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Abstract

Grasses (Poaceae) represent an unparalleled evolutionary success story and are particularly
well adapted to the environmental challenges posed by temperate habitats. Crucial to their
evolutionary success in temperate ecosystems is their ability to align phenological events co-
ordinating growth and reproduction with predictable, seasonal variations in temperature
and daylength. However, only a few subfamilies of grasses have spread to temperate niches,
a biogeographic bias that renders grasses a good system for comparative analyses of physio-
logical and phenological traits that facilitate adaptive radiations in temperate habitats. The
work presented in this thesis identified and characterised molecular mechanisms that deter-
mine the rules for seasonal flowering, driving one of the most successful adaptive radiations
among flowering plants.

Many temperate grasses synchronise flowering with favourable conditions within the
relatively short growing season through a two-step process. First, prolonged cold exposure
enhances their ability to flower, a process known as vernalisation. Transition from vegetative
to reproductive growth is then further accelerated by long photoperiod in spring. This war-
rants the subsequent emergence inflorescences under suitable environmental conditions,
timed to utilise a limited growing season. This development is controlled by interlocked ge-
netic networks that integrate mechanisms for sensing cold, photoperiod, and timing.

In this doctoral project, I examined the evolutionary history of adaptations to temper-
ate climates in various subfamilies of grasses and potential implications for shifts between
biological niches from their original tropical to increasingly temperate habitats. The re-
search was focused on mechanisms that control flowering in model and temperate cereal
species to investigate whether these are conserved within and between Pooideae and other
temperate subfamilies. I employed a wide range of methodological approaches, such as
growth experiments, phylogenetic reconstruction, comparative transcriptomics, and func-
tional data analysis for these purposes. The results indicate that a portion of the genetic basis
for adaptation to long photoperiods evolved early within the Pooideae subfamily, and that
vernalization responses have arisen multiple times in different subfamilies through a parallel
evolutionary process. Nevertheless, it was demonstrated that many of the investigated ge-
netic processes had undergone extensive lineage-specific evolution, and that minor changes
in how these genes are regulated in response to external cues are sufficient to promote tran-
sitions between habitats with different demands for physiological and phenological adapta-

tions such as floral onset, especially within the early-diverging Pooideae lineage Stipeae.



Samandrag

Gras (Poaceac) er ein evolusjonar suksesshistorie utan like og serleg godt tillempa dei miljo-
messige utfordringane tempererte habitat byr pa. Utslagsgjevande for grasa sin evolusjonare
framgang i tempererte gkosystem er deira evne til 4 hove fenologiske hendingar som sam-
ordnar vekst og formeiring med foreseielege, arstidsbundne variasjonar i temperatur og dag-
lengd. Likevel har berre nokre fi underfamiliar av gras spreidd seg til tempererte nisjar, ei
biogeografisk skeivfordeling som gjer grastamilien til eit godt deme for samanliknande ana-
lyse av fysiologiske og fenologiske trekk som fremjar adaptive radiasjonar i tempererte habi-
tat. Arbeidet lagt fram i denne avhandlinga identifiserte og karakteriserte molekylere meka-
nismar som fastset reglane for arstidsbunden blomstring, noko som driv ei av dei mest suk-
sessrike adaptive radiasjonane blant blomsterplanter.

Mange tempererte planter samkeyrer blomstring med gunstige tilhove i den hevesvis
korte vekstsesongen gjennom ein to-stegsprosess. Fyrst aukar langvarig kulde evna til 4
blomstre i ein prosess som kallast vernalisering. Overgangen fri vegetativ til reproduktiv
vekst vert ytterlegare framskunda av lang fotoperiode pa varen. Dette tryggjar pafelgjande
framvekst av blomsterstand under hevelege forhold, tidsnok til 4 nytte seg av ein tidsav-
grensa vekstsesong. Denne utviklinga styrast av samanvovne genetiske nettverk som knyter
saman mekanismar for sansing av kulde, fotoperiode og tidtaking.

I dette doktorgradsprosjektet undersekte eg den evolusjonzre historia til tilpassingar
til tempererte klima i ulike underfamiliar av gras og mogelege fylgjer for skift mellom biolo-
giske nisjar frd deira opphavleg tropiske til stadig meir tempererte habitat. Forskinga vart
retta mot mekanismar som styrer blomstring i modell- og tempererte kornartar for a under-
sokje om desse er konservert innanfor og mellom Pooideae og andre tempererte underfami-
liar. Eg nytta eit breitt register av metodologiske tilnzrmingar slik som vekstforsek, fyloge-
netisk rekonstruksjon, samanliknande transkriptomikk og funksjonell data-analyse til desse
foremail. Resultata peiker mot at ein del av det genetiske grunnlaget for tilpassing til lang
fotoperiode utvikla seg tidleg i Pooideae-underfamilien og at vernaliseringsrespons har opp-
statt fleire gongar i ulike underfamiliar av gras gjennom ein parallell evolusjonzr prosess.
Likevel vart det vist at mange av dei undersokte genetiske prosessane hadde gjennomgatt
omfattande linjespesifikk evolusjon og at sma endringar i korleis desse gen regulerast av og i
hove til ytre paverknadar er tilstrekkelege til a fremje overgang mellom habitat med ulike
krav til fysiologiske og fenologiske tilpassingar slik som blomstringstid, szrleg i den tidleg-

skilde Pooideae-linja Stipeae.



Synopsis

1.1 Life at high latitudes

Plants are not particularly gifted in moving. A direct implication of this simple fact is that
plants are unable to escape unfavourable conditions by changing location. This limitation
inflicts strong selective pressure on traits warranting appropriate environmental adaptation.
Plants have consequently evolved a vast arsenal of mechanisms allowing them to anticipate,
endure or escape environmental conditions unfavourable to survival and reproduction
(Bradshaw, 1965; King & Heide, 2009; Preston & Sandve, 2013). In temperate zones, the
occurrence of seasons creates a complex environment for flowering plants. The defining fea-
ture of temperate seasons is the periodic fluctuation of temperature and daylength through-
out the year. Alternating seasons limit the timeframe for plant growth and reproduction to
a relatively short growing period during spring and summer. Restricted opportunities for
individual survival and fecundity confound evolutionary success in these regions and re-
quire the alignment of developmental events with seasons (Junttila, 1996; Amasino, 2010;
Kérner, 2016).

Flowering time is a critical life-history trait, as it marks the transition from vegetative
to reproductive growth and is essential for seed set, dispersal, gene flow, and ultimately, evo-
lutionary success (Andrés & Coupland, 2012). Early flowering may expose reproductive tis-
sue to potentially harmful cold spells during early spring, whereas late flowering prevents
seed set before the arrival of winter (Gaudinier & Blackman, 2020). Timely, but flexible
onset of reproduction is therefore essential in seasonal environments (Murfet, 1977; Biurle
& Dean, 2006). Posing an arduous obstacle for plant life, winters are commonly avoided
through cessation and subsequent onset of vegetative and reproductive growth interposed
by a period of dormancy when conditions are at its harshest (Junttila, 1996). Perennial and
winter-annual plants coordinate this development by sensing changes in their environment,
like periodic fluctuations in temperature and photoperiod, and their coincidence with en-
dogenous signals (Bernier, 1988; Poethig, 1990). Fine-tuning of flowering time allows tem-
perate plants to capitalise on limited growing periods and ensure reproductive success de-

spite the challenges imposed by the seasonal constraints of their temperate habitats.



1.2 Temperate grasses

The evolutionary success of grasses (Poaceae) is difficult to understate. Grasses are one of the
largest angiosperm families with over eleven thousand recognised species (Gallaher ez al.,
2022; Soreng et al., 2022). Like most other angiosperms, grasses evolved in the tropics
(Bremer, 2002; Bouchenak-Khelladi ez /., 2010). Extant grasses, however, are found in al-
most every terrestrial habitat and grasslands cover almost a quarter of the world’s land area
(Shantz, 1954; Stréomberg, 2011), demonstrating their exceptional capacity to adapt to a vast
range of environments. Global grass distribution ranges from the rainforests and savannas
of the equatorial tropics to the harsh environments of the Arctic and Antarctic, occupying
habitats from coastal marshes to mountain ecosystems (Stromberg, 2011). Contrary to
many other cosmopolitan vascular plant lineages, grass diversity is not greatest in their trop-
ical areas of origin. Instead, species richness in Poaceae follows a shallow poleward cline with
peaks at mid- and high latitudes and is positively associated with continentality and topo-
graphic heterogeneity (Tzvelev, 1989; Kreft & Jetz, 2007; Visser ez al., 2014).

Grasses are divided into two major lineages, named BOP and PACMAD (Fig. 1A),
according to the subfamilies they harbour (Cotton ez 4l., 2015; Soreng ez al., 2015, 2017).
Notable examples of PACMAD grasses are crops of tropical and subtropical origin such as
maize (Zea mays), sorghum (Sorghum bicolor), and millets (several genera and species). Fa-
mous BOP grasses include rice (Oryza sativa), bamboos (Bambusoideae), and many tem-
perate cereals and forages such as wheat ( Triticum aestivum), barley (Hordeum vulgare), rye
(Secale cereale), oat (Avena sativa), timothy (Phleum pratense), tescues and ryegrasses
(Festuca and Lolium). Pooideae are the most diverse grass subfamily with ~4,120 recognised
species organised in 15 tribes (Soreng ez al., 2022). Pooideae are further divided into the
agronomically important, monophyletic core-Pooideae and numerous early-diverging line-
ages (Davis & Soreng, 1993; Schubert ez 4/., 2019b; Zhang ez al., 2022). Almost all temper-
ate cereals are confined to core-Pooideae, while the model species Brachypodium distachyon
is the most prominent member of early-diverging lineages (Soreng ez al., 2022).

Contradicting their ostensible diversity and evolutionary success, only few grass line-
ages have significantly dispersed into temperate areas. Most notably, Pooideae are successful

in cool, seasonal habitats of the northern hemisphere where they constitute most the grass
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Figure 1| A) Simplified phylogeny of the Poaceae describing the relationship of different grass subfamilies according
to Soreng ez al. (2017). Coloured clades were targeted in this thesis, blue clades specify subfamilies commonly consid-
ered temperate. B) Latitudinal diversity gradient of Pooideae represented as the relative percentage of Pooideae taxa
within the overall grass flora. Regions depicted in red denote a low proportion of Pooideae; yellow regions indicate a
high proportion of Pooideae. Redrawn and modified from Hartley (1973).

flora (Fig. 1B; Hartley, 1973; Cross, 1980), whereas southern temperate grass assemblages are
characterised by the subfamily Danthonioideae and austral Pooideae species (Linder ef a/.,
2010; Visser et al., 2014). Lineage-specific climatic specialisations are also reported from
other grass subfamilies such as Chloridoideae and Aristidoideae, which are predominantly
found in arid environments (Edwards & Smith, 2010; Visser ez al., 2012, 2014). These bio-
geographic patterns imply that successful adaptation to the peculiarities of temperate cli-
mates is confined to specific clades, making grasses an interesting system for the comparative
study of physiological and developmental innovations that provide fitness advantages and

drive plant radiations towards peak altitudes and latitudes on global scales.

