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Abstract 
 

Recent global events, particularly the COVID-19 pandemic and Russia's invasion of Ukraine, have 

been found to dramatically influence electricity consumption patterns, especially within European 

nations. In this study, the impacts of these consecutive crises on the electricity demand of selected 

EU countries: Bulgaria, Greece, Romania, and different regions of Italy were examined. The 

Ordinary Least Squares regression model was utilized to analyze hourly load data and air 

temperatures. The findings indicate that the 2020 COVID-19 lockdown reduced consumption 

uniformly across the studied regions, while the 2022 energy crisis led to varied impacts, with distinct 

patterns being exhibited in regions within Italy. Remarkably, resilience was shown by Bulgaria 

during both crises, whereas pronounced effects were experienced in Southern Italy in both periods. 

The importance of understanding these shifts for effective policymaking and future resilience 

planning is emphasized in this study. A limitation of the analysis is found in its sole use of aggregate 

power load data and its generalized modelling. It is suspected that clearer results could be obtained in 

each case if analyzed the electricity consumption data separated by sectors. 
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1. Introduction 
 
In recent years, global shock events have prompted a close examination of various sectors, 

revealing the vulnerabilities and resilience of systems that underpin our society. Among 

these, the electricity sector stands out, acting as both a barometer for economic activity and a 

critical service underpinning modern life. The confluence of the COVID-19 pandemic, which 

brought major shift in global behaviors, combined with the geopolitical aftershocks of 

Russia's invasion of Ukraine, has cast a spotlight on the electricity consumption patterns, 

especially in European countries. As electricity consumption patterns recede and flow in 

response to these monumental events, it becomes imperative to understand the nuances of 

these changes, not just for the sake of academic exploration, but for effective policymaking, 

economic forecasting, and strategic planning for a resilient future. 

The COVID-19 pandemic, which originated as a health crisis, rapidly metamorphosed into an 

economic and societal challenge of unprecedented magnitude. Global electricity demand 

patterns were significantly altered, reflecting the disruptions in daily life and economic 

activity. Following closely on its heels, the energy crisis in Europe, exacerbated by Russia's 

aggressive geopolitical maneuvers in Ukraine, added another layer of complexity, altering the 

energy landscape of the continent. 

 

This thesis dives into the interplay between these two critical events and their cumulative and 

individual impacts on electricity consumption in Southern European countries. Drawing from 

available data and contextual insights, it aims to address a pivotal question:  

 

RQ1. How did the electricity consumption in the selected countries change due to the impacts 

of the COVID-19 pandemic and the energy crisis resulting from Russia's invasion of Ukraine, 

and were these impacts consistent across these countries? 

 

The subsequent chapters will delve deeper into the documented effects of both crises, the 

theoretical frameworks, and provide empirical evidence to answer this question, aiming to 

offer a comprehensive understanding of a region's response to dual economic shocks. In 

doing so, this thesis hopes to shed light on the resilience and vulnerabilities of the electricity 

sector, informing both present and future strategies for regions grappling with multifaceted 

challenges. 
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2. Background 
 

This chapter outlines the documented impacts of the COVID-19 pandemic and the 

subsequent energy crisis in Europe on electricity demand. Based on this information, the 

chapter presents an argument in favor of conducting an analysis of the effects of both these 

crises on electricity load, aiming to assess their influences and potential disparities in 

seasonal consumption shifts. 

 

The course of COVID-19 pandemic impacts on electricity demand 
 
 
In 2020, global electricity demand is anticipated to decrease by 2%, the most significant drop 

since the mid-20th century, due to the Covid-19 pandemic's economic impact. This decline 

surpasses the 0.6% drop after the 2009 financial crisis. China, accounting for 28% of global 

electricity use, was expected to be the only major economy with rising electricity demand, 

but at 2%, it was well below its 2015 average of 6.5%. Despite some recovery in many 

regions, most major consumers like the US, India, Europe, and others saw annual demand 

declines. 

Wholesale electricity prices have dropped in 2020 due to lower demand, reduced fuel costs, 

and a rise in renewables. The IEA indicated a 28% price drop in 2020, following a 12% 

decline in 2019. (IEA, 2020) 

The COVID-19 pandemic has significantly altered daily life globally, affecting travel, social 

activities, work, schooling, and business operations. These changes have reshaped electricity 

consumption patterns. Analyzing these shifts is crucial for two primary reasons. First, 

understanding the electricity system's reaction to such unprecedented disruptions helps ensure 

grid reliability and resilience. Fluctuations in consumption can influence the grid's operation, 

balancing, and forecasting. Second, studying the pandemic's effect on electricity consumption 

highlights the potential of governmental policies to alter deep-rooted consumption habits. 

Both individual decisions and state policies have influenced these consumption changes. 

 

The immediate consequences of Russian Aggression on Ukraine in Europe 

 

During Q4 2021, European electricity markets witnessed a remarkable spike in day-ahead 

prices. This surge was primarily fueled by escalating prices of commodities like gas, coal, 

and CO2, a rising demand spurred by economic revival, and the limited supply from 
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traditional power plants. Prices rose dramatically by over 200%, and even doubled that in 

certain markets. Italy reported the steepest average at 243 €/MWh, showing a 394% leap 

from Q4 2020. The UK closely followed with an average of 239 €/MWh, a 355% year-on-

year growth. The European Power Benchmark for the last Q4 of 2021 averaged out to 194 

€/MWh, marking a 400% yearly increase. Countries including Norway, Switzerland, France, 

Spain, and Portugal encountered the sharpest price hikes. Norway's increase was particularly 

astounding at 760%. On the other hand, Poland, less reliant on gas, noted a comparatively 

restrained increase of 146%. To combat these soaring prices, the European Commission 

introduced the Energy Prices Toolbox in October 2021, with the goal of protecting consumers 

from the effects. In the wake of Ukraine's invasion by Russia, the Commission rolled out 

REPowerEU in March, setting a goal to reduce Europe's dependence on Russian energy 

sources by 2030. As March concluded, they also suggested measures like maintaining a gas 

storage level of at least 80% by November 2022 to bolster energy security and keep prices 

reasonable for Europeans (MOE, 2021). 

 

While there was a 2% growth in global electricity demand in 2022, the EU saw a decline of 

3% - the steepest dip among major power consumers. Such a demand drop has only been 

recorded twice in the 21st century: after the 2008 financial turmoil and amidst the 2020 

Covid-19 restrictions. The 2022 EU consumption dip was a result of milder winter 

conditions, an unusually warm summer, and high electricity costs. Though climatic 

conditions had a pronounced role, they contributed to less than a 1% demand reduction for 

the year. The other 2% was shaped by factors not related to weather. One significant factor 

was the electricity price spike, which heavily impacted high-consuming sectors (IEA, 2023). 

These significant surges in electricity prices impacted not just industries but also threatened 

the economic stability of households, particularly the disadvantaged ones. These shifts 

potentially altered daily and yearly consumption patterns and raised concerns about national 

energy security in several European nations. 

 
Understanding the impacts of two economic shocks on electricity consumption  
 
Understanding the effects of COVID-19 and the subsequent energy crisis on electricity 

consumption is paramount, especially considering their distinct root causes. COVID-19 

primarily seized economic activity, while the European energy crisis experienced an 

unprecedented spike in energy prices. Electricity consumption acts as a vital gauge of a 

region's economic health, with shifts in usage offering insights into economic vigor or 
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slowdown. With the pandemic halting many sectors, and the energy crisis altering costs, 

accurate infrastructure planning becomes imperative for utilities. The need to address both 

decreased demand from halted activities and potential heightened demand once the economy 

resumes, all while avoiding inefficiencies. Unforeseen changes in demand, as witnessed 

during these crises, can induce price fluctuations that ripple through the entire economy, 

affecting both households and businesses. These fluctuations further complicate the 

incorporation of renewable energy sources, such as wind and solar, which thrive on stable 

and predictable consumption. Environmentally, any change in electricity consumption 

patterns, especially in regions heavily dependent on fossil fuels, directly impacts emission 

levels. Policymakers, equipped with knowledge on how such significant events like the 

pandemic and energy crises affect electricity consumption, can formulate more adaptive and 

resilient energy and environmental strategies. Simultaneously, energy traders and financial 

markets, to safeguard their investments, must navigate the electricity consumption landscape 

affected by these unique crises. For instance, shares of utility companies can oscillate based 

on the unpredictability of these events. Furthermore, industries with large electricity 

footprints need a deep understanding of these events to manage risks and devise forward-

looking strategies. Monitoring shifts in electricity usage also helps discern evolving consumer 

patterns, providing insights into societal adaptations to changing economic circumstances. On 

a broader scale, such domestic electricity demand changes, induced by global events like 

COVID-19 or regional crises, can shape international energy dynamics and diplomacy. In 

essence, the multifaceted nature of electricity consumption interlinks with numerous aspects 

of the modern world. Grasping its subtleties, especially against the backdrop of significant 

crises with varied origins, is crucial for fostering resilience, effective planning, and holistic 

economic growth. 

 

The aim of this thesis is to contribute to earlier research on the impacts of the COVID-19 

pandemic on electricity consumption and other economic instabilities. It further seeks to 

expand this work with a study on the effects of two consecutive crises on the load demand in 

European countries. While the quantitative impacts of both shocks are well-documented at 

this juncture, understanding the varying impacts among countries and the distinct influence of 

each crisis on electricity demand within the same nation is more intricate but offers insightful 

observations. Recognizing these variations might also enable swifter responses by 

policymakers during subsequent economic disturbances. 
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Organization of the Thesis 

 

The structure of the thesis is as follows: 

Chapter 3 offers a literature review and the theoretical framework, encompassing the 

European electricity market, documented impacts of economic instability on load demand, 

and well-established associations with factors shaping electricity consumption patterns. 

Chapter 4 introduces the data used in the analysis, while Chapter 5 details the methods 

applied to the study. 

Chapter 6 outlines the results, succeeded by an in-depth discussion of the findings in Chapter 

7. Chapter 8 concludes with remarks, study limitations, and recommendations for future 

research in this domain. 

3. Theory and literature review 
 

As highlighted in the preceding chapter, the core objective of this analysis is to measure the 

impacts of crises on electricity demand and compare these effects against a generated 

scenario that depicts power consumption during tumultuous periods, had the crises not 

occurred. This analysis is not anchored in any specific economic theory. Instead, it leans 

heavily on carefully chosen literature relevant to the specific region under examination. The 

theory and literature review delve into studies and reports that explore determinants of 

electricity consumption. Some factors, such as fluctuations in air temperature or the 

observance of holidays, apply a direct influence on electricity demand. Others, like shifts in 

electricity pricing, economic disruptions, or policies targeting market integration, impact 

consumption more indirectly. The broad aim of this review is to provide a solid foundation 

for the analysis, validate the choice of variables, and determine relationships pivotal for 

interpreting the results of two successive crises. 

 

3.1 Economic instability and its impact on electricity consumption 

This section focuses on providing insights into the correlation between economic instability 

and electricity consumption, as seen in different contexts. Study by Balabanyan et al. (2010) 

analyses the 2008 financial crisis's effect on the power sectors of Eastern Europe and Central 

Asia. Prior to the economic shock due to GFC, all the target countries, namely Armenia, the 

Kyrgyz Republic, Romania, Serbia, and Ukraine, were experiencing economic growth and a 

surge in electricity consumption, fueled by an expanding GDP. However, their deteriorating, 
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underfunded, and outdated energy infrastructure posed a significant risk to the stability of 

their economies. The dramatic plunge in these countries' GDP, significantly decreased tax 

revenues, resulting in budget deficits and public debt. The ripple effects of this economic 

downturn reverberated through the energy sectors of the countries under study, deepening 

and prolonging the repercussions of the financial crisis itself. The economic downturn led to 

reduced electricity demand due to decreased industrial production. Reduced tax revenues and 

increased public deficits also resulted in lower electricity consumption and revenue losses for 

the power sector, further exacerbating the economic instability.  

This study demonstrates that internal imbalances in a country's development (in this case, a 

lack of investments in the energy sector) can be exacerbated by a crisis. Regardless of the 

primary cause of the crisis, these imbalances might be further aggravated by instability in the 

energy sector. 

Santamouris et al. (2013) conducted an in-depth exploration of the relationship between 

Greece's post-Global Financial Crisis economic situation and household energy consumption 

patterns. This study, focusing on electricity, gas, and oil consumption, discovered a surprising 

reduction in household energy usage during the colder winter of 2011-2012. The economic 

downturn, in fact, accelerated this trend. Comparisons with the winter of 2010-2011 revealed 

an unexpected result: even with a harsher winter, the energy consumption in 2011-2012 was 

37% less than expected. This significant finding deepens the understanding of how economic 

factors can shift household energy consumption habits. Utilizing cluster analysis, the 

researchers categorized the surveyed households into two distinct groups: a lower-income 

group and a high-income group. The lower-income group, making up three-quarters of the 

study population, resided in smaller spaces and had lower income levels. Despite these 

constraints and the severity of the winter, this group consumed specific energy types in lesser 

quantities than the high-income group, an outcome that was unexpected given the more 

challenging conditions. 

Another relevant mention here corroborating the findings of the two previous referenced 

papers is a study focusing on energy poverty in European countries by Halkos, and 

Gkampoura (2021). The study employed primary indicators such as the ability to maintain a 

warm home, overdue utility bills, and the presence of leaks, damp, or rot in housing. To gain 

a deeper understanding of energy poverty, secondary indicators were also examined. These 

encompassed measures like income inequality (represented by the Gini coefficient), GDP per 
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capita, unemployment rates, urban population density, housing space, and electricity prices. 

These secondary indicators were essential in pinpointing potential causes of energy poverty. 

The study evaluated data spanning from 2004 to 2019, covering 28 European countries. 

Before the onset of the global economic crisis (2004-2008), among the countries with the 

lowest energy poverty were Scandinavian countries and Austria, while Bulgaria, Poland, 

Lithuania, Latvia, Cyprus, and Portugal were found at the opposite spectrum. However, while 

most European countries experienced a decline in energy poverty, Slovenia, Bulgaria, and 

Belgium, experienced slight increases, remaining consistently high levels of energy poverty 

during this period.  

The advent of the global economic crisis (2009-2013), energy poverty intensified in several 

nations. Bulgaria, despite its efforts, had the highest energy poverty in Europe, while Greece, 

Cyprus and Portugal faced a sharp surge, becoming one of the most affected countries. Post-

crisis (2014-2019), a trend of improvement was noted across Europe. While Bulgaria still had 

the highest energy poverty, it did show signs of reduction. Greece, following a tumultuous 

period between 2014 and 2016, also showed significant improvements. By 2017, most of the 

countries, showcased a remarkable recovery from their previous energy poverty levels.  

 Delving deeper into the intricacies of energy poverty, the study unveiled that electricity 

prices were the foremost contributors to the issue. In particular, there was a distinct 

connection between elevated electricity prices and heightened levels of energy poverty, 

especially when it came to overdue utility bills. The economic performance of a country, as 

denoted by its GDP per capita, had an inverse effect on energy poverty. In contrast, higher 

unemployment rates bore a direct relation to households facing difficulties in maintaining 

warmth and efficiently handling their utility bills. Additionally, the study indicated that in 

countries with a greater portion of their population at risk of poverty, energy poverty issues 

were more pronounced, though the impact of this factor was somewhat overshadowed by the 

influence of electricity prices. 

When it came to household dynamics, the study found that homes with a larger number of 

rooms per individual often struggled with heftier utility bills due to the augmented energy 

demands. Yet, these spacious households were less plagued by common problems like 

dampness or leaks. As for urbanization, city-dwelling households frequently had more 

outstanding utility bills and grappled with a greater number of housing-related challenges. 
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Despite these drawbacks, urban households typically had a better track record of keeping 

their homes warm, possibly attributable to the nature and placement of urban residences. 

The three studies presented here clearly indicate that disadvantaged households experience 

more severe impacts from financial crises. It's reasonable to draw a parallel to the country 

level, implying that financially disadvantaged households or under-invested sectors/countries 

with lower GDP will likely suffer more acute effects from a crisis and grapple with its 

aftermath for a longer period. 

3.2 The impact of COVID-19 pandemic on electricity consumption 
 

A recent and relevant in context of this analysis paper by Buechler et al. (2022) conducting a 

detailed analysis of changes in electricity consumption during the COVID-19 pandemic 

across 58 countries, which collectively account for about 60% of the global population and 

75% of electricity demand across the globe.  Conducted panel regression analysis reveled a 

strong correlation of stringent government restrictions, higher COVID-related mortality rates 

with the decreased electricity consumption. Interestingly, the authors also found a strong 

correlation between each country's pre-pandemic sensitivity to holiday consumption 

reductions and their maximum change in electricity consumption during the pandemic, 

suggesting that the former might serve as an indicator of how responsive electricity 

consumption is to economic activity.  

 

The findings suggest that there was a decrease in daily electricity consumption of 7.6% on 

average across the countries in April 2020. However, the reductions varied significantly 

among regions, with India seeing a significant average decrease of 15% from March to May, 

while Australia had only a minor change of 2% in the same period. Further diversity of 

impacts is highlighted by Southern European countries, namely Italy, France, and Spain, 

experiencing more substantial reductions in electricity usage, unlike their Northern European 

counterparts such as Sweden, Denmark, and Finland, where the decrease was less 

pronounced. This disparity was not unique to Europe. A similar pattern was observed across 

different continents. In Asia, China and India encountered significant drops in electricity 

consumption early into the pandemic, a stark contrast to Japan, where changes were relatively 

minor. In the Americas, Argentina, Brazil, and Mexico registered sharp declines, while Chile 
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saw only a minimal decrease. A similar scenario was observed in Africa, with South Africa 

experiencing a substantial reduction in contrast to other countries. 

Overall results suggest, that by the autumn of 2020, electricity consumption in almost all 

regions had returned to levels comparable to the pre-pandemic period. However, the paper 

also reveals a great diversity in the impact of the pandemic on electricity consumption across 

countries, even within the same region.  

 

As evidenced by the studies presented, economic instability consistently leads to a decrease 

in electricity consumption, regardless of the underlying causes of the economic turbulence. 

The magnitude and duration of this decrease, however, significantly depend on the region's 

economic conditions. Economically diverse countries less reliant on industries are likely to 

experience less severe impacts during a crisis. In contrast, countries grappling with economic 

dysfunction are expected to endure more substantial effects. This study will attempt to 

examining and interpret these disparities within and between countries. 

 

3.3 Patterns in electricity consumption 
 

The structure of electricity demand, or load, is largely influenced by everyday activities in 

households, industry, and other sectors. Factors such as holidays and temperature, which 

were explained in previous sections, also play a role. For instance, turning the lights on and 

off, heating during cold days or cooling systems during hot summers, and in the industrial 

sector, electricity usage increases with the rise in production and decreases or shuts down 

during bank holidays. 

