methodology 27
3.1 Methodology in Machine learning research 27
3.2 Overall research framework . 28

3.2.1 Data . 28
3.2.2 Methods . 30

3.3 Individual discussion of used methodology 31
3.3.1 Paper 1 . 32
3.3.2 Paper 2 . 32
3.3.3 Paper 3 . 33
3.3.4 Paper 4 . 34

xi

4 Main contributions 37
4.1 Paper 1 . 38
4.2 Paper 2 . 39
4.3 Paper 3 . 40
4.4 Paper 4 . 41

5 Reflection and discussion 43

References 45

Appended Papers 53
Paper I . 55
Paper II . 73
Paper III . 99
Paper IV . 135

xii

List of Figures

1.1 Example of process discovery using the Disco process mining software
(Fluxicon BV, 2022). 10

1.2 Analytics-types in relation to time and business value. Source: Adapted
from (Lepenioti et al., 2020) and (Krumeich et al., 2016). 11

1.3 Predictive process monitoring example. 12
1.4 Prescriptive process monitoring example illustration. 15

3.1 Methodological framework. 29

xiii

List of Tables

1.1 Overview of phases in the BPM life cycle. 6
1.2 The devil’s quadrangle examples (Jansen-Vullers et al., 2007; Dumas

et al., 2018). 8
1.3 Example event-log in a fictive customer service unit. 9

xv

List of Publications

This thesis is based upon the following appended papers, which will be referred to
as papers 1-4 throughout the text.

Paper I
Riess, M. (2023c). Remaining cycle time prediction: Temporal loss functions and
prediction consistency. Manuscript submitted to Nordic Machine Intelligence.

Paper II
Riess, M. (2023a). A parametric simulation framework for the generation of event-
log data. Manuscript submitted to Simulation.

Paper III
Riess, M. and Scholderer, J. (2023). Customer-service queuing based on predicted
loyalty outcomes. Manuscript submitted to Decision Support Systems.

Paper IV
Riess, M. (2023b). Automating model management: A survey on metaheuristics for
concept-drift adaptation. Revised version of paper published in Journal of Data,
Information and Management (2022), Vol. 4, 211–229.

xvii

1. Introduction

Modern business process management relies on a fast flow of information between
managers, specialized workers and customers to ensure that the best possible output
is generated at all times. Traditionally, retrospective tools such as statistical process
control (SPC) (Levinson, 2010), Lean and Six Sigma (Pepper and Spedding, 2010)
have been used to achieve process excellence.

However, as business processes have over the past 30+ years been increasingly
digitized due to rapid growth in the capabilities of information technology, new op-
portunities have appeared (Diao et al., 2016). More specifically, as process-aware
information systems (PAIS) (van der Aalst, 2016) have been adopted across all in-
dustries, the combination of historical data, dashboards and machine learning algo-
rithms (Hastie et al., 2001) now offer the possibility to proactively react to problems
faster and smarter than ever, commonly referred to as analytics (Davenport et al.,
2006). Being reactive in nature, the traditional tools of workforce management and
process standardization no longer provide a competitive advantage in itself (Diao
et al., 2016).

This Ph.D. thesis study proactive methods of decision support in business process
management, also known as predictive and prescriptive process monitoring. Com-
mon for these methods is that they rely on Machine learning algorithms to predict
future states of a business process, in order to alert or recommend actions for pro-
cess managers. With the aim of improving methods within this area, this project
focuses on four key issues: 1) Alerting managers as early as possible, 2) Under-
standing strengths and weaknesses of predictive monitoring systems, 3) Improving
customer loyalty via model-based queue management in customer service, 4) Gain-
ing an overview of methods for maintaining models used in predictive monitoring
systems.

This thesis is structured as follows: In the remainder of chapter 1, the problem
statement and research objectives are firstly presented. Next, relevant theory and
previous research in the context of the included research are presented. In chapter 2,
the research questions guiding the work of the four individual studies of this thesis
are motivated and presented. Chapter 3 provides an overview of the methodological

1

2 CHAPTER 1. INTRODUCTION

framework, in addition to individual discussions of the methodology used. Chapter
4 presents the main contributions of the four studies, and in chapter 5, a reflection
and discussion of the project contributions is made.

1.1 Problem statement

In predictive process monitoring (Di Francescomarino and Ghidini, 2022), multiple
approaches to the prediction of remaining cycle/throughput time (time it takes
to complete a case such as a customer service issue) exist (Verenich et al., 2019).
Common for the best-performing Neural Network-based methods is that they are
optimized using the L1 (Mean Absolute Error) loss function (Rama-Maneiro et al.,
2020). A performance aspect that is often important for organizations trying to
create value from predictive process monitoring is referred to as earliness, which
takes the timing of the errors of predicted cycle time into account: a model with
good earliness has relatively lower errors at early time steps, compared to other
models (Verenich et al., 2019). Another aspect that might be of importance is the
consistency of the predictions: i.e., that they represent the natural development of
time (remaining cycle-time is monotonically decreasing as time passes). However,
currently, cycle time prediction models have not yet been evaluated from this aspect.
Furthermore, as the best performing models in this area all use the time-invariant
L1 loss, it is currently not understood how temporal weighting of the loss function
would influence performance from the earliness perspective.

As the models presented in the field of predictive process monitoring are mostly
evaluated using publicly available data (Verenich et al., 2019; Rama-Maneiro et al.,
2020), understanding the relationships between model performance and particular
data characteristics has been limited. As business processes of the same type tend to
vary across organizations, evaluating the model using one example of a given process
is not nearly enough to understand how this type of process generally influences
model performance. In this case, one might need to sample data from multiple
processes (distributions) to control for variation between distributions. However,
this is a demanding task as: 1) There are a limited amount of publicly available data
sets available 2) One is not guaranteed to find enough instances of the particular
process type 3) One has no control over the variation within the distribution of
each of the publicly available data sets. For these reasons, the research in predictive
process monitoring is mainly based on benchmarking performance across a set of
commonly used datasets (Mannhardt et al., 2015; Mannhardt and Blinde, 2017;
La Rosa and Soffer, 2013; Teniente and Weidlich, 2018). For comparing relative
model performance, this approach is unproblematic, but if the aim is to achieve
a general understanding of model robustness in relation to characteristics of the
data-generating process, this is inadequate.

In the related field of prescriptive process monitoring, multiple studies exist which
aim to improve process performance such as reducing the average cycle time, costs or

1.1. PROBLEM STATEMENT 3

contractual violations. These approaches are mainly evaluated using historical data,
and most often based on publicly available data used in academic competitions,
where some contextual information could be missing, unless disclosed together with
the data. Queue dynamics and particularly the topic of queue priority in a customer
service context, have not yet been addressed in the prescriptive process monitoring
literature (Kubrak et al., 2022). However, in computer science and operations
research, queue scheduling algorithms and their effect on process dynamics are
considered well-understood (Omar et al., 2021). Yet, to the best knowledge of the
author of this thesis, no work currently exists on predictive queue scheduling, with
the goal of improving quality performance measures such as customer loyalty. From
a customer relationship management perspective, loyal customers are important as
they have the highest lifetime value, and thereby represent the highest future profits
for a company (Blattberg et al., 2008). A further understanding of how customer
loyalty can be affected via prescriptive process monitoring, would therefore be a
contribution in this area.

Common for these model-based approaches in predictive and prescriptive process
monitoring is that when implemented in an organization, they might be subject to
so-called concept drift (Tsymbal, 2004). This means that the distribution they are
trained from could have changed over time, effectively decreasing the performance
of the model and thereby its value to the organization. In these cases, the model
needs to be re-trained from new data (the new distribution). In these situations,
there is a trade-off between operating costs and performance, as one might simply
re-train a model every day, however, this approach has the disadvantage of signifi-
cantly higher operating costs (Gama et al., 2013). Drift detection and automated
adaptation can therefore be of benefit in scenarios where the cost of re-training
is high. One such scenario is the remaining time prediction approaches based on
deep learning. However, in the field of predictive process monitoring, only a few
studies have currently been made in terms of automated drift adaptation (Baier
et al., 2020; Maisenbacher and Weidlich, 2017). An overview of current approaches
and their methodology might therefore be helpful for future research on automated
drift adaptation in predictive process monitoring.

The overall objective of this Ph.D. project is to:

• Improve methods for predictive and prescriptive process monitoring.

This thesis, therefore, aims to accomplish the following set of research objectives:

1. Understand how temporal weighting of loss functions influences the earliness
performance of remaining time prediction models.

2. Propose a simulation framework that improves the understanding of model
performance by enabling researchers to specify and generate synthetic process
data for model evaluation.

3. Understand how customer loyalty can be influenced via predictive queue pri-

4 CHAPTER 1. INTRODUCTION

oritization in a customer service process.

4. Understand how previous literature has studied automated adaptation of ma-
chine learning models in settings with concept drift.

1.2 Theory and previous research

In this chapter, research areas that forms the foundation of predictive and pre-
scriptive process monitoring will firstly be introduced through a description and
discussion of aspects relevant to this thesis. This will then be followed by a dis-
cussion of previous research within each of the four problem areas outlined in the
problem statement: Predictive process monitoring, Prescriptive process monitoring,
Business process simulation models and Concept drift.

1.2.1 Business processes

Davenport and Short (1990) formally define a business process as a set of logically-
related tasks performed to achieve a defined business outcome. Business processes
might take many forms, but what is common is that they have customers, and might
cross organizational boundaries (units within the organization) (Davenport, Short,
et al., 1990). Furthermore, a business process generates value by taking an input
and transforming it into a given output that is of value to internal or external cus-
tomers (Porter, 1985; Slack et al., 2016). Business processes vary across and within
organizations, however, some attempts have been made to formalize the structure
of the most common types of processes. An example is the end-to-end process defi-
nitions by the American Productivity and Quality Center (APQC) (Center), 2022),
which currently contain 31 generic processes with activities common within service
and production sectors.

A particular type of business processes relevant to this thesis, is service processes,
which deliver value to internal or external customers, not by creating goods or
products, but by performing a set of actions that create value for the customer.
In modern enterprises, every service process is relying on information technology
to be operational, and hence the rise of the field of Information Technology Ser-
vice Management (ITSM) (Galup et al., 2009). Similar to the generic end-to-end
processes described by APQC, the service sector has dedicated (often commercial)
frameworks and process maps for service management, such as Information Technol-
ogy Information Library (ITIL) (Agutter, 2020), and Business Process Framework
(eTOM) (TMForum, 2023).

A service process might take a customer issue in the form of an email and trans-
form it into a solution, hopefully resulting in a satisfied customer. Based on the
end-to-end process definitions by the American Productivity and Quality Center
(Center), 2022), this type of process is known as the issue-to-resolution process.

1.2. THEORY AND PREVIOUS RESEARCH 5

Particularly in ITSM, it is common to have Service Level Agreements (SLA) (Slack
et al., 2016), which specify measurable performance such as waiting time for the
internal or external customer before the issue is resolved. A key aspect of service
processes is thereby the aspect of time, which is influenced by the combination of
the capacity of the process and the inflow of customers.

This can formally be represented as a stochastic queue system, which using Kendall
notation has the following form (Slack et al., 2016): M/M/s/k, where the first
M denote the distribution of arrivals, the second M the distribution of processing
times, s the number of servers (agents) in the process, and k the maximum number
of customers waiting. Furthermore, a queue system of a service process might have
a queue discipline, which denotes the order in which issues (or cases) are prioritized
(Omar et al., 2021); First-Come First Served (FCFS), Last-Come First Served
(LCFS), Shortest Job First (SJF), Longest Job First (LJF) and Service In Random
Order (SIRO). The queue discipline might be either preemptive or non-preemptive,
where preemptive queuing allows a given issue to be temporarily abandoned in
favor of another, in order to shorten the queue length or due to higher priority of
another queue (Omar et al., 2021). Mathematical representations of queue systems
combined with Monte-Carlo simulation (Rubinstein and Kroese, 2016) can be used
as tools in the management of service operations, answering questions such as: How
many agents are needed to fulfill a given service level to the customers, or which
impact changes to the queue discipline might have on the average waiting time
(Slack et al., 2016).

1.2.2 Business process management

The origins of business process management lie in a stream of literature known
as Business process re-engineering (BPR) (Davenport, Short, et al., 1990), which
focuses on process improvement through the re-design of existing processes. Orig-
inating in the early 1990s, a key enabler in these efforts was the digitization of
processes with the introduction of information technology. The review by (O’Neill
and Sohal, 1999) found that literature in BPR mainly focused on tools such as;
Process visualization, process mapping, change management, benchmarking, and
customer focus to improve processes.

According to (Dumas et al., 2018), the field of BPR became less popular in the
late 1990s due to: 1) Concept misuse, as organizations would name every change
program (including down-sizing) as BPR, 2) Early literature in the field encouraged
radical rather than small changes in every BPR project, which was not appropriate
in all cases, 3) Immaturity of support systems, as process logic was often hard-
coded in customized IT systems and could thereby not easily be changed. The
emergence of empirical studies showing performance gains by organizations adopt-
ing the process-centered management, compared to those who did not (McCormack,
1999), combined with the introduction of supporting Information Systems (IS) mo-

6 CHAPTER 1. INTRODUCTION

Phase Source Description
Identification (Dumas et al.,

2018)
Identification of relevant pro-
cesses related to a business prob-
lem in focus. The goal is to se-
lect a process to focus on in the
remainder of the life cycle.

Process discovery (Dumas et al.,
2018)

Modelling and documentation of
the as-is process.

Process analysis or
diagnosis

(Dumas et al.,
2018; van der
Aalst, 2016)

Issues related to the as-is process
is measured and analyzed.

Process redesign (Dumas et al.,
2018; van der
Aalst, 2016)

Identification of changes to the
process that can help improve
the performance issues discov-
ered in the previous step.

Process implemen-
tation

(Dumas et al.,
2018; van der
Aalst, 2016)

Transformation of the as-is pro-
cess into the to-be process, based
in the identified changes in the
previous step.

Process monitoring (Dumas et al.,
2018; van der
Aalst, 2016)

Collection and analysis of data to
determine process performance.

Process adjustment (van der Aalst,
2016)

Predefined controls are used to
adapt or re-configure the running
process, without a need for re-
design.

Table 1.1: Overview of phases in the BPM life cycle.

tivated further BPR-related research, which formed the basis of Business process
management (Dumas et al., 2018).

The field of Business process management (BPM) focuses on process design and
improvement as part of a continuous life cycle of the process in question (Dumas
et al., 2018). The BPM life cycle consists of a set phases, however, the number of
(and which) phases differ in the literature. Where (Dumas et al., 2018) describe 6
phases, (van der Aalst, 2016) only present 5. Furthermore, there is only a partial
overlap between the two frameworks. Consequently, an overview of the phases in
both frameworks and their overlap is presented in table 1.1. In each of the two
frameworks, the individual order is the same as the one in which they are listed in
table 1.1. Common for both frameworks, is that it is a cycle, in that the process
repeats itself once the last phase is finished.

As illustrated by the BPM life cycle in Table 1.1, business process management
span all phases in the life cycle of a business process. The field of business process
management have thereby become a umbrella for multiple other streams of research.

1.2. THEORY AND PREVIOUS RESEARCH 7

As this thesis is focused on predictive and prescriptive process monitoring, process
monitoring, process-aware information systems and process mining will be discussed
in the following sections.

Process monitoring

Value creation in a business process can be measured and monitored using metrics
also referred to as key performance indicators (KPI) (Fitz-Gibbon, 1990; Dumas
et al., 2018). van der Aalst, 2016 relate these to three dimensions, namely: time,
costs and quality, where Dumas et al., 2018 propose process flexibility as a fourth
dimension. As discussed by Dumas et al., 2018, these four dimensions are closely
related, such that changing either of these will have an effect on one or more of
the remaining dimensions (in an unfavorable manner). This is also referred to as
the devil’s quadrangle in the area of business process re-engineering (Jansen-Vullers
et al., 2007).

A list of examples from each of the four dimensions provided in (Jansen-Vullers et
al., 2007; Dumas et al., 2018), can be seen from Table 1.2. The authors of (Dumas et
al., 2018) divide process monitoring into two categories: online and offline. Online
process monitoring is in this context referred to as the monitoring of cases while
they are active, whereas offline monitoring refers to the analysis of historical case
data.

Process-aware information systems

What defines a Process-aware Information System (PaIS), is the notion that it is
aware of the process in which it is used, and not specific to any single activity (van
der Aalst, 2016). Examples of process-aware information systems are Customer
Relationship Management (CRM) systems, which facilitate planning and manage-
ment of interactions with customers, as well as Enterprise Resource Planning (ERP)
systems which facilitate more general processes in the value chain. A key property
of PaIS are that they produce data that can be used in the analysis of processes.
Such data is commonly referred to as event-log data, which most often includes a
case identifier, an activity, a time stamp, and a resource (van der Aalst, 2016). The
content of these event-logs might vary across systems and process types, as well as
the meaning of a case and an activity. An example of an event-log can be seen from
table 1.3.

In this fictive example from a issue-to-resolution process of customer service unit,
the meaning of the columns are as follows (going from left to right): The unique
identifier of the case, the general topic of the issue, the activity that was performed,
the time when the activity was performed, and finally the name of the resource
(agent) that performed the activity.

8 CHAPTER 1. INTRODUCTION

Dimension Examples
Time

• Waiting time:
– Time between arrival and processing of a case
– The idle time between processing of two tasks

• Cycle time/throughput time:
– The time from start to completion of a case

Costs
• Operating costs:

– Labor costs
– Training costs

• Inventory costs:
– Costs of keeping goods and materials needed

Quality
• Performance:

– Customer satisfaction
– Customer loyalty

• Conformance:
– Product quality
– Compliance with internal rules

Flexibility
• Labor flexibility:

– Ability of a worker to perform multiple task types
• Mix flexibility:

– Ability to perform multiple case types
• Volume flexibility:

– Ability to adapt to changes in volume of cases

Table 1.2: The devil’s quadrangle examples (Jansen-Vullers et al., 2007;
Dumas et al., 2018).

Process mining

The field of process mining can be seen as a subset of business process manage-
ment (Dumas et al., 2018), and has evolved from the introduction of process-aware
information systems across industries. Process mining is defined as a set of tools
that can aid in the BPM life cycle discussed earlier (van der Aalst, 2016). A central
element in process mining is the notion of process models, which are abstractions of
the real behavior in business processes. Process mining uses algorithms for so-called
process discovery, which involves the automatic generation of an abstract process
model based on event-log data. These constructed models can then be used for
performance and conformance analysis (van der Aalst, 2016). The model-based
performance analysis enables the identification of bottlenecks between activities,
and can provide a visual understanding of the overall flow in the process. Confor-

1.2. THEORY AND PREVIOUS RESEARCH 9

Case ID Case topic Activity Timestamp Resource
1001 Invoice Email interaction 01-01-2019 15:01 Lars K.
1001 Invoice Phone interaction 02-01-2019 16:04 Lars K.
1001 Invoice Send new invoice 04-01-2019 16:58 Lars K.
1002 Service upgrade Email interaction 01-01-2019 12:01 Bjarne G.
1002 Service upgrade Phone interaction 03-01-2019 13:10 Bjarne G.
1002 Service upgrade Change data 03-01-2019 14:15 Bjarne G.
1002 Service upgrade Email interaction 04-01-2019 09:35 Jeppe V.

Table 1.3: Example event-log in a fictive customer service unit.

mance analysis refer to the degree to which the observed behavior in the process
reflects the expected or desired behavior. An outcome of these two types of analysis
might be requirements for process adjustment or re-design as previously described
in table 1.1.

An example of a discovered process model from the publicly available Helpdesk data
(Verenich, 2016) can be seen from Figure 1.1. The orange boxes represent activities,
and the arrows the transitions between activities observed in the event-log data. In
this example, the waiting time between activities cannot be assessed as only the
time stamp of the beginning of the activities is present in the event-log data. The
time information between activities thereby represent both activity duration and
waiting time between activities. If time stamps from both the start and end of the
activities were present in the data, arrows would represent the average waiting time
between activities, and the average duration would be represented within each box
in the process model in Figure 1.1. As seen by this example, this type of process
analysis is also limited by the amount of information captured by the PaIS.

A key goal of process mining is to provide operational support via process analysis
and monitoring, which have led to two new streams of literature, namely; predictive
and prescriptive process monitoring which will be further introduced in sections
1.2.4 and 1.2.5.

1.2.3 Descriptive, predictive and prescriptive analytics

In the classic 2006 Harvard Business Review article: Competing on analytics (Dav-
enport et al., 2006), the discipline of analytics was described through a set of use-
cases observed in American companies at the time. What is common for companies
competing on analytics is the utilization of data, information systems and statisti-
cal modelling to drive decision making at all levels in businesses (Davenport et al.,
2006). Since this paper, progress in Machine learning and the widespread adoption
of information systems (such as PaIS discussed earlier) have enabled a significant
body of literature within model-based managerial decision support (published in
journals such as MIS Quarterly: Management Information Systems, Decision Sup-
port Systems, International Journal of Information Management, etc.), which can

10 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of process discovery using the Disco process mining
software (Fluxicon BV, 2022).

all be classified as analytics.

From a high level, the authors in (Lepenioti et al., 2020) discuss that analytics
can generally be divided into three different types: Descriptive, predictive and
prescriptive. The first type, descriptive analytics, is reactive in nature as it focuses
on past events, and according to (Lepenioti et al., 2020), the goal is most often
to answer the questions: What has happened? or what is happening? (Lepenioti
et al., 2020). Descriptive analytics thereby support managerial decision making by
either looking backwards in time, or focusing on what is happening at the moment.
Predictive analytics focuses on predicting future events, and thereby proactive while
aiming to answer typical questions such as; What will happen?. Finally, prescriptive
analytics aim to answer questions such as: What should I do? (Krumeich et al.,
2016). An overview of the three types of analytics can be seen in Figure 1.2, which
is an adapted version of the models presented in (Lepenioti et al., 2020; Krumeich

1.2. THEORY AND PREVIOUS RESEARCH 11

et al., 2016).

Figure 1.2: Analytics-types in relation to time and business value. Source:
Adapted from (Lepenioti et al., 2020) and (Krumeich et al., 2016).

As illustrated in this Figure, potential business value gained lies between a proactive
and reactive action (marked with blue on the right). Going back to the issue-to-
resolution example earlier, while descriptive analytics might give an in-depth un-
derstanding of historical or current process performance, predictive analytics might
give early warnings future performance. This will then enable a proactive deci-
sion, based on alternatives provided from prescriptive analytics. In other words,
the predictive component enables the prescriptive, which could then lead to full
automation and self-correction of the process. In the following, relevant literature
within predictive and prescriptive process monitoring will be discussed.

1.2.4 Predictive process monitoring
The literature on predictive analytics in relation to business processes is generally
referred to as predictive process monitoring. A predictive process monitoring system
is based on a machine learning model (Hastie et al., 2001), which is trained from
event-log data residing in a PaIS. Figure 1.3 illustrates the steps involved in gener-
ating a predictive process monitoring model (top), as well as how one such might
be deployed in a running business process (bottom). The development process is
similar to other machine learning models (see (Chapman et al., 2000)), with the
exception of the data pre-processing. As event-log data has multiple rows per unit
of observation (events per case), encoding of the data is important for predictive
process monitoring (see (Verenich et al., 2019) for a detailed overview).

One of the earliest works in this stream of literature is the paper; Cycle time pre-
diction: When will this case finally be finished? (van Dongen et al., 2008). In this
paper the authors presented a non-parametric approach to predicting the remaining
cycle-time from partially observed cases. The authors used event-log data from an
administrative process within a Dutch municipality. In their experiments, the au-

12 CHAPTER 1. INTRODUCTION

Figure 1.3: Predictive process monitoring example.

thors demonstrated the performance of using: 1) Only the attributes of cases which
where static 2) Only the observed activities within the case, 3) Only the current
cycle time at the time of prediction, 4) A combination of the previous three variants.
Interestingly, the results showed that the static case attributes (1) were most the
informative of the four variants, especially in the early part of the cases, where the
second-best approach was the combined model (4). This initial work led to multiple
approaches to the prediction of remaining cycle (also known as throughput time in
this literature). Examples are query catalogs, which are based on conditional av-
erages in historical data (Bolt and Sepúlveda, 2014), or hybrid approaches such as
predictive clustering trees combined with finite state machines (Folino et al., 2013).
A comprehensive review can be found in (Verenich et al., 2019). Common for the
early work is that the approaches were not based on the most widely used Machine
learning algorithms at the time (Hastie et al., 2001).

The work of (Evermann et al., 2016) presented a novel approach to predicting
the next activity in a sequence, using a combination of Recurrent neural networks
(Goodfellow et al., 2016) and techniques used in the field of natural language pro-
cessing. Here, the authors took advantage of the similarity between a sequence of
words or characters of varying length, and a sequence of activities within a case. Fol-

1.2. THEORY AND PREVIOUS RESEARCH 13

lowing this work, the authors in (Niek Tax, Marlon dumas, Ilya veenich, Marcello la
rosa, 2017) proposed an enhanced approach using Long short-term memory Recur-
rent neural networks (LSTM-RNN) (Hochreiter and Schmidhuber, 1997), capable of
predicting the; time to next activity, type/class label of next activity, remaining se-
quence of activities (suffix) and remaining cycle time. In their approach, remaining
cycle time was predicted at the sum of the predicted timestamps of the predicted
suffix of a case. For remaining cycle time, their approach outperformed previous
approaches in three of the four event-logs in which it was evaluated. One limitation
to this approach was reduced performance on sequences with repeated patterns of
the same activity.

In (Navarin et al., 2018), the authors improved the approach to remaining cycle time
prediction proposed by (Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa,
2017). This was achieved by changing the architecture of the LSTM-RNN, such that
only predicted output was only a single value (the remaining cycle time), whilst also
using all available attributes. This approach exceeded the performance on remaining
cycle-time prediction achieved in (Niek Tax, Marlon dumas, Ilya veenich, Marcello
la rosa, 2017), whilst not being sensitive to sequences with repeated patterns of the
same activity. The authors in (Camargo et al., 2019a) continued the work with
LSTM-RNN prediction models by studying the influence of so-called embeddings,
which is a n-dimensional projection of the input space. This technique enables
the ability to generate a mapping between categorical inputs, which can be further
used during training and prediction. Similar to (Niek Tax, Marlon dumas, Ilya
veenich, Marcello la rosa, 2017), the approach enabled prediction of time to next
activity, type/class label of next activity, remaining sequence of activities (suffix)
and remaining cycle time.

Two benchmark studies (Verenich et al., 2019; Rama-Maneiro et al., 2020) have
have since found the approach in (Navarin et al., 2018) to perform the best for
remaining cycle time prediction, evaluated across multiple domain data. For time
to next activity, it was found in (Rama-Maneiro et al., 2020) that the approach of
(Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa, 2017) performed the best.
For next activity prediction, clustering of event attributes combined with a LSTM-
RNN (Hinkka et al., 2020) performed the best. Finally, the embedding approach
of (Camargo et al., 2019a) proved to be best for suffix prediction. Common for all
four prediction tasks is that the best performing solution is based on a Recurrent
neural network.

Performance of prediction models

From the model evaluation perspective, the benchmark study of (Verenich et al.,
2019) evaluated remaining cycle time prediction models based on two properties:
1) Accuracy performance, denoting the average performance across all prefixes, 2)
Earliness performance, denoting the performance with respect to time. From the

14 CHAPTER 1. INTRODUCTION

latter perspective, the higher the accuracy at early time steps, the better earliness.
To compare earliness performance, accuracy at different time steps thereby need to
be measured. Going back to the three analytics types discussed in section 1.2.3,
the earliness property of a case outcome or cycle time prediction would ensure the
highest business value (as illustrated in Figure 1.2).

Another perspective on model evaluation was suggested by (Teinemaa et al., 2018b),
who studied the temporal stability of case outcome predictions. The case outcome
could in this case be compliance in terms of organizational goals, a fraudulent re-
quest, a deadline violation formulated as a binary outcome etc. The evaluation is
motivated by reducing the volatility in classification models used for successive pre-
dictions: changing the conclusion multiple times will most likely cause ill treatment
of a patient or customer or result in a lack of trust in the prediction model. The
temporal stability is defined a measurement of the sensitivity to small changes in
the input, in terms of predicted outcome. The results showed that LSTM-RNN
(Hochreiter and Schmidhuber, 1997) and XGBoost (Chen and Guestrin, 2016) had
the best temporal stability when using exponential smoothing, at the cost of accu-
racy performance.

As earliness is an important property in many business problems, especially in
situations where there is a delay between the prediction and a possible action, this
remains an important issue. Most studies evaluate a given approach from the aspect
of both accuracy and earliness, by measuring the accuracy at different prefix lengths.
However, no research has been made on optimizing the weights of a LSTM-RNN
with respect to this objective. More specifically, as the loss function of a machine
learning algorithm can be modified to prioritize one or more goals (as in (Niek Tax,
Marlon dumas, Ilya veenich, Marcello la rosa, 2017)), the loss function could also
be modified to influence earliness or other performance aspects as well. Currently,
only the LSTM-RNN approaches that focus on the prediction of multiple outputs
using a single architecture (Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa,
2017; Camargo et al., 2020) uses customized loss functions. As found by (Rama-
Maneiro et al., 2020), the rest of the deep learning-based literature uses the L1
loss for cycle time prediction. Altering the loss functions is thereby an avenue of
predictive process monitoring that have not yet been fully explored.

1.2.5 Prescriptive process monitoring

As described in section 1.2.3, the stream of literature related to prescriptive ana-
lytics within business process management, is commonly referred to as prescriptive
process monitoring. The main goal here is to improve the operation of a business
process, using predictive process monitoring for event prediction, and most often a
secondary component to prescribe/recommend treatments to open cases that can
prevent an unfavorable outcome. For instance, interventions such as calling a cus-
tomer to retrieve missing information or changing to a faster supplier might be

1.2. THEORY AND PREVIOUS RESEARCH 15

performed to reduce cycle time (Bozorgi et al., 2021). As argued in (Teinemaa et
al., 2018a), performing these interventions comes at a cost, and the authors there-
fore propose a cost-benefit model determining whether to trigger an alarm and
thereby an intervention on a given case. In Figure 1.4, two examples are illustrated.
In example 1, cases are escalated to a senior agent with more experience if they are
predicted to exceed the service level agreement deadline. In example two, a predic-
tion model recommends which intervention to use, based on available and predicted
case attributes.

Figure 1.4: Prescriptive process monitoring example illustration.

The work of (Wibisono et al., 2015), which was based on the previous approach and
data collected by (Nisafani et al., 2012), propose an automated resource-allocation
approach based on a prescriptive Naive Bayes (Hastie et al., 2001) model. The
experiments are performed using an agent-based simulation model (Railsback et
al., 2006), calibrated from observed distributions in the case process (an Indonesian
drivers license application process). At runtime (while the process is active), the
model actively recommends which resource (police officer) from the resource pool
to use, based on the conditional distribution of processing time for each resource
on each previously observed activity type. While not accounting for fatigue, this

16 CHAPTER 1. INTRODUCTION

approach does improve the average cycle time.

Another approach can be found in (Thomas et al., 2017), where the authors use
suffix prediction using Cascade neural networks, in order to identify case variants
(unique sequences of activities) where a specific treatment is needed, in order to
avoid a later immediate intervention. The authors do however not perform any
simulation or field experiments, but rather evaluate the performance of their pre-
diction model on historical data from emergency health records. The authors of
(Teinemaa et al., 2018a), propose an alarm-based prescriptive method which cal-
ibrates the threshold of a predicted undesired outcome (referred to as an alarm),
based on a cost model. The proposed framework then automatically finds a thresh-
old for when to raise an alarm, given the cost model. In the experiments, the
authors then conduct a return on investment analysis, in order to determine when
a fictive prescriptive process monitoring system is profitable.

A recent stream of literature proposes conditional average treatment effect (CATE)
estimate the effectiveness of a given prescriptive method, using historical data
alone. For instance, (Bozorgi et al., 2021) propose a prescriptive process moni-
toring method for the reduction of cycle time, assuming that certain interventions
can be performed at a given cost, in order to reduce cycle time. An example men-
tioned in the study is to proactively call and ask a customer for missing information,
when this is delaying the process. The authors use a Orthogonal random forest to
estimate the conditional average treatment effect of the assumed interventions, and
based on a cost model, aim to improve cycle time when keeping costs at a given
level.

Similarly, (Shoush and Dumas, 2022) propose a framework using two Machine learn-
ing models: 1) For estimating the likelihood of a undesired outcome, 2) For esti-
mating the conditional average treatment effect. The focus of the study is resource
allocation, where a resource is allocated to a task based on a cost model (which
determines if and when to perform the intervention). The treatment effect of the
model-based interventions is thereby estimated on the historical data. A weakness
of the CATE method is as pointed out by the authors in (Bozorgi et al., 2021), that
the treatment assignment should be independent of the potential outcome (ran-
domly assigned or free of selection bias). A violation to this condition will bias the
causal model and thereby invalidate the results. Arguably, knowledge about context
of the business process and the assignment of treatments would help to reduce this
risk, however, as argued by the authors of (Bozorgi et al., 2021), the only way to
be sure is an experimental design with random assignment. However, as both the
aforementioned studies (Bozorgi et al., 2021; Shoush and Dumas, 2022) uses pub-
licly available benchmark data to conduct the experiments, the random assignment
of treatments cannot be verified unless disclosed explicitly in the documentation of
the data. While the proposed frameworks might work in theory, their estimated
treatment effects might be biased by unobserved confounding variables which again

1.2. THEORY AND PREVIOUS RESEARCH 17

affects the internal validity.

The review in (Kubrak et al., 2022) show that most of the research in prescriptive
process monitoring focus on optimizing efficiency-related metrics such as the cycle-
time of an individual case, or the average cycle time of the business process. Soft key
performance indicators related Customer relationship management have currently
not been studied (see quality dimension in section 1.2.2). Another limitation in
the current stream of literature, is the focus on publicly available benchmark data
compared to case studies or field experiments. In fact, only 1 of the 37 studies
retrieved in (Kubrak et al., 2022) based their findings on field experiments.

1.2.6 Business process simulation models

Traditionally, business process simulation models were derived using observation,
interviews and analysis of documents related to the process being simulated (Hlupic
and Robinson, 1998). A business process can be represented through a discrete event
simulation model (see (Fishman, 2001)), consisting of 4 main components (van der
Aalst, 2015): 1) The arrival process, which defines cases coming into the system 2)
The control flow, which denote the sequence of activities, 3) Resources who perform
the activities, and finally 4) Duration of activities.

For the generation of business process simulation models, the field of process mining
(van der Aalst, 2016) have played a key role as it has enabled automated construc-
tion of the control flow model used for discrete event simulation (van der Aalst et
al., 2004). Furthermore, as process aware information systems have become more
widely used, researchers no longer need to rely on observation in order to estimate
population parameters of e.g. duration distributions, as these can be estimated
directly from event-log data produced by these systems. Within Process mining, a
lot of research have therefore been made on the generation of accurate simulation
models (digital twins) that represent the real world process as good as possible. The
aim with these models is most often to generate what if scenario analysis, under-
standing the impact of certain changes to the business process by simulating them
within a digital twin (van der Aalst, 2015).

Both commercial software such as ARENA (Altiok and Melamed, 2007), as well
as open source alternatives such as ProM (van Dongen et al., 2005) exist for the
generation of a business process simulation model. In recent years, the research
within this field have focused on generating as realistic simulation models as possi-
ble. For instance, (Szimanski et al., 2013) proposed the combination of agent-based
simulation and process mining, in order to create a hierarchical representation of
the business process, where interactions between agents would be represented (as
messages) represented. The authors of (López-Pintado and Dumas, 2022) studied
the impact of the assumption that resources have identical availability calendars
and performance. More specifically, they proposed a method to automatically dif-
ferentiate both of these aspects in a simulation framework. The results showed that

18 CHAPTER 1. INTRODUCTION

these two aspects did indeed affect the overall accuracy of the simulation model.

A significant focus in the literature has also been on the automated end-to-end
generation of simulation models, such as in (Mesabbah and McKeever, 2018; Ca-
margo et al., 2019b, 2020). Based on the requirements of a simulation model, when
used for what if analysis, this stream of literature generally aim at representing the
reality as accurately as possible. To support the research of prescriptive process
monitoring, these models are thereby ideal candidates, as the prescriptive process
monitoring system can be evaluated from a digital twin of the process, instead of
conducting a field experiment.

However, for predictive process monitoring, where hypotheses might be related to
the impact of certain characteristics of the data generating process, these simulation
approaches might be less ideal. To test a hypothesis related to model prediction
performance given certain types of control flows or duration distributions, a single
process model calibrated from a single real world process will lead to low external
validity. Instead, multiple control flows and duration distributions sharing the same
characteristics (that is to be tested) will be needed. For instance, in (Niek Tax,
Marlon dumas, Ilya veenich, Marcello la rosa, 2017) the authors found that their
model performed worse in 1 of 3 event logs, and found that this event-log had
sequences with repeated events. In this case, this particular hypothesis could have
been tested with a purely theoretical simulation framework.

1.2.7 Concept drift

When a predictive or prescriptive process monitoring system based on Machine
learning is implemented in a business process, the underlying distributional assump-
tions might not hold. When developing a Machine learning model, the underlying
assumption is that the data used for model development comes from the same pop-
ulation as it will be implemented in (i.e., the business process itself). Even though
the data might be collected from the same business process as it is to be imple-
mented in, this assumption does not always hold, as the population might suffer
from concept drift (Tsymbal, 2004).

Concept drift is a phenomenon where changes happen to a distribution over time.
This can happen in multiple patterns over time (see (Gama et al., 2013)), and
influence the strength or nature of relationships in the data which are modelled
using Machine learning in Predictive and Prescriptive process monitoring. When
the relationships in the population changes after a model has been developed, its
accuracy will also decrease when used in the new population. This will thereby lead
to a lower quality in the decision support provided by the predictive or prescriptive
system, ultimately causing more harm than good. The process mining community
have been studying these phenomena for business processes, and an overview of
types of process changes can be found in (Bose et al., 2013).

1.2. THEORY AND PREVIOUS RESEARCH 19

To reduce problems occurring from these phenomena, the Machine learning model
must be adapted to the new population by being re-trained using new data. This is
commonly referred to as drift adaptation (Gama et al., 2013), and can be performed
in two ways: 1) Blind adaptation, 2) Informed adaptation. Blind adaptation refers
to retraining the model as soon as new data is available, whereas informed adapta-
tion requires a detection system (Bose et al., 2011) to trigger the re-training once
drift is detected. Blind adaptation can be very resource-intensive, especially for the
LSTM-RNN-based models commonly used in predictive process monitoring (Niek
Tax, Marlon dumas, Ilya veenich, Marcello la rosa, 2017; Navarin et al., 2018).

In their experiments with predictive process monitoring models, the authors of
(Maisenbacher and Weidlich, 2017) find that Hoeffding Trees perform particularly
well for blind adaptation (compared to Naive Bayes and Perceptron), where Adap-
tive Hoeffding Option Trees perform best for informed adaptation (compared to
Adaptive Hoeffding Trees and Single Drift algorithm). Similarly, (Baier et al.,
2020) studied the performance gains in classification accuracy of a predictive pro-
cess monitoring system by using informed adaptation. The authors found that the
combination of incremental learning and drift detection (updating an existing model
when drift is detected) yielded a performance increase of 28% in classification ac-
curacy. In this study, the authors used a combination of drift detection and data
selection methods: Page-Hinkley drift detection (Page, 1954) and ADWIN (Bifet
and Gavalda, 2007) data window selection. Focusing on blind adaptation strategies
alone, the authors of (Márquez-Chamorro et al., 2022) evaluate the performance of
a Random Forest (Hastie et al., 2001) model used for predictive process monitoring
in event-log data with concept drift. The authors proposed five strategies: Baseline,
Cumulative, Non-cumulative, Ensemble, Sampling and Drift, where the Ensemble
strategy was found to be the most effective in terms of both computational cost and
performance over time.

A different stream of literature in the so-called AutoML community (Feurer and
Hutter, 2019) focus on another aspect of this problem: Automating the model de-
velopment process itself, and more specifically to do this in a cost-efficient manner.
As the space of candidate settings (hyper parameters) can become very large, this
stream of literature rely on a variety of methods to automate model development
(Feurer and Hutter, 2019). Within this literature, it is therefore common to use
a computationally efficient type of optimization algorithms known as Metaheuris-
tics (Blum and Roli, 2003). One example from the predictive process monitoring
literature is the work of (Francescomarino et al., 2018), where a framework for au-
tomated development of a predictive process monitoring system is proposed, based
on a Genetic Algorithm (which is a Metaheuristic optimization algorithm). As the
many other AutoML approaches (Muñoz et al., 2015; Hutter et al., 2013; Elsken
et al., 2019; Maclaurin et al., 2015), this framework does not address the issue of
concept drift.

20 CHAPTER 1. INTRODUCTION

In relation to adapting computationally demanding methods such as the LSTM-
RNN (Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa, 2017; Navarin et al.,
2018), the methodology used within the AutoML literature, especially the stream
based on Metaheuristics thereby appear as promising solutions for the re-training
aspect itself. However, as discussed earlier, blind retraining is in itself computa-
tionally demanding. An overview of the existing approaches using Metaheuristics
for automated drift adaptation could help advance this stream of research within
predictive process monitoring.

2. Research questions

This section will present and motivate the individual research questions guiding
the work of this thesis. The research questions aim to solve problems in individual
areas, which combined will help achieve the overall research goal of this project,
which is to:

• Improve methods for predictive and prescriptive process monitoring.

To achieve this, research work in four related areas has been conducted: 1) Im-
provements in the ability of predictive process monitoring to act as early warning
systems, 2) Contributions to the evaluation of predictive process monitoring meth-
ods via synthetic data, 3) Suggesting a new method for case queue management
via prescriptive process monitoring, 4) Providing an overview of the literature on
automatic concept drift adaptation, suitable for methods in predictive process mon-
itoring. In the following, the research questions of each of the four studies will be
motivated and presented.

Study 1 will focus on predictive process monitoring. In the current stream of lit-
erature, effective models have been proposed for the prediction of the remaining
cycle time of open cases in a business process. More specifically, the approach of
Navarin et al., 2018 has been found to perform the best for this task across multiple
proposed approaches in the literature (Verenich et al., 2019; Rama-Maneiro et al.,
2020). Both in terms of the average prediction accuracy, as well as the timing of
the error (referred to as earliness), this approach proves to be best across a set of
publicly available benchmark event-log data. As the remaining cycle time of an
open case is monotonically decreasing as the case progresses toward completion, a
sequence of remaining cycle predictions would be expected to behave in the same
manner. From a prescriptive process monitoring perspective, a predicted remain-
ing cycle time that increases as time progresses (and is thereby not stable), poses
a risk of prescribing the wrong intervention. However, it is currently unknown to
which degree models such as the one proposed by Navarin et al., 2018 behave in
this respect.

Common for the approaches for remaining cycle time prediction based on Machine
learning, is the L1 (Mean Absolute Error) loss function (Goodfellow et al., 2016),

21

22 CHAPTER 2. RESEARCH QUESTIONS

which is known to be less sensitive to large differences in the values of the target
variable (Verenich et al., 2019). This particular loss function optimizes the Machine
learning towards the median of the target distribution and has thereby proven to
result in the best average accuracy. However, this particular loss function does not
account for the timing of the errors, and thereby also only optimizes the model from
the accuracy performance perspective. As discussed in Section 1.2.3, the earlier a
useful prediction can be made, the earlier a prescribed intervention can be made,
and from the logic of Figure 1.2, the greater the business value. The effect of
altering the loss function such that it is penalized for bad earliness performance (via
temporal weighting of the errors) has currently not been studied.

Consequently, Study 1 will aim to understand the influence of temporally-weighted
loss functions for remaining cycle time predictions. Furthermore, the performance
will be assessed in terms of temporal consistency, which denotes a monotonically
decreasing prediction of the remaining cycle time as the case progresses. The work
is guided by the following research questions:

• RQ1 How can early warning performance of remaining cycle time predictions
be improved?

– RQ1.1: How do temporally weighted loss functions influence the per-
formance of LSTM-based remaining time prediction models?

– RQ1.2: To which degree do the predictions generated by LSTM-based
remaining time prediction models fulfil the criterion of temporal consis-
tency?

Study 2 seeks to make an epistemological contribution to the field of predictive
process monitoring. In previous studies such as Niek Tax, Marlon dumas, Ilya
veenich, Marcello la rosa, 2017; Camargo et al., 2019a as well as Study 1 of this
thesis, performance aspects of the proposed model or method have been limited by
the data from which it was evaluated. More specifically, by using publicly available
event-log data from conference contests (La Rosa and Soffer, 2013; Teniente and
Weidlich, 2018) or previous studies (Mannhardt and Blinde, 2017; Mannhardt et
al., 2015), the researcher does not have full control of the data-generating process.
The data can be understood through descriptive analysis, but the process that
generated the data cannot be modified once the data has been collected. This
fact thereby limits the understanding of its influence on model performance, as one
cannot generate other scenarios from this process unless changing the real-world
process and sampling another event-log.

Monte-Carlo simulation is thereby an important tool that can bridge this gap in the
understanding of the performance and sensitivity of predictive process monitoring
methods. Using simulated event-log data, not only data generating characteris-
tics within a single business process can be controlled, but these changes can also
be understood across multiple simulated business processes. As an example, the

23

authors in Camargo et al., 2019a seek to understand the influence of process com-
plexity and variability on the performance of their proposed method. In this case,
the authors selected 9 publicly available event-logs and classified them according
to their degree of complexity or variability. As the number of publicly available
event-logs that match the particular hypothesis a researcher might want to test is
limited, this approach has some disadvantages: 1) Data collection and analysis is
time-consuming, 2) There is no guarantee that the needed number of event-logs with
the exact characteristics of the hypothesis is available. In the example of Camargo
et al., 2019a, this led to an uneven distribution of logs within and across the two
factors (complexity and variability). This can limit the results, as some scenarios
are over-represented compared to others, and interaction effects might thereby be
biased. In this example, synthetic event-logs could have been generated with sys-
tematical changes to process complexity and variability via an experimental design.
This would have provided the ability to estimate interaction effects, as well as to
control for the variation across multiple processes.

Study 2 thereby seeks to understand the capabilities of current simulation frame-
works that can generate event-log data, and on the basis of this knowledge to
contribute with a framework that covers the capabilities not offered in existing
frameworks. Study 2 is thereby guided by the following research questions:

• RQ2 How can the evaluation of predictive process monitoring methods via
synthetic data be improved?

– RQ2.1: To which extend does current business process simulation frame-
works support the requirements for model robustness assessment in Pre-
dictive process monitoring?

– RQ2.2: How can the limitations in current simulation frameworks be
addressed within a new framework?

Study 3 will focus on the area of prescriptive process monitoring. In this stream of
literature, the focus is mainly on efficiency-related measures such as costs (Teine-
maa et al., 2018a), cycle time (Wibisono et al., 2015), or a combination of the two
(Bozorgi et al., 2021). Based on the literature review of Kubrak et al., 2022, the
majority of the work in this literature focuses on process improvement from the
resource or control flow perspective. As the literature in prescriptive process mon-
itoring predominantly relies on event-log data, aspects not recorded in this type of
data are largely overlooked. One such example is case queue management, which
by definition happens before the initiation of a case, and is thereby unobserved in
most event-logs. In (Wibisono et al., 2015), the task queue from the perspective
of the resource/agent in a driver’s license application process was improved using
a prescriptive allocation of agents to tasks. However, the prioritization of the case
queue before initiation was not in the scope of this study.

Previous literature in operations research has studied case queue prioritization based

24 CHAPTER 2. RESEARCH QUESTIONS

on predicted cycle time. An example is Tan et al., 2012 where the authors utilize the
shortest remaining time first (SRTF) discipline in a case study of a hospital emer-
gency department. Other approaches such as Wang et al., 2020 study the longest
remaining time first (LRTF) discipline based on predicted cycle time in the context
of edge computing server allocation. Similar to the literature on prescriptive process
monitoring, the utility function is most often related to time or costs. Currently,
no work in either of these streams of literature focuses on quality performance such
as customer satisfaction or loyalty. As customer loyalty is a central construct in
relationship-oriented approaches to marketing and service management (Hallowell,
1996; Kumar and Shah, 2004; Sheth and Parvatiyar, 1995), this is arguably an im-
portant aspect of process performance: The more loyal a customer, the higher their
lifetime value. The more loyal customers, the higher a company’s expected future
profitability (Blattberg et al., 2008).

Consequently, Study 3 will present a case study within the customer service process
of a European internet and telecommunications provider. Focusing on a quality
performance aspect, namely customer loyalty (measured by the Net promoter score
(Reichheld, 2003)), Study 3 will seek to improve process performance via prescrip-
tive queue prioritization. Using data provided by the case company, an agent-based
simulation model of the customer service process will be generated in order to an-
swer the following research questions:

• RQ3 How can prescriptive queue management improve soft performance mea-
sures such as customer loyalty scores?