1.3 Dual induction of flowering

One of the pivotal traits rendering grasses particularly successful in temperate habitats is
their ability to couple flowering to temperature and photoperiod, a mechanism ensuring the
adequate timing of reproductive onset when conditions are most favourable (Heide, 1994;
King & Heide, 2009). Due to their socio-economic, agricultural, and ecological significance
in temperate climates, this process is particularly well-studied in Pooideae (Heide, 1994). In
many temperate grasses, attainment of floral competency is promoted by long-lasting cold,
a process called vernalisation (Purvis, 1934; Chouard, 1960). Vegetative to reproductive

phase change, culm elongation, and the development of inflorescences is then further

10



promoted by long days (Heide, 1994). This two-stage flowering induction ensures that flow-
ering occurs early enough to culminate in successful seed set before the end of the growing
season while simultaneously preventing the emergence of sensitive floral tissue during un-
predictable conditions in early spring (Fjellheim ez 4/., 2014). Endogenous and environmen-
tal signals are commonly sensed in leaves and converge at the floral integrator FLOWER-
ING LOCUS T (FT), which confers the florigen signal (Evans, 1971; Turck ez al., 2008;
Amasino, 2010; Pin & Nilsson, 2012). Moving through the phloem, FT is then translocated
to the shoot apex where it ultimately alters the developmental fate of the shoot apical meri-
stem (SAM) from vegetative to reproductive (Zeevaart, 2008). Dual induction of flowering
prompted by vernalisation and photoperiod involves considerable crosstalk between the
light- and temperature-sensitive modules of the floral pathway (Lindlof, 2010), providing
great flexibility to the timing of reproductive onset (Fig. 2). Vernalisation and photoperiod
can also act interchangeably (Woods ez /., 2019), thus providing secondary flowering mech-

anisms that can be relied upon under more ambiguous environmental circumstances.

SAM 4
Leaf

—~L

flowering
VRN1

Gl

t
VRN‘S/FT PPDI

VRN2

co1/coz

€

VRNS/FT

Co9

vernalisation photoperiodism

vegetative competent reproductive
(juvenile) to flower (adult)

low temperature

Figure 2 | Consensus model of dual flowering induction in temperate grasses (Pooideae) by vernalisation and photo-
period. Simplified flowering pathway according to Bouché ez 4/. (2017) and Preston & Fjellheim (2020).
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1.3.1  Vernalisation response

The phenomenon of induced or significantly accelerated flowering by long-lasting cold is
called vernalisation response (McKinney, 1940; Chouard, 1960). Due to its agricultural sig-
nificance, vernalisation has been extensively studied in cereal crops and forage grasses
(Gafiner, 1918; Purvis, 1934), many of which belong to the temperate subfamily Pooideae
(Ream ez al., 2012). The consensus model for grass vernalisation outlined in winter wheat,
barley, and B. distachyon revolves around the interaction and mutual feedback of three cen-
tral genes called VERNALIZATION I-3 (Trevaskis ez al., 2007; Dennis & Peacock, 2009;
Greenup et al., 2009; Bouché et al., 2017). Prior to the onset of winter, expression of the
FT-orthologue VERNALIZATION 3 (VRN3) is repressed by the CCT domain-contain-
ing transcription factor VRN2, which prevents premature flowering during autumnal
growth (Trevaskis ez al., 2006; Hemming ez al., 2008). Low temperatures induce histone
modifications at the VRNI locus that gradually increase its transcription during winter
(Distelfeld ez al., 2009; Oliver ez al., 2009, 2013; Deng ez al., 2015). VRNI encodes a
FRUITFULL-like (FUL-like) transcription factor that functions as a repressor of VRNZ2
(Deng ez al., 2015), thereby relieving the repression of F7-like ’/RN3 that ultimately estab-
lishes reproductive competence at the SAM. Inflorescence initiation and emergence is then
further enhanced by long photoperiods in spring through PHOTOPERIOD 1 (PPDI), a
pseudo-response regulator promoting the expression of grass florigen VRN3 (Turner et al.,
2005; Hemming ez al., 2008; Sasani ez al., 2009).

Vernalisation-cued flowering is common among Pooideae and believed to be one of
the major traits enabling their radiation in temperate zones (Preston & Kellogg, 2008; Pres-
ton & Sandve, 2013; McKeown et al., 2016; Zhong et al., 2018). Phylogenetic reconstruc-
tion of vernalisation responsiveness in temperate grasses indicates that acquisition of VRNI-
mediated flowering happened early in the evolutionary trajectory of Pooideae, which origi-
nated approximately 61-77 Mya (McKeown et al., 2016; Schubert et al., 2019b). This im-
plies that ancestral Pooideae lineages had already developed some level of adaptation to tem-
perate seasonality prior to the global cooling following the Paleocene—Eocene thermal max-
imum (~55.5 Mya; Bowen e al., 2015; Schubert ez al., 2019b). Further diversification and
range expansion of Pooideae during the consequent intensification of global seasonality and

spread of temperate biomes suggests that vernalisation responsiveness provided a significant
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adaptive advantage in colonising these novel habitats (McKeown et al., 2016; Schubert ¢z
al., 2019b; Preston & Fjellheim, 2020). Multiple rounds of whole-genome and tandem du-
plications have contributed to the expansion FUL-like transcription factors in grasses (Gaut,
2002; Preston & Kellogg, 2006; McKain ez al., 2016; Zhang et al., 2022). Apart from VRNI
(FULI), its closest paralogue FULZ, has also been reported to undergo upregulation by cold,
indicating an innate propensity of cold-induced transcription of these important develop-
mental regulators (Gocal ez al., 2001; Petersen ez al., 2004; Ergon ez al., 2013; Liet al., 2016).
Paralogues of "RNI (collectively referred to as FUL-like) are redundantly involved in flower
development and meristem identity in numerous grass species, suggesting of partial func-
tional conservation (Preston & Kellogg, 2006, 2007, 2008; Preston et /., 2009; Kinjo ez al.,
2012; Li et al., 2016, 2019; McKeown et al., 2016; Yang et al., 2021; Zhang et al., 2022).
This raises the hypothesis of whether expansion of other grass lineages found in temperate
zones (like Danthonioideae) was facilitated by similar phenological adaptations, possibly in-

volving co-option of different FUL-like paralogues into the vernalisation pathway.

1.3.2  Photoperiodic flowering

Temperate grass flowering is, in general, induced or accelerated by long days heralding the
onset of spring (Heide, 1994; Colasanti & Coneva, 2009). Essential to the photoperiodic
flowering pathway in temperate cereals are the CCT domain genes PPDI1, CONSTANS 1
(COI), CO2, COY and its paralogue VRNZ2, which induce or repress transcription of
VRN3/FT when daylength exceeds or falls below a certain threshold (Laurie ez /., 1995;
Turner et al., 2005; Kikuchi ez 4/., 2011; Shaw et al., 2012). Expression of many CCT do-
main genes follows distinct diurnal rhythms, indicating their central role in linking the pho-
toperiodic flowering pathway to the circadian clock (Campoli & von Korff, 2014; Fjellheim
et al., 2014). The circadian clock is the internal time-keeping system responsible for the
maintenance of rhythmic gene expression and a key component of the photoperiodic flow-
ering pathway as it generates endogenous signals imperative to the integration of exogenous
light cues (Song et al., 2015).

Due to its involvement in many facets of plant physiology and development, the core
circadian oscillator is subject strong selective pressure for optimal timing and therefore re-

markably conserved among plants (Michael ez a/., 2003; Dodd ez al., 2005; Greenham &
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McClung, 2015). Consequently, much of the circadian clock model outlined in Arabidopsis
thaliana is transterable to grasses (Cao et al., 2021). The circadian clock is a sophisticated
gene network consisting of interlocking regulatory loops that reach peak activity during dif-
ferent periods of the day (Hsu & Harmer, 2014). Stable diurnal rhythmicity of circadian
clock components is achieved through mutual feedback and environmental entrainment
(Millar, 2004; Harmer, 2009). Starting at dusk, CIRCADIAN CLOCK ASSOCIATED 1
(CCAI) and LATE ELONGATED HYPOCOTYL (LHY) are transcriptionally activated.
LHY and CCAL interact and sequentially activate PSEUDO-RESPONSE REGULATOR
9(PRRY), PRR7, and PRRS which jointly repress LHY and CCAI alongside REVEILLE
8 (RVES). This, in turn, triggers the activity of evening-phased genes such as TIMING OF
CAB EXPRESSION 1(TOCI), LUX ARRYTHMO (LUX), and EARLY FLOWERING 4
(ELF4), which are initially repressed by LHY and CCA1 (Hsu & Harmer, 2014). Together
with evening-phased ELF3, LUX and ELF4 collectively form the evening complex (EC) that
inhibits the transcription of PRR” and PRRY. Furthermore, TOCI also represses PRR”
and PRR9 as well as LHY and CCAI. This link leads to reciprocal regulation between the
morning loop and evening complex (EC) genes results in diurnal expression of clock output
genes, such as GIGANTEA (GI). GI acts a critical node linking multiple pathways to clock
oscillations through protein-level interactions, including CCT domain genes mediating
photoperiodic flowering and the circadian clock itself (Bendix ez a/., 2015; Li & Xu, 2017).

Oscillations generated by the plant circadian clock modulate sensitivity to photic con-
ditions, which is important for the recognition of different daylengths (Johansson & Staiger,
2014). Light-induced initiation of flowering in photoperiod-sensitive plants requires the co-
incidence of endogenous circadian clock signals and specific daylength configurations
(Imaizumi & Kay, 2006; Song ez al., 2015). These light signals are perceived by photorecep-
tors such as PHYTOCHROME (PHY) A-C, and CRYPTOCHROME:s (CRYs) that un-
dergo reversible conversions between non-functional and functional forms in response to
the absorption of specific wavelengths (Lin, 2000; Mathews, 2010; Gao ez a/., 2019). The
photoreceptor PHYC is central in the context of daylength-dependent grass flowering, as it
acts as a flowering promoter under inductive LDs in temperate grasses like B. distachyon and
barley (Nishida ez a/., 2013; Chen ez al., 2014; Woods et al., 2014; Raissig & Woods, 2022).
The ratio of red (R) and far-red light (FR) is responsible for the conversion of phytochromes
between their biologically active (PHYrr) and inactive (PHYR) states (Quail, 2002). Phyto-
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chromes are activated upon absorption of red light, which initiates a signalling cascade lead-
ing to altered gene expression through protein interactions with active PHYrr molecules,
often entailing interactions between different activated PHYs (Quail, 2002). Under FR-rich
conditions like dusk and night, influence of active PHYs is reduced through gradual conver-
sion into their PHYR state (Quail, 2002). Phytochrome changeover thus provides vital in-
formation about the relative lengths of day and night (Borthwick & Hendricks, 1960). In B.
distachyon, PHYCpr interacts with the EC component ELF3 (Gao ez 4l., 2019; Bouché ez
al., 2022; Woods ez al., 2023). Hence, reversion rates of activated PHYCpr are suggested to
play an important role in sensing night length thus linking the perception of light to signals
produced by the circadian clock (Gao ez 4l., 2019). Information about relative day- and
night-length is also communicated directly into the photoperiodic flowering pathway by
PHYC-mediated transcription of PPD1, CO-like, and VRN3/FT (Woods et al., 2014; Rais-
sig & Woods, 2022).