The load exhibits a minimum basic level and follows a periodic pattern across different time 

periods. This pattern is significantly influenced by weekly routines, seasons, weather 

conditions, and economic cycles. (Cretì, Fontini, 2019) 

 

Generally, the load is lower during weekends compared to weekdays, higher during winter 

and summer, and lower in spring and autumn. The electricity consumption in the U.S. 

fluctuates predictably throughout the year, with the highest demand in summer afternoons 

due to air conditioning use, and less variable, dual peaks in winter mornings and evenings. 

Consumption is lowest in spring and autumn with minimal heating or cooling is needed. 

Daily usage follows residents' habits, with the least consumption at night and lower usage on 

weekends and holidays due to commercial offices closing. On weekdays, peak hours are 
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generally between 7:00 a.m. and 11:00 p.m., with off-peak hours being the remaining hours. 

Daily consumption cycles, influenced by household activities and weather-related factors, 

with summer having a wider range due to air conditioning use. The demand varies regionally 

due to weather patterns and types of electrical equipment in use.  (Hodge, 2020) 

 

There are two critical features of power markets identified from this pattern. Firstly, there is 

always a minimum level of electricity in the grid, and the second being, that although the load 

can significantly spike above this minimum level, such instances are rare. Both of these 

aspects can be visualized in a single curve that shows the load distribution over a specific 

period. This understanding of load patterns is crucial to understanding the structure and 

characteristics of electricity markets. (Cretì, Fontini, 2019) 

 

In this paper, the load data recorded are hourly, allowing for a precise counterfactual analysis 

that takes this specific seasonality into account. Moreover, these patterns are amplified to 

replicate them when modeling the alternative 'business as usual' scenario (process described 

in Chapter 5. Method). For the discussion in this section, and to compare the specific patterns 

across all four countries studied in this paper, electricity consumption plots for the months of 

March and April were generated from the original load dataset in Python for each country. 

Figure 1 below displays the electricity consumption in Northern and Southern Italy from 

March 1st to April 30th, 2019, and is used to highlight specific trends and differences. 

Electricity consumption patterns for all other countries can be found in Appendix 1. 

 

 
Figure 1: The weekly pattern of electricity consumption in the North and South of Italy between March 1st and April 30th, 
2019. 

 
The figure above on the left illustrates the pattern of electricity consumption in Northern 

Italy, a region characterized by increased industrial activity and a higher GDP (Musolino, 

2018). The daily peaks from Monday to Friday are noticeably consistent and with evident 

two peaks within a day (morning and afternoon), signifying the regularity of the workweek. 
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The dips in consumption observed between these weekdays represent the weekends, where 

electricity usage markedly decreases and does not exhibit the two peaks visible on weekdays. 

Notably, consumption on Saturdays is slightly higher than on Sundays, reflecting most likely 

the operational hours of retail and other services that remain open on Saturdays but closed on 

Sundays. The month of April 2019 was deliberately chosen for this comparison due to the 

observance of Easter holidays on the 21st (Sunday), which showcases a distinctly different 

power demand pattern towards the end of the month. The figure on the right side, which 

shows the electricity consumption pattern in Southern Italy, displays less regularity. Demand 

is higher in the middle of the week and lower on Mondays and Fridays, with daily peaks 

indicating higher usage during the afternoons.While Sundays and holidays in south still 

exhibit lower demand, the distinction is less pronounced than in the Northern region. This 

variation can be attributed to the region's predominantly agricultural economy, smaller 

family-run businesses, and a significantly lower GDP compared to the North (Musolino, 

2018). 

 

 

 

 

Highlighting weekly cycles of electricity demand 

 

This consistent weekly pattern, observed across all countries, serves as the foundation for 

creating several variables for this analysis. Given the availability of hourly recorded load 

data, which provides a highly accurate record of consumption changes due to external factors, 

and the expected pronounced and volatile effects of both crises on the load, multiple dummy 

variables were introduced to capture these changes.  The detailed description of computing 

these time-dependent variables can be found in chapters 5.1 and 5.4. 

 

The subsequent figures illustrate the monthly electricity consumption patterns for 2018 and 

2019. Just as with the figures depicting weekly electricity consumption, these graphs were 

derived from the original load dataset using Python. The two plots presented below highlight 

the seasonal trends of Northern and Southern Italy for the mentioned years. Graphs for other 

countries can be found in Appendix 1. 
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Figure 2: Comparison of the annual seasonality in the electricity consumption in 2018 and 2019 for Northern and Southern 
Italy. 

 

With minor variations attributed to weather conditions (such as hotter summers and colder 

winters), both regions exhibit similar yearly consumption patterns. Electricity use peaks 

during summer and winter months because of cooling and heating requirements, respectively, 

and diminishes in the spring and autumn. The latter two seasons can be considered as 

representing baseline consumption, unaffected by air temperature. Interestingly enough, the 

distinctly lower demand in January 2018 can be explained by the weather conditions and 

irregular January. Based on Terna's data from January 2018, Italy experienced a 2.8% decline 

in electricity demand compared to the same month in the previous year. Factors like this 

year's calendar setup and temperature fluctuations played a role in this decrease. Specifically, 

January of this year had an additional workday (22 instead of 21) and the average 

temperature was 4°C higher than that of January 2017. On a regional scale, all parts of Italy 

saw a decline in January 2018: the North decreased by 0.8%, while the South witnessed drop 

of 6%. (TERNA, 2018) 

 

The subsequent two sub-chapters will discuss the two factors foreshadowed in this section. 

These well-documented factors directly influence electricity consumption and are thus used 

in the analysis to reinforce the regular patterns of power consumption in each country 

studied. 
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3.3.1 Effect of temperature on electricity consump9on 
 

Heating and cooling degree days. Indicator code: CLIM 047 (European Environment 

Agency, EEA) 

 

As space heating and cooling account for a significant portion of Europe's energy 

consumption, European Environment Agency provides an indicator for heating and cooling 

degree days aim to support Environmental policy formulation, establishing goals, and 

transitioning from oversight and assessment to informing decision-makers and the populace. 

Heating degree days (HDDs) and cooling degree days (CDDs) estimate the energy required 

to either heat or cool buildings based on external temperatures. The actual energy need also 

depends on factors like building design, insulation, heating/cooling systems, economic 

conditions, and user behavior. Reduced heating demand can lower Europe's energy 

consumption, but this can be counteracted by increased cooling needs. Heating sources vary, 

but cooling mainly uses electricity. Thus, changes in cooling needs can have a greater impact 

on costs, energy demand, and supply network capacity than equivalent changes in heating. 

Their calculation can vary depending on the methodology and available data. Prior to 2016, 

the method used only daily mean temperatures and had inconsistencies. The method used to 

create the current indicator was developed by the UK Met Office using daily mean, 

minimum, and maximum temperatures, making it more accurate for assessing climate change 

impacts on energy demand. This is because maximum temperatures influence cooling more, 

while minimum temperatures are crucial for heating. The reference temperatures for HDDs 

and CDDs are 15.5°C and 22°C, respectively. When aggregating HDDs and CDDs data over 

large regions, using population weighting is more suitable for regions with varied population 

densities, like Europe. 

 

Heating degree days (HDDs) and cooling degree days (CDDs) are essential indicators in 

understanding energy demand based on external temperatures, specifically for heating and 

cooling needs, in Europe. These indicators have a significant effect on the electricity supply 

network and electricity demand patterns. Prior research, notably by Spinoni et al. (2016) and 

referenced by EEA due to its methodology, has demonstrated strong correlations between 

HDDs and CDDs across most of Europe, using an extensive independent data set. 
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Constructing a temperature-driven variable for electricity demand fluctuations 

 

Considering the significant influence of certain factors on electricity consumption patterns, 

this study integrates these elements as independent variables for both heating and cooling 

temperatures, using threshold grades specified by the CLIM 047 indicator.  

While this research's primary objective isn't to specifically gauge the influence of temperature 

on electricity load, it leverages information from the EEA and the correlation between 

cooling, heating needs, and electricity demand as identified by Spinoni et al. (2016). This 

foundational understanding facilitates the integration of air temperature data, alongside the 

introduction of heating and cooling dummy variables. The primary goal of this analysis is to 

accentuate the fluctuations in electricity demand due to air temperature, ensuring accurate 

predictions in alternative scenarios. 

 

Challenges arise when correlating load data from vast areas with temperature datasets. Larger 

nations often experience varied climates, making it preferable to use locally-collected 

temperatures. The division of electricity consumption into bidding zones will be further 

elaborated upon in section 3.5. Given this study's focus on load fluctuations, temperature data 

collection points are aligned with the capitals of the countries under examination (specified in 

4.3). Italy, with multiple bidding zones, aligns temperatures with weather stations 

corresponding to the region's capital. Meanwhile, Romania, the largest country in this study 

with a singular national bidding zone, uses the weather station in its capital for simplicity, 

despite potential regional temperature variations. Cooling and heating degree variables are 

introduced to capture the impact of temperature on the load, rather than to quantify these 

effects, thus a streamlined approach is adopted. 

 

3.3.2 Effect of holiday on electricity consump9on 

Modeling public holidays in load forecasting: a German case study (Ziel, F.) 

The paper examines the impact of public holidays on electricity load in Germany and their 

influence on regular weekday demand patterns. Using two main benchmark models, both 

univariate and multivariate modeling strategies are explored. These models are crafted to 

produce identical outcomes and pave the way for the integration of public holiday modeling 

techniques. Various adaptations for public holidays, such as their removal from the dataset, 
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designating public holidays with a Sunday dummy, or introducing independent holiday 

dummies, have led to the development of 32 distinct models across 8 model categories.  

This study offers a detailed discussion on the influence of holidays. During these days 

behaviors change, influencing electricity demand, resulting in impacts on electricity prices. 

Public holidays, set by authorities in advance, can be predicted in energy forecasts. However, 

unforeseen changes in holiday scheduling by governments can disrupt these patterns. 

Globally, holidays often reduce work and thereby electricity demand. Yet, in tourist regions, 

demand might increase on holidays. Given their once-a-year occurrence, modeling the impact 

of public holidays on energy demand is challenging. While most energy consumption follows 

a weekly pattern, holidays can disrupt this, resembling weekend consumption patterns. 

It's also noteworthy that holidays are generally divided into two categories: fixed-date public 

holidays – falling on the same date each year, like New Year’s Day (1 January) and 

Christmas Day (25 December) or national holidays that mark historical significance, such as 

Independence Day, Constitution Day, or Unity Day. The second category is a weekday public 

holiday. The date of these holidays varies, but they always occur on a specific weekday each 

year. Examples include Christian holidays like Easter and Ascension in Europe.  

Analysis of German electricity load data between 2010 and 2016 reveals stable impacts from 

varying-date holidays like Good Friday and Easter Monday, while fixed-date holidays like 

Labor Day have varied effects depending on which day of the week they occur. Some 

holidays, such as regional public holidays, don't neatly fit into these categories, but this study 

concentrates only on standard public holidays in German load forecasting. 

Various methods were explored, such as removing public holidays from the dataset, treating 

them as Sunday dummies, or introducing distinct holiday dummies. The most effective 

approach is the "replacing public holiday dummy", which proved to be effective in 

multivariate models. In this method, while adding holiday dummies, weekday dummies on 

holidays are set to zero. The main result and the final conclusion put forward by the author 

confirm that including holiday effects can potentially enhance the accuracy of holiday period 

forecasts by over 80%, and also decrease the error for non-holiday periods by roughly 10%.  

 

Modeling Holiday Effects on Electricity Demand Fluctuations 

 

Drawing on the findings of Ziel (2018) and the significance of holidays in predicting crisis 

impacts, as highlighted by Buechler et al. (2022), a 'Holiday' variable is employed for each 

year analyzed across all countries. This variable seeks to capture the effects of non-working 
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days on electricity consumption patterns rather than precisely quantifying their impact. For 

this analysis, any 'Holiday' occurrence during the weekends is excluded, while its effects 

during weekdays are considered. Accounting for holidays specifically on weekdays captures 

the unique shift within the weekday pattern and ensures model consistency across time. The 

inclusion of this variable is vital for accurately capturing seasonal patterns within each nation, 

which is essential for making precise predictions of electricity load during the evaluated 

periods. 

 

3.4 European electricity market and pricing  
 

The EU's journey towards an integrated goods and services market began with the 1988 

Single European Act. It soon broadened to encompass the unification of national electricity 

markets, aiming to elevate competition and reduce consumer prices. Milestones include the 

Price Transparency Directive (1990) for clearer industrial electricity and gas prices and the 

Electricity and Gas Transit Directives (1990 and 1991) to ease cross-border energy 

exchanges. The 1995 Green Paper proclaimed energy market liberalization, culminating in 

the Electricity Directive (ED) in 1997 and the Gas Directive in 1998. Both aimed for a 

cohesive EU electricity market by 2000, emphasizing improved energy infrastructure for 

competition and integration. Gradually, the EU transitioned from state-controlled energy to 

market-driven processes. The emphasis was on consumers on the retail market having ability 

to choose providers, fueling consumer market competition. Competitive bidding for new 

generation assets played a key role in initiating wholesale markets where electricity was 

traded as a commodity. By 2001, intense competition, particularly in Germany, led to 

significant price reductions for consumers, driven rather by competitive forces than by actual 

cost reduction. However, price disparities among nations persisted. Issues like high network 

tariffs and market power in generation meant consumers often faced elevated prices (Bower, 

2002). 

2009's Third Energy Package aimed to strengthen the internal energy market, updated later in 

2019 with the Clean Energy package, which emphasized consumers participation. The 

Climate and Energy Package 2020 set targets for emissions and renewables. While steps 

towards improved market design and increased cross-border exchanges have brought 

industries closer in terms of electricity prices, determining the exact effect of a competitive 

market on prices is complex. Retail prices vary significantly across the EU. For example, 

two-thirds of retail electricity prices come from regulated charges, levies, and taxes, leaving a 
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fraction for the energy commodity. While some regions, like the Baltic, show integration 

strides, others lag behind (Cassetta et al., 2022). 

 

3.4.1 Price elas9city in residen9al and non-residen9al sectors and electricity 
consump9on 
 
 
The interplay between electricity prices and consumption patterns in various sectors has been 

a focal point in numerous studies, illustrating varying sensitivities across sectors and regions. 

The finding of price elasticity in a study by Azevedo et al. (2011), focused on residential 

electricity demand in the U.S. (data from 1990 to 2003) and the EU (from 1990 to 2004) 

indicated modest impacts. Their research suggested that residential electricity demand is 

generally price-inelastic, with price elasticity values ranging from -0.18 to -0.25 depending 

on the region and model used. They concluded that a mere increase in electricity prices might 

not be sufficient to influence electricity intensity.  

Gutiérrez-Pedreroa et al. (2018) further expanded this discussion by examining the drivers of 

electricity intensity in the non-residential sectors of 18 EU countries. They argued that while 

increasing electricity prices is a commonly suggested tool to reduce electricity intensity, the 

effect of such price changes is limited. Non-price barriers like hidden costs, lack of 

awareness, and other systemic issues often play a more pivotal role in influencing electricity 

intensity, especially in non-energy-intensive sectors.  

Research by Cialani and Mortazavi (2018) examines the electricity demand for residential 

and industrial users across 29 countries during Europe's electricity market liberalization from 

1995 to 2015, aiming to understand the long-term effects of prices on electricity demand. The 

key insights reveal both sectors to be price and income inelastic, with the residential segment 

less reactive to price fluctuations than its industrial counterpart. A significant price surge is 

necessary to notably affect consumption in either sector. The observed high long-run income 

elasticity suggests that as European incomes rise, the acquisition of electrical devices, and 

consequently electricity consumption, will likely increase.  

A fairly recent study by Csereklyei (2020) examined both residential and industrial electricity 

demand responses to short-term and long-term price and income fluctuations in the European 

Union from 1996 to 2016. This research demonstrated that in the long run, residential and 

industrial electricity consumption is sensitive to price changes, with the latter showing greater 

elasticity. Specifically, long-run residential price elasticity ranged from -0.53 to -0.56, while 
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the industrial price elasticity was between -0.75 and -1.01. Contrary to two prior studies, this 

research indicates that while residential electricity consumption does decrease in response to 

price increases, industrial sectors adjust their consumption more significantly. However, 

short-term demand appears less responsive to such price fluctuations. 

 

Price dynamics in explaining electricity demand  

 

While studies on price elasticity in electricity consumption provide varied conclusions, one 

consistent finding is evident: mere price increments might not drastically change 

consumption patterns, particularly in the short-term. Other determinants, like economic shifts 

and income changes, often play pivotal roles. Results presented by Cialani and Mortazavi 

(2018), pointing towards muted reactions of the residential segment to price fluctuations, can 

perhaps be linked to the effects of European electricity market, particularly the prevalent 

fixed-price contracts among European households. Additionally, their assertion that a 

significant price surge can markedly affect consumption is crucial in the context of the recent 

energy crisis analyzed in this paper. The findings from Csereklyei's recent research (2020) 

seem to mirror the current economic situation, especially in light of the energy poverty 

discussed in section 3.1 by Halkos and Gkampoura (2021). This discussion also encompasses 

the recent energy crisis, as analyzed in this study, and its projected impact on electricity 

demand. Expecting the surging prices during 2022 having some effects on electricity demand, 

their inclusion in this analysis would only make sense. However, due to limited data access, 

ambiguous evidence from the presented studies, and the dominance of fixed-price schemes in 

the EU electricity market - which may result in long-term impacts rather than the short-term 

effects analyzed in this paper -the price variable won't be integrated into the model for this 

analysis. 

 

3.4.2 Price Convergence in European Electricity Markets  
 

Understanding the differences in price elasticity sensitivity sets the stage for discussing more 

specific market phenomena of the price convergence in the European Union's electricity 

market. Elasticity plays a role, as the responsiveness of electricity demand and supply to price 

changes can influence the pace and extent of price convergence across member states. 

In the European electricity market, price convergence refers to the alignment of prices across 

regions, which signals efficient resource use and robust competition. This alignment combats 
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the inefficiencies that arise when regions operate in isolation. However, achieving price 

convergence in reality is not only complex but also incredibly challenging. Numerous studies 

on the harmonization of electricity prices across EU member states have yielded mixed 

results. Zachmann (2008) points out that the implementation of EU directives among member 

states has been uneven, leaving the EU's ultimate goal unfulfilled. His work reviews several 

studies assessing the impact of these reforms, particularly in relation to the convergence of 

electricity prices across European countries. Some research, like that of Armstrong and Galli 

(2005), suggests that European electricity prices converged between 2002 and 2004. In 

contrast, studies by Bower (2002) and Boisseleau (2004) document varying levels of market 

integration and price convergence throughout Europe. 

 

Zachmann's focus was the integration of Europe's electricity markets between 2002 and 2006, 

using wholesale prices as a metric. His findings indicate that by mid-2006, a unified 

electricity market in continental Europe remained unachieved. Though some national 

electricity price differences diminished, significant discrepancies persisted. Notably, while 

59% of national wholesale electricity prices converged between 2002 and 2006, this trend 

was mainly evident during off-peak times. Moreover, international price differences couldn't 

be solely attributed to cross-border transmission capacity prices. In fact, over 93% of the 

market pairs studied displayed significant, predictable arbitrage opportunities. However, 42% 

of these opportunities showed no signs of being eradicated in the near future.  