– RQ3.1: What are the distribution parameters of the key process compo-
nents needed to generate an agent-based simulation model of the service
process in the case company?

– RQ3.2: How does the number of agents influence the queue waiting time
in the simulation period under different prioritisation schemes?

– RQ3.3: What are the effects of the four queue disciplines on overall
process performance?

– RQ3.4: What are the effects of the proposed loyalty-based queue disci-
pline on the simulated net promoter score?

Study 4 will focus on the problem of concept drift, briefly discussed in the previ-
ous chapter (see Tsymbal, 2004; Gama et al., 2013 for an in-depth description). As
predictive and prescriptive process monitoring systems are intended to support busi-
ness processes reliably on a daily basis, the problem of concept drift adaptation is
important to address. As concept drift is not only limited to business processes and
has been studied across many other fields (Žliobaitė et al., 2016), Study 4 focuses
on the problem of drift adaptation of Machine learning models in any operational
setting. Current work on drift adaptation within the predictive process monitoring
community (Maisenbacher and Weidlich, 2017) mainly focuses on computationally

25

efficient methods such as Hoeffding Trees (Domingos and Hulten, 2000) and Ran-
dom Forests (Breiman, 2001a), whereas cost-effective drift adaptation methods for
more demanding models such as the LSTM-RNN (Navarin et al., 2018) has not yet
been studied.

Study 4 thereby focuses on a subset of drift adaptation methods which are based
on so-called Metaheuristics. These algorithms are known to be computationally
efficient for optimization problems in the automated development of Machine learn-
ing models (AutoML) (Feurer and Hutter, 2019; Francescomarino et al., 2018). As
drift-adaptation can theoretically involve any task in model development (Chapman
et al., 2000), Study 4 aims to understand the current applications of Metaheuris-
tics for drift adaptation across fields. As this goal overlaps multiple theoretical
frameworks, the approaches will be analyzed with respect to relevant theory within
AutoML (Feurer and Hutter, 2019), Concept drift (Tsymbal, 2004; Gama et al.,
2013) and Metaheuristics (Blum and Roli, 2003). To achieve this, Study 4 will
answer the following research questions:

• RQ4 How can metaheuristics aid machine learning systems in automatic
adaptation in settings with concept drift?

– RQ4.1 Which types of metaheuristics have been utilized for automated
adaptation to concept drift?

– RQ4.2 What characterize the application area of the use-cases?

– RQ4.3 How does the use-cases utilize metaheuristics for concept drift
adaptation?

– RQ4.4 Which forms of concept drift were investigated?

– RQ4.5 How was the proposed use-cases evaluated?

– RQ4.6 What are the chronological trends in the found literature?

To help answer this primary research question, a set of six secondary research
questions is proposed. The goal of the set of secondary research questions is to
get a deeper understanding of the context wherein the algorithms are used: Which
tasks they are used for, and in what context. Furthermore, the study aims to create
an overview of the evaluation of the proposed methods: Which types and patterns
of drift, as well as which evaluation method that was used.

3. Methodology

As Machine learning is a core element in this thesis, this chapter will start with a
discussion of the pros and cons of typical methodology used in Machine learning
research. Next, the overall research framework will be presented, and lastly, the
chosen methodology in each of the four individual papers will be discussed.

3.1 Methodology in Machine learning research

In the classical paper; Statistical modeling: The two cultures (Breiman, 2001b),
the author describes two fundamentally different approaches to the evaluation of
statistical prediction models. The first approach is based on a data model, where
evaluation of a given approach is based on Monte-Carlo simulation experiments
(Rubinstein and Kroese, 2016) and goodness-of-fit tests. The second approach is
based on data sets sourced from the setting wherein the prediction model is intended.
The first approach has the advantage that it is transparent, but the disadvantage
that it relies heavily on theory and assumptions about the data generating process,
which might not represent reality. The transparency of this approach strengthens
the internal validity, as the phenomena to be tested is specified by the researcher.
However, from an ontological viewpoint, the phenomena must be observable from
data in the first place.

In comparison, the second approach treat the data generating process as unknown,
and rely on a combination of out-of-sample validation and accuracy measurements
(Hastie et al., 2001). A clear advantage of this approach is the ecological validity, as
models are evaluated within the environment in which they are intended to be used.
From a Humean perspective (Anjum and Mumford, 2018), the external validity of
such experiments simply rely on the number of representative settings (data sets)
wherein the prediction model is evaluated. The withdrawal from clearly formulated
assumptions about the data generating process, does however limit the knowledge
produced with such experiments.

Some areas of Machine learning research try to take the middle ground between these
two approaches (Tibshirani, 1996; Efron et al., 2004; Zou and Hastie, 2005; Bradley

27

28 CHAPTER 3. METHODOLOGY

and Henseler, 2007), combining the evaluation of a new approach by benchmarking
on publicly available data sets used in previous research (commonly referred to
as benchmark data) alongside Monte-Carlo experiments with clear assumptions.
This approach have also been used in some parts of the literature stream of deep
learning which focuses on Deep Neural Networks (Goodfellow et al., 2016), for
instance in the first proposal of the Long Short-term Memory Recurrent Neural
Network (Hochreiter and Schmidhuber, 1997), which is a central topic in this thesis.
However, in recent years this approach have become less popular, especially in the
field of Predictive Process Monitoring, which mainly rely on the so-called benchmark
data for evaluation of a given method (Verenich et al., 2019; Rama-Maneiro et al.,
2020).

Another aspect of the two approaches to evaluation in Machine learning research is
the transparency of the models themselves. Traditional models used within the sta-
tistical community rely on the ability to make inference and draw conclusions about
relationships, given a set of assumptions. This approach is very much contrasted
by the algorithmic modelling used in the Machine learning community, where pre-
diction models have until recently (see (Lundberg and Lee, 2017)) been regarded as
too complex to make clear inference about relationships.

Machine learning algorithms (Hastie et al., 2001) rely on a stochastic optimization
process referred to as training, which results in a solution (a prediction model) that
can generate predictions on the holdout sample with an given level of accuracy.
Reproducing these results can be achieved by setting a given seed value (fixed value
used to initialize the random number generator (Rubinstein and Kroese, 2016)).
However, modern research on deep learning prediction models requires specific hard-
ware in order to speed up the training process via parallel processing (Goodfellow
et al., 2016). This, on the other hand, leads to hardware-dependent rounding-errors
which in turn mean that results cannot be faithfully reproduced (Chen et al., 2022).

3.2 Overall research framework
To answer the research questions, a mix of methods have been used individually in
each of the four studies, as well as combined in some studies. The primary methods
used are Monte-Carlo simulation, descriptive analysis, predictive modelling and
literature reviews. A graphical overview of the methodological framework can be
seen from Figure 3.1. Individual discussions of the methods used in each of the four
papers can be found in Section 3.3.

3.2.1 Data

As the thesis is centered around methods for process improvement via algorithms
and predictive models, a key element is the data generated within business processes
from the so-called Process-aware Information Systems. This data format is also

3.2. OVERALL RESEARCH FRAMEWORK 29

Figure 3.1: Methodological framework.

known as event-log data, where activities are logged in chronological order, and
linked to a given case (sometimes referred to as a process instance). The event-log
might carry information other than the activity and timestamp, and include other
case-related attributes.

Papers 1 and 3 use event-log data as the primary data. Where paper 1 uses publicly
available event-log data (most often used for benchmarking across studies), paper
3 uses event-log data from a case company. Where a higher number of data sets
might be an advantage in terms of external validity, this also comes at a trade-off in
terms of the amount of detail that can be put into the descriptive analysis. Papers
1 and 3 are from this aspect opposed to each other, as paper 1 has a descriptive
analysis based on distributions and summary statistics alone, where paper 3 has a
more in-depth analysis with process models and interviews with the case company.
The collection of data was thereby adapted to the aim of the papers.

As paper 1 tests the effect of a modification to an existing predictive process moni-
toring method, it was essential to understand their differences in terms of the distri-
bution of prefixes and case duration (cycle time). The data was sourced from four
different domains to understand potential differences across four different processes.
On the contrary, as paper 3 tests the effect of a queue-prioritization algorithm which
is intended for customer service processes alone, a case study with a more detailed
analysis of the process was needed in this case.

The event-log format has its limitations, as the lowest unit of observation is the
activity, and other events that might happen in between the activities are not
necessarily recorded in this data. One example is the event-log data used in paper

30 CHAPTER 3. METHODOLOGY

3, where aspects of human behavior between or alongside events are not recorded.
For instance, the time at which an agent signs into the console and starts working, or
when an agent decides to abandon or re-assign themselves to a case. The resource
behavior can be inferred from the observed behavior in the event-log data, but
as discussed, there is also behavior that is not observed from this type of data
alone. As we were not granted access to data from systems logging detailed resource
behavior, this limited the scope of paper 3, as non-preemptive queue disciplines had
to be excluded. What also became apparent from the results of paper 1, was the
limitations of the publicly available benchmark event-log data. As discussed earlier,
hypotheses related to the data-generating process cannot be tested effectively using
this data source, which motivated paper 2.

Papers 2 and 4 mainly use qualitative data in the form of existing literature. This
is a very rich source of information, which enables a more detailed analysis of the
phenomena in question. As paper 2 aims to improve the evaluation methods in
predictive process monitoring by contributing with a new simulation framework,
the capabilities of current frameworks were analyzed qualitatively. However, as
some frameworks are presented in conference papers (where the level of detail is
restricted by page numbers), this also limited the level of detail that could be
understood about the distributions used, as well their availability in each of the
existing frameworks.

Journals and conference proceedings also have different requirements in terms of the
level of detail to be reported in a paper, which might also differ depending on the
individual reviewers. For the literature review performed in paper 4, this limited
the results as some of the included studies did not report specific aspects of the
data and evaluation method used in their experiments.

3.2.2 Methods

As indicated by Figure 3.1, four different methodologies are used either separately
or combined in each of the four papers of this thesis. Papers 1 and 3 use predic-
tive modelling, which is based on partitioning the historical data into training,
validation, and test sets (Hastie et al., 2001). The training set is used for learn-
ing, while the validation set is used for hyper-parameter optimization, which is the
process wherein the optimal settings of the Machine learning algorithm are found
(Goodfellow et al., 2016). The test set is used for the evaluation of the final model.
In paper 1, this is the sample from which the results are reported, while this sample
was not used in paper 3, as the results were based on simulation alone.

Papers 2 and 3 use Monte-Carlo simulation (Rubinstein and Kroese, 2016) in
two different ways: Paper 2 uses simulation to test and demonstrate the character-
istics of the event-log data generated by the simulation framework itself, whereas
paper 3 uses a simulation of an existing process to estimate the impact of different
interventions (queue disciplines). The two approaches are also different in terms of

3.3. INDIVIDUAL DISCUSSION OF USED METHODOLOGY 31

the nature of the simulation model, as paper 2 uses a parametric simulation model
(i.e. the data generating process is purely specified from parameterized distribution
functions). Paper 3 uses an agent-based simulation model (Crooks and Heppenstall,
2011) with central elements such as case arrivals represented by parametric distri-
butions calibrated from the primary data. Using an alternative method in paper 3,
such as field experiments would have been both costly and risky to the case com-
pany, as the real process would have been manipulated, and real customers thereby
would have been affected. As the number of agents was altered in the study, this
would have led to sub-optimal process conditions and thereby unnecessary negative
customer experiences. In this case, a digital twin of the existing process is a less
risky approach to evaluating a prescriptive method before field testing.

Descriptive analysis is mainly performed in papers 1 and 3, as a way to under-
stand the nature of the primary data. In paper 3, a descriptive analysis was per-
formed to estimate distribution parameters of the customer service process in the
case company, based on provided event-log data. The descriptive analysis thereby
included modeling of the conditional distributions of key components such as case
arrivals, activity durations, activity sequences, and the conditional loyalty response.
These relationships were thereby used to calibrate the simulation model to the real
process. In paper 1, the descriptive analysis primarily included summary statistics
and prefix distribution plots, which is an illustration of the frequency of cases with
events at given sequence lengths (prefixes). These were important to understand
the general difference between the four benchmark even-logs used to evaluate the
proposed loss functions.

The literature review methodology was used in papers 2 and 4, where the litera-
ture review in paper 2 was a preliminary part of the full study. Both papers used the
method of semi-systematic literature review (Snyder, 2019), combined with quali-
tative analysis of the results. Where paper 4 used an incremental search strategy
of 3 queries, paper 2 only used a single query to retrieve the results needed. For
paper 4 the search area was wide and included multiple fields, whereas paper 2
only included the literature within the so-called process mining community, which
uses the term event-log for data originating from PaIS. The choice of literature as a
method for paper 2 was to understand the current contributions, and establish key
criteria for further contributing via a new simulation framework.

3.3 Individual discussion of used methodology

In the following, the methodological choices made in order to answer the research
questions in each of the four papers will be discussed in further detail.

32 CHAPTER 3. METHODOLOGY

3.3.1 Paper 1

The first paper: Remaining throughput time prediction: Temporal loss functions and
prediction consistency, proposes three alternative loss functions for improving the
so-called earliness performance, based on the regular L1-loss. To test the hypothesis
that temporal weighting of the loss function can have an effect on model earliness,
an experimental design approach is pursued. As the training of deep neural net-
works is based on stochastic optimization, the study tries to compensate for the
statistical uncertainty by repeating the experiment 10 times. The aforementioned
number of repeated experiments is relatively low; however, compared to similar
studies (Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa, 2017; Navarin et
al., 2018; Verenich et al., 2019; Evermann et al., 2016) (who do not repeat their ex-
periments), the statistical uncertainty of the results will be lower. In relation to the
external validity of the results, the study uses four different datasets from different
domains, with different characteristics (number of observations, trace lengths, dura-
tion distributions, etc.). In related literature proposing a method, two to three data
sets have been used (Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa, 2017;
Navarin et al., 2018; Evermann et al., 2016), whereas survey/benchmark studies
generally use more datasets (Verenich et al., 2019; Rama-Maneiro et al., 2020).

In relation to internal validity, it is common practice to use a temporal split of
the data, partitioning it into two periods where the first is used for training and
validation, and the remaining for testing. This approach does to some extent also
improve the ecological validity, as practitioners cannot freeze time, and need to
evaluate a model on cases arriving in the future. However, some studies (Verenich
et al., 2019; Teinemaa et al., 2018b) include cases that span both the train and test
periods to be used for training, in order to avoid dropping a significant amount of
cases. An alternative to this approach would be what is referred to as censoring in
the literature on survival analysis (Tutz, Schmid, et al., 2016). Censoring would in
this case mean dropping cases that do not finish within either of the two periods.

Comparing these two approaches, there is a trade-off between internal and external
validity, as censoring would improve internal validity and ensure that observations
within each temporal split (train/test) do in fact represent the temporal distribu-
tion within that period, and not a mixture of both periods. Where, on the other
hand, this approach will make results less comparable with similar studies not us-
ing censoring. As the focus of this study was to compare four loss functions for the
same model type, and not across other model types or previous studies, the internal
validity was deemed most important. If future studies aim to reproduce or compare
these results without censoring, the full source code is freely available online.

3.3.2 Paper 2

The second paper: A parametric simulation framework for the generation of event-
log data, proposes a simulation framework in the Python programming language

3.3. INDIVIDUAL DISCUSSION OF USED METHODOLOGY 33

for the generation of synthetic event-log data, using well-known parametric dis-
tributions. The methodology of this paper is based on an initial semi-systematic
literature review (Snyder, 2019) of a subset of the existing simulation frameworks.

As the aim of the framework was to contribute to future research in predictive pro-
cess monitoring, only existing open source simulation frameworks in the Python
programming language were included in the review. The emphasis of open source
was such that future research could enable modifications to the presented frame-
work, where the Python language was due to it being the most commonly used
language in Predictive process monitoring. The selected frameworks were quali-
tatively compared in terms of: 1) Their general approach to simulation, 2) which
components they include, 3) how they represent the control flow, and 4) which
parametric distributions they used.

Since the proposed framework covers a set of features not supported by the existing
frameworks found, a quantitative performance comparison with the existing frame-
works was not possible. The main source of comparison is thereby the qualitative
analysis in the literature review of the study. To demonstrate the capabilities of the
framework, a set of simulation experiments were performed in addition to a detailed
documentation of the implementation.

3.3.3 Paper 3

In the third paper: Customer-service queuing based on predicted loyalty outcomes,
a prescriptive queue prioritization algorithm is proposed. The goal of the algorithm
was to prioritize customers in the queue, in a manner that should increase the Net
promoter score (Reichheld, 2003) on an organizational level.

The proposed algorithm was evaluated via a case study of an anonymous Scandina-
vian Internet and Telecommunications provider. The primary data was interviews
with the case company, in order to understand the context of the process, as well as
event-log data from the process itself. The event-log data was used to calibrate an
agent-based simulation model, such that costly real-world experiments would not
need to be performed to understand the pros and cons of the proposed algorithm.

In terms of ecological validity, certain aspects of the simulation model were ma-
nipulated, whereas others were kept true to the original process. The manipulated
factors were the queue discipline, as this was the subject of comparison, and the
number of agents, as this greatly influences the performance of any queue discipline.
Furthermore, the data provided by the case company only included cases that were
based on incoming emails from customers, whereas the real process also included
cases created via phone calls.

All other aspects of the process were kept as close to the real process as possible,
via a descriptive analysis of the provided event-log data. These results were used to
calibrate the parameters of an agent-based simulation model. Monte-Carlo simula-

34 CHAPTER 3. METHODOLOGY

tions were then performed within the time span of the provided event-log data, such
that the variation in the case arrivals would follow the same seasonal patterns as
observed in the real process. The experiments were repeated 100 times to account
for statistical uncertainty.

In the simulation experiments, the proposed approach (NPS) was compared to three
other queue disciplines: First-come First Served (FCFS), Longest Remaining Time
First (LRTF), and Shortest Remaining Time First (SRTF). The current discipline
in the case company was FCFS, but as predicted cycle time was available at case
arrival, LRTF and SRTF were included to understand performance differences be-
tween them and NPS. Other disciplines such as Service In Random Order (SIRO)
or Last-Come First Served (LCFS) could also have been included; however, as these
tend to lead to worse average cycle time than FCFS, they were not included.

The Net promoter score has been criticized in terms of its inability to represent
the negative word of mouth or dissatisfied customers, who might not respond to a
survey and thereby not be represented (East et al., 2011). Furthermore, a detailed
investigation in Keiningham et al., 2007 found that the Net promoter score was
inferior to other loyalty measures for predicting company growth, contradicting the
claims by its inventor (Reichheld, 2003).

As the Net promoter score is actively used in the case company, we had no possibility
to implement other loyalty metrics such as the ones compared in (Keiningham et
al., 2007). From our conversations with the case company, it has also been clear
that the Net promoter score was not used as a predictor for company growth,
but rather as a measure of the customer experience. In terms of the criticism of
dissatisfied customers who would not get measured (as they might not reply), we
tried to circumvent this by including only cases that received a response after case
completion. On the other hand, this reduces the external validity of the results,
as the simulation results would not represent the full population. However, as we
could not model the conditional distribution of the Net promoter score for cases
without a response, we had to exclude these cases from the simulation model.

3.3.4 Paper 4

The fourth paper: Automating model management: A survey on metaheuristics
for concept-drift adaptation is a review of literature across multiple fields, using
a particular family of algorithms for automatically re-training Machine learning
models in situations with concept drift. In the context of this thesis, the aim is
to create an overview of the existing frameworks as well as the methodologies used
to evaluate them, as this can help future research on drift adaptation in predictive
process monitoring.

With these aims, a semi-systematic (Snyder, 2019) literature review is most appro-
priate, as this provides an overview, rather than systematically comparing results

3.3. INDIVIDUAL DISCUSSION OF USED METHODOLOGY 35

across studies. This would have been problematic for multiple reasons: 1) The
overlap of data used in the found studies is minimal, 2) The overlap of types and
drift patterns is minimal, and 3) The method of evaluation (partitioning and met-
rics) vary across the studies. Furthermore, the source code is rarely provided open
source, which would be needed if one were to re-create the experiments and perform
a benchmark study such as Verenich et al., 2019.

The search methodology follows the general guidelines in Kitchenham, 2004 in terms
of the documentation of the literature search and selection process. However, the se-
lected literature only includes peer-reviewed publications with more than 2 citations
when more than 2.5 years old at the time of retrieval. These criteria were selected
in order to ensure quality in the retrieved literature. However, this approach does
have a few limitations as it: 1) Does not guarantee that the included literature
has a given approach to validation of the results, 2) Can lead to the exclusion of
research fitting the other criteria, but with few citations due to a low interest in the
scientific community. As this study was performed by a single author, the risk of
reliability issues in the inclusion decisions is also higher than for multiple authors,
as discussed in Kitchenham, 2004.

The literature was qualitatively coded based on the research questions which focused
on three general areas: 1) The proposed framework, 2) The conditions wherein it
was evaluated, and 3) The methodology used for evaluation. The coding of the found
literature was closed for areas where the theoretical framework was clearly defined
in the background section of the study, and open in cases where it was impossible
to assess the values before the literature had been retrieved. One example is the
type of data that was used to evaluate the framework.

4. Main contributions

The contributions of the conducted research in this Ph.D. project can be summa-
rized as follows: Paper 1 contributes with new knowledge about the performance
of remaining cycle time prediction models from two perspectives: 1) altering the
loss function, by adding a temporal decay leads to improvements in both earliness
and accuracy performance, 2) remaining time predictions are often non-monotonic,
and can in some cases change the direction of the previous prediction with a high
magnitude. From the experiments, these cases tend to happen for longer cases with
low support in the training data. Paper 2 contributes with a literature review of
current open source business process simulation frameworks and their capabilities
in terms of evaluating data-related hypotheses. Furthermore, a new open source
simulation framework in Python is proposed, covering some of the areas not sup-
ported by current simulation frameworks. The proposed framework is designed to be
used explicitly for data-related hypothesis testing of predictive process monitoring
methods.

Paper 3 proposes a novel prescriptive approach to queue prioritization in customer
service, focusing on improving customer loyalty. Using a calibrated simulation
model, it is found that the proposed method does improve customer loyalty scores
in situations with reduced capacity. This comes at the trade-off of longer average
waiting times. Finally, paper 4 contributes with an overview of the existing litera-
ture on drift adaptation using Metaheuristics. The literature is analyzed based on
the relevant theory of concept drift, as well as Metaheuristics and Automated Ma-
chine learning. The results show that multiple approaches based on Metaheuristics
can be assessed alongside the current algorithms used in the literature on concept
drift adaptation in predictive process monitoring.

In separate ways, the conducted research in the included studies contributes to the
overall research goal of this thesis, which was to improve methods in predictive and
prescriptive process monitoring. In the following, the individual contributions of
each of the four papers will be further described.

37

38 CHAPTER 4. MAIN CONTRIBUTIONS

4.1 Paper 1

The first objective of paper 1 was to investigate the impact of temporally weighted
loss functions for remaining cycle time prediction using the approach proposed by
(Navarin et al., 2018). A second objective was to understand to which degree the
predictions made from these models follow the monotonically decreasing behavior
of remaining time. To achieve the first objective, three loss functions with different
functional forms were proposed. The loss functions were all variants of the standard
L1 loss with different degrees of temporal decay added. To achieve the second
objective, a new evaluation metric called Temporal Consistency (TC) was proposed.
The TC measure the degree to which a prediction model increases the predicted
remaining time between two discrete events (activities). The purpose of evaluating
the model from this perspective is to understand the consistency in the direction
of the predictions, as direction changes can be problematic when used for dynamic
planning. As an example, volatile direction changes might lead to frequent changes
in policy, which might in itself increase costs.

In relation to the first objective, the results showed that the added temporal decay
did indeed improve earliness performance by up to 4% at the second observed event
in one case. The results showed general improvements from the earliness perspective
across all four evaluated event-logs; however, only with statistical significance in two
of the four event-logs. As the three proposed loss functions had different curvatures,
and one of the losses outperformed the others, the results suggest that the functional
form (peak and slope) influences earliness performance. The results also hint at
performance improvements in the accuracy domain, as the temporal loss functions
have the lowest average error across all four event-logs. However, these differences
were statistically insignificant.

In relation to the second objective, a contribution of this study was the further un-
derstanding of model performance through the Temporal Consistency metric. The
results indicated that from this aspect, model performance worsened in situations
where the support in the training data was low, i.e. after a particular number of
discrete time steps. This led to peaks in the measured TC error, which for practi-
tioners would mean that the predicted remaining time: 1) changes direction, and
2) by a significant magnitude.

Comparing the performance of the temporal loss functions from this aspect as well,
the results showed that the temporal weighting led to worse performance. However,
the difference between the baseline MAE and the proposed loss functions is only
statistically significant in one of the four evaluated event-logs. The evidence of a
trade-off between accuracy/earliness and temporal consistency is thereby present,
but weak if based on these results alone. In addition to these results, a contribution
to future research in this area is the open source implementation of the loss functions
in the Tensorflow/Keras deep learning framework (Martın Abadi et al., 2015). The

4.2. PAPER 2 39

source code used for training and evaluation is available online as reported in the
paper.

4.2 Paper 2
Paper 2 aim to contribute to the epistemology of predictive process monitoring.
More specifically, in relation to the evaluation of predictive process monitoring
models. This is achieved by solving two objectives: The first objective is to under-
stand the capabilities of current business process simulation models, via a literature
review. This is limited to frameworks that are open source and programmed in
the Python language. The motivation here is: 1) That the majority of the recent
frameworks for predictive process monitoring are developed in Python, and 2) That
a simulator should be transparent when used for scientific research. Furthermore,
the gaps in the capabilities of existing frameworks are assessed in order to establish
design criteria for a contribution in this area. The second objective is thereby to de-
velop a simulation framework that offers features not currently covered by existing
frameworks.

The results showed that only 4 of the 9 found frameworks have the capability to
alter the distributions of a generated simulation model. The majority of the frame-
works focus on generating a simulation model from existing data as automated as
possible (with the least amount of input from the user). Moreover, the distributions
used within the frameworks are often poorly documented, if reported at all. In the
case of testing data-related hypotheses, transparency of the data-generating pro-
cess is essential. A key requirement for a contribution was therefore a transparent
data-generating process, with clearly documented distributions and algorithms. As
the found simulation frameworks had an empirical focus (re-creating an existing
process), rather than enabling the researcher to generate theoretical processes with
different levels of complexity (as previously studied in (Camargo et al., 2019a)),
control over this aspect of the simulation model became another key design require-
ment.

To contribute to future research in the field of predictive process monitoring, an
open-source simulation framework developed in the Python language was thereby
proposed. The framework is based on Markov chains and Higher-order Markov
chains for the simulation of activity sequences (the control flow), while the duration
distribution is based on the Hypo-exponential distribution. The choice of these dis-
tributions enables the framework to simulate event-logs generated from processes
without memory (the probability of each activity is only dependent on the previ-
ous), as well as processes with different degrees of memory (the probability of each
activity is dependent on the last k activities). Using the Hypo-exponential distri-
bution enables the ability to simulate unique distribution shapes for not only each
individual activity, but also the temporal order of the activity. Further capabilities
of simulating stochastic offsets in activity duration, as well as deterministic offsets

40 CHAPTER 4. MAIN CONTRIBUTIONS

for representing business/office hours, were added.

As other data-related hypotheses than those demonstrated in the paper might be
relevant in future research, a key contribution of this work is thereby the open
sourced code. Users might therefore either use the framework as reported in the
paper, modify the currently used distributions or add capabilities to suit their spe-
cific needs. The current version of the framework includes the capability to generate
experimental designs and can be easily modified to train and evaluate any Python-
based Machine learning model from the generated event-log data.

4.3 Paper 3

Paper 3 proposes a novel approach to queue prioritization based on predicted loyalty
scores. The proposed approach uses predicted cycle time to predict individual
loyalty scores, in order to prioritize a segment of the customers waiting in the queue.
The study was divided into two sub-studies: Study 3.1, which uses information
and historical data from a customer service process within the case company (a
European internet and telecommunications provider) to calibrate an agent-based
simulation model. In Study 3.2, Monte Carlo experiments were performed from the
generated simulation model, comparing four different queue disciplines: first-come
first served (FCFS), shortest remaining time first (SRTF), longest remaining time
first (LRTF), and finally, our proposed Net promoter score-based approach (NPS).
As all approaches but the FCFS discipline suffer from starvation (some customers
being stuck in the queue), we also simulated a scenario with a service level agreement
(SLA) of 72 days. In this case, the queue scheduling algorithm was modified such
that cases waiting more than 60 hours in the queue were put in front of the queue
(ensuring that agents had 12 hours to initiate and process the case). In addition,
we varied the number of agents available in the process.

A key contribution of this study is the finding that customer loyalty scores can
be influenced by adaptive queue prioritization of customer service cases. In the
experiments, we found that our NPS approach led to the best customer loyalty
scores on the organizational level. This was closely followed by the LRTF -approach,
which acted in a similar manner, using the same input (predicted remaining cycle
time). The results indicated that the aforementioned two approaches brought down
the average cycle time to a similar level, clearly outperforming SRTF and FCFS

in this aspect. However, a clear trade-off was the increased average waiting time in
the queue, where FCFS consistently outperformed the remaining three approaches.
The effects on loyalty scores, resolution time and waiting time were largest when the
process was under-staffed, and vanished once staffing was large enough to eliminate
the queue. Furthermore, when simulating the scenario with an SLA of 72 hours,
all disciplines performed identically, as the queue quickly reverted to the FCFS

discipline.

4.4. PAPER 4 41

A key takeaway is thereby that the proposed method is only effective in situations
where optimal staffing cannot be achieved at all times, and thereby most appropriate
for lean organizations or in periods with high service demand. As the proposed
NPS approach is prone to starvation, the proposed SLA-modification could also be
applied to ensure fairness. However, for the simulated process in the case study, the
SLA of 72 days proved to be too strict. Optimal values for this parameter thereby
needs to be calibrated from the individual setting.

A general finding is that even when the relationship between case cycle time and
NPS-response after case closure is rather weak (R2 = 0.04 in this case study),
customer loyalty scores can still be significantly improved using our prescriptive
approach. As cycle time predictions were based on incomplete information (sea-
sonality indicators alone), being able to use case attributes such as case topic for
these predictions might further improve performance of the disciplines based on
these predictions. However, as this information was not available at the time a case
entered the queue, this was not included in the prediction models.

4.4 Paper 4

Paper 4 seeks to contribute to the literature on concept drift adaptation with the
aid of Metaheuristics. This is motivated by the fact that these computationally effi-
cient algorithms are widely used for the automated development of regular Machine
learning models (AutoML). However, this stream of literature does not address the
problem of concept drift, and the aim of this study is thereby to understand how
Metaheuristics are used in research with automated drift adaptation. As the cur-
rent literature on concept drift adaptation in predictive process monitoring mainly
uses streaming algorithms such as Hoeffding Trees (Domingos and Hulten, 2000),
or lightweight Machine learning models such as Naive Bayes or Random Forests
(Hastie et al., 2001), the issue of drift-adaptation for computationally demanding
approaches such as the LSTM-RNN (Navarin et al., 2018) remains unsolved.

The results show that Metaheuristic algorithms are used across a broad spectrum of
Machine learning problems. 6 out of 17 studies use Metaheuristics to adapt a Neural
Network-based Machine learning model, whereof 2 are Recurrent Neural Networks.
The found literature is classified based on the relevant theory of Automated Machine
learning and Concept drift. The use-cases mentioned before apply the Metaheuristic
in different steps of the model development cycle (see (Chapman et al., 2000)), and
the tasks thereby vary from feature selection and hyper-parameter optimization to
the so-called full-model search, which automates every step in model development.
However, only 2 of the 6 mentioned studies use a drift detection method, whereas
the rest rely on blind adaptation. In these two cases, the drift detection is based
on exceeding a given threshold of error.

Of the found studies, 5 uses incremental learning and tree-based methods similar to

42 CHAPTER 4. MAIN CONTRIBUTIONS

the approaches that have been previously studied for predictive process monitoring
(Maisenbacher and Weidlich, 2017). The main difference between these approaches
is the inclusion of Metaheuristics to aid in feature selection, data window selection,
model management, or model training (model-level optimization as in (Karimi et
al., 2012)). In the line of current work on drift adaptation in predictive process mon-
itoring (Maisenbacher and Weidlich, 2017; Baier et al., 2020; Márquez-Chamorro
et al., 2022), other tree-based methods from the found literature of this study might
be relevant to evaluate alongside current approaches. For the adaptation of deep
learning-based methods such as LSTM-RNN (Navarin et al., 2018), one approach
based on Genetic Algorithms (GA) was found (Kumar and Batra, 2018). In this
particular framework the GA is used to decrease the number of computational re-
sources needed for hyper-parameter optimization by: 1) Selecting an optimal subset
of the data to train from (based on current error), and 2) Guiding the configurations
to be trained (through an evolutionary strategy).

More generally, the results of the analysis show that real-world data is most often
used for the evaluation of concept drift adaptation. The drift type of these data
sources is often unclear and seldom stated explicitly in the found studies. This is
similar for the drift patterns, which are unknown for 10 of the 17 found studies. For
the chronological trends in the found literature, a clear transition was found from
automation of single tasks such as feature selection or hyper-parameter optimization
towards full-model search in recent literature.

5. Reflection and discussion

Multiple new ideas for the improvement of predictive and prescriptive process mon-
itoring have been presented in this thesis. However, when reflecting on the limita-
tions of the results, multiple other directions could have been chosen to address the
main research objective.

One example is the results of Study 1, which were limited by the flexibility or
level of difference between the loss functions, as well as the data that was used
to evaluate them. A different approach could thereby have been to use only one
loss function, where the shape and peak of the temporal decay could have been
controlled by parameters. The proposed simulation engine from Study 2 could also
have been used to gain a deeper understanding of how data-related factors influ-
ence the performance differences between the loss functions. However, as Study 2
was motivated by the limitations of Study 1, this was not possible. Instead, this
should therefore be addressed in future research. Instead of remaining cycle time
prediction, outcome-oriented prediction such as the one proposed by Teinemaa et
al., 2018a could have been used. However, the simplicity of the selected prediction
problem and the utilized loss functions proved to be beneficial in this work. The
achieved improvements in accuracy and earliness from using the temporal loss func-
tions were also marginal; however, as found in the experiments of Study 3, even
weak prediction models have an effect in the long run when used operationally.

Rather than proposing a new framework in Study 2 to aid in model evaluation, an
existing framework could have been modified. However, as the design philosophy
of the found frameworks was fundamentally different from the approach in Study
2, this would greatly reduce the benefits of such an approach. For its intended use,
the proposed framework can ideally shed further light on data-related factors that
can influence the performance of predictive process monitoring methods. Potential
findings in this area might therefore also motivate new data encoding schemes or
feature transformations to counter potential problems as was the case in Camargo
et al., 2019a. A limitation of the proposed framework is, however, the lack of the
ability to calibrate the distributions to those of an existing event-log. However,
these capabilities are already offered by the existing frameworks found in Study 2.

43

44 CHAPTER 5. REFLECTION AND DISCUSSION

If the proposed framework were to be used for the evaluation of case outcome
predictions as discussed in relation to Study 1, the current formulation would be
insufficient (depending on the formulation of the case outcome). For the use of
next activity prediction, the application is also somewhat limited, as the activity
sequence is exclusively dependent on Markov Chains and independent of the other
simulation components. Conversely, the activity sequences and time components
all influence the duration and waiting time distributions.

From the perspective of prescriptive process monitoring, the work in this thesis is
limited to a single case study which is a strength in terms of ecological validity,
but a weakness with regard to external validity. However, as there is an (albeit
weak) relationship between cycle time and resulting customer loyalty scores, similar
settings with this property might benefit from the proposed method. However, a
fundamental downside of the proposed method (when applied without a service
level), is the unfair treatment of customers. In its current form, the applicability of
the proposed method thereby relies on a safety-mechanism to counter the issue of
starvation. A further understanding of the relationship between the service level,
number of agents, NPS-distribution, cycle time distribution, and arrival rate would
have been beneficial if systematically varied in a separate study.

To follow up more directly on the work in Study 1, the work in Study 3 could
have focused exclusively on cycle time prediction by studying the effect on pro-
cess performance when using LSTM-RNN (Navarin et al., 2018) models for queue
prioritization. In this way, the impact on business process performance from the
error types investigated in Study 1, could have been further investigated from this
case study. However, to evaluate such approaches, a more complex data-generating
process than the one in Study 3 is arguably needed to leverage the benefit of the
LSTM-RNN models. One way to achieve this could be by extending the agent-based
simulation model with more complex sequential distributions for both activities and
durations, similar to the approach proposed in Study 2.

An alternative to the current work on concept drift in Study 4 could also have
been to conduct experiments where drift was introduced to the setting of Study
3. However, as the current simulation model is calibrated from data with season-
ality patterns in the arrival rate of new cases, this is arguably already the case.
This would in itself also not solve the problem of finding new methods for drift
adaptation. Although limited by the search methodology used, the results of Study
4 revealed multiple methods suitable for further drift-related research in predictive
process monitoring. For instance, current approaches do not address the problem of
unsupervised learning with drift or drift-adaptation of deep learning-based methods
such as the one in Study 1. The results of Study 4 thereby reveal multiple can-
didates for further research in this area. However, as these were not evaluated in
this project, the state of drift adaptation in predictive process monitoring remains
unchanged.

References

Agutter, C. (2020). ITIL® 4 Essentials: Your essential guide for the ITIL 4 Foundation
exam and beyond. IT Governance Ltd.

Altiok, T. and Melamed, B. (2007). Chapter 2 - Discrete Event Simulation. In: Simulation
Modeling and Analysis with ARENA. Ed. by T. Altiok and B. Melamed. Burlington:
Academic Press, pp. 11–21. doi: https://doi.org/10.1016/B978- 012370523- 5/
50003-1.

Anjum, R. L. and Mumford, S. (2018). Causation in science and the methods of scientific
discovery. Oxford University Press, USA.

Baier, L., Reimold, J., and Kühl, N. (2020). Handling concept drift for predictions in busi-
ness process mining. In: 2020 IEEE 22nd Conference on Business Informatics (CBI).
Vol. 1. IEEE, pp. 76–83.

Bifet, A. and Gavalda, R. (2007). Learning from time-changing data with adaptive win-
dowing. In: Proceedings of the 2007 SIAM international conference on data mining.
SIAM, pp. 443–448.

Blattberg, R. C., Kim, B.-D., Neslin, S. A., Blattberg, R. C., Kim, B.-D., and Neslin, S. A.
(2008). Why database marketing? Springer.

Blum, C. and Roli, A. (Sept. 2003). Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison. ACM Comput. Surv. 35 (3), pp. 268–308. doi: 10.1145/
937503.937505.

Bolt, A. and Sepúlveda, M. (2014). Process remaining time prediction using query cata-
logs. In: Business Process Management Workshops: BPM 2013 International Workshops,
Beijing, China, August 26, 2013, Revised Papers 11. Springer, pp. 54–65.

Bose, R. J. C., van der Aalst, W. M., Žliobaitė, I., and Pechenizkiy, M. (2011). Handling
concept drift in process mining. In: Advanced Information Systems Engineering: 23rd
International Conference, CAiSE 2011, London, UK, June 20-24, 2011. Proceedings 23.
Springer, pp. 391–405.

Bose, R. J. C., van der Aalst, W. M., Žliobaitė, I., and Pechenizkiy, M. (2013). Dealing with
concept drifts in process mining. IEEE transactions on neural networks and learning
systems 25 (1), pp. 154–171.

Bozorgi, Z. D., Teinemaa, I., Dumas, M., La Rosa, M., and Polyvyanyy, A. (2021). Prescrip-
tive process monitoring for cost-aware cycle time reduction. In: 2021 3rd International
Conference on Process Mining (ICPM). IEEE, pp. 96–103.

Bradley, W. and Henseler, J. (2007). Modeling reflective higher-order constructs using
three approaches with PLS path modeling: a Monte Carlo comparison.

Breiman, L. (2001a). Random forests. Machine learning 45, pp. 5–32.

45

46 REFERENCES

Breiman, L. (2001b). Statistical modeling: The two cultures (with comments and a rejoin-
der by the author). Statistical science 16 (3), pp. 199–231.

Camargo, M., Dumas, M., and González-Rojas, O. (July 2019a). Learning Accurate LSTM
Models of Business Processes. In: pp. 286–302. doi: 10.1007/978-3-030-26619-6_19.

Camargo, M., Dumas, M., and Rojas, O. G. (2019b). Simod: A Tool for Automated Dis-
covery of Business Process Simulation Models. In: BPM (PhD/Demos), pp. 139–143.

Camargo, M., Dumas, M., and González-Rojas, O. (Mar. 2020). Automated discovery of
business process simulation models from event logs. Decision Support Systems 134,
p. 113284. doi: 10.1016/j.dss.2020.113284.

Center), A. (P. Q. (2022). End-to-End Process Maps and Measures (APQC). url: https:
//www.apqc.org/resource-library/resource-collection/end-end-process-maps-
and-measures (visited on 10/18/2022).

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.,
et al. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc 9, p. 13.

Chen, B., Wen, M., Shi, Y., Lin, D., Rajbahadur, G. K., and Jiang, Z. M. (2022). Towards
training reproducible deep learning models. In: Proceedings of the 44th International
Conference on Software Engineering, pp. 2202–2214.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. San Francisco, California, USA: Association for Computing
Machinery, pp. 785–794. doi: 10.1145/2939672.2939785.

Crooks, A. T. and Heppenstall, A. J. (2011). Introduction to agent-based modelling. In:
Agent-based models of geographical systems. Springer, pp. 85–105.

Davenport, T. H., Short, J. E., et al. (1990). The new industrial engineering: information
technology and business process redesign.

Davenport, T. H. et al. (2006). Competing on analytics. Harvard business review 84 (1),
p. 98.

Di Francescomarino, C. and Ghidini, C. (2022). Predictive process monitoring. Process
Mining Handbook. LNBIP 448, pp. 320–346.

Diao, Y., Jan, E., Li, Y., Rosu, D., and Sailer, A. (2016). Service analytics for IT service
management. IBM Journal of Research and Development 60 (2-3), 13:1–13:17. doi: 10.
1147/JRD.2016.2520620.

Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In: Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 71–80.

Dumas, M., La Rosa, M., Mendling, J., Reijers, H. A., et al. (2018). Fundamentals of
business process management. Vol. 2. Springer.

East, R., Romaniuk, J., and Lomax, W. (2011). The NPS and the ACSI: A critique and
an alternative metric. International Journal of Market Research 53 (3), pp. 327–346.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (Apr. 2004). Least angle regression.
The Annals of Statistics 32 (2). doi: 10.1214/009053604000000067.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural Architecture Search: A Survey.
Journal of Machine Learning Research 20 (55), pp. 1–21. url: http : / / jmlr . org /
papers/v20/18-598.html.

Evermann, J., Rehse, J. R., and Fettke, P. (2016). A deep learning approach for predicting
process behaviour at runtime. International Conference on Business Process Manage-
ment 1, p. 490. doi: 10.1007/978-3-319-58457-7.

REFERENCES 47

Feurer, M. and Hutter, F. (2019). Hyperparameter Optimization. In: Automated Machine
Learning: Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and J. Van-
schoren. Cham: Springer International Publishing, pp. 3–33. doi: 10.1007/978-3-030-
05318-5_1.

Fishman, G. S. (2001). Discrete-event simulation: modeling, programming, and analysis.
Berlin: Springer-Verlag. doi: 10.1017/978-1-4757-3552-9.

Fitz-Gibbon, C. T. (1990). Performance indicators. Vol. 2. Multilingual Matters.
Fluxicon BV (Oct. 18, 2022). Disco. Version 3.3.7. url: https://fluxicon.com/disco/.
Folino, F., Guarascio, M., and Pontieri, L. (2013). Discovering High-Level Performance

Models for Ticket Resolution Processes: (Short Paper). In: On the Move to Meaning-
ful Internet Systems: OTM 2013 Conferences: Confederated International Conferences:
CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz, Austria, September 9-13, 2013.
Proceedings. Springer, pp. 275–282.

Francescomarino, C. D., Dumas, M., Federici, M., Ghidini, C., Maggi, F. M., Rizzi, W., and
Simonetto, L. (2018). Genetic algorithms for hyperparameter optimization in predictive
business process monitoring. Information Systems 74. Information Systems Engineering:
selected papers from CAiSE 2016, pp. 67–83. doi: https://doi.org/10.1016/j.is.
2018.01.003.

Galup, S. D., Dattero, R., Quan, J. J., and Conger, S. (2009). An overview of IT service
management. Communications of the ACM 52 (5), pp. 124–127.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. (2013). A Survey
on Concept Drift Adaptation. ACM Computing Surveys.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. http://www.deeplearningbook.
org. MIT Press.

Hallowell, R. (1996). The relationships of customer satisfaction, customer loyalty, and
profitability: an empirical study. International journal of service industry management.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY, USA: Springer New York Inc.

Hinkka, M., Lehto, T., and Heljanko, K. (2020). Exploiting event log event attributes in
RNN based prediction. In: Data-Driven Process Discovery and Analysis: 8th IFIP WG
2.6 International Symposium, SIMPDA 2018, Seville, Spain, December 13–14, 2018,
and 9th International Symposium, SIMPDA 2019, Bled, Slovenia, September 8, 2019,
Revised Selected Papers 8. Springer, pp. 67–85.

Hlupic, V. and Robinson, S. (1998). Business process modelling and analysis using discrete-
event simulation. In: 1998 Winter Simulation Conference. Proceedings (Cat. No. 98CH36274).
Vol. 2. IEEE, pp. 1363–1369.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation
9 (8), pp. 1735–1780.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2013). An Evaluation of Sequential Model-
Based Optimization for Expensive Blackbox Functions. In: Proceedings of the 15th
Annual Conference Companion on Genetic and Evolutionary Computation. GECCO
’13 Companion. Amsterdam, The Netherlands: Association for Computing Machinery,
pp. 1209–1216. doi: 10.1145/2464576.2501592.

Jansen-Vullers, M., Loosschilder, M., Kleingeld, P., and Reijers, H. (2007). Performance
measures to evaluate the impact of best practices. In: Proceedings of Workshops and
Doctoral Consortium of the 19th International Conference on Advanced Information

48 REFERENCES

Systems Engineering (BPMDS workshop). Vol. 1. Tapir Academic Press Trondheim,
pp. 359–368.

Karimi, Z., Abolhassani, H., and Beigy, H. (2012). A new method of mining data streams
using harmony search. Journal of Intelligent Information Systems 39, pp. 491–511.

Keiningham, T. L., Cooil, B., Andreassen, T. W., and Aksoy, L. (2007). A Longitudinal
Examination of Net Promoter and Firm Revenue Growth. Journal of Marketing 71 (3),
pp. 39–51. doi: 10.1509/jmkg.71.3.039.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele
University 33 (2004), pp. 1–26.

Krumeich, J., Werth, D., and Loos, P. (2016). Prescriptive control of business processes.
Business & Information Systems Engineering 58 (4), pp. 261–280.

Kubrak, K., Milani, F., Nolte, A., and Dumas, M. (2022). Prescriptive process monitoring:
Quo vadis? PeerJ Computer Science 8, e1097.

Kumar, P. and Batra, S. (Oct. 2018). Meta-heuristic based Optimized Deep Neural Net-
work for Streaming Data Prediction. In: doi: 10.1109/ICACCCN.2018.8748691.

Kumar, V. and Shah, D. (2004). Building and sustaining profitable customer loyalty for
the 21st century. Journal of retailing 80 (4), pp. 317–329.

La Rosa, M. and Soffer, P. (2013). Business Process Management Workshops: BPM 2012
International Workshops, Tallinn, Estonia, September 3, 2012, Revised Papers. Vol. 132.
Springer.

Lepenioti, K., Bousdekis, A., Apostolou, D., and Mentzas, G. (2020). Prescriptive ana-
lytics: Literature review and research challenges. International Journal of Information
Management 50, pp. 57–70. doi: https://doi.org/10.1016/j.ijinfomgt.2019.04.
003.

Levinson, W. (2010). Statistical Process Control for Real-World Applications. Taylor &
Francis.

López-Pintado, O. and Dumas, M. (2022). Business Process Simulation with Differentiated
Resources: Does it Make a Difference? In: Business Process Management: 20th Interna-
tional Conference, BPM 2022, Münster, Germany, September 11–16, 2022, Proceedings.
Springer, pp. 361–378.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predic-
tions. Advances in neural information processing systems 30.

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Gradient-Based Hyperparameter
Optimization through Reversible Learning. In: Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37. ICML’15.
Lille, France: JMLR.org, pp. 2113–2122.

Maisenbacher, M. and Weidlich, M. (June 2017). Handling Concept Drift in Predictive
Process Monitoring. In: pp. 1–8. doi: 10.1109/SCC.2017.10.