Comparative analyses between LD- and SD-grasses have revealed that species-specific
diurnal expression of CCT domain genes involved in photoperiodic flowering is further de-
termined by their interaction at the protein level (Preston & Fjellheim, 2020). For instance,
wheat VRN2 is a floral repressor that suppresses transcription of VRN3/FT through its
interaction with NUCLEAR FACTOR-Y (NF-Y) proteins. However, flower-promoting
CO2 competes with VRN2 in the formation of NF-Y complexes, thereby counteracting its
repressive function and introducing flexibility to the regulation of flowering in wheat (Li ez
al., 2011). In the SD-plant rice, this relationship is reversed. There, the rice orthologue of
VRN2 called GRAIN NUMBER, PLANT HEIGHT, AND HEADING DATE 7
(GHD?) alters the role of the rice CO-orthologue HD1a under LDs from promotion to
repression of flowering, thereby delaying reproduction under non-inductive photoperiods
(Okada et al., 2017; Herath, 2019). These interactions are further modified by PHYs and
GI, adding yet another layer of light- and circadian clock-interference to the photoperiodic
flowering pathway (Hong et al., 2010; Itoh ez al., 2010; Woods et al., 2014; Zheng et al.,
2019). Another interesting CCT gene component of the photoperiodic flowering pathway
in barley is the ’RN2 paralogue CO9. Both VRNZ2 and CO? are floral repressors, however
expression of VRNZ is promoted LDs whereas its sister CO9is activated by SDs (Kikuchi ez
al., 2011; Monteagudo ez al., 2019). Expression of CCT domain genes relative to daylength

is thus instrumental in orchestrating the photoperiodic flowering response. It remains to be
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tested whether the suppression of flowering under SDs mediated by CO? is a barley-specific
outcome of domestication or a broader phenomenon with implications for the adaptive ra-
diation of Pooideae in areas where suppression of SD flowering is beneficial.

Expansion and regulatory diversification of CCT domain genes has played a crucial
role in the domestication of both SD crops like sorghum, maize, rice, and LD cereals such
as barley and wheat in non-native regions (Cockram ez /., 2007, 2012; Higgins ez al., 2010),
highlighting their importance in adaptation to habitats with different photoperiodic flow-
ering requirements. Epistatic interactions between CCT genes and their interference with
the circadian clock supports the coordination of flowering time with environmental cues
on varying timescales, thereby contributing to the adaptability and success of grasses in a

wide range of challenging habitats.

1.4 Niche transitions and adaptive grass evolution

The evolution of grasses is intimately tied to habitat transitions (Preston & Fjellheim,
2020). Grasses likely originated in the understories or margins of tropical Gondwanan for-
ests during the middle or Late Cretaceous (Bouchenak-Khelladi ez 4/., 2010; Christin ez al.,
2014; Gallaher ez al., 2019; Schubert e 4l., 2019b). During subsequent global cooling
throughout the Paleogene, numerous grass lineages appeared in emerging temperate niches
(Schubert ez al., 2019b; Gallaher ez al., 2022). Ancestral Pooideae likely evolved in a cold
microhabitat with episodic frost in nascent Eurasian orogenies ~61-77 Mya within an oth-
erwise warm, aseasonal global climate (Schubert ¢z 4/., 2019b). Following the emergence of
Pooideae, global temperatures plummeted even further and dropped abruptly during the
Eocene-Oligocene transition, a drastic event augmenting seasonality on global scales (Veizer
etal.,2000; Zachos et al., 2001; Schubert ez al., 2019b). Temperate biome expansion during
the remainder of the Cenozoic gradually favoured the diversification and range expansion
of grasses, establishing them as one of the dominant life forms at from middle to high lati-
tudes (Strémberg, 2011; Schubert ez 4l., 2019b).

Low temperatures are the most immediate stress encountered in contact with temper-
ate climates (K6rner, 2016). The remarkable resilience of Pooideae grasses to long- and
short-term cold is attributed to the successive attainment of numerous physiological and

developmental traits conferring stress endurance and avoidance (Zhong ez al., 2018; Preston
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& Fjellheim, 2020; Schubert ez 4/., 2020). Comparative evolutionary studies have identified
substantial expansions of gene families linked to low-temperature adaptations, such as tol-
erance to freezing, dehydration, and cold acclimation (Sandve & Fjellheim, 2010; Li ez 4.,
2012; Vigeland ez al., 2013; Schubert ez al., 2019a). Molecular dating indicates that these
gene family expansions and functional changes enhancing cold tolerance align with pivotal
paleoclimatic events during Pooideae evolution, which in turn coincide with sub-familial
radiations within core- and early-diverging lineages (Schubert ez /., 2019b, 2020; Preston
& Fjellheim, 2020; Zhang ez al., 2022). Similar trends of coinciding adaptive trait evolution
and radiation are observed in the evolution of life-cycle adaptations, like the growth rates
and life-history strategies (Lindberg ¢z 4l., 2020), and modifications within the flowering
pathway (Woods et al., 2016; McKeown et al., 2016, 2017). For instance, ancestral recon-
struction of vernalisation responsiveness across Pooideae suggests an early origin of cold-
promoted flowering through a conserved pathway centred around VRNI and VRN3
(McKeown ez al., 2016). This is regarded a major step in the adaptive evolution of Pooideae
that proved broader benefits during the subsequent increase in global seasonality and facili-
tated their rapid poleward expansion (McKeown ez /., 2016; Preston & Fjellheim, 2020).
At the intersection of the vernalisation and photoperiodic flowering pathways, a regulatory
novelty involving the cold-repression of V’RN2 by VRNI is exclusive to the core-Pooideae,
although their individual roles seem to be conserved across the entire subfamily (Woods ez
al.,2016). This implies that autumnal repression of flowering triggered by LDs is an ancient
adaptive strategy that fostered a more recent diversification through the fine-tuning of in-

teractions among its molecular constituents (Preston & Fjellheim, 2020).

1.5 Objectives

The principal objective of the research presented in this thesis was to investigate the molec-
ular and evolutionary mechanisms underpinning seasonal adaptations in response to ver-
nalisation (PAPER I) and photoperiod (PAPER II-IV) in various temperate grass lineages.
PAPER I, II, & IV specifically focused on flowering time, while we addressed broader aspects
of photoperiod adaptations in PAPER III from a chronobiological perspective.

In PAPER I, we investigated if vernalisation responsiveness is present in temperate grass

lineages beyond Pooideae and examine whether the molecular machinery behind cold-
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induced flowering is conserved across grasses or evolved independently in different subfam-
ilies through lineage-specific co-option of paralogous transcription factors.

In PAPER II, we reconstructed the evolutionary history of photoperiodic flowering re-
sponses in Pooideae grasses and tested the hypothesis that flowering in response to LDs orig-
inated early in the evolutionary history of Pooideae and aided their transition from ancestral
tropical to temperate habitats. Additionally, we studied diurnal expression of central pho-
toperiod genes in species with opposite photoperiodic flowering responses to elucidate the
molecular mechanisms underlying transitions between LD- and SD-flowering.

In PAPER III, the aim was to study temporal organisation of diurnal gene expression
under contrasting photoperiods and conduct an exploratory analysis of the global tran-
scriptomic response to daylength changes in the early-diverging Pooideae grass Melica cil-
tata using functional data analysis.

In PAPER IV, we compared the diurnal transcriptomes of two closely related temperate
grasses identified as SD- and LD-responsive in PAPER II. Using the same statistical frame-
work as in PAPER III, we compare the systemic responses to LDs and SDs in the Stipeae
species Nassella pubifiora and Oloptum miliaceum to elucidate the genetic basis of reversion
of photoperiodic flowering strategies and establish a model system for the evolution of

daylength-mediated flowering time in undomesticated cereal crop-relatives.
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1.6 Methods in brief

Data analysed during this PhD project was generated in growth experiments where selected
grass species were grown under controlled conditions. During these growth experiments,
we varied selected environmental parameters to assess the relative eftects of sustained cold
(vernalisation) and daylength (photoperiod) on flowering time and collected samples of leaf
tissue for subsequent gene expression and phylogenetic analyses.

Gene expression data form the foundation of the work presented in this thesis. Tran-
scriptional activity was quantified using RT-qPCR for single genes (PAPER I & II), and
RNA-sequencing for global gene expression (PAPER III & IV). To study the evolution of
central flowering genes and their regulation, we employed a variety of phylogenetic meth-
ods. We reconstructed the evolutionary history of central vernalisation and photoperiodic
flowering genes using Bayesian tree inference in PAPER I & II and carried out an ancestral
state reconstruction to infer the evolutionary history of photoperiodic flowering in PAPER
IT (Fig. 3A). Furthermore, we used tools relying on phylogenetic inferences to develop an
orthology-based annotation pipeline for the reference-free transcriptome assemblies gener-
ated in conjunction with PAPER IIT & IV.

Asboth vernalisation and photoperiodic flowering are temporally regulated biological
processes, time course expression data formed the foundation of all gene expression analyses
carried out in the presented work (PAPER I-1V). Depending on the research hypotheses and
biological process in question, we examined gene expression at different resolutions, ranging
from weeks (PAPER I), days (PAPER II), to hours (PAPER ITI-IV). Dense transcriptome sam-
pling of the early-diverging Pooideae species Melica ciliata, Nassella pubiflora, and Oloptum
miliacenm (Fig. 3B) over the course of a 24-h period enabled us to employ functional prin-
cipal components analysis (FPCA). We used the information provided by FPCA for the
explorative (PAPER III) and comparative (PAPER IV) analysis of rhythmic gene expression.
This allowed us to develop different classification approaches and examine the impact of
daylength on diurnal gene regulation in PAPER III and identify candidate genes responsible

for opposite photoperiodic flowering strategies in early-diverging Pooideae in PAPER IV.

Materials and methods are further outlined in the respective PAPERS.
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1.7 Paper summaries and pivotal results

1.7.1 Vernalisation response in PACMAD grasses

PAPERI. Adequate onset of flowering after winter is crucial for plant survival. Many plants
have therefore evolved the ability to utilise periods of prolonged cold as flowering signal.
Such induction or acceleration of reproductive growth is called vernalisation. Due to its ag-
ronomic importance, the molecular basis of vernalisation-mediated flowering has been ex-
tensively studied in economically significant species and lineages, such as Pooideae grasses.
Although much of the core flowering network is conserved across angiosperms, multiple
molecular pathways of vernalisation acting upon flowering genes have evolved. Here, we
characterised vernalisation responsiveness in the PACMAD clade of the grass family to in-
vestigate whether flowering adaptations to prolonged cold are present in temperate grass
lineages other than Pooideae and if the underlying molecular mechanism perceiving long-
lasting cold parallels the model established in Pooideae or evolved independently.

Through a common-garden experiment under controlled conditions, we surveyed
flowering time in response to vernalisation in 12 populations from seven temperate PAC-
MAD species. We detected significantly cold-accelerated flowering in all species, suggesting
that vernalisation response is a widespread trait in the grass family. Nevertheless, we also
found substantial intraspecific variation between the vernalisation responses of different
populations, demonstrating that sensitivity to prolonged cold is a quantitative trait consid-
erably influenced by local adaptation.

To further investigate how vernalisation is perceived in PACMAD grasses, we identi-
fied orthologues of the cold-responsive vernalisation gene V’/RNI and its closest paralogue
FUL2 through phylogenetic analysis and confirmed the diversity of FUL-like genes in PAC-
MAD and other grass taxa as well as their complex evolutionary history shaped by whole-
genome and tandem duplications. Subsequent gene expression analysis revealed a significant
increase in VRNI and FULZ transcription in some cold-treated species. In the Arundinoi-
deae grass Molinia caerulea, a significant increase in FULZ2 expression was detected follow-
ing eight weeks of cold while the transcription of ’RNI remained low, suggesting that ver-
nalisation response might be conveyed by FUL2 in this species. In Danthonia decumbens,

however, both VRNI and FUL2 were upregulated, indicating that FUL-like genes might
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have a natural tendency to cold-induced transcription and somewhat redundant functions
in some species. Gene expression patterns in Bouteloua gracilis (Chloridoideae) and
Themeda triandra (Panicoideae) did not support the recruitment of VRNI or FULZ2 into
the vernalisation pathway, though both species were flowering significantly faster in re-
sponse to vernalisation. This suggests the presence of multiple vernalisation pathways, pos-
sibly involving more distant paralogues of ’RNI and FULZ in these grass species.