A recent study by Cassetta et al. (2022), takes interest in intriguing trend in electricity prices, 

particularly when comparing household and non-household markets between 2008 and 2021 

in EU. Despite the extensive efforts to harmonize and integrate the market, significant 

disparities in retail electricity prices continue to persist across Member States of the EU. This 

variation becomes more intriguing in light of empirical studies that introduce the concept of 

"club convergence." This idea assumes that instead of a single unified price, countries are 

gravitating towards multiple equilibrium states for end-user electricity prices. 

 

A closer look reveals that the domestic household prices are more varied and divergent than 

their industrial counterparts. Such a trend is evident as nine countries within the household 

sector did not follow the general convergence trend and remained outliers. This raises the 

question of what factors or variables influence these disparities. Interestingly, the 

"convergence clubs", which are groups of countries with analogous price behaviors, do not 

adhere strictly to geographical boundaries or the established structures of wholesale markets. 
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Furthermore, these clubs don't consistently reflect the intrinsic structural features that 

characterize each nation's electricity market. 

 

Delving deeper, it becomes apparent that factors such as public intervention in determining 

electricity prices, along with the inconsistent criteria set by countries to define energy 

components, play a substantial role in influencing price convergence. Moreover, while 

deregulation might be seen as a solution to these disparities, the process of relaxing regulated 

prices, especially for households, has been hindered. This slowdown stems from an evolved 

focus of energy policies prioritizing ecological concerns and ensuring supply security. As a 

result, there has been a significant uptick in non-contestable charges, which include taxes and 

network costs. These charges, not emerging from competitive markets, are often determined 

by governmental or regulatory bodies. 

The puzzle of price convergence also gets more intricate when considering the role of socio-

economic considerations, divergent national energy stances, and varying industrial policies. 

For instance, in a bid to boost industrial competitiveness, major industries might be granted 

price reliefs, which unfortunately often results in households bearing the brunt of price hikes. 

These increases are usually justified by the need to finance policies that champion renewable 

energy sources. 

 

In conclusion, while the European Union has been committed in its attempts to integrate 

markets and harmonize prices, the landscape of electricity prices across member states 

remains varied. This variation isn't just a product of market forces but is influenced by 

numerous factors, ranging from policy decisions to socio-economic considerations. 

As mentioned in the previous section, price effects are anticipated to influence electricity 

demand among countries, particularly during the 2022 energy crisis. This shock was driven 

by a surge in electricity prices due to sanctions on gas deliveries from Russia. However, the 

intricate web of price-related connections among countries, industries, and households of 

member states, combined with various financial stimulus packages introduced during the two 

analyzed periods, complicates the modeling process. Additionally, limited data access for 

accurately modeling these specific years and months (spanning COVID-19 and the energy 

crisis) means a variable capturing price convergence will not be incorporated in the analysis. 

Nevertheless, its potential influence will be discussed in the results section. 
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3.4.3 Rela9onship between the EU gas market and EU electricity market  
 

A logical continuation from the discussion on price effects, stemming from price 

convergence in the EU electricity market and the energy crisis induced by sanctions on 

Russian gas, is to explore the relationship between the electricity and gas markets in Europe. 

Uribe et al. (2022) analyzed the influence of natural gas price fluctuations on electricity 

prices in 21 European countries from 2015 to 2022. Rising global electricity prices, 

especially in Europe during 2021-2022, have highlighted the interconnectedness of these 

markets. Factors like supply issues and geopolitical events, such as Russia's Ukraine 

invasion, have affected these prices. The relationship between electricity and natural gas is 

complex; the latter is used for power generation and as an electricity substitute. The study 

employed quantile regressions to understand electricity market scenarios based on weather 

and gas prices. Historically, gas prices significantly affected electricity rates, with gas power 

plants setting prices during peak demands. Unexpected gas price hikes directly affect 

consumers. Elevated electricity prices increase gas demand, raising its price. The study 

revealed countries like Denmark and Germany are more sensitive to gas price shocks, 

suggesting a need for more integrated European electricity markets. Amidst price surges, the 

European Commission has pushed for better pricing mechanisms. The study recommends 

distancing Europe's energy system from fossil fuel market unpredictability. 

 

Ciferri et al. (2020) explored the relationship between wholesale electricity and fuel prices in 

Europe. They discerned convergence patterns among national electricity prices and found that 

integrating oil Brent prices confirmed this link. Despite varied power generation methods, 

national electricity markets are influenced by fuel prices. Tests showed a significant link 

between electricity and oil prices, indicating fuel price dynamics stabilize electricity prices. 

Transient shocks impact nations differently, depending on their market interconnections; for 

instance, Italy's price variance is significantly influenced by France and the German-Austrian 

market. 

 

Despite the primary focus on the EU's electricity market, comprehending the energy crisis's 

effects on electricity consumption necessitates recognizing the pivotal role of the gas market. 

Countries' dependencies, market convergence, and resultant price impacts during the crisis 

were evident even in nations not reliant on gas deliveries. Moreover, understanding price 

elasticities across all sectors is indispensable for a holistic analysis. 
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3.5 Bidding zones 
 

The role and concept of bidding zones are fundamental to this analysis, both for collecting 

load data and understanding the intricate relationships among member countries that lead to 

price convergence. This is further underscored by the term “convergence club” introduced by 

Cassetta et al. (2022) in section 3.4.2. 

A deep understanding of the concept of bidding zones is crucial for interpreting results and 

formulating meaningful conclusions. As highlighted earlier, bidding zones, typically coupling 

similar markets, are vital for facilitating cross-border electricity trade and ensuring efficient 

energy flow. This mechanism directly influences price formation and dynamics. Market 

coupling and bidding zones are instrumental in promoting price convergence in the electricity 

market. By unifying these markets, cross-border electricity trade is enhanced, leading to a 

harmonization of prices in interconnected regions. 

 

Bidding zones are strategically delineated based on grid constraints and physical barriers, 

ensuring efficient price convergence. The European Commission's Bidding Zone Review 

(BZR) is designed to optimize the performance of the electricity market. Specifically, 

Commission Regulation (EU) 2015/1222 (CACM) categorizes these zones for effective 

congestion management, while Regulation (EU) 2019/943 emphasizes their design around 

enduring transmission network congestions instead of national boundaries. This mandates 

Transmission System Operators (TSOs) to continually evaluate and adjust these zones, with 

goals of economic efficiency, enhancing cross-border trades, and maintaining electricity 

supply security in the EU (ENTSO-E, 2023). 

Following the mandated in 2019 review, the EU's Agency for the Cooperation of Energy 

Regulators (ACER) decided on alternative electricity bidding zone layouts. While these zones 

usually align with European national boundaries, the EU model insists they center around 

network congestions. ACER's recent choices, influenced by 2022 consultations and TSO 

data, proposed different configurations for several EU countries, including multiple zones for 

Germany and Sweden, and earlier than 2022 for Italy. Properly designed zones, in line with 

long-term congestions, bring benefits like improved cross-border trading, strategic network 

investments, and efficient technology integration. As a result of this review, the bidding 

zones for Bulgaria (BG) and Greece (GR), both located in the South-East Europe (SEE) 

bidding zone region, as well as Romania (RO) in the Central Europe (CE) bidding zone 

region, remained unchanged, following the countries' borders as indicated above. (ACER, 
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2022). These BZN are the source of aggregate electricity load used to analyze the effects of 

both crises on consumption. They also dictated the choice of matching weather observations 

described in 3.3.1.  

 
Figure 3: Bidding Zone Review Regions (ENTSO-E, 2023a). 

 

In 2021, the Italian Bidding zones were adjusted, maintaining the previous division of Italy 

into six regions, with some local adjustments, however. Although TSOs submitted the 

updated BZR proposal in that year, the BZ changes from the previous process in Italy had not 

been implemented until they took effect in 2021. Specifically, the Central-Southern Italy zone 

was expanded to include the region of Umbria, which was formerly a part of the Central-

Northern bidding zone. The map below, sourced from Annex 4 of the Bidding Zone Review 

process, depicts these changes in the bidding zones. (ENTSO-E, 2019; ACER, 2022) 
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Figure 4: Configuration of Bidding Zones in Italy pre-2021 and post-2021 (ENTSO-E, 2019). 

 

This information is vital for accurately interpreting the results from the analysis presented in 

this paper, as Central-Northern BZ loses one region in favor of Central-Southern BZ affecting 

most likely the electricity patterns estimated on the years prior 2021. This analysis, only the 

four regions located on the Italian peninsula are considered. 

 

3.6 Forecasting electricity consumption  

The most prevalent application of econometrics involves testing economic theories, 

evaluating the effects of implemented policies, and estimating economic relationships. These 

analyses often encompass topics such as GDP, wages, oil prices, or interest rates, where the 

forecasting application is widespread and versatile.  

In the context of energy, the advancing electrification aimed at reducing greenhouse gas 

emissions, diversifying resources for electricity generation, and adapting to more extreme 

weather conditions has accentuated the importance of accurate load forecasting. It has 

become a critical issue for power utilities and national energy security. The particularly 

volatile nature of electricity consumption has spurred significant advancements in various 
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load forecasting models. These models can be categorized into two main branches of 

classification: traditional statistical models and artificial intelligence models.  

Traditional statistical models utilize historical data to identify relationships between load and 

exogenous variables, as well as detect trends or seasonality across time, typically defining 

these relationships as linear. Some widely used and tested statistical models for electrical load 

forecasting include Box-Jenkins ARIMA, exponential smoothing models, Kalman filtering 

models, Bayesian estimation models, and regression models (Hong, 2020). 

The aim of this study is to examine the effects of crises on electricity load by predicting the 

dynamics of hourly electricity consumption, including all time-dependent trends and 

seasonalities, based on past data from an undisrupted economic scenario. Unlike conventional 

forecasting models where the precision of the forecasted load is essential, the focus here is on 

accurately capturing and reflecting the underlying patterns and fluctuations in electricity 

consumption. To achieve this objective, a Static, Multiple-Step Forecasting approach is 

employed, augmented with the use of dummy variables. This method allows for the 

recognition of any underlying trends and seasonal variations within the data, providing a 

nuanced view of how crises may disrupt or alter these established patterns (Wooldridge, 

2016). 

 

An important clarification regarding the nomenclature used in subsequent chapters needs to 

be addressed at this point. Though this section of the study is titled ‘Forecasting electricity 

consumption,’ the specific technique and methodology employed to estimate the data will 

henceforth be referred to as ‘predicting.’ This distinction is vital, as forecasting extends 

beyond mere prediction, involving the generation of new or unseen values for the 

independent variables, often associated with greater uncertainty. In contrast, this analysis 

estimates values of the dependent variable – electricity load – for given values of the 

independent variables, such as the air temperature in the context of this study. (Dunham, 

2003). 

 

Econometrics, as stated at the outset of this chapter, are grounded in and utilized to test 

economic theories that articulate well-established relationships between the variables under 

study. This foundation enables the interpretation of uncertain and unclear results arising from 

forecasts. In this specific investigation, where there is no ability to rely directly on economic 
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theories related to aggregate electricity consumption or the effects of crises on load demand, 

and where there are no restrictive assumptions, predictive techniques will be applied (Hirchey 

M., 2009). Unlike more constrained models, predictive techniques are adaptable to various 

functions, as their estimations are grounded in historical data. This flexibility allows for an 

approach that aligns with the unique aspects of this study, emphasizing the importance of 

accurate prediction over broader forecasting. 

4. Data 
 

4.1 Selection of Countries for Analysis 

As highlighted in the introduction, this analysis aims to compare two potential scenarios - one 

encapsulating unanticipated conditions and the other reflecting a 'business as usual' situation. 

Considering unique triggers and solutions under both crisis, along with restricted access to 

power load data and the inherent national, as well as somewhat regional, nature of electricity 

markets, the choice of countries for analysis was limited to Europe.  

It's important to underscore that the two case scenarios analyzed impacted all selected 

countries within the same timeframe and season. This suggests that despite minor climate 

differences, each country was faced with similar challenges. Furthermore, all these countries 

are members of the same political and economic union, which ensures a certain degree of 

coordination and consistency in their responses. Therefore, the primary differences among 

the included countries lie in their economic discrepancies, dominant economic sectors, and 

energy dependencies. This analysis allows, to some extent, examine how the patterns of 

electricity consumption were affected by the crisis in different countries. 

Anticipating opposite consumption pattern changes in service-based and industrialized 

economies, and with an interest in investigating countries with varying energy mix, this paper 

focuses its analysis on four EU member countries: Italy, Greece, Romania, and Bulgaria. The 

unique characteristics and energy dependencies of each of these countries will be discussed in 

Chapter 7.  
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4.2 Power Load Data Collection 
 

The electricity load data for all four countries was collected directly from the from the 

website of the European Network of Transmission System Operators for Electricity (ENTSO-

E).  ENTSO-E is a non-profit organization representing 42 transmission system operators 

from 36 European countries, making its data crucial for understanding the market trends and 

operational patterns. The data available on the platform include market data (such as 

electricity prices, demand, and supply), grid data (like network topology and load flows), 

balancing data (use of reserves and management of frequency), renewable energy data 

(focusing on generation and integration), and energy consumption data. Datasets are 

compiled through direct measurements and reporting by transmission system operators, 

providing an overview of the European electricity market (ENTSO-E, 2023b). 

The fetching of the Actual Total Load data was carried out through the REST API 

implemented in Python. This approach offers a publicly available web URL, enabling 

seamless access to the data sets. The endpoint, specified as 'https://web-api.tp.entsoe.eu/api', 

was established in the Python environment, allows the download for Entso-e Pandas Client 

by providing a unique API key (ENTSO-E, 2023c-2023i).  

The complete documentation and guide for the RESTFUL API implementation is available 

on the transparency.entsoe.eu (ENTSO-E, 2023j) website and provides in depth explanation 

of the use case and process sequence. The data for each country was gathered according to a 

specific bidding zone, referred to as the BZN. This method facilitated the alignment of load 

data with the available temperature data, which is detailed in the following section. The BZN 

for each country are:  

 

Bulgaria (BG):  BZN|BG               UTC+2 

Greece (GR):   BZN|GR     UTC+2 

Romania (RO):  BZN|RO      UTC+2 

Italy (IT):   BZN|IT-North    UTC+1 

Italy (IT):   BZN|IT-Centre-North   UTC+1 

Italy (IT):  BZN|IT-Centre-South   UTC+1 

Italy (IT):  BZN|IT-South    UTC+1 

For each of the bidding zones the data fetched presented an hourly frequency and ranged 

from 2015-12-31 until 2023-02-28. All the countries are following the standard winter - 
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Central European Time (CET) and daylight-saving summertime - Central European 

Summertime (CEST): Italy of (UTC+1/UTC+2) and Greece, Bulgaria, and Romania 

(UTC+2/UTC+3). In the process of preparing the raw data, a separate column was generated 

for each country, calculating the actual hour of the day ‘hour’, and additional column ‘date’ 

adjusting the right date (e.g., 00:00:00+01:00). This arrangement ensured compatibility with 

the hourly temperature data. Due to the large size of the datasets, some sporadic missing data 

were encountered. To ensure the smooth execution of the linear regression prediction, these 

missing or 'NaN' load data points were linearly interpolated - replaced with the average of the 

two nearest load values. This process resulted in a new, fully populated column named 

'nload'.   

In the datasets of three countries, Bulgaria (BG), Greece (GR) and Central-Southern Italy 

(IT-Centre-South) single instances of unexpectedly low load values or registering load twice 

for the same hour were identified, spanning 1 to 3 hours. These anomalies posed challenges 

in visually analyzing and explaining the comparison between the actual load and the 

business-as-usual (BAU) scenario. The values discovered: 

Bulgaria:  

2019-04-03 00:00:00   3303.0 

2019-04-03 01:00:00   1803.0 

2019-04-03 01:00:00   3512.0 

Greece: 

2022-10-31 03:00:00   3595.0 

2022-10-31 04:00:00   408.0 

2022-10-31 05:00:00   731.0 

2022-10-31 06:00:00   1478.0 

2022-10-31 07:00:00   2255.0 

Central-Southern Italy: 

2019-10-27 03:00:00   3375.0 

2019-10-27 04:00:00   3169.0 

2019-10-27 03:00:00   1334.0 

2019-10-27 04:00:00   3067.0 

2019-10-27 05:00:00   3061.0 
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These values act as outliers; however, they are unlikely to disrupt predictions given the 

extensive sample size during the estimation period, which outweighs the influence of these 

records. Consequently, no attempts have been made to correct their values to avoid external 

intervention. These values are duly presented, and their presence in the dataset is 

acknowledged.  

4.3 Temperature Data Collection 

To ensure the exogenous variable during analyzing changes in load patterns, the temperature 

data from a publicly available website of The Iowa Environmental Mesonet (IEM) were 

collected and later merged with the load dataset.  

IEM collects an expanding archive of global automated airport weather observations, referred 

to as 'ASOS' or 'AWOS' sensors. These observations are transmitted as METAR data 

(standardized meteorological report used primarily for aviation purposes). The archive serves 

as a historical collection with minimal quality control. Data sources include Unidata IDD, 

NCEI ISD, and MADIS One Minute ASOS (IEM, 2020). 

The temperature data were fetched manually from ASOS-AWOS-METAR Data Download 

(IEM, 2023). To align these observations with the load datasets, the air temperature data was 

collected for the same period between 2015-12-31 and 2023-02-28. The air temperature, 

recorded in degrees Celsius, was obtained at a frequency of every 30 minutes, and the 

measurements were noted in Coordinated Universal Time (UTC). The stations chosen for 

temperature data collection were strategically selected to correspond with the bidding zones 

for which the load data was sourced.  

BZN|BG    ‘LBSF’ Sofia 

BZN|GR    'LGAV' Athens 

BZN|RO     'LROP' Bucharest 

BZN|IT-North     'LIMC' Milano 

BZN|IT-Centre-North    'LIRQ'  Florence 

BZN|IT-Centre-South    'LIRA'  Rome 

BZN|IT-South     'LIBD'  Bari 

The handling of temperature datasets paralleled that of the load data. To ensure uniformity, 

the frequency of temperature data was adjusted to align with the hourly intervals of the load 
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data collection. Any sporadic missing values were seamlessly omitted during this process, 

and further supplemented the dataset with a new column, 'ntmpc', representing these adjusted 

values. 

4.4 Missing observations 
 

Two data frames were merged by linking rows through the shared 'date' and 'hour' columns, 

aligning corresponding temperature and load data. In the new data frame, the 'date' and 'hour' 

columns were consolidated into the new column 'time’ and setting 'time' as the new index. 

Such restructuring of the data simplifies manipulation and analysis, ultimately improving the 

efficiency of the process. 

 

The majority of missing values in both load and temperature observations can be attributed to 

errors during recording the values, not the data handling.   

In three datasets, specifically BG, GR, and RO, several consecutive missing values were 

identified within certain days. This made it impractical to use the linear interpolation method. 