Mannhardt, F., de Leoni, M., Reijers, H., and Aalst, W. (Feb. 2015). Balanced multi-
perspective checking of process conformance. Computing. doi: 10.1007/s00607-015-
0441-1.

Mannhardt, F. and Blinde, D. (2017). Analyzing the Trajectories of Patients with Sepsis
using Process Mining. RADAR+ EMISA@ CAiSE 1859, pp. 72–80.

Márquez-Chamorro, A. E., Nepomuceno-Chamorro, I. A., Resinas, M., and Ruiz-Cortés,
A. (2022). Updating prediction models for predictive process monitoring. In: Advanced
Information Systems Engineering: 34th International Conference, CAiSE 2022, Leuven,
Belgium, June 6–10, 2022, Proceedings. Springer, pp. 304–318.

REFERENCES 49

Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. url: http://tensorflow.org/.

McCormack, K. P. (1999). The development of a measure of business process orientation
and its link to the interdepartmental dynamics construct of market orientation. Nova
Southeastern University.

Mesabbah, M. and McKeever, S. (2018). Presenting a hybrid processing mining framework
for automated simulation model generation. In: 2018 Winter Simulation Conference
(WSC). IEEE, pp. 1370–1381.

Muñoz, M. A., Sun, Y., Kirley, M., and Halgamuge, S. K. (2015). Algorithm selection
for black-box continuous optimization problems: A survey on methods and challenges.
Information Sciences 317, pp. 224–245. doi: https://doi.org/10.1016/j.ins.2015.
05.010.

Navarin, N., Vincenzi, B., Polato, M., and Sperduti, A. (2018). LSTM networks for data-
aware remaining time prediction of business process instances. 2017 IEEE Symposium
Series on Computational Intelligence, SSCI 2017 - Proceedings 2018-Janua, pp. 1–7.
doi: 10.1109/SSCI.2017.8285184.

Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa (2017). Predictive Business Process
Monitoring with LSTM Neural Networks. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10253 LNCS, pp. V–VI. doi: 10.1007/978-3-319-59536-8.

Nisafani, A., Wibisono, A., Kim, S., and Bae, H. (Feb. 2012). Bayesian Selection Rule for
Human-Resource Selection in Business Process Management Systems. The Journal of
Society for e-Business Studies 17, pp. 53–74. doi: 10.7838/jsebs.2012.17.1.053.

O’Neill, P. and Sohal, A. S. (1999). Business Process Reengineering A review of recent
literature. Technovation 19 (9), pp. 571–581.

Omar, H. K., Jihad, K. H., and Hussein, S. F. (2021). Comparative analysis of the essential
CPU scheduling algorithms. Bulletin of Electrical Engineering and Informatics 10 (5),
pp. 2742–2750.

Page, E. S. (1954). Continuous inspection schemes. Biometrika 41 (1/2), pp. 100–115.
Pepper, M. P. and Spedding, T. A. (2010). The evolution of lean Six Sigma. International

Journal of Quality & Reliability Management.
Porter, M. E. (1985). Competitive advantage: creating and sustaining superior performance.

eng. New York: London: Free Press; Collier Macmillan.
Railsback, S. F., Lytinen, S. L., and Jackson, S. K. (2006). Agent-based simulation plat-

forms: Review and development recommendations. Simulation 82 (9), pp. 609–623.
Rama-Maneiro, E., Vidal, J., and Lama, M. (2020). Deep Learning for Predictive Business

Process Monitoring: Review and Benchmark. ArXiv abs/2009.13251.
Reichheld, F. F. (2003). The one number you need to grow. Harvard Business Review

81 (12), pp. 46–55.

50 REFERENCES

Rubinstein, R. Y. and Kroese, D. P. (2016). Simulation and the Monte Carlo Method. 3rd.
Wiley Publishing.

Sheth, J. N. and Parvatiyar, A. (1995). The evolution of relationship marketing. Interna-
tional business review 4 (4), pp. 397–418.

Shoush, M. and Dumas, M. (2022). Prescriptive process monitoring under resource con-
straints: a causal inference approach. In: Process Mining Workshops: ICPM 2021 In-
ternational Workshops, Eindhoven, The Netherlands, October 31–November 4, 2021,
Revised Selected Papers. Springer, pp. 180–193.

Slack, N., Brandon-Jones, A., and Johnston, R. (June 2016). Operations Management, 8th
edition. English. 8th. Pearson.

Snyder, H. (2019). Literature review as a research methodology: An overview and guide-
lines. Journal of business research 104, pp. 333–339.

Szimanski, F., Ralha, C. G., Wagner, G., and Ferreira, D. R. (2013). Improving busi-
ness process models with agent-based simulation and process mining. In: Enterprise,
Business-Process and Information Systems Modeling: 14th International Conference,
BPMDS 2013, 18th International Conference, EMMSAD 2013, Held at CAiSE 2013,
Valencia, Spain, June 17-18, 2013. Proceedings. Springer, pp. 124–138.

Tan, K. W., Wang, C., and Lau, H. C. (2012). Improving patient flow in emergency de-
partment through dynamic priority queue. In: 2012 IEEE International Conference on
Automation Science and Engineering (CASE). IEEE, pp. 125–130.

Teinemaa, I., Tax, N., Leoni, M. d., Dumas, M., and Maggi, F. M. (2018a). Alarm-based
prescriptive process monitoring. In: International Conference on Business Process Man-
agement. Springer, pp. 91–107.

Teinemaa, I., Dumas, M., Leontjeva, A., and Maggi, F. M. (2018b). Temporal stability in
predictive process monitoring. Data Mining and Knowledge Discovery 32 (5), pp. 1306–
1338. doi: 10.1007/s10618-018-0575-9.

Teniente, E. and Weidlich, M. (2018). Business Process Management Workshops: BPM
2017 International Workshops, Barcelona, Spain, September 10-11, 2017, Revised Pa-
pers. Vol. 308. Springer.

Thomas, L., Kumar, M. V. M., and Annappa, B. (2017). Recommending an Alternative
Path of Execution Using an Online Decision Support System. In: Proceedings of the 2017
International Conference on Intelligent Systems, Metaheuristics Swarm Intelligence.
ISMSI ’17. Hong Kong, Hong Kong: Association for Computing Machinery, pp. 108–
112. doi: 10.1145/3059336.3059361.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society. Series B (Methodological) 58 (1), pp. 267–288. url: http:
//www.jstor.org/stable/2346178.

TMForum (2023). End-to-End Process Maps and Measures (APQC). url: https://www.
tmforum.org/oda/business/process-framework-etom/ (visited on 05/03/2023).

Tsymbal, A. (2004). The problem of concept drift: definitions and related work. Technical
Report TCD-CS-2004-15, Trinity College Dublin, 58.

Tutz, G., Schmid, M., et al. (2016). Modeling discrete time-to-event data. Springer.
van der Aalst, W., Weijters, T., and Maruster, L. (2004). Workflow mining: Discovering

process models from event logs. IEEE transactions on knowledge and data engineering
16 (9), pp. 1128–1142.

REFERENCES 51

van der Aalst, W. (Apr. 2015). Business Process Simulation Survival Guide. Handbook
on Business Process Management 1. International Handbooks on Information Systems.,
pp. 337–370. doi: 10.1007/978-3-642-45100-3_15.

van der Aalst, W. M. P. (2016). Process Mining: Data Science in Action. 2nd ed. Heidel-
berg: Springer. doi: 10.1007/978-3-662-49851-4.

van Dongen, B. F., de Medeiros, A. K. A., Verbeek, H., Weijters, A., and van Der Aalst,
W. M. (2005). The ProM framework: A new era in process mining tool support. In:
Applications and Theory of Petri Nets 2005: 26th International Conference, ICATPN
2005, Miami, USA, June 20-25, 2005. Proceedings 26. Springer, pp. 444–454.

van Dongen, B. F., Crooy, R. A., and van der Aalst, W. M. (2008). Cycle time prediction:
When will this case finally be finished? In: OTM Confederated International Confer-
ences" On the Move to Meaningful Internet Systems". Springer, pp. 319–336.

Verenich, I. (Dec. 2016). Helpdesk. Mendeley data. doi: 10.17632/39bp3vv62t.1.
Verenich, I., Dumas, M., Rosa, M. L., Maggi, F. M., and Teinemaa, I. (2019). Survey

and Cross-benchmark Comparison of Remaining Time Prediction Methods in Business
Process Monitoring. ACM Transactions on Intelligent Systems and Technology 10 (4),
pp. 1–34. doi: 10.1145/3331449.

Wang, E., Li, D., Dong, B., Zhou, H., and Zhu, M. (2020). Flat and hierarchical system
deployment for edge computing systems. Future Generation Computer Systems 105,
pp. 308–317.

Wibisono, A., Nisafani, A. S., Bae, H., and Park, Y.-J. (2015). On-the-fly performance-
aware human resource allocation in the business process management systems envi-
ronment using naıve bayes. In: Asia Pacific Business Process Management: Third Asia
Pacific Conference, AP-BPM 2015, Busan, South Korea, June 24-26, 2015, Proceedings
3. Springer, pp. 70–80.

Žliobaitė, I., Pechenizkiy, M., and Gama, J. (2016). An Overview of Concept Drift Appli-
cations. In:

Zou, H. and Hastie, T. (2005). Regularization and Variable Selection via the Elastic
Net. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67 (2),
pp. 301–320. url: http://www.jstor.org/stable/3647580.

Appended Papers

53

Paper I
Riess, M. (2023c). Remaining cycle time prediction: Temporal loss functions and
prediction consistency. Manuscript submitted to Nordic Machine Intelligence.

55

Nordic Machine Intelligence, vol. ??, pp. 1–16, 2023
Received 15 Feb 2023 / published dd mmm yyyy

https://doi.org/10.2478/nmi-some-doi

Remaining cycle time prediction:
Temporal loss functions and
prediction consistency
Mike Riess 1

1. E-mail any correspondence to: mike.riess@nmbu.no

Abstract
The usefulness of remaining cycle time models for predictive

and prescriptive process monitoring depends not only on the

overall accuracy of the predictions but also on their earliness:

predictions should be as accurate as possible, as early as

possible. To give this criterion more weight in model fitting,

the paper evaluates three L1 loss functions with temporal

decay. All have the property of increasing the weight of

residuals from the early stages of a process relative to residuals

from later stages but do so to different degrees. The loss

functions are used in LSTM networks for training remaining

throughout time models of four different business processes

based on publicly available event log data sets. Compared

to models trained with unweighted L1 loss, the suggested

modifications yield small but significant improvements in

earliness on out-of-sample data. Neither the unweighted

L1 loss nor the modifications led to models with strictly

monotonically decreasing predictions of the remaining time.

Keywords: Predictive process monitoring, LSTM, temporal

loss function, temporal consistency, remaining time prediction

Introduction
In predictive process monitoring [1], the main goal

is to generate predictions that can support process

interventions before an undesired event is likely to occur.

These interventions can either be manually initiated

or automated via prescriptive process monitoring [2].

Possible prediction targets include the expected process

outcome [3], the next event type [4], the current event

duration [4], the total remaining cycle time [4, 5], and

other useful process monitoring information. When using

remaining cycle time for decision support in areas such

as queue prioritization [6, 7, 8] or dynamic resource

planning [9, 10, 11, 12], the accuracy of a prediction

is most important at early stages of a process when

there is little information available to base it on. This

is due to the sequential nature of business processes [13],

where process-related information accumulates over time

as activities are performed. At the same time, the ideal

resource plan is based on accurate information that is

available before the plan is needed or executed.

Remaining cycle time prediction is a well-studied

problem in the literature on predictive process monitoring.

The main goal here is to predict the remaining time before

an ongoing process instance (for example a customer

service case) is completed. Process data usually have

the structure of time-stamped discrete-event logs with

varying time between events [1] and can therefore not

be modelled as conventional time series data. Multiple

approaches have been proposed to solve this problem,

reviewed in [1] and [14]. These comparisons show that

the prefix log data format (a "long" data format where

all time steps preceding a focal event are represented

as observations in the data set; for details, see below)

combined with long short-term memory recurrent neural

networks (LSTM-RNN) [5] yields the on average highest

overall accuracy across the evaluated application areas.

Organizations using remaining time models for case pri-

oritization or dynamic planning need accurate predictions

in the beginning of a case, when information about the

case itself is minimal, and prediction is the hardest. This

performance aspect of a prediction model is referred to as

earliness [1] in the literature.

The LSTM approaches reviewed in [4, 5] as well as

the time-based process prediction models evaluated in

[14] are all trained using the L1 loss, also known as the

mean absolute error (MAE) loss function. The advantage

of this loss function is that it is not sensitive to large

variation in the time between events, compared to other

loss functions such as the mean squared error (MSE)

[1]. In the literature on remaining time prediction, it is

most common to evaluate predictions using the MAE

[4, 5, 14]. Using the MAE also as the loss function

© 2023 Author(s). This is an open access article licensed under the Creative Commons Attribution License 4.0.
(http://creativecommons.org/licenses/by/4.0/).

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

will theoretically lead to the highest overall accuracy

(weighing all events equally). In their experiments,

the authors of [15] find a trade-off between accuracy

and earliness, which they address using an ensemble

approach (combining multiple models to make a single

prediction, also referred to as model averaging in the

literature). Another approach using genetic algorithms for

automated hyper-parameter optimization was proposed by

[16]. The authors incorporate earliness as one term in the

fitness function used for hyper-parameter optimization.

However, altering the loss function used for training the

model itself, and the effect on earliness of such a strategy,

has to the best knowledge of the author not yet been

studied. For the LSTM-based models using the approach

suggested by [5], the effect of temporal weighting of the

loss function on the earliness performance of the resulting

prediction models is therefore still unknown.

Another aspect of the approach in [5] is that the

formulation of the prediction problem (target) and the

specification of the loss function do not require that

consecutive predictions represent the "natural behaviour"

of time. As time passes, the true remaining time will

monotonically decrease. However, the true remaining

time is not known before a case has been completed.

As more information about an ongoing case becomes

available over time, the predicted remaining time may

increase if the new information indicates this. Although it

is currently unknown how much LSTM-based remaining

time models respond to this, the fact that they do

not restrict the functional form of the relationship

between input features and targets suggests that they

should respond more strongly than more restrictive

models. Somewhat related, the temporal stability of

analogous binary classification models has been studied

by [17]. However, this approach does not involve tests

of the expected monotonic decrease of remaining time

predictions. In practical terms, this is important because

temporal inconsistencies may lead to ambiguous decision

support, as the direction of the predicted remaining time

for a case might change. If used in the context of dynamic

work shift planning, unreliable estimates could lead to

irregular or extended work shifts, which is known to have

negative consequences for the workforce [18, 10, 19, 11]

and may increase operating costs [20].

Research questions

Th research reported in this paper will address two

questions:

• RQ1: How do temporally weighted loss functions

influence the performance of LSTM-based remaining

time prediction models?

• RQ2: To which degree do the predictions generated

by LSTM-based remaining time prediction models

fulfill the criterion of temporal consistency?

To answer RQ1 the currently best-performing approach

to remaining time prediction [5] is utilized using three

modified versions of the mean absolute error loss. The

proposed loss functions use temporal decay to induce

different degrees of the relative importance of early

residuals. RQ2 is answered via the introduction of an

additional evaluation aspect, temporal consistency (TC).

The proposed metric will be used to evaluate the trained

models in terms of their ability to generate monotonically

decreasing predictions of remaining cycle time.

Key concepts
Process mining and predictive process monitoring

Predictive process monitoring is "a multi-disciplinary area

that draws concepts from process mining on one side,

and machine learning on the other" [1]. Process mining

[21] is a sub-field of business process management (BPM)

[22] and is concerned with the analysis of processes

based on event data extracted from the management

information systems of an organization. The main types

of applications include process discovery, conformance

checking, process re-engineering, and operational support

[23]. Predictive process monitoring [3] mainly relates to

operational support. Here, the main goal is to use process

data to train machine learning models [24] to predict

currently unknown characteristics about the outcome of

a process (duration, activities, conformance, etc.) before

the outcome is realized. These predictions are thereby

intended to help the organization make proactive rather

than reactive managerial decisions [21].

Event log data

Event log data consist of time-stamped pieces of infor-

mation related to distinct cases or instances of a busi-

ness process. Event log data is most often found in

process-aware information systems [21] such as enterprise

resource planning (ERP) and customer relationship man-

agement (CRM) systems. Table 1 shows part of an ex-

ample event log similar to what can be found in the case

management modules of common CRM systems.

Definition (Event): An event e is a tuple

(a, c, t, (d1, v1), ..., (dm, vm)) where a is an activity,

c is a case identifier, t is an associated timestamp,

and dm is a set of attributes with their associated

values vm. An event can have multiple timestamps,

for example at the start and end of the event. In this

case, the tuple would be extended to have the form:

(a, c, tstart , tend , (d1, v1), ..., (dm, vm)).

The sequence of events generated by a given process

instance or case forms a trace. A trace contains events

related to a single case and consist of a case identifier

(unique), event identifiers, timestamps, resources, and

other associated attributes.

Definition (Trace): A trace is a non-empty sequence

Q = 〈e1, ..., eT 〉 of events from a case such that ∀t ∈
[1, ..., T] , et ∈ ε, where ε is the universe of all possible

2

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Case ID Case topic Activity Timestamp Resource

1001 Invoice Email interaction 01-01-2019 15:01 System

1001 Invoice Phone interaction 02-01-2019 16:04 User 2

1001 Invoice Change data 04-01-2019 16:58 User 1

1002 Service malfunction Email interaction 01-01-2019 12:01 System

1002 Service malfunction Phone interaction 03-01-2019 13:10 User 2

1002 Service malfunction Change data 03-01-2019 14:15 User 5

1002 Service malfunction Send invoice 04-01-2019 09:35 User 2

Table 1: Example event-log in a hypothetical customer service unit.

events. All events in a trace refer to the same case

identifier c .

A set of traces constitutes an event log.

Definition (Event log): An event log L is a set of K

traces of length Ti : L = {Qi : Qi ∈ S, 1 ≤ i ≤ K}, where

i is the trace enumerator, S the universe of all possible

traces, and K the number of traces in the event log.

Prefix logs

In order to represent the state of a trace at the time of

each recorded event, the prefix of a given trace is defined

as a set of partially observed subsets of the completed

trace [1]. This enables machine learning models to learn

patterns from the development of the traces over time.

Definition (Prefix function): Given a trace of length

T , Q = {e1, ..., eT }, a positive integer k ≤ T , and

the head operator hdk , the prefix function selects the

first k events in the trace up until event k : hdk(Q) =

〈e1, ..., ek〉.
For every trace of length K, a prefix function will thus

map a trace onto K different prefixes, where each prefix

hdk(Q) contains the full trace up until the kth event.

Performing this procedure for every trace in an event log

transforms it into a prefix log.

Definition (Prefix log): Given an event log L, its prefix

log L∗ is the event log that contains all prefixes of L:

L∗ = {hdk(Q) : Q ∈ L, 1 ≤ k ≤ ‖Q‖}.
The prefix log thus contains a set of partially observed

traces (prefixes), which represent the "history" of a trace

for the period in which it has been active, up until the

focal event.

Remaining time prediction

A central task in the field of predictive process monitoring

is the prediction of the remaining cycle time of an open

case or ongoing process instance [1]. This is usually

achieved using a machine learning model trained on

a prefix log X, where each prefix i is treated as an

observation. The target value y at the tth event in a

trace is defined as the remaining time until the last event

in the trace, as shown in Equation 1. In this case, et
denotes the current event t, and eT denotes the final

event in the trace.

yt = eT (tstart)− et(tstart) (1)

As some event logs only have timestamps for event

start time, the definition in equation 1 is the most

commonly used in the literature [4, 5, 1].

Long short-term memory recurrent neural networks

A long short-term memory recurrent neural network

(LSTM-RNN) [25] is a recurrent neural network (RNN)

with modified hidden units, sometimes referred to as

LSTM cells or blocks. This network architecture is

designed to learn long patterns by adaptively changing the

amount of information that is remembered or forgotten

via input, output, and forget gates. An LSTM cell has five

components: input gate it , forget gate ft , cell state ct ,

output gate ot , and the final output of the cell itself ht .

The elements Wxi , Whi , Wci , Wxf , Whf , Wcf , Wxc , Whc ,

Wx0, Wh0, Wc0 all denote weight matrices, and bi , bf , bc ,

b0 denote the biases of the four weighted components

(equations 2 to 5).

it = sigmoid(Wxixt +Whiht−1 +Wcict−1 + bi) (2)

ft = sigmoid(Wxf xt +Whf ht−1 +Wcf ct−1 + bf) (3)

ct = ftct−1 + it tanh(Wxc +Whcht−1 + bc) (4)

ot = sigmoid(Wx0xt +Wh0ht−1 +Wc0ct + b0) (5)

ht = ot tanh(ct) (6)

The gates in the cell architecture are designed to

avoid the vanishing/exploding gradient problem often

encountered in the process of training RNNs, as described

in [26]. An LSTM is trained using backpropagation

through time (BPTT) [25] and stochastic gradient

descent. As shown in Equation 2, the input gate it
receives the information from the input data Xt , the

previous hidden state ht−1, and the previous cell state

ct−1. This enables each cell to learn from the information

contained in previous steps (controlled by the forget

gate ft and the output gate ot), and thereby gives it a

long short-term memory. This is specifically beneficial in

problems where the beginning of a long sequence carries

information that is relevant for predicting the end of the

sequence [4].

3

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Architecture

Figure 1 shows a recurrent LSTM neural network with

two layers, at the time the model makes its prediction.

The network has a single output node, which is the

linear combination of the output gates of ht+1, where

t is the event enumerator (going from left to right). In

this example, the network has a sequence length of four

events, and the illustration shows the inputs at event t.

In the data Xt+1 representing the next step (which has

not yet been observed), the missing values are replaced

by zero ("zero-padded"; see [1]).

Figure 1: LSTM neural network architecture with a single

output and two LSTM layers.

Loss functions

The most commonly used loss function for remaining time

prediction in predictive process monitoring [4, 5, 1] is the

mean absolute error (MAE). This loss is defined as the

L1 norm of the difference between the prediction y it at

event t in trace i , and the actual target value ŷ it :

MAE =
1

N

N∑
i=1

1

T

Ti∑
t=1

| y it − ŷ it | (7)

The MAE is more robust against outliers than the mean

squared error (where the difference between target and

predicted value is squared). The standard formulation of

the MAE loss is time-invariant but has performed best in

the analyses of event log data with large time differences

between events [1].

Temporally weighted loss functions

The purpose of the temporally weighted loss functions is

to force the model training process to incorporate earliness

as a performance criterion (in addition to overall accuracy,

assuming there is a trade-off between the two [1, 15]).

Since a temporal decay factor is introduced into the loss

functions, minimizing early errors in a sequence of prefixes

will reduce total loss relatively more than minimizing later

errors.

Figure 2: Temporal decay of the temporally weighted loss

functions given a constant error of 50 at each event in a

trace of length ten.

To assess the usefulness of temporal weighting for

improving the earliness properties of remaining time

models, three modified variants of the mean absolute

error are proposed in the following. The variants differ

in the degree of temporal decay imposed on the mean

absolute error. This is achieved using different functional

forms. Figure 2 illustrates the effect of the three temporal

weighting schemes, compared to the unweighted mean

absolute error. The illustration shows how the loss

functions would transform a constant error of 50 at

multiple prefixes. In this particular example, the temporal

decay makes up 5.8, 20 and 29 percent respectively of

the sum of the residuals at all ten prefixes. However,

the proportions will vary depending on the size and inter-

temporal variation of the residuals.

The mean absolute error with exponential temporal

decay, MAEEtD (depicted in orange in Fig. 2), is defined

as the mean absolute error with a temporal penalty term

added in the form of an exponential decay of the absolute

errors, as seen in Equation 8.

MAEEtD =
1

N

N∑
i=1

1

T

Ti∑
t=1

| y it − ŷ it | +
| y it − ŷ it |
e(t)

(8)

As t (the time step or prefix enumerator) gets

larger, the weight of the residual in this case decreases

exponentially by the factor e(t). Compared to the

MAEMtD and MAEP tD, this loss has the lowest peak and

the fastest decay, getting close to the standardMAE after

approximately three events, as seen in Fig. 2.

The mean absolute error with power-based temporal

decay (MAEP tD) uses the power of the remaining number

of prefixes in trace i (Ti−tTi) to weigh the residuals at each

prefix t, as shown by Equation 9.

4

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

MAEP tD =
1

N

N∑
i=1

1

T

Ti∑
t=1

| y it − ŷ it | + | y it − ŷ it |
Ti−t
Ti (9)

The mean absolute error with moderate temporal

decay (MAEMtD) uses the current prefix enumerator t

as a weighting factor for the residuals. This leads to

relatively higher residuals than MAEEtD and MAEP tD at

all prefixes. Of the three proposed loss functions, this is

the loss with the largest temporal penalty. The functional

form of the MAEMtD is shown in Equation 10.

MAEMtD =
1

N

N∑
i=1

1

T

Ti∑
t=1

| y it − ŷ it | +
| y it − ŷ it |
t

(10)

Materials and methods
In the following sections, the methodology of this study is

described in detail. To evaluate the relative performance

of the loss functions, a series of experiments were

conducted using a full factorial experimental design with

two factors (loss function, event log data set; each with

four levels). Ten replications were performed per cell of

the design. The first factor represents the four different

event log data sets, which will be described in more detail

in the next sections. The factor levels are listed below.

• Factor one: Event log data set

– Sepsis

– Helpdesk

– Traffic fines

– Hospital billing

The second factor is the loss function, where MAE is

seen as the baseline. Three additional loss functions will

be evaluated alongside the MAE, and are introduced in

the next section.

• Factor two: Loss function

– MAE

– MAEEtD
– MAEP tD
– MAEMtD

Data

Four event log data sets from different domains are used

in this study to evaluate the performance of the temporal

loss functions. All data sets are publicly available and

have been used as "benchmark data" in several previous

studies in the process mining community [27, 5, 28,

29]. These four particular event logs were selected

to illustrate different sectors/areas, as well as different

process characteristics with varying degrees of complexity

and traces. Qualitative descriptions of the individual event

logs can be seen in Table 2, while descriptive statistics can

be found in Table 3.

As seen by figure 3, the distribution of the Sepsis data

stands out due to the low number of traces, as well as

the distribution of the prefix lengths. Compared to the

rest of the event-logs, the Sepsis data has a longer tail,

and thereby a higher frequency of relatively long traces.

As described in the next section, the event-logs have been

truncated to length 20, such that they maximally include

the first 20 events of a trace. This unfortunately reduces

the external validity of the results in the Sepsis and Traffic

fines data, as well as the difference in the trace length

distributions across the four event-logs. The motivation

for truncation was to reduce computational load as in [17],

and avoid statistical uncertainty for long traces with low

support as in [1]. However, looking at the average trace

lengths in table 3, the majority of the traces preserve their

original trace length using truncation after 20 events.

Figure 3: Distribution of prefixes across pre-processed

event-log data (the last event of each trace is excluded

as described in table 4).

Data preparation

Prior to model training, the event-log data have been

prepared using a set of operations listed in table 4 below.

All event-logs have been processed in the same way, and

share the same format and feature types.

Hyper-parameters

To ensure that the optimal hyper-parameters were used

in each of the four event-logs, a set of grid-search

experiments were performed within the training period

(see fig 4) prior to the main experiments. The grid-

search was performed using the MAE loss function, to

ensure ideal conditions for the baseline loss function. The

search space included the learning rate (0.01, 0.1, 0.15,

0.2), number of LSTM-layers (1, 2, 3), optimization

algorithm (Stochastic gradient descent [24] and Adaptive

moment estimation with Nesterov momentum [33]) and

finally batch size (128, 512, 1024, 2048). Settings similar

to these have been used in previous studies [1, 5, 4].

Following the implementation in [5], each LSTM-layer

5

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Event log Area Description

Sepsis Healthcare Event log containing events of sepsis cases (life-

threatening condition typically caused by an infection)

from a municipality hospital [28].

Helpdesk IT Services Case data from the ticket management system of an

Italian software company [30, 5].

Traffic fines Public administration Event log from an information system managing road

traffic fines [29].

Hospital billing Healthcare/Financial

accounting

Event log data obtained from the financial modules of

the Enterprise Resource Planning (ERP) system in a

regional hospital [27].

Table 2: Qualitative overview of the event-log data.

Event-log n cases n censored Max trace length Avg. trace length Avg. case duration Truncation

Sepsis 1050 78 185 14.49 28.06 20

Helpdesk 4580 180 15 4.66 40.54 20

Traffic fines 150370 79179 20 3.73 341.67 20

Hospital billing 100000 44340 217 4.51 126.99 20

Table 3: Descriptive statistics (full event-log with no partitioning). Durations are measured in days.

was given a recurrent dropout with a dropout-probability

of 20%. Furthermore, the output of each LSTM-layer

was batch-normalized before it was used as input in the

next layer, except from the final output ŷ (the linear

combination of the last cell output ot in the last layer -

see fig 1). The final hyper-parameters for each of the four

event-logs can be found in table 5. The source code for

performing the grid-search and main experiments can be

found at https://github.com/Mikeriess/Temporal_loss.

Evaluation

To evaluate the performance of the trained models, the

event-log data have been partitioned into train and test

periods using a temporal split as depicted in figure 4.

In the example, case one and two are in the train set,

case three overlap both periods and is thus censored,

while case four is in the test set.The date that separate

the two subsets, is the date that split the first event of

50% of the first cases into in the train period, and the

remaining 50% is then denoted as the test period. Cases

that finish outside either of the two periods are censored

(dropped if they do not finish within their starting period).

Unfortunately, this leads to a significant drop in the

number of cases for the Hospital billing (44%) and Traffic

fines (52%) data (see column ’n censored’ in table 3).

However, as the goal of this study is to evaluate out-of-

distribution forecasts, it is seen as more important that

the train and test distributions are fully separated, than

that the original samples are used. Temporal splitting is

also used in [1] and [17], however neither of these studies

use censoring of overlapping cases.

The performance of the loss functions will be evaluated

from three perspectives: Overall accuracy, the ability

Figure 4: Illustration of the data partitioning scheme.

to make accurate predictions when little information is

available (earliness), and the ability to represent time in

a natural manner (temporal consistency). These aspects

represent different types of prediction quality, but will not

be sufficient alone.

Accuracy

To evaluate the accuracy of the models, the most

commonly used metric in literature is the mean absolute

error over all traces in the test set [1], which can be seen

in equation 11 below. Here, Ti refers to the number of

events in the i’th trace, and N to the number of traces in

the event-log. The predicted remaining time of the t’th

event of trace i is denoted by ŷ it , and it’s ground truth as

y it .

6

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

MAE =
1

N

N∑
i=1

1

T

Ti∑
t=1

| y it − ŷ it | (11)

The accuracy shows the average performance across

all traces but does not illustrate potential temporal

differences in performance (across prefixes), or segments

of the data where the model performance might vary.

Earliness

Evaluating the performance across different points in

time, where different degrees of information will be

available, the model earliness is evaluated by calculating

the MAEt (equation 12). Every t’th prefix is thereby

measured independently of all prior or subsequent prefixes

in the test period.

MAEt =
1

N

N∑
i=1

| y it − ŷ it | (12)

Here, t is the event number in each trace, and i denotes

the i’th trace in the test period. This approach have

been used in related literature on both remaining time

prediction, as well as classification problems with data in

event-log format [4, 1, 32, 17]. In addition, the MAEt
is also calculated at different trace lengths to investigate

potential performance differences in this aspect. In future

work, differences across trace variants and case types

might also be further studied.

Temporal consistency

To understand the degree to which the prediction models

represent the natural behavior of time, a new evaluation

metric defined as the Temporal Consistency (TC) is

proposed in the following. For two consecutive remaining

cycle time (ground truth) values yt=0 and yt=1 observed

in an event-log, it always holds that yt=0 ≥ yt=1, as

remaining time monotonically decreases as t → ∞. The

Temporal Consistency of the remaining cycle time is

therefore defined as the absolute first difference | ŷt −
ŷt−1 |, when the first difference between two predictions

is positive (ŷt − ŷt−1) > 0.
The objective of this metric is to measure the degree

of consistency in consecutive predictions of a given

trace by measuring the predicted values ŷt alone. From

the temporal consistency aspect, ideal model behavior

is therefore monotonically decreasing remaining times

for each new event in the same trace. As illustrated

by equation 13, the TC does neither measure model

accuracy nor earliness and is thereby merely proposed as

an additional perspective on model performance.

TC =
1

N

N∑
i=1

1

T − 1
Ti∑
t=2

H
(
ŷ it − ŷ it−1

) | ŷ it − ŷ it−1 | (13)

where:

H(x) =

{
1, x ≥ 0
0, x < 0

The aggregate measure in equation 13 can be inter-

preted as the average increase in predicted remaining time

across all traces. However, to understand these errors at

different prefixes, the TCt (for all t > 1) can also be

calculated as shown by equation 14.

TCt =
1

N

N∑
i=1

H
(
ŷ it − ŷ it−1

) | ŷ it − ŷ it−1 | (14)

Results
In the following sections, the results will be presented with

respect to each of the three performance aspects: Accu-

racy, which will be presented in the next section, Earliness,

in the following, and lastly Temporal consistency.

Accuracy performance

Looking at the average error across all traces in the

test period, the results seem to vary across the event-

logs. In general, the temporal loss functions have the

best performance across all four event-logs, however, the

magnitude of improvement over baseline (the MAE loss

function) varies across event-logs.

From table 6, for the Sepsis data, it can be seen

that even though the results show that MAEEtD has

the best average performance, the difference from the

baseline is very low. For the Helpdesk data, the results are

similar, but for the Traffic fines data there is an average

performance improvement of 5.22 days. For the Hospital

billing data, the difference is again low or non-existing.

From the F-test results in table 7, it can be observed that

only MAEEtD has significantly different results.

Earliness performance

Compared to the average accuracy, the difference be-

tween the loss functions is generally larger from the ear-

liness perspective. Looking at the results in table 8, the

performance of the temporal loss functions is on average

better than the baseline MAE-loss, with the MAEEtD
outperforming most often across event-logs. For the Sep-

sis data, the MAEEtD outperforms the baseline at each

of the first five prefixes reported. This difference is signif-

icant for each of the prefixes except the first. However,

the magnitude of the difference is less than a day for each

of the prefixes in table 8. Looking at the box plot in fig.

5, this pattern seems to continue for all of the prefixes

in the Sepsis data. Moving on to the Helpdesk data, the

temporal loss functions are again better than the baseline,

however, by less than a day in the first three prefixes. The

differences were also not found to be statistically signifi-

cant, except for theMAEMtD at prefix five. Furthermore,

it is seen from figure 5 that the performance of MAEEtD
improves as the prefix gets larger, compared to MAE.

7

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

For the Traffic fines data, the improvement over

baseline is the largest with MAEEtD, with 5.35 days

lower error at the first prefix, and 8.25 at the fifth.

Even though the differences are relatively large, they

are only statistically significant at prefixes two and five

(with 2.4 and 4 percent relative improvement over MAE,

respectively). Looking at figure 5, the difference between

the MAEEtD seems to increase as the prefix gets larger,

while the spread of the MAE-loss performance also

increases for larger prefixes.

Finally, for the Hospital billing data, the performance

of the temporal loss functions is again better than

the baseline across all five prefixes, however, with less

than one day of difference (except at prefix one) and

statistically insignificant. In the Hospital billing data, the

MAEEtD was again performing the best most of the time.

Temporal consistency

The performance results in terms of the average increase

in predicted remaining time, measured as the Temporal

Consistency, can be seen from figure 6, and tables 9

and 11. The results show that the MAE baseline loss

function has the best temporal consistency across all four

event-logs, where the MAEEtD has the worst temporal

consistency across all but the Hospital billing data. The

differences across the temporal loss functions and the

baseline are, however, lower than a single day on average.

Pairwise F-test for the difference between each temporal

loss and the baseline (MAE) was also performed and can

be found in table 10. The results of these tests show that

the differences reported in table 9 are not significantly

different.

Looking at the results in figure 6, it can be seen that

the MAE-loss most often has the lowest TCt across

the event-logs, not only in the earliest/shortest prefixes

but also for the longest, especially for the Sepsis data.

However, F-test was performed for the results in table

11, and only the MAEP tD at prefix two for the Helpdesk

data, had a significant difference from the results of

the MAE-loss. Looking at the general trends in 6,

it can be observed that there are certain peak periods

where prediction uncertainty is generally higher, and the

predicted remaining time seems to increase (prefix two in

the Sepsis data, six and nine in Traffic fines data, as well

as six and ten in Hospital billing data). For the Traffic

fines data specifically, the increased predicted remaining

time can become as much as three to four months across

all four loss functions.

Discussion
As the aim of the temporal loss functions was to bias the

trained models towards a better earliness by prioritizing

this perspective higher than the standard MAE loss, it

was unexpected that this would lead to better accuracy

than the MAE. In a previous study [1], the relationship

between earliness and accuracy has been referred to as

a trade-off, which does not seem to be the case for the

performed experiments in this study.

However, viewing the results from the perspective of

the proposed temporal consistency metric, there might

be another trade-off between accuracy and earliness on

one side, and the temporal consistency on the other.

Even though the proposed loss functions produce better

average accuracy, and in some cases earliness, the

resulting models do on average also seem to perform

worse in terms of temporal consistency even though

the differences are small and often insignificant. This

furthermore seems to be a general problem across all four

loss functions.

Looking at figure 6, there are significant peaks in

the increase of predicted remaining time (TCt) at some

prefixes. This problem seems to be worst for the Traffic

fines and Hospital billing data. Looking at figure 3,

one can also observe that the prefix distributions have

significant cut-off points at prefixes five and six, in

both train and test periods for these event-logs. The

peaks in TC errors might therefore be related to the

lower support for these prefix lengths. From a planning

perspective, it might be useful to know these weaknesses

of the remaining time models, before they are used

operationally. Future work might therefore focus on

enhancing performance in this area.

Going back to the relative performance of the proposed

loss functions, statistically significant improvements were

found for some of the evaluated event-log data with up to

5.24 days improvement at prefix two in the Traffic fines

data. On average, the temporal loss functions performed

better in terms of earliness, but only significantly so in the

Sepsis and Traffic fines data.

As it was found that theMAEEtD had the best earliness

in most cases, it would suggest that the curvature of

the temporal decay plays an important role, and that

the formulation of the MAEMtD and MAEP tD losses are

too extreme for the evaluated settings. However, as the

optimal hyper-parameters also differ for each of the four

included event-logs, it is speculated that there might be

situations where higher temporal decay would perform

better. The interaction between the peak and slope of

the temporal decay, as well as distribution characteristics

of the event-logs should therefore be studied further in

the future. The general learning from this study is

therefore that the temporal decay could be used as a

hyper-parameter, which might lead to better earliness

performance in some situations. On the other hand, it

is now known that this also can lead to a decrease in

temporal consistency. This apparent trade-off motivates

the need to evaluate remaining time models from the

perspectives of accuracy, earliness, and in some cases

temporal consistency when used for operational decision

support.

8

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Conclusion and future research
The aim of this study was to investigate the impact of

temporally weighted loss functions for remaining time

prediction from event-log data. This was achieved by

adding a temporal decay to the standard MAE loss

function used in previous studies, aiming at improving

earliness performance. Furthermore, a previously untested

aspect of model performance was proposed: Temporal

consistency, which measures the degree to which the

predictions follow the natural monotonic behavior of

remaining time.

The results show that performance improvements in

terms of model earliness can be achieved using the

proposed MAEEtD in two of the four evaluated event-

logs. Average improvements were up to 4% within the

first five prefixes of the Traffic fines data. As the

improvement is only statistically significant for two of four

event-logs, it is argued that the temporal loss functions

should be treated as a hyper-parameter, as the optimal

peak and slope of the loss might be different depending

on the distribution of the training data and the remaining

hyper-parameters. Future works might therefore further

study the relationship between the curvature of the loss

and distribution characteristics of the training data, for

instance via simulation.

Furthermore, it is found that across all the evaluated

loss functions, peaks in the measured temporal consis-

tency error might appear at certain time steps. These

vulnerabilities in the models might be problematic when

used for dynamic planning such as job scheduling, and the

temporal consistency might therefore be a useful addition

to accuracy and earliness in these cases. As temporal

weighting of the loss functions seems to improve perfor-

mance in the remaining time prediction domain, future

research might study the effect of temporal weighting for

classification problems such as next activity or case out-

come prediction.

Conflict of interest

The author states no conflict of interest.

References
1. Verenich I, Dumas M, Rosa ML, Maggi FM, and

Teinemaa I. Survey and Cross-benchmark Comparison

of Remaining Time Prediction Methods in Business

Process Monitoring. ACM Transactions on Intelligent

Systems and Technology 2019; 10:1–34. DOI: 10.1145/

3331449. arXiv: arXiv:1805.02896v2

2. Kubrak K, Milani F, Nolte A, and Dumas M. Prescriptive

process monitoring: Quo vadis? PeerJ Computer Science

2022; 8:e1097

3. Teinemaa I, Dumas M, Maggi F, and Di Francescomarino

C. Predictive Business Process Monitoring with Struc-

tured and Unstructured Data. 2016 Sep :401–17. DOI:

10.1007/978-3-319-45348-4_23

4. Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa.

Predictive Business Process Monitoring with LSTM Neu-

ral Networks. Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) 2017; 10253

LNCS:V–VI. DOI: 10.1007/978-3-319-59536-8

5. Navarin N, Vincenzi B, Polato M, and Sperduti A. LSTM

networks for data-aware remaining time prediction of

business process instances. 2017 IEEE Symposium Series

on Computational Intelligence, SSCI 2017 - Proceedings

2018; 2018-Janua:1–7. DOI: 10 . 1109 / SSCI . 2017 .

8285184. arXiv: arXiv:1711.03822v1

6. Hsu SY and Liu CH. Improving the delivery efficiency

of the customer order scheduling problem in a job shop.

Computers & Industrial Engineering 2009; 57:856–66

7. Averbakh I and Baysan M. Approximation algorithm

for the on-line multi-customer two-level supply chain

scheduling problem. Operations Research Letters 2013;

41:710–4

8. Testi A, Tanfani E, and Torre G. A three-phase

approach for operating theatre schedules. Health care

management science 2007; 10:163–72

9. Lujak M and Billhardt H. A Distributed Algorithm for

Dynamic Break Scheduling in Emergency Service Fleets.

PRIMA 2017: Principles and Practice of Multi-Agent

Systems. Ed. by An B, Bazzan A, Leite J, Villata S, and

Torre L van der. Cham: Springer International Publishing,

2017 :477–85

10. Valouxis C and Housos E. Hybrid optimization techniques

for the workshift and rest assignment of nursing person-

nel. Artificial intelligence in medicine 2000 Nov; 20:155–

75. DOI: 10.1016/S0933-3657(00)00062-2

11. Wang TC and Liu CC. Optimal Work Shift Scheduling

with Fatigue Minimization and Day Off Preferences.

Mathematical Problems in Engineering 2014 Apr; 2014.

DOI: 10.1155/2014/751563

12. Cheng MY, Huang KY, and Hutomo M. Multiobjective

Dynamic-Guiding PSO for Optimizing Work Shift Sched-

ules. Journal of Construction Engineering and Manage-

ment 2018 Sep; 144. DOI: 10.1061/(ASCE)CO.1943-

7862.0001548

13. Dumas M, Rosa ML, Mendling J, and Reijers HA.

Fundamentals of Business Process Management. 2nd.

Springer Publishing Company, Incorporated, 2018

9

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

14. Rama-Maneiro E, Vidal J, and Lama M. Deep Learning

for Predictive Business Process Monitoring: Review and

Benchmark. ArXiv 2020; abs/2009.13251

15. Metzger A, Neubauer A, Bohn P, and Pohl K. Proactive

process adaptation using deep learning ensembles. Inter-

national Conference on Advanced Information Systems

Engineering. Springer. 2019 :547–62

16. Di Francescomarino C, Dumas M, Federici M, Ghidini

C, Maggi FM, Rizzi W, and Simonetto L. Genetic Al-

gorithms for Hyperparameter Optimization in Predictive

Business Process Monitoring. Inf. Syst. 2018 May;

74:67–83. DOI: 10.1016/j.is.2018.01.003

17. Teinemaa I, Dumas M, Leontjeva A, and Maggi FM.

Temporal stability in predictive process monitoring. Data

Mining and Knowledge Discovery 2018; 32:1306–38.

DOI: 10.1007/s10618-018-0575-9. arXiv: arXiv:1712.

04165v3

18. Thompson B, Stock M, Banuelas V, and Akalonu

C. The Impact of a Rigorous Multiple Work Shift

Schedule and Day Versus Night Shift Work on Reaction

Time and Balance Performance in Female Nurses: A

Repeated Measures Study. Journal of Occupational and

Environmental Medicine 2016 May; 58:1. DOI: 10 .

1097/JOM.0000000000000766

19. Fido A and Ghali A. Detrimental Effects of Variable

Work Shifts on Quality of Sleep, General Health and

Work Performance. Medical principles and practice :

international journal of the Kuwait University, Health

Science Centre 2008 Oct; 17:453–7. DOI: 10.1159/

000151566

20. Bard J and Purnomo H. Short-Term Nurse Scheduling in

Response to Daily Fluctuations in Supply and Demand.

Health care management science 2005 Dec; 8:315–24.

DOI: 10.1007/s10729-005-4141-9

21. Van der Aalst WMP. Process Mining: Data Science in

Action. 2nd ed. Heidelberg: Springer, 2016. DOI: 10.

1007/978-3-662-49851-4

22. Dumas M, Rosa ML, Mendling J, and Reijers HA. Fun-

damentals of Business Process Management. Springer

Publishing Company, Incorporated, 2013

23. Van der Aalst WM. Process discovery from event data:

Relating models and logs through abstractions. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge

Discovery 2018; 8:e1244. DOI: 10.1002/widm.1244

24. Goodfellow I, Bengio Y, and Courville A. Deep Learning.

The MIT Press, 2016

25. Hochreiter S and Schmidhuber J. Long Short-term

Memory. Neural computation 1997 Dec; 9:1735–80.

DOI: 10.1162/neco.1997.9.8.1735

26. Hochreiter S, Bengio Y, Frasconi P, and Schmidhuber J.

Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies. A Field Guide to Dynamical

Recurrent Neural Networks. Ed. by Kremer SC and Kolen

JF. IEEE Press, 2001

27. Mannhardt F, Leoni M de, Reijers HA, and Aalst WMP

van der. Data-Driven Process Discovery - Revealing Con-

ditional Infrequent Behavior from Event Logs. Advanced

Information Systems Engineering. Ed. by Dubois E and

Pohl K. Cham: Springer International Publishing, 2017

:545–60

28. Mannhardt F and Blinde D. Analyzing the Trajectories

of Patients with Sepsis using Process Mining. 2017 Jun

29. Mannhardt F, Leoni M de, Reijers H, and Aalst

W. Balanced multi-perspective checking of process

conformance. Computing 2015 Feb. DOI: 10.1007/

s00607-015-0441-1

30. Verenich I. Helpdesk. Mendeley data 2016 Dec. DOI:

10.17632/39bp3vv62t.1

31. LeCun Y, Bottou L, Orr G, and Müller K. Efficient

BackProp. Neural Networks: Tricks of the Trade. 1998

32. Camargo M, Dumas M, and González-Rojas O. Learning

Accurate LSTM Models of Business Processes. 2019

Jul :286–302. DOI: 10.1007/978-3-030-26619-6_19

33. Dozat T. Incorporating Nesterov Momentum into Adam.

Proceedings of the 4th International Conference on

Learning Representations. 2016 :1–4

34. Van Dongen BF, Crooy RA, and Van Der Aalst WMP.

Cycle time prediction: When will this case finally be fin-

ished? Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics) 2008; 5331 LNCS:319–

36. DOI: 10.1007/978-3-540-88871-0_22

35. Khan A, Le H, Do K, Tran T, Ghose A, Dam H,

and Sindhgatta R. Memory-Augmented Neural Net-

works for Predictive Process Analytics. arXiv preprint

arXiv:1802.00938 2018. arXiv: 1802.00938. Available

from: http://arxiv.org/abs/1802.00938

36. Evermann J, Rehse JR, and Fettke P. A deep learning

approach for predicting process behaviour at runtime.

International Conference on Business Process Manage-

ment 2016; 1:490. DOI: 10.1007/978-3-319-58457-7.

Available from: http://b-ok.xyz/book/2942192/1d94cd

37. Feurer M and Hutter F. Hyperparameter Optimization.

Automated Machine Learning: Methods, Systems, Chal-

lenges. Ed. by Hutter F, Kotthoff L, and Vanschoren J.

Cham: Springer International Publishing, 2019 :3–33.

DOI: 10.1007/978-3-030-05318-5_1. Available from:

https://doi.org/10.1007/978-3-030-05318-5_1

38. Verenich I, Nguyen H, Rosa ML, and Dumas M. White-

box prediction of process performance indicators via

flow analysis. ACM International Conference Proceeding

Series. Vol. Part F128767. 2017. DOI: 10 . 1145 /

3084100.3084110

39. Senderovich A, Di Francescomarino C, Ghidini C, Jorbina

K, and Maggi FM. Intra and Inter-case Features in Pre-

dictive Process Monitoring: A Tale of Two Dimensions.