We show that vernalisation-mediated flowering is a common phenomenon in temper-
ate PACMAD grasses that likely involves differential neofunctionalisation of FUL-like pa-
ralogues. Our findings contribute to the understanding of vernalisation responses in grasses
and offer a basis for future functional characterisation of VRNI and FULZ to fully untie

their elusive roles in flowering time evolution across the grass family.

1.7.2  Evolution of photoperiodic flowering in Pooideae

PAPERII. Flowering is triggered by different cues, depending on what ensures most ade-
quate onset of reproduction in the current environmental context. Members of the temper-
ate grass subfamily Pooideae are particularly well-adapted to temperate seasonality. Conse-
quently, flowering is triggered by long days to coordinate reproduction with the onset of
spring in most Pooideae. However, grasses evolved in the tropics where short day-flowering
or day-neutrality is most beneficial. This suggests that LD-flowering is an adaptive strategy
that evolved early in the Pooideae and facilitated their radiation into seasonal habitats. We
tested this hypothesis by identifying photoperiodic flowering types through a growth exper-
iment in a representative sample of Pooideae species, followed by ancestral state reconstruc-
tion, and expression analyses of central photoperiodic flowering genes.

Screening photoperiodic flowering behaviour in 47 Pooideae identified 21 LD species,
five SD species, and five day-neutral species. Phylogenetic inference of daylength-mediated
flowering in Pooideae revealed that the most recent common Pooideae ancestor likely flow-
ered under LDs. This situates the attainment LD-flowering in Pooideae between their origin
during the Late Cretaceous—Paleocene (~67 Mya) and the expansion of seasonal climates
following the Eocene-Oligocene transition (~34 Mya). Moreover, we identified a secondary
transition from ancestral LD- to SD-flowering in the genus Nassella which is a relatively

recent Pooideae radiation native to neotropical montane habitats. This suggests that
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Pooideae have an innate ability to evolve flowering adaptations to both long and short pho-
toperiods which, in turn, facilitate the conquest of novel habitats.

To understand the mechanisms of secondary reversion to SD-flowering, we studied
the expression of genes known to convey photoperiodic flowering in domesticated Pooideae
within early-diverging species with opposite flowering strategies. Specifically, we compared
the expression of the photoreceptor PHYC and the CCT genes PPDI, COI, VRNZ and its
paralogue CO? in the SD species Nassella pubiflora with LD-responsive Melica ciliata and
Oloptum miliacenm. To investigate role of CO9 across Poaceae, we also characterised its di-
urnal expression in the SD-responsive Oryzoideae species Ebrbarta calycina.

Expression profiles of PHYC and PPDI advocated for the retention of their roles as
floral accelerators under LDs, despite repeated transitions between difterent flowering strat-
egies in early-diverging Pooideae. Photoperiod did not significantly affect the transcription
of PHYC in Melica, Nassella, and Oloptum. Peak activity of PHYC after dusk in all species,
however, was congruent with its expression in barley, suggesting that conveyance of photo-
period sensitivity per se is conserved across both LD- and SD-responsive taxa. Peak abun-
dance of PPDI aligned with the light phase in both photoperiods and was consistently more
elevated under LDs than SDs in LD-flowering M. ciliata and O. miliacenm, indicative of
its functional conservation in LD-responsive species. Contrary to LD-flowering Pooideae,
photoperiod had a significant effect on the expression of N. pubiflora COI with generally
higher expression in SDs than LDs, supporting its role as flowering promoter under the ab-
sence of PPD1 such as in wheat and barley.

Transcriptional profiling of ’RNZ supported its role as LD-repressor of flowering, as
its expression was similarly promoted by LDs in N. pubifiora and M. ciliata. Diurnal ex-
pression of O. miliacenm VRINZ deviated considerably from its closest orthologue in Nas-
sella, though this was likely caused by transcript abundance falling below the threshold of
detection. Diurnal transcription of the RN2-paralogue CO9 on the other hand, was con-
served between closely related N. pubiflora and O. miliacenm, with significantly increased
expression during early morning in LD and a night peak in SD. Since we further demon-
strate that CO9 is degraded in the dark, shifted CO9 transcription in LD may prevent the
interaction with VRN2 that attenuates flowering in N. pubiflora, thereby promoting the
onset of reproductive growth under SDs. Our data suggests a possible functional shift where

VRNZ2 may have supplanted the role of CO? as transcriptional repressor under SDs in LD-
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flowering taxa, implying that the LD response in O. milzaceum might be secondary.
Here, we demonstrate the diversity of photoperiodic flowering networks in temperate
grasses and reveal that differential shifts of diurnal CCT gene expression are associated with

the evolution of opposite flowering strategies and major niche transitions.

1.7.3  Diurnal gene regulation in Melica ciliata

PAPER III.  Photoperiod has considerable impact on gene regulation in plants. Here, we
investigated the temporal gene expression patterns in the grass species Melica ciliata under
opposite photoperiods simulating LDs and SDs. Due to its interesting phylogenetic place-
ment within Pooideae as a sister clade to the agronomically important core-Pooideae, M.
ciliata holds particular significance for comparative gene expression studies in temperate
grasses. Understanding how different daylengths influence global transcriptome dynamics
in M. ciliata is valuable for eliciting the mechanisms of photoperiodic regulation of biolog-
ical processes in undomesticated crop relatives.

We grew M. ciliata plants under contrasting LD and SD conditions and employed
FPCA to deconstruct the temporal variation arising from diurnal gene expression to discern
the primary transcriptomic responses to contrasting photoperiods and investigate how gene
expression is coordinated under opposite photoperiods. We revealed that differences in over-
all gene expression level accounted for most diurnal variation. Standardisation of expression
curves accentuated diurnal fluctuations and highlighted distinct, photoperiod-specific gene
expression patterns. Diurnal rhythmicity of most transcripts was influenced by photoper-
iod, signifying the severe eftect of daylength changes on overall gene expression. Diurnal
behaviour of rhythmically expressed genes varied significantly between the two photoperi-
ods. Expression inclines and declines were confined to specific times of the day, with differ-
ent associations observed in LDs and SDs, indicating the presence of multiple modes and
mechanisms of photoperiod perception. Furthermore, we identified associations between
specific gene expression patterns and specific biological processes, like responses to stress,
reproduction, and circadian rhythm using gene ontology (GO) enrichment analysis.

Overall, the study provides insights into the regulation of diurnal gene expression and
enhances our understanding of how plants adapt to different day lengths. Furthermore, we

demonstrate that FPCA offers a handy framework for the comparative exploration of
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temporal gene expression dynamics and hypothesis generation in longitudinal de zovo tran-
scriptomes, paving way for further analyses targeting photoperiodic gene regulation in non-

model grass species.

1.7.4  Recurrent evolution of photoperiodism in Stipeae

PAPER IV. As demonstrated in PAPER II, early-diverging Pooideae from the tribe Stipeae
provide an appealing study system for the recurrent evolution of photoperiodic flowering
strategies. In this study, we extended the line of investigation from PAPER II and considered
the interspecific diurnal transcriptome dynamics of SD-responsive Nassella pubiflora and
LD-responsive Oloptum miliaceum to clarify the evolution flowering time in this system.

Aided by functional data analysis, we designed a comparative transcriptomic approach
to exhaustively detect divergent diurnal expression between species under LDs and SDs and
identify candidate genes putatively involved in generating opposite daylength-mediated
flowering strategies in Stipeae grasses. We confirmed the presence of opposite photoperiodic
flowering behaviours in Stipeae, with significantly hastened flowering of O. miliacenm un-
der LDs and SD-accelerated flowering under in IN. pubiflora. To explore the underlying
mechanisms of these flowering responses, we outlined genome-wide transcriptional activity
with FPCA, a method allowing us to capture the most essential temporal features of global
gene expression under LDs and SDs in both species. Despite their opposite flowering be-
haviours, we observed prominent conservation of diurnal gene regulation between O. mil-
taceum and N. pubiflora. Temporal variation in LD and SD gene expression adhered to anal-
ogous fundamental diurnal patterns in both species. Species-specific differences were mainly
caused by variations in the timing of peak and trough expression. Most circadian clock gene
orthologues identified in N. pubiflora and O. miliacenm responded similarly to photoper-
iod changes, indicating that the entrainment of circadian clock genes by photoperiod is gen-
erally conserved.

Using FPCA scores to construct a proxy measure for regulatory divergence, we iden-
tified two sets of genes with discrepant LD and SD expression between Nassella and Olop-
tum. Regulatory divergence under LDs was primarily restricted to basic processes, as evi-
denced by the presence of GO terms related to different aspects of metabolism. Interspecific

diurnal divergence under SDs was associated with genes involved in flower developmentand
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light-signalling, suggesting the presence of divergent photoperiod processing mechanisms
in the flowering pathways of O. miliaceum and N. pubifiora. Closer examination revealed
regulatory divergence of flowering-time genes, such as a F7-like antagonist of florigen, an
orthologue of a response-regulator central in rice that is yet uncharacterised in Pooideae, as
well as the circadian clock component ELF3. These play essential roles in the floral transi-
tion and photoperiodic flowering pathways in domesticated and model grasses and are po-
tential contributors to the opposite flowering strategies in the Stipeae species N. pubiflora
and O. miliaceum.

In this study, we demonstrate that the evolution of flowering time in Pooideae is
closely tied to differential diurnal expression of relatively few genes that transmit daylength
cues into developmental and signalling pathways and provide insight into the molecular ba-

sis of reversible flowering strategies associated with habitat transitions in grasses.

1.8 Discussion and future perspectives

Macroevolutionary processes rarely involve shifts from tropical to temperate biomes (Do-
noghue, 2008), stressing the formidable challenges plants need surmount to accomplish this
step. General scarcity of this phenomenon across difterent grass subfamilies is indicative of
the substantial challenges posed by environmental filtering, wherein the unique selective
forces of temperate niches permit only lineages with highly specialised adaptations to leap
out of their ancestral areas of origin (Schubert ez /., 2020). Phenological adjustments like
the timely onset of flowering are pivotal in this context. Range expansions in grasses have
been previously linked to flowering gene evolution (Preston & Fjellheim, 2020), indicating
that novel connections between core floral regulators accelerate radiations of grasses into
seasonal niches. However, detailed features of the dual flowering response have been primar-
ily elucidated from variations in domesticated species and are not necessarily transferable to
the adaptive innovations aiding the global conquest of increasingly demanding habitats by

their untamed relatives. This thesis offers new perspectives on these particular aspects.