To maintain consistency, five days in total were removed from the datasets. The affected 

dates are: 

 

BG - 2017-10-04, 2017-10-05, 2018-10-28 

GR - 2016-10-15 

RO - 2021-08-06 

 

The overview of missing values, total observations, and observations removed from the 

datasets is available in Appendix 2. 

 

4.5 Holiday Data Collection 
 

Holiday data for each country was manually collected from the website 

timeanddate.com/holidays (Time and Date AS, 2023). This source was chosen because it 

provided the most reliable and consistent list of holidays dating back to the year 2016 for all 

the countries under study.  
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This analysis spans of seven and a half years and includes only the holidays from the 

category ‘Official holidays and non-working days’, as any local and regional celebrations 

would not have any significant impact on the aggregate load.  

A notable difference in dates is seen in the celebration of Easter by the Catholic and 

Orthodox Churches, aligned with the Gregorian calendar in Italy and the Julian calendar in 

Romania, Bulgaria, and Greece, respectively. Furthermore, Easter is recognized as a floating 

holiday. National holidays, such as independence, liberation, or constitution days, maintain 

fixed dates within their respective countries. Other fixed-date holidays, like New Year's Day 

(January 1) and Christmas Day (December 25), are observed in all four countries. Separate 

lists of holiday dates for each country, as well as those shared across all four countries under 

study, were generated in Python and are included in Appendix 3. 

 

4.6 Software Used for Data Analysis 

The primary tool used for data analysis in this study was Python, a versatile and powerful 

programming language that enables data analysis and output visualization. Python was 

accessed through Anaconda, a free and open-source distribution that simplifies managing and 

deployment of packages commonly used for data analysis. 

Jupyter Notebook, an open-source web application, was utilized for creating and sharing 

documents that contain both Python code and figures, links). Jupyter Notebooks are ideal for 

data cleaning and transformation, numerical simulation, statistical modeling, data 

visualization, and machine learning. They facilitated the iterative and collaborative nature of 

the data analysis, allowing to integrate the code, visualizations, and narrative into a single, 

easily shareable document. 

5. Method  
 

This chapter provides a comprehensive explanation of the econometric methods employed to 

quantify the effects of the COVID-19 pandemic and the energy crisis in Europe. The models 

used are intentionally streamlined, incorporating only those variables that are consistent 

across all countries and have an indisputable influence on electricity consumption. This 

strategic simplification serves to highlight the differences in consumption that can likely be 

attributed to the impact of the crises and the unique economic circumstances of each country. 
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5.1 Predicting the electricity load with OLS regression model. 

One of the primary challenges in shaping the empirical analysis lies in formulating the 

research questions and constructing the economic model. Considering that most economic 

factors depend on various conditions and complex interdependencies, the selection of 

variables to include in the model, along with the assumptions associated with these choices, 

becomes crucial and necessitates clear explanation. (Wooldridge, 2016)  

The aim of this paper is to quantify the impact of the COVID-19 pandemic and subsequent 

energy crisis in the European Union on aggregate electricity consumption. The analysis will 

lean heavily on the well-documented relationships and dependencies between load, seasonal 

trends, and the correlation between electricity demand and temperature, as discussed in 

Chapters 3. Factors such as the economic conditions in the countries under study will be 

portrayed in the best way possible in the discussion part of this paper. However, due to 

restricted data access, these elements will not be incorporated into the model. 

 

The data preparation and processing outlined in Chapter 4 of this paper resulted in creating a 

unified time-series dataset for each country. This data, organized chronologically, reveals 

significant trends and consumption patterns tied to specific dates and hours. Furthermore, this 

data includes the air temperature at specific points in time, which is essential information for 

this analysis. 

 

To ensure the model encapsulates the strong associations between electricity load and factors 

such as temperature or specific time frames (week, year, or day), additional categorical 

variables such as ‘trend’, ‘Holiday’, 'week_dummy', 'hofw_dummy', 'heat_hours_dummy', 

and 'cool_hours_dummy' are introduced to further highlight these dependencies. These 

observations are computed as follows: 

 

1. The 'trend' values are calculated by dividing the corresponding index value by the 

total number of hours in a year (365.25 days * 24 hours per day). Variable captures 

the gradual changes over time, which will improve the analysis. 

 

2. The 'Holiday' variable was derived from a manually curated list of holidays for each 

country, spanning from 2016 to 2023. A new column, 'Holiday', was then generated 
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based on these specific dates. If there were overlaps between the entries marked as 

'Weekend' and the new 'Holiday' column, these entries were set to 0; all other 

entries in the 'Holiday' column were set to 1. This approach to configuring the 

'Holiday' variable follows one of the methods outlined by Ziel (2018). 

 

3. The 'week_dummy' variable is generated from the 'week' values restricted to a 

maximum of 52 to avoid including the 53rd week, which surfaces in the irregular 

years of 2017 and 2023. All the entries in data frame rows corresponding to the week 

in column are set to 1. Otherwise, the value defaults to 0. 

 

4. In a similar manner, the 'hofw_dummy' variable is generated from the 'hofw' column 

derived from converting the 'day' value to hours and adding the current 'hour'. By 

applying the modulus operator `%` with 168 to this value, a weekly cycle from 0 to 

167 is established. Each 'hofw_dummy' column corresponds to an hour of the week, 

with matching rows set to 1 and non-matching set to 0. 

 
 

5. The 'heat_hours_dummy' is derived from the 'hour' and 'heat' columns. 'Heat' is 

calculated by subtracting 'ntmpc' from 15.5, representing the number of degrees 

Celsius below a comfortable indoor temperature - need for heating. Negative 'heat' 

values are set to zero, indicating no heating need. The variable signifies the heating 

required at every distinct hour of the day based on CLIM 047 indicator (EEA, 2021).  

 

6. The 'cool_hours_dummy' is generated similarly to 'heat_hours_dummy', but is 

multiplied by the 'cool' column. 'Cool' is determined by subtracting 22 from 'ntmpc', 

representing the cooling need to obtain the comfortable temperature in degrees 

Celsius. Negative 'cool' values are set to zero, indicating no cooling need. This 

variable is highlighting hourly cooling requirements based on CLIM 047 indicator 

(EEA, 2021). 

 

After all the required dummy variables - reflecting unique trends and seasonal changes in 

load demand - have been constructed for each country, the model for daily electricity 

consumption is determined. This process is undertaken individually for each country and 

across three distinct time periods. 
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The load is estimated using an Ordinary Least Squares (OLS) regression model, which is 

applied to a dataset that has been split into an estimation period and a prediction period. This 

method is based on the commonly utilized train-test split procedure. This procedure ensures 

the model's ability to effectively generalize its learning to new, unseen data, thereby helping 

to prevent overfitting while maintaining the model's accuracy and predictive power. 

 

The data frame for each country is individually divided into three time periods of interest. 

Initially, the model is estimated using data from the period between January 1, 2016, and 

December 31, 2018. Then, the model is used to predict data from January 1, 2019, to 

December 31, 2019. This evaluates the model's performance during a 'business as usual' 

period. 

 

Subsequently, the model is estimated on data from January 1, 2016, to December 31, 2019, 

and the predicted period ranges from January 1, 2020, to December 31, 2020. This step 

assesses the impact of the COVID-19 pandemic on electricity consumption. 

 

The model for daily electricity consumption for these two periods, which includes all 

appropriately transformed dummy variables and two subsets for each country, can be 

mathematically presented as follows: 

 

𝑓(𝑛𝑙𝑜𝑎𝑑!) = β" +,β#𝑤𝑒𝑒𝑘#! +
$%

#&'
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')*
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+,β+ℎ𝑒𝑎𝑡_ℎ𝑜𝑢𝑟+!

%,

+&"

+,β-𝑐𝑜𝑜𝑙_ℎ𝑜𝑢𝑟-!

%,

-&"

+ β.𝐻𝑜𝑙𝑖𝑑𝑎𝑦! + β/𝑡𝑟𝑒𝑛𝑑! + 𝑒! 

 

The final model is estimated using data spanning from January 1, 2016, to December 31, 

2021, and predictions are generated from January 1, 2022, to February 28, 2023. 

The estimation period was selected to analyze the impact of the energy crisis in the EU. 

Considering potential anomalies due to the inclusion of 2020 - a year profoundly affected by 

the COVID-19 pandemic, and 2021 - a post-pandemic period generally viewed as a year of 

'normal' consumption, a dummy variable accounting for COVID-19 effects was introduced in 

the model.  
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It's important to note that while 2021 is assumed to reflect normal consumption levels, there 

might still be some variations. This assumption is supported by literature review, suggesting 

that most countries experienced changes in load patterns in the first two to three months 

following the onset of the pandemic. By the second half of 2020, most consumption levels 

had returned to their 2019 levels. (Buechler et al., 2021). However, there are some exceptions 

to this general trend that the model must account for.  

Just like the 'week_dummy' variable, the 'covid_dummy' variable is derived from the 'week' 

column, creating a distinct column for each week after the country-specific date marking the 

start of the nationwide COVID-19 lockdown. The binary 'covid_dummy' variable is used to 

differentiate between the weeks prior to the initiation of the COVID-19 restrictions in each 

given country and the weeks during or after the COVID-19 period. This strategy facilitates 

differentiation and accounts for the impact of various weeks within the COVID-19 period in 

the subsequent regression analysis.  

 

The model for daily electricity consumption for this last period of analysis, which includes all 

five transformed dummy variables (‘week’, ‘hour_of_the_week’, ‘heat_hours’, ‘cool_hours’, 

and ‘covid’), can be mathematically represented as follows: 

 

𝑓(𝑛𝑙𝑜𝑎𝑑!) = β" +,β#𝑤𝑒𝑒𝑘#! +
$%

#&'
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')*

(&'
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%,
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+,β-𝑐𝑜𝑜𝑙_ℎ𝑜𝑢𝑟-! + , β.𝑐𝑜𝑣𝑖𝑑.!
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.&'
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+ β/𝐻𝑜𝑙𝑖𝑑𝑎𝑦! + β0𝑡𝑟𝑒𝑛𝑑! + 𝑒! 

After estimating the model on the designated time periods, it is utilized to produce predicted 

load values for each prediction period. These predicted values are then graphed alongside the 

actual load data from the original data frame. This visualization allows for an easy 

comparison between real consumption levels and predicted consumption. Detailed results 

specific to each country are presented and discussed in the subsequent Chapter 7. 

Additionally, the ogarithmic difference between actual and predicted load consumption - the 

differences between the actual and predicted values - are plotted as well (process described in 

subsequent Chapter 5.2), allowing a more straightforward visual evaluation of the model's 

performance. All the plots comparing the predicted load against the actual load are presented 

in Appendix 4. 
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Addressing Heteroskedasticity and Autocorrelation in OLS Regression with HAC 

Covariances: Newey-West Standard Errors  

 

OLS model is estimated on large time series data, where the errors may be correlated across 

time and variance may vary significantly and any seasonality in the data is amplified with the 

dummy variables. To account for this autocorrelation and heteroscedasticity in the errors a 

Newey-West type of HAC standard errors is applied in OLS regression model. 

Newey-West or HAC standard errors are types of robust standard errors to provide consistent 

estimates of the standard errors even when there is autocorrelation or heteroskedasticity 

present. 

The method employs a specific weighting scheme for the autocorrelations that declines 

linearly with the lag length (Wooldridge, 2016). 

The number of lags of residuals to be used in the construction of the autocorrelation robust 

standard errors is set to 168 (24 hours * 7 days = 168 hours), accounting for potential weekly 

patterns in the data, which could be important given the hourly frequency of the data. 

 
 
The Wald test 
 
The Wald test, a parametric statistical test frequently used in econometrics and statistical 

analysis, is designed to evaluate the significance of coefficients within an unrestricted 

regression model. This test is particularly suitable for large samples as it is asymptotic 

(Wooldridge, 2016). Given some inconsistencies in estimated parameters and the 

insignificance levels of some specific weeks or cool and heat hours within the model results, 

the Wald test is employed to assess the joint significance of the selected variables (excluding 

the ‘covid_dummy’ variable). 

 

The null hypothesis (H0) within the model states that the set of parameters attributed to each 

of the four dummy variables is equal to zero. This hypothesis implies that the respective 

variable does not have any noticeable effect. If a p-value is less than the conventional 

statistical significance level of 0.05, it permits the rejection of the null hypothesis, indicating 

that the variable does indeed have a significant effect. The Wald test results for each of these 

four dummy variables are provided in Appendix 4. 
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5.2 Logarithmic difference between actual and predicted load consumption 
 
The subsequent step in this analysis involves calculating and graphically representing the 

logarithmic difference between the actual and predicted load consumption. The method used 

to obtain this variance, while similar, is not precisely an error forecast. An error forecast 

typically computes the absolute difference between the logarithm of the predicted value and 

the logarithm of the actual value, without considering the direction of the prediction error 

(whether the prediction is higher or lower than the actual value). However, in this analysis, 

the variance is determined through a subtraction operation, thus maintaining the direction of 

the error:  

 

𝑙𝑜𝑎𝑑_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	 = 	100	 ∗ 	 (𝑙𝑛(𝑎𝑐𝑡𝑢𝑎𝑙_𝑙𝑜𝑎𝑑) 	− 	𝑙𝑛(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑜𝑎𝑑)) 

 

The load difference is computed as 100 times the difference between the logarithm of the 

actual load and the logarithm of the predicted load. This calculation results in a percentage 

change, which provides an intuitive measure of the relative error in the predictions. It also 

allows for an easier interpretation than a raw logarithmic difference. Negative percentage 

changes on the plot indicate instances where the predicted load was higher than the actual, 

suggesting events that negatively impacted the aggregate electricity consumption. These 

could include a milder winter or summer, or larger fluctuations due to crises. Conversely, 

positive percentage changes suggest that the predicted values were lower than the actual. This 

could be caused by colder winters, hotter summers, or increased productivity efforts to 

recover GDP after an economic downturn caused by a crisis. Country specific observations 

are discussed in the following Chapter 7. Plots are presented in Appendix 4. 

 
5.3 Cumulative load comparing 
 
Considering the specific nature of the datasets used in this analysis, which consist of hourly 

aggregate load data for each specific country over extended periods, assessing the predictive 

power and accuracy of the model can be challenging. One method to facilitate this evaluation 

is by plotting the cumulative sum of predicted and actual loads over time. The cumulative 

sum at any given point in time represents the total of all prior values. This visualization 

allows for a more comprehensive comparison of the overall performance of the predicted 

total load against the actual load accrued over time.  
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This strategy provides an insight into the total energy load and how well the model performs 

over extended periods. It is an effective way to visually assess the accuracy of the model's 

predictions in a cumulative manner. Cumulative load plots for all three periods in each 

country are presented in Appendix 4. 

 
5.4 Estimating the effects of crises. 
 
The methods described earlier facilitated the comparison of the actual load with the predicted 

load, under the 'business as usual' scenario that assumes the absence of both the COVID-19 

pandemic and the EU energy crisis. Interpretations from these earlier models rest exclusively 

on the presumed accuracy and predictive power of the models. In the next phase of the 

analysis, four new dummy variables are introduced. These are intended to quantify the 

distinct impacts of the two crises and examine their effects in isolation from other variables in 

the dataset. 

Effects of COVID-19 

To account for the impact of the COVID-19 pandemic, two new features were added to the 

dataset: 'covid_hours_dummy' and 'covid_week_dummy'. The first one illustrates the 

influence of the pandemic on hourly electricity consumption patterns, while the second 

variable demonstrates the pandemic's weekly impact throughout the entire year of 2020.  

In both instances, a new column titled 'covid' was initially introduced to each country's data 

frame. If a given timestamp equals or surpasses the specified start of the COVID-19 

lockdown in each respective country (dates specified in Appendix 2), the 'covid' value is set 

to 1. For all other times, the 'covid' value defaults to 0. Essentially, this binary variable 

indicates whether a given record falls within the COVID-19 period. 

Subsequently, dummy variables were created for each hour of the day using the 'hour' 

column, which resulted in 24 unique variables, one for each hour. These were then multiplied 

by the 'covid' column, setting 'covid_hours_dummy' to 1 if both the specific hour and the 

COVID-19 period conditions were met, and to 0 otherwise. These interaction terms allow the 

model to estimate the COVID-19 period's impact for each hour of the day separately. 
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The 'covid_week_dummy' variable was created similarly, but it utilizes the 'week' column 

instead of the 'hour' column. Consequently, 'covid_week_dummy' values are 1 only for the 

weeks that coincide with the COVID-19 lockdown period. 

Effects of Russian invasion in Ukraine 

The impact of the Russian invasion in Ukraine and the subsequent energy crisis in the EU has 

been encapsulated by incorporating two additional features in the dataset: 

'war_hours_dummy' and 'war_week_dummy'. These variables are presenting the crisis's 

impact on hourly and weekly electricity consumption trends, following a similar procedure to 

the creation of the Covid-19 period dummy variables.  

Initially, the 'war' column was generated, attributing the value 1 to each timestamp beyond 

the war's initiation on 24th February 2022, a date consistent for all countries. All remaining 

timestamps are assigned a 'war' value of 0. This binary variable effectively determines if a 

specific record corresponds to the energy crisis in EU period. 

Following this, dummy variables were created for each hour of the day using the 'hour' 

column, culminating in 24 separate variables. These variables were subsequently multiplied 

by the 'war' column, assigning a value of 1 to 'war_hours_dummy' if both the specific hour 

and crisis period conditions were met, and 0 otherwise. These interaction terms equip the 

model with the capacity to separately estimate the crisis's influence for each hour of the day. 

The process of creating the 'war_week_dummy' variable mirrors this for hourly impacts, 

substituting the 'hour' column with the 'week' column. Consequently, 'war_week_dummy' 

values are 1 exclusively for weeks concurrent with the energy crisis period. 

 
The Wald test 
 
 
Also here, prior to the transformation and visualization of parameters, a crucial step in 

evaluating the impacts of the two crises is testing the significance of the parameters for each 

of newly created dummy variables by employing the Wald test. 

 

The null hypothesis (H0) for each variable states that the set of parameters corresponding to 

each variable - which represents the crises' impacts on electricity consumption - is equal to 
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zero. This implies that the respective variable does not exert a noticeable effect. A p-value 

less than 0.05 allows for the rejection of the null hypothesis, indicating a significant effect of 

the tested variable. The Wald test results are provided in Appendix 5. 

Estimating the effects 

Following the creation of all four dummy variables – two for COVID-19 period and two for 

energy crisis impacts, the parameters associated with each dummy were saved to a separate 

list. After estimating the OLS regression model as described in section 5.1, list saved in the 

previous step are deployed to filter the residuals from the model and include only these 

indexed with parameters saved to the list for each dummy variable.  

The OLS regression was estimated over two periods: from January 4th, 2016 (the first 

Monday of the year) to May 1st, 2022 — the point until which, according to the findings of 

Buechler et al. (2020), the most severe effects of the COVID-19 lockdown were presumably 

observed — to evaluate the impact of COVID-19, and from January 4th, 2016 to February 

28th, 2023 to analyze the energy crisis in the EU. 