Business Process Management. Ed. by Carmona J, En-

gels G, and Kumar A. Cham: Springer International Pub-

lishing, 2017 :306–23

10

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

40. LeCun Y, Bottou L, Orr GB, and Müller K. Efficient

BackProp. Neural Networks: Tricks of the Trade. Ed.

by Orr GB and Müller KR. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1998 :9–50. DOI: 10.1007/3-540-

49430-8_2

41. Hastie T, Tibshirani R, and Friedman J. The Elements

of Statistical Learning. Springer Series in Statistics. New

York, NY, USA: Springer New York Inc., 2001

42. Gers FA, Schraudolph NN, and Schmidhuber J. Learning

Precise Timing with Lstm Recurrent Networks. J. Mach.

Learn. Res. 2003 Mar; 3:115–43. DOI: 10 . 1162 /

153244303768966139

43. Appleyard J, Kociský T, and Blunsom P. Optimizing

Performance of Recurrent Neural Networks on GPUs.

ArXiv 2016; abs/1604.01946

44. Wedel M, Hacht M, Hieber R, Metternich J, and Abele

E. Real-time Bottleneck Detection and Prediction to

Prioritize Fault Repair in Interlinked Production Lines.

Procedia CIRP 2015 Dec; 37:140–5. DOI: 10.1016/j.

procir.2015.08.071

45. Chollet F. Deep Learning with Python. Manning, 2017

46. Francescomarino CD, Dumas M, Maggi FM, and Teine-

maa I. Clustering-Based Predictive Process Monitoring.

2015. arXiv: 1506.01428 [cs.SE]

47. Senderovich A, Di Francescomarino C, Ghidini C, Jorbina

K, and Maggi F. Intra and Inter-case Features in Pre-

dictive Process Monitoring: A Tale of Two Dimensions.

2017 Aug :306–23. DOI: 10.1007/978-3-319-65000-

5_18

48. Jan ST, Ishakian V, and Muthusamy V. AI Trust

in Business Processes: The Need for Process-Aware

Explanations. Proceedings of the AAAI Conference on

Artificial Intelligence 2020 Apr; 34:13403–4. DOI: 10.

1609/aaai .v34i08.7056. Available from: https ://ojs .

aaai.org/index.php/AAAI/article/view/7056

49. Kingma D and Ba J. Adam: A Method for Stochastic

Optimization. International Conference on Learning Rep-

resentations 2014 Dec

50. Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-

rado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geof-

frey Irving, Michael Isard, Jia Y, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan

Mané, Rajat Monga, Sherry Moore, Derek Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-

tin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Sys-

tems. Software available from tensorflow.org. 2015.

Available from: http://tensorflow.org/

51. Lundberg SM and Lee SI. A Unified Approach to

Interpreting Model Predictions. Advances in Neural

Information Processing Systems 30. Ed. by Guyon

I, Luxburg UV, Bengio S, Wallach H, Fergus R,

Vishwanathan S, and Garnett R. Curran Associates, Inc.,

2017 :4765–74. Available from: http://papers.nips.cc/

paper/7062-a-unified-approach-to-interpreting-model-

predictions.pdf

52. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, and

Salakhutdinov R. Dropout: A Simple Way to Prevent

Neural Networks from Overfitting. Journal of Machine

Learning Research 2014; 15:1929–58. Available from:

http://jmlr.org/papers/v15/srivastava14a.html

11

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Operation Description
Feature engineering The event activity, resource and timestamps were used as features

across all four event-logs. Similar to [17], additional time-related

features such as the day of week and the hour of the day were

encoded as categorical inputs. Apart from these, all other available

features from the publicly available event-logs were used.

Standardization To accommodate the most optimal settings for the back-

propagation algorithm used for training the neural networks models

in this study, numerical features are standardized as recommended

in [31].

Exclusion of last event As many event-logs do not include the timestamp for the end of a

task, the standard formulation of remaining time models is thereby

to predict time to the last event. As the remaining time at the last

event is trivial to predict, it is common to drop the last event [5, 1].

Exclusion of cases with

only one event

As the last event is dropped, there would be no events to predict

the remaining time from. These cases are therefore excluded.

Prefix-log transformation Using the same approach as in [4, 5, 17, 32] a prefix log is generated:

Each event is transformed into a prefix consisting of all previous

events in the i’th trace up until the t’th event, for all events.

Prefix-log truncation As the tensor-based models used in this study need input tensors

of a fixed size; truncation has been applied as in [17] (see section:

data). Leading zero-padding have been applied across all event-logs.

Tensor-encoding of pre-

fixes

The final prefix log have been transformed into an input tensor with

3 axes (cases x prefixes x features) as described in [1]. The target

values are represented by a single vector.

Table 4: Data preparation of each experiment.

Event-log Loss Units Layers Alg BS LR

Sepsis MAE 100 2 NADAM 1024 0.10

Helpdesk MAE 100 1 SGD 2048 0.10

Traffic fines MAE 100 1 NADAM 128 0.10

Hospital billing MAE 100 2 NADAM 128 0.01

Table 5: Hyper-parameters used across main experiments. Loss: loss function, Units: number of hidden units, Layers:

number of LSTM-layers, Alg: Optimization algorithm, LR: Learning rate.

Loss function Sepsis Helpdesk Traffic fines Hospital billing

MAE 12.39 ± 0.11 8.99 ± 0.33 214.13 ± 3.55 46.55 ± 0.61

MAEEtD 12.33 ± 0.05 8.63 ± 0.34 208.91 ± 1.77 46.34 ± 0.57

MAEP tD 12.45 ± 0.12 8.81 ± 0.53 210.21 ± 2.52 46.39 ± 0.55

MAEMtD 12.34 ± 0.08 8.59 ± 0.29 209.99 ± 3.35 46.24 ± 0.46

Table 6: Average MAE of each loss function across event-logs, measured in days. RHS of ± denotes the 95% confidence

intervals.

12

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Event-log Loss function F-value P-value

Sepsis MAEEtD 3.938 * 0.026

Sepsis MAEP tD 0.750 0.662

Sepsis MAEMtD 1.642 0.235

Helpdesk MAEEtD 0.902 0.559

Helpdesk MAEP tD 0.382 0.915

Helpdesk MAEMtD 1.305 0.349

Traffic fines MAEEtD 4.027 * 0.024

Traffic fines MAEP tD 1.978 0.161

Traffic fines MAEMtD 1.117 0.435

Hospital billing MAEEtD 1.137 0.425

Hospital billing MAEP tD 1.253 0.370

Hospital billing MAEMtD 1.745 0.209

Table 7: F-test results of pairwise comparison between the three temporal loss functions and the MAE-loss baseline. ’*’

denote significant difference at α = 0.05.

Prefix Loss function Sepsis Helpdesk Traffic fines Hospital billing

1 MAE 13.27 ± 0.21 7.07 ± 0.05 227.46 ± 3.66 70.2 ± 1.22

MAEEtD 13.14 ± 0.2 7.06 ± 0.16 222.11 ± 2.36 70.0 ± 1.38

MAEP tD 13.35 ± 0.24 7.08 ± 0.14 224.26 ± 4.43 69.31 ± 1.24

MAEMtD 13.17 ± 0.22 7.06 ± 0.16 225.24 ± 5.2 69.12 ± 1.07

2 MAE 13.0 ± 0.17 8.52 ± 0.23 217.32 ± 3.93 45.37 ± 0.56

MAEEtD 12.91* ± 0.09 8.39 ± 0.21 212.08* ± 2.08 45.23 ± 0.43

MAEP tD 13.08 ± 0.2 8.31 ± 0.31 213.2 ± 2.64 45.13 ± 0.49

MAEMtD 12.94 ± 0.13 8.29 ± 0.23 212.22 ± 3.73 45.3 ± 0.39

3 MAE 13.52 ± 0.16 9.68 ± 0.37 218.67 ± 4.33 42.23 ± 0.54

MAEEtD 13.43* ± 0.08 9.4 ± 0.36 212.99 ± 3.35 41.99 ± 0.45

MAEP tD 13.59 ± 0.2 9.53 ± 0.62 213.49 ± 3.55 42.21 ± 0.54

MAEMtD 13.47 ± 0.13 9.33 ± 0.43 213.2 ± 4.05 42.18 ± 0.55

4 MAE 13.5 ± 0.15 12.72 ± 1.22 198.79 ± 4.71 39.32 ± 0.45

MAEEtD 13.43* ± 0.07 10.88 ± 1.34 195.22 ± 3.77 39.0 ± 0.41

MAEP tD 13.58 ± 0.2 12.14 ± 1.87 196.2 ± 4.5 39.56 ± 0.44

MAEMtD 13.47 ± 0.12 11.06 ± 0.96 195.39 ± 4.5 39.3 ± 0.45

5 MAE 14.37 ± 0.15 12.93 ± 1.39 201.82 ± 16.99 42.14 ± 0.41

MAEEtD 14.3* ± 0.07 11.19 ± 1.5 193.57* ± 1.58 42.1 ± 0.32

MAEP tD 14.44 ± 0.2 12.27 ± 1.86 196.25* ± 5.04 42.42 ± 0.37

MAEMtD 14.33 ± 0.13 11.29* ± 0.76 200.39 ± 16.97 42.19 ± 0.28

Table 8: Average MAEt of loss functions in prefixes t = (1, ..., 5), measured in days. ’*’ denote significant difference at

α = 0.05, for a pairwise F-test between each temporal loss function and theMAE-loss baseline. Each pairwise comparison

is computed within each prefix-length only.

Loss function Sepsis Helpdesk Traffic fines Hospital billing

MAE 0.17 ± 0.02 0.272 ± 0.1 2.137 ± 0.92 1.982 ± 0.1

MAEEtD 0.189 ± 0.02 0.427 ± 0.13 3.004 ± 1.18 2.07 ± 0.23

MAEP tD 0.207 ± 0.03 0.302 ± 0.2 2.447 ± 0.7 2.162 ± 0.25

MAEMtD 0.203 ± 0.03 0.408 ± 0.19 2.768 ± 1.74 2.032 ± 0.14

Table 9: Average TC of different loss functions across event-logs, measured in days. RHS of ± denotes the 95%

confidence intervals.

13

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Figure 5: MAEt at the first 5 events, across all traces in each event-log, measured in days.

14

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Event-log Loss function F-value P-value

Sepsis MAEEtD 1.206 0.393

Sepsis MAEP tD 0.576 0.788

Sepsis MAEMtD 0.720 0.684

Helpdesk MAEEtD 0.653 0.733

Helpdesk MAEP tD 0.266 0.969

Helpdesk MAEMtD 0.300 0.956

Traffic fines MAEEtD 0.613 0.761

Traffic fines MAEP tD 1.756 0.207

Traffic fines MAEMtD 0.281 0.964

Hospital billing MAEEtD 0.187 0.990

Hospital billing MAEP tD 0.154 0.995

Hospital billing MAEMtD 0.512 0.833

Table 10: F-test results of pairwise comparison between the three temporal loss functions and the MAE-loss baseline for

average TC as defined by equation 13. ’*’ denote significant difference at α = 0.05.

Prefix Loss function Sepsis Helpdesk Traffic fines Hospital billing

2 MAE 0.55 ± 0.07 0.3 ± 0.21 0.47 ± 0.48 2.18 ± 0.38

MAEEtD 0.54 ± 0.17 0.31 ± 0.19 1.54 ± 1.54 2.06 ± 0.33

MAEP tD 0.6 ± 0.2 0.14* ± 0.12 0.57 ± 0.72 2.04 ± 0.38

MAEMtD 0.55 ± 0.11 0.33 ± 0.19 1.05 ± 0.65 2.09 ± 0.42

3 MAE 0.21 ± 0.06 0.27 ± 0.11 2.53 ± 1.68 1.16 ± 0.21

MAEEtD 0.26 ± 0.07 0.61 ± 0.2 3.33 ± 1.61 1.38 ± 0.26

MAEP tD 0.28 ± 0.07 0.52 ± 0.39 3.56 ± 1.96 1.34 ± 0.3

MAEMtD 0.24 ± 0.07 0.51 ± 0.28 3.77 ± 4.7 1.29 ± 0.2

4 MAE 0.12 ± 0.03 0.23 ± 0.07 2.13 ± 1.42 1.5 ± 0.22

MAEEtD 0.12 ± 0.02 0.25 ± 0.1 2.63 ± 2.55 1.51 ± 0.26

MAEP tD 0.15 ± 0.03 0.17 ± 0.11 1.81 ± 1.05 1.79 ± 0.34

MAEMtD 0.13 ± 0.03 0.3 ± 0.17 2.2 ± 1.79 1.57 ± 0.25

5 MAE 0.1 ± 0.02 0.25 ± 0.12 2.32 ± 0.61 2.08 ± 0.34

MAEEtD 0.11 ± 0.03 0.53 ± 0.17 2.61 ± 0.72 2.55 ± 0.74

MAEP tD 0.13 ± 0.03 0.3 ± 0.21 2.1 ± 1.0 2.7 ± 0.88

MAEMtD 0.12 ± 0.03 0.55 ± 0.25 3.82 ± 2.71 2.29 ± 0.44

6 MAE 0.1 ± 0.03 0.3 ± 0.09 59.68 ± 18.26 6.4 ± 0.85

MAEEtD 0.13 ± 0.03 0.57 ± 0.2 68.99 ± 11.26 6.14 ± 0.71

MAEMtD 0.13 ± 0.03 0.71 ± 0.33 52.58 ± 14.37 6.09 ± 1.01

MAEP tD 0.13 ± 0.04 0.55 ± 0.32 62.28 ± 17.65 6.36 ± 0.99

Table 11: Average TCt of the evaluated loss functions at prefixes t = (2, ..., 6), measured in days (t = 1 is left out due

to the formulation in equation 14). ’*’ denote significant difference at α = 0.05, for a pairwise F-test between each

temporal loss function and the MAE-loss baseline. Each pairwise comparison is computed within each prefix-length only.

15

Riess: Temporal loss functions. NMI, ??, 1–16, 2023

Figure 6: Average TCt of loss functions at each prefix, measured in days (t = 1 is left out due to the formulation in

equation 14).

16

Paper II
Riess, M. (2023a). A parametric simulation framework for the generation of event-
log data. Manuscript submitted to Simulation.

73

A parametric simulation framework for
the generation of event-log data

Simulation

XX(X):1–23

©The Author(s) 2023

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

SAGE

Mike Riess

Abstract

In the pursuit of ecological validity, current Business Process Simulation methods are calibrated from data of existing

processes. This is important for realistic what-if analysis of an existing business process. However, this is not always

the right tool for the job. To test certain hypotheses in the field of Predictive Process Monitoring, it will be more helpful

to simulate event-log data from a theoretical process, where all aspects can be manipulated. One example is when

assessing the influence of process complexity or variability, on the performance of a given new prediction method.

In this case, the ability to include control variables and systematically change process characteristics is key to fully

understanding their influence. Calibrating a simulation model from observed data alone can in these cases be limiting.

This paper propose a simulation framework for the generation of synthetic event-log data, where aspects such as

process complexity, stability, trace distribution, duration distribution and case arrivals can be fully controlled by the user.

The overall architecture is described in detail, and a demonstration of the framework is presented.

Keywords

Event-log data, discrete event simulation, predictive process monitoring.

Introduction

In the field of Predictive Process Monitoring, multiple
approaches have been proposed for the prediction of
attributes from event-log data van der Aalst (2016) that
describe the future state of a business process; next activity
Evermann et al. (2016); Niek Tax, Marlon dumas, Ilya
veenich, Marcello la rosa (2017), time to the next activity
Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa
(2017), remaining throughput time (Niek Tax, Marlon
dumas, Ilya veenich, Marcello la rosa 2017; Navarin et al.
2018) and case outcome Teinemaa et al. (2018). Common to
all prior research in this area is that proposed methods are
evaluated across several event-logs sourced from companies
or public institutions made publicly available through
conferences (La Rosa and Soffer 2013; Teniente and
Weidlich 2018) or publications (Mannhardt and Blinde 2017;
Mannhardt et al. 2015). The key argument for such an
approach is ecological validity, as the prediction model
can be evaluated empirically using historical data from
the environments it is intended to function. Furthermore,
performance across multiple domains can be assessed and
a common baseline can be established for comparison across
studies. This can also be referred to as benchmarking, and

these publicly available datasets are commonly referred to as
benchmark data in the Machine learning community.

However, for Predictive Process Monitoring, strictly
speaking, the unit of observation is a process or an
organization. As processes will vary within each domain,
a single benchmark dataset thereby only represents one
variant. When some studies use three datasets or less (Niek
Tax, Marlon dumas, Ilya veenich, Marcello la rosa 2017;
Navarin et al. 2018), the external validity of the findings
(beyond the performance comparison to the established
baseline) thereby suffer. If an objective is to understand the
influence of factors related to the data itself, an experimental
design with control variables will be needed.

As an example, the authors in (Niek Tax, Marlon
dumas, Ilya veenich, Marcello la rosa 2017) found that
their proposed prediction model performed relatively worse
in one of two benchmark datasets it was evaluated on.
Further investigating the data, where performance was
worse, the authors found that the data had many sequences

Corresponding author:
Mike Riess, School of Economics and Business, Norwegian University of

Life Sciences, Universitetstunet 3 1433 Ås, NO.

Email: mike.riess@nmbu.no

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Simulation XX(X)

with multiple instances of the same activity, and thereby
concluded that this was the cause of the worse performance.
To further investigate this hypothesis, a simulation model
could have been used to systematically generate event-logs
with varying degrees of repeating sequences, as well as
relevant control variables.

When findings are based on qualitative analysis of
benchmark data, there are unfortunately few (if any)
possibilities to control aspects of the environment. This can
lead to problems of internal validity, as possible confounding
variables cannot be studied and/or eliminated. For instance,
in (Camargo et al. 2019a), the authors included 9 different
event-logs for the evaluation of their enhanced prediction
approach. Each event-log was qualitatively coded in terms
of its complexity in the control flow (the graph of possible
transitions between activities over time), and the variability
in the time between events. The complexity factor included
the following levels: Simple (2/9), Medium (2/9), Complex
(5/9), and the Variability factor: Steady (3/9) and Irregular
(6/9).

In this case, the levels within each factor was unevenly
distributed, and there were no overlap between the two
factors such that interaction effects could be determined.
This study was therefore limited to qualitative analysis,
as finding benchmark data that fit certain criteria can be
challenging. A contribution to the findings of (Camargo
et al. 2019a), could have been an experimental design
and synthetic event-logs generated from a clearly defined
distributions for each of the two factors. Firstly, this could
enable the analysis of interactions between the two factors,
as well including other control variables such as number of
traces, and finally repeating the experiment with new data.

It appear, that the inclusion of simulation-based results,
as an aid in the evaluation of Predictive Process Monitoring
methods might benefit the advancements in the field.
However, simulation is by no means a new tool in business
process related research. Business process simulation
(BPS) is a well-established stream of research within the
Process mining Aalst (2015) community, with multiple
frameworks aiming at generating realistic event-logs which
are empirically calibrated. However, as discussed, simulation
models following specific criteria to test a hypothesis can
be a valuable addition to the current approach of evaluation
using benchmark data. This is, in fact, an old tradition in
the Machine learning literature (Tibshirani 1996; Efron et al.
2004; Zou and Hastie 2005; Bradley and Henseler 2007)
that could help in the advancement of predictive process
monitoring approaches.

In this study, a literature review is initially conducted
to understand current limitations in the available open
source simulation frameworks for the generation of event-
log data. Next, a simulation framework that addresses these
limitations is proposed, and finally a demonstration of the
capabilities is performed.

Research questions

The main goals of this study is to contribute to
the advancement in Predictive Process Monitoring by
understanding the current limitations in the existing
simulation tools, as well as to propose a new framework to
aid in hypothesis-testing of data-related factors as discussed
in the introduction. To achieve this, the work will be guided
by the following two research questions:

• RQ1: To which extend does current business process
simulation frameworks support the requirements for
model robustness assessment in Predictive process
monitoring?

• RQ2: How can the limitations in current simulation
frameworks be addressed within a new framework?

To answer RQ1 a literature review on Business Process
Simulation frameworks is performed, while comparing their
capabilities and design philosophy to the requirements
discussed in the introduction. To answer RQ2, a set of initial
requirements will firstly be outlined, where after a simulation
framework will be proposed and demonstrated.

Theoretical background

In the following, the most important theoretical concepts
and terms used in the literature review and framework
presentation will be introduced.

Event log data

Event log data refers to time-stamped pieces of information
related to a single case or process instance in a business
process. Event-log data is generated in process-aware
information systems (PAIS) (van der Aalst 2016) such as
Enterprise Resource Planning system (ERP) and Customer
Relationship Management (CRM) systems. A example
event-log from a hypothetical issue to resolution process
is illustrated in Table 1. An event-log can be viewed as a
hierarchical data structure, where the highest level is a log Θ,
which consist of multiple traces Q, Θ = {Q1, ..., Qn}. Each
trace has a unique identifier c and consist of one or more
events et, arranged in the chronological order in which they

Prepared using sagej.cls

Riess 3

occurred, Qc = {e1, ..., eT }. An event et is a tuple consisting
of attributes such as an activity at, a timestamp nt, and in
many cases a resource rt or other relevant attributes o(t,i). In
the example in Table 1 (going from left to right), the columns
denote the case identifier c, the case topic o(t,i), activity at,
timestamp at the beginning of the activity nt, and finally the
resource rt.

Business process simulation

The main objective of business process simulation is most
often to get a deeper understanding of a specific business
process (what-if analysis) (Aalst 2015). A business process
simulation model can either be generated manually by
process experts using observation and qualitative analysis
Dumas et al. (2018), or automatically using e.g. process

mining techniques (van der Aalst 2016) to aid the derivation
of a control flow and its simulation parameters. A business
process simulation model generally consist of the following
components (Aalst 2015):

• Arrival process
• Control flow
• Resources
• Activity durations

The arrival of cases is most often modeled using a Poisson

process, but can be extended to a more complex process
depending on the use-case. The control-flow denotes the
graph that determine the order and probability of various
transitions between activities over time. The resources

(employees or machines) performing the activities also need
to be represented by the model and depending on the
assumptions, resources have specific intervals wherein they
are able to process activities. If unavailable, a queuing
mechanism is needed, such as first-come first-served (FCFS)
(Aalst 2015). Finally, the processing time, or activity

duration needs to be represented by the model following
a given distribution. Multiple simulation languages and
packages (Aalst 2015) exist to aid in business process
simulation. Classical tools such as ARENA (Altiok and
Melamed 2007) and CPN Tools (Ratzer et al. 2003) let the
user manually specify the simulation components mentioned
earlier.

Predictive process monitoring

The field of predictive process monitoring focus on
predicting future states of a process instance (a trace), based
on machine learning models trained from historical event-log
data (Teinemaa et al. 2019). These predictions can in turn

be used for prescriptive process monitoring, which aim to
provide operational decision support (Kubrak et al. 2022) in
order to improve process performance. In the literature, one
of the most common attributes to predict is the remaining
throughput time yt of a trace (van Dongen et al. 2008), at
any discrete event up to the final event: yt = nT − nt, where
nT and nt denote the final and current timestamp in the
trace, respectively. The time to the next event yt+1 (or the
duration of the current event) is also a common prediction
task (Niek Tax, Marlon dumas, Ilya veenich, Marcello la
rosa 2017), formulated as yt+1 = nt+1 − nt, where nt+1

denote the timestamp of the next event. Furthermore, it is
also common to predict future categorical attributes of the
process such as the next activity at+1 (Evermann et al. 2016;
Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa
2017), the final activity aT , or any other case attribute in
time o(t,i) such as a case outcome Teinemaa et al. (2019).
Common for these prediction approaches is that they rely
on a sequence of discrete events, structured in the event-
log format described in the previous section. Similar to most
other fields of machine learning, the research in predictive
process monitoring is primarily open source and performed
using the Python programming language. For an event-log
simulator to benefit this community, these characteristics are
therefore important requirements.

Markov processes

Markov processes are stochastic processes defined by
Markov chains (Rubinstein and Kroese 2016). A first-order
Markov chain is defined as a memoryless discrete-time
process of transitions between a finite set of states S in a
state space D, S ∈ D. A state at time t+ 1 is assumed to be
dependent only on the previous state at time t:

P (Xt+1 | X1, X2, ..., XT) = P (Xt+1 | Xt) (1)

Where {X1, ..., XT } denote an arbitrary sequence of
previously observed states. The initial probabilities of each
state Si in the state space D is given by the vector P 0.
Transitions between states are thereby represented by the
transition matrix P , which is a |D| × |D| matrix for a first-
order (k = 1) Markov chain. This will be referred to as a
memoryless process in the following.

P 0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 0
(1)

...
P 0
(i)

...
P 0
(D)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Prepared using sagej.cls

4 Simulation XX(X)

Case ID Case topic Activity Timestamp Resource

1001 Invoice Email interaction 01-01-2019 15:01 System
1001 Invoice Phone interaction 01-01-2019 16:04 User 2
1001 Invoice Close case 01-01-2019 16:58 System
1002 Support Email interaction 01-01-2019 12:01 System
1002 Support Phone interaction 01-01-2019 13:10 User 2
1002 Support Email interaction 01-01-2019 14:15 User 5
1002 Support Close case 02-01-2019 13:37 System

Table 1. Example event-log in a customer service unit.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(11) . . . P(1j) . . . P(1D)

...
. . .

...
...

P(i1) . . . P(ij) . . . P(iD)

...
...

. . .
...

P(D1) . . . P(Dj) . . . P(DD)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Each column j in P represent the probability of j’th

state in the state space D at time t+ 1, given the current
state represented by the i’th row in P . A Markov chain
can be absorbing (Rubinstein and Kroese 2016), if it has
an absorption state SEND, in addition to the ordinary
(non-absorbing) states. If a sequence (trace) transitions into
SEND, the sequence will end, as all transition probabilities
from this state will be zero. For absorbing Markov chains, the
absorbing state will be defined as the last row and column of
the transition matrix.

Higher-order Markov chains

An extension of the memoryless Markov chain is the higher-
order Markov chain (Raftery 1985; Ching et al. 2005),
which assumes that the current state depend not only on
the previous. Here, the next state et+1 is conditioned on the
previous k states:

Xt+1 = P (Xt+1 | X1, X2, ..., Xt) =

P (Xt+1 | Xt, Xt−1, ..., Xt−k+1) (4)

Where k represents the order of the Markov chain, and
thus how much memory it has (the number of previous states
to condition the current state at time t on). As the amount of
memory k grows, the number of parameters in the transition
matrix increases exponentially. Hence, a k’th order Markov
chain has D ×Dk model parameters.

The transition probability matrix of a k-th order Markov
chain can be represented as a first order Markov chain of
(k + 1)-tuples. This results in a state-set of size |D|k|D|. A
second-order Markov transition matrix can thus be illustrated
as:

P (k=2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
(2)
(1,1,1) . . . P

(2)
(1,1,j) . . . P

(2)
(1,1,D)

...
. . .

...
...

P
(2)
(i,i,1) . . . P

(2)
(i,i,j) . . . P

(2)
(i,i,D)

...
...

. . .
...

P
(2)
(D,D,1) . . . P

(2)
(D,D,j) . . . P

(2)
(D,D,D)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Each cell in the transition matrix (5) correspond to the
probability of a sequence of length k + 1, rather than a single
transition between two states. Using the upper-left cell as an
example, this transition represents the following sequence in
the state-space D: D1 −→ D1 −→ D1, where the third state
in this sequence is dependent on the previous two.

For a first-order Markov chain, the trace length is
ultimately a function of the size of the state space D and the
transition probabilities (number and likelihood of transitions
between ordinary states and the absorbing state). Simulating
an absorbing memoryless process, the sequence will continue
to grow until the absorbing state is reached. This principle
can also be used for higher-order Markov chains, where the
prediction horizon is k, and the k + 1’th state depend on the
last k states as illustrated in Equation 4.

Poisson process

A Poisson process is a stochastic process describing a
particular pattern of arrivals. Its key characteristics include
(Rubinstein and Kroese 2016):

1. Arrivals Nt = {T1, ..., Tk} are countable.
2. Arrivals Nt occur in intervals: N1 = I1 =

(a, b] , N2 = I2 = (b, c], ...

3. Arrivals across intervals {I1, ..., IT } are independent.
4. Arrival-times Tk within intervals It = {T1, ..., Tk} are

independent and Exp(λ)-distributed, with λ being
constant across all arrivals. Where Exp(λ) denote the
Exponential distribution.

If the above conditions are fulfilled, the probability of
a single arrival in interval Ik = (t, t+ h] can be described

Prepared using sagej.cls

Riess 5

as Poi(ζh) = e−ζhζh, where ζ is the probability of an
arrival, h is the window of observation, and Poi(ζh) denote
the Poisson distribution (presented in the next section).
Intuitively, ζ can be seen as the arrival-rate parameter of a
Poisson process.

Poisson distribution The probability mass function of the
Poisson distribution is defined as:

f(k, ζ) = P (Nt = k) =
ζke−ζ

k!
(6)

Where k is the number of arrivals. For the Poisson
distribution, the expectation ζ is also equal to the
variance: ζ = E(Nt) = V ar(Nt). Another characteristic
of the Poisson process is that it has a direct link to
the Exponential and Erlang distributions (described in
the following), as: Poi(ζn) =

∑n
i=1 Exp(λ) = Er(n, λ),

when n > 0 ∈ Z, and λ is a scalar.

Exponential distribution The exponential distribution
(Rubinstein and Kroese 2016) is a memoryless continuous
distribution in the range x ∈ [0,∞), using a single rate

parameter λ. It represent the distribution of time between
events in a Poisson process, and is a special case of the
gamma distribution. The exponential distribution Exp(λ)

is memoryless in that the distribution of remaining time is
the same at any point, independently of how much time has
already passed. The probability density function (PDF) and
cumulative distribution functions (CDF) are defined as:

PDF (x) = λe−λx CDF (x) = 1− e−λx (7)

Expectation, variance:

E[X] =
1

λ
, V AR[X] =

1

λ2
(8)

Erlang distribution The Erlang distribution (Rubinstein and
Kroese 2016) is a special case of the hypoexponential

distribution (Trivedi and Bobbio 2017) (introduced in the
next section) when all k states have an identical rate λ. In this
case, the distribution is referred to as an Erlang distribution
of order k. The Erlang distribution is thus a two-parameter
family Er(τ, k).

The probability density function (PDF) and cumulative
distribution function (CDF) is defined as:

PDF (x) =
λkxk−1

(k − 1)!
e−λx (9)

CDF (X) = 1−
k−1∑
i=0

(λx)i

i!
e−λx (10)

Expectation, variance:

E[X] =
k

λ
, V AR[X] =

k

λ2
(11)

Hypoexponential distribution The hypoexponential distri-
bution (Trivedi and Bobbio 2017) is a combination of k ≥
2 sequential states which are exponentially distributed, but
with individual rates (λ1, λ2, ..., λk). A hypoexponential dis-
tribution of order k = 2, where λ1 �= λ2 and λ1, λ2 > 0 is
denoted as Hypo(λ1, λ2). In this case, the distribution has
the following probability density function:

PDF (x) =
λ1λ2

λ2 − λ1
(e−λ1x − e−λ2x) (12)

And cumulative density function:

CDF (x) = 1− λ2

λ2 − λ1
e−λ1x +

λ1

λ2 − λ1
e−λ2x (13)

In the case of Hypo(λ1, ..., λk), the expected value,
variance and coefficient of variation is defined as:

E[X] =
k∑

i=1

1

λi
, V AR[X] =

k∑
i=1

1

λ2
i

(14)

The expectation is the sum of k exponentially-distributed
variables with individual rates, where the variance is
the sum of the squared individual rates. The special
case Hypo(λ1, λ2), where λ2 = 0 simply reduces to an
exponential distribution with rate λ1.

Discrete distributions

In the following, relevant discrete distributions used in the
proposed framework will be briefly introduced.

Binomial distribution A binomial experiment is defined as
more than one independent and identically distributed (i.i.d.)
Bernoulli experiment. The binomial distribution is thus
the sum of (n > 1) Bernoulli experiments. The binomial
distribution is often used to model the number of successes in
n i.i.d. weighted coin tosses. The probability mass function
of the binomial distribution can be described as:

PMF (k, n, p) =

(
n

k

)
pk(1− p)n−k (15)

Where k is the number of successes of n independent
Bernoulli experiments with identical probability of success
p. Similarly, the cumulative density function can be denoted
as:

Prepared using sagej.cls

6 Simulation XX(X)

CDF (k, n, p) =
k∑

i=0

(
n

i

)
(p)i(1− p)n−i (16)

In the following, the expression Binom(n, p) will denote
inverse transform sampling of the cumulative density
function of a binomial distribution (Fishman 2001).

Discrete Multinomial distribution The multinomial distri-
bution is derived from the binomial distribution (Fishman
2001), as one or more experiments with multiple outcomes
k. When k = 2 and number of trials n = 1, the multinomial
distribution becomes the bernoulli distribution, and binomial
when n > 1. When k > 2 it becomes the multinomial distri-
bution which is specified by the following probability mass
function:

PMF (k, n, p) =
n!

x1! . . . xk
px1
1 . . . pxk

k (17)

Literature review

As the majority of recent research within Predictive Process
Monitoring use the Python programming language as the
standard for experiments and sharing of methods (Evermann
et al. 2016; Niek Tax, Marlon dumas, Ilya veenich, Marcello
la rosa 2017; Navarin et al. 2018; Camargo et al. 2019a),
the following literature review will be limited to free (open
source) frameworks that are implemented in the Python
language, such that they can be seamlessly integrated in
future research projects.

The google scholar academic search engine was used to
retrieve literature on existing simulation frameworks. The
query used was: ”event-log simulation framework python”,
resulting in 1770 hits. Due to this large number of results,
only studies with relevant keywords in the title or abstract
were further reviewed. Cross references between frameworks
in the literature review sections of the included studies were
also used to discover relevant frameworks (leading to the
inclusion of 1 additional study). The following inclusion
criteria was formed for the found studies to qualify for
further review: 1) The study presented a novel framework
for the first time, 2) The framework was implemented in the
python language, 3) The implementation was freely available
online. A total of 9 frameworks met all criteria, listed in Table
2.

In the following, the found frameworks will be compared
to the general criteria mentioned in the introduction of this
paper. The found works have been classified in terms of
1) their general approach to simulation (empirical/calibrated
and/or specified based on theory), 2) the components they
include or allow the user to model, 3) the general type

of simulation model used, and 4) distributions available (if
applicable).

The majority of the found literature propose frameworks
for generating a simulation model solely based on observed
behaviour in the event-log. This will be referred to as
an empirical (E) approach, where a hypothetical process
generated by the user with no input data will be referred
to as a theoretical (T) approach. Frameworks classified
as both (E,T), include options to perform retrospective
manipulations to the simulation model, after it has been
inferred from the event-log.

The SIMOD framework (Camargo et al. 2019b) is split
into processing and post-processing stages. In the processing
stage the framework automatically generates a simulation
model using SplitMiner (Augusto et al. 2017) to represent
the control flow through a BMPN model and a set of
probability distributions to model the remaining aspects of
the process. Unfortunately, these are not further specified.
In the post-processing step the framework optimizes the
simulation model by changing the control flow in a manner
that minimizes the distance between the simulated process
and observed behaviour in the event-log.

PROSIMOS (López-Pintado and Dumas 2022) enhances
the representation of resource behaviour by modelling the
resource aspect in a similar way to what is classically known
as agent-based simulation (Railsback et al. 2006), calibrated
from the observed event-log. This framework does not
produce the control flow and activity sequence distributions,
but assume this to be an input generated from a framework
such as SIMOD.

PNSIM (Pourbafrani et al. 2021b) extend the ability to
generate a simulation model from observed behaviour in
an event-log to performing changes to distributions of the
activity durations and arrival rates. The control flow is
represented by a Petri Net, and arrival times and activity
durations are represented by distributions (which are not
specified further). Contrary to the approach in PROSIMOS,
the variation in and availability of resources are assumed to
be represented by the duration distribution.

The SIMPT approach in (Pourbafrani et al. 2021a)
generates a simulation model using process trees to
represent the control flow and what is specified as relevant

distributions to represent activity durations, waiting time,
arrival rate and max capacity. This resulting simulation
model is referred to as an enriched Process Tree. The next
step of this framework is then for the user to specify the
desired deviations to the simulation model, before running
the simulation.

Prepared using sagej.cls

Riess 7

Source Approach Components Control flow Distributions
(Camargo et al. 2019b) E a, b, c, d BPMN Not documented
(López-Pintado and Dumas 2022) E a, b, c, d BPMN Not documented
(Pourbafrani et al. 2021b) E, T a, b, c Petri net Not documented
(Pourbafrani et al. 2021a) E, T a, b, c, d Process tree Not documented
(Fracca et al. 2021) E, T a, b, c, d BPMN Two documented:

Poisson, Truncated
Normal

(Pourbafrani and van der Aalst 2020) E a, b, c, d CLD, SFD Non-parametric
(System Dynamics)

(Pegoraro et al. 2021) E b, c Petri net Not documented
(Grüger et al. 2022) E, T a, b, c Data Petri net (DPN) Not documented
(Peeperkorn et al. 2022) E a, b LSTM-RNN Non-parametric

(LSTM)
Table 2. Comparison of found frameworks. Abbreviations: T: Theoretical, E: Empirical, a: Case arrivals, b: Activity sequences, c:
Duration distributions, d: Resource availability, Mult: Multiple, BPMN: Business process model notation, CLD: Causal loop diagram,
SFD: stock-flow diagram, SD: System Dynamics, LSTM-RNN: Long short-term memory recurrent neural network.

The BPSIMPY framework (Fracca et al. 2021) puts
emphasis on the workflow management perspective, as the
number of resources and their compatibility with task types
are exclusively specified. Contrary to other approaches, this
framework assumes an existing BPMN model of the process,
and lets the user further specify scenarios and distribution
parameters of the arrival rate, activity duration, waiting times
and activity sequence. The proposed framework lists only
two distributions in the documentation (in the example code),
but more seem to be implemented.

PMSD proposed by Pourbafrani and van der Aalst (2020)
uses systems dynamics (a statistical modelling technique) to
represent an existing business process, using an event-log as
the input. This approach is somewhat different from many of
the other proposed frameworks, as the goal here is to create a
system dynamics log, from which time series analysis can be
performed. As the approach only includes functionality for
calibration to observed dynamics in an existing process, this
approach is purely empirical.

The PROVED framework (Pegoraro et al. 2021) aim
primarily to perform so-called conformance checking
(van der Aalst 2016), and thereby have little to no
documentation on the simulation capabilities, however, the
source code suggests that the activity sequence and durations
can be modified after inferring a process model. However, it
is unclear how this framework handles the simulation of case
arrivals and resources.

SAMPLE (Grüger et al. 2022) uses Data Petri Nets (DPN)

inferred from an event-log to generate a full simulation
model. The strength of this approach is that the user can
model any attribute observed in the data and represent it
using the appropriate distribution, enabling the user to vary
the distribution parameters of any datapoint represented by
the DPN.

Using a radically different approach (Peeperkorn et al.
2022) train a Long Short-term Memory Recurrent Neural
Network (LSTM-RNN) to represent the control flow of a
process. However, this implementation is purely empirical
and cannot be modified by the user to simulate different
scenarios. Furthermore, time and resources were not
included in this implemenation.

Identified research gap

The majority of the literature include functionality for
modelling all four components of a business process
simulation model: Case arrivals, activity sequences (control
flow), duration distributions and resource availability. The
control flow is mainly represented from a BPMN model,
Petri Net or Process tree. Two approaches stand out in
this aspect: process simulation using systems dynamics
Pourbafrani and van der Aalst (2020) and Recurrent Neural
Networks (Peeperkorn et al. 2022). The key advantage of
approaches such as BPMN and Petri Nets for representing
the control flow is the ability to represent activities executed
in parallel, while keeping the number of parameters low, as
these models are high-level abstractions compared to Markov
chains (van der Aalst 2016).

On the other hand, the found frameworks based on
these abstract process models do not represent temporal
relationships multiple steps back in time, which is the
key strength of Recurrent Neural Networks, often used in
predictive process monitoring Evermann et al. (2016); Niek
Tax, Marlon dumas, Ilya veenich, Marcello la rosa (2017);
Navarin et al. (2018); Camargo et al. (2019a). Studying the
performance of the memory-related aspects (as illustrated by
Equation 4) of these models using Process trees, Petri Nets or

Prepared using sagej.cls

8 Simulation XX(X)

BPMN simulation models will thereby require modifications
to the current found approaches.

As many of the proposed frameworks focus on the
automation aspect of generating a business process
simulation model, less emphasis is in many cases put on the
details of the probabilistic distributions used to model the
four process components: case arrivals, activity sequences,
duration distributions and resource availability. This has the
disadvantage that the resulting process simulation model
becomes less transparent, and thereby less suited for testing
hypotheses related to the data generating procedure (DGP).

Requirements for proposed framework

Based on the previous comparison of the existing
frameworks, as well as the discussed use-cases in the
introduction, a set of design requirements is defined below:

• R1: Follow theoretical DGP of a business process

– Produce time-stamped synthetic event-logs

• R2: Possibility to specify distributions from a
theoretical model

– Case arrivals
– Activity sequences and process complexity
– Conditional duration distributions
– Resource availability

• R3: Publicly available documentation
• R4: Open source
• R5: Implementation in Python programming language

R1 is introduced to highlight that the outcome of a
simulation run should be a synthetic event-log that follow the
general structure of an event-log originating from business
process. R2 firstly ensures that the data generating process
is transparent and based on well-known distribution theory,
as well that relevant aspects of the process can be varied
and included as control variables in an experimental design.
R3 ensure that the methodology and assumptions behind
the generated event-logs are transparent. R4 ensures that the
resulting framework is freely available and can be modified
in any way a user see fit. R5 ensures that the framework can
be easily used in future research projects in the Predictive
Process Monitoring literature.

Simulation approach

In the following, a proposed new simulation framework that
addresses the requirements R1-R5 listed in the introduction
will be introduced. The framework is based on Python
3.8 and is dependent on the following packages: Numpy

(Harris et al. 2020), Pandas (development team 2020) and
Pomegranate (Schreiber 2018). The framework is dependent
on 9 individual Algorithms to generate an event-log, which
will be described in detail in the next sections. The
framework uses Markov chains to generate the control
flow (activity sequences), and uses the Hypoexponential
distribution to simulate individual activity durations, where
the spread of the average duration of individual activities at
different time steps can be controlled. The time components
include waiting times in the form of both stochastic
and deterministic offsets. These components represent the
uncertainty of resource availability, process stability and
business hours. The framework generates an event-log
mimicking the structure of a real world process, however,
compared to existing simulation frameworks reviewed in the
literature, the data generating process is purely theoretical
and specified by the user.

The framework enables researchers to simulate processes
with and without memory, which is implemented via first
and higher-order Markov chains Ching et al. (2004). Further-
more, the process entropy (or complexity of the control flow)
can be controlled such that a deterministic process (Mini-
mum entropy), a completely random (Maximum entropy) or
a user-specified (Medium entropy) process can be generated.
The purpose of introducing these three levels is merely
to enable the comparison between a perfectly predictable,
completely unpredictable, and a user-defined scenario. The
intended use of this framework is the testing of robustness in
Predictive Process Monitoring, as discussed in the introduc-
tion.

As the framework is open source, any user with a need
to do so may change the distributions used for either
of the stochastic time components (e.g. Mixtures instead
of Exponential and Hypoexponential distributions). The
framework is purely based on parametric distributions, and
the total trace throughput time can thereby be specified by
a linear model as shown in Equation 25. As one of the
key requirements of this framework is transparency, each
component will be described in detail in the following.

Simulation components

A conceptual mapping between the data components and
their related algorithms can be seen from Figure 1. At the
highest level is the generated event-logs Θk, where each
event-log is the result of a single simulation run. Each event-
log consist of multiple traces Θ = {Q1, ..., Qn}, which in
turn consist of one or more activities Qi = {e1, ..., en}. Each
activity has a total duration ut (including waiting times),

Prepared using sagej.cls

Riess 9

which again can be split into multiple components as seen
in the bottom of Figure 1.

The generation of traces can be split into the arrival times,
which are modeled as a Poisson process (see section Trace
arrivals). The activities and control-flow of the traces are
modeled using Markov chains (memoryless process) and
higher-order Markov chains (for processes with memory)
which is described in section Transition matrices for the
control flow, and Trace generation for trace generation.
Finally, the activity offsets and trace duration are described
in sections Activity offsets and Trace duration, respectively.

Trace arrivals

The timestamps of activities in an event log Θ =

{Q1, ..., Qn} is modeled in continuous time, using an offset
T0 ∈ R, assumed to be a number of arbitrary time units
(days, months, years) after a fixed point in time: 01/01/1970
00:00:00, specified by the user. The beginning of the
simulation period is denoted t = 0, indicating that no time
has passed at this point. A trace Qi is assumed to come
from a Poisson process, such that the time between arrivals
xi ∈ R is drawn from an exponential distribution Exp(λ).
For the illustration of trace arrivals, the event-log notation
earlier introduced is extended with a case-level attribute z,
denoting the arrival time of the trace. The full procedure is
demonstrated in Algorithm 1.

Transition matrices

The transition matrices play a crucial role in the resulting
process variants. For the used approach in this study, a vector
of initial probabilities P 0 is firstly, which will be generated
using Algorithm 2. For the subsequent transitions in a given
trace, one or more transition matrices are needed, depending
on the approach (memory versus memoryless process).

For a given transition matrix generated in a single
experiment, each possible transition Pi,j is defined in a
manner that generates a specific type of control flow graph.
In this framework three different types of transition matrices
are possible: Minimum, medium and maximum entropy.
The minimum and maximum settings are two extereme
cases, where minimum represents a deterministic process,
and maximum represents a random process with no order
(absence of a process). For the medium entropy, the user can
specify the number of transitions possible from each state,
which in combination with the number of states can lead to
different levels of complexity.

1. Minimum entropy: For each row Pi, only one state is
possible

Algorithm 1: Generation of trace arrival times in a
synthetic event-log.

Data: Time period upper boundary ψ, rate parameter
g

Result: Event-log Θ
/* Placeholders: Event-log and

arrival times, respectively. */
Θ ← ∅
�z ← ∅
i = 1
/* While inside the simulation

period 0 ≤ t < ψ */
t = 0
while t ≤ ψ do

/* Arrival time for trace i */
Draw xi ∼ Exp(λ = g)
/* Generate a new trace Qi */
Q(c=i,z=xi)

/* Increase the timeline by the
arrival time of Qi */

t = t+ xi

/* Append Qi to the event-log Θ

*/
Θ ← Qi

/* Append xi to the arrival times
vector �z */

�z ← xi

/* Increase case identifier */
i = i+ 1

end

2. Medium entropy: For each row Pi, only two n are
possible with probability distribution Ω

3. Maximum entropy: For each row Pi, all states are
possible with equal probability

To generate each of these types of transition matrices,
algorithms 3, 4 and 5 will describe the procedure in pseudo-
code. The initial probabilities P 0 are described in the
following.

Initial probabilities Depending on the approach used
(memory or memoryless), multiple hypothetical transition
probabilities needs to be generated. Common for both
approaches is the need of the initial probabilities P 0. These
can be generated as shown in Algorithm 2.

Minimum entropy The minimum entropy situation is where
the simulated process is 100% conforming: it has no
deviations from its intended control flow, and no rework. The
minimum-entropy transition matrix generated in Algorithm
3 is the equivalent of a multivariate hypergeometric

distribution for each step in the sequence. However, since
only one outcome is possible (with probability one) per
transition, the minimum entropy scenario is by definition a
deterministic process.

Prepared using sagej.cls

10 Simulation XX(X)

Figure 1. Overview of data components and related algorithms.

Algorithm 2: Generation of a initial probability
vector P 0

Data: A set of states D = {S1, ..., S|D|}, probability
distribution Ω

Result: Initial probabilities P 0

/* Placeholder */
P 0 ← ∅
/* For every state/element in D,

draw a probability and append to
P 0

*/
for d in D do

Draw xd from distribution Ω
P 0 ← xd

end

/* Scale the values in P 0, to
reflect that they are
probabilities of
mutually-exclusive states */

Ssum =
∑N

i=1(P
0
i)

P 0 = 1
Ssum

P 0

The output of Algorithm 3 is a transition matrix P , where
only one transition is possible between each state until
reaching the absorption state. In this particular case, the trace
length can only be controlled via the number of states in D.