1.8.1 Lineage-specific flowering adaptations in grasses

Emerging early in the evolution of Pooideae, vernalisation and LD-flowering conferred sig-

nificant advantages, facilitating their swift colonisation of emerging temperate biomes
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(Schubert ez al., 2019b; Preston & Fjellheim, 2020). Due to their old age relative to other
grass lineages, Pooideae managed to seize the most accessible temperate niches by the time
other grass subfamilies ventured forth (Pirie e al., 2009; Linder ez al., 2013; Gallaher ez al.,
2022). This may have prompted these later lineages to develop more specialised adaptations
tailored to thrive in niches climatically or geographically distinct from those already occu-
pied by Pooideae (in particular core-Pooideae), such as montane or continental habitats at
lower latitudes outside the Palearctic (Linder e 4/., 2013; Humphreys & Linder, 2013;
Pardo et al., 2020; Pardo & VanBuren, 2021; Gallaher ez 4l., 2022). Stipeae are the most
diverse early-diverging Pooideae tribe and principally found in steppes and highlands across
the neotropic, nearctic, and palearctic realms (Hamasha ez 4/., 2012; Romaschenko ez al.,
2012; Cialdella e al., 2014). Considering their age, current geographic distribution, and
flowering characteristics, we posit that the occurrence of Stipeae as a whole (PAPER II) and
N. pubiflora in particular (PAPER IV) in neotropical highlands might be the result of a sec-
ondary shift from more seasonal, nearctic, open habitats into montane neotropical niches
with analogous demands to stress acclimation, but not photoperiodism (PAPER II & IV).
Transition from ancestral LD- to SD-flowering, driven by regulatory innovations in diurnal
expression patterns of central flowering genes (PAPER II & IV), may have aided the south-
ward migration of Stipeae along the mountain ridges of the Americas (PAPER II). This may
also partially explain the diversity in vernalisation mechanisms in temperate PACMAD spe-
cies (PAPER I), which may be the result of parallel evolution within a later wave of grass

migrations into temperate niches, following their initial colonisation by Pooideae.

1.8.2 Modes of flowering-time gene evolution

A recurring pattern evident in the presented findings is that flexible flowering responses con-
fer an evolutionary advantage promoting the diversification of certain grass lineages in sea-
sonally fluctuating habitats. The ability to fine-tune floral onset in response to environmen-
tal cues can be attributed to the expansion and functional diversification of essential gene
families, such as FUL-like (PAPER I), CCT domain genes (PAPER II), and likely also F7-like
genes (PAPER IV), which play pivotal roles in the control of floral transition and adaptation
(Colasanti & Coneva, 2009). Collectively, the presented work provides evidence that radia-

tions of different grass lineages on global scales match the expansion and functional
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diversification of these gene families on a molecular level.

Maintenance of a certain degree of functional redundancy within the floral network
is pivotal for its adjustment and rewiring (Albert ez 4/., 2002; De Smet & Van de Peer, 2012).
This kind of variation enables the simultaneous lability and conservation of regulators
within the same genetic network underlying a specific trait (Abouheif & Wray, 2002;
Moczek et al., 2011). Stable functional redundancy offers adaptive flexibility which, in turn,
facilitates the effective adjustment of flowering-time to diverse light and temperature condi-
tions (Blackman ez 4/., 2011; Gaudinier & Blackman, 2020). Common for these sources of
flowering-time diversity is the recruitment of close paralogues of a central floral regulator
into an existing pathway. Importance of a gene for individual fitness is believed to be a prin-
cipal constraint of sequence evolution (Kimura & Ohta, 1974). Master regulators situated
at central nodes within a regulatory network are often involved in a multitude of biological
processes and therefore subject to balancing selection due to such pleiotropic trade-offs.
This may explain why we detect regulatory divergence only in more peripheral genes of the
floral pathway between closely related species (PAPER IV), or paralogues of more central
regulators (PAPER I & II).

Gene duplications can alleviate these selective constraints by initially producing an en-
tirely redundant copy, which grants the opportunity to either undergo complete innovation
(neofunctionalisation) of one paralogue or partial preservation (subfunctionalisation) of
function in both duplicates (Force ez al., 1999; Lynch & Conery, 2000). FUL-like, CCT
genes, and F7-like paralogues are prolific within grass genomes and participate in diverse
developmental and physiological processes (Cockram ez al., 2012; Bennett & Dixon, 2021;
Zhang et al., 2022), thus offering developmental toolkits for the evolution of adaptive traits
through the aforementioned mechanisms (Preston ez 4/., 2011).

Molecular mechanisms of vernalisation responsiveness in temperate PACMAD
grasses (PAPER I) uncovered the differential neofunctionalisation of cold-responsive FUL-
like paralogues relative to their Pooideae counterparts. Ancestrally, transcription factors of
the FUL-like gene family primarily act as determinants of floral whorl identity in the SAMs
of both Arabidopsis and grasses (Litt & Irish, 2003; Preston & Kellogg, 2007; Preston ez 4.,
2009), implying that cold-responsiveness of FUL-paralogues is a derived trait. Further pro-
motion of this regulatory novelty could have been facilitated by the relaxation of selective

constraints on one of its copies following a gene duplication event, under circumstances
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were floral promotion by long-term cold yielded fitness benefits. Recruitment of the closest
orthologue of Pooideae VRNI into the vernalisation pathway of M. caerulea suggests
neofunctionalisation of a FUL-like paralogue which might have been instrumental in facil-
itating the spread of this species into seasonal niches. Similar evolution of flowering-genes
in PAPER II further suggests the generalisability of this mode of adaptive innovation. Given
paralogous relationship between VRNZ and CO9, it is plausible that these genes underwent
duplication followed by divergence in function to accommodate different photoperiodic
flowering strategies. The expression patterns suggest that VRNZ, initially a LD-repressor of
flowering (Woods ez al., 2016), might have taken on a novel role under short day (SD) con-
ditions in O. miliacenm, potentially replacing the function of CO9. This shift could repre-
sent a case of subfunctionalisation, where duplicated CCT genes specialise in difterent reg-
ulatory roles within the photoperiodic flowering pathway. On the other hand, CO9 may
have acquired a new role in promoting flowering under SD conditions in IN. pubifiora, pos-
sibly through a novel protein interaction hastening the deterioration of CO9 proteins under
LDs, but not in SDs. This suggests a scenario of neofunctionalisation, the novel function
involves a shift in diurnal CO2 regulation influencing the coincidence with other genes that
regulate its degradation. Irrespective of the exact evolutionary process, our results indicate a
dynamic interplay between the proliferation of CCT domain genes, discrepant expression
between paralogues, and functional innovation through novel interactions with other flow-
ering-time genes (PAPER II). This interplay plays a crucial role in shaping the photoperiodic
flowering pathways of temperate grasses.

Allelic variation in flowering-time loci is the source of considerable variation in do-
mesticated grasses and the model species B. distachyon (Woods et al., 2017; Bettgenhaeuser
et al., 2017; Ferndndez-Calleja e al., 2021). This variation has played a crucial role in precise
enhancement of flowering-time and other economic traits across latitudinal gradients and
climatic extremes in cultivated crops (Koo ez 4l., 2013; Géransson et al., 2019; Han et al.,
2023; Zhao et al., 2023). Geographic origin also plays a substantial role in phasing of gene
expression and even central rhythmic processes such as the circadian clock are documented
to vary considerably between populations (de Montaigu ez a/., 2015; de Montaigu & Cou-
pland, 2017; Oravec & Greenham, 2022). Especially allelic variation within the circadian
clock has been demonstrated to exert significant influence on flowering time, highlighting

the crucial role that genetic diversity even within the most central regulatory mechanisms
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plays in shaping the timing of developmental events (Lee ez 4/., 2022; Maeda & Nakamichi,
2022). Mindful of the potential pitfalls associated with genetically heterogenous grass
germplasm, we aimed to mitigate within-species or population variations through biological
replicates and refraining from pooling any RNA or DNA samples in all of our experiments
(PAPER I-1V). However, it is advisable to approach the findings of cross-species analyses
investigating diurnal expression shifts in wild species (PAPER II-IV) with a degree of cau-
tion given that divergence of periodic processes might be amplified by distinct evolutionary

histories.

1.8.3  Shedding light on clock ticks and timely blooms

Historically, two models have been developed for the endogenous time-keeping mechanisms
in plants. The hourglass model suggests that an internal photoperiodic clock measures the
duration of light and dark periods, with critical night length triggering flowering (Borthwick
& Hendricks, 1960). On the other hand, the external coincidence model proposes that flow-
ering occurs when an external cue (like dawn or dusk) coincides with an internal physiolog-
ical state, such as the expression level of circadian clock output genes or the abundance of
their protein products (Pittendrigh, 1960; Pittendrigh & Minis, 1964; Sawa ez al., 2008).
Both models entail the perception of light by photoreceptors at the beginning of the light-
signalling cascade and are not necessarily mutually exclusive and partially redundant. How-
ever, the hourglass and coincidence models serve as valuable frameworks for distinguishing
the relative significance of different photosensory systems among different plant taxa and
understanding the biological timing mechanisms they entail.

A recent hypothesis suggests that the hourglass model might be of greater significance
in temperate grasses (Raissig & Woods, 2022). In B. distachyon, barley and wheat, the phy-
tochromes PHYC and PHYB emerge as increasingly more pivotal components of photoper-
iodic flowering pathway (Woods et al., 2014, 2023; Pearce et al., 2016; Kippes ez al., 2020;
Bouché ez al., 2022; Alvarez et al., 2023). Generally, our findings from PAPER ITI & IV lend
support to this hypothesis by revealing the presence of multiple photosensory systems in A4,
ciliata (PAPER III) and Stipeae (PAPER IV), though somewhat contradicted by the absence
of significant effects of photoperiod on PHYC in PAPER II. Variation in the light-perceiving

layer of the floral pathway yields an extensive array of potential molecular configurations
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through the interplay between photoreceptors, flowering-time genes, and interacting co-
factors (such as PIFs; Pham ez al., 2017). This intricate network forms a dynamic system
adept at integrating a multitude of environmental cues crucial for precise flowering regula-
tion (PAPER III & IV). Interaction among light-sensing, time-keeping, and signal-transduc-
ing modules within the flowering network of temperate grasses remains partially under-
stood, and determining their respective roles in various species presents an exciting avenue
for future research.

Under natural conditions, both light and temperature vary over the course of a day.
Animportant caveat of our research targeting photoperiod responses is the omission of tem-
perature variations in our experimental design. Rhythmic processes in plants, such as sto-
matal opening, leaf movements, and growth are temperature-dependent and modulated by
the integration of both photoperiod and ambient temperature through the circadian clock
(Yakir et al., 2007; Hotta et al., 2013). For instance, temperature changes are the foremost
cue sustaining circadian oscillations in the transcriptome of B. distachyon and required for
the precise timing of gene expression and numerous developmental processes throughout
the day (MacKinnon et al., 2020). Likewise, in Arabidopsis, the expression of florigen FT°
significantly diverges from laboratory reports under natural conditions, a discrepancy aris-
ing from distinct stabilisation of CO governed by both temperature and light-sensitive reg-
ulators such as phytochromes and ELF3 (Song ez al., 2018). Refining growth parameters to
replicate natural plant responses more precisely has significant potential for advancing our
understanding of diurnally regulated processes such as seasonal flowering responses.

An inherent challenge in gene expression studies is that transcript abundance alone is
insufficient to predict protein levels accurately (Gygi ez 4/.,1999). Rhythms, whether within
the floral network or other processes, are sustained through the interaction of genes at the
protein level and subject to considerable post-translational regulation (e.g., PAPER II). Tran-
scriptome data therefore illuminate only a part of the regulatory interferences necessary to
sustain time-dependent processes in plants (Seaton ez a/., 2018; Mehta ez al., 2021). Integra-
tion of proteome and transcriptome data holds great promise for the elucidation of the pre-
cise mechanisms by which floral regulators orchestrate the intricate symphony of floral on-

set and other time-dependent processes.
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1.9 Functional gene expression analysis

Many aspects of plant biology display time-dependent characteristics and follow predictable
oscillatory patterns (Somers, 1999). Gathering data over a given time interval provides a nat-
ural means of approximating reoccurring temporal changes in biological systems. The fun-
damental unit of in time-course expression studies are gene expression profiles. Due to prac-
tical limitations, these profiles are usually comprised of point-measurements, which can be
approximated by curves if collected densely enough. Representing such continuous pro-
cesses as functions rather than discrete samples allows precise analysis of dynamic fluctua-
tions over time (Leng & Miiller, 2005). Functional data analysis (FDA) is a framework spe-
cifically developed for the statistical analysis of random samples composed of continuous
functions, enabling the study of complex biological processes in their most natural form of
representation (Ramsay & Silverman, 2005; Shang, 2014).