This allows for a focused investigation of the effects of both COVID-19 and the energy crisis 

in the EU, which was triggered by the war in Ukraine, in a controlled environment, distinct 

from potential influences of other variables within the data set. The parameters are subjected 

to transformations as described below, for their rescaling and acquisition of confidence 

intervals.  

1. Beta parameters: The coefficients associated with each dummy variable introduced to 

the model are represented by these parameters. The isolated impact of the respective 

crisis or variable is encapsulated in these parameters. A rescaling of these values is 

achieved by multiplying these coefficients by 100. This transformation enables 

interpretation of the changes in terms of a 100-unit change in the independent variable 

and are later plotted to represent the Effect (%) of given crisis on weekly and hourly 

electricity consumption changes. 

2. Standard Errors: These errors are indicators of the variability surrounding the estimate 

of the beta parameters. A rescaling of these values is also accomplished by 

multiplying them by 100, thus aligning them with the scaling of the beta parameters. 
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3. Confidence Interval bounds: Calculated as 1.96 times the standard error, these bounds 

present the parameters for a 95% confidence interval under the assumption of a 

normal distribution of the estimates.  

 
The beta parameters are used to plot the effects of given crisis, where y-axis represents the 

'Effect (%)' and the height of each bar indicates the magnitude of the effect (estimated beta 

coefficient) of the corresponding hour. 

The error bars (black lines) on the plots represent the standard errors of the estimated 

coefficients multiplied by a z-score 1.96 to form a 95% confidence interval. This gives a 

range of plausible values for the true effect. If the error bar for a particular hour does not 

cross the 0 line on the y-axis, it suggests that the effect for that hour is statistically 

significantly different from zero. All the plots with the effect of each dummy variable are 

presented in the Appendix 5. 

6. Results 
 
In the first part of this chapter, the focus is primarily placed on the presentation of the results, 

the assessment of the selected methods' performance, and the clarification of possible 

statistical anomalies. The regression results including the significance of variables (Wald test 

for joint significance of dummy variables) and predictions of electricity consumption for all 

three periods are to be presented first, followed by an analysis of the logarithmic differences 

between projected and actual loads. The results of effect quantification and the Wald test are 

then set to be explored. The relationship between load consumption and crisis impact is to be 

established and explained in the following Chapter 7. 

 

6.1 OLS regression results for predicting electricity consumption 
 

The formulation, the time periods of the estimation and prediction subsets, and the variables 

included in the regression were detailed in the previous chapter. The methodology chapter 

also presented the steps for using cumulative load plotting to visually inspect the model's 

predictive power. The insights gained from this graphical validation method will be further 

explored in the sections that follow. However, prior to that, the numerical results of the OLS 

regression and the significance of the chosen formulation must be detailed. Appendix 4 

contains the tables presenting the key regression results. 
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The number of observations for the regression in 2019 totals 26281, with the exceptions of 

Bulgaria (26208) and Greece (26257), where a few days were omitted due to missing load 

data. In 2020, there were 35041 observations, except for Bulgaria with 34968 observations 

and Greece with 35017 observations due to missing data. For 2022, the model included 

52585 observations, except for Bulgaria (52512), Greece (52561), and Romania (52561) 

where few days were removed.  

Considering the extended time periods analyzed and the simplicity of the regression model 

employed for this analysis, the resulting R-squared statistic—which hovers approximately 

around 90%—suggests that a satisfactory portion of the variance is explainable by the 

independent variables included in the model. As expected, the highest R-squared values were 

obtained for the estimations for the year 2019, while the lowest values were observed in 2022 

across all the countries. The best performing model across all three periods was performed in 

Romania, where the explanatory power reached 94.2%, 93.5%, and 92.1% in 2019, 2020, and 

2022, respectively. This was followed by Bulgaria, with corresponding values of 93.2%, 

92.9%, and 92.5% in 2019, 2020, and 2022, respectively, and North of Italy, with 93.3%, 

92.9%, and 90.9% in the same years, respectively.  

The weakest results were obtained for Southern Italy, with all R-squared values below 90% 

and the lowest overall value recorded in the analysis of 79.1% in 2022 (compared to 85.2% in 

2019 and 84.6% in 2020. All other models exhibited performances that reached 90% or more 

in 2019 and 2020, and approximately 88% in 2022. 

Adjusted R-squared statistics tracked closely to the R-squared values, with the largest 

difference of 0.002 observed for Southern Italy. As the adjusted R-squared provides a more 

accurate measure of goodness of fit, its close proximity to the R-squared values suggests that 

the majority of predictors contribute significantly to the model. 

F-statistics for all the models corroborate the overall statistical significance of the models, in 

other words, the predictors as a group add statistically significant predictive power to the 

model beyond what would be expected by chance.  

The potential non-normal distribution of residuals in the OLS models may arise from the 

inherent nature of the dependent variable, in this case, electricity load data. Such data can 

frequently exhibit skewness or kurtosis due to varying demand at different times of the day or 

across different seasons.  
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Testing the joint significance of dummy variables with Wald test 

 

Dummy variables were created to highlight and quantify the impact of temperature on 

electricity consumption (as represented by the heat_hours_dummy and cool_hours_dummy 

variables), fluctuations in hourly and weekly load demand (captured by the week_dummy 

and hofw_dummy variables), and any abnormal effects on load patterns following the 

COVID-19 lockdown (accounted for by the covid_dummy variable in the 2022 analysis). The 

significance results from OLS regression of most of these variables is substantial, though 

some exceptions exist and vary by the years and countries tested. A small number of 

significance levels for week_dummy and hofw_dummy exhibited statistical insignificance, 

likely owing to unique country-specific patterns linked to sectoral and household activities. 

Likewise, heat_hours_dummy, and more prominently cool_hours_dummy, demonstrated 

statistical insignificance during the late evening and early night hours. This is likely due to 

decreased or absent heating and cooling needs during these hours. Given these sporadic 

occurrences, the joint significance of each dummy variable was evaluated to confirm whether 

they collectively have a significant influence on the dependent variable in a regression 

analysis. The Wald test substantiated the significance of all four dummy variables across each 

period and all countries. These results can be found in Appendix 4. 

Holiday variable  

The 'Holiday’ variable, exhibits high significance levels and all negative coefficients across 

the regression results for each individual country and every tested period. Notably, there is a 

variance in the magnitude of the coefficients among the countries, with the highest absolute 

values being exhibited in Northern Italy and the lowest in Bulgaria and Southern Italy. 

Greece, Romania, Central-Northern and Central-Southern Italy are displaying comparable 

values of the ‘Holiday’ coefficients.  

 

        
Changes in Holiday coefficients from 2019 to 2022 

  

 BG GR RO 
IT 

NORD 
IT 

CNOR 
IT 

CSUD IT SUD 
2019 -299 -626 -748 -4678 -710 -780 -364 
2020 -301 -650 -751 -4448 -685 -740 -351 
2022 -326 -624 -755 -4203 -627 -692 -329 
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% change of Holiday coefficient between two periods 
% change 

from 19 to 20 -0,54 -3,87 -0,337 4,91 3,52 5,13 3,81 

% change 
from 19 to 22 -8,7 0,3 -0,9 10,2 11,7 11,4 9,8 

% change 
from 20 to 22 -8,1 4,0 -0,5 5,5 8,5 6,6 6,2 

 

Table 1: Changes in 'Holiday' coefficients from 2019 to 2022 

The estimated coefficients are, as expected, negative, confirming the assumption that 

holidays generally lead to a reduction in electricity consumption, holding all other factors 

constant. In a linear regression model, the coefficient on a binary variable such as 'Holiday' 

signifies the average change in the dependent variable (in this case, electricity load in MW) 

when the binary variable switches from 0 to 1, holding other factors unchanged.  

For example, the coefficient of -299 for Bulgaria in 2019 (the lowest value of coefficient) 

suggests that the electricity load in Bulgaria was, on average, 299 MW lower on holidays 

compared to non-holidays in that year. Similarly, in Northern Italy in 2019, the electricity 

consumption decreased by 4678 MW (the highest absolute value of coefficient) on holidays 

compared to non-holidays, assuming all other factors are held constant.  

Interpreting changes in these coefficients between time periods is somewhat more complex. 

For instance, the 'Holiday' coefficient for Bulgaria changed from -299 in 2019 to -326 in 

2022, translating to an 8.7% increase in the magnitude of the negative effect of holidays on 

electricity load. On the other hand, a positive change of 11.7% from 2019 to 2022 in Central-

Northern Italy may indicate a reduction in the negative impact of holidays on electricity 

consumption.  

The interpretation of these changes is partially dependent on the model's accuracy and 

assumptions. However, it's worth noting that the coefficients may not entirely encapsulate the 

variability of holidays' impacts on electricity load. This variability might be subjected to 

influences from other factors not accounted for in the model, such as economic fluctuations, 

demographic shifts, or policy implementations. The causes and implications of these 

coefficient changes will be delved into in the subsequent sections of this paper. 
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Trend variable 

 

Considered as a continuous representation of time, 'trend' captures linear time effects - any 

consistent pattern resulting in the increase or decrease in the electricity load present over 

time, in other words any unobserved factors that are changing over time and that may 

influence the dependent variable.  

In this context, the 'trend' coefficient is understood as the average change in electricity load 

over time, holding all other factors constant. The changes in these coefficients across 

different periods can reflect how the long-term trajectory of electricity load is evolving. A 

positive coefficient suggests that, on average, electricity load is increasing over time, whereas 

a negative value indicates a decreasing trend. The coefficients for ‘trend’ display somewhat 

substantial fluctuation in between the three years under study, with both positive and negative 

values present. This underscores the nuanced impacts these factors can exert on electricity 

load, contingent on specific circumstances or conditions. The magnitude of these coefficients 

also differs. Similar to the 'Holiday' coefficients, the lowest absolute values of 'trend' 

coefficients are observed in Bulgaria, while the highest are found in North of Italy. 

 

 

Changes in trend coefficients from 2019 to 2022  

 BG GR RO 
IT 

NORD 
IT 

CNOR 
IT 

CSUD 
IT 

SUD 
2019 40 63 152 516 65 -41 166 
2020 -2 45 87 293 30 -11 88 
2022 6 53 80 302 -10 32 29 

 
 

% change of trend coefficient between two periods  
% change from 19 

to 20 -103,80 -28,62 -42,707 -43,18 -53,40 72,44 -47,23 

% change from 19 
to 22 -85,6 -15,9 -47,8 -41,4 -114,8 176,8 -82,4 

% change from 20 
to 22 480,0 17,8 -8,8 3,1 -131,8 378,8 -66,6 

 

Table 2: Changes in 'trend' coefficients from 2019 to 2022 

 

All results, with the exception of the coefficients for Bulgaria in 2020 and 2022, Central-

Northern Italy in 2022, and Central-Southern Italy in 2020, are statistically significant at the 
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0.05 level. In this context, statistical significance is a marker of confidence that the observed 

relationship between the independent variable ('trend') and the dependent variable (electricity 

load in MW) is not just a result of random variation.  

 

The 'trend' coefficient for Bulgaria being statistically significant in 2019 but not in 2020 and 

2022 suggests a meaningful and consistent association between time and electricity load for 

that year, which is less clear in the subsequent years. This suggests that during 2019, shifts in 

the ‘trend’ variable likely corresponded to changes in electricity load. However, in 2020 and 

2022, the observed relationship could be attributed more to random fluctuations rather than a 

genuine, systematic effect.  

On the other hand, the statistical significance of 'trend' for Greece, Romania, Northern Italy, 

and Southern Italy across all three years indicates a consistent and reliable relationship 

between time and electricity load in these regions. This suggests systematic annual changes in 

electricity load in these countries, as reflected by the 'trend' variable.  

Yet, the statistical significance (or lack thereof) of the 'trend' doesn't diminish the importance 

of observing the magnitude of change across the three periods. Notably, these changes are 

most pronounced in Bulgaria, suggesting substantial fluctuations in electricity load due to 

crisis events, which are not systemic changes.  

 

Investigating these changes in the 'trend' can provide vital insights for our research questions. 

Understanding the underlying causes for such shifts in the 'trend' variable could help 

elucidate how the relationship between electricity load, temperature, and the effects of crises 

evolves over time. 

 

6.2 Regression results from estimating the effects of crises 
 

As detailed in Chapter 6, the models used for quantification are largely analogous to those 

utilized in the electricity consumption regression. Consequently, the majority of the results 

closely mirror those outlined in the previous section. Only key observations will be 

highlighted here, given that the interpretation, magnitudes of results, and their significance 

for each country bear a striking resemblance to the results previously presented. Detailed 

results are available in Appendix 5.  
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The OLS regression models employed to estimate the impacts of both crises yield similar 

statistical results to those discussed in section 7.1. The models showcase the lowest R-

squared values for Southern Italy, while Bulgaria and Romania exhibit the best model 

performance across all four variables.  

The adjusted R-squared statistics closely align with the R-squared values, further attesting to 

the significant contributions of the majority of predictors to the model.  

Lastly, the F-statistics confirm the overall statistical significance of the models. 

 
The results of the Wald test, employed to determine the joint significance of the dummy 

variables capturing the hourly and weekly effects of both crises ('covid_hours_dummy', 

'covid_week_dummy', 'war_hours_dummy', and 'war_week_dummy'), affirm the significance 

of all four dummy variables across each period and for every country. Detailed results are 

provided in Appendix 5. 

 

6.3 Visual comparison of predicted and actual electricity loads: assessing the 
impact of crises 
 

The specification and estimation method used to develop the model, based on past electricity 

load values for predicting 'normal' load values in years impacted by crisis, are detailed in 

Chapter 6. This section will visually assess and compare these predictions among different 

countries and periods. The graphical representations of predictions and logarithmic 

differences will focus on the two countries with the most reliable models, namely Romania 

and Northern Italy, along with the least accurate model represented by Southern Italy. This 

comparison will highlight variations between different countries and regions within the same 

country. Although only selected cases will be discussed in this section, other noteworthy 

observations from other countries under study may also be included. The comprehensive set 

of figures and graphs for all countries will be provided in Appendix 5, as a country-specific 

analysis will not be conducted here. 

 

Counterfactual validation of the model performance 

 

The challenge in assessing the impacts of a crisis arises from creating a counterfactual 

scenario, where no anomalies are present, and generating a dataset that represents this 

scenario. The intention is to then compare this data to the actual data collected during the 
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shock event. While the model used for generating these predictions has been statistically 

demonstrated to have strong predictive power, the nature of electricity load data -

characterized by large variances, long time frames, seasonal trends, and hourly frequency -

means that the statistical predictive power represents the sum of all these factors taken 

together. Consequently, econometric best practice recommends visually assessing such data 

types in addition to relying on purely statistical methods. The OLS model specified for the 

purposes of this analysis leans heavily on seasonal trends in electricity consumption. Thus, a 

visual inspection is performed not only to verify but also to demonstrate the model's capacity 

to accurately capture and predict these trends. 

The term 'counterfactual validation' refers to the process of comparing model-generated 

predictions for the year 2019 with the actual load data from that same year - a year absent of 

any anomalies. The three figures below depict the predicted load values alongside the actual 

load data for a given country. In some instances, the inherent characteristics of the load make 

the visualization too complex, thus a plot of the cumulative differences between the predicted 

and actual data is provided to better clarify how closely the predictions align with the actual 

load. Moreover, graphs representing the logarithmic difference between the actual and 

predicted load consumption are provided in Appendix 4. These graphs reveal both the 

variance and direction of the prediction error. Majority of graph for 2019 displays slightly 

lower actual load than predictions. This could be due to the model's predictive power 

diminishing over time, or other external factors like temperature. One possible explanation 

for this difference might be the unusually warm winter of 2019-20, which was apparently the 

second-warmest recorded globally in over a century (Hansen, 2020). The fact that predictions 

for 2019 in Greece were perfectly aligned with actual load, and even slightly exceeded 

predictions in Central-Southern Italy, leads to the assumption that the negligible differences 

in the remaining countries and regions studied are the result of abnormal temperatures, rather 

than a weak model. 

 

The models for Romania and Northern Italy, which performed the best, are tracking the 

actual load quite accurately with their predictions. The predicted values are slightly higher 

than the lowest actual load values and closely follow the highest actual load values. There is 

an exception during July and August in Northern Italy, where the actual load values exceed 

the predicted ones. This discrepancy could be the result of higher temperatures during the 

summer, or another external factor. It's worth noting that towards the end of the year, the 

predicted values appear to exceed the actual load values in both countries. This observation is 
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supported by the cumulative difference plot, which shows a more pronounced divergence of 

the two lines towards the year's end.  

 

 
 

Figure 5: Comparison of the actual and predicted load in Romania for 2019. 

 
Interestingly, the visual performance of the models for the remaining countries follows a 

similar pattern to that of Romania and Northern Italy, (all oscillating between 91%-93% 

predictive accuracy). Despite a slightly lower predictive power of 90%, Greece's model 

stands out as its cumulative prediction plot perfectly mirrors the actual load curve throughout 

the entire year of 2019. 

 

 
 

Figure 6: Comparison of the actual and predicted load in the North of Italy for 2019 

 
 



 
 

 50 

The predictions for the load in Southern Italy follow a similar trend to the previous two 

models up until April 2019. This includes higher predicted values than the actual lowest load 

levels and predicted values closely tracking the highest actual load levels. However, after 

April, the predicted load values are consistently higher than the actual load values, with a 

significant divergence apparent by the end of the year, particularly in September/October. 

This observation is confirmed by the cumulative load plot.  

 
 

 
 

Figure 7: Comparison of the actual and predicted load in the South of Italy for 2019 

 
 
The model for predicting electricity load in 2019 exhibits the poorest performance in 

Southern Italy. This is apparent both in statistical results and in the clear visual disconnect 

between the two plots. 

 

Counterfactual analysis of COVID-19 impacts on electricity load 

 

After assessing the plots and concluding that the models perform satisfactorily in the studied 

countries for 2019, the evaluation of the impacts of COVID-19 can be discussed.  

The predicted load in Romania follows a similar pattern to the actual load, oscillating 

between 9000 and 8000 MW, until mid-March. At this point, the actual load drops abruptly, 

reaching its lowest value of approximately 6500 MW in mid-April. After this dip, the actual 

load seems to recover, and by August or September 2020, it aligns with the predicted values. 

The cumulative plot clearly shows a gradual divergence between the two curves starting from 

March 2020, with the gap widening until September 2020. 
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Figure 8: Comparison of the actual and predicted load in Romania for 2020 

 
The impact observed in Northern Italy unfolds similarly to what was described for Romania. 

Both the predicted and actual load values oscillate between 26000 and 28000 MW. Once 

again, the actual load demand experiences an abrupt drop mid-March, reaching its lowest 

value of 16500 MW in April. The decline in consumption in Northern Italy appears to be 

more severe and sharper, but the recovery is also quicker, aligning with predicted load values 

by mid-July. The disconnect between the two curves on the cumulative difference plot further 

corroborates the statement of a more severe and sharper drop in load. 