Maximum entropy The maximum entropy scenario repre-
sents a theoretical situation where a process is completely
random and thereby unpredictable. This scenario is only
included as a contrast to the space of possible processes that
can be generated by the medium entropy setting (presented
in the next section). The transition matrix generated in
Algorithm 4 will have equal probabilities for each of the
possible states in D, for all transitions. Each transition is

Algorithm 3: Generation of transition matrix:
Minimum entropy

Data: A set of states D = {S1, ..., S|D|}
Result: A transition matrix P
P ← ∅
/* For every sate in D, generate a

new row-vector R */
for d in D do

/* Initialize R with zeros */

R ← �0
/* For the last state, only

absorption is possible */
if d = |D| then

/* Set the last index of R to
one */

R(d=|R|) = 1

else

/* Generate transitions:
Randomly select a state
from D */

s = SelectByRandom(D)
while s = d do

/* If the to and from state
is the same, draw again

*/
s = SelectByRandom(D)

end

/* Remove the selected state
from D */

D = s \D
/* Set the s’th index to

probability one */
R(d=s) = 1

end

/* Append the row vector into P

*/
P ← R

end

Prepared using sagej.cls

Riess 11

thus equivalent to a multinomial distribution with identical
weights of each class.

Algorithm 4: Generation of transition matrix:
Maximum entropy
Data: A set of states D = {S1, ..., S|D|}
Result: A transition matrix P
/* Placeholder for transition matrix

P */
P ← ∅
/* For every sate in D, generate a

new row-vector R */
for d in D do

/* Every event is equally likely,
so R is a vector of ones */

R ← �1
/* Normalize into probability

space */

R = R∑
R

/* Append the row vector into P

*/
P ← R

end

Medium entropy The medium entropy scenario can be
adapted to represent different levels of complexity, by
changing the number of states D, and number of possible
transitions n. The transition matrix P k generated from
Algorithm 5, model a process that has transitions generated
from a multinomial distribution, where n is the number
of possible categories. A while-loop in the last section of
Algorithm 5 avoids livelock (never-ending sequences) by
repeatedly adding transitions to the absorption state, if the
sum of the absorption probabilities across all states is not
equal or greater than the threshold κ.

Trace generation

Generating the traces in a simulation experiment consist of
two steps: Firstly, the control-flow is generated using the
transition matrices described in section Transition matrices.
Next, the transition matrices are used for probabilistic
sampling using either of the process memory approaches.
The procedure of the two approaches will be described in
more detail in the following.

Memoryless process In cases where the process is assumed
to be memoryless, a first-order absorbing Markov chain (k =

1) is used to model the transitions between states (activities
a) in the process until termination. This is represented by
a |D| × |D| matrix of transition probabilities P , which is
treated as a conditional multinomial distribution. Sampling
a trace from P will continue until the absorbing state D|D| is

Algorithm 5: Generation of transition matrix:
Medium entropy

Data: A set of states D = {S1, ..., S|D|}, probability
distribution Ω, number of non-zero state
transitions per row n, probability threshold for
transitions to absorption κ

Result: Transition matrix P
/* Placeholder */
P ← ∅
/* For every state/element in D */
for d in D do

/* Initiate L as a zero-vector of
length |D| */

L ← �0
/* Draw n states from D, without

replacement */
S ← Draw {si, ..., sn} from U(1, |D|) ∈ N

/* Generate probabilities and
replace zeros at each index
Li=s */

for s in S do
Draw xs ∼ Ω ∈ R

Li=s ← xs

end

/* Normalize L, and append to P

*/
L = L∑

L

P ← L
/* If the sum of probabilities of

transitions to absorption is
less than κ, add more
transitions */

while
∑

P [0 : |D|, |D|] < κ do

/* Draw a random state, which
is not the absorption
state. */

d ← Draw s from U(1, |D| − 1) ∈ N

/* Add random probability to
absorption */

P [d, |D|] ← Draw xs ∼ Ω ∈ R

/* Normalize row d to
probability-space */

P [d, :] = P [d,:]∑
P [d,:]

end

end

met. The trace length is determined by the number of states in
D, as well as the assumptions of the control flow (Algorithm
3, 4 or 5). The full procedure can be seen in Algorithm 6.

Process with memory For the implementation in Algorithm
7, a set of initial probabilities and subsequent transition
matrices is used to generate each state, until the stopping
criteria is met (reaching the absorption state). The
implementation does thereby not use a single k’th order
tensor as illustrated in Equation 4, but an initial probability

Prepared using sagej.cls

12 Simulation XX(X)

Algorithm 6: Trace generation for a memoryless
process
Data: Set of possible states D = {S1, ..., S|D|}

(activities), Algorithm 2, Algorithm 3,
Algorithm 4, Algorithm 5

Result: Trace Q = {e(1,a), ..., e(t,a)}
/* Initialize */
Q ← ∅
t ← 1
/* Generate probability

distributions P 0, P */
P 0 ← Algorithm2(D)
P ← Algorithm3(D, ..), Algorithm4(D, ..) or
Algorithm5(D, ..)
/* Get initial activity and append

*/
Q ← draw at=1 from P 0

/* While the absorption state has
not yet been reached, do */

while at �= D|D| do
t = t+ 1
/* Sample from first-order Markov

chain */
at ← Draw from distribution corresponding to the
a(t)-th row of P
/* Append activity to trace */
Q ← at

end

vector �P 0 and transition matrices Φ = {P 0, P 1, ..., P k} of
increasing size.

Depending on the amount of memory k, the size of each
transition matrix P i ∈ {1, ..., k} exponentially increases, as
each state d in the new state space Di depends on the
pattern of states the last i time steps. To generate the new
expanded state space Di, a function CProduct(D, i) is
defined, which produces the Cartesian product of D, i times:
D(i=3) = D ×D ×D. In practical terms, this results in a
sate space of all possible combinations of a sequence of
length 3 (representing the path of the last 3 steps).

To generate a trace Q, the sequence until the k’th time
step is firstly generated, and if the absorption state is not yet
reached, a further sequence of length k is generated, using
the conditional probability P k of the last k generated steps
in hdk(Q), where hdk is the head operator retrieving the
last k items in Q. This process continues until the absorbing
state D|D| is reached. The Python-implementation uses the
MarkovChain object from the Pomegranate Python library
(Schreiber 2018) for Algorithm 7.

Sequence encoding A generated example sequence Qi

of length |Q| = 3, can be represented in multiple ways:
a character-vector of length |Q|, or encoded as a binary
vector of size |Q| × |D|, with ones along the |D|-axis, when

Algorithm 7: Trace generation for a process with
memory

Data: Set of possible states D = {S1, . . . , S|D|},
Markov chain of order k, Algorithm 2,
Algorithm 4, Algorithm 5

Result: Trace Q = {e(1,a), . . . , e(t,a)}
/* Initialize */
Φ ← ∅
Q ← ∅
t = 0
/* Generate initial distribution P 0

*/
P 0 ← Algorithm2(D)
/* Generate probability

distributions (P 1, P 2, . . . , P k) */
for i in {1, . . . , k} do

/* Generate the conditional
transition probabilities for D

*/
P i ← Algorithm5(D, . . .) or
Algorithm4(D, . . .)

if i > 1 then

/* Generate the expanded state
space Di

*/
Di ← CProduct(D, i)
/* Generate the conditional

transition probabilities
for Di

*/
P i ← Algorithm5(Di, . . .) or
Algorithm4(Di, . . .)

/* Append each transition matrix
to ρ */

Φ ← P i

end

/* Sampling: Get initial activity */
Q ← draw at=0 from P 0

/* While the absorption state has
not yet been reached, do */

while at �= D|D| do
t = t+ 1
if t < k then

/* Sample from the t’th
transition matrix in Φ */

at ← Draw from distribution corresponding
to the Q’th row of transition matrix Φt

else

/* Sample from P k
*/

at ← Draw from distribution corresponding
to the hdk(Q)’th row of transition matrix P k

end

/* Append activity to the trace

*/
Q ← at

end

the d’th state is observed in Qt for t = {1, . . . , |Q|}. For
mathematical convenience, the binary encoding is used in
this framework. A generated sequence/trace i will thus be
referred to as V(i,T,D), where i denote the trace identifier in

Prepared using sagej.cls

Riess 13

the event-log Θ, T = (|Q|) the discrete time dimension, and
D is the state-space including the absorbing state SEND. For
the example sequence Qi = {S2, S1, SEND}, from the state-
space D = {S1, S2, SEND}, the first time step will at time
step t = 1 result in the following binary vector: V(i,t=1,D) =

(S1, S2, SEND) = (0, 1, 0).

Activity durations

All activity durations yt ∈ R are drawn from the exponential
distribution, which uses a single rate parameter λ to specify
the probability density function: f(x, λ) = λe−λx.

Each possible timestep-state combination has its own
rate parameter λ(d,t) which can be drawn from any
arbitrary continuous distribution Ω. In the implementation
of this framework the uniform distribution is used, Ω ∼
Uniform(0.0001, ξ), where ξ is the upper limit.

For a full trace, this effectively becomes |D| Hypoex-
ponential distributions:

∑|Q|
t=1 u(d,t) ∼ Hypo(Λd ∼ Ω(ξ)),

where Λd is a |D| × |Q| matrix containing the rate param-
eters. The isolated activity duration of the event d at time
step t can thus be expressed as:

v(d,t) = Exp(Λ(d,t)) (18)

Activity offsets

The time between the activity of an event e1 is completed,
and the next activity of e2 can begin will be referred to
as the activity offset. In other words, this is the delay
before processing of a given activity will begin. The offsets
represented in this framework consist of both stochastic
and deterministic components. The respective offsets are
assumed to be a function of the following factors:

• Stochastic:

Resource availability
Stability of the process

• Deterministic:

Outside business hours

Activities are assumed to be processed via first come first
served (FCFS) priority, where the waiting time is simulated
through stochastic resource availability (section Resource
availability). Once a resource is ready to process the activity,
a process stability offset can be be included (section Process
stability), and the deterministic offset will then be calculated
via the procedure in section Business hours (based on the
stochastic offsets). Afterwards, the activity is processed, and
its duration is defined in Equation 18. An overview of the
offsets is shown in Figure 2.

Resource availability As most business processes involve
a resource or agent to process the activity, resources are
also included in the parametric simulation model. To avoid
a multi-level type simulation model, cases are assumed to
be identically independently distributed, in that resource
availability is modeled using the binomial distribution. In
short, every activity will have an activity resource offset value
h, which represents the waiting time for acquiring an idle
resource. Algorithm 8 provides an overview of the generation
of the activity resource offset.

Algorithm 8: Generate resource availability offset
for a single activity

Data: Number of agents n, Probability of idle agent
p, Time between requests m

Result: Agent availability offset h
/* Agent availability offset starts

at 0 */
h = 0
/* Keep trying until resource is

available */
while k < 1 do

/* Get the number of trials
before success */

Draw k from Binom(n, p)
/* If k < 1, add a waiting time

penalty */
if k < 1 then

h = h+m
end

Process stability Depending on the assumptions of the
process, stochastic offsets can be added to represent
process (in)stability. This enables the ability to generate
extreme observations, which can be present at any event
et within a trace Q. The process stability offset b can
be represented using any continuous distribution, however,
it is implemented as the exponential distribution in this
framework:

b ∼ Exp(λ) (19)

Consequently, the combined stochastic offsets of a process
activity d at time step t can be formulated as:

m(d,t) = h(d,t) + b(d,t) (20)

Business hours To calculate the deterministic offsets
related to business hours (open versus closed), the time point
during the week where the activity was scheduled to be
performed needs to be identified. This is achieved using
Equation 21:

Prepared using sagej.cls

14 Simulation XX(X)

Figure 2. Overview of activity offsets. Exp refer to the exponential distribution.

qt = ((Q(z) + [t > 1](
t−1∑
j=1

uj)) +m(d,t)) mod η (21)

Where qt denote the scheduled start time since the
beginning of the week, Q(z) is the arrival time of the i’th

trace Qi ∈ Θ (see Algorithm 1). The term [t > 1](
∑t−1

j=1 uj),
is the total duration of all previous events of the i’th trace,
given that there are any. The expression: [t > 1] will assume
the value of one when true, and zero otherwise (Iverson
1962). m(d,t) is the sum of the stochastic offsets of the
current event et (equation 20), and finally, η is the number
of time units within a week (days, hours, minutes).

To get the offsets for work scheduled outside business
hours, the time until work can continue is added using the
function f in Equation 22. The function returns a conditional
value based on logical constraints and the value of qt.

f(qt,W) = [qt ≥ W(1,1) < W(1,2)](W(1,2) − qt) (22)

Here the values (W(1,1),W(1,2)) denote the respective
start and end of the first interval of the week, wherein the
activity et cannot begin due to business rules (process is
offline), and will thus be given an offset. Using this logic, any
amount of intervals can be introduced when W is a n× 2

matrix, where n is the number of intervals the business is
process is offline:

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

W(1,1) W(1,2)

...
...

W(i,1) W(i,2)

...
...

W(n,1) W(n,2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

To include all intervals, Equation 22 can be reformulated
as:

f(qt,W) =
n∑

i=1

[qt ≥ W(i,1) < W(i,2)](W(i,2) − qt) (23)

Finally, the total offset can be calculated as:

O(d,t) = f((Q(z) + [t > 1]
t−1∑
j=1

v(d,t=j)

+H(d,t) +B(d,t)) mod η,W)(d,t) (24)

Where the matrix H(d,t) denote the resource availability
offsets across all time steps in the trace t ∈ {1, ..., |Qi|}
and activities d ∈ D. Similarly, B(d,t) contain the process
stability offsets, and O(d,t) represent the total offsets.

Time components

In the previous sections the individual time components
(duration and offsets) have been introduced separately.
Algorithm 9 demonstrates how the individual components
are generated in order to form the timestamp of each event

Prepared using sagej.cls

Riess 15

nt, as well as the duration including the offsets ut. The total
duration of an event et is formulated as Ut.

Algorithm 9: Generation of trace time components
Data: A matrix of offline-intervals W , the number of

time units within a week η, a complete trace
with a sequence of events Q = {e1, ..., e|Q|},
Resource availability parameters n, p,m,
process stability rate r, a matrix of rate
parameters Λd,t

Result: Time components Nt

/* Placeholders */
N ← ∅
/* For each timestep in the current

trace */
for t in {1, ..., |Q|} do

/* Resource availability offset

*/
ht ∼ Algorithm8(n, p,m)
/* Process stability offset */
bt ∼ Exp(λ = r)
/* Position during the work-week

(time since monday) */

qt = (([t > 1](
∑t−1

j=1 uj)) + bt + ht) mod η

/* Business hours offset */
st = f(qt,W)
/* Get index d for current

timestep t, to get individual
rate parameter */

d = Q(t=t,d)

vt ∼ Exp(Λ(d=d,t=t))
/* Total duration of the activity

*/
ut = ht + bt + st + vt
/* Generate timestamps of

activity starttime nt */
if t = 1 then

nt = Q(z) + ht + bt + st
else

nt = nt + ut

end

/* Append components to N */
Nt ← (ut, ht, bt, st, vt, nt)

end

Trace duration

The simulation Equation for the total trace duration
(throughput time) yi of a trace Qi has the form:

yi =

D∑
d=1

T∑
t=1

G(i,d,t)E(i,d,t) +O(i,d,t)E(i,d,t) (25)

G(i,d,t) ∼ Hypo(Λ(d,t)) (26)

Where Λ(d,t) is a matrix of size |D| × T containing the
individual rate parameters for each state-time pair, O(i,d,t)

refer to the combined offset of each activity, and E(i,d,t) refer
to a one-hot encoded vector of the state transitions over the
full trace Qi (see section Sequence encoding).

Equivalently, the durations for all individual activities et ∈
Qi can be expressed as:

u(i,d,t) = G(i,d,t)E(i,d,t) +O(i,d,t)E(i,d,t) (27)

Simulation parameters

Table 3 provides an overview of the input parameters of the
simulation framework.

Simulation test

In the following, a set of simulation runs will be presented
in order to demonstrate the capabilities of the framework. To
achieve this, a full factorial design over the factors and levels
in Table 4 was generated with 10 replications. This resulted
in a total of 960 generated event-logs of variable size. Some
levels do not influence each other (process memory and
process type=memoryless), but were kept in the design table
to ensure a balanced design. The simulation framework will
be evaluated in terms of the CPU-time used, as well as the
trace distributions, duration distributions. A more qualitative
evaluation will be performed to illustrate examples of the
resulting control flows for each of the levels of entropy, as
well as the structure of a single eventlog generated with this
framework.

Simulation performance: CPU time

The simulation test was conducted in python 3.8, on a
workstation with a Intel i9-13900KF CPU and 64 GB DDR5
RAM. The code in its current form has not been optimized
for multi-core processing, which leads to significantly longer
runtime for the process with memory.

In Figure 3 the distribution of time in seconds to generate
an event-log with and without memory versus different
levels of entropy can be seen. The time to generate the
event-logs from a Higher-order Markov chain is orders of
magnitude larger than the memoryless process. This is due
to the increased size in the number of parameters, as well
as the fact that this framework do not leverage multiple
cores when generating sequences from a Markov chain. The
relative difference in runtime between medium and maximum

entropy, is due to the fewer possible paths in the medium

variant, which is more likely to lead to longer traces, as
the transition might get temporarily ”stuck” between states
before reaching the absorption state. The minimum entropy

Prepared using sagej.cls

16 Simulation XX(X)

Parameter Explanation

n traces Number of traces to generate.

d size The size of the state-space of the process (number of activities).

process entropy The desired level of entropy in the generated process. This can be set to
either minimal, medium, or maximal.

process type This specifies whether the data generating process is memoryless or
have k orders of memory.

process memory k The order of the process with memory.

n transitions Also unique to the medium-level entropy process, this parameter specify
the number of possible transitions from each state in D.

inter arrival time The parameter specifying the time between arrivals in Algorithm 1.

process stability scale The parameter specifying average offsets due to lack of process stability
(equation 19).

resource availability p The probability p that an agent is available at any time t (algorithm 8).

resource availability n The number of resources allocated to the process, at any time t
(algorithm 8).

resource availability m The amount of time between requests when no resource is currently
available (algorithm 8).

activity duration lambda range The range of the parameters specifying average duration for each
D × T combination in Λ(d,t) (equation 18). Values are drawn from the
uniform distribution.

deterministic offset The type of deterministic offsets related to business hours. This can be
specified as weekdays with open hours from 6-18, Monday to Friday, or
alternatively 6-18 on all weekdays. The business hours intervals can be
changed by the user from the matrix W introduced with Equation 22.

Table 3. Input parameters for the simulation framework

Factor Levels

n traces 500

d size 5, 10

process entropy Minimal, medium,
maximal

process type Memory, memory-
less

process memory 2, 4

n transitions 3, 5

inter arrival time 1.5

process stability scale 0.1

resource availability p 0.5

resource availability n 3

resource availability m 0.041 (15 minutes)

activity duration lambda range 1, 5

deterministic offset Weekdays

Table 4. Settings for the simulation test

Figure 3. Simulation performance: CPU time in seconds.

setting for the process with memory is the fastest, as it is a
deterministic process.

Trace distributions

The distribution of the average and maximal trace lengths
of each simulated event-log can be seen from Figure 4. As
seen from the fliers (black dots) of the two box plots, the

Prepared using sagej.cls

Riess 17

med entropy settings are most likely to generate outliers
in terms of trace length. As previously discussed, these
transition matrices are restricted in the number of possible
paths the process can take (defined by the number of
transitions in Algorithm 5), these processes are thereby
more likely to get temporarily ”stuck” before reaching the
absorbing state. As Figure 4 shows, this behaviour becomes
even more extreme when the process has memory.

Event distributions

For the simulation runs using a memoryless process, Figure
5 illustrates the distribution of events within the first 25 time
steps. The box plots represent the variation in frequency for
each event et across the simulated event-logs, separated by
the level of entropy. Each individual chart represent a given
size of the state space (3, 5), combined with a given number
of transitions (5, 10). The individual plots both illustrates
frequencies of events, but trace lengths can also be inferred
from it.

Focusing on the settings with min entropy (blue), there
is no variation in the frequency at each time step (see black
median lines at y = 500), and the box plot simply becomes a
thin static line. Furthermore, the maximal number of events
observed is equal to the size of the state space. As this is
a deterministic process with only one trace variant, this is
expected.

For the event-logs simulated with med entropy (orange)
a high level of variation in the frequency can be seen in
each of the four charts, with the largest variation being in
settings with a state space of 10. These experiments also
have the highest average frequency of events at every point
in time, which also means longer traces. This is expected,
as the number of transitions, and the size of the state space
has an influence on the trace length, and thereby the overall
distribution of events/time steps observed.

For the settings with max entropy (green), there are far
less variation compared to med entropy. The explanation
here lies in the transition matrices generated for the medium

entropy process in Algorithm 5, as this generates unique,
restricted transition matrices fulfilling the specified number
of transitions and size of state space. Across multiple
runs with the same setting the transition matrices will be
different, and thereby represent different processes (and
thereby greater variation).

The settings with maximum entropy (see Algorithm 4),
will on the other hand produce the same transition matrix
across multiple runs with the same setting. All possible trace
variants will thereby be represented given enough samples,

which leads to a more identical distribution across multiple
runs with the same setting.

Moving on to Figure 6 which includes only distributions
for runs with memory, a much larger degree of variation can
be seen for the setting with med entropy. The explanation
here is similar to the memoryless process, as the logic
behind the transition matrices are the same. The major
difference here is the size of the transition matrices, where
the memoryless process is defined by an initial probability
vector P 0 and a transition matrix P . In contrast, process
with memory rely on P 0 and a set of k transition matrices
of increasing size. For the setting with min entropy, each
transition matrix P i ∈ Φ will be unique. Comparing the
results of min entropy and max entropy, similar results
as for the memoryless process are found.

Duration distributions

Looking at the duration distribution in Figure 7, it can
be seen that the variation in the average duration of the
activities change as the activity duration lambda range

parameter is altered (shown with colors blue and orange).
This parameter specifies the upper boundary of the uniform
distribution used to draw the individual rate parameters
specifying each activity duration distribution at each possible
time step Λ(d,t). As expected, an upper range of 5 (which
means Uniform(0, 5)), leads to a higher observed median
activity duration, and a higher spread in the distribution.

For the average activity durations shown in Figure 8,
the mean (represented by the colored lines) fluctuates in a
increasing manner as the trace becomes longer. As only 14

runs had traces with more than 100 events, the fluctuating
behavior of the mean after this point is purely due to a low
number of event-logs with this many events.

Trace example

An example trace is illustrated in tables 5 and 6. Table 5
show the simulated values for each of the continuous time
components, which are included in each of the generated
event-logs. For reference, see Figure 2 for an overview of the
definition of time components and variable names. In Table
6, UNIX-timestamps are generated with a starting date of
2023-01-01 00:00. The arrival datetime denote the point
in time where the trace is generated, and start datetime

denote when a resource started working on the activity,
finally, end datetime denotes the point in time when the
activity is completed. As seen by this example, activity f

ends Saturday midnight, and as new activities cannot start

Prepared using sagej.cls

18 Simulation XX(X)

Figure 4. Distribution of trace lengths in each generated event-log.

Figure 5. Memoryless process: Distribution of events 1 to 25, grouped by process entropy (color).

during weekends, activity e starts Monday morning at 06:00
instead.

Control-flow examples

To demonstrate the resulting control flows of the event-logs
generated by the simulation framework, three examples of
BPMN models have been created from the event-logs using
Inductive miner (van der Aalst 2016) and the PM4PY Python
library (Berti et al. 2019). As the simulation test consist
of a total of 2304 unique event-logs, the inspection of the
process diagrams has to be qualitative. The examples thereby
show BPMN models of event-logs generated with minimum,
maxium and medium entropy using the memoryless process
and a statespace of size 5.

As seen by Figure 9, there is only one possible path in
the control-flow of the minimum-entropy process, as it is
defined as a deterministic process in the activity sequence
(Algorithm 3). As previously mentioned, this is to simulate
an example of the simplest possible process with no variation
or uncertainty in it, which can be useful as a contrast to
different levels of complexity.

The maximum entropy example in Figure 10, illustrates a
process where all possible combinations of transitions within
a given time-span is possible with identical probability (as
defined in Algorithm 4). As every possible transition has
identical probability, this represents a theoretical scenario
that is completely random and thereby impossible to predict
from a Machine learning perspective.

Prepared using sagej.cls

Riess 19

Figure 6. Memory process: Distribution of time steps from 1 to 25, grouped by process entropy (color).

Figure 7. Average duration: Time steps from 0 to 50. The color denote the upper range of the activity duration lambda range
parameter.

caseid activity t z t n t q t h t b t s t v t u t

2 f 1 4.78 4.78 4.87 0.041 0.05 0.00 0.51 0.60
2 e 2 4.78 5.38 5.43 0.041 0.01 2.07 0.11 2.23
2 c 3 4.78 7.61 0.77 0.082 0.08 0.00 0.87 1.04

Table 5. Example-trace part one: Overview of simulated attributes

caseid activity t arrival datetime start datetime end datetime start day

2 f 1 2023-01-06 12:38:18 2023-01-06 14:51:18 2023-01-07 03:07:40 Friday
2 e 2 2023-01-06 12:38:18 2023-01-09 06:00:00 2023-01-09 08:44:23 Monday
2 c 3 2023-01-06 12:38:18 2023-01-09 12:35:46 2023-01-10 09:35:42 Monday

Table 6. Example-trace part two: Overview of simulated attributes

Prepared using sagej.cls

20 Simulation XX(X)

Figure 8. Average duration: Time steps from 0 to 500. The line color denote the upper range of the
activity duration lambda range parameter.

Figure 9. Minimum entropy BPMN: Memoryless process

Figure 10. Maximum entropy BPMN: Memoryless process

Figure 11. Medium entropy BPMN: Memoryless process

Finally, the medium entropy setting in Figure 11
demonstrates a process between the two extremes of
minimum and maximum entropy, which is controlled by
the combination of n transitions and d size (state space)
parameters. Using these two parameters, this process-type
can more closely resemble a process that is likely to be
observed in a real business process, compared to minimum

and maximum entropy. From Figure 11 a memoryless process
with 3 transitions and a state space of 5 possible activities can
be observed.

Discussion and conclusion

Aiming at contributing to the research in the field of
Predictive process monitoring (Evermann et al. 2016; Niek
Tax, Marlon dumas, Ilya veenich, Marcello la rosa 2017;
Navarin et al. 2018; Teinemaa et al. 2018; Verenich et al.
2019), and more specifically the robustness assessment of
existing and future proposals, this paper has introduced a
new framework for the generation of synthetic event-log
data. Compared to existing open source approaches in the
field, this framework is purely based on a theoretical data
generating process. Compared to the existing frameworks,
this framework has the disadvantage that it can not be
calibrated to existing event-logs (in its current form).

On the other hand, the advantage of the framework in the
form it is presented in this paper, is that the data generating
procedure is transparent and based on well-known statistical
distributions. The influence of data-related factors such as
process complexity and temporal variability in the duration
distribution can now easily be assessed. As demonstrated in
the previous sections, these settings can be controlled and
systematically changed in an experimental design.

Compared to the existing solutions based on BPMN
models (Camargo et al. 2019b; López-Pintado and Dumas
2022; Fracca et al. 2021), Petri Nets (Pourbafrani et al.
2021b; Pegoraro et al. 2021; Grüger et al. 2022) and Process
Trees (Pourbafrani et al. 2021a) found in the literature
review, this framework uses Markov chains to represent
the control flow of a simulation model. This approach has
the disadvantage that it does not support concurrent/parallel
processing of events, unless a significantly higher number
of states is introduced (with multiple activities processed in

Prepared using sagej.cls

Riess 21

parallel encoded as separate states (van der Aalst 2016)).
However, using Markov chains to represent the control flow,
the process can be represented without abstractions, at the
cost of the number of parameters. A higher-order Markov
chain can thereby represent a process with no abstractions,
where any event et in the trace is dependent on the complete
history within the trace Qi. As previously mentioned,
this enables the simulation of unique temporal patterns in
the duration distributions of activities, as well as activity
sequences. This is especially relevant for the study on Long
Short-term Memory Recurrent Neural Networks (Hochreiter
and Schmidhuber 1997), which are known to perform well in
prediction problems with long input sequences such as event-
log data (Niek Tax, Marlon dumas, Ilya veenich, Marcello
la rosa 2017; Navarin et al. 2018). This framework can
therefore serve as an additional benchmark that enables
a deeper understanding of data-related factors, and their
influence on the performance of particular approaches in
predictive process monitoring.

However, as this framework was developed for model
robustness assessment in Predictive process monitoring,
it has limitations that makes it less suitable for other
branches of research. For instance, the individual behavior
of resources or interruptions cannot be analyzed from this
framework, as they are assumed to be represented by
distributions. This is for instance a limitation for research
in prescriptive process monitoring, where a calibrated agent-
based simulation model such as (López-Pintado and Dumas
2022) would be more appropriate. Furthermore, the initial
version of this framework also only supports the use
of Exponential and Hypoexponential distributions due to
their convenient relationship that enables the trace duration
formulation in Equation 25.

In future iterations, functionality such as conditional
transition matrices and duration distributions based on
simulated case attributes can be introduced. Another
possibility is to add more complexity to the duration
distributions via time-dependent rate-parameters for the
activity duration distributions Λ(d,t). Mixture distributions
is also a possible direction to achieve this. Currently,
the proposed framework is not optimized for multi-
core processing, which could decrease the time it takes
to generate multiple event-logs. However, this was not
seen as a key design priority in this first version of
this framework. The source code is publicly available
from: https://github.com/Mikeriess/SBPS framework, where
practical instructions and examples are available. Readers
interested in participating in the future development of the

framework are welcome to submit pull requests or contact
the author.

References

Aalst W (2015) Business process simulation survival guide.

Handbook on Business Process Management 1. International

Handbooks on Information Systems. : 337–370DOI:10.1007/

978-3-642-45100-3 15.

Altiok T and Melamed B (2007) Chapter 2 - discrete

event simulation. In: Altiok T and Melamed B (eds.)

Simulation Modeling and Analysis with ARENA. Burlington:

Academic Press. ISBN 978-0-12-370523-5, pp. 11–

21. DOI:https://doi.org/10.1016/B978-012370523-5/50003-1.

URL https://www.sciencedirect.com/science/

article/pii/B9780123705235500031.

Augusto A, Conforti R, Dumas M and La Rosa M (2017) Split

miner: Discovering accurate and simple business process

models from event logs. In: 2017 IEEE International

Conference on Data Mining (ICDM). IEEE, pp. 1–10.

Berti A, van Zelst SJ and van der Aalst WMP (2019) Process mining

for python (pm4py): Bridging the gap between process- and

data science. CoRR abs/1905.06169. URL http://arxiv.

org/abs/1905.06169.

Bradley W and Henseler J (2007) Modeling reflective higher-order

constructs using three approaches with pls path modeling: a

monte carlo comparison .

Camargo M, Dumas M and González-Rojas O (2019a)

Learning Accurate LSTM Models of Business Processes.

ISBN 978-3-030-26618-9, pp. 286–302. DOI:

10.1007/978-3-030-26619-6\ 19.

Camargo M, Dumas M and Rojas OG (2019b) Simod: A tool for

automated discovery of business process simulation models.

In: BPM (PhD/Demos). pp. 139–143.

Ching W, Ng MK and Zhang S (2005) On computation with

higher-order markov chains. In: Zhang W, Tong W, Chen Z

and Glowinski R (eds.) Current Trends in High Performance

Computing and Its Applications. Berlin, Heidelberg: Springer

Berlin Heidelberg. ISBN 978-3-540-27912-9, pp. 15–24.

Ching WK, Fung ES and Ng MK (2004) Higher-order markov

chain models for categorical data sequences. Naval Research

Logistics (NRL) 51(4): 557–574.

development team P (2020) pandas-dev/pandas: Pandas. DOI:

10.5281/zenodo.3509134. URL https://doi.org/10.

5281/zenodo.3509134.

Dumas M, La Rosa M, Mendling J, Reijers HA et al. (2018)

Fundamentals of business process management, volume 2.

Springer.

Prepared using sagej.cls

22 Simulation XX(X)

Efron B, Hastie T, Johnstone I and Tibshirani R (2004) Least angle

regression. The Annals of Statistics 32(2). DOI:10.1214/

009053604000000067. URL http://dx.doi.org/10.

1214/009053604000000067.

Evermann J, Rehse JR and Fettke P (2016) A deep learning

approach for predicting process behaviour at runtime.

International Conference on Business Process Management

1: 490. DOI:10.1007/978-3-319-58457-7. URL http://

b-ok.xyz/book/2942192/1d94cd.

Fishman GS (2001) Discrete-event simulation: modeling, program-

ming, and analysis. Berlin: Springer-Verlag. DOI:10.1017/

978-1-4757-3552-9.

Fracca C, Bianconi A, Meneghello F, de Leoni M, Asnicar F and

Turco A (2021) Bpsimpy: A python library for wfmc-standard

process-simulation specifications. In: BPM (PhD/Demos). pp.

97–101.

Grüger J, Geyer T, Jilg D and Bergmann R (2022) Sample: A

semantic approach for multi-perspective event log generation-

research paper. In: 5th International Workshop on Process-

Oriented Data Science for Healthcare (PODS4H22).

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,

Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R,

Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del

Rı́o JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K,

Reddy T, Weckesser W, Abbasi H, Gohlke C and Oliphant TE

(2020) Array programming with NumPy. Nature 585(7825):

357–362. DOI:10.1038/s41586-020-2649-2. URL https:

//doi.org/10.1038/s41586-020-2649-2.

Hochreiter S and Schmidhuber J (1997) Long short-term memory.

Neural computation 9(8): 1735–1780.

Iverson KE (1962) A Programming Language. USA: John Wiley

Sons, Inc. ISBN 0471430145.

Kubrak K, Milani F, Nolte A and Dumas M (2022) Prescriptive

process monitoring: Quo vadis? PeerJ Computer Science 8:

e1097.

La Rosa M and Soffer P (2013) Business Process Management

Workshops: BPM 2012 International Workshops, Tallinn,

Estonia, September 3, 2012, Revised Papers, volume 132.

Springer.

López-Pintado O and Dumas M (2022) Business process simulation

with differentiated resources: Does it make a difference? In:

Business Process Management: 20th International Conference,

BPM 2022, Münster, Germany, September 11–16, 2022,

Proceedings. Springer, pp. 361–378.

Mannhardt F and Blinde D (2017) Analyzing the trajectories of

patients with sepsis using process mining. RADAR+ EMISA@

CAiSE 1859: 72–80.

Mannhardt F, de Leoni M, Reijers H and Aalst W (2015)

Balanced multi-perspective checking of process conformance.

Computing DOI:10.1007/s00607-015-0441-1.

Navarin N, Vincenzi B, Polato M and Sperduti A (2018)

LSTM networks for data-aware remaining time prediction of

business process instances. 2017 IEEE Symposium Series on

Computational Intelligence, SSCI 2017 - Proceedings 2018-

Janua: 1–7. DOI:10.1109/SSCI.2017.8285184.

Niek Tax, Marlon dumas, Ilya veenich, Marcello la rosa (2017)

Predictive Business Process Monitoring with LSTM Neural

Networks. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 10253 LNCS: V–VI. DOI:10.1007/

978-3-319-59536-8.

Peeperkorn J, vanden Broucke S and De Weerdt J (2022) Can deep

neural networks learn process model structure? an assessment

framework and analysis. In: Process Mining Workshops: ICPM

2021 International Workshops, Eindhoven, The Netherlands,

October 31–November 4, 2021, Revised Selected Papers.

Springer, pp. 127–139.

Pegoraro M, Uysal MS and van der Aalst WM (2021) Proved:

A tool for graph representation and analysis of uncertain

event data. In: Application and Theory of Petri Nets and

Concurrency: 42nd International Conference, PETRI NETS

2021, Virtual Event, June 23–25, 2021, Proceedings 42.

Springer, pp. 476–486.

Pourbafrani M, Jiao S and van der Aalst WM (2021a) Simpt:

process improvement using interactive simulation of time-

aware process trees. In: Research Challenges in Information

Science: 15th International Conference, RCIS 2021, Limassol,

Cyprus, May 11–14, 2021, Proceedings. Springer, pp. 588–

594.

Pourbafrani M and van der Aalst WM (2020) Pmsd: data-driven

simulation using system dynamics and process mining. arXiv

preprint arXiv:2010.00943 .

Pourbafrani M, Vasudevan S, Zafar F, Xingran Y, Singh R and

van der Aalst WM (2021b) A python extension to simulate petri

nets in process mining. arXiv preprint arXiv:2102.08774 .

Raftery AE (1985) A model for high-order markov chains. Jour-

nal of the Royal Statistical Society. Series B (Methodolog-

ical) 47(3): 528–539. URL http://www.jstor.org/

stable/2345788.

Railsback SF, Lytinen SL and Jackson SK (2006) Agent-based sim-

ulation platforms: Review and development recommendations.

Simulation 82(9): 609–623.

Ratzer AV, Wells L, Lassen HM, Laursen M, Qvortrup JF, Stissing

MS, Westergaard M, Christensen S and Jensen K (2003)

Cpn tools for editing, simulating, and analysing coloured

Prepared using sagej.cls

Riess 23

petri nets. In: Applications and Theory of Petri Nets 2003:

24th International Conference, ICATPN 2003 Eindhoven, The

Netherlands, June 23–27, 2003 Proceedings. Springer, pp.

450–462.

Rubinstein RY and Kroese DP (2016) Simulation and the Monte

Carlo Method. 3rd edition. Wiley Publishing. ISBN

1118632168.

Schreiber J (2018) Pomegranate: fast and flexible probabilistic

modeling in python. Journal of Machine Learning Research

18(164): 1–6.

Teinemaa I, Dumas M, Leontjeva A and Maggi FM (2018)

Temporal stability in predictive process monitoring. Data

Mining and Knowledge Discovery 32(5): 1306–1338. DOI:

10.1007/s10618-018-0575-9.

Teinemaa I, Dumas M, Rosa ML and Maggi FM (2019)

Outcome-oriented predictive process monitoring: Review and

benchmark. ACM Transactions on Knowledge Discovery from

Data (TKDD) 13(2): 1–57.

Teniente E and Weidlich M (2018) Business Process Management

Workshops: BPM 2017 International Workshops, Barcelona,

Spain, September 10-11, 2017, Revised Papers, volume 308.

Springer.

Tibshirani R (1996) Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society. Series B

(Methodological) 58(1): 267–288. URL http://www.

jstor.org/stable/2346178.

Trivedi KS and Bobbio A (2017) Reliability and Availability Engi-

neering: Modeling, Analysis, and Applications. Cambridge

University Press. DOI:10.1017/9781316163047.

van der Aalst WMP (2016) Process Mining: Data Science in Action.

2 edition. Heidelberg: Springer. ISBN 978-3-662-49850-7.

DOI:10.1007/978-3-662-49851-4.

van Dongen BF, Crooy RA and van der Aalst WM (2008) Cycle

time prediction: When will this case finally be finished? In:

OTM Confederated International Conferences” On the Move

to Meaningful Internet Systems”. Springer, pp. 319–336.

Verenich I, Dumas M, Rosa ML, Maggi FM and Teinemaa I (2019)

Survey and cross-benchmark comparison of remaining time

prediction methods in business process monitoring. ACM

Transactions on Intelligent Systems and Technology 10(4): 1–

34. DOI:10.1145/3331449.

Zou H and Hastie T (2005) Regularization and variable selection via

the elastic net. Journal of the Royal Statistical Society. Series

B (Statistical Methodology) 67(2): 301–320. URL http:

//www.jstor.org/stable/3647580.

Prepared using sagej.cls

Paper III
Riess, M. and Scholderer, J. (2023). Customer-service queuing based on predicted
loyalty outcomes. Manuscript submitted to Decision Support Systems.

99

CUSTOMER-SERVICE QUEUING BASED ON PREDICTED LOYALTY
OUTCOMES

Mike Riess
School of Economics and Business

Norwegian University of Life Sciences
Universitetstunet 3, 1433 Ås, Norway

mike.riess@nmbu.no

Joachim Scholderer
School of Economics and Business

Norwegian University of Life Sciences
Universitetstunet 3; 1433 Ås, Norway
joachim.scholderer@nmbu.no

ABSTRACT

We introduce a customer service management approach with a new type of predictive priority
queuing. The priority rank of a case is determined based on predicted customer loyalty scores.
Increases in customer loyalty are predicted based on predicted case throughput time. Case throughput
time is, in turn, predicted from seasonality indicators alone, due to incomplete information at the
time of entering the queue. The priority queue is continuously updated. Two studies are reported.
Study 1 is a statistical analysis of two years of customer service data from a European internet
and telecommunications provider. We utilise the real-world data to obtain valid estimates of the
parameters of all distributions governing the service process. In Study 2, we use the calibrated
distribution parameters in Monte Carlo simulations of the customer service management system. In
these experiments, we compare our predictive priority queuing approach with the traditional first
come, first served approach used in the case company. Furthermore, we compare the performance to
two other approaches that are based on predicted case throughout time; the longest remaining time
first and the shortest remaining time first approach. We show that prioritisation based on predicted
customer loyalty does indeed lead to an increase in average customer loyalty. However, since this
effect is mediated by predicted throughput time, the longest remaining time first approach yields
similar results as our proposed method. Introduction of a service level (here: maximum 60 hours
waiting time) reduced the performance of all approaches based on predicted throughout time to the
performance of the first come, first served approach.

1 Introduction

In a classical experiment, Kumar et al. (1997) show that service time guarantees can be a two-edged sword: customers
will only be more satisfied at the end of a waiting period if the guaranteed service times are actually met. If the
guarantees are not met, however, customers will be even less satisfied than if they had not been aware of the existence
of a service time guarantee in the first place. This poses a challenge for customer service management (Ibrahim, 2018).
Since service processes are interactive by nature, depending to a large degree on actions by the customer, they can never
be fully under the control of the service provider. Compared to manufacturing processes, a much larger proportion
of cases will be outside the "specification limits" defined by waiting time guarantees (Reijers, 2003). The problem is
known and has been addressed in several ways in previous research.

Service management approaches based on queuing theory, for example Hui and Tse (1996), Obermeier et al. (2020) or
Schwarz et al. (2016), reduce the between-case variance of the waiting time distribution and thereby also the number of
cases exceeding a given waiting time guarantee. In its simplest form, a queuing system treats newly arriving cases as
equal in terms of the gains associated with meeting a waiting time guarantee or the losses associated with exceeding a
waiting time guarantee. This is for example the case with the standard first come, first served (FCFS) discipline. More
elaborate approaches introduce classes of cases or customers in order to prioritise the queue (Sayenko et al., 2006).
Class membership can be static and known before case arrival (e.g., based on customer tenure, customer lifetime value
or a related metric). Alternatively, the class membership of a case may be dynamic but known at the time the queue is
updated (e.g., based on current prices of spare parts or repair activities). Finally, it can be dynamic and unknown at the

PAPER 3

time the queue is updated. In this situation, a prediction at case level is required of the quantity (or quantities) based on
which priority class membership is to be assigned.

In the research presented here, we shall introduce such an approach. We study an M/M/s system with priority queuing.
The priority rank of a case is determined based on predicted increases in customer loyalty. Increases in customer loyalty
are predicted based on predicted case throughput time. Case throughput time is, in turn, predicted from seasonality
indicators alone, as no case attributes are available at the time of prioritisation. The priority queue is updated every time
a new case arrives. Using a simulation approach calibrated on two years of real-world customer service data, we show
that prioritisation based on predicted increases in customer loyalty does indeed lead to an increase in average customer
loyalty (compared to first come, first served). In addition, it also leads to lower average throughput time. Both effects
are relatively stronger when the number of customer service agents s is lower. We also compare our approach to two
other queuing disciplines two other approaches that are based on predicted case throughout time, including the longest
remaining time first approach (LRTF) and the shortest remaining time first approach (SRTF). Compared to these, our
loyalty-based approach still yields higher average customer loyalty, but only is only slightly better than SRTF, and equal
to LRTF, in terms of case throughput time. Introduction of a service level (here: maximum 60 hours waiting time) to
increase the fairness of the systems reduced the performance of all approaches based on predicted throughout time to
the performance of the first come, first served approach used in the case company.

To our knowledge, this is the first paper in the queuing literature that addresses predicted loyalty outcomes in its
prioritisation approach. The paper is structured as follows. In the remainder of the introduction section, we will review
relevant theory and previous research, describe the rationale of our approach, and explain our research question and the
case background for the empirical part. Then, we will report Study 1, a statistical analysis of two years of real-world
customer service data from a European internet and telecommunications services provider. We will document the
estimation of all distribution parameters needed in the simulation and the development of the statistical prediction
models. In Study 2, we will use the calibrated distribution parameters and statistical models in simulations of our
M/M/s system, comparing our prediction-based prioritisation approach with the traditional FCFS approach and two
other approaches based on predicted case throughout time: The SRTF and the LRTF approach.

1.1 Theory and previous research

1.1.1 Prioritisation approaches in queuing

In the terminology of Kendall (1953), the "discipline" of a queuing system denotes the order in which the cases in the
queue are processed. Traditional approaches include first come, first served (FCFS), last in, first out (LIFO) and shortest
job first (SJF). Priority queuing is used when the arriving cases differ in terms of their value to the business. Many
prioritisation approaches have been suggested in the literature. In principle, prioritisation can be based on any set of cost
or value indicators that are available on the level of a case or customer. Gurvich et al. (2008), for example, study the
impact of different prioritisation approaches in service systems. They propose a model based on an M/M/s/N queuing
system with the goal to find the optimal staffing s, given customer classes with different processing times, subject
to a desired service level. The queue is prioritised using an idle-server based threshold priority and their proposed
single-class staffing rule. The authors find that there is a decoupling between staffing and prioritisation approach when
they evaluate a multi-class system, such that staffing in this setting has similar dynamics to a single class system.

In another paper, Dobson and Sainathan (2011) study the impact of prioritised queue management under the assumption
that prioritisation comes with a cost. Their approach features two types of agents: sorters and processors. The role of
the sorters is to gather information and prioritise each of the incoming customers, while the processors perform the
work needed on the cases. This introduces an additional cost related to the sorter agents, but assuming heterogeneous
waiting costs, sorting is expected to have a net positive effect on total costs. The results show that, given a fixed
exogenous budget, this prioritisation will only outperform FCFS in some cases, depending on the ratio of sorting cost to
processing cost. Mahmoumgonbadi et al. (2019) propose a queue prioritisation method based on a fuzzy system. In
theory, the approach would assign weights to customers that are based on service duration, service value, customer
tenure, customer patience, and waiting time. Based on (not empirically calibrated) simulation experiments, the authors
find that their approach outperforms FCFS in an M/M/1 system with different levels of stability.

The work of Tan et al. (2012) utilises the shortest remaining time first (SRTF) discipline in a case study of a hospital
emergency department. To improve the patient flow, three variants of the SRTF discipline are compared to FCFS in
calibrated simulation experiments of a M/M/s queue. The authors find that the SRTF-based strategies lead to shorter
throughput times. However, this depended heavily on the accuracy of the remaining time prediction. Furthermore,
the authors report that generic SRTF had the disadvantage of leading to starvation, i.e. the unfair situation that some
customers/patients will wait indefinitely in the queue). In Wang et al. (2020) the authors study the application of
multiple variants of the longest remaining time first discipline (LRTF) in the context of edge computing server allocation.

2

PAPER 3

Four different variants of the LRTF discipline are compared to the FCFS in a M/M/s queue. The LRTF discipline led
to the shortest average response times, compared to FCFS. However,in a similar manner as the SRTF discipline, generic
LRTF suffers from the problem of starvation.

In the research presented in this paper, we will compare our proposed approach (NPS) to three competitors: the queue
discipline most commonly applied in customer service systems (FCFS) plus two disciplines which are, like our proposed
approach, based on predicted throughput times (SRTF and LRTF) but do not use the throughout time predictions in
further prediction steps. We will compare the four disciplines in scenarios with and without waiting time guarantees
in the form of a service level. Service levels are often introduced in customer service systems to avoid the starvation
problems which disciplines such as SRTF and LRTF are known for (see above) and thereby to increase the fairness of
priority-based queuing systems.

We will not consider preemptive queuing approaches in our comparisons. The concept refers to a group of queue
disciplines (e.g., see Segal (1970) where a customer who arrives while the server is busy serving another customer is
given priority over the existing customer. The server interrupts the ongoing service to attend to the new customer, and
then resumes the previous service where they left off. This approach has some theoretical advantages, but it is rarely
used in customer service queuing systems. There are two reasons for this. First, customer service queuing systems
are designed to provide fair and equitable service to all customers. Preemptive queuing strongly favors high-priority
customers at the expense of low-priority customers, and often in quite obvious ways, which can lead to dissatisfaction
and complaints. Second, customer service queuing systems are usually designed to optimise resource utilisation and
minimise costs. Due to the frequent task-switching, preemptive queuing can increase the complexity and cost of the
system, which may not be justifiable for the marginal gains in efficiency or responsiveness.