Methodological approaches based on FDA have been extensively explored in gene ex-
pression data analysis, yielding notable advancements in various contexts. For instance, mi-
croarray analyses leveraging FPCA for the detection of rhythmic gene expression have dis-
played increased statistical power when contrasted with traditional methodologies such as
linear model-based approaches (Leng & Miiller, 2005; Song ez 4/., 2007, 2008; Liu & Yang,
2009; Wu & Wu, 2013). Moreover, these techniques have proved valuable in the analysis of
sequencing data, particularly in the decomposition of variation in DNA-binding protein
coverage profiles, presenting a novel avenue for dissecting intricate genomic interactions
(Madrigal & Krajewski, 2015). Beyond genomics, functional analyses have also demon-
strated efficacy in plant phenotyping. Extraction of shared patterns from growth curves in
sorghum demonstrates the versatility of FPCA-based approaches in resolving temporal dy-
namics of biological processes (Miao ez 4., 2020).

To the best of my knowledge, we deliver the first application of FPCA-based transcrip-
tome profiling for the explorative analysis of rhythmic gene expression (PAPER III) and
cross-species transcriptomics (PAPER IV). Conventional methods for analysing rhythmic
gene expression often require extensive sampling across multiple cycles to understand the
interplay between phase and period (Bar-Joseph, 2004; Li ez al., 2015; Wu et al., 2016;
Hughes ez al., 2017). While our approach did not allow for precise numerical evaluation of

these fundamental wavelet aspects, it retains its value in qualitatively assessing period and
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phase with clear biological interpretability (PAPER III & IV). This is particularly useful in
situations where the need for biological replicates limits the ability to cover multiple periods
with sufficient density (PAPER III & IV).

Promising extensions of our initial attempts of FPCA-based characterisation of tran-
scriptome data (PAPER III & IV) include the application of more sophisticated techniques
for classifying FPCA scores, such as discriminant analysis, hierarchical models, logistic re-
gression, or support vector machines (Leng & Miiller, 2005; Hong & Li, 2006; Song et al.,
2008; Liu & Yang, 2009; Wu & Wu, 2013). Precision and recall in FDA-based analysis have
been further enhanced by successfully incorporating a noise component into the classifica-
tion of time-dependent gene expression using functional single-value decomposition (Bar-
Joseph ez al., 2012). Another intriguing FDA technique capable of distinguishing phase and
amplitude in periodic functions is curve registration (Ramsay & Li, 1998), a method effec-
tively employed to detect desynchronised gene expression during floral transition in Brassica
rapa (Calderwood et al., 2021).

Lack of standardised nomenclature, outdated software tools, and the prevalence of
more established methodologies collectively impede the adoption of FDA-based approaches
within the emerging landscape of extensive gene expression datasets. Despite its potential to
be the most intuitive analytical avenue for longitudinal and cyclical biological data (PAPER
III & 1IV), application of FDA in genomics is occasional. This useful framework deserves
greater advocacy and promotion, especially among biologists less accustomed to rigorous
mathematical and statistical techniques. Efforts to bridge this gap and make FDA more ac-
cessible to researchers with varying quantitative backgrounds are necessary for harnessing
its full potential in for the analysis of longitudinal, time-dependent data gathered in grasses

and other vegetables.
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ARTICLE INFO ABSTRACT

Keywords:
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Grass evolution

Flowering in response to low temperatures (vernalization) has evolved multiple times independently across
angiosperms as an adaptation to match reproductive development with the short growing season of temperate
habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes
parallel evolution underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar
Vernalization mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not
VRN1 well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate
species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization
in several representative species from different subfamilies. We then determined the likelihood that vernalization
responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization
pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization-
induced flowering has evolved multiple times independently in at least five grass subfamilies, and that

different combinations of FUL-like genes have been recruited to this pathway on several occasions.

1. Introduction

Most plant species couple endogenous and exogenous cues to regu-
late growth and development (Bernier, 1988; Poethig, 1990), resulting
in flower, fruit, and/or seed production when conditions are favorable,
thus increasing reproductive output and fitness (Baurle and Dean, 2006;
Murfet, 1977). In temperate species, the ability to respond to inductive
flowering cues (i.e., attain floral competency) can often be hastened by
an extended period of non-freezing cold known as vernalization
(Chouard, 1960; Gapner, 1918). Once floral competency is achieved,
long days trigger the subsequent transition to reproductive growth at the
shoot apical meristem (SAM). This two-step induction of flowering,
prompted by the interplay of vernalization and photoperiodic cues, is
found in many species across angiosperms (Andrés and Coupland, 2012;
Bouché et al., 2017; Preston and Fjellheim, 2020; Preston and Sandve,
2013; Ream et al., 2012; Xu and Chong, 2018).

The vernalization-mediated flowering response is particularly well-
studied in agriculturally important temperate grasses. Many grass spe-
cies are identified as vernalization responsive based on their flowering
behavior, but almost all are members of the temperate subfamily

Pooideae (Heide, 1994). According to the current model from vernali-
zation responsive ‘winter’ wheat (Triticum spp.) and barley (Hordeum
vulgare) (Pooideae), cold-induced floral competency is controlled by a
genetic circuit involving the mutual regulation of three central genes:
VERNALIZATION 1-3 (VRN1-3) (Bouché et al., 2017; Dennis and Pea-
cock, 2009; Greenup et al., 2009; Trevaskis et al., 2007). During
autumnal growth of winter wheat and barley, transcription of the
flowering pathway integrator gene VRN3/FLOWERING LOCUS T (FT)-
like is repressed by the action of the long day induced CONSTANS-like
protein VRN2, resulting in a block on flowering before the onset of
winter (Ream et al., 2014; Sz{ics et al., 2007; Yan et al., 2004). As plants
start to experience cold, expression of the FRUITFULL (FUL)-like MADS-
box gene VRNI1 (FULI-clade in Preston and Kellogg, 2006) gradually
increases, causing the eventual repression and de-repression of VRN2
and VRN3, respectively (Danyluk et al., 2003; Gu et al., 1998; Hemming
et al., 2008; Higgins et al., 2010; Oliver et al., 2009; Shimada et al.,
2009; Trevaskis, 2010; Trevaskis et al., 2003; Woods et al., 2016; Yan
et al., 2004, 2003). Production of VRN1 is elicited by cold-induced
histone modifications at the VRN1 locus, which links the perception of
winter with the acquisition of flowering competency (Deng et al., 2015;
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Distelfeld et al., 2009; Oliver et al., 2013, 2009). Furthermore, it is
hypothesized that the florigen signal is enhanced by mutual positive
feedback between the expression of VRNI and VRN3, whereby VRN1
carries out a secondary, deeply conserved function to promote flower
development at the SAM (Ferrandiz et al., 2000; Gu et al., 1998; Preston
and Kellogg, 2008; Tanaka et al., 2018).

In addition to VRN1, grasses have at least three other FUL-like genes
(FUL2, FUL3, and FUL4, collectively referred to as FUL-like genes)
derived from three duplication events (Wu et al., 2017; Zhang et al.,
2022). One coinciding with the 7 whole-genome duplication event in
commelinids giving rise to the FUL3/FUL4 and FUL1/FUL2 lineages
(Jiao et al., 2014; Zhang et al., 2022), and the ¢ and p polyploidizations
generating FUL3 and FUL4 in Poales and VRNI and FUL2 in most of
Poaceae, respectively (D'Hont et al., 2012; Graham et al., 2006; Litt and
Irish, 2003; McKain et al., 2016; Paterson et al., 2004; Preston and
Kellogg, 2006; Preston et al., 2009; Zhang et al., 2022). All three genes
are expressed in the SAM during the floral transition (Danilevskaya
et al., 2008; Kinjo et al., 2012; Preston and Kellogg, 2007), consistent
with their likely ancestral function in floral meristem and organ identity
specification (Litt, 2007). In wheat, FUL-like genes are redundantly
involved in spikelet and inflorescence development, as well as flowering
time and plant height (Li et al. 2019). While several angiosperm FUL-like
genes are also expressed in leaves or bracts (Gu et al., 1998; Yang et al.,
2021), arole for these genes in vernalization through their upregulation
in leaves has only been described in Pooideae grasses (McKeown et al.,
2016; Zhong et al. 2018). This is consistent with the inferred origin of
vernalization responsiveness at the base of the subfamily (McKeown
et al., 2016). However, the fact that FUL2 transcripts also increase in
response to cold in the Pooideae species Lolium perenne (Petersen et al.,
2006, 2004), Avena sativa (Preston and Kellogg, 2007) Triticum aestivum
(Chen and Dubcovsky, 2012), Schedonorus pratensis (Ergon et al., 2016,
2013), and Brachypodium distachyon (Li et al., 2016) either suggests the
evolution of a common upstream regulator for these genes or a pro-
pensity of grass FUL-like genes to be independently co-opted into
vernalization pathways.

Grasses are one of the largest plant families with 11,783 species
organized into 12 subfamilies (Soreng et al., 2022). Most species are
found in two large clades: the largely temperate/subtropicalBambu
soideae-Oryzoideae-Pooideae (BOP) clade or the mainly tropical Pan-
icoideae-Aristidoideae—Chlorioideae—Micrairoideae-Arundinoideae
-Danthonioideae (PACMAD) clade. There are also three early-diverging
subfamilies with a small number of species (Anomochlooideae, Pueloi-
deae and Pharoideae; Saarela et al., 2015; Soreng et al., 2022; Hod-
kinson, 2018). Although most grasses have tropical to sub-tropical
distributions (Schubert et al., 2019b; Visser et al., 2014), temperate
grasses have evolved multiple times in both the major BOP and PAC-
MAD clades (Grass Phylogeny Working Group II, 2012). Pooideae
dominate the grass flora in temperate, continental, and Arctic regions
(Hartley, 1973), and Danthonioideae constitute a southern temperate
clade (Pirie et al., 2012; Peter Linder et al., 2013; Visser et al., 2014).
Furthermore, several lineages from other subfamilies, most notably
Chloridoideae and Arundinoideae have also diversified into cold climate
environments (Schubert et al., 2020; Atkinson et al., 2016). Despite this,
little is known about the impact of vernalization on flowering in
temperate grass species outside Pooideae. Evans and Knox (1969) report
that in some temperate, long day-responsive ecotypes of Themeda tri-
andra (Panicoideae), flowering is hastened after vernalization treat-
ment. Furthermore, evidence from a growth experiment carried out on
several populations of Rytidosperma caespitosa, suggests that some
Danthonioideae may also be able to accelerate flowering following
exposure to long-term cold (Hodgkinson and Quinn, 1978).

To determine how widespread vernalization responsive flowering is
across grasses, we carry out growth experiments on a phylogenetically
diverse set of temperate PACMAD species and use these data to recon-
struct the minimum number of origins of vernalization responsive
flowering in grasses. We then investigate the genetic basis of these

Ph) ics and Evolution 179 (2023) 107678

origins by examining the behavior of the paralogs VRNI and FUL2
during prolonged cold. We find evidence for multiple origins of
vernalization responsiveness across grasses and present data supporting
evolution of this trait through the parallel recruitment of different FUL
homologs.