 

 
 

Figure 9: Comparison of the actual and predicted load in the North of Italy for 2020 
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The impact of COVID-19 and the subsequent pandemic lockdown observed in Southern Italy 

is less abrupt. Both the predicted and actual load follow the same pattern throughout the year, 

though the actual demand consistently displays lower values. The impacts of the pandemic 

seem more drawn out over the entirety of the year, with no clear recovery point in electricity 

consumption. A brief period between July and September shows predicted and actual load 

aligning. However, for the remaining months, the predicted load values are consistently 

higher than the actual demand. The cumulative plots show a divergence starting right at the 

beginning of the year, which continues to widen up until the end of 2020. This corroborates 

the lack of a sudden decrease in load demand and the absence of a recovery phase. 

 

 
 

Figure 10: Comparison of the actual and predicted load in the South of Italy for 2020 

 
While the impacts of the pandemic in Central-Northern and Central-Southern Italy follow the 

pattern described for Romania and Northern Italy – characterized by a sharp decrease and 

subsequent recovery of actual load – the pattern of actual load observed in Greece appears to 

display more similarities with the situation described in Southern Italy. This includes the 

alignment of both predicted and actual load from July to September. The differences between 

the actual and predicted load in Greece are smaller, and the actual load at the beginning of the 

year closely follows the predicted load before diverging mid-March.  

In Bulgaria, the actual load closely mirrors the predicted load, with a mild decrease in actual 

demand from May to September. 
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Counterfactual analysis of energy crisis impacts on electricity load 

 
Lastly, the energy crisis in the EU appears to have more varied range of impacts across the 

studied countries, as the severity of this crisis is intrinsically linked to the energy security and 

independence of each individual nation.  

In Romania, the actual load initially follows the predicted levels of electricity consumption 

until May 2022, when a gap between the two curves gradually widens throughout the rest of 

the period. This observation is corroborated by the cumulative difference plot. 

 

 
 

Figure 11: Comparison of the actual and predicted load in Romania for 2022 

 
 
Meanwhile, the cumulative difference plot for Northern Italy exhibits both curves following 

each other almost perfectly, with a negligible gap observed between the two curves from May 

to July and at the beginning of 2023, suggesting no clear signs of decreased electricity 

consumption due to the crisis. The plot illustrating the load curves shows the actual load 

slightly exceeding the highest values of predicted load from January to August 2022. 

Afterwards, the actual electricity consumption values slightly decrease, falling marginally 

lower than predicted values during the cooler months from September 2022 to January 2023. 

These values then seem to realign with the predictions in February 2023. 
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Figure 12: Comparison of the actual and predicted load in the North of Italy for 2022 

 
As Northern Italy barely shows any signs of decreased electricity demand due to the energy 

crisis, the impacts of the same shock in Southern Italy are severe. The actual load remains 

below the predicted load levels from the beginning of 2022, with a singular exception in July, 

and the gap between the predictions and actual consumption level gradually widens from 

August 2022 until January 2023. The cumulative difference plot confirms this pattern, 

displaying a widening disconnect between both curves from the start of 2022 and amplifying 

this gap even more from August/September 2022. 

 

 
 

Figure 13: Comparison of the actual and predicted load in the South of Italy for 2022 

 

 
Bulgaria and Central-Northern Italy appear to be experiencing the energy crisis in a similar 

way to Northern Italy, with only marginal differences between the predicted and actual levels 
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of electricity consumption. Greece, on the other hand, is exhibiting a pattern of decreased 

electricity consumption similar to that observed in Romania, though to a lesser degree. In 

contrast, Central-Southern Italy, unlike any of the other studied countries or regions, is 

displaying higher actual electricity consumption levels than those predicted.  

 
6.4 Comperative analysis of crises effects 
 
The analyses of the predicted and actual electricity load in the previous sections provided an 

overall assessment of the severity of the crises and identified general trends, similarities, and 

differences among the studied countries. This section will delve deeper into the changes in 

electricity load on an hourly and weekly basis, providing crucial insights for further 

discussion of the research questions. 

 

Bulgaria and Romania emerged as the countries with the best overall model performances for 

estimating crisis effects (Chapter 6.2), while the R-squared results for Northern Italy placed it 

in the mid-range of performance, with predictive power ranging between 90.5% and 91.9%. 

The regression results for Southern Italy were the weakest. Despite the slightly lower 

performance of models for Northern Italy, this section will present and describe plots for the 

same three countries. This approach not only facilitates easier referencing to patterns 

observed in previous sections, but also provides consistency in the comparative analysis. 

While any noteworthy observations from other countries will be highlighted here, additional 

plots will be available in Appendix 5 for further reference. 

 

First, the effects of COVID-19 on weekly electricity consumption will be discussed. The blue 

bars on the plots represent beta parameters and indicate changes in electricity consumption 

due to the pandemic, assuming all other variables in the model remain constant. While 

Romania and Northern Italy show a gradual negative effect up until week 10 (beginning of 

March 2020), followed by a sharp increase in negative impact between weeks 10 and 20 and 

a subsequent gradual decrease, the effects in Southern Italy oscillate between -35% and -15% 

throughout the entire year. The most significant impacts in Southern Italy occurred at the 

beginning of the year.  

Generally, the effects on all weeks are negative, with the exception of week 32 in Northern 

Italy. Similar effects on the consumption patterns can be observed in Greece – where load 

demand is negatively affected (except weeks 30-32), and in Central-Northern Italy, which 
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mirrors the effects in Southern Italy most closely. In Bulgaria, the impacts are milder than in 

other countries, and except for weeks 10-15 where the effects are positive, the remaining 

weeks experience negative effects. Effects on pattern in Central-Southern Italy, however, 

significantly deviates from the trend observed in the rest of the studied countries. Here, weeks 

10-30 are negatively affected, reaching the lowest point around week 20. However, for the 

remainder of the year, the load consumption during most weeks is positively affected. 

 

 
 
 
Figure 14: Effects (%) of COVID-19 pandemic on weekly electricity consumption (2020) in Romania, North and South of 
Italy 

 
 
The plots illustrating the effects of COVID-19 on hourly electricity consumption reveal the 

magnitude and direction of the impact, as compared to consumption levels during periods 

unaffected by the crisis. Clearly, COVID-19 had substantial and negative effects on load 

consumption in all three countries discussed, though the magnitude of these effects varied. In 

Northern Italy, the effects were relatively even across all 24 hours, ranging between a -8% 

and -10% change. In Romania and Southern Italy, the effects were less pronounced during 

the day (8AM to 7PM), oscillating between -2% and -4% in Romania, and -15% and -19% in 

Southern Italy. The effects during the nighttime hours for both countries were more 

significant than those during the day, with the lowest values reaching -5.5% in Romania and -

25% in Southern Italy. 

 

 
 

Figure 15: Effects (%) of COVID-19 pandemic on hourly electricity consumption (2020) in Romania, North and South of 
Italy 
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Central-Northern Italy's hourly effects of COVID-19 closely mirrored those observed in the 

Northern part of the country in pattern, but with a higher magnitude of effects ranging 

between -15% to -19%. Effects in Greece were comparable to those observed in Romania, 

with magnitude ranging between -4% and -7.5%. The impact on electricity load in Bulgaria 

was most pronounced during nighttime hours, reaching between -3% to -5%, and during the 

late afternoon/evening hours (-2.5% to -4%). During daytime, however, the effects were 

ranging between -2% and less than -1%.  

Unlike any other country described in this section, Central-Southern Italy displays majority 

positive hourly effects on electricity consumption. Hours between midnight and 6AM show 

positive effects reaching as high as 2%, while the daytime hours from 11AM to 8PM show 

marginal positive effects. The only hours with minor negative effects are between 7AM to 

10AM and 9PM to 11PM.  

 

Among the effects of the energy crisis on the studied countries, tow distinguish predominant 

patterns can be observed. While they differ in magnitude, they align in direction across the 52 

weeks, with Central-Southern Italy being the notable outlier.  

Upon analysing the plots presented below, it is observed that Romania and Southern Italy 

experience a similar direction of effects from the shock. Except for one week of positive 

effects for each country, both generally exhibit negative impacts. The effects are most 

pronounced during the colder winter weeks at the beginning and end of the year and hot 

summer weeks, with magnitudes reaching -17% for Romania and -40% for Southern Italy. 

During the warmer spring and summer weeks, these effects decrease, falling to around -2.5% 

in Romania and approximately -8% in Southern Italy.  

However, North Italy exhibits positive effects during the spring and summer months (from 

week 10 in March until week 30 in August), and negative effects for the rest of the year. The 

magnitude of these effects reaches an absolute value of 10% in both directions. The effects in 

Bulgaria are very similar to those in North Italy, both in direction and magnitude.  

Greece and Central-Northern Italy experience the highest negative effects during the colder 

weeks, reaching approximately -15% in both countries. During the spring and summer weeks, 

these countries display a mix of positive and negative effects, with the maximum absolute 

value reaching 5%. However, the overall pattern of effects resembles these described for 

Bulgaria and North of Italy.  
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Figure 16: Effects (%) of energy crisis on weekly electricity consumption (2022) in Romania, North and South of Italy 

 
 
The outlier, mentioned at the beginning of this section, is Central-Southern Italy, which 

predominantly experiences positive effects on weekly electricity consumption – with the 

negligible exceptions of two weeks. The increase in consumption, indicated by positive 

effects, reaches its highest magnitudes between weeks 10 and 30 (ranging from 5% to 15%). 

For the remaining weeks, the increase averages around 5% to 10%. 

 
The hourly effects of the energy crisis in Romania indicate a uniform 8% to 10% decrease in 

electricity consumption for each of the 24 hours, suggesting a significant impact on the 

country's hourly consumption pattern. Southern Italy exhibits even more pronounced impacts 

from this crisis, with daily consumption (between 8 AM and 6 PM) reduced by 14% to 19%, 

and overnight consumption (during the remaining hours) reduced by 20% to 25%.  

Northern Italy, however, reveals a modest decrease in consumption during the daytime (from 

8 AM to 11 PM) by 1% to 3%. Interestingly, the crisis seems to increase consumption after 

midnight until 8 AM by approximately 1%. Despite significant differences in the magnitude 

of effects, Greece and Bulgaria display a similar pattern in the impacts of the crisis to one 

described in North of Italy, with the lowest effects observed during hours between 10 and 15, 

and the least effects from midnight to 9 AM. 

 

 
 

Figure 17: Effects (%) of energy crisis on hourly electricity consumption (2022) in Romania, North and South of Italy 
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Central-Northern and Central-Southern Italy, despite being neighboring regions within the 

same country, exhibit drastically different patterns of energy crisis impacts on hourly 

electricity consumption. The Southern region of Central Italy shows exclusively positive 

effects, with the highest increase, 8% to 12%, occurring between midnight and 8 AM, and a 

slightly smaller increase of 4% to 8% during the remaining hours.  

The hourly electricity consumption in the Central-Northern region is affected negatively 

throughout the 24 hours. The effects of the crisis, represented by the bars on the chart, create 

a perfect bell-shaped curve between midnight and 11 PM, with the most severe effects 

reaching a decrease of -7% at both ends. However, there are negligible negative impacts from 

8 AM to 2 PM, which corresponds to the peak of the bell curve. 

 

7. Discussion  
 
7.1 Discussion of the research question 
 
RQ1. How did the electricity consumption in the selected countries change due to the impacts 

of the COVID-19 pandemic and the energy crisis resulting from Russia's invasion of Ukraine, 

and were these impacts consistent across these countries? 

 
Assuming that the models presented in this paper have strong prognostic power and that the 

predictions of load consumption they generated are accurate, it's appropriate to state that the 

lockdown due to the COVID-19 pandemic had negative effects on electricity consumption for 

the second quarter of 2020 in all the countries studied, including four regions in Italy. 

Cumulative differences between predicted and actual values support this conclusion, with the 

smallest reduction observed in Bulgaria. Aside from Central-Southern Italy, the hourly 

effects of the lockdown on electricity consumption were also predominantly negative, 

although the patterns and magnitudes varied among regions and time of day. The weekly 

effects of COVID-19 were mostly negative as well. Central-Southern Italy was an exception, 

displaying a mix of both positive and negative effects on a weekly basis.  

The mixed results observed in Central-Southern Italy during the COVID-19 lockdown are 

likely due to region-specific characteristics rather than the addition of another region to the 

bidding zone, as outlined in chapter 3.5. ACER (2022) confirms that this expansion occurred 

in 2021. 
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Though there are some similarities in the impacts on electricity load throughout 2020, the 

energy crisis in 2022 presents a more diverse pattern of fluctuations. During this crisis year, 

Bulgaria and Northern Italy did not see any significant decrease in electricity consumption 

overall, in comparison with predictions as evident from the cumulative load plots and 

comparing the actual load with predicted demand. The weekly effects of crisis in case of both 

countries are present in the second half of the year. Hourly effects display minor however 

persistent reduction during peak hours in North of Italy and predominantly marginal positive 

effects in Bulgaria. Negligible negative effects observed in Bulgaria are present between 10 

and 15. 

Central-Southern Italy experienced a significant increase in load consumption, presumably 

due to expended bidding zone. Conversely, Greece, Central-Northern Italy, Romania, and 

Southern Italy all saw declines in load. The reductions were more modest in Greece and 

Central-Northern Italy, while they were more pronounced in Romania and Southern Italy. For 

the countries where electricity demand was negatively affected, this decrease was observed 

throughout the year.  

This pattern is especially questionable in context of Centra-Northern Italy considering the 

adjustment to the bidding zone, which resulted in the exclusion of one region in 2021 

(ACER, 2022). Weekly patterns for this areal present predominantly negative effects towards 

the end of the year (weeks 35-52), and the hourly effects seem to most pronounced during 

off-peak consumption hours.  

Not only do impacts of each crisis separately vary for each of the countries under 

investigation, but as shown on the example of Italy, impacts vary significantly within the 

same country’s’ regions.  

 

To concisely answer the research question, electricity consumption in the selected countries 

experienced decreases due to the impacts of the COVID-19 pandemic and the energy crisis 

resulting from Russia's invasion of Ukraine. However, these impacts varied across countries.  

 
 
7.2 What factors might explain observed differences in the impacts of these 
crises on electricity consumption among the studied countries? 
 

The effects of the crises varied across the studied countries, and several key factors can be 

attributed to these variations. First, the underlying causes of the two crises were different. 

The crisis known as COVID-19 stemmed from a health emergency that led to nationwide 
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lockdowns worldwide, halting the majority of economic activities. On the other hand, the 

energy crisis caused a significant spike in energy prices due to sanctions imposed on Russia, 

which restricted gas (and crude oil) deliveries to Europe. The severity of the outcomes of 

these shocks depended on a set of country-specific characteristics. Economic structure, 

particularly the dominance of industrial and manufacturing sectors, can lead to greater 

fluctuations in electricity demand during economic shocks compared to service, tourism or 

residential sectors. Additionally, the effectiveness of government responses to the COVID-19 

pandemic or energy crises, such as income support, financial assistance, and economic 

stimulus packages, can significantly influence electricity consumption. While responses were 

fairly uniform across the European Union, variations did exist. Lastly, countries more reliant 

on Russian gas for electricity generation are likely to be more impacted by the energy crisis 

stemming from Russia's invasion of Ukraine (Uribe et al., 2022). 

 

Italy's North-South divide 

 

Before delving into the differences between the countries under study, it's essential to explore 

the divide within Italy itself, which may provide insights for further conclusions. As outlined 

in several previous chapters, Italy has been divided into four regions for this analysis, mainly 

due to the availability of multiple bidding zones, but also the well-known North-South socio-

economic divide within the country. 

 

The disparity between the Central-Northern and Southern regions (Mezzogiorno) of Italy, 

exemplified by the Southern GDP per capita falling to near 50% of the Central-Northern 

GDP per capita, began to manifest in the 1950s. Since that time, the gap has remained fairly 

consistent, ranging between 55% and 60% up to the present day. Additional disparities are 

seen in areas such as labor productivity, with Southern Italy trailing Central-Northern Italy by 

20%, and the employment rate, where the difference between the two regions is about 30%. 

 

However, it's important to recognize that Central-Northern Italy and the Mezzogiorno are not 

monolithic or homogeneous regions. Within Central-Northern Italy, the industrial triangle of 

Turin, Milan, and Genova initially drove economic growth, later shifting towards the "Third 

Italy" region, characterized by the "industrial district model" (Musolino, 2018). These areas 

correspond respectively to what is referred to in the analysis as Northern Italy (Milan) and 

Central-Northern Italy (Florence). 
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On the contrary, the spatial patterns in the economy of the Mezzogiorno have remained 

relatively stable. Regions like Abruzzo, Molise, Sardinia, and Basilicata have shown higher 

levels of development, while Calabria, Campania, and Sicily have lagged behind (Musolino, 

2018). In this analysis, the Central-Southern region, centered around Rome, aligns mainly 

with Lazio, Abruzzo, and Campania (with addition of Umbria from 2021), while the South of 

Italy represented by Bari (Apulia, Molise) corresponds to the second group of regions. 

 

Evidently, industries are primarily located in the central-northern region of the country, with 

small and medium-sized businesses being more widespread nationally compared to large 

industrial entities. (Xiong, 2022). Agriculture, accounting for roughly one-sixth of Italian 

GDP, is mainly concentrated in the central and southern regions but is dominated by smaller, 

family-based operations, unlike the agricultural companies in the northern part. Finally, 

tourism being the fastest-growing and most economically profitable industry in Italy, also 

prevails in the Central-Northern and Central-Southern regions, with Rome, Florence, Milan, 

and Venice being the most-visited tourist destinations. It's worth noting that this highly 

developed tourism industry has significantly contributed to reducing the budget deficit and 

unemployment by increasing jobs in the service sector (Xiong, 2022). 

 

Understanding the divide within the country and the localization of crucial sectors helps 

explain the impacts of the two crises and the evident differences between the regions. The 

lockdown due to the COVID-19 pandemic, set for the entire country on March 12, 2020 

(week 11), involved a stay-at-home order, restricted domestic and international travel, and the 

closing of all offices, businesses, retail activities (except for food and basic necessities), 

institutions, schools, and universities (WHO COVID-19 Dashboard, 2020). This instantly 

stalled the majority of economic activities and significantly decreased electricity consumption 

in the predominantly developed and industrialized regions. This is highly evident in all four 

cumulative difference plots, which display a decrease in consumption. The effects of 

COVID-19 on weekly consumption are also mainly negative (with the lowest weekly values 

around week 11) in Northern Italy and both central regions. However, the effects in the 

Southern region, which is less industrial and predominantly agricultural, followed a different 

pattern, although impacts were still negative. These might be explained less by the abrupt 

consequences of the lockdown itself and more by the long-term economic hardships for small 
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and medium operations arising from the crisis. However, due to a lack of clear evidence in 

this study, this is just speculative.  

The majority of restrictions due to the pandemic were lifted on May 18th (week 21), and 

from this time stamp, the plot presenting the actual and predicted load, as well as the weekly 

effects plots, shows that the negative impacts begin to decrease. Although the recovery is 

gradual, by mid-July to August, the load for all four regions aligns with predicted values. 