1.1.2 Customer loyalty as a prioritisation criterion

To our knowledge, customer loyalty has so far not been used in any prioritisation approaches studied in the queuing
literature. This is somewhat surprising, considering that customer loyalty is the central construct in all relationship-
oriented approaches to marketing and service management (Hallowell, 1996; Kumar and Shah, 2004; Sheth and
Parvatiyar, 1995): the more loyal a customer, the higher that customer’s lifetime value, and the more loyal the customers
of a company, the higher the company’s expected future profitability. The commonly accepted definition of customer
loyalty is "the biased (non-random) behavioural response (brand support), expressed over time by some decision-making
unit with respect to one or more alternative brands out of a set of such brands, and is a function of psychological
processes (brand commitment)" (Jacoby and Chestnut, 1978).

Whilst there is little dispute about the conceptual definition and the importance of loyalty, its operationalisation differs
vastly in practice. Systematic reviews distinguish two basic approaches to the measurement of customer loyalty (Bennett
and Rundle-Thiele, 2002; Jacoby and Chestnut, 1978; Knox and Walker, 2001; Rundle-Thiele, 2005; Watson et al.,
2015): behavioural approaches and attitudinal approaches. Behavioural approaches to the measurement of loyalty use
objective indicators. Typical measures are the share of purchases of a brand relative to the total purchases within the
respective category, measures of allegiance (i.e., how long the customer has stayed with the supplier), and the number
of competing suppliers a customer has relations with. Attitudinal approaches to the measurement of loyalty, on the
other hand, use measures of commitment and intention, for example intentions to remain a customer, re-purchase the
product or service, or recommend the product or service to others.

Unfortunately, attitudinal and behavioural measures of loyalty have often shown limited convergent validity. In a cross-
category study of brand loyalty in consumer goods markets, Chaudhuri and Holbrook (2001) found a correlation of 0.64
between the two alternative measures. In a similar study, Knox and Walker (2003) found a much lower correlation of
0.23. In a study of loyalty in telecommunications service markets, Rundle-Thiele and Mackay (2001) found correlations
ranging from 0.10 to 0.50. Since its first publication by Bain consultant Frederick Reichheld (Reichheld, 2003), the
net promoter score (NPS) has come to replace virtually all other attitudinal measures of customer loyalty. The NPS is
based on a single survey question that measures word-of-mouth intention ("How likely is it that you would recommend
[company or brand] to a friend or colleague?") on an 11-point Likert scale ranging from "not at all likely" (0) to
"extremely likely" (10). At the analysis stage, the raw scale score is transformed into a three-class variable: customers
who responded with levels 9 or 10 are labelled promoters, customers who responded with levels 6 or lower are labelled
detractors, and customers who responded with levels 7 or 8 are labelled passives. The transformation is non-linear and
follows the logic of the top-box rule in market research (Kalwani and Silk, 1982), acknowledging that only differences
in the upper regions of intention scales have predictive validity with respect to differences in the probability of the target
behaviour.

Due to their as-yet undecided status, the passives are often considered the segment where targeted customer relationship
management activities can have the highest leverage and impact. Converting passives to promoters would require no
more than a shift of one or two scale points upwards on the response scale of the NPS survey question. In a similar way,

3

PAPER 3

passives could become detractors by a shift of one or two additional scale points downwards on the response scale.
Hence, the passives can be regarded as the most sensitive segment of customers. We adopt this way of thinking in the
prioritisation approach investigated here.

Let i (i = 1, 2, ...N) be an active case in queue Θ at time t (t = 1, 2, ...T). Furthermore, let ˆNPSi be the predicted
NPS at time t = T of the customer who submitted i, that is, after the service has been completed and the case has been
resolved. The priority rank of case i is then determined by rank-transforming the distance of the predicted after-service
NPS of the customer to the midpoint of the interval on the net promoter score response scale that represents the segment
of the passives. This midpoint is NPS = 7.5, such that:

priority(i, t) = rank(| ˆNPSi,T −7.5|) (1)

The rank function maps the set of NT distinct values to the set of integers 1, 2, ..., N such that each value is assigned a
unique rank based on its position in the ordered list of values (i.e., the smallest value receives a rank of 1, the second
smallest receives a rank of 2, and so on). The variable priority is therefore ordinal: a value of 1 indicates that case i has
first priority at time t, a value of 2 indicates that case i has second priority at time t, and so on.

Since customer satisfaction and loyalty are partly determined by the customer’s experience with the company’s service
provision, they will partly depend on the time it will take the company to resolve the case (Bielen and Demoulin, 2007;
Djelassi et al., 2018; Ibrahim and Whitt, 2011; Kumar et al., 1997; Tom and Lucey, 1997). Since the throughput time of
the case is not known before the case has been resolved, a prediction of the throughout time for case i must be made
before the after-service customer loyalty ˆNPSi,T can be predicted.

1.2 Research questions

The objective of the research presented here is to develop a new approach to customer service management that
addresses customer loyalty in its queue prioritisation approach, as well as evaluate its suitability via a case study. To
achieve this, we divide the research into two studies:

In Study 1, we will document the estimation of all distribution parameters needed in a simulation model of the case
company (which will be introduced in the next section). Furthermore, we will document the estimation of the needed
prediction models in order to perform the proposed loyalty-based queue prioritisation. The work is guided by the
following research question:

• RQ1.1: What are the distribution parameters of the key process components needed to generate an agent-based
simulation model of the service process in the case company?

In Study 2, we will use the calibrated distribution parameters and statistical models in Monte Carlo simulations,
comparing the NPS-based predictive priority queuing approach with three other queue disciplines (FCFS, LRTF, SRTF),
guided by the following research questions:

• RQ2.1: How does the number of agents influence the queue waiting time in the simulation period under
different prioritisation schemes?

• RQ2.2: What are the effects of the four queue disciplines on overall process performance?

• RQ2.3: What are the effects of the proposed loyalty-based queue discipline on the simulated net promoter
score?

A conceptual overview of the two studies is shown in Figure 1. As illustrated in the figure, Study 1 utilises event log
data provided by the case company which will be further introduced in section 1.3. Since neither case throughput time
nor after-service customer loyalty are known at the point in time where cases must be prioritised, our approach involves
two statistical prediction models: (a) a model that predicts expected throughput time, given case attributes that are
known at the time the case enters the queue, and (b) a model that predicts customer loyalty, given throughput time and
case attributes that are known at the time the case enters the queue. In each discrete time unit, both models are used to
update the ordering of cases in the queue.

We see it as important that the merit of our approach is assessed based on as realistic assumptions as possible. Hence,
the values of all simulation parameters will be based on a real business case. The case context as such is described in
the following section.

4

PAPER 3

Figure 1: Conceptual overview of the two studies.

1.3 Case context

The case company is a European internet and telecommunications services provider that wishes to remain anonymous.
The case company uses a customer relationship management (CRM) system for the management of customer service
requests from its enterprise customers. In the study period of almost two years (February 2018 to December 2019), the
case company had 91 different agents working on 11,294 email-based service requests in total.

The agents are based at different physical locations, but have remote access to the same systems to help solve customer
inquiries. Agents are organised into multiple teams, and do not exclusively work on customer service inquiries at all
times. Customers can contact the company via e-mail, telephone or a customer support request form on the company’s
website. Contact via telephone is mainly utilised by medium and large enterprise VIP customers (these have their own
dedicated key account manager and thereby represent a minority of the customer base). Once a case is created, it is put
in the queue until it is assigned to an available agent. Due to the form of contact, the case topic is either missing or
unverified at the time the agent is assigned. Once an agent has been assigned, he or she will work on the case and have
correspondence with the customer via e-mail or telephone, in case further information is needed to resolve the issue.
When the issue is resolved, the case is closed.

The case company uses the Net promoter score (NPS) Reichheld (2003) as a tool to evaluate its performance after a case
has been closed. The customer receives a short text message (SMS) and is asked to reply on a scale from 0 to 10, how
likely he or she is to recommend the case company to others. Of all 11294 cases in the study period, 1897 received a
valid NPS reply (16.7% response rate). The average individual NPS response was 8.82. The issue-to-resolution process
at the case company is visualised as a BPMN model in Figure 2.

2 Study 1: Statistical analysis of real-world data

Study 1 is a statistical analysis of the customer service process that will be simulated in Study 2. The purpose of the
analysis is to obtain valid estimates of all distribution parameters governing the process: activity duration, activity
sequences, inter-arrival times, case throughput time, and customer loyalty (operationalised in terms of the net promoter
score). The main motivation for modelling activity duration, activity sequences and inter-arrival times is to enable
good calibration to the real-world customer service process in the case company. The throughput time model is a
key component in the predictive prioritisation approach used for queue management in Study 2. The net promoter
score, which is dependent on throughput time, will be modelled in two variants: (a) including all relevant information,
including information that will only be known once a case is completed, (b) using the predicted throughput time only.
This will be further explained in Study 2.

5

PAPER 3

Figure 2: BPMN model of the customer service process in the case company.

2.1 Method

2.1.1 Data

The analysis will be performed on a subset of the data (1897 out of 11294 cases) from the module of the case company’s
Salesforce™ CRM system that is used for customer service management. All cases are created via email, and the subset
contains only cases where, after the completion of the case, the relevant customer responded to the SMS request to
answer the net promoter score (NPS) question. The data is in event log format (see Van der Aalst, 2016) and consists of
5456 events related to 1897 cases. The event log was created by combining the Salesforce™ case and task objects.
The case object contained static features such as the responsible agent, as well as the case topic and time stamps. The
task object included the events related to the cases. At this level, an interaction with a customer denotes a phone call,
whereas e-mail correspondence is explicitly coded as email.

2.2 Results

In the following, the key characteristics of the customer service process in the case company will be modelled using
statistical techniques.

2.2.1 Activity duration

Modelling the conditional activity duration is a crucial input to the Monte Carlo simulations in Study 2 where the
simulated throughput time will be modelled as a function of the waiting time plus the individual activity durations in a
given case.

Activity duration was modelled using a set of model candidates from the generalised linear model family with different
link functions and regularization penalties. An overview of the fitted models is shown in Table 8. The selected model
was a generalised linear model with a Weibull link function, which yielded a generalised R2 = 0.21 on the training set
(70-30 split) and a generalised R2 = 0.19 on the test set. The prediction expression has the following form:

ˆduration = exp (α+
n∑

i=1

Xiβi)Γ(1 + θ) (2)

where Xi denotes the ith input feature, βi the ith model parameter, Γ the gamma-function, and θ the shape parameter of
the gamma distribution. The simulation equation is of the form:

6

PAPER 3

Table 1: Model coefficients: Weibull regression (target variable: activity duration in hours; square brackets represent
levels of categorical factors; the last level is the reference level)

Term β̂ SE p
Intercept 1.6645 0.1650 <.0001
case_topic[d_2-z_4] 0.0200 0.0456 0.6620
case_topic[g_1-z_4] -0.0538 0.0313 0.0857
case_topic[j_1-z_4] -0.0557 0.0213 0.0088
case_topic[q_3-z_4] 0.1712 0.0587 0.0035
case_topic[r_2-z_4] 0.0836 0.0383 0.0288
case_topic[w_1-z_4] -0.0609 0.0286 0.0334
case_topic[w_2-z_4] 0.0119 0.0313 0.7043
case_topic[z_2-z_4] -0.0420 0.0433 0.3319
case_topic[z_3-z_4] 0.1637 0.0369 <.0001
task_tasksubtype[Email-Task-Reminder] 0.0180 0.1158 0.8767
task_tasksubtype[Interaction-Task-Reminder] 0.1057 0.1319 0.4229
task_number 0.0420 0.0177 0.0176
resource 0.2171
theta 0.3908

Table 2: Transition matrix: Absorbing Markov chain.

Task-Reminder Interaction Email END
Task-Reminder 0.08 0.0 0.67 0.25
Interaction 0.0 0.02 0.96 0.02
Email 0.0 0.02 0.45 0.53
END 0.0 0.0 0.0 1.0

duration = Weibull(
1

θ
, exp (α+

n∑
i=1

Xiβi)) (3)

The model included features representing four input variables: case topic, activity, activity number and resource. Case
topic refers to one of ten anonymised categories of customer service cases distinguished by the case company. Activity
refers to one of three types of activities logged in the CRM system (see Section 2.1.1). Activity number is the order of
the given activity in the trace. Resource is a categorical variable with 77 different levels referring to the individual agents
observed in the two-year span of the data. This particular variable was forced into the model without regularisation in
order to ensure that the effect of the individual agent (reflecting different speeds) would be represented in the model.

To enable further generalisation in the manner of a random effect, a normal distribution was fitted to the individual
model coefficients representing the 77 different resource levels, with mean μ = 0.22 and standard deviation σ = 0.52.
The individual effects of the agents in Study 2 will therefore be simulated from the fitted distribution, rather than the
individual resources observed in the data.

The coefficients of the model are presented in Table 1. Since the resource effect is modelled using a normal distribution,
its 77 original parameter values are excluded from the coefficients in Table 1. However, the full table with all parameters
can be found in Appendix 9.

2.2.2 Activity sequences

The trace or sequence of activities in a given case is modelled using an absorbing Markov chain. The model thus
consists of k + 1 states, where the states are the possible activities plus the absorbing state, ’END’. Here, the absorbing
state is added as the last step in each of the observed traces. The Markov chain prediction has the general form:

P (Xt+1 | X1, X2, ..., Xt) = P (Xt+1 | Xt) (4)

The transition probabilities P were estimated using maximum likelihood and are shown in Table 2, whilst the initial
probabilities P 0 are shown in Table 3.

7

PAPER 3

Table 3: Initial probabilities

Task-Reminder Interaction Email END
P 0 0.0 0.92 0.08 0.0

Table 4: Model coefficients: exponential regression (target variable: hours to next case arrival)

Term β̂ SE p
Intercept 726.6267 323.9276 0.0249
year -0.3589 0.1605 0.0253
month -0.0881 0.0232 0.0001
day 0.0078 0.0081 0.3308
weekday 0.2616 0.0473 <.0001

2.2.3 Inter-arrival times

The inter-arrival times are the times between the arrivals of two consecutive cases. Modelling this distribution is
important for Study 2 where the inter-arrival times control the traffic intensity in the modelled system (here a customer
service function), given different levels of staffing. As the simulation will run over a one-year period between 2018 and
2020, we include seasonality patterns in the model.

A set of generalised linear models with different link functions was estimated. The candidate models are shown in
Table 12 in the Appendix. The selected model was a generalised linear model with an exponential link function, which
yielded a generalised R2 = 0.33 in the training set (70% of the data) and a generalised R2 = 0.34 in the validation set
(30% of the data). The prediction expression has the following form:

ˆInterArrivalT ime = exp (α+

n∑
i=1

Xiβi) (5)

The simulation equation is:

InterArrivalT ime = − log(1− U(0, 1))× exp (α+

n∑
i=1

Xiβi) (6)

Where U(0, 1) represents a scalar from the uniform distribution with min = 0 and max = 1. The model coefficients
are shown in Table 4

2.2.4 Throughput time

The main purpose of modelling case throughput time is to provide additional information about a given case when
it has not yet been assigned. This information will be used to model the NPS, which is used to prioritise the cases.
A set of candidate models was estimated (see Table 13). The selected model was a generalised linear model with
an exponential link function, which yielded a generalised R2 = 0.055 in the training set (70% of the data) and a
generalised R2 = 0.053 in the validation set (the remaining 30% of the data). The target was modelled with an offset of
1. The prediction expression has the form:

ˆThroughput_time = exp(α+

n∑
i=1

Xiβi)− 1 (7)

Estimates of the model coefficients are shown in Table 5. The features represent the date and time of a case’s arrival in
the queue. We deliberately used simple linear approximations to the nonlinear effects of hour of day, weekday, and
day of month in order to make the model more generalisable beyond this particular customer service group in our case
company. The linear features model more general effects such as different arrival rates and case resolution times at the
beginning versus end of work day and work week (Pope, 2016; Wieth and Zacks, 2011; Yao et al., 2019). Even though
this approximate model may have low precision in its predictions of specific durations, these predictions will still be
sufficient for assigning priority ranks to cases. In the decision making literature, this property is known as the "robust
beauty of improper linear models" (Dawes, 1979).

8

PAPER 3

Table 5: Model coefficients: exponential regression (target variable: case throughput time in minutes)

Term β̂ SE p
Intercept 66.809 355.374 0.851
year -0.030 0.176 0.867
month -0.041 0.028 0.144
day 0.000 0.000 1.000
weekday 0.000 0.056 0.995
hour 0.065 0.052 0.211

Table 6: Model coefficients: gamma regression (target variable: NPS)

Term β̂ SE p
Intercept 2.3006 0.0430 <.0001
Log[case_throughputtime+1] -0.0098 0.0052 0.0590
case_topic[d_2-z_4] -0.1291 0.1049 0.2183
case_topic[g_1-z_4] 0.1008 0.0481 0.0362
case_topic[j_1-z_4] 0.0853 0.0433 0.0490
case_topic[q_3-z_4] -0.0427 0.0549 0.4359
case_topic[r_2-z_4] -0.0317 0.0848 0.7088
case_topic[w_1-z_4] 0.0000 0.0000 1
case_topic[w_2-z_4] 0.0000 0.0000 1
case_topic[z_2-z_4] 0.0967 0.0509 0.0577
case_topic[z_3-z_4] -0.0048 0.0484 0.9217

2.2.5 NPS

The NPS is modeled for two specific purposes: (a) Simulating the NPS given complete information about the case
after it has been closed, and (b) generating an initial prediction of the expected NPS using incomplete information.
This section will first present the conditional distribution which will be used for simulating the NPS given complete
information. A set of candidate models were estimated from the family of generalised linear models with normal,
gamma and exponential link functions. The results are shown in Table 14 in the Appendix. The selected generalised
linear model with gamma link yielded a generalised R2 = 0.040 in the training set (70% of the data) and R2 = 0.039
in the validation set (the remaining 30% of the data). The target variable was modelled using an offset of 1 (as the
gamma distribution cannot represent zero). The simulation equation has the form:

NPS = Γ(
Exp(α+

∑n
i=1 Xiβi)

ρ
, ρ)− 1 (8)

Where Γ(k, ρ) denote the gamma distribution with shape parameter k and scale parameter ρ = 1.3005. The shape
parameter is conditional on the intercept α and the linear combination of the input features X and their associated
coefficients β, which are shown in Table 6.

For the initial NPS prediction model, which will be used to prioritise incoming cases under incomplete information, the
case topic will not be available before the case has left the queue. We therefore only use predicted throughput time to
predict the NPS value. In this case, the best model candidate was linear as shown in Equation (9).

ˆNPS = (α+ xβ)− 1 (9)

This model yielded R2 values of 0.01 and 0.03 in the training and validations sets, respectively. The model coefficients
are shown in Table 7.

Table 7: Model coefficients: gamma regression (target variable: NPS)

Term β̂ SE p
Intercept 10.2211 0.1111 <.0001
Log[case_throughputtime+1] -0.0949 0.0249 0.0001

9

PAPER 3

3 Study 2: Monte Carlo experiments

In Study 2, we will recreate the customer service process in the case company in a simulation model, using the results
of Study 1 to calibrate the relevant model parameters. In Monte Carlo experiments, we then compare the performance
of the loyalty-based predictive priority queuing approach suggested in this paper with the traditional first come, first
served approach. An overview of the approach is shown in Figure 3.

Figure 3: Overview of the competing queue management approaches.

For the loyalty-based queue management approach, a priority score is calculated every 15 minutes (update interval
of queue management and case assignment) as: Priority_score = |7.5−NPSarrival|. Here, NPSarrival refers to
the predicted NPS-score (see 2.2.5) based on estimated throughput time (see Section 2.2.4) before the case has been
assigned.

To evaluate the outcome of the experiments we also define NPSresp which is the simulated conditional NPS-response,
based on the case type and waiting time. To compare the two approaches, we run a set of simulation experiments
spanning over 365 days in the period from 2018/07/01 to 2019/07/01.

3.1 Method

The method section is structured as follows: Firstly, the overall experimental design is presented in Section 3.1.1. Next,
an overview of the simulation framework is presented. Sections 3.1.3 to 3.1.9 present details of the algorithms used in
the experiments.

3.1.1 Experimental design

The simulation experiments were generated according to a full factorial 4× 7× 2 design. The first factor was the queue
discipline, the second the number of agents available, and the third the service policy. An overview of the three factors
and their levels is shown below.

• Factor 1: Queue discipline

– FCFS - First come, first served
– SRTF - Shortest remaining time first
– LRTF - Longest remaining time first
– NPS - Net promoter score-based priority

• Factor 2: Number of agents

– 3, 4, 5, 6, 7, 8, 9

• Factor 3: Service level constraint

10

PAPER 3

– None
– Service level = 60 hours

For the queue discipline we use non-preemptive queuing and benchmark our NPS-approach against FCFS, SRTF
and LRTF . FCFS is the current approach used in the case company and thus serve as the baseline. As no other
attributes for case prioritisation are available when a case arrives (the topic category is only realised when an agent
has read the email), the SRTF and LRTF approaches are implemented based on predicted remaining throughput
time (Eq. 7). The SRTF and LRTF disciplines are included to provide contrast to our approach, illustrating two
alternative predictive scheduling approaches using a similar input. The range in the number of agents is chosen to
represent the contrast between sufficient and insufficient capacity in the case company. The capacity within a single
simulation run is thereby assumed to be constant, as we wish to understand the interaction between the queue discipline,
the capacity and the process performance. The service level constraint is included as a separate factor in order to reduce
the issue of starvation in the NPS, SRTF and LRTF disciplines. In this case, it is assumed that a case must have
left the queue within 72 hours to be compliant. The hard ceiling therefore takes effect after 60 hours, such that agents
will have 12 hours to retrieve the case from the queue. When the hard ceiling takes effect, the previous order of the
cases is overruled by the FCFS discipline. Further details are shown in Section 3.1.5. A total of 100 replications were
performed, resulting in a total of N = 5600 simulation runs. The source code used to run the experiments is publicly
available1.

3.1.2 Simulation procedure

The simulation was set up in such a way as to generate event stream data from a stochastic process that is similar in its
nature and properties to the one that was empirically investigated in the case company in Study 1. All algorithms were
calibrated using the statistical models and distributions fitted in Study 1 (see Section 2.1.1).

Figure 4: Overview of simulation procedure.

The general procedure of the simulation model is shown in Figure 4. The simulation model produces three event logs:
M , Θ and L. Furthermore, an agent pool Ψ is defined. Firstly, the event log M is populated with all cases arriving
within the simulation period using Algorithm 2. Next, the timeline is simulated using Algorithm 1. As the simulated
timeline passes the dates of arrival of new cases, these are added to the event log Θ containing the cases in the queue.
The queue is then updated by Algorithm 3, re-prioritising the order based on the given queue discipline. Cases in the
queue are then assigned to an agent using Algorithm 4, which continuously updates the agent pool Ψ. Once a case is
assigned to an agent, the case is processed using Algorithm 5 until the final activity is reached. The observed process
behavior is then recorded in the final event log L. This process repeats itself until the end of the specified simulation
period.

1github.com/Mikeriess/P3_queue_prioritization

11

PAPER 3

3.1.3 Timeline

The simulation progresses in discrete time slices (days and 15-minute intervals). Within each day and case, activities
can occur if and only if three criteria are met: (a) at least one open case must have activities pending, (b) at least one
agents is available for performing activities, and (c) the current day is a workday. The timeline consist of a main loop
that iterates over each day within a given range Dend. The arrival of new cases is controlled by the inter-arrival model
fitted in Section 2.2.3. When cases are closed, they will get a simulated NPS-score based on their individual progress
(using Eq. 8).

Algorithm 1: The discrete timeline simulation.
Data: queue discipline Pdiscipline ⊂ {FCFS, SRTF,LRTF,NPS}, number of days to simulate Dend ∈ N,

probability distributions ω ∈ Ω, feature mapping functions for conditional prediction models π ∈ Π, pool of
case-handlers (agent objects) Ψ

Result: event log L, case-buffer Θ
/* Event log placeholders */
Θ,M,L ← ∅
/* Simulate the cases to arrive during the day */
M ← CaseArrival(i,Dend, πarr, πattr)
/* For each day D = (1, 2, .., Dend) */
for d in D do

/* Perform queue updates on a 15-minute window basis */
z = d
for every 15-minute window in day d do

/* Add new cases to the case pool Θ and filter out cases that arrived after the
15-minute window (and are therefore unobserved) */

Θ ← Θ
⋃

M
Θ ← {η ∈ Θ, |η(q) ≤ z + 15}
/* Sort case order, based on the queue discipline */
Θordered ← QueueManagement(Θ, Pdiscipline)
/* Assign idle agents to newly arrived cases */
Θ,Ψ ← CaseAssignment(Θordered,Ψ)
/* Perform activities on active cases */
L,Θ,Ψ ← CaseActivities(d,Θ,Ψ, z)
/* Update time by 15 minutes (0.010416 days) */
z = z + 0.010416
/* Simulate conditional NPS score for closed cases from Equation 8 */
for η(s=closed) in Θ do

η(c=NPSresp) ← Model(η)
end

end

end

Algorithm 1 is the main simulation loop that iterates over the specified simulation periods d = (1, 2, . . . , D). Firstly,
the set of all cases to arrive M in the simulation period is generated using Algorithm 2. Afterwards, the status of
the cases and agents is updated every 15 minutes in the following order: First, the new cases that have arrived until
the present point in time z, are added to the case buffer Θ. Next, queue management as described in Algorithm 3 is
performed on Θ, and cases are prioritised based on the queue discipline. Next, idle agents in the agent pool Ψ are
assigned to cases that are waiting in the queue (if any) by Algorithm 4. Finally, open cases with an agent assigned are
processed by Algorithm 5. The resulting activities are written to the output event log L.

3.1.4 Case arrival

A case is represented as a trace in this simulation framework. A single trace ηi is defined as a multiset η =
(i, q, s, t, a, j, r, c), consisting of attributes of varying length: the case identifier i, the arrival-time q, the status of
the case s, the set of timestamps t for the performed activities, the set of activities performed in chronological order a,
the set of time indexes j for the performed activities, the set of agents r working on each of the activities, and finally
the static case attributes (such as case topic, predicted throughput time and NPS) in the set c. The arrival time of a new

12

PAPER 3

case is governed by the model in Equation 6, with parameter values as shown in Table 4. Implementation details are
shown in pseudo code in Algorithm 1.

Algorithm 2: Case arrival.
Data: case identifier starting value i, number of days to simulate Dend, feature mapping function for inter-arrival

time model πarr, probability distribution for case attributes ωattr

Result: set of newly arrived cases M , updated case identifier value i
/* Initialize the time variable z, and set of cases M */
z = 0
M ← ∅
/* Simulate today’s case arrivals */
while current time z < Dend + 1 do

/* Simulate inter-arrival time q, from model in Equation 6 */
X ← πarr(z, d)
q = − log(1− U(0, 1))× exp (α+

∑n
i=1 Xiβi)

/* Generate a new case with arrival time q and assign a case identifier i */
η ← (i, q, s ← ∅, t ← ∅, a ← ∅, j ← ∅, r ← ∅, c ← ∅)
/* Predict throughput time of the case from Equation 7 */
η(c=throughput) ← Model(η(c={1,...,k}))
/* Predict NPS score of the case from Equation 9 */
η(c= ˆNPSarrival)

← Model(η(c=throughput))

/* Append the case η to the set of cases M */
M ← M

⋃
ηi

/* Update time and case identifier variables */
z = z + q
i = i+ 1

end

3.1.5 Queue management

Depending on the prioritisation approach, the queue will be treated differently. The FCFS approach will leave
the current order in the queue (Θ) unchanged, whereas SRTF and LRTF will order the queue by their predicted
throughput time at arrival in ascending and descending order, respectively. The NPS approach will re-order the cases
in the queue based on their predicted NPS score, as described in Section 1.1.2. Passives (customers answering 7-8 in
the NPS survey question) will in this case be prioritised, as passives are as yet undecided and therefore more likely to
change, i.e. to be either positively surprised (and thereby converted to promoters) or disappointed (and thereby become
detractors), given a particular amount of resource expenditure. To ensure a certain degree of fairness, we also evaluate
the effect of a hard ceiling, ensuring that customers put in the back of the queue will be prioritised once they have
been there for more than 60 hours. This works as a two-step approach where the sorting based on the original queue
discipline is firstly performed, after this step, all customers that have waited more than 60 hours will be moved in front
of the queue (increasing the likelihood of a response within an assumed service level of 72 hours). The details of the
prioritisation algorithms are shown in pseudo code in Algorithm 3.

3.1.6 Case assignment

Case assignment is performed for the agent pool Ψ = (ψ1, . . . , ψk), which consist of all agents in the simulated
customer service unit. First, an idle-pool A is created, such that only idle agents are assigned to new cases. Then, each
agent in A is assigned to cases in Θordered that are not currently assigned to an agent.

3.1.7 Case activities

Case activities are updated every 15 minutes as illustrated in Algorithm 1. In each update, each agent in the agent pool
Ψ processes new activities if and only if two conditions are met: (a) the agent is assigned to a case and (b) the finish
time for the current activity is within the current 15-minute window. When these conditions are met, a start delay v
(Algorithm 6) is calculated if work on the next activity would be scheduled to begin outside business hours. In this
case, the time until the next possible activity start during business hours is accumulated in v and subsequently added
to the simulated activity duration. Next, Algorithm 7 simulates the next activity a(j+1) with timestamp t(j+1). The
new activity and its timestamp are appended to the event log L. If the next activity is the absorbing state (END) of the

13

PAPER 3

Algorithm 3: Queue management.
Data: case buffer Θ, queue discipline Pdiscipline ⊂ {FCFS, SRTF,LRTF,NPS}, and service level in days

PSLA ∈ R

Result: updated case buffer Θordered

/* Only cases that arrived up until time z + 0.010416 are visible */
if Pdiscipline = FCFS then

/* Sort cases by their arrival time q */
Θordered ← Sort(Θ,Θ(c=q), ascending)

if Pdiscipline = SRTF then
/* Sort cases in ascending order by their predicted throughput time ŷ */
Θordered ← Sort(Θ,Θ(c=ŷ), ascending)

if Pdiscipline = LRTF then
/* Sort cases in descending order by their predicted throughput time ŷ */
Θordered ← Sort(Θ,Θ(c=ŷ), descending)

if Pdiscipline = NPS then
/* Proceed if there is more than one case and a difference in predicted NPS across

the cases */
if |Θ| > 1 and V ar(Abs(Θ(c= ˆNPSarrival)

− 7.5)) > 0 then

/* Sort cases by their predicted NPS-score */
Θordered ← Sort(Θ, Abs(Θ(c= ˆNPSarrival)

− 7.5), ascending)

if PSLA > 0 then
/* Prioritise the sorted queue Θordered further by the current waiting time in the

queue w */
/* Get the subset of customers where the waiting time is above the service level

minus one day */
Θpriority ⊂ Θ(w) ≥ (PSLA − 1)
/* Sort by waiting time */
Θpriority ← Sort(Θ,Θ(w), descending)
/* Get the remaining customers */
Θremaining ⊂ Θ(w) < (PSLA − 1)
/* Concatenate to new queue Θordered, with prioritized customers Θpriority, now first

in the line, regardless of Pdiscipline */
Θordered ← Θpriority ∩Θremaining

Markov chain described in Section 2.2.2, the agent ψ is unassigned from the case, and the time since the agent became
idle is updated, while the trace η is removed from Θ.

3.1.8 Start delay

Since an activity cannot commence when an agent is off duty, we introduce a start delay, i.e. the time between when
an activity was scheduled to begin and when it could actually begin. In the simulation experiments, this start delay
represents the time until business hours begin again. The business hours are defined here as Monday to Friday from
08:00 to 18:00. The details of how the start delay is generated are shown in pseudo code in Algorithm 6. We will not
introduce an end delay when activities end outside business hours, as the activity duration model from Study 1 already
includes these.

3.1.9 Next activity

The next activity algorithm is a subroutine that prepares the input variables needed for simulating the next activity and
the duration of the next activity. After this step, the simulated values are appended to the current trace η. The next
activity is generated from the Markov transition matrix described in Section 2.2.2. The activity duration is generated
from the simulation model defined in Equation (3).

14

PAPER 3

Algorithm 4: Case assignment.
Data: ordered case buffer Θordered, pool of agents Ψ = (ψ1, . . . , ψk)
Result: pool of agents Ψ
/* Create a temporary pool for idle agents A */
A ← ∅
/* For every agent in the agent pool */
for ψ in Ψ do

/* If agent is not assigned to a case */
if ψ(i) �= ∅ then

/* Add agent to idle pool, remove from agent pool */
A ← ψ
Ψ ← Ψ \ ψ
/* Sort agents in idle pool by time last active t */
A ← Sort(A,A(t), ascending)

end
/* For every agent in the idle pool A */
for ψ in A do

/* For every case in the ordered case buffer Θordered */
for η in Θordered do

/* If case is currently unassigned */
if η(r=∅) then

/* If agent is still unassigned */
if ψ(i=∅) then

/* Update case resource with agent identifier k */
η(r) ← ψ(k)

/* Assign agent to the case via case identifier i */
ψ(i) ← η(i)

end

end
/* Append all agents to agent pool again */
Ψ ← Ψ

⋃
A

15

PAPER 3

Algorithm 5: Case activity simulation
Data: Case buffer Θ, pool of agents Ψ, event log L, current time window start z
Result: event log L, case buffer Θ, pool of agents Ψ
/* For each agent */
for ψ in Ψ do

/* Assigned to a case */
if ψ(i) �= ∅ then

/* Get the active case of the agent */
η ← Θ(η|i=ψ(i))

/* Get finish-time of current activity, and next time step k */
y ← max(η(t)), k ← max(η(j)) + 1
/* While y is still within the current 15-minute window */
while y < z + 0.010416 do

/* Execute Alg. 6 and add a conditional start-delay */
v = StartDelay(y)
/* Execute Alg. 7 to generate next activity and timestamp */
η, y ← NextActivity(η, k, v, φact, φdur, πdur)
/* If absorption state is reached: unassign agent, update last activity time

and remove case from Θ */
if a(j+1) = END then

ψ(i) ← ∅
ψ(t) ← max(η(t))
Θ ← Θ \ η

/* Append activity j (and its attributes) to event log L, and its appropriate
trace in case buffer Θ */

L ← L
⋃

η(j=k)

Θ(i=η(i)) ← η(j=k)

/* Update agent pool Ψ with new information for agent ψ */
Ψ ← Update(Ψ, ψ)

end

end

16

PAPER 3

Algorithm 6: Start delay subroutine
Data: Finish time for last activity y
Result: Delay in days v
/* Define the total delay */
v = 0
/* Get weekday: {1, 2, ..., 7} ∈ N */
weekday ← GetDayOfWeek(y)
/* Get time of day: {1, 2, ..., 24} ∈ N */
timeofday ← GetT imeOfDay(y)
if weekday > 5 then

/* Add weekday delay: days until Monday plus time until 8:00 */
v = (8− (weekday + 24

timeofday)) + 0.33334

else if then
/* If tomorrow is not Saturday: */
if weekday < 5 then

/* If within work week but before business hours, add delay until 8:00 */
if timeofday < 8 then

v = 0.33334− 24
timeofday

/* If within work week but after business hours, add delay until tomorrow */
if timeofday > 18 then

v = 1− 24
timeofday + 0.33334

/* If tomorrow is Saturday: */
else if then

/* If within work week but before business hours, add delay until 8:00 */
if timeofday < 8 then

v = 0.33334− 24
timeofday

if timeofday > 18 then

v = (8− (weekday + 24
timeofday)) + 0.33334

Algorithm 7: Next activity subroutine
Data: trace η, next time step k, activity start delay v, conditional activity-sequence model φact, conditional activity

duration model φdur, feature mapping function for duration model πdur

Result: Updated trace η, finish time of current activity y
/* Get last activity and timestamp */
aj ← η(a|j=k−1)

tj ← max(ηt)
/* Simulate the next activity from Equation 4 (Markov chain) */
a(j+1) ← φact(a(j+1)|aj)
/* Simulate duration of a(j+1) from Equation 3, using feature mapping πdur, and add

start delay v to overall duration t(j+1) */
X = πdur(η)
t(j+1) = φdur(t(j+1)|X) + v
/* Append new activity and timestamp to trace */
η(a) ← a(j+1)

η(t) ← t(j+1)

/* Update finish time for current activity */
y ← t(j+1)

17

PAPER 3

3.1.10 Evaluation

We answer Research Question 2.1 by measuring the average waiting time in the queue within each day d of each
simulation run l. This is achieved by generating a time-series measuring the average waiting time of all customers
currently in the queue at the beginning of day d, illustrated in Equation 10:

AvgWaitingT ime =
1

N

N∑
l=1

1

D

D∑
d=1

(d−H(q,l,d)) (10)

Let H(q,l,d) represent a vector of the individual arrival times q of all customers waiting in the queue in simulation run l
at day d, as defined in Equation 11, and s denote the status of a case:

H ⊂ {η ∈ Θ, |η(s=waiting)} (11)

In a similar manner, we answer Research Question 2.2 by calculating the average queue length, the average capacity
utilisation, and the average proportion of cases closed. The average queue length is calculated using the definition in
Equation 12:

AvgQueueLength =
1

N

N∑
l=1

1

D

D∑
d=1

|H(i,l,d)| (12)

Where H(i,l,d) represents a list of case identifiers i for each simulation run l at day d. The average capacity utilisation is
defined by Equation 13:

AvgCapUtilisation =
1

N

N∑
l=1

1

D

D∑
d=1

|Ψ(j �=∅,i,d)|
|Ψ(i,d)| (13)

Where Ψ(d) represents the full agent pool at day d, and Ψ(i �=∅,d) the set of agents assigned to case i on day d. Finally,
the average proportion of cases closed during each individual simulation run is calculated as:

AvgPercentCasesClosed =
1

N

N∑
l=1

|Θ(s=closed,l)|
|Θ(l)| (14)

To answer Research Question 2.3, we first define the simulated NPS response from Equation 8 as NPSresp, we then
restrict the response to the discrete interval of the theoretical net promoter score [0, ..., 10] using the definition in
Equation 15, and finally we round the response, resulting in NPSresp ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (Eq. 16).

NPSresp =

⎧⎨
⎩
0, x ≤ 0

x, 0 > x < 10

10, x ≥ 10

(15)

NPSresp = NPSresp� (16)

To calculate the average company or process-level net promoter scores NPS across all simulation runs, we use the
approach proposed by (Reichheld, 2003), where %detractors denotes the proportion of customers with NPSresp < 7
and %promoters denotes the proportion of customers with NPSresp > 8 in the respective simulation run l:

AvgNPS =
1

N

N∑
l=1

%promoters(l) −%detractors(l) (17)

18

PAPER 3

3.2 Results

3.2.1 Convergence behaviour

To assess the convergence of the simulated queuing systems to a steady state, we calculated the average queue length at
the beginning (00:00) of each day in the simulation period. Figure 5 shows the convergence behaviour for all conditions
without SLA, Figure 6 for all conditions with SLA. In both sets of conditions, the stabilisation of the queuing systems
depended crucially on the the number of agents. While we simulated conditions ranged from three to nine agents, only
those with at least seven agents reached a steady state st all.

Note that the conditional arrival rate (see Eq. 6) peaked at approximately 180 days. Since the simulated period started
at 01/07/2018, this point in time corresponds to the Christmas holidays, where the conditional arrival rate had been
highest in the calibration data.

Figure 5: Average daily queue length as a function of simulation day and number of agents (no SLA). Note: the range
of the y-axis is different for each row of diagrams.

3.2.2 Performance

In a next step, we compared the performance of the four queue disciplines in terms of average queue length, percent
capacity utilisation, percent cases closed, average waiting time in the queue, and average case resolution time. We used
linear models that included fixed main effects of queue discipline (factor levels: NPS, LRTF, SRTF, FCFS), number
of agents (factor levels: 3, 4, 5, 6, 7, 8, 9) and service level agreement (factor levels: none, SLA = 60 hours), plus all

19

PAPER 3

Figure 6: Average daily queue length as a function of simulation day and number of agents (SLA = 60 hours). Note:
the range of the y-axis is different for each row of diagrams.

two-way interactions and the three-way interaction between the factors. All models were estimated by ordinary least
squares.

The number of agents in the scenario had highly significant main effects on average queue length (F6,5544 =
20227.55, p < .001), percent capacity utilisation (F6,5544 = 7890.69, p < .001), percent cases closed (F6,5544 =
52078.05, p < .001), average waiting time in the queue (F6,5544 = 12372.43, p < .001) and average case resolution
time (F6,5544 = 19748.65, p < .001). Besides the number of agents, there were no other significant effects on average
queue length, capacity utilisation, and percent cases closed. This indicates that case throughput and capacity utilisation
depended exclusively on the number of agents available for the handling of the incoming cases; neither the queue
discipline nor the presence or absence of a service level agreement had additional influences. The means are plotted in
Figure 7.

The results were quite different where the duration variables were concerned. Average waiting time in the queue
depended on all main effects and interactions in the experimental design, including queue discipline (F3,5544 =
273.80, p < .001), number of agents (F6,5544 = 12372.43, p < .001), SLA (F1,5544 = 2442.10, p < .001), the
two-way interaction between queue discipline and number of agents (F18,5544 = 96.03, p < .001), the two-way
interaction between queue discipline and SLA (F3,5544 = 278.80, p < .001), the two-way interaction between number
of agents and SLA (F6,5544 = 828.21, p < .001), and the three-way interaction between queue discipline, number of
agents and SLA (F18,5544 = 97.06, p < .001).

20

PAPER 3

Figure 7: Average queue length, percent capacity utilisation, and percent cases closed as a function of queue discipline,
number of agents, and service level agreement (error bars represent 95% confidence intervals).

In a similar manner, average case resolution time depended on all main effects and interactions in the experimental
design, including queue discipline (F3,5544 = 3908.00, p < .001), number of agents (F6,5544 = 19748.65, p < .001),
SLA (F1,5544 = 34552.93, p < .001), the two-way interaction between queue discipline and number of agents
(F18,5544 = 621.18, p < .001), the two-way interaction between queue discipline and SLA (F3,5544 = 3854.53, p <
.001), the two-way interaction between number of agents and SLA (F6,5544 = 5458.87, p < .001), and the three-way
interaction between queue discipline, number of agents and SLA (F18,5544 = 596.55, p < .001).

The means are plotted in Figure 8. Compared to FCFS, both NPS and LRTF substantially decreased case resolution
time, but did so at the expense of increased waiting time. The performance of NPS and LRTF was identical. SRTF had
effects in the same directions but to a lesser degree. All effects disappeared when a service level agreement was present
(overriding the respective queue discipline with an FCFS regime) or when enough agents were available so that all
arriving cases could be handled without delay.

3.2.3 Effects on customer NPS

In the previous two subsections, we compared the four queuing disciplines in terms of standard convergence and
performance metrics. The NPS-based queue discipline developed in this paper showed the same level of performance
as its closest "relative" among the competing disciplines, the longest remaining time first (LRTF) discipline. However,
the rationale of the NPS-based discipline is to prioritise the cases in the queue in such a way that customer loyalty after
case closure is maximised.

21

PAPER 3

Figure 8: Average time waiting in queue and average case resolution time as a function of queue discipline, number of
agents, and service level agreement (error bars represent 95% confidence intervals).

In terms of the average simulated individual NPS responses after case closure, all main effects and interactions in the
experimental design were significant: queue discipline (F3,5544 = 27.07, p < .001), number of agents (F6,5544 =
204.35, p < .001), SLA (F1,5544 = 243.74, p < .001), the two-way interaction between queue discipline and number
of agents (F18,5544 = 4.02, p < .001), the two-way interaction between queue discipline and SLA (F3,5544 =
22.09, p < .001), the two-way interaction between number of agents and SLA (F6,5544 = 37.99, p < .001), and the
three-way interaction between queue discipline, number of agents and SLA (F18,5544 = 2.74, p < .001). Note that this
metric has a minimum of 0 and a maximum of 10; the means are plotted in the left panel of Figure 9.

In terms of the simulated (organisation-level) NPS calculated from the distribution of the individual NPS responses,
all main effects and interactions in the experimental design were significant as well: queue discipline (F3,5544 =
20.73, p < .001), number of agents (F6,5544 = 147.31, p < .001), SLA (F1,5544 = 187.12, p < .001), the two-way
interaction between queue discipline and number of agents (F18,5544 = 3.04, p < .001), the two-way interaction
between queue discipline and SLA (F3,5544 = 15.78, p < .001), the two-way interaction between number of agents
and SLA (F6,5544 = 31.46, p < .001), and the three-way interaction between queue discipline, number of agents and
SLA (F18,5544 = 3.97, p < .001). Note that this metric has a minimum of -100 and a maximum of +100; the means
are plotted in the right panel of Figure 9.

Compared to FCFS, not only the NPS discipline but also LRTF and SRTF improved both target metrics. The NPS
discipline, in turn, was slightly superior to LRTF and SRTF. Again, all effects disappeared when a service level
agreement was present (overriding the respective queue discipline with an FCFS regime) or when enough agents were
available to handle all arriving cases without delay.

3.2.4 Robustness

The above analyses were performed on the complete period of 365 simulated days. Since all simulation runs had started
with an empty queue, there was higher capacity in terms of available service agents during the initial "burn-in" period
before the case queue had filled up and the system had reached its steady state. To assess whether the performance
differences between the four queue disciplines were robust to the presence or absence of such a burn-in period, we
excluded the first 30 simulated days from all simulation runs and repeated all analyses reported above on the resulting
335-day period.

22

PAPER 3

Figure 9: Average simulated individual NPS response after case closure and simulated NPS (on organisation level) as
a function of queue discipline, number of agents and service-level agreement (error bars represent 95% confidence
intervals).

The results of all statistical tests remained stable, with the exception of the percentage of cases closed. Whilst only
the main effect of number of agents had been significant in the analysis of the full 365-day period, all main effects
and interactions in the experimental design were significant when we restricted the analysis to the last 335 days:
queue discipline (F3,5544 = 12.12, p < .001), number of agents (F6,5544 = 51652.67, p < .001), SLA (F1,5544 =
114.52, p < .001), the two-way interaction between queue discipline and number of agents (F18,5544 = 3.42, p < .001),
the two-way interaction between queue discipline and SLA (F3,5544 = 16.99, p < .001), the two-way interaction
between number of agents and SLA (F6,5544 = 16.88, p < .001), and the three-way interaction between queue
discipline, number of agents and SLA (F18,5544 = 2.88, p < .001). The means are plotted in Figure 10.

Figure 10: Percent cases closed during the last 335 simulated days as a function of queue discipline, number of agents
and service-level agreement (error bars represent 95% confidence intervals).

23

PAPER 3

4 General discussion and conclusion

The aim of the research presented here was to introduce a customer service management approach with a new type of
priority queuing based on predicted customer loyalty scores. In our approach, customer loyalty scores are predicted
based on predicted case throughput time. Case throughput time is, in turn, predicted from seasonality indicators alone,
as case attributes are not available at the time of entering the queue.

We presented two studies to calibrate and test our approach. Study 1 was a statistical analysis of two years of empirical
customer service data from a European internet and telecommunications provider. We utilised these real-world data to
obtain ecologically valid estimates of the parameters of all distributions governing the customer service process. In
Study 2, we used the calibrated distribution parameters in Monte Carlo simulations of the customer service management
system, comparing our predictive priority queuing approach with the traditional first come, first served approach (FCFS)
and two alternative prioritisation approaches based on predicted throughput time; the longest remaining time first
approach (LRTF) and the shortest remaining time first approach (SRTF).

4.1 Key findings

The results indicate that prioritisation based on predicted increases in customer loyalty does indeed lead to an increase in
average customer loyalty relative to FCFS, SRTF and LRTF. In addition, it also leads to lower average case throughput
time, but only compared to FCSF and SRTF; LRTF performed equally well in this respect as the NPS approach proposed
here. Both effects are strong when the number of customer service agents is low but disappear when the number of
customer service agents is so high that all cases can be processed immediately. In our opinion, this is the key finding
from our Monte Carlo studies. The novel approach we suggested in this paper seems to have most leverage in a service
organisation with little excess capacity. The "leaner" the organisation, the more it stands to gain from introducing the
prioritisation approach we suggest.

Interestingly, the other two queue disciplines with case prioritisation based on predicted throughput time (i.e., LRTF
and SRTF) showed very similar performance patterns as our NPS-based approach. Indeed, the performance of the
LRTF discipline was so similar to that of the NPS-based discipline that their difference was not statistically significant
on most performance indicators.