2. Materials and methods
2.1. Plant material

Study species were selected to reflect the phylogenetic diversity and
geographical distribution of temperate, perennial PACMAD grasses
based on a previous study (Atkinson et al., 2016). Seeds for five species
from a total of seven accessions (Table S1) were acquired from the
United States Department of Agriculture (USDA) Germplasm Resources
Information Network (GRIN). Imbibed seeds for four accessions were
sown out in humid soil containing equal amounts of compost and peat
with a small amount of river sand. To break seed dormancy and syn-
chronize germination, seeds were stratified in the dark at 4 C for 5 days,
followed by 24 h at 25 C. Seedlings were pricked out and transferred to
individual pots. For three Danthonia decumbens and two Molinia caerulea
populations, wild full-grown plants were collected at four different lo-
cations in south-eastern and western Norway (Table S2).

To synchronize plants grown from seed and collected in nature, all
individuals were pre-grown at 17 C under long days (16 h light, 8 h
darkness) for at least four weeks in a greenhouse at the Norwegian
University of Life Sciences (NMBU). At least 30 plants per population/
accession were grown per treatment. Artificial light was supplied in
addition to natural light during the light period using Master HPI-T Plus
400 W/645 E40 1SL light bulbs (Philips). For every population, the SAM
of the largest plant was dissected prior to vernalization treatment to
ensure that meristems were in the vegetative state. At least 15 plants
from every population were assigned to a vernalization (8 C) or control
treatment (20 C), respectively and transferred to walk-in growth
chambers for 56 days (8 weeks). A relatively high vernalization tem-
perature within the temperature range for optimal vernalization (Pres-
ton and Fjellheim, 2022) was chosen based on preliminary experiments
at lower (4-6 C) temperatures that resulted in high T. triandra mortality.
Two chambers per condition were used to reduce chamber effects. In
each chamber photoperiod was set to short days (8 h light, 16 h dark-
ness) and the average light irradiance was 65 umol m~2 s~ 1. Subse-
quently, plants were transferred back to the greenhouse, wherein
emergence of the first inflorescence (bolting or ‘heading’) was scored as
days from germination to heading (DTH). During the entire experiment,
plants were randomized and rotated every fourth day to minimize room
effects.

To account for differential growth in the vernalized and control
plants, corrected DTH (DTH¢) was calculated using temperature-
adjusted days, rather than subtracting the entire duration of the tem-
perature treatment from DTH. Assuming a linear relationship between
growth and temperature (Baskerville and Emin, 1969), it was presumed
that plants in the control treatment (17 ‘C) accumulated 2.125 times
more heat units than vernalized plants, given a growth baseline below 8
C. DTH for vernalized plants was thus calculated as:

(Tc — Tv)}

DTH¢ = DTH — {L-
c

where L the length of the vernalization period (56 days), T¢ the tem-
perature for the control group (17 C), and Ty the vernalization tem-
perature (8 C) (Baloch et al., 2003; Kirby et al., 1989; McKeown et al.,
2016; Preston and Fjellheim 2022).

2.2. Sampling, RNA extraction, and cDNA synthesis

To test if VRNI and FUL2 are induced by cold in species from the
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PACMAD clade, we selected three species (M. caerulea, D. decumbens,
and B. gracilis) for analysis of gene expression in leaves under vernali-
zation. During the growth chamber experiments, leaf tissue from the
longest leaf was collected for RNA extraction at zeitgeber time 3 (ZT3; i.
e., 3 h after lights on) for three different time points: before the plants
were moved to the growth chambers (day 0), and after six weeks (day
42) and eight weeks (day 56) of vernalization. A TissueLyser II bead mill
and 3 mm tungsten carbide beads (QIAGEN) were used to disrupt deep
frozen leaf tissue. Total RNA was isolated with RNeasy Plant Mini Kit
(QIAGEN), following the manufacturer’s instructions, including the
additional centrifugation and elution step. Complementary DNA (cDNA)
was synthesized using the iScript cDNA Synthesis Kit (Bio-Rad Labora-
tories) following the protocol provided by the manufacturer.

2.3. Target gene isolation

The target genes M. caerulea VRN1 (McVRN1), D. decumbens VRN1
(DAVRN1), M. caerulea FUL2 (McFUL2), and D. decumbens FUL2
(DdFUL2) were PCR-amplified from ¢DNA using primers designed by
Preston and Kellogg (2006) and McKeown et al. (2016) as well as RT-
qPCR primers created in this study (Table S4). Amplicons were puri-
fied with ExoSAP-IT (Affymetrix), sub-cloned using the pGEM-T Easy
cloning vector system (Promega) and transformed into chemically
competent Escherichia coli JM109 cells (Promega). All steps were per-
formed following the manufacturer’s protocol but using half the reaction
volume for the ligation reaction with 1.5 uL PCR product. After plating
and 24 h of incubation, successfully transformed colonies were picked
from the growth medium. Sub-cloned PCR products were then amplified
from the plasmid vector using M13 forward and reverse primers. Partial
coding sequences were obtained by Sanger dideoxy sequencing per-
formed at the University of Vermont (UVM) Integrative Genomics
Resource using SP6 sequencing primers. Residual plasmid vector
contamination was removed from putative VRN1 and FUL2 sequences
using NCBI's UniVec database (NCBI Resource Coordinators, 2017) and
blastn v2.7.1 (Altschul et al., 1990; Camacho et al., 2009; Zhang et al.,
2000) with default search parameters prior to further analysis.

Target gene sequences for T. triandra were obtained by genome as-
sembly of raw reads of seven genome-skimmed individuals (Dunning
et al., 2017; Olofsson et al., 2016). Sequence data were downloaded
from NCBI's Sequence Read Archive (Leinonen et al., 2011) and
assembled using MaSuRCA v3.2.6 (Zimin et al., 2013) with k-mer length
k = 106 estimated with KmerGenie v1.7051 (Chikhi and Medvedev,
2013), and SOAPdenovo2 r240 for scaffolding (Luo et al., 2012). Target
genes were identified using megablast v2.7.1 (Camacho et al., 2009)
with default search strategy and introns removed manually to obtain
coding sequences. For Bouteloua gracilis, genes were identified by PCR
amplification with primers designed for T. triandra and D. decumbens and
confirmed by Sanger dideoxy sequencing and subsequent phylogenetic
analysis.

2.4. Phylogenetic analysis

Target gene sequences were added to a representative selection of 54
FUL homologs from 32 monocot taxa (McKeown et al., 2016; Preston
and Kellogg, 2006) and realigned using the R package DECIPHER
v2.17.1 (Wright, 2016, 2015). FUL3 sequences were retrieved from
GenBank (Benson et al., 2012) and added to the multiple sequence
alignment with MAFFT v7.505 L-INS-I using the —keeplength and —add
options (Katoh and Standley, 2013). After manual inspection and
adjustment of the alignment, the best nucleotide substitution model was
determined based on AICc calculations by the modelTest function from
the R package phangorn v2.5.5 (Darriba et al., 2012; Schliep, 2011).
Gene trees were inferred using BEAST v1.10.4 (Suchard et al., 2018) and
BEAGLE v3.1.2 (Ayres et al., 2012), assuming an uncorrelated, log-
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normal relaxed clock (Drummond et al., 2006), a general time-
reversible substitution model including gamma distributed rate varia-
tions with four discrete categories, and invariable sites (GTR + I' + [;
Hasegawa et al., 1985; Tavaré, 1986; Yang, 1994), and a Yule two-
parameter prior (Gernhard, 2008; Yule, 1925). Two independent
BEAST analyses were run for 1.0 x 10® generations and sampled every
1,000th generation. Convergence of both runs combined was assessed
using Tracer v1.7.1 (Rambaut et al., 2018) with 25 % of the trees dis-
carded as burn-in. The maximum clade credibility tree was rescaled to
reflect posterior node heights and visualized with ggtree v3.4.0 (Yu
et al., 2017).

2.5. RT-qPCR

To quantify the relative abundance of VRN1 and FUL2 mRNA from
the exemplar taxa D. decumbens ‘SY’, M. caerulea ‘HV’, T. triandra ‘NSW’,
and B. gracilis, gene-specific RT-qPCR primers were designed using
Primer3 v4.1.0 with default settings (Untergasser et al., 2012). Two
housekeeping genes, ELONGATION FACTOR 1a (EF1a) and UBIQUITIN
5 (UBQ5), served as references for the relative quantification and were
amplified using primers designed by McKeown et al. (2016). Amplicon
identity of target and reference genes was confirmed by Sanger dideoxy
sequencing (Eurofins GATC and Azenta GENEWIZ). Primer efficiencies
were determined using a 2-fold dilution series (Schmittgen and Livak,
2008), starting with a 1:10 ¢cDNA dilution. Amplification efficiencies
were between 0.90 and 1.10 for all primer pairs (Bustin et al., 2009;
Pfaffl, 2001).

Transcript abundance was quantified with an Applied Biosystems
7500 Fast instrument (ThermoFisher Scientific; M. caerulea) or a CFX96
Touch Real-Time PCR Detection System (Bio-Rad Laboratories;
B. gracilis, D. decumbens, and T. triandra), using Applied Biosystems SYBR
Select Master Mix (ThermoFisher Scientific) with a total reaction vol-
ume of 10 pL per well. Quantification was carried out on five biological
replicates (except M. caerulea week 8, vernalized, where n = 4 and
B. gracilis week 6, where n = 3) and three technical replicates. Fluo-
rescence data for each gene were pre-processed using the CPP function
from the R package chipPCR v0.0.8-10 (Rodiger et al., 2015). Amplifi-
cation curves were normalized between 0 and 1 and smoothed using a 3-
point Savitzky-Golay filter (Savitzky and Golay, 1964). The slope of the
overall background trend (baseline) was estimated by linear regression
and subtracted from the fluorescence signals (Rodiger et al., 2015).
Quantification cycles were determined by calculating the second de-
rivative centre (geometric mean of the second derivative minimum and
maximum) of the normalized, smoothed and baseline-corrected ampli-
fication curves (Tellinghuisen and Spiess, 2014). Mean expression of
every gene at the first sampling point (week 0) was used as internal
reference to calculate ACy. Target gene expression was then normalized
relative to the geometric mean of EFla and UBQS5 expression (AAC,)
(Vandesompele et al., 2002). All C,; values were corrected by the
amplification efficiency of their corresponding RT-qPCR primers.

2.6. Statistical analyses

Computations and statistical analyses were carried out in R v4.0.2 (R
Core Team, 2020). Flowering data was analyzed using Mann-Whitney u-
tests (Mann and Whitney, 1947). Effects of temperature treatment, time
and interaction between time and treatment on gene expression were
analyzed using two-way ANOVAs using the Im function from R’s stats
package (R Core Team, 2020) omitting data from the reference time
point (week 0). Post-hoc tests were carried out with multcomp v1.4-14
(Hothorn et al., 2008) using Tukey-type contrast matrices to construct
appropriate general linear hypotheses between vernalized and non-
vernalized material after 6 and 8 weeks, respectively.
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3. Results
3.1. Identification of vernalization-responsive species

In total, 12 accessions from seven PACMAD species occurring in the
temperate zone were surveyed in this study (Table S1-S2). Statistical
analysis of differential flowering time was performed for populations
that produced at least five flowering individuals per treatment until the
termination of the experiment after 300 days (12 populations, see
Fig. 1). In 11 of these 12 accessions, vernalized plants flowered signifi-
cantly earlier (P < 0.05; Mann-Whitney u-test) than non-vernalized
plants (Fig. 1). One population of T. triandra (Panicoideae) originating
from Eastern Cape, South Africa (PI 206348; Table S2; ‘ZA1’ in Fig. 1)
was the only flowering accession that did not significantly respond to
vernalization. The strongest response to vernalization was observed in
B. gracilis (Chloridoideae) and one population of M. caerulea (Arundi-
noideae) collected as full-grown plants in Hvaler, south-eastern Norway
(HV’ in Fig. 1).