While the other three regions continue to follow the predicted load (with minor deviations) in 

the second half of the year, Southern Italy's consumption decreases mid-September and 

remains well below the predicted level through the end of the year. The hourly effects of 

COVID-19 on electricity consumption are uniformly negative For Southern Italy, the 

decrease ranged from 15% to 25%. For Central-Northern Italy, it was between 15% and 19%, 

while for Northern Italy, it was from 7% to 10%. In all three regions, the coefficients for 

‘trend’ decreased by 40-50%, indicating a decrease in electricity demand. Meanwhile, the 

coefficients for ‘Holiday’ (all 4 regions) decreased by 3.5-5%, suggesting a less pronounced 

effect of non-working days on load consumption within the week. This can likely be 

attributed to the stay-at-home orders during the lockdown. 

The weekly and hourly effects observed for the Central-Southern region differ significantly 

from the other three regions. This cannot be explained in new configuration of the bidding 

zone as this took effect in 2021. Additionally, in this context, the 'trend' variable for the year 

was not found to be significant. This undermines the previously established relationship 

between load and time in this region, which was based on past data. 

Since only aggregate data is available for this region, it's challenging to state confidently 

what might be the reason for this difference. However, some speculation can be proposed 

based on background information. For instance, the regions corresponding to the Southern-

Central part of Italy in this analysis include Lazio, which has the 2nd highest GDP in the 

country (11.3% of the Italian national GDP). Given the region's lack of heavy industry and its 

specialization in manufacturing and high-tech, knowledge-intensive sectors - combined with 

its high potential for remote working as indicated by the OECD (2020) - it is understandable 

why this region saw negative impacts on electricity consumption only between weeks 10 and 

30. In contrast, the rest of the country experienced uniform negative effects across all 52 

weeks. Interestingly, predominantly positive effects were observed on hourly consumption. 

 

In 2021, the industrial sector was the largest consumer of electricity in Italy, using 

approximately 135.75 terawatt-hours. Conversely, the agricultural sector accounted for the 
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smallest electricity consumption that year, with a total of 6.7 terawatt-hours. The same year, 

natural gas served as the leading source of electricity production in Italy, comprising more 

than 48% of the country's total electricity mix, as well as the consumption of natural gas was 

one of the highest among European countries. Consequently, Italy was severely impacted by 

the cessation of exports from Russia (primary exporter of over 29 billion cubic meters). 

(STATISTA, 2022) In this scenario, specific effects are expected in regions with energy-

intensive sectors and in those with higher levels of poverty and unemployment. Conversely, 

regions without these characteristics may experience relatively low impacts.  

Evidently, Italy has taken multiple steps since the latter half of 2021 to mitigate soaring 

energy prices. These began with legislative decrees in 2021 and continued with various 

decrees in 2022, aimed at reducing or nullifying specific tariffs in the electricity and natural 

gas sectors for both household and non-household users. Additionally, the VAT on gas for 

civil and industrial uses was temporarily cut to 5% for October-December 2021, later 

extended through December 2022. The government also expanded energy bonuses to aid 

more consumers, increasing their value for economically disadvantaged households and 

providing tax credits for non-domestic electricity and gas purchases. Despite these efforts, the 

electricity prices for non-household consumers reached second highest level in Europe in the 

second half of 2022 (€0.3372 per KWh). (Eurostat, 2023) 

 

Despite their dominant industrial sectors, the Northern and Central-Northern regions have 

shown negligible decreases in electricity consumption, perhaps due to various steps taken by 

the government, as indicated in the cumulative difference plots. However, altered patterns in 

hourly and weekly effects might be the result of production shifts to avoid consumption peaks 

or other implemented solutions. Without insight into consumption by sector, it's unclear 

whether industries, the residential sector, or minor adjustments in both caused the shifts in 

consumption. Although there was no significant overall reduction in consumption, there were 

some seasonal (mostly during cold months) and hourly negative effects. While the Northern 

region displayed positive effects on night hours (from 00:00 to 07:00 AM) and negative 

effects throughout the daytime, indicating some reductions in consumption during the daily 

pattern (especially during the autumn/winter weeks), the Central-Northern part of Italy 

showed hourly effects that were shaped like a bell curve. The hourly effect showed the most 

significant negative effects during the nighttime, specifically between 9 PM and 1 AM, with 

negligible effects (meaning nearly no difference) during the usual morning peaks from 8 AM 

until 4 PM.  
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The 'trend' variable for Central-Northern Italy was insignificant during this period, suggesting 

a deviation from the systemic relationship between time and load. This deviation might be 

attributed to the reduced areal of the bidding zone. 

 

The Central-Southern region experienced an increase in electricity consumption. This 

unexpected result might be attributed to a combination of several factors: an expanded area of 

the bidding zone, a robust regional economy, a post-lockdown boom in the manufacturing 

sector, and the absence of industries that traditionally drive peak electricity prices higher. 

However, due to lack of sector-specific consumption patterns, these conclusions are purely 

speculative.  

In contrast, the Southern part of Italy decreased its consumption significantly, possibly due to 

its lower GDP, resulting in higher poverty rates, and higher unemployment. This explanation 

aligns with the findings of Halkos and Gkampoura (2021), who noted more pronounced 

effects of crises among disadvantaged households.  

The background and characteristics of the individual regions outlined here might help explain 

certain effects to some extent. However, the lack of clear evidence drawn from the data 

prevents drawing any firm conclusions. Further study with more suitable data would enable a 

better understanding of the underlying factors for these regional differences. 

 

Differences among remaining countries: Bulgaria, Greece, and Romania 

 

The results for the three remaining countries share some similarities with the Italian regions 

analyzed above. During the COVID-19 pandemic, the most vulnerable were economies 

relying on the physical presence of workers, as measures introduced to combat the virus 

included the closing of non-essential businesses and a ban on gatherings of people. Some 

sectors managed to quickly organize remote working conditions, while industries requiring 

manual and on-site work had to pause operations. Additionally, the energy crisis, caused by a 

surge in gas prices in the EU and primarily attributed to Russia's deliberate reduction of gas 

supplies, has affected the wholesale price of electricity in the EU's internal market. 

The high energy prices persisted throughout the colder, autumn and winter months since 

replacing Russian gas with other suppliers is not an instant process. In this context, in 

addition to understanding the dominant sectors in the economy, the dominant resources used 

to produce electricity, heating systems and dependency of the country on Russian gas are 

crucial. EU countries have adopted an emergency regulation, effective from December 1, 
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2022, to March 31, 2023, to help citizens and businesses most impacted by the energy crisis. 

(Council of the EU, 2023). 

 

Starting with Bulgaria, which, according to the background statistics presented here, has the 

best set of features to avoid severe consequences of the crisis and reduction in electricity 

consumption. The share of agriculture in the country's GDP in 2021 was 4.37 percent, while 

the services sector contributed 62.27 percent. The industry's share in GDP was approximately 

20.85 percent (O'Neill, 2023a). Additionally, the residential sector is the largest consumer of 

electricity in the country, accounting for 38% of the total in 2020, followed by industry 

(32%) and services (24%) (ENERDATA, 2023a). Paired with very small reliance on Russian 

gas for electricity production (5.75%), due to its domestic coal (42.29%) and nuclear 

(32.54%) energy sources, the economy should not experience significant impacts (OECD, 

2023; EMBER, 2023). 

Indeed, the cumulative difference plots show negligible reduction in electricity consumption 

during 2020, and the actual load values are placed over the predicted load. Looking only at 

these plots, the effects resemble those observed in Central-Southern Italy, although the larger 

manufacturing sector might have contributed to more substantial reductions in the Italian 

region during COVID-19. Predominantly negative weekly and hourly effects of COVID-19, 

and on the contrary, mainly positive weekly and hourly effects in 2022, seem to corroborate 

the resilient profile of the Bulgarian economy. The 'trend' variable was found to be not 

significant for both analyzed periods, indicating that none of the observed effects were related 

to the systemic seasonality (i.e., the relationship between load and time) that was observed in 

past data. Overall, Bulgaria displayed the least impacts of both crises across all the studied 

countries and regions. This result is somewhat unexpected, especially keeping in mind the 

study by Balabanyan et al. (2010) examining the effect of GFC on the power sectors in 

Eastern Europe. Without more specific data it is difficult to speculate about the reasons, but 

perhaps, Bulgaria has not yet fully recovered from 2009 shock and thus the load demand was 

already low, or the opposite – has recovered and managed to build more robust economy. The 

reasons and factors for these effects might be more than these proposed.  

 

Romania and Greece exhibit somewhat similar impacts of both crises as indicated by the 

cumulative difference plots, however Romania's electricity load reduction being more 

significant during 2022, which might be caused by different domestic characteristics of both 

countries. 
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During 2021 in Romania, the service sector contributed the largest portion to the gross 

domestic product at 58.2%, followed by industry at approximately 27.78%, and agriculture at 

4.35% (O'Neill, 2023b). However, it is industry that consumes most of the generated 

electricity, accounting for 42% of the total consumption in 2021, with households using 28% 

and the biggest contributor to the GDP – services, only 18% (ENERDATA, 2023b).  Unlike 

other countries in the EU, Romania relies much less on Russian gas, producing close to 90% 

of its required fossil fuel locally through state producer Romgaz, oil and gas group OMV 

Petrom, and Black Sea Oil & Gas (Reuters, 2022). These statistics suggest a reduction in load 

due to the lockdown. However, at first glance, the energy crisis shouldn't have caused 

significant impacts on Romanian electricity consumption.  

Impact of COVID-19 was evident only during the lockdown (beginning on 24.03.2020), with 

decreased consumption during that period and a prompt recovery starting in August of the 

same year. The weekly and hourly effects of both crises were distinctly negative, with the 

lowest values in 2020 occurring during the lockdown weeks (14-25) and in 2022, clearly 

lowest at the beginning and end of the year – presumably during the cold months.  

The energy crisis, however, appears to have impacted consumption in the country beginning 

in June 2020, with a gradual reduction throughout the rest of the year and continuing until 

February 2023. The Romanian Government introduced a support scheme in November 2021 

that capped electricity and natural gas prices for consumers, with the state compensating the 

difference to suppliers. This cap varied based on consumer type and energy consumption and 

was largely lifted for non-households by September 2022. Despite these efforts and increased 

independence from Russian gas, Romania's electricity prices for non-household consumers in 

the second half of 2022 were the highest among EU member countries, at €0.3573 per KWh. 

(Eurostat, 2023) Such a spike in price is most likely attributed to Romania's integration into 

the European electricity and gas market, resulting in prompt price convergence amidst the 

crisis. Such a high prices crippled most likely domestic industry consuming majority of the 

electricity (42%) as well as affected the to some extent electricity demand among households 

(28%). The effects of high prices could be linked to the findings from study by from 

Csereklyei's (2020), suggesting that high surges of electricity prices can reduce electricity in 

higher degree, or results presented by Halkos and Gkampoura (2021) indicating the role of 

energy poverty. The impacts observed in Romania are nevertheless surprising. Without 

access to demand data divided by sectors and the exact electricity prices for households and 

industries, one can only speculate about the likely reasons for the reduction in consumption. 

However, this scenario seems plausible. 
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The service sector in Greece is the main contributor to the GDP in 2021, accounting for 

68.15%, followed by the industry at 15.31%, and agriculture contributing 3.87% (O'Neill, 

2023c). Notably, the biggest sector in the economy is also the largest consumer of electricity, 

with the services and households using 36% and 32% respectively, and the industry using 

24%. The country's electricity sector consumes approximately 65% of the total gas, while the 

industry (including non-energy uses) uses about 15%, and buildings consume around 12%. 

(ENERDATA, 2023c) For years prior the 2022 crisis, Greece has relied on gas from Russia 

for about 40% of its total needs. (Koutantou, 2022) 

Service sector (presumably reliable on tourism) in Greece would suffer consequences of 

lockdown and reduced mobility due to COVID-19 also after the domestic restrictions were 

lifted, as international traveling was limited beyond the time period affected by national 

restrictions. Indeed, after a noticeable decrease in actual load due to the lockdown, which 

began on March 23, 2020, consumption recovered in July. However, it fell slightly behind 

predictions in the fourth quarter of the year. The effects of this crisis are not severe, as the 

dominant sector is not very power-intensive. The weekly and hourly effects on consumption 

were predominantly negative during 2020 period.  

In 2022, consumption started to fall slightly below predictions from mid-September onwards, 

a trend that suggests high prices may have impacted electricity consumption, presumably in 

both - households as indicates in research by Santamouris et al. (2013) examining the effects 

of GFC and service sector. This conclusion is supported by the largest negative effects on 

hourly consumption observed between 8 AM and 4 PM, and predominantly during weeks at 

the beginning and towards the end of the year, when air temperatures were lower. 
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8. Concluding remarks and recommendations  
 
8.1. Summary of findings  
 
The method employed in this thesis aimed to quantify the impacts of the COVID-19 

pandemic and the energy crisis in Europe on the aggregated electricity load for Bulgaria, 

Greece, Romania, and Italy, which was further segmented into four regions: Northern, 

Central-Northern, Central-Southern, and Southern. The dataset, comprising hourly records of 

observed load and air temperatures, was analyzed using the Ordinary Least Squares 

regression model. This model was augmented with time-specific parameters and variables 

that encapsulated the effects of both crises. Additionally, predictions for alternative scenarios 

without the crises were generated, facilitating a comparison and assessment of the shock 

effects. The impacts of both the COVID-19 pandemic and the energy crisis were estimated on 

a yearly, weekly, and hourly basis. The selected assessment method was validated for each 

country using data from 2019, which is viewed as a year devoid of disruptions affecting 

electricity consumption. 

 
The research question addressed in this thesis pertains to two consecutive crises: the COVID-

19 pandemic in 2020 and the energy crisis Europe experienced in 2022 and early 2023. The 

research question can be bifurcated into two subparts.  

 

First, the impacts of both shocks on electricity load demand are assessed for selected EU 

member countries. Second, these effects are compared to identify evident similarities and 

differences between them. As evident from the analysis, the COVID-19 lockdown led to 

reduced electricity consumption in Q2 2020 for all studied countries, including four Italian 

regions. These effects varied in magnitude and the slope of impacts. The smallest drop was 

observed in Bulgaria. Central-Southern Italy stood out, with varied weekly impacts possibly 

due to regional factors, rather than changes in the regional configuration of the bidding zone 

introduced from 2021. 

 

The energy crisis of 2022 showed mixed patterns. While Bulgaria and Northern Italy 

maintained stable consumption, Central-Southern Italy saw an increase, possibly due to a 

bidding zone expansion. However, Greece, Central-Northern Italy, Romania, and Southern 

Italy faced reductions, with the most notable declines in Romania and Southern Italy. The 

significant reductions observed in Romania are quite unexpected taking into considerations 
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country’s conditions.T he decline in Central-Northern Italy can be possibly partially triggered 

by a bidding zone adjustment in 2021. Furthermore, crisis impacts differed within regions of 

the same country, as seen in Italy. In summary, both the COVID-19 pandemic and the 

subsequent energy crisis affected electricity consumption, but the impacts differed among 

countries in magnitude and duration.  

 

In essence, the dual crises of the COVID-19 pandemic and the energy crunch in the EU 

presented a complex tableau of challenges and responses. While each nation had its unique 

economic dynamics, Bulgaria stood out for its resilience throughout both shocks, whereas the 

south of Italy grappled with more pronounced impacts in both periods.  

 
8.2. Limitations of the study and suggestions for further research  
 
Based on the methodology employed and the data available for this analysis, the primary 

findings encapsulate the changes in electricity consumption patterns during the periods of 

both crises. Despite engaging in extensive discussion about the possible impacts of factors 

observed in the background, no claims can be put forward about the relationships between 

them and the load demand due to lack of unequivocal evidence. 

 

8.3. Recommendations and suggestions for further research  

Examining the impacts of both COVID-19 and energy crisis in EU on electricity 

consumption would benefit from extending the timescale, inclusion the sector specific load 

demand as well as several variables quantifying the background factors specific for each 

shock.  

The analysis of impacts in 2020 would benefits from augmenting parameters encapsulating 

the severity of restrictions introduced by governments, rate of mortality, changes affecting 

mobility, the financial aids provided by state and changes in GDP. Extending the studied time 

period to include the year 2021, could also reveal some long-term effects of lockdown, as 

some countries did not recover immediately after lifting the lockdown restrictions, as well as 

some sectors were affected by increased demand and reduced supply, causing potentially 

some changes in consumption that could be attributed to impacts of COVID-19. Separating 

the residential electricity consumption from the non-residential could also reveal interesting 

changes in time-specific demand patterns.  
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Similarly, highlighting the effects of energy crisis would be possible with additional 

indicators encapsulating the background changes during this period. Integrating electricity or 

gas prices data into the model would prove the tangible impacts of this crisis on electricity 

consumption. Providing a detailed load demand breakdown across sectors would make it 

possible to identify the principal drivers of observed reductions. Quantifying the 

governmental financial support for both households and industries could help assessing their 

effectiveness. Given that this study was initiated in March 2023, broadening the timeframe to 

account for long-term impacts of energy crisis could reveal further insights into the enduring 

implications of this shock.  
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Appendices 
 
Appendix 1 – Seasonal trends in electricity demand  
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Appendix 2 – Count of missing data and the dates of nationwide lockdown 
enforcement. 
 