Although striking when regarded superficially, the similarity of the behaviour of LRTF and NPS is not really surprising
when one considers how cases are prioritised under the two disciplines. Both share an identical first prediction step
(predicted throughput time; see Eq. 7). The LRTF discipline prioritises the cases directly based on this prediction. NPS
takes the prediction as input to another prediction (NPS; see Eq. 9). However, this second model is linear and does
not affect the priority order of the cases. Only the last step in the calculation of the priority rank is non-linear (see
Eq. 1), assigning priority ranks to the cases as a function of their proximity to the mid-point of the region defining
the "passives" on the scale of individual NPS responses. At least in theory - in practice, however, a large majority of
the cases ended up on the same side of that mid-point (because a large majority of the customers in the calibration
data had been "promoters" and the distribution was assumed to be the same in the simulation experiments), rendering
also the last transformation step predominantly linear and therefore leaving the priority order largely unaffected. In
follow-up studies, the distribution of the individual NPS responses should be systematically varied (as opposed to be
kept constant and equal to the distribution observed in the calibration data, as was done in the present research) to
identify the conditions under which the NPS-based prioritisation discipline will diverge from the LRTF discipline.

Another result that appears striking at first but is not all that surprising when considered more closely, is the disappearance
of all throughput time differences between the four queue disciplines when a service level of 60 hours was introduced
in order to avoid starvation affects and thereby make the priority-based queue disciplines fairer (see Fig. 8). The way
our queuing systems tried to fulfil this constraint was by expediting cases that had been waiting for more than 60 hours
to the front of the queue, and if there were several such cases, in the order in which they had entered the queue. Since
this way of re-ordering the queue is equivalent to the FCFS discipline, it "overrides" the priority-based disciplines with
FCFS. Hence, all performance differences disappeared, at least with the rather stringent service level of 60 hours we
applied in Study 2, which had been motivated by the service level agreements currently in use at the case company
who had supplied us with the calibration data. In order to reap the benefits of the priority-based queue disciplines
investigated here but still live up to elementary levels of fairness, somewhat less stringent service levels should be set.
In future research, the service level should be systematically varied in order to identify a level that can be regarded as a
reasonable compromise.

24

PAPER 3

4.2 Limitations

In addition to the limitations already discussed above, there were some issues related to the calibration data which we
would like to discuss here.

One aspect of Study 1 that might be criticised is the possibility that a systematic selection effect led to the composition
of the case and customer sample which we used to train our models and calibrate our simulations. As we described in
detail in Section 2.1.1, we only used data from service cases where the customers had actually responded to an SMS
request to answer the NPS question. One could argue in the tradition of the exit, voice and loyalty model (Dowding
et al., 2000; Hirschman, 1970; Withey and Cooper, 1989) that customers who respond to such requests are on the
"voice" side, suggesting that they have a stronger commitment to the relationship with their service provider. However,
we do not consider it plausible that the effects in our models would have opposite signs if they were estimated among
customers with weaker average commitment. If the effects were weaker but the signs remained the same, our models
would still produce similar (albeit noisier) results.

A second limitation is that the calibration data used in Study 1 did not include cases created via phone, as these are
not entered into the queue but processed immediately. The prediction models fitted in Study 1 and the simulations
reported in Study 2 did therefore not represent this type of case. However, the case company informed us that such
cases constitute only a minor proportion of all cases. In addition, we have no information from the case company or any
other reason to assume that such cases occur in a systematic manner at specific times such that they would temporarily
overload the queue. Hence, we consider our results to be robust against this issue.

A third limitation related to the calibration data in Study 1 is that the case company did not provide information
about case abandonment or re-assignment. In the simulations, we therefore assumed the queue prioritisation to be
non-preemptive at all times. But even if this assumption was violated, this would merely mean that the mean and the
variance of case completion time observed in the calibration data was due to service agents temporarily switching
between cases. In Study 2, the bias would have affected the simulations of the four competing queue disciplines in the
same way and should therefore not have had an influence on the performance differences between the disciplines.

Finally, since the calibration data were obtained from a specific case company in a specific observation period, Study 1
shares the limitations of all case studies: The variation of all features of the service process was limited to the range
of variation observed in the calibration data. Hence, the simulations in Study 2 had the great advantage that their
parameters were based on real-life calibration data, as opposed to assumptions alone. On the other hand, this also had
the consequence that the range of scenarios we considered in Study 2 was limited to what appeared reasonable to us
in the context of the case company and other companies similar to it. Follow-up studies with systematic variation to
factors that has been kept constant here (including variation to more extreme values than used in this case study), will
shed additional light on the behaviour of the investigated queue disciplines, and thereby increase the generalisability of
our research.

4.3 Applicability

Strictly speaking, the applicability of our approach to service processes in other organisations depends only on one
condition: customer loyalty must be inversely related to waiting time. This relationship has to be monotonous, but it
does not necessarily have to be strong. In the empirical data we used for calibration (Study 1), the squared multiple
correlation between case throughput time and NPS was no more than R2 = 0.04. This is clearly sufficient to obtain
strong performance improvements relative to a traditional first come, first served approach (as shown in Study 2). Other
empirical studies of the relationship between waiting time and customer satisfaction or loyalty in different types of
service settings obtained similar effect sizes (Bielen and Demoulin, 2007; Djelassi et al., 2018; Kumar et al., 1997; Tom
and Lucey, 1997). Hence, our approach should normally be applicable in a similar form in other service settings.

Although our approach may in principle be applicable in most customer service settings, its feasibility depends on the
availability of case features (e.g., extracted from the CRM system of the organisation) that allow an early prediction of
case throughput or waiting time. In the empirical data we used for calibration of our models, no content-related case
features were used. The models we used to predict case throughput time (and based on that, NPS gain) only utilised
seasonality features - that is, information about the inter-temporal variation of case load and server capacity - but they
still performed sufficiently well. If this can be generalised to other service settings, and possibly even improved by
including content-related case features if these are available, feasibility should not be a major problem either.

References

R. Bennett and S. Rundle-Thiele. A comparison of attitudinal loyalty measurement approaches. Journal of Brand
Management, 9(3):193–193, 2002.

25

PAPER 3

F. Bielen and N. Demoulin. Waiting time influence on the satisfaction-loyalty relationship in services. Managing
Service Quality: An International Journal, 2007.

A. Chaudhuri and M. B. Holbrook. The chain of effects from brand trust and brand affect to brand performance: the
role of brand loyalty. Journal of Marketing, 65(2):81–93, 2001.

R. M. Dawes. The robust beauty of improper linear models in decision making. American psychologist, 34(7):571,
1979.

S. Djelassi, M. F. Diallo, and S. Zielke. How self-service technology experience evaluation affects waiting time and
customer satisfaction? a moderated mediation model. Decision Support Systems, 111:38–47, 2018.

G. Dobson and A. Sainathan. On the impact of analyzing customer information and prioritizing in a service system.
Decision Support Systems, 51(4):875–883, 2011.

K. Dowding, P. John, T. Mergoupis, and M. Van Vugt. Exit, voice and loyalty: Analytic and empirical developments.
European Journal of Political Research, 37(4):469–495, 2000.

I. Gurvich, M. Armony, and A. Mandelbaum. Service-level differentiation in call centers with fully flexible servers.
Management Science, 54(2):279–294, 2008.

R. Hallowell. The relationships of customer satisfaction, customer loyalty, and profitability: an empirical study.
International journal of service industry management, 1996.

A. O. Hirschman. Exit, voice, and loyalty: Responses to decline in firms, organizations, and states, volume 25. Harvard
university press, 1970.

M. K. Hui and D. K. Tse. What to tell consumers in waits of different lengths: An integrative model of service
evaluation. Journal of Marketing, 60(2):81–90, 1996.

R. Ibrahim. Sharing delay information in service systems: a literature survey. Queueing Systems, 89(1):49–79, 2018.

R. Ibrahim and W. Whitt. Wait-time predictors for customer service systems with time-varying demand and capacity.
Operations Research, 59(5):1106–1118, 2011.

J. Jacoby and R. W. Chestnut. Brand loyalty: Measurement and management. Wiley, New York, 1978.

M. U. Kalwani and A. J. Silk. On the reliability and predictive validity of purchase intention measures. Marketing
Science, 1(3):243–286, 1982.

D. G. Kendall. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded
markov chain. The Annals of Mathematical Statistics, pages 338–354, 1953.

S. Knox and D. Walker. Measuring and managing brand loyalty. Journal of Strategic Marketing, 9(2):111–128, 2001.

S. Knox and D. Walker. Empirical developments in the measurement of involvement, brand loyalty and their relationship
in grocery markets. Journal of Strategic Marketing, 11(4):271–286, 2003.

P. Kumar, M. U. Kalwani, and M. Dada. The impact of waiting time guarantees on customers’ waiting experiences.
Marketing Science, 16(4):295–314, 1997.

V. Kumar and D. Shah. Building and sustaining profitable customer loyalty for the 21st century. Journal of retailing, 80
(4):317–329, 2004.

A. Mahmoumgonbadi, Y. Katebi, and A. Doniavi. A generic two-stage fuzzy inference system for dynamic prioritization
of customers. Expert Systems with Applications, 131:240–253, 2019.

G. Obermeier, R. Zimmermann, and A. Auinger. The effect of queuing technology on customer experience in physical
retail environments. In International Conference on Human-Computer Interaction, pages 141–157, Berlin, 2020.
Springer.

N. G. Pope. How the time of day affects productivity: Evidence from school schedules. Review of Economics and
Statistics, 98(1):1–11, 2016.

F. F. Reichheld. The one number you need to grow. Harvard Business Review, 81(12):46–55, 2003.

H. A. Reijers. Design and control of workflow processes: Business process management for the service industry.
Springer, Berlin, 2003.

S. Rundle-Thiele. Exploring loyal qualities: assessing survey-based loyalty measures. Journal of Services Marketing,
2005.

S. Rundle-Thiele and M. M. Mackay. Assessing the performance of brand loyalty measures. Journal of Services
Marketing, 2001.

26

PAPER 3

A. Sayenko, T. Hämäläinen, J. Joutsensalo, and L. Kannisto. Comparison and analysis of the revenue-based adaptive
queuing models. Computer Networks, 50(8):1040–1058, 2006.

J. A. Schwarz, G. Selinka, and R. Stolletz. Performance analysis of time-dependent queueing systems: Survey and
classification. Omega, 63:170–189, 2016.

M. Segal. A multiserver system with preemptive priorities. Operations Research, 18(2):316–323, 1970.
J. N. Sheth and A. Parvatiyar. The evolution of relationship marketing. International business review, 4(4):397–418,

1995.
K. W. Tan, C. Wang, and H. C. Lau. Improving patient flow in emergency department through dynamic priority queue.

In 2012 IEEE International Conference on Automation Science and Engineering (CASE), pages 125–130. IEEE,
2012.

G. Tom and S. Lucey. A field study investigating the effect of waiting time on customer satisfaction. The Journal of
psychology, 131(6):655–660, 1997.

W. M. P. Van der Aalst. Process Mining: Data Science in Action. Springer, Heidelberg, 2 edition, 2016. ISBN
978-3-662-49850-7. doi: 10.1007/978-3-662-49851-4.

E. Wang, D. Li, B. Dong, H. Zhou, and M. Zhu. Flat and hierarchical system deployment for edge computing systems.
Future Generation Computer Systems, 105:308–317, 2020.

G. F. Watson, J. T. Beck, C. M. Henderson, and R. W. Palmatier. Building, measuring, and profiting from customer
loyalty. Journal of the Academy of Marketing Science, 43(6):790–825, 2015.

M. B. Wieth and R. T. Zacks. Time of day effects on problem solving: When the non-optimal is optimal. Thinking &
Reasoning, 17(4):387–401, 2011.

M. J. Withey and W. H. Cooper. Predicting exit, voice, loyalty, and neglect. Administrative science quarterly, pages
521–539, 1989.

Y. Yao, M. Dresner, and K. X. Zhu. “monday effect” on performance variations in supply chain fulfillment: How
information technology–enabled procurement may help. Information Systems Research, 30(4):1402–1423, 2019.

27

PAPER 3

A Activity duration: Model selection

Table 8: Model comparison: Activity duration (ML: Maximum likelihood, OLS: Ordinary least squares)

Distribution Method Validation # Param Train R2 Valid R2

Normal OLS None 27 0.04475
Normal Lasso Holdback 15 0.0465 0.0373
Normal Elastic Net Holdback 27 0.03529 0.05951
Normal Ridge Holdback 28 0.01891 0.0121
LogNormal ML None 27 0.07969
LogNormal Lasso Holdback 26 0.08224 0.07251
LogNormal Elastic Net Holdback 23 0.08420 0.06674
LogNormal Ridge Holdback 28 0.07633 0.08477
Weibull ML None 27 0.21084
Weibull Lasso Holdback 7 0.17523 0.08078
Weibull Elastic Net Holdback 21 0.21347 0.19989
Weibull Ridge Holdback 28 0.21048 0.19185

B Activity duration: All model parameters

Table 9: Part 1: Activity duration: All model parameters.

Term Notes β̂ SE p
Intercept 1.6645 0.1650 <.0001
case_topic[d_2-z_4] 0.0200 0.0456 0.662
case_topic[g_1-z_4] -0.0538 0.0313 0.0857
case_topic[j_1-z_4] -0.0557 0.0213 0.0088
case_topic[q_3-z_4] 0.1712 0.0587 0.0035
case_topic[r_2-z_4] 0.0836 0.0383 0.0288
case_topic[w_1-z_4] -0.0609 0.0286 0.0334
case_topic[w_2-z_4] 0.0119 0.0313 0.7043
case_topic[z_2-z_4] -0.0420 0.0433 0.3319
case_topic[z_3-z_4] 0.1637 0.0369 <.0001
activity[Email-Task-Reminder] 0.0180 0.1158 0.8767
activity[Interaction-Task-Reminder] 0.1057 0.1319 0.4229
activity_number 0.0420 0.0177 0.0176
resource[a_3-z_4] Forced in 0.1054 0.0962 0.2731
resource[a_5-z_4] Forced in 0.0923 0.0831 0.2667
resource[a_6-z_4] Forced in 0.0852 0.0975 0.3821
resource[a_7-z_4] Forced in 0.2364 0.0860 0.006
resource[a_8-z_4] Forced in 0.0508 0.0783 0.517
resource[a_9-z_4] Forced in 0.1610 0.0843 0.0563
resource[a_10-z_4] Forced in 0.1152 0.0770 0.1348
resource[b_3-z_4] Forced in 0.0774 0.0895 0.387
resource[b_4-z_4] Forced in -0.0882 0.1011 0.383
resource[b_5-z_4] Forced in 0.8784 0.3453 0.011
resource[b_6-z_4] Forced in 0.0893 0.0856 0.2967
resource[b_7-z_4] Forced in 0.3137 0.1395 0.0245
resource[b_8-z_4] Forced in -0.0646 0.0819 0.4304
resource[c_2-z_4] Forced in 0.2095 0.1011 0.0383
resource[c_3-z_4] Forced in 0.2009 0.0955 0.0354
resource[d_1-z_4] Forced in 0.0000 0.0000 1

28

PAPER 3

Table 10: Part 2: Activity duration: All model parameters.

Term Notes β̂ SE p
resource[e_4-z_4] Forced in 0.0603 0.0805 0.454
resource[e_5-z_4] Forced in 0.0896 0.0852 0.2929
resource[e_6-z_4] Forced in 0.0874 0.0771 0.2566
resource[e_7-z_4] Forced in 0.1154 0.0833 0.1658
resource[f_2-z_4] Forced in 0.1227 0.0776 0.1141
resource[f_3-z_4] Forced in 3.3625 0.2821 <.0001
resource[f_4-z_4] Forced in 0.4485 0.0820 <.0001
resource[g_9-z_4] Forced in -0.0384 0.0836 0.6463
resource[h_4-z_4] Forced in 0.2234 0.0943 0.0178
resource[h_5-z_4] Forced in 0.2686 0.1076 0.0126
resource[i_7-z_4] Forced in -0.1436 0.0874 0.1002
resource[i_9-z_4] Forced in -0.1067 0.0805 0.1851
resource[i_11-z_4] Forced in 0.1952 0.0913 0.0326
resource[i_12-z_4] Forced in 0.0271 0.0846 0.7486
resource[j_3-z_4] Forced in 0.1261 0.0851 0.1383
resource[j_4-z_4] Forced in 0.0915 0.0793 0.2487
resource[j_5-z_4] Forced in 0.0673 0.0833 0.4189
resource[j_6-z_4] Forced in 0.0833 0.0806 0.3011
resource[j_7-z_4] Forced in 0.0993 0.0940 0.291
resource[j_8-z_4] Forced in 0.0984 0.0780 0.2071
resource[j_9-z_4] Forced in 0.0467 0.0774 0.5465
resource[j_10-z_4] Forced in 0.3716 0.1367 0.0065
resource[l_4-z_4] Forced in -0.0284 0.0786 0.7178
resource[l_5-z_4] Forced in 0.0216 0.0820 0.7923
resource[l_6-z_4] Forced in 0.7087 0.2148 0.001
resource[l_7-z_4] Forced in 0.1292 0.0801 0.1068
resource[m_6-z_4] Forced in 0.0067 0.1011 0.947
resource[m_7-z_4] Forced in 3.0204 0.3968 <.0001
resource[n_3-z_4] Forced in 0.1794 0.0841 0.0329
resource[n_4-z_4] Forced in 0.1639 0.0866 0.0584

29

PAPER 3

Table 11: Part 3: Activity duration: All model parameters.

Term Notes β̂ SE p
resource[n_5-z_4] Forced in 0.0328 0.0759 0.6655
resource[p_4-z_4] Forced in 0.1128 0.0811 0.1644
resource[p_5-z_4] Forced in 0.1177 0.0781 0.1318
resource[p_6-z_4] Forced in 0.0702 0.0790 0.3742
resource[p_7-z_4] Forced in 0.2800 0.0901 0.0019
resource[q_3-z_4] Forced in -0.0533 0.1375 0.6986
resource[q_4-z_4] Forced in 0.0172 0.0844 0.8384
resource[r_2-z_4] Forced in 0.1459 0.0892 0.1018
resource[r_3-z_4] Forced in 0.1851 0.0924 0.0452
resource[r_4-z_4] Forced in 0.0482 0.0880 0.5838
resource[r_5-z_4] Forced in 0.0932 0.0758 0.2188
resource[r_6-z_4] Forced in 0.0661 0.0763 0.3857
resource[r_7-z_4] Forced in 0.0686 0.0761 0.3672
resource[r_9-z_4] Forced in 0.0918 0.0801 0.2517
resource[s_1-z_4] Forced in -0.0159 0.0883 0.8568
resource[s_2-z_4] Forced in 0.0720 0.0808 0.3725
resource[t_2-z_4] Forced in 0.4989 0.1339 0.0002
resource[t_3-z_4] Forced in 0.1595 0.0835 0.0559
resource[t_4-z_4] Forced in 0.0752 0.0816 0.3566
resource[u_4-z_4] Forced in 0.0798 0.0853 0.3497
resource[w_6-z_4] Forced in 0.0901 0.0924 0.3296
resource[w_7-z_4] Forced in 0.3596 0.1477 0.0149
resource[y_3-z_4] Forced in 0.0573 0.0922 0.5344
resource[y_4-z_4] Forced in 0.5338 0.1891 0.0048
resource[y_5-z_4] Forced in 0.1264 0.0812 0.1197
resource[y_6-z_4] Forced in 0.2045 0.0903 0.0236
resource[y_7-z_4] Forced in 0.2302 0.0991 0.0202
resource[y_8-z_4] Forced in 0.1879 0.0977 0.0545
resource[y_9-z_4] Forced in 0.0906 0.0869 0.2968
resource[z_3-z_4] Forced in 0.1188 0.0828 0.1514

30

PAPER 3

C Inter-arrival time: Model selection

Table 12: Model comparison: Arrival rate. ML: Maximum likelihood, OLS: Ordinary least squares.

Distribution Method Validation # Param Train R2 Valid R2

Exponential ML None 5 0.3367
Exponential Lasso Holdback 4 0.3823 0.1739
Exponential Elastic Net Holdback 5 0.3338 0.3417
Weibull ML None 6 0.0668
Weibull Lasso Holdback 5 0.0687 0.0520
Weibull Elastic Net Holdback 6 0.0654 0.0525
Normal OLS None 6 0.0162
Normal Lasso Holdback 2 0.0000 0.0000
Normal Elastic Net Holdback 6 0.0129 0.0206

D Throughput time: Model selection

Table 13: Model comparison: Throughput time (ML: Maximum likelihood, OLS: Ordinary least squares).

Distribution Method # Param Train R2 Valid R2

Normal Adaptive Lasso 4 0.0047 0.0047
Normal Adaptive Elastic Net 4 0.0047 0.0047
Normal Lasso 4 0.0046 0.0047
Normal Elastic Net 7 0.0048 0.0038
Exponential Adaptive Lasso 5 0.0558 0.0532
Exponential Adaptive Elastic Net 5 0.0558 0.0532
Exponential Lasso 6 0.0571 0.0466
Exponential Elastic Net 3 0.0539 0.0460
Weibull Adaptive Lasso 6 0.0067 0.0187
Weibull Adaptive Elastic Net 6 0.0067 0.0186
Weibull Lasso 7 0.0069 0.0175
Weibull Elastic Net 7 0.0069 0.0175

E NPS: Model selection (simulation model)

Table 14: Model comparison: NPS simulation model.

Distribution Method # Param Train R2 Valid R2

Normal Lasso 12 0.03527 0.03738
Normal Elastic Net 12 0.03527 0.03738
Gamma Lasso 10 0.04059 0.03969
Gamma Elastic Net 10 0.04059 0.03969
Exponential Lasso 10 0.00195 0.00210
Exponential Elastic Net 10 0.00195 0.00210

31

PAPER 3

F NPS: Model selection (prediction model)

Table 15: Model comparison: NPS prediction model.

Distribution Method # Param Train R2 Valid R2

Normal Adaptive Elastic Net 3 0.01320 0.03208
Normal Adaptive Lasso 3 0.01320 0.03208
Normal Lasso 3 0.01320 0.03208
Exponential Adaptive Elastic Net 2 0.00074 0.00182
Exponential Lasso 2 0.00074 0.00182
Exponential Adaptive Lasso 2 0.00074 0.00182

G Results: NPS interaction effects

Table 16: Least squares means: average actual customer NPS as a function of case prioritisation approach and number
of available customer service agents

Factor level combination Least squares mean SE
FCFS, 3 agents 8.8872 0.0786
FCFS, 5 agents 8.9669 0.0256
FCFS, 10 agents 9.2428 0.0512
FCFS, 15 agents 9.2499 0.0507
NPS, 3 agents 9.0665 0.0775
NPS, 5 agents 9.1093 0.0254
NPS, 10 agents 9.2421 0.0505
NPS, 15 agents 9.2637 0.0510

H Results: Throughput time interaction effects

Table 17: Maximum likelihood means with logarithmic link function, assuming an exponential distribution: average
actual throughput time as a function of case prioritisation approach and number of available customer service agents

Priority scheme Number of agents Estimate Std Error
FCFS 3 4.6741 0.1000
FCFS 5 4.1828 0.1000
FCFS 10 1.6644 0.1000
FCFS 15 1.4705 0.1000
NPS 3 2.5700 0.1000
NPS 5 2.5488 0.1000
NPS 10 1.6626 0.1000
NPS 15 1.4643 0.1000

32

PAPER 3

I Results: Cases closed interaction effects

Table 18: Least squares: Priority scheme vs. Number of agents. F-test P. = 0.6366

Level Least Sq Mean Std Error
FCFS, 3 291.05000 2.46556
FCFS, 5 483.19000 2.46556
FCFS, 10 720.26000 2.46556
FCFS, 15 715.69000 2.46556
NPS, 3 292.07000 2.46556
NPS, 5 482.37000 2.46556
NPS, 10 717.45000 2.46556
NPS, 15 719.04000 2.46556

33

Paper IV
Riess, M. (2023b). Automating model management: A survey on metaheuristics for
concept-drift adaptation. Revised version of paper published in Journal of Data,
Information and Management (2022), Vol. 4, 211–229.

135

Automating model management: A survey on

metaheuristics for concept-drift adaptation

Mike Riess

School of Economics and Business, Norwegian University of Life
Sciences, Universitetstunet 3, Ås, 1433, Norway.

Abstract

This study provides an overview of the literature on automated adap-
tation of machine learning models via metaheuristics, in settings with
concept drift. Drift-adaptation of machine learning models presents a
high-dimensional optimisation problem; hence, stochastic optimisation
via metaheuristics has been a popular choice for finding semi-optimal
solutions with low computational costs. Traditionally, automated concept
drift adaptation has mainly been studied in the literature on data stream
mining; however, as data drift is prevalent in many areas, analogous
solutions have been proposed in other fields. Comparing the concep-
tual solutions across multiple fields is thereby helpful for the overall
progress in this area. The found literature is qualitatively classified in
terms of concept drift type and pattern, adaptation approach and type
of metaheuristic. It is found that population-based metaheuristics are
by far the most widely used optimisation methods across the domains
in the retrieved literature. Methodological problems such as evaluation
method and transparency in terms of concept drift type tested in the
experiments are found and discussed. Over a ten-year period, the usage
of metaheuristics in the found literature transitioned from automating
single tasks in model development to full automation in recent years.
More transparency in terms of evaluation method and data charac-
teristics is important for future comparison of solutions across drift
types and patterns. Furthermore, it is proposed that future studies in
this area evaluate multiple metaheuristics in each study, in order to
illuminate their performance differences in drift adaptation problems.

Keywords: Metaheuristics, Concept drift, AutoML, ML-lifecycle management

1

2 Automating model management

1 Introduction

Concept drift is a naturally occurring phenomenon, observed in many different
fields [1, 2], such as security and police, financial services, telecommunica-
tions, marketing, retail, production, media and others. Concept drift refers to
the change in distributions and relationships within the data [3]. When drift
occurs, a machine learning model cannot project the previously learnt rela-
tionships to the new reality, which leads to degrading predictive performance.
Depending on the field of application, the consequences can in some cases be
severe [1]. As discussed in [4], models in production (providing predictions to
end-users) will in these situations have to be re-trained using data from the
new distribution. The amount of effort needed to reach previous performance
levels might vary based on drift type, magnitude, and pattern, but is gener-
ally unpredictable. Re-training or re-developing machine learning models is in
many cases performed manually by professional workers with high salaries and
limited capacity [5, 6]. From a business perspective, this can present a trade-
off between maintenance and the development of new models. Full or partial
automation of model maintenance is thereby more sustainable from a resource
utilisation perspective.

Tasks within automated model development [7] and maintenance [8] gen-
erally consist of highly complex combinatorial optimization problems, where
each step requires solving another computationally demanding optimization
problem (called model training). Using exact methods is thereby either directly
intractable or too costly. In this case, a group of algorithms called metaheuris-
tics can be particularly useful, as they do not rely on assumptions about
the problem structure, nor require perfect information [9]. These methods do
not guarantee to find a globally optimal solution, but rather aim to find a
semi-optimal solution with minimal effort (being based on heuristics).

The use of metaheuristics is widespread across many application areas,
such as business [10], engineering [11], data stream mining [8] and automated
machine learning [7], amongst others. However, as the fields using meta-
heuristics for the adaptation of machine learning models do not necessarily
communicate, knowledge and findings might be fractured. A general overview
of the literature across the fields will therefore be beneficial in highlighting
potential challenges in the area. Comparing the literature in terms of which
optimization problem the metaheuristic aim to solve, what type of metaheuris-
tic is used, which machine learning model is adapted, which type of concept
drift is studied, and how the proposed solution is evaluated, might therefore
help future research.

The contribution of this paper is thereby to: 1) Help understand the gen-
eral usage of metaheuristics within the literature on self-adapting machine
learning models, 2) Classify the use cases in terms of how the metaheuristic
assists in self-adaptability, 3) Compare the used methodology of performance
evaluation in different settings of concept drift, and finally, 4) Highlight chal-
lenges and recommend future directions of research using metaheuristics for
drift-adaptation.

Automating model management 3

1.1 Research questions

Motivated by enhancing the understanding of the usage of metaheuristics for
drift-adaptation across multiple fields, this study will retrieve relevant lit-
erature and analyse the suggested usage of metaheuristics, as well as their
approach to evaluating the proposed algorithms, use cases and/or frameworks.
Finally, development of trends in the found literature over time will be studied.
To guide this literature review, a set of five research questions are proposed:

• RQ How can metaheuristics aid a machine learning system in automatically
adapting in settings with concept drift?

To help answer this primary research question, the following six secondary
research questions are proposed:

• RQ1 Which types of metaheuristics have been utilized for automated
adaptation to concept drift?

• RQ2 What characterize the application area of the use-cases?
• RQ3 How does the use-cases utilize metaheuristics for concept drift adap-
tation?

• RQ4 Which forms of concept drift were investigated?
• RQ5 How was the proposed use-cases evaluated?
• RQ6 What are the chronological trends in the found literature?

The purpose of RQ1 is to get an overview of the application of various
metaheuristic algorithms within concept-drift related research. RQ2 aim at
getting an overview of the application areas or overall context of the use-cases
in relation to machine learning theory. RQ3 investigate how the metaheuristic
algorithms was applied to help a machine learning system adapt to concept
drift. RQ4 investigate which types of concept drift the use-case was evalu-
ated on, and RQ5 looks closer at the method and metrics used for evaluation
of the proposed methods. Finally, to answer RQ6 an analysis of the tempo-
ral patterns in the found literature is performed to understand the overall
development in the area.

2 Background

In the following, fundamental concepts relevant to the literature reviewed in
this study will be introduced. The following sections will serve as an overview
of the most important related concepts and areas. Terminology introduced in
this section will be used in the analysis and discussion of the found literature.

2.1 Machine learning

Machine learning is a sub field of Artificial Intelligence that focuses on devel-
oping software that learns to perform a task, rather than being hand-coded

4 Automating model management

by the developer [12]. There are in general 4 different areas of machine learn-
ing, each with their own subfields: Supervised learning, Unsupervised learning,
Self-supervised learning and Reinforcement learning [13].

In this literature review, the focus is mainly on supervised learning, which
can be defined as learning a representation or parameters β in some function
ŷ = f(x, β), which, given some input x will predict some output ŷ. In this
case, the parameters are found using a machine learning algorithm, and the
resulting model can thereby be defined as the function f() with associated
parameters β. However, many non-parametric machine learning models also
exist (such as random forests and k-nearest neighbors [14]). In the following,
the project phases of machine learning model development will be described
with focus on the tasks involved with model development.

2.2 Machine learning model development

There exist several normative frameworks for structuring machine learning
projects, such as: Cross industry standard process for data mining (CRISP-
DM) [15], Sample, Explore, Modify, Model, and Assess (SEMMA) [16] and
Knowledge discovery in databases (KDD) [17]. A conceptual overview has
been made in [18], which does not conclude that one framework is necessarily
superior to the other. The CRISP-DM framework does, however, include
business understanding in the initial phase of the project, which help align
problem and solution. For this reason, CRISP-DM is used to illustrate the
basic workflow of a machine learning project. The project work is usually car-
ried out by one or more specialists, most often referred to as Data scientists
[6] and Data engineers [4]. The six steps of CRISP-DM is described briefly in
the following.

Step 1: Business understanding. The first step in the CRISP-DM
framework is concerned with understanding the requirements and the underly-
ing problem from the business perspective. This insight is thus used as guidance
for a machine learning model that help solve the business problem. This phase
has also been described as the problem definition phase [13].

Step 2: Data understanding. Next, relevant data is collected for initial
analysis. The objective here is to look for patterns in order to form hypothe-
ses for further testing via machine learning experiments. As argued in [15],
data understanding is closely related to the business understanding, since the
project plan cannot be formulated without having some level of knowledge
about the data. Typically, this step would involve explorative data analysis
and quality testing of one or more datasets that are available.

Step 3: Data preparation. This step is also known as Extract, Transform
and Load (ETL)-step. Here, a data engineer and/or data scientist first extract
raw data (files, databases etc.) from the source systems, transform it into a
format that is usable for the model(s), and load it prior to the modelling
phase. This step includes normalization, one-hot encoding, aggregation and
other domain-specific transformations [13]. The data preparation also depends

Automating model management 5

on the desired types of models (e.g. sequential vs. static). Parts of this step is
also commonly referred to as feature preparation or feature engineering, which
also often include feature selection.

Step 4: Modelling. In the modelling phase, one or more models are
trained (described in detail later). The data scientist is unlikely to know from
the beginning of the project, which combination of model type and hyper
parameters that will give the best result. This phase is thus experimental with
a more or less systematic structure. It is most common to use grid-search
[19], which is all combinations of a set of model settings (also referred to as
hyper-parameters). Since the business problem is sufficiently understood at
this point, it is important to define a performance metric that illustrate the
business value of the model [13].

Step 5: Evaluation. This is the final step before deciding on deploy-
ment. At this point, multiple model candidates have been trained and a set of
candidate models have been found. The goal now is to evaluate the full proce-
dure and investigate whether mistakes have been made, and/or the developed
models actually fulfill the business requirements [15]. This can be done using
in-depth analysis of the model performance. Once a model has been sufficiently
tested evaluated, and found to satisfy he business requirements, it is selected
for the next phase: deployment.

Step 6: Deployment. When the best model candidate have been
selected, it needs to be implemented in the system or process it was intended
for. This means re-creating the full pipeline (transforming the raw data and
predicting from transformed data) made in steps 1-5 in a way that enables
real time or batch-prediction of new data, once it is available. Model moni-
toring is also included as part of deployment [15]. In the case that the model
performance degrades, the process goes back to step one and continues from
there, forming an infinite loop.

From a process-centric point of view, the model development process can
be illustrated as Business Process Model Notation (BPMN) [20] as shown in
Figure 1. In this figure, the monitoring aspects of the life-cycle have been
included, illustrating that once a model is deployed, it is continuously mon-
itored to assess if further development (maintenance) is needed. This is to
ensure satisfactory performance, which will be further motivated in sections
2.5 and 2.4.

2.2.1 Batch learning

The vast majority of Machine learning literature is focused on what is referred
to as batch learning or offline learning [21]. Here, the assumption is that the
distribution of the data is stationary over time, and samples are i.i.d. This
means that a classifier or regression model can be trained via partitioning
methods such as k-fold cross validation [14], without a need to account for
time. With regards to steps 4 and 5 in the CRISP-DM framework illustrated
earlier [15], the task of the data scientist is to make decisions on so-called hyper

6 Automating model management

Fig. 1 BPMN model of the CRISP-DM framework, including monitoring stage.

parameters and evaluation protocol before selecting a final model candidate
for deployment (step 6). An example is provided in the following.

2.2.2 Stochastic gradient descent

A well-known example of a simple yet powerful machine learning algorithm
is the stochastic gradient descent algorithm, here used to find the optimal
weights of a logistic regression model. The logistic regression model is a linear
model with a nonlinear (sigmoid) activation (also called link) function [12]:

g(z) =
1

1 + exp(−z)
(1)

The model can thus be defined as:

ŷ = g(βTX) (2)

Where β is a vector of learnt weights. For this problem, the optimal weights
cannot be found analytically in some cases [22], and a local search method
such as SGD is therefore commonly used. A single prediction ŷi can after
learning the optimal weights be made from the linear combination of the
weights and the inputs: ŷi = g(βTXi). The weights can be learnt by mini-
mizing a loss function, here illustrated by the binary cross entropy loss for
classification problems:

L = −
m∑
i=1

(yilog(ŷi + (1 + yi)log(1− ŷi)) (3)

The learning process consist of dividing the available data into multiple
batches for out-of-sample validation of the model, most often performed by
3-fold cross validation [14]. The model is trained on a subset of the data called
the training set Xtrain, by iteratively adjusting each weight βj with respect

Automating model management 7

to the gradient of the loss function for each training example:

∂

∂βj
= L(β | y,X) = (y − ŷ)Xj (4)

Each update t to β are thus made based on the following update-rule:

β(t+1) = β(t+1) + λ(y − ŷ)X (5)

Here, λ is a real-valued scalar between 0 and 1, called the learning rate. The
learning rate is a so-called hyper-parameter controlling the magnitude in which
the weights of β are updated with respect to the gradient of the loss function
L. Training the model using Stochastic Gradient Descent (SGD) is illustrated
in algorithm 1.

Algorithm 1 Stochastic gradient descent (logistic regression)

1: Initialize weight vector β ≈ U(−1, 1)
2: for i = 1, ..., n do
3: i ← SelectAtRandom[1, n]
4: Ŷi = g(XT

i β)
5: for Each nonzero feature j of Xij do
6: βj = βj + λ(yi − ŷi)xi

7: end for
8: end for
9: Return β

The SGD-algorithm exists in a variety of forms: another version is the
second-order learning algorithm also known as Newton’s method [12]. This is
known to lead to faster convergence, but is more computationally expensive,
as it also requires the calculation of second-order derivatives.

2.2.3 Model evaluation

Performance of the model during training is most often evaluated on a second
fold of the data called the validation set Xvalid using an evaluation metric.
As mentioned earlier, this metric has to be in alignment with the business
problem, so that the model learns to make predictions that are of business
value [13]. An example of a metric for evaluating classification models is the
accuracy measure:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(6)

This metric can be biased, depending on the balance of the target class; if

8 Automating model management

only 10 percent of instances in the validation set belong to the negative class,
the model could achieve 90 percent accuracy by classifying all instances as
positive. To help alleviate these problems, other metrics such as precision,
recall and the F1-score is often used:

Precision =
(TP)

(TP + FP)
, Recall =

(TP)

(TP + FN)
(7)

F1 = 2
(Precision×Recall)

(Precision+Recall)
(8)

The F1-score has the advantage that it is controlling for the balance of the tar-
get classes. The out-of-sample evaluation can take place during training, and
thus out-of-sample performance can be monitored during the training proce-
dure. Corrections to the hyper-parameters is only based on the performance on
Xvalid to avoid overfitting [14] toXtrain. The final model selection is performed
using a third and unseen fold called the test set Xtest.

2.3 Automated machine learning

Also known as AutoML, the field of automated machine learning focuses on
automating as much as possible of the manual work of the data scientist with
regards to the steps of CRISP-DM framework [15]. The field of AutoML has
multiple sub-streams of literature such as Meta-learning [23], Neural Architec-
ture Search (NAS) [24], Hyper-parameter optimization (HPO) and Full-model
selection (FMS). As this section is not meant to cover all AutoML methods,
only HPO and FMS will be considered in the following. Automating parts of
machine learning is arguably not a new problem [25], however, it has recently
gained much popularity as machine learning has seen a boost in industry adop-
tion, due to increased performance of algorithms and hardware [12]. A common
problem across all machine learning projects is the combination of decisions
the data scientist has to make in steps 3, 4 and 5 of CRISP-DM, based on
steps 1 and 2. These decisions have a direct impact on the level of success,
with respect to the performance of the models. A standard heuristic is to select
an initial set of candidate settings across steps 3 and 4, train the model(s) on
these settings, and evaluate the performance on validation set [19]. The best
performing settings are thereafter explored further, depending on the quality
requirements and time available to the project team. The main problem of
this approach is that it is time-consuming to find the best set of settings, and
AutoML can thereby be of help in these cases [7].

2.3.1 Hyper-parameter optimization problem (HPO)

Adapting the definition from [7]; given a machine learning model M , a
set of N hyperparameters (learning rate, number of iterations, etc.) with
impact on the final solution can be defined. Each n’th hyperparameter can

Automating model management 9

be defined as Λn, which is part of the overall hyperparameter configuration
space Λ = Λ1 × Λ2 × ...ΛN . A given set of hyperparameters λ for the model
is denoted as Mλ. The problem is thereby to find the set of hyperparameters
λ∗ that minimize the loss over the validation data Dvalid, given a particular
evaluation method: K-fold cross validation or a holdout sample (random
partitioning or a temporal split).

λ∗ = min
λ∈Λ

ε(Dtrain, Dvalid) V(�,Mλ, Dtrain, Dvalid) (9)

Here, the second term V(�,Mλ, Dtrain, Dvalid) measures the loss (e.g. Cross-
entropy) of the model with the specified settings settings Mλ in the training
data Dtrain, evaluated from the validation data Dvalid. Since this is gen-
erally defined as a batch-learning problem, the dataset D is finite and the
optimization is thus over the expectation of the sample data D.

2.3.2 Blackbox HPO-methods

As mentioned in [26], blackbox HPO methods can be divided into deterministic
and stochastic variants. The deterministic variants rely on linear algebra or
geometric methods to find a local optimal solution (due to non-convexity of
the HPO-problem) [7], and can be thus be re-started at other starting points
to improve convergence towards a global optima.

• Deterministic methods

– Gradient descent [27]
– Levenberg-Marquardt algorithm [28]

Stochastic methods are mainly based on random variables, statistics, or
metaheuristics for guiding the search in order to keep it from being trapped in
a local minima. Given sufficient trials, random search has a probability of 1 of
finding the global minima [26], while also being more efficient than standard
grid search (which is restricted to a fixed set of combinations) [29]. All of
the local search algorithms depend on one or more hyperparameters of their
own, which determine their probability of finding the global optima within k
iterations [7].

• Stochastic methods

– Random search [29]
– Metaheuristics:

Local search [30]
Population-based algorithms [31–34]

2.3.3 Model-based HPO methods

Another direction in HPO is multi-fidelity (model-based) methods as described
in [7]. Here, the rationale is to optimize the problem using a low-fidelity version
of the problem space. This could be via a smaller subset or compressed version

10 Automating model management

of the data, leading to a faster search process yielding an approximation for
a λ which might perform well on the original (full) problem space. Another
model-based approach to HPO is predictive termination [35], where another
ML model is tasked with predicting the learning curve of the main model, in
order to terminate training before overfitting occurs.

2.3.4 Full-model selection

The HPO problem was extended to Full-model selection (FMS) in [36], which is
also known as CASHO: Combined Algorithm Selection and Hyper-parameter
Optimization [7]. In this context the HPO problem is extended by including
elements from steps 3 to 5 in the CRISP-DM framework [15] (Data preparation,
Modelling and Evaluation). In [36] the authors include the sub-tasks from
CRISP-DM, shown in table 1.

Table 1 Included subtasks from CRISP-DM

Step number Sub-task

3: Data preparation Data transformation

3: Data preparation Feature selection (FS)

4: Modelling Classifier selection

4: Modelling Hyper-parameter selection

5: Evaluation Model selection

For Full-model selection, a single solution Xi ∈ S (where S is the total
solution space), is represented in [36] by the following equation:

Xi = 〈X(i,pre), y(i,1,...,Npre), X(i,Nfs),

y(i,1,...,Nfs), X(i,sel), X(i,class), y(i,1. . . Nclass)〉
(10)

Here, Xi is a n-dimensional vector representing a particular solution i.e. a
full model including data preparation, modelling and evaluation. Each element
represented by X in the solution are binary vectors specifying the setting for
each step, with the exception of X(i,sel), which is a binary 1-dimensional vec-
tor specifying whether data transformation should be performed before feature
selection. Additional decisions can be included by adding binary vectors to the
solution space (at the expense of increased complexity). The y-vectors con-
tain the hyper-parameter settings for each possible combination of settings in
their associated X-vectors. In the example provided by [36], X(i,pre) represent
k possible pre-processing techniques such as standardization, scaling or nor-
malization. As some hyper-parameters are continuous, the total search space
will be infinitely large. As argued in [7], the continuous parts of the search

Automating model management 11

space can thereby be bounded or discretized to reduce the overall size. In [36]
Particle Swarm Optimization (PSO) [37] is used for solution search. PSO is
a population-based metaheuristic (further described in section 2.6) that relies
on a fitness function F similar the loss function of the Stochastic Gradient
Descent algorithm illustrated earlier. In the case of FMS, the data scientist
need to select an evaluation metric for F that represents the business value
[13].

2.4 Concept drift

. In real-world machine learning applications, the assumption of stationarity
in the data stream is often not fulfilled [4] as data changes over time. This
situation called concept drift can arise due to multiple factors, depending on
the domain area. As explained in [1], sources can be: Adversary activities
(in fraud detection), changes of preferences (in recommender systems), pop-
ulation change or simply due to a complex environment. In [38] the authors
further stress that concept drift in consumer-related data is not an error
in the data, but rather a natural change in customer behavior. In business
process-related data, continuous changes in organisational structures, legal
regulations, and technological infrastructures are known to lead to concept
drift [2, 39]. Concept drift can be divided into two main categories [40]: Real
and virtual concept drift. Real concept drift can be described as the relation
between the target variable y and associated input variables X change over
time. Virtual drift on the other hand relate to changes in the distribution of
input features X, without a change in the relationship between y and X [3].
Given a classification model (such as the logistic regression model presented
earlier), a class membership prediction can according to Bayesian theory be
made using posterior probability of a class [3]. For a given class y ∈ c:

p(y | X) =
p(y)p(y | X)

p(X)
(11)

Where

p(X) =

c∑
y=1

p(y)p(y | X) (12)

Real concept drift can thus be defined as a situation where the joint
distribution of the target class y and the input data X is significantly different
at t0 compared to t1:

∃X : pt0(X, y) �= pt1(X, y) (13)

12 Automating model management

Virtual concept drift can be described as situations where the distribu-
tion of X changes over time, without changing the decision boundary of y:

Pt0(X) �= Pt1(X) ∧ Pt0(y | X) = Pt1(y | X) (14)

The drift between concepts can occur in four different ways, as illustrated in
Figure 2. Sudden or abrupt concept drift refer to an absolute shift between
two concepts as a step between t0 and t1. Incremental concept drift refer to
a steady transition between two concepts at t0 until tn, with multiple mixtures
of the concepts present in between. At tn the old concept is non-existing, and
a new single concept is dominant in the data. Gradual drift refer to situa-
tions where there is a back-and-forth change between two concepts happening
between t0 and tn, where the old concept is non-existing at tn. Reoccurring
drift means an introduction of a new concept at time t0+n, with a subsequent
move back to the original concept present at t0. As argued in [3], mixtures of
multiple drift-patterns can also be observed in real-world data.

Fig. 2 Overview of drift patterns, adapted from [3]

Feature drift refer to the relevancy over time of each feature in a given
feature space F . At a given point in time, the most effective feature set can be
selected from the overall feature space F̂t0 ⊆ F . In the case where the most
effective feature set changes over time F̂t0 �= F̂t1, a feature drift is present in the
data [41]. Novel class apperance is a special case of drift where a previously
unseen class is observed in the data [42]. In this case Pt0(Y = c) = 0, and
where c is the current unseen class at t0, and subsequently Pt1(Y = c) > 0.
This can for instance happen in a setting where a model is predicting activities
in a business process, and a new type of activity is included in the process.
This is also referred to as concept evolution.

2.5 Machine learning life-cycle management

Life-cycle management of machine learning projects extend the scope of
CRISP-DM to activities performed post deployment. Being focused on ML
production-settings, model management primarily involve the activities listed

Automating model management 13

in table 2 [43]. As can be seen from the comparison, there is no perfect overlap
between model management and CRISP-DM, as business and data under-
standing is not part of model management, and maintenance is not (explicitly)
part of CRISP-DM. Another distinction between the two is that machine learn-
ing life-cycle management is focused on the interplay between data engineering
and machine learning [4]. Here, the main problem is how to track and utilise
metadata across all 6 steps. One of the key challenges in model management
is Maintenance, where the main issue is when to retrain or re-develop models
[4]. This point is determined through performance monitoring, which triggers
a new iteration of the model management steps [43]. This is often done offline
[4], and often done manually in the interplay between data scientists, software
engineers and site reliability engineers [5]. However, many commercial model
management systems support (offline) automated HPO [44].

Table 2 Conceptual comparison: CRISP-DM and Model management

Model management steps Steps in CRISP-DM

Data preparation 3: Data preparation

Feature engineering 3: Data preparation

Model training 4: Modelling, 5: Evaluation

Deployment 6: Deployment

Maintenance

2.5.1 Online learning

Contrary to batch, or offline learning, online learning is based on the assump-
tion that the distribution of the data is non-stationary [1]. This problem is
well-studied within the field of data stream mining [3], where the objective is
adaptation of (often streaming-optimised) machine learning algorithms [21].
Online learning aims at automating parts of the CRISP-DM framework [1], in
order to adapt the model to changes in the data.

2.5.2 Drift adaptation

Important to online learning is the distinction between blind and informed
adaptation. Blind drift adaptation involves retraining the model when new
data appear, or at fixed time intervals [3] without any detection mechanism.
This approach can be resource demanding and potentially unnecessary. The
idea of informed drift adaptation is thereby to detect concept when drift has
occurred, and only then adapt the model to the new concept. A framework for
drift adaptation is presented in [3]:

1. Predict: Predict an incoming sample/batch

14 Automating model management

2. Diagnose: Evaluate using the ground truth once it is available
3. Update: Use the new data to update model if needed

The main objectives of drift adaptation is thus to a) Detect concept drift as
early as possible b) Adapt to concept changes while ignoring noise c) Perform
the operation in less than the time it takes for a new example or batch to
arrive, given a fixed budget of memory and computation [1].

2.5.3 Learning modes

Learning modes for concept drift adaptation can be divided into three general
forms:re-training, incremental adaptation and streaming [3]. The re-training
learning mode discards the existing model and re-train a new one from scratch,
based on either old and new, or only new data samples. This approach is the
equivalent of batch learning using a sliding window. Incremental adaptation
updates the existing model instead of starting from scratch. This learning mode
can update the model using either single or multiple samples, once the ground
truth (true value of y) have been revealed to the learning algorithm. Finally,
the streaming mode is used in settings with a high frequency of incoming
samples. In this learning mode, the algorithm uses only few passes over each
sample before they are discarded, in order to preserve memory [3].

2.5.4 Drift detection

Since blind adaptation is possible, drift detection is not a necessity for concept
drift adaptation. However, there are multiple advantages such as reducing
computational load, as well potential insight into the nature of drift in the given
setting [3]. Mechanisms for drift detection have 4 main categories: Sequential
analysis [45, 46], Control charts [47], Distributional tests [48] and context-
dependent methods [49]. The main goal of these methods is to monitor the
distribution and either alert or trigger automated adaptation (based on the
learning mode). A more complete overview of drift detection methods can be
seen in [3].

2.6 Metaheuristics

For complex optimization problems as HPO or FMS/CASHO outlined earlier,
finding the optimal point in a search space will be computationally demand-
ing. Due to the curse of dimensionality, the volume of the search space grows
exponentially with each added dimension. This has the unfortunate sideeffect
of an exponential increase in the computation time needed [50]. However, in
some cases there exist a set of solutions that are not globally optimal, but
“good enough” to solve the problem at hand. In these cases, a particular class
of optimization algorithms called Metaheuristics can be useful [9]. The main
motivation for these methods is to reduce solution quality in order to solve
the problem with less effort (computation time). This is done by trading off
exploration and exploitation using robust mechanics [51]. There are mainly

Automating model management 15

three types of metaheuristics: population-based, construction-based and local
search based methods. Each of these will be described with an example in the
following.

2.6.1 Local search methods

The local search variants rely on an initial solution and thereafter seek to
improve the solution by moving towards the neighboring solutions in iterations.
Simple iterative improvement tends to stop at a local minima and yield unsat-
isfactory results in combinatorial optimization [51]. Multiple improvements
have therefore been proposed to the base algorithm over time. An example of
a local search algorithm is Simulated Annealing (SA) illustrated in algorithm
2. This method allows moves towards worse solutions, in order to avoid getting
stuck in a local minima. This is effectively a mechanism that tries to make the
search more explorative. The algorithm has a temperature parameter T which
denote the probability of moving towards a worse solution than the current one.
This temperature decreases during the search, making the model less likely to
explore (make uphill moves), and more likely to exploit the current area of the
search space. The decrease of T does not necessarily have to be monotonic and
can, depending on the cooling scheme, also increase during the search [51]. An

example being p = exp
(

f(s′)−f(s)
T

)
. Here, s′ is the new solution, and s is the

old solution. T is the temperature parameter, where T0 is the initial temper-
ature, which then changes based on the cooling scheme. GenerateSolution()
selects an initial solution by random, and PickAtRandom() selects from the
neighboring solutions N(s).

Algorithm 2 Simulated Annealing

1: s ← GenerateSolution()
2: T ← T0

3: while termination not met do
4: s′ ← PickAtRandom(N(s))
5: if f(s′) < f(s) then
6: s ← s′

7: else
8: Accept s′ as new solution with probability p(T, s′, s)
9: end if

10: Update(T)
11: end while

2.6.2 Population-based methods

This family of methods are based on creating multiple solutions (referred to as
individuals), and in some cases by combining superior alternatives in order to

16 Automating model management

evolve a better set of solutions in the next population. Due to the many vari-
ants in this area, only the general evolutionary computation (EC) algorithm is
presented in the following. Evolutionary computation is a family of population-
based methods inspired by nature, where Genetic Algorithms (GA) are the
most well-known variant due to their inspiration from a Darwinian principle:
Survival of the fittest [9]. Contrary to Local search-based algorithms, EC gener-
ates multiple solutions (populations) per iteration (referred to as a generation),
where randomization (called mutation) and combination (also referred to as
crossover) influence the algorithms exploration versus exploitation trade-off.
An example of EC can be seen from algorithm 3.

Algorithm 3 Evolutionary computation

P ← GeneratePopulation()
Evaluate(P)
while termination not met do

P ′ ← Recombine(P)
P ′′ ← Mutate(P)
Evaluate(P ′′)
P ← Select(P ′ ∪ P)

end while

2.6.3 Constructive methods

Constructive metaheuristics build solutions by combining components of the
solution, until a full satisfactory solution is found. As mentioned in [52], these
methods often consist of greedy search, where the best elements are picked
at each step. Constructive methods can also combine a constructed solution
with successive local search. An example of a constructive algorithm is the Ant
Colony Optimization (ACO) [53]. This particular metaheuristic is inspired by
the way ants search for food in nature [9]. In general, the ants use a pheromone
to mark the route they have taken. Multiple paths might then be searched,
and while the pheromone vaporizes over time, the shortest path thus has the
strongest presence of pheromone [51]. This behaviour is modeled by artificial
agents (ants) that perform greedy search on a graph G(V,A), where the nodes
of the graph, V are the components of the solution, and A the connections
between the components [9]. An example of the approach can be seen from
algorithm 4. ConstructAntsSolutions() is the process wherein the solution is
created incrementally by the agents in parallel. For each agent, the probabil-
ity of going from a node k to successor node l is the probability Pkl, which
is also an increasing function of πkl and ρkl(u). Let πkl be the pheromone
on arc (k, l), and ρkl(u) the heuristic value of arc (k, l). Here, the heuristic
value is a greedy estimate of the gain by adding (k, l) to the solution [9].
EvaporatePheromone() decrease the pheromone πkl between arcs, every time

Automating model management 17

an agent uses this particular component. This prevent the algorithm from get-
ting stuck in a local minima.DeamonActions() are global (centralized) actions
that are performed across all the agents. These vary between the particular
implementations of the algorithm [9]. An example is a local search over one
or more of the solutions created by the agents, or adding more pheromone to
make the search less explorative [51].

Algorithm 4 Ant colony optimization

while termination conditions not met do
ConstructAntsSolutions()
EvaporatePheromone()
DeamonActions()

end while

3 Methodology

The overall methodology of this study is based on the semi-systematic liter-
ature review described in [54], which focuses on generating an overview of a
given area. This study thereby uses qualitative analysis to classify the litera-
ture in terms of relevant theoretical aspects related to the research questions.
The literature search have been performed and documented according to the
guidelines in [55]. Section 4.1 present the search strategy, queries and their
results. The inclusion and exclusion criteria are described in sections 3.2 and
3.3, and finally the analysis approach is discussed in section 3.5.

3.1 Search design

The literature search have been guided by combining three main topics: meta-
heuristics, concept drift, and automated or adaptive forms of machine learning.
The combination of the three topics have been implemented in the queries
listed in Table 3 using Boolean AND. Since the last two topics exist in multi-
ple forms with different names, synonyms has been defined in each of the three
queries using Boolean OR. An incremental search approach has been applied,
as the aim has been to include as many relevant studies as possible within the
combination of the three main topics mentioned above. The first query was
designed for probing, whereas the second query was designed to be broader
than the initial, and finally, the third query imposed a third AND clause to
further restrict the results. A stopping criteria was defined as obtaining more
than 80 percent qualified, redundant results. The queries were performed using
Google Scholar since most relevant publishers, proceedings and journals within
the subject areas (Springer, Elsevier, IEEE Explore, ACM digital library) have
searchable titles and abstracts available online.

18 Automating model management

Table 3 Queries used

Query no. Query

1 Metaheuristic AND (Concept drift OR “Online learning”) AND
(“AutoML” OR “Automated Machine Learning” OR “Hyper-
parameter optimization” OR “CASHO” OR “FMS”)

2 Metaheuristic AND ”Concept drift” AND (“Online learning”
OR Adaptation OR Adaptive OR AutoML)

3 Metaheuristic AND ”Concept drift” AND (adaptation OR
adaptive OR AutoML OR Automation OR ”Hyper-parameter
optimization” OR “Online learning” OR ”Full model selection”)
AND (”Machine learning” OR ”Data stream mining”)

3.2 Inclusion criteria

Only one inclusion criteria was formed for this study, namely that the study
in question included all a combination of the three topics of interest: Drift
adaptation of a Machine learning model using a Metaheuristic algorithm.

3.3 Exclusion criteria

Four exclusion criteria have been defined to ensure the relevancy of the
retrieved literature and contain the reviewing effort. The first criterion was
included to ensure the content was available, and an analysis of the approach
could thereby be performed. The second criterion ensured only peer-reviewed
studies were included as a quality assurance criterion. Similarly, criteria three
exclude works published before 2021 with less than two citations. This was
primarily added to ensure that the suggested method has had an impact in
the scientific communities. However, as discussed in section 6, this resembles
a snapshot in time, and thereby limits the external validity of the results in
the future. The fourth criterion was added to exclude literature that did not
suggest or study an explicit method for drift adaptation of a machine learning
model using metaheuristics.

1. Availability

• Studies with inaccessible abstract or full text

2. Peer-review

• Unpublished articles (no DOI or publisher)
• Blog-posts

3. Scientific impact

• Studies with less than two citations when published before 2021

4. Papers without a suggested method

• Position papers

Automating model management 19

• Literature reviews
• Textbooks

3.4 Study quality assessment

The included studies were mainly assessed in terms of their internal and exter-
nal validity. In terms of internal validity, the completeness of information was
assessed, in terms of the reported target distributions and choice of perfor-
mance metrics. The type of concept drift, combined with the out-of-sample
evaluation method was also compared in order to assess whether the method
was evaluated from data that was not accessible during training/calibration.
For the external validity, the completeness of information was again assessed in
order to understand whether the experiment could be reproduced or compared
to similar studies using the same data or data-generating procedure. When-
ever these issues are important for the discussion of the respective studies,
they will be mentioned in the text in the results section.

3.5 Analysis and classification of methods

The included literature was qualitatively classified in terms of relevant the-
oretical aspects presented in Section 2 related to the research questions. In
cases where the terms presented in section 2 did not cover all approaches in
the studies, open coding was used. An overview of the areas of the research
questions and their relation to the codes used can be seen below:

• Types and general applications of metaheuristics - RQ1, RQ2

– Type of metaheuristic: Algorithm family, algorithm type (open coding)
– Field and application area: Spam detection, finance, medical (open

coding)
– Machine learning problem type: Supervised learning (SL), Rein-

forcement learning (RL), Semi-supervised learning (SSL), Unsupervised
learning (USL)

– Automated machine learning (AutoML) problem type: Fea-
ture selection (FS), Hyper-parameter optimization (HPO), Full-model
selection (FMS)

• Drift adaptation application areas - RQ3

– Online learning mode: Retraining, sliding window, incremental adap-
tation

– Drift adaptation method: Blind, informed
– Drift detection method: Sequential analysis, control charts, distribu-

tional test, context-dependent

• Test of concept drift adaptability - RQ4

– Drift type: Real drift, virtual drift, feature drift, novel class appearance
– Drift pattern: Sudden, incremental, gradual, reoccurring

20 Automating model management

– Data source: Real world, synthetic
– Data type: Email, sensor, social media (open coding)

• Evaluation methodologies - RQ5

– Evaluation method: K-fold, partitioning, test period, sliding window
– Evaluation metric: Accuracy, recall, precision (open coding)

4 Results

In the following, the results will be divided into five different sections: search
results, types of Metaheuristics in the results, adaptation method, test of
concept drift adaptability and chronological trends.

4.1 Search results

A total of three queries were performed on May 27, 2022, in the chronological
order in which they are listed in table 3. Looking at table 4, hits denote the
search results, retrieved the number of papers retrieved for closer inspection,
redundant the qualified results already included in a previous query and finally
included show the number of papers included in the analysis that origin from
the given query. The first query led to 258 initial hits with 25 retrieved studies
for further inspection. Unfortunately, none of these results were qualified to
be included, due to the exclusion criteria (defined in section 3.3). Query 2 led
to 570 hits wherein 38 studies were retrieved for closer inspection, resulting in
17 included studies. Finally, query 3 led to 534 hits, with eight qualified for
closer inspection. However, all of these were already included from query 2.
The total number of included studies is therefore 17.

Table 4 Search results

Query no. Hits Retrieved Redundant Included

1 258 25 0 0

2 570 38 0 17

3 534 16 8 0

4.2 Types and general application areas of metaheuristics

As can be seen from table 5, population-based metaheuristics is by far the
most widely used method across the found studies, in fact, only two studies
used local search or construction-based methods [56, 57]. The most frequently
used metaheuristic is particle swarm optimization (PSO) [37], which is applied
to both continuous as well as discrete optimization [58, 59]. In two of the
use-cases, the metaheuristic is combined with Replicator dynamics [60, 61] in

Automating model management 21

order to utilize the benefit of both approaches in a FMS problem (see section
2.3.4). The fields of application can mainly be grouped into: Engineering, Com-
puter science and Natural language processing. In [58], the focus is mainly to
generate self-adaptable models that perform well while using as little mem-
ory as possible so that these can be used in e.g. telemetry hardware. Another
example is in [62] where the focus is to have self-adaptable models that can
compensate for gradual sensor-malfunction in order to save costs in a gas-
detection problem. The most common application area is computer science
or intelligent systems: in these studies, multiple datasets from different fields
are used while demonstrating the efficiency and adaptability of a given algo-
rithm, as compared to other methods. The datasets used (commonly referred
to as ‘benchmark’ datasets) are often retrieved from the UCI Machine learn-
ing repository. In the natural language processing approaches, the aim is to
classify textual data, which is known to have a high dimensionality as well as
both feature drift and novel classes appearance over time. In [63] the authors
use AIS for classification of tweets and other social media data. In [57] and
[64], the authors use email data for spam classification and automated email
folder allocation, respectively. In addition to field-specific data, most studies
uses simulated data to be able to test drift adaptation abilities (see table 8).

4.3 Concept drift adaptation

As seen in table 6, most of the use-cases utilise metaheuristics for assist-
ing in supervised learning problems. In these cases, the ground truth is
either assumed to be available instantly after the classification has been made
[56, 59, 69], or to be available in a given number of time steps after the clas-
sification has been made [60]. In 4 of the studies [58, 63, 65, 66] the learning
method is unsupervised, in order for the algorithm to be able to adapt and
correct itself without knowing the ground truth. These studies therefore use
a clustering-approach (DBSCAN, K-means, DEN-STREAM, CLU-STREAM,
KDE) in order to segment the data into clusters based on manually specified
criteria. In [66] the authors use information entropy of a cluster, to determine
if a data-point belong to the given cluster. In most of these studies, the accu-
racy of the clusters are evaluated using ground truth after the experiment is
performed. In one study, the authors in [56] uses reinforcement learning to find
the best policy in any given situation (for electricity market trading).

4.3.1 Models used

In general there are 3 categories of ML models applied across the use-cases:
1) Well-known machine learning algorithms (K-NN, MLP/NN, RNN, NB,
DBSCAN), 2) Existing streaming-optimized model ensembles (VFDT [59])
and 3) Proposed new (or modifications of existing) algorithms trained using
stochastic optimization (Harmony classifier [68], SFLO-TSCS [62], ACDF [57],
J-SLNO [70]). The first category is mainly motivated by the known strengths
and weaknesses of the algorithms across the various use-cases. The second

22 Automating model management

Source MH type MH Application field Data types

[58] Population PSO Engineering Electrical grid
data

[59] Population PSO Multiple (CS, HC) Biometric data

[65] Population DE, WOA,
BIA

Multiple (CS, AI, SS) Simulation

[60] Population PSO
(PSO+RD)

Multiple (CS) Multiple
(benchmark)

[56] Pop, Loc.S. PSO, TS,
SA

Decision support Simulation

[63] Population AIS NLP Social media
data

[66] Population PSO Multiple (CS) Multiple
(benchmark)

[61] Population EC/GA
(EC+RD)

Multiple (CS) Multiple
(benchmark)

[67] Population EC/GA Engineering Simulation

[62] Population SFLO Engineering Sensor data

[57] Construction ACO NLP Email data

[68] Population HS Multiple (CS) Multiple
(benchmark)

[64] Population EC/GA NLP Email data

[69] Population PSO
(Q.PSO)

Multiple (CS, FIN) Multiple
(benchmark)

[70] Population J-SLNO Engineering Sensor

[71] Population GA Engineering Sensor

[72] Population GA Multiple (CS) Multiple
(benchmark)

Table 5 Types and application areas. MH:Meta-heuristic, Loc.S.: Local search, PSO:
Particle swarm optimization, DE: Differential evolution, WOA: Whale optimization
algorithm, BIA: Bat inspired algorithm, RD: Replicator dynamics, TS: Tabu-search, SA:
Simulated annealing, AIS: Artificial immune system, EC: Evolutionary computation, GA:
Genetic algorithm, SFLO: Shuffled frog-leaping optimization, ACO: Ant colony
optimization, HS: Harmony search, Q.PSO: Quantum particle swarm optimization,
J-SLNO: Jaya algorithm and Sea Lion Optimization, CS: Computer science, HC:
Healthcare, AI: Artificial intelligence, SS: Social science, NLP: Natural language
processing, FIN: Finance.

Automating model management 23

category is motivated by the robustness through adaptability of ensemble algo-
rithms in concept drift settings [3, 61]. The third category is mainly proposed
for specific cases where the nature of the metaheuristic presents an advantage.
For instance, in [68] the authors compare three different Harmony Classifiers
(batch, incremental and improved incremental), where computation time is
a main motivation for using the Harmony Classifier. The approach in [57] is
an ensemble of a modified decision tree algorithm [14] based on ant-colony
optimization (ACO), where the main motivation is to improve the average per-
formance of each decision tree, while maximizing heterogeneity in the ensemble
at the same time.

Source ML
problem

ML model(s) AutoML
problem

MH adaptation

[58] USL KDE, Autoencoder HPO Cluster initialization

[59] SL VFDT FS Window and FS

[65] USL K-means, D.str., C.str. MO Cluster initialization

[60] SL Ensemble (DT) FMS M.Mgmt., FS

[56] RL MLP MO What-if analysis

[63] USL DBSCAN FMS M.Mgmt., FS, N.DT.

[66] USL K-NN FS FS

[61] SL Ensemble FMS FS

[67] SL RNN, GRU, LSTM HPO Window, FS

[62] SL SFLO-TSCS FS FS

[57] SL ACDF, STR-ACDF (RF) FMS FMS

[68] SL Harmony classifier MO MO

[64] SL Naive bayes FS FS

[69] SL MLP MO Retraining

[70] SL RNN FMS FS, HPO

[71] SL SARIMA, SVR, MLP FMS FMS

[72] SL MLP FMS FS, HPO, M.Mgmt

Table 6 ML and Auto-ML aspects. USL: Unsupervised learning, SL: Supervised learning,
RL: Reinforcement learning, D.str: DenStream, C.str: CluStream, DT: Decision tree,
MLP: Multi-layer perceptron, RF: Random forest, SARIMA: Seasonal Autoregressive
Integrated Moving Average, SVR: Suppoort-vector Regression, MO: Model optimization,
HPO: Hyper-parameter optimization, FS: Feature selection, FMS: Full model selection,
M.Mgmt: Model management, N.DT: Novelty detection.

24 Automating model management

4.3.2 AutoML and drift adaptation

In some studies the application of the metaheuristic is not directly related to
automated machine learning (AutoML). In these studies, the metaheuristic is
only used for model optimization (training), which is not formally an AutoML
problem, but rather a generic machine learning problem. One example is using
PSO for finding the optimal weights of a neural network (MLP/NN) as an
alternative to back-propagation [69], or finding the optimal value of a decision
problem [56]. Looking at the adaptation approach in Table 6 (column 5), most
of the use-cases utilize metaheuristics for the feature selection (FS) problem,
which is a sub-problem of full model selection (FMS). In some use cases, the FS-
problem is extended to determining the size of time series windows [59, 67, 71].
In other cases, the metaheuristic is used for the hyper-parameter optimization
problem (HPO) in order to adapt the machine learning model in the event
re-training is needed. In [67] the authors utilize low-fidelity HPO [7], where
initial model candidates are evaluated in subsets of the data, to decrease the
overall training time (via early stopping, see [12]).

A general pattern across the use cases is that there are multiple phases of
the suggested approach: an initialization phase, most often followed by a online
phase. The initialization phase is a generic offline batch-learning AutoML prob-
lem. In the subsequent online phase, either FMS or sub-problems such as FS,
model selection (MS), and HPO is performed via a metaheuristic. In [63] the
authors use the Artificial immune system (AIS) metaheuristic for FMS and
perform both feature selection, model selection and novelty detection using
this algorithm.

For the use-cases that can be characterized as FMS [57, 60, 61, 63, 70–72],
FMS happens either in the initialization phase (offline learning), or in the sub-
sequent online phase via adaptive lifecycle management, which is both blind
[57] and informed [60, 61, 63, 72]. In the cases with informed adaptation, meth-
ods such as control charts and distribution testing [63, 68] is mainly performed.
The clear advantage of this approach is as discussed earlier, that informed
training reduces the computational demand. As Neural network-based models
are known to be computationally demanding due to a high number of param-
eters [12], an interesting finding is that only 2 of 6 Neural Network-based
approaches [56, 72] uses informed (trigger-based) adaptation. In this case, the
adaptation method uses a given error threshold to update the model.

In two cases, FMS is managed by a combination of a metaheuristic and
replicator dynamics (RD) to handle model lifecycle management [60, 61]. One
example is the RED-PSO framework [60] which uses RD to select which Deci-
sion trees to further update, and which to drop based on the error feedback
in an online classification setting. Another example is seen in [57], where the
information in the pheromone trails in ACO is used for model management,
where newer models have a stronger pheromone trail, and older models are
gradually dropped. Most of the use-cases are based on incremental learning
with a streaming-setting in mind. However, some of the experimental settings
are similar to batch learning, as in [67, 68, 70, 71].

Automating model management 25

In addition, most of the adaptation techniques are blind, which is not
necessarily a drawback in terms of concept drift adaptation, but is known to
lead to higher computational costs [3]. The drift detection methods employed
vary across the found literature.

Source Learning mode Adaptation Drift detection method

[58] Incremental Blind None

[59] Retrain Informed Control charts

[65] Sliding window Informed Context dependent

[60] Incremental Informed Context dependent

[56] Incremental Informed Context dependent

[63] Sliding window Informed Distributional test

[66] Sliding window Blind None

[61] Sliding window Informed Control charts (EDDM)

[67] Batch Blind None

[62] Sliding window Blind None

[57] Incremental Blind None

[68] Batch, incremental Informed Distributional test

[64] Incremental Blind None

[69] Sliding window Blind None

[70] Batch Blind None

[71] Batch Blind None

[72] Sliding window Informed Context dependent

Table 7 Online learning settings

4.4 Test of concept drift adaptability

Unfortunately, multiple studies include little information regarding the concept
drift that the proposed solution is tested against. For the domain-specific use
cases, real-world data is used [58, 64, 71] to demonstrate the ability to function
in this environment, but the nature of the concept drift in the particular data
is less transparent. This pattern is present in multiple studies where real-world
data is used, except [62], where the authors also demonstrate the fluctuations
of the concept (gas sensor readings) over time.

26 Automating model management

4.4.1 Drift types

In [63] the authors modify real-world data to model the arrival of novel classes
in the target variable. This is achieved by adding classes in subsequent batches
in the duration of the experiments. Novelty detection in both feature and
input space is tested in [65], [63] and [62] and is most often handled using
unsupervised learning or feature selection. A commonality for studies with
textual data is the need for adaptive feature selection. This is seen in [63], [57]
and [64], where feature drift is a natural phenomenon happening in the real-
world data that is investigated: novel features (new words) arrive and other
features become less important or disappear. Since none of these studies in
detail describe the type and magnitude of the concept drift naturally occurring
in the real data, the magnitude of the drift cannot be determined. In [60],
[66], [61] and [68] the authors compensate for this problem by using simulated
data alongside real-world data. In this way, it is possible to control the various
types of concept drift and compare the adaptability of the proposed solution in
different scenarios. For instance, in [60] the authors use a rotating hyperplane
to simulate real concept drift given a small set of features. This particular
type of simulation allows to create environments with different magnitudes of
change over time. For the following studies; [64, 69–72] the drift type is not
described, which unfortunately limits the external validity of the results.

4.4.2 Evaluation methods

In 8 of the 14 studies with classification problems, the accuracy metric was
used as the primary metric for model evaluation. As described in section
2.2.3, the accuracy metric is biased towards the majority class, meaning that
performance on minority classes is largely overlooked if accuracy is the only
performance metric used. Unfortunately, this is the case in [68], [57], [67] and
[61], which means that the results could be biased by the balance of the target
variable.

Neither of the aforementioned studies report the balance of the target
classes, however, the number of classes of each dataset is reported in [57], [68]
and [61]. With this in mind, the results of these studies are mainly interesting
in terms of the relative performance of the algorithms within the experimen-
tal setting of each study. In [57] all datasets have between 11 and 101 target
classes, with less than 5000 observations per dataset. In this case, it is pos-
sible that one or more target classes could have no true positives, while the
accuracy would still be high (assuming that the target classes were balanced).
Fortunately the authors in [59, 62–66, 72] also evaluate the classification perfor-
mance using either confusion matrix, ROC-index, f1 metric or precision/recall
performance, which all take the target balance into account.

Evaluation is most often performed using two-fold partitioning of the data,
however, this vary across the studies depending on whether incremental learn-
ing or the sliding window approach is used. In [63] novelty detection capability
is evaluated using a train and test period, where 2 concepts are present in the

Automating model management 27

Source Drift type Drift pattern Data source Evaluation method

[58] Virtual drift Unknown Real world K-fold

[59] Real drift S, G, R Real world Test-period (sl. win.)

[65] Real, novel
class

S, G Synthetic Test-period (sl. win.)

[60] Real, feature
drift

S, G, R Synth., Real
world

Test-period (sl. win.)

[56] Real drift Unknown Synthetic Test-period (sl. win.)

[63] Real, feature,
novel c.

Unknown Real world Test-period (sl. win.)

[66] Unknown Unknown Synth., Real
world

Test-period

[61] Real, feature
drift

S, G, R Synth., Real
world

Test-period (sl. win.)

[67] Unknown Unknown Synthetic K-fold

[62] Feature drift,
novel c.

S, G Real world Test-period

[57] Feature drift,
novel c.

Unknown Real world K-fold

[68] Real, feature
drift

G Synth., Real
world

Test-period (sl. win.)

[64] Unknown Unknown Real world K-fold

[69] Unknown S, G Real world Test-period (sl. win.)

[70] Unknown Unknown Real world K-fold

[71] Unknown Unknown Real world Test-period

[72] Unknown Unknown Real world K-fold

Table 8 Drift types and evaluation methods. S: Sudden, G: Gradual, R: Reoccurring, I:
Incremental, Sl. Win: Sliding window., Novel c.: Novel class., Synth: Synthetic.

training period, and 4 concepts in the test period (by adding two novel classes).
In [62] the authors use a training period of one batch (initialization phase) and
subsequently use nine test batches to evaluate the online performance of the
suggested approach.

4.5 Chronological trends

To illustrate some of the trends in the included literature over time, each study
have been qualitatively coded into categories related to the type and family

28 Automating model management

of the used metaheuristics, as well as the type of concept drift and AutoML
problem. The results can be seen from Figure 3.

Fig. 3 Chronological trends in found literature. Top-left: type of metaheuristic. Top-right:
Family of proposed or used metaheuristic. Lower-left: Drift type included in the study.
Lower-right: AutoML problem type.

Looking at the types of metaheuristic, it can be seen that the vast majority
of the studies are population-based as mentioned in section 4.2. Only two
of the studies use other types of metaheuristics: Construction-based [57] and
local search [56]. The proposed metaheuristics can be further analyzed by
categorizing which existing algorithm it is derived from, in the cases where
it is possible based on its description. Looking at the upper-right diagram in
Figure 3, it can be observed that 11 of the proposed algorithms were derived
from either Genetic algorithm (GA) or Particle-swarm optimization (PSO).
Where PSO has seen the most interest in 2018 to 2020, the GA-based variants
are more stable over time.

In terms of the drift types studied, the majority of the studies in the period
include real concept drift. In some of the works, the drift type is not reported
as mentioned in section 4.4.1, however, there do not seem to be a temporal
trend. Finally, an interesting pattern in the type of AutoML problem can be
observed by the lower-right diagram in Figure 3, as the early works found
from 2012 mainly focus on conventional Machine learning problems: Model
optimization and feature selection. This trend generally continues until 2019
where Full model selection (FMS) [7] becomes more dominating.

Automating model management 29

5 Discussion and future work

The initial aim of this study was to map the literature on drift adaptation of
machine learning models via metaheuristics. As the results of this literature
review show, multiple optimization problems studied in automated machine
learning (FS, HPO, FMS) have been addressed and implemented as online
versions in the found literature [57, 60, 61].

Based on the retrieved literature, the evaluation of concept drift adapta-
tion in itself can be complex, and the level of details reported seem to vary
across studies. Methods for evaluating machine learning model performance,
and especially concept drift adaptation, differ across the found studies. Future
research should thereby focus on using evaluation metrics that are unbiased
with respect to the balance of the target variable (in the case of classification
problems).

In addition, as the assumption that the ground truth is available imme-
diately after the prediction might not be valid in many situations, the
generalizability of results can be further improved by additionally testing
scenarios where the ground truth is delayed, as in [62]. Evaluating the pro-
posed approaches using both real-world data with drift in combination with
simulated drift, gives the advantage of both ecological validity, as well as trans-
parency of the tested drift type and pattern. A general downside of the found
studies using real-world data alone, is the lack of details on the nature of the
concept drift in the data. In future studies, more emphasis should thereby be
put on the nature of the drift in real-world data sources.

The results of this study show that multiple solutions exist for combin-
ing black-box optimisation [7] with machine learning in order to automate
what is referred to as model maintenance in ML life-cycle terminology [43].
The analysis of the chronological trends also illustrate that the literature has
advanced over the years from solely focusing on single tasks in the CRISP-
DM framework [15], to performing online FMS in data streams with concept
drift. However, the initial step of aligning the project goals, evaluation metrics
and objective functions remains a manual task. Amongst the used metaheuris-
tics, population-based methods were most frequently used. One reason for this
could be due to the benefits of parallel computation (training multiple mod-
els simultaneously), their simplicity, or individual context-dependent strengths
[57, 63].

It remains unclear whether one population-based approach performs better
than another in which scenario, as different population-based metaheuristics
were not compared to each other in any of the found studies (only variants of
the same algorithm such as [60, 61, 68, 69]). Future work might therefore study
the effect of drift patterns and type of population-based metaheuristic on the
long-term computational cost, etc. Another area that might be investigated
is the influence of long-term drift adaptation and performance of business
processes.

30 Automating model management

6 Threats to validity

A general threat to the validity of this study is a potential selection bias in
the retrieval of literature. To make this bias as transparent as possible, the
literature search, inclusion and exclusion criteria in the study selection process
have been documented. One potential source of selection bias is the exclusion
of literature with less than two citations (exclusion criteria 3), which could
lead to excluding studies that did indeed meet the other criteria. Therefore,
the results in this study must be viewed as a snapshot in time, illustrating
an overview of the approaches to drift adaptation with the most scientific
impact at the time of writing. Another potential source of selection bias is
exclusion criteria 2, which excludes blog posts, masters theses and textbooks
which might all present a valid method that combines all three topics of this
study. Furthermore, as multiple fields in some cases have different terms for
the same concept, an interpretation bias from the researcher examining the
found studies is also a potential threat to the validity of the results. It is indeed
possible that one of the three topics in this study is referred to using non-
standard terms in one or more fields, and that important work was thereby not
included in this review. Finally, as the algorithm behind the Google Scholar
search engine could be updated over time or content could be removed, it
is possible that the queries in this study will not reproduce the same search
results.

7 Conclusion

The results show that population-based metaheuristics are the most popu-
lar methods in the found literature. In particular, Genetic Algorithms and
Particle-Swarm Optimization are two metaheuristics frequently used across
multiple fields (engineering, computer science, managerial decision support,
finance, and social science). As neither of the found studies compares differ-
ent population-based metaheuristics to each other, it remains unclear whether
one variant is superior to another across the problem use cases. It is there-
fore suggested that future research focus on comparing not only the adaptive
machine learning models but performance across metaheuristics as well. The
proposed approaches in the found literature are evaluated using either real-
world data or a combination of synthetic and real-world data sets. In terms
of drift-adaptation, the metaheuristics in the early literature are primarily
used to automate single tasks in machine learning development, such as fea-
ture selection or hyper-parameter optimization. In more recent literature (at
the time of writing), full model selection is a more widespread utilization of
metaheuristics for drift adaptation. It is found that some of the retrieved lit-
erature is lacking in the reporting of machine learning model performance: In
4 of the 17 retrieved studies, the class distribution of the target variable is not
reported while accuracy is the only metric used for evaluating model perfor-
mance (potentially leading to biased results in data with unbalanced target
class distributions). A general problem in the found literature is the lack of

Automating model management 31

details reported regarding drift type and pattern. In studies with synthetic
or a mixture of synthetic and real-world data, the drift type and pattern are
often transparent; however, for the studies using real-world data exclusively,
these details are often not reported. Future work in this area should therefore
include drift characteristics alongside the relative performance of the proposed
solutions.

References

[1] Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift
applications. (2016)

[2] Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive
process monitoring, pp. 1–8 (2017). https://doi.org/10.1109/SCC.2017.
10

[3] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A
survey on concept drift adaptation. ACM Computing Surveys (2013)

[4] Schelter, S., Biessmann, F., Januschowski, T., Salinas, D., Seufert, S.,
Szarvas, G.: On challenges in machine learning model management. IEEE
Data Eng. Bull. 41, 5–15 (2018)

[5] Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data lifecycle chal-
lenges in production machine learning: A survey. SIGMOD Rec. 47(2),
17–28 (2018). https://doi.org/10.1145/3299887.3299891

[6] H., D.T., Patil, D.J.: Data scientist: The sexiest job of the 21st century.
Harvard Business Review 90, 70–76 (2012)

[7] Feurer, M., Hutter, F.: In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.)
Hyperparameter Optimization, pp. 3–33. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-05318-5 1. https://doi.org/10.1007/978-3-030-
05318-51

[8] Ghomeshi, H., Gaber, M.M., Kovalchuk, Y.: Eacd: Evolutionary adap-
tation to concept drifts in data streams. Data Mining and Knowledge
Discovery 33(3), 663–694 (2019)

[9] Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A sur-
vey on metaheuristics for stochastic combinatorial optimization. Natural
Computing (2008)

[10] Hemasian-Etefagh, F., Safi-Esfahani, F.: Dynamic scheduling applying
new population grouping of whales meta-heuristic in cloud computing.
The Journal of Supercomputing 75(10), 6386–6450 (2019)

32 Automating model management

[11] Tomoiagă, B., Chindriş, M., Sumper, A., Sudria-Andreu, A., Villafafila-
Robles, R.: Pareto optimal reconfiguration of power distribution systems
using a genetic algorithm based on nsga-ii. Energies 6(3), 1439–1455
(2013)

[12] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, ???
(2016). http://www.deeplearningbook.org

[13] Chollet, F.: Deep Learning with Python. Manning, ??? (2017)

[14] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical
Learning. Springer Series in Statistics. Springer, New York, NY, USA
(2001)

[15] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer,
C., Wirth, R., et al.: Crisp-dm 1.0: Step-by-step data mining guide. SPSS
inc 9, 13 (2000)

[16] Matignon, R.: Data Mining Using SAS Enterprise Miner. John Wiley &
Sons, ??? (2007)

[17] Fayyad, U.M.: Data mining and knowledge discovery: making sense out
of data. IEEE Expert 11 (1996)

[18] Shafique, U., Haseeb, Q.: A comparative study of data mining process
models (kdd, crisp-dm and semma). International Journal of Innovation
and Scientific Research (2014)

[19] Raschka, S., Mirjalili, V.: Python Machine Learning, 3rd Ed., 3rd edn.
Packt Publishing, Birmingham, UK (2019)

[20] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals
of Business Process Management vol. 2. Springer, ??? (2018)

[21] Barddal, J.P., Gomes, H.M., Enembreck, F., Pfahringer, B.: A survey
on feature drift adaptation: Definition, benchmark, challenges and future
directions. Journal of Systems and Software 127, 278–294 (2017). https:
//doi.org/10.1016/j.jss.2016.07.005

[22] Lipovetsky, S.: Analytical closed-form solution for binary logit regression
by categorical predictors. Journal of Applied Statistics, 37–49 (2015)

[23] Khan, I., Zhang, X., Rehman, M., Ali, R.: A literature survey and
empirical study of meta-learning for classifier selection. IEEE Access 8,
10262–10281 (2020)

[24] Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey.
Journal of Machine Learning Research 20(55), 1–21 (2019)

Automating model management 33

[25] Bengio, Y.: Gradient-based optimization of hyperparameters. Neu-
ral Computation 12(8), 1889–1900 (2000). https://doi.org/10.1162/
089976600300015187

[26] Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection
for black-box continuous optimization problems: A survey on methods
and challenges. Information Sciences 317, 224–245 (2015). https://doi.
org/10.1016/j.ins.2015.05.010

[27] Maclaurin, D., Duvenaud, D., Adams, R.P.: Gradient-based hyperpa-
rameter optimization through reversible learning. In: Proceedings of the
32nd International Conference on International Conference on Machine
Learning - Volume 37. ICML’15, pp. 2113–2122. JMLR.org, ??? (2015)

[28] Strijov, V., Weber, G.W.: Nonlinear regression model generation using
hyperparameter optimization. Computers and Mathematics with Appli-
cations 60(4), 981–988 (2010). https://doi.org/10.1016/j.camwa.2010.03.
021. PCO’ 2010

[29] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res. 13(null), 281–305 (2012)

[30] Yoo, Y.: Hyperparameter optimization of deep neural network using
univariate dynamic encoding algorithm for searches. Knowledge-Based
Systems 178, 74–83 (2019). https://doi.org/10.1016/j.knosys.2019.04.
019

[31] Bibaeva, V.: Using metaheuristics for hyper-parameter optimization of
convolutional neural networks. In: 2018 IEEE 28th International Work-
shop on Machine Learning for Signal Processing (MLSP), pp. 1–6
(2018)

[32] Matuszyk, P., Castillo, R.T., Kottke, D., Spiliopoulou, M.: A comparative
study on hyperparameter optimization for recommender systems. In: Lex,
E., Kern, R., Felfernig, A., Jack, K., Kowald, D., Lacic, E. (eds.) Work-
shop on Recommender Systems and Big Data Analytics (RS-BDA’16)
@ iKNOW 2016 (2016). http://socialcomputing.know-center.tugraz.at/rs-
bda/

[33] Hutter, F., Hoos, H., Leyton-Brown, K.: An evaluation of sequential
model-based optimization for expensive blackbox functions. In: Proceed-
ings of the 15th Annual Conference Companion on Genetic and Evolution-
ary Computation. GECCO ’13 Companion, pp. 1209–1216. Association
for Computing Machinery, New York, NY, USA (2013). https://doi.org/
10.1145/2464576.2501592. https://doi.org/10.1145/2464576.2501592

[34] Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi,

34 Automating model management

F.M., Rizzi, W., Simonetto, L.: Genetic algorithms for hyperparameter
optimization in predictive business process monitoring. Inf. Syst. 74(P1),
67–83 (2018). https://doi.org/10.1016/j.is.2018.01.003

[35] Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation of
learning curves. In: Proceedings of the 24th International Conference on
Artificial Intelligence. IJCAI’15, pp. 3460–3468. AAAI Press, ??? (2015)

[36] Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection.
Journal of Machine Learning Research 10(15), 405–440 (2009)

[37] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings
of ICNN’95 - International Conference on Neural Networks, vol. 4, pp.
1942–19484 (1995)

[38] Akila, S., Reddy, U.S.: Cost-sensitive risk induced bayesian inference bag-
ging (ribib) for credit card fraud detection. Journal of Computational
Science 27, 247–254 (2018). https://doi.org/10.1016/j.jocs.2018.06.009

[39] Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.:
Handling concept drift in process mining. In: Mouratidis, H., Rolland, C.
(eds.) Advanced Information Systems Engineering, pp. 391–405. Springer,
Berlin, Heidelberg (2011)

[40] Tsymbal, A.: The problem of concept drift: definitions and related work.
Technical Report TCD-CS-2004-15, Trinity College Dublin, 58 (2004)

[41] Nguyen, H.-L., Woon, Y.-K., Ng, W.K., Wan, L.: Heterogeneous ensem-
ble for feature drifts in data streams. (2012). https://doi.org/10.1007/
978-3-642-30220-6 1

[42] Webb, G., Hyde, R., Cao, H., Nguyen, H.-L., Petitjean, F.: Characterizing
concept drift. Data Mining and Knowledge Discovery 30 (2015). https:
//doi.org/10.1007/s10618-015-0448-4

[43] Vartak, M., Madden, S.: Modeldb: Opportunities and challenges in
managing machine learning models. IEEE Data Eng. Bull. 41, 16–25
(2018)

[44] Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S.A., Konwinski,
A., Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M., Xie, F., Zumar,
C.: Accelerating the machine learning lifecycle with mlflow. IEEE Data
Eng. Bull. 41, 39–45 (2018)

[45] Page, E.S.: Continuous inspection scheme. Biometrika (1954)

Automating model management 35

[46] Pesaranghader, A., Viktor, H.L.: Fast hoeffding drift detection method
for evolving data streams. In: ECML/PKDD (2016)

[47] Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.: Exponentially
weighted moving average charts for detecting concept drift. Pattern
Recognition Letters 33 (2012)

[48] Bifet, A., Gavaldà, R.: Exponentially weighted moving average charts for
detecting concept drift. Proceedings of the Seventh SIAM International
Conference on Data Mining (2007)

[49] Bouchachia, H.: Fuzzy classification in dynamic environments. Soft com-
puting (2011)

[50] Chen, S., Montgomery, J., Bolufé-Röhler, A.: Measuring the curse of
dimensionality and its effects on particle swarm optimization and differ-
ential evolution. Applied Intelligence (2015)

[51] Blum, C., Roli, A.: Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–
308 (2003). https://doi.org/10.1145/937503.937505

[52] Trabelsi, K., Sevaux, M., Coussy, P., Rossi, A., Sörensen, K.: Metaheuris-
tics, (2010)

[53] Dorigo, M., Di Caro, G.: Ant colony optimization: A new meta-heuristic,
vol. 2, pp. 1477–2 (1999). https://doi.org/10.1109/CEC.1999.782657

[54] Snyder, H.: Literature review as a research methodology: An overview
and guidelines. Journal of business research 104, 333–339 (2019)

[55] Kitchenham, B.: Procedures for performing systematic reviews. Keele,
UK, Keele University 33(2004), 1–26 (2004)

[56] Pinto, T., Vale, Z., Sousa, T., Praça, I., Santos, G., Morais, H.: Adap-
tive learning in agents behaviour: A framework for electricity markets
simulation. Integrated Computer-Aided Engineering 21, 399–415 (2014).
https://doi.org/10.3233/ICA-140477

[57] Kozak, J., Juszczuk, P., Probierz, B.: The hybrid ant colony optimiza-
tion and ensemble method for solving the data stream e-mail foldering
problem. Neural Computing and Applications (2020). https://doi.org/10.
1007/s00521-019-04672-1

[58] Bessa, R., Sampaio, G., Miranda, V., Pereira, J.: Probabilistic low-voltage
state estimation using analog-search techniques, pp. 1–7 (2018). https:
//doi.org/10.23919/PSCC.2018.8443074

36 Automating model management

[59] Lan, K., Fong, S., Liu, L.-s., Wong, R., Dey, N., Millham, R., Wong, K.: A
clustering based variable sub-window approach using particle swarm opti-
misation for biomedical sensor data monitoring. Enterprise Information
Systems (2019). https://doi.org/10.1080/17517575.2019.1597388

[60] Ghomeshi, H., Gaber, M., Kovalchuk, Y.: A non-canonical hybrid meta-
heuristic approach to adaptive data stream classification. Future Genera-
tion Computer Systems (2019). https://doi.org/10.1016/j.future.2019.07.
067

[61] Ghomeshi, H., Gaber, M., Kovalchuk, Y.: Eacd: evolutionary adaptation
to concept drifts in data streams. Data Mining and Knowledge Discovery
(2019). https://doi.org/10.1007/s10618-019-00614-6

[62] Rehman, A., Bermak, A., Hamdi, M.: Shuffled frog-leaping and weighted
cosine similarity for drift correction in gas sensors. IEEE Sensors Journal
PP, 1–1 (2019). https://doi.org/10.1109/JSEN.2019.2936602

[63] Abid, A., Jamoussi, S., Ben Hamadou, A.: Ais-clus: A bio-inspired method
for textual data stream clustering. Vietnam Journal of Computer Science
6 (2019). https://doi.org/10.1142/S2196888819500143

[64] Cortez, P., Vaz, R., Rocha, M., Rio, M., Sousa, P.: Evolutionary symbiotic
feature selection for email spam detection, vol. 1 (2012)

[65] Yeoh, J.M., Caraffini, F., Homapour, E., Santucci, V., Milani, A.: A
clustering system for dynamic data streams based on metaheuristic
optimisation. (2019)

[66] Aydogdu, O., Ekinci, M.: An approach for streaming data feature extrac-
tion based on discrete cosine transform and particle swarm optimization.
Symmetry 12, 299 (2020). https://doi.org/10.3390/sym12020299

[67] Kumar, P., Batra, S.: Meta-heuristic based optimized deep neural net-
work for streaming data prediction. (2018). https://doi.org/10.1109/
ICACCCN.2018.8748691

[68] Karimi, Z., Abolhassani, H., Beigy, H.: A new method of mining data
streams using harmony search. Journal of Intelligent Information Systems
39, 491–511 (2012)

[69] Abdulkarim, S.A., Engelbrecht, A.P.: Time series forecasting using neural
networks: Are recurrent connections necessary? Neural Processing Letters,
2763–2795 (2019). https://doi.org/10.1007/s11063-019-10061-5

[70] Abidi, M.H., Mohammed, M.K., Alkhalefah, H.: Predictive mainte-
nance planning for industry 4.0 using machine learning for sustainable

Automating model management 37

manufacturing. Sustainability 14(6), 3387 (2022)

[71] Izidio, D.M., de Mattos Neto, P.S., Barbosa, L., de Oliveira, J.F., Mar-
inho, M.H.d.N., Rissi, G.F.: Evolutionary hybrid system for energy
consumption forecasting for smart meters. Energies 14(7), 1794 (2021)

[72] Adnan, A., Muhammed, A., Abd Ghani, A.A., Abdullah, A., Hakim, F.:
Hyper-heuristic framework for sequential semi-supervised classification
based on core clustering. Symmetry 12(8), 1292 (2020)

 Mike Riess

School of Economics and
Business,
Norwegian University of
Life Sciences (NMBU),
P.O Box 5003
N-1432 Ås, Norway

Telephone: +47 6496 5700
Telefax: +47 6496 5701
e-mail: hh@nmbu.no
http:/www.nmbu.no/hh

Thesis number: 2022:21
ISSN: 1894-6402
ISBN: 978-82-575-1896-7

 Mike Riess was born in Odense, Denmark. He holds a BSc.
in Business administration and an MSc. in Business
intelligence, both obtained at the School of Business and
Social Sciences at Aarhus University in Denmark in 2015
and 2017, respectively.

This Ph.D. thesis addresses problems related to proactive
methods of decision support in business processes. These
methods include predictive process monitoring, which aims
to warn about potential problems before they occur, and
prescriptive process monitoring, which seek to proactively
remedy predicted issues before they materialize. Four
different studies are performed with the aim of improving
methods within this area.

Paper one addresses the issue of early warning performance
in predictive process monitoring. Three temporally weighted
loss functions are proposed with the aim of improving
earliness performance of remaining time predictions. The
results indicate that temporal weighting can indeed improve
the performance of early predictions from event-log data.

Paper two offers an alternative to the traditional approach to
model evaluation commonly used in predictive process
monitoring, by proposing an open-source simulation
framework for the generation of synthetic event-log data.

Paper three addresses the issue of customer loyalty in
customer service settings. A prescriptive approach to queue
management is proposed with the aim of improving
customer loyalty. Through an agent-based Monte Carlo
simulation model calibrated from the data of a case
company, results suggest that the method can improve
customer loyalty in situations with insufficient capacity.

Paper four addresses the issue of concept drift, which refers
to the long-term performance of machine learning models.
Through a literature review, an overview of metaheuristic
optimization methods for the automated adaption of
Machine learning models is provided, which can be used to
guide future research in this area.

Main supervisor: Prof. Joachim Scholderer

Mike Riess currently works as a Senior Data scientist in the
Business intelligence and Analytics team at Telia company.

116774 / AN
DVO

R
D

G
R

AFISK
.N

O

ISBN: 978-82-575-1896-7
ISSN: 1894-6402

Postboks 5003
NO-1432 Ås, Norway
+47 67 23 00 00
www.nmbu.no

	Blank Page
	Blank Page