 
 
 
 

 
 

 
 
 
 
Lockdown dates:  

 
Bulgaria:  20.03.2020 
 
Greece:  23.03.2020 
 
Italy:   12.03.2020 
 
Romania:  24.03.2020 
 

Dates based on Hale et al. (2021). A global panel database of pandemic policies (Oxford 
COVID-19 Government Response Tracker). 
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Appendix 3 – Holiday dates used in analysis collected from Time and Date AS. 
(2023).  
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Appendix 4 – OLS Regression Analysis and Load Comparison for Actual vs 
Predicted Electricity Consumption 
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OLS Regression Results: Predicting Electricity Load in North of  
Italy using HAC Covariances:  
 

 
Wald Test for Joint Significance of Dummy Variables - North of Italy 
-------------------------------------------------------------------- 
               |      2019          |      2020          |      2022           
               | chi2   | p-value   | chi2   | p-value   | chi2   | p-value 
----------------------------------------------------------------------------------- 
cool_dummy     | 21.47  | 1.18e-92  | 31.01  | 5.10e-140 | 28.84  | 8.95e-130 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
heat_dummy     | 45.52  | 8.72e-211 | 48.97  | 5.45e-229 | 63.29  | 6.40e-302 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
week_dummy     | 27.09  | 1.81e-248 | 30.18  | 5.73e-282 | 20.42  | 9.47e-183 
               | (df: 51)           | (df: 51)           | (df: 51)            
----------------------------------------------------------------------------------- 
hofw_dummy     | 235.34 | 0.000e+00 | 232.70 | 0.000e+00 | 208.09 | 0.000e+00 
               | (df: 167)          | (df: 167)          | (df: 167)           
 

 

NORTH OF ITALY 2019 2020 2022 

No. Observations: 26281 35041 52585 

R-squared 0.933 0.929 0.909 

Adj. R-squared 0.932 0.929 0.908 

 
F-statistic and  
Prob (F-statistic) 

1139.0  
(0.00) 

974.1  
(0.00) 

882.9 
(0.00) 
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OLS Regression Results: Predicting Electricity Load in Central   
-Northern Italy using HAC Covariances:  
 

 
Wald Test for Joint Significance of Dummy Variables - Central-Northern 

Italy 
----------------------------------------------------------------------- 
               |      2019          |      2020          |      2022           
               | chi2   | p-value   | chi2   | p-value   | chi2   | p-value 
----------------------------------------------------------------------------------- 
cool_dummy     | 14.32  | 6.79e-58  | 17.50  | 1.76e-73  | 17.34  | 7.30e-73 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
heat_dummy     | 25.61  | 5.56e-113 | 31.33  | 1.33e-141 | 30.86  | 8.09e-140 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
week_dummy     | 12.43  | 3.35e-100 | 14.49  | 3.03e-121 | 9.68   | 2.32e-73 
               | (df: 51)           | (df: 51)           | (df: 51)            
----------------------------------------------------------------------------------- 
hofw_dummy     | 201.57 | 0.000e+00 | 187.61 | 0.000e+00 | 109.12 | 0.000e+00 
               | (df: 167)          | (df: 167)          | (df: 167)           

 

 

CENTRAL-NORTHERN ITALY 2019 2020 2022 

No. Observations: 26281 35041 52585 

R-squared 0.910 0.905 0.887 

Adj. R-squared 0.909 0.904 0.887 

 
F-statistic and  
Prob (F-statistic) 

1079.0  
(0.00) 

853.0  
(0.00) 

319.1 
(0.00) 
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OLS Regression Results: Predicting Electricity Load in Central-  
Southern Italy using HAC Covariances:  
 

 
 

Wald Test for Joint Significance of Dummy Variables - Central-Southern 
Italy 

--------------------------------------------------------------------------- 
               |      2019          |      2020          |      2022           
               | chi2   | p-value   | chi2   | p-value   | chi2   | p-value 
----------------------------------------------------------------------------------- 
cool_dummy     | 30.23  | 1.06e-135 | 41.22  | 1.30e-190 | 46.22  | 1.32e-216 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
heat_dummy     | 43.45  | 1.23e-200 | 56.69  | 3.82e-267 | 45.49  | 5.86e-213 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
week_dummy     | 17.53  | 1.61e-151 | 17.37  | 1.29e-150 | 5.68   | 5.75e-35 
               | (df: 51)           | (df: 51)           | (df: 51)            
----------------------------------------------------------------------------------- 
hofw_dummy     | 260.96 | 0.000e+00 | 240.49 | 0.000e+00 | 206.91 | 0.000e+00 
               | (df: 167)          | (df: 167)          | (df: 167)           
----------------------------------------------------------------------------------- 
 

 

CENTRAL-SOUTHERN ITALY 2019 2020 2022 

No. Observations: 26281 35041 52585 

R-squared 0.933 0.932 0.888 

Adj. R-squared 0.932 0.932 0.887 

 
F-statistic and  
Prob (F-statistic) 

1471.0  
(0.00) 

1294.0  
(0.00) 

1228.0 
(0.00) 
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OLS Regression Results: Predicting Electricity Load in South of  
Italy using HAC Covariances:  
 

 
 

Wald Test for Joint Significance of Dummy Variables – South of Italy 
--------------------------------------------------------------------------- 
               |      2019          |      2020          |      2022           
               | chi2   | p-value   | chi2   | p-value   | chi2   | p-value 
----------------------------------------------------------------------------------- 
cool_dummy     | 21.77 |  3.93e-94   | 27.76  | 5.95e-124 | 22.73  | 2.09e-99 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
heat_dummy     | 34.47  | 1.54e-156 | 46.69  | 1.03e-217 | 33.41  | 1.51e-152 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
week_dummy     |  9.32  | 1.83e-69  | 13.52  | 1.67e-111 | 5.48   | 4.01e-33 
               | (df: 51)           | (df: 51)           | (df: 51)            
----------------------------------------------------------------------------------- 
hofw_dummy     | 218.69 | 0.00e+00  | 196.12 | 0.00e+00  | 88.65  | 0.00e+00 
               | (df: 167)          | (df: 167)          | (df: 167)           
----------------------------------------------------------------------------------- 

 

 

SOUTH OF ITALY 2019 2020 2022 

No. Observations: 26281 35041 52585 

R-squared 0.852 0.846 0.791 

Adj. R-squared 0.851 0.844 0.790 

 
F-statistic and  
Prob (F-statistic) 

683.1  
(0.00) 

681.3  
(0.00) 

327.2 
(0.00) 



 
 

 97 

 
 
 
 



 
 

 98 

 
 



 
 

 99 

OLS Regression Results: Predicting Electricity Load in Bulgaria  
using HAC Covariances:  
 

 
 

Wald Test for Joint Significance of Dummy Variables - Bulgaria 
------------------------------------------------------------- 

               |      2019          |      2020          |      2022           
               | chi2   | p-value   | chi2   | p-value   | chi2   | p-value 
----------------------------------------------------------------------------------- 
cool_dummy     | 25.48  | 2.26e-112 | 33.40  | 6.65e-152 | 35.25  | 8.79e-162 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
heat_dummy     | 74.50  | 0.000e+00 | 88.83  | 0.000e+00 | 132.56 | 0.000e+00 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
week_dummy     | 10.50  | 4.69e-81  | 12.19  | 3.37e-98  | 15.16  | 1.21e-128 
               | (df: 51)           | (df: 51)           | (df: 51)            
----------------------------------------------------------------------------------- 
hofw_dummy     | 406.09 | 0.000e+00 | 362.07 | 0.000e+00 | 424.95 | 0.000e+00 
               | (df: 167)          | (df: 167)          | (df: 167)           
----------------------------------------------------------------------------------- 
 

 

BULGARIA 2019 2020 2022 

No. Observations: 26208 34968 52512 

R-squared 0.932 0.929 0.926 

Adj. R-squared 0.931 0.929 0.926 

 
F-statistic and  
Prob (F-statistic) 

1431.0  
(0.00) 

1491.0  
(0.00) 

1648.0 
(0.00) 
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OLS Regression Results: Predicting Electricity Load in Greece    
using HAC Covariances:  
 

 
Wald Test for Joint Significance of Dummy Variables - Greece 
------------------------------------------------------------- 

               |      2019          |      2020          |      2022           
               | chi2   | p-value   | chi2   | p-value   | chi2   | p-value 
----------------------------------------------------------------------------------- 
cool_dummy     | 48.35  | 1.16e-224 | 65.53  | 1.00e-310 | 74.99  | 0.000e+00 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
heat_dummy     | 71.41  | 0.000e+00 | 84.21  | 0.000e+00 | 77.42  | 0.000e+00 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
week_dummy     | 25.99  | 2.44e-237 | 23.93  | 7.69e-218 | 20.81  | 7.90e-187 
               | (df: 51)           | (df: 51)           | (df: 51)            
----------------------------------------------------------------------------------- 
hofw_dummy     | 282.35 | 0.000e+00 | 308.74 | 0.000e+00 | 323.57 | 0.000e+00 
               | (df: 167)          | (df: 167)          | (df: 167)           
----------------------------------------------------------------------------------- 
 

 

GREECE 2019 2020 2022 

No. Observations: 26257 35017 52561 

R-squared 0.901 0.900 0.889 

Adj. R-squared 0.900 0.899 0.888 

 
F-statistic and  
Prob (F-statistic) 

1412.0  
(0.00) 

1410.0  
(0.00) 

1364.0 
(0.00) 
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OLS Regression Results: Predicting Electricity Load in Romania   
using HAC Covariances:  
 

 
 

Wald Test for Joint Significance of Dummy Variables - Romania 
------------------------------------------------------------- 

               |      2019          |      2020          |      2022           
               | chi2   | p-value   | chi2   | p-value   | chi2   | p-value 
----------------------------------------------------------------------------------- 
cool_dummy     | 30.82  | 1.38e-138 | 33.53  | 1.48e-152 | 33.91  | 4.79e-155 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
heat_dummy     | 62.63  | 2.61e-294 | 61.90  | 7.14e-293 | 79.07  | 0.000e+00 
               | (df: 24)           | (df: 24)           | (df: 24)            
----------------------------------------------------------------------------------- 
week_dummy     | 24.33  | 1.54e-220 | 11.97  | 5.63e-96  | 11.78  | 2.23e-94 
               | (df: 51)           | (df: 51)           | (df: 51)            
----------------------------------------------------------------------------------- 
hofw_dummy     | 732.13 | 0.000e+00 | 696.08 | 0.000e+00 | 610.48 | 0.000e+00 
               | (df: 167)          | (df: 167)          | (df: 167)           
----------------------------------------------------------------------------------- 
 

 

ROMANIA 2019 2020 2022 

No. Observations: 26281 35041 52561 

R-squared 0.943 0.935 0.921 

Adj. R-squared 0.942 0.935 0.921 

 
F-statistic and  
Prob (F-statistic) 

2290.0  
(0.00) 

1948.0  
(0.00) 

1967.0 
(0.00) 
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Appendix 5 – Estimating the effects of COVID-19 and energy crisis on 
electricity consumption 
 
OLS Regression Results: Estimating the effects of crises in North 
of Italy using HAC Covariances: 
 

NORTH OF ITALY 

COVID-19 
hourly 
impact 

COVID-19 
weekly 
impact 

energy crisis 
hourly impact 

energy 
crisis 
weekly 
impact  

No. Observations: 55417 55412 62689 62689 
 

R-squared 0.912 0.919 0.905 0.909  

Adj. R-squared 0.911 0.918 0.904 0.908 
 

Prob (F-statistic) (0.00) (0.00)  (0.00)  (0.00) 
 

 
 
Wald Test for significance of COVID-19 dummy variable hourly impact –  
North of Italy 2020 
   F-statistic       p-value  df_num  df_denom 
0    16.993489  3.602428e-71    24.0   55124.0 
 
Wald Test for significance of COVID-19 dummy variable weekly impact –  
North of Italy 2020 
   F-statistic       p-value  df_num  df_denom 
0     4.019384  1.172544e-20    52.0   55096.0 
 
Wald Test for significance of energy crisis dummy variable hourly  
impact - North of Italy 2022 
   F-statistic       p-value  df_num  df_denom 
0    12.395484  7.262327e-49    24.0   62396.0 
 
Wald Test for significance of energy crisis dummy variable weekly  
impact - North of Italy 2022 
   F-statistic       p-value  df_num  df_denom 
0     9.437739  2.347720e-72    52.0   62368.0 
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OLS Regression Results: Estimating the effects of crises in      
Central-Northern Italy using HAC Covariances: 
 

CENTRAL-NORTHERN OF 
ITALY 

COVID-19 
hourly 
impact 

COVID-19 
weekly 
impact 

energy crisis 
hourly impact 

energy 
crisis 
weekly 
impact  

No. Observations: 55417 55412 62689 62689 
 

R-squared 0.902 0.910 0.880 0.885 
 

Adj. R-squared 0.901 0.910 0.880 0.884  

Prob (F-statistic) (0.00) (0.00)  (0.00)  (0.00) 
 

 
 
Wald Test for significance of COVID-19 dummy variable hourly impact –  
Central-Northern Italy 2020 
   F-statistic       p-value  df_num  df_denom 
0    20.307185  1.847030e-87    24.0   55124.0 

 
Wald Test for significance of COVID-19 dummy variable weekly impact –  
Central-Northern Italy 2020 
   F-statistic       p-value  df_num  df_denom 
0     10.10972  4.296239e-79    52.0   55096.0 
 
Wald Test for significance of energy crisis dummy variable hourly  
impact - Central-Northern Italy 2022 
   F-statistic       p-value  df_num  df_denom 
0    12.204306  6.016528e-48    24.0   62396.0 
 
Wald Test for significance of energy crisis dummy variable weekly  
impact - Central-Northern Italy 2022 
   F-statistic       p-value  df_num  df_denom 
0     6.422557  1.161460e-42    52.0   62368.0 
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OLS Regression Results: Estimating the effects of crises in Centr
al-Southern Italy using HAC Covariances: 
 

CENTRAL-SOUTHERN OF 
ITALY 

COVID-19 
hourly 
impact 

COVID-19 
weekly 
impact 

energy crisis 
hourly impact 

energy 
crisis 
weekly 
impact  

No. Observations: 55417 55412 62689 62689 
 

R-squared 0.894 0.902 0.901 0.904 
 

Adj. R-squared 0.893 0.901 0.901 0.903  

Prob (F-statistic) (0.00) (0.00)  (0.00)  (0.00) 
 

 
 
Wald Test for significance of COVID-19 dummy variable hourly impact –  
Central-Southern Italy 2020 
   F-statistic       p-value  df_num  df_denom 
0     8.153566  8.177249e-29    24.0   55124.0 
 
Wald Test for significance of COVID-19 dummy variable weekly impact –  
Central-Southern Italy 2020 
   F-statistic   p-value  df_num  df_denom 
0     1.723701  0.000927    52.0   55096.0 
 
Wald Test for significance of energy crisis dummy variable hourly  
impact - Central-Southern Italy 2022 
   F-statistic       p-value  df_num  df_denom 
0    20.919167  1.560141e-90    24.0   62396.0 
 
Wald Test for significance of energy crisis dummy variable weekly  
impact - Central-Southern Italy 2022 
   F-statistic       p-value  df_num  df_denom 
0     4.464927  1.494402e-24    52.0   62368.0 
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OLS Regression Results: Estimating the effects of crises in South 
of Italy using HAC Covariances: 
 

SOUTH OF ITALY 

COVID-19 
hourly 
impact 

COVID-19 
weekly 
impact 

energy crisis 
hourly impact 

energy 
crisis 
weekly 
impact  

No. Observations: 55417 55412 62689 62689 
 

R-squared 0.811 0.822 0.776 0.800 
 

Adj. R-squared 0.810 0.821 0.775 0.799  

Prob (F-statistic) (0.00) (0.00)  (0.00)  (0.00) 
 

 
 
Wald Test for significance of COVID-19 dummy variable hourly impact –  
South of Italy 2020 
   F-statistic        p-value  df_num  df_denom 
0    23.373443  1.258660e-102    24.0   55124.0 
 
Wald Test for significance of COVID-19 dummy variable weekly impact –  
South of Italy 2020 
   F-statistic        p-value  df_num  df_denom 
0    12.850169  3.867731e-107    52.0   55096.0 
 
Wald Test for significance of energy crisis dummy variable hourly  
impact - South of Italy 2022 
   F-statistic       p-value  df_num  df_denom 
0    15.363803  3.071358e-63    24.0   62396.0 
 
Wald Test for significance of energy crisis dummy variable weekly  
impact - South of Italy 2022 
   F-statistic        p-value  df_num  df_denom 
0    13.129988  4.035118e-110    52.0   62368.0 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 



 
 

 113 

OLS Regression Results: Estimating the effects of crises in      
Bulgaria using HAC Covariances: 
 

BULGARIA 

COVID-19 
hourly 
impact 

COVID-19 
weekly 
impact 

energy crisis 
hourly impact 

energy 
crisis 
weekly 
impact  

No. Observations: 55344 55344 62616 62616 
 

R-squared 0.927 0.933 0.923 0.930 
 

Adj. R-squared 0.927 0.932 0.923 0.930  

Prob (F-statistic) (0.00) (0.00)  (0.00)  (0.00) 
 

 
 
Wald Test for significance of COVID-19 dummy variable hourly impact –  
Bulgaria 2020 
   F-statistic       p-value  df_num  df_denom 
0    18.679579  1.922681e-79    24.0   55051.0 
 
Wald Test for significance of COVID-19 dummy variable weekly impact –  
Bulgaria 2020 
   F-statistic       p-value  df_num  df_denom 
0     2.452528  2.834353e-08    52.0   55023.0 
 
Wald Test for significance of energy crisis dummy variable hourly  
impact - Bulgaria 2022 
   F-statistic       p-value  df_num  df_denom 
0     6.875463  5.563230e-23    24.0   62323.0 
 
Wald Test for significance of energy crisis dummy variable weekly  
impact - Bulgaria 2022 
   F-statistic       p-value  df_num  df_denom 
0     10.71784  2.516733e-85    52.0   62295.0 
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OLS Regression Results: Estimating the effects of crises in      
Greece using HAC Covariances: 
 

GREECE 

COVID-19 
hourly 
impact 

COVID-19 
weekly 
impact 

energy crisis 
hourly impact 

energy 
crisis 
weekly 
impact  

No. Observations: 55393 55393 62665 62665 
 

R-squared 0.895 0.905 0.881 0.891  

Adj. R-squared 0.895 0.904 0.880 0.891 
 

Prob (F-statistic) (0.00) (0.00)  (0.00)  (0.00) 
 

 
 
Wald Test for significance of COVID-19 dummy variable hourly impact –  
Greece 2020 
   F-statistic       p-value  df_num  df_denom 
0    11.381596  5.402907e-44    24.0   55100.0 
 
Wald Test for significance of COVID-19 dummy variable weekly impact –  
Greece 2020 
   F-statistic       p-value  df_num  df_denom 
0      3.99923  1.746458e-20    52.0   55072.0 
 
Wald Test for significance of energy crisis dummy variable hourly  
impact - Greece 2022 
   F-statistic       p-value  df_num  df_denom 
0    13.079894  3.676283e-52    24.0   62372.0 
 
Wald Test for significance of energy crisis dummy variable weekly  
impact - Greece 2022 
   F-statistic        p-value  df_num  df_denom 
0    14.559195  5.727017e-125    52.0   62344.0 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 



 
 

 115 

OLS Regression Results: Estimating the effects of crises in      
Romania using HAC Covariances: 
 

ROMANIA 

COVID-19 
hourly 
impact 

COVID-19 
weekly 
impact 

energy crisis 
hourly impact 

energy 
crisis 
weekly 
impact  

No. Observations: 55393 55393 62665 62665 
 

R-squared 0.921 0.923 0.912 0.923 
 

Adj. R-squared 0.920 0.923 0.911 0.922  

Prob (F-statistic) (0.00) (0.00)  (0.00)  (0.00) 
 

 
 
Wald Test for significance of COVID-19 dummy variable hourly impact –  
Romania 2020 
   F-statistic       p-value  df_num  df_denom 
0    21.659183  3.875674e-94    24.0   55100.0 
 
Wald Test for significance of COVID-19 dummy variable weekly impact –  
Romania 2020 
   F-statistic   p-value  df_num  df_denom 
0      1.94097  0.000057    52.0   55072.0 
 
Wald Test for significance of energy crisis dummy variable hourly  
impact - Romania 2022 
   F-statistic       p-value  df_num  df_denom 
0    13.184047  1.155540e-52    24.0   62372.0 
 
Wald Test for significance of energy crisis dummy variable weekly  
impact - Romania 2022 
   F-statistic  p-value  df_num  df_denom 
0    43.671175      0.0    52.0   62344.0 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 



 

 

 