3.2. Candidate gene identification

For two of the study species (D. decumbens and M. caerulea), partial
coding sequences for VRNI and its paralog FUL2 were obtained by
bacterial plasmid sub-cloning. Subsequent Sanger sequencing from the
vector yielded one 400 bp nucleotide sequence for McVRNI and
DdFUL2. Primers designed for the RT-qPCR assay based on these se-
quences were used to amplify and isolate M. caerulea FUL2 (McFUL2,
using DAFUL2 qPCR primers) and D. decumbens VRN1 (DdVRN1, using
MCcVRN1 gPCR primers). This approach resulted in the amplification of
shorter McFUL2 and DdVRN]1 regions relative to DAFUL2 and McVRN1.
Thus, a 334 bp sequence of DdAVRN1 was isolated, in addition to a 115 bp
amplicon of McFUL2. Partial coding sequences of Themeda triandra
VRN1 (TtVRN1) and FUL2 (TtFULZ2) recovered from genomic DNA were
785 bp and 714 bp long, respectively. Sequences from Bouteloua gracilis
material generated with RT-qPCR primers from D. decumbens had
lengths of 104 bp (BgVRN1) and 159 bp (BgFUL2), respectively.

Identity of newly generated FUL-like nucleotide sequences was
confirmed by generating a gene tree using Bayesian inference. Putative
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VRN1 and FUL2 sequences were placed in two clades together with
VRN1 and FUL2 orthologs from other PACMAD taxa, respectively
(Fig. 2). The topology of the inferred gene tree is congruent with the
results of Preston and Kellogg (2006), whose multiple sequence align-
ment served as the basis for the phylogenetic analysis. Consistent with
previous findings (McKeown et al., 2016; Preston and Kellogg, 2006;
Zhang et al., 2022), strong support for a gene duplication event at the
base of the Poaceae giving rise to the paralogs VRNI and FUL2 was
found in the inferred gene tree. Within the FUL2 clade, the division of
the grass family into early-diverging and ‘crown Poaceae’ (BOP and
PACMAD) is evident and well supported (PP > 0.95; Fig. 2). The division
into lineages above subfamily-level received less support in the VRN1
lineage (PP = 0.73; Fig. 2). Nevertheless, PACMAD taxa formed a
distinct clade. Despite their relatively short length, the putative VRN1
and FUL2 sequences isolated from D. decumbens, B. gracilis, M. caerulea,
and T. triandra were placed with other PACMAD taxa within the pre-
dicted clade (Fig. 2).

3.3. Gene expression in response to vernalization

Based on the hypothesis that FUL-like genes have been indepen-
dently recruited for vernalization responsiveness in PACMAD grasses,
we predicted that VRNI and/or FUL2 transcription would increase
significantly over time only in our cold-treated plants, manifesting in a
significant time point by treatment interaction. Significant effects of
temperature treatment on gene expression were detected for DdAVRN1
and DAFUL2 (P < 0.000, ANOVA, Table S3), whereas sampling time had
a significant effect on McFUL2 (P < 0.05, ANOVA, Table S3). Post-hoc
tests revealed significant differences in gene expression between ver-
nalized and non-vernalized individuals for DdAVRN1 (P < 0.005),
DdFUL2 (P < 0.000) after six and eight weeks, respectively, and McFUL2
after eight weeks (P < 0.05, Tukey’s HSD test) with consistently higher
expression levels in vernalized material. No treatment effects were
found for BgVRNI1, BgFUL2, McVRNI, TtVRNI or TtFUL2 (Fig. 3,
Table S3).
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Fig. 1. Flowering behavior of 12 PACMAD accessions subjected to two different temperature treatments, measured in heat unit-adjusted days to heading (DTHc).
Colored areas represent density of the data and are scaled to resemble sample size, i.e., percentage of flowering plants. Grey rectangles indicate the interquartile
range, lines 95 % confidence intervals, light dots the median, and dark dots outliers. The experiment was terminated after 300 days, and non-flowering individuals
were omitted from the analysis. Significance codes: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 (Mann-Whitney u-test).
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Fig. 2. Maximum clade credibility tree of FUL-
like genes from 38 different monocot taxa
inferred with BEAST. Branch lengths are scaled
to represent relative nucleotide substitution
rates. Sequences generated in this are high-
lighted in bold and other PACMAD taxa are
highlighted in green. Numbers at nodes denote
PP < 0.95 and identifiers are GenBank accession
numbers. (For interpretation of the references to
colour in this figure legend, the reader is
referred to the web version of this article.)

4. Discussion
4.1. Vernalization responsiveness in PACMAD grasses

Significantly hastened flowering was observed in vernalized in-
dividuals of seven species from four different subfamilies (Panicoidae,
Chloridoideae, Arundinoideae, and Danthonioideae), suggesting that
vernalization-cued flowering may be a widespread phenomenon in
temperate PACMAD grasses. Our results corroborate earlier findings on

a few species (Evans and Knox, 1969; Hodgkinson and Quinn, 1978).
Given that the majority of PACMAD taxa occur in tropical and sub-
tropical climates, a vernalization response likely evolved indepen-
dently in different temperate PACMAD lineages, concomitant with their
transition to habitats that experience seasonal cold. Furthermore, recent
estimates place the split between BOP and PACMAD grasses at ~
81.42-80.2 million years ago (Ma) (Huang et al., 2022; Schubert et al.,
2019b), pre-dating the seasonality increase in high latitudes during the
Eocene-Oligocene boundary (Eldrett et al., 2009) that likely triggered
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Fig. 3. Relative expression levels of VRNI and FUL2 in the temperate PACMAD species

B gracilis, D d b Molinia caerulea, and Themeda

triandra with (blue lines) and without (yellow lines) vernalization. Significance codes: * P < 0.05, ** P < 0.01, *** P < 0.001 according to a Tukey’s HSD test
comparing treatments at specific timepoints. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

the evolution of vernalization response in Pooideae (Fjellheim et al.,
2014; McKeown et al., 2016; Preston and Sandve, 2013; Zhong et al.,
2018). Rather than coinciding with a period of cooling, the
BOP-PACMAD partition coincides with a period of global warming
following the Cretaceous thermal maximum (Clarke and Jenkyns, 1999;
Huber et al., 2002; Wilson et al., 2002), which makes the early evolution
of vernalization response at the base of the PACMAD clade unlikely.

In addition to large variation in responses between species, we also
found variation in vernalization responses between populations for
D. decumbens, M. caerula and T. triandra, in line with previous findings
for T. triandra, as well as several Pooideae species (Evans and Knox,
1969; Heide, 1994) (Fig. 1). Vernalization sensitivity has been shown to
follow environmental clines in, for example, Arabidopsis thaliana (Lew-
andowska-Sabat et al., 2012; Mitchell-Olds and Schmitt, 2006; Rii-
himéki and Savolainen, 2004; Wollenberg and Amasino, 2012),
B. distachyon (Schwartz et al., 2010; Tyler et al., 2016), and Phleum
pratense (Fiil et al., 2011). In each case, populations originating from
coastal environments, distinguished by milder winters, had stronger
responses to vernalization than continental populations, suggesting that
the need to time flowering adequately may be greater in environments

with indistinct transitions between seasons. This is congruent with the
flowering behavior observed in M. caerulea, where the coastal Hvaler
population (‘HV’, Fig. 1) turned out to have a stronger vernalization
response than cold-treated individuals originating from a slightly more
continental habitat (Vestmarka/‘VM’, Fig. 1).

4.2. Genetic architecture of the PACMAD vernalization response

Our results suggest that the vernalization pathways of some PAC-
MAD grasses involve genes homologous to the Pooideae vernalization
genes VRNI and FUL2. In M. caerulea, vernalization seems to affect
flowering through the up-regulation of a FUL2-like gene. Whereas
MCcFUL2 transcripts drastically increase following eight weeks of cold,
leaf McVRNI transcription remains low regardless of temperature
treatment. Although it is not possible to entirely discount that McVRN1
is vernalization responsive in other tissues (specifically the SAM), our
data support the independent recruitment of grass-specific FUL-like
paralogs into a vernalization-mediated flowering pathway, possibly
through differential neofunctionalization (Force et al., 1999; Hughes,
1994; He and Zhang, 2005). In D. decumbens, both DdVRN1 and DdFUL2
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are upregulated through vernalization, similar to the case in wheat
(Chen and Dubcovsky, 2012; Li et al. 2019). Although our expression
data indicate that VRN1 and FUL2 are involved in vernalization induced
flowering in PACMAD grasses, we lack functional characterization to
fully demonstrate this. Following this, our expression data preclude
strong conclusions about functional redundancy in the vernalization
pathway. However, VRN1 and FUL2 are known to be functionally
redundant in other contexts, such as in promoting the floral transition
(Yang et al., 2021). Functional redundancy among FUL-like genes might
provide flexibility for fine-tuning flowering responses to specific envi-
ronmental conditions. Although T. triandra TtVRN1 and TtFUL2 showed
the expected trend of upregulation in response to cold, further sampling
is warranted in the face of our non-significant results. In contrast, gene
expression patterns of BgVRN1 or BgFUL2 do not support the recruit-
ment of VRN1/FUL2 paralogs into the vernalization pathway, begging
the question as to whether other grass FUL-like genes (FUL3 and FUL4)
might be involved (cf. Li et al., 2019).

The propensity of FUL-like genes to be repeatedly co-opted into the
vernalization pathway might stem from their ancestral function(s). In
the case of VRN1 and FUL2, their pre-duplication ancestor is inferred to
have been involved in determining floral meristem identity (Gu et al.,
1998; Litt and Irish, 2003; Preston and Kellogg, 2007; Theifen et al.,
1996). Comparative RNA in situ hybridization indicates that all FUL-like
genes are strongly expressed in spikelet and floret meristems (Dan-
ilevskaya et al., 2008; Ergon et al., 2013; Gocal et al., 2001; Li et al.,
2016; Preston and Kellogg, 2008, 2007; Yang et al., 2021), emphasizing
their conserved, ancestral role in determining inflorescence meristem
identity (Preston et al., 2009; Preston and Kellogg, 2007). In BOP
grasses, VRN1 is expressed in all floral whorls of the inflorescence
meristem and postulated to specify overall meristem identity (Gocal
et al., 2001; Kinjo et al., 2012; Moon et al., 1999; Preston and Kellogg,
2007), congruent with E-class transcription factors in the ABCDE model
of floral development (Callens et al., 2018; Theifen, 2001). On the other
hand, FUL2 is proposed to work with VRNI to exert a more specific
function by regulating the differentiation of whorl-primordia into
particular anatomical structures in numerous species (Ferrandiz et al.,
2000; Gocal et al., 2001; Gu et al., 1998; Preston and Kellogg, 2008,
2007; Wu et al., 2017; Yang et al., 2021). These data support the hy-
pothesis that the ancestral FUL-like gene was involved in mediating the
transition to inflorescence development (Preston et al., 2009), and that
the cold-induced up-regulation and subsequent co-option of VRN1I into
the Pooideae vernalization pathway is a derived trait (Li et al., 2016;
McKeown et al., 2016; Preston et al., 2009; Preston and Kellogg, 2007).

Duplication and expansion of FUL-like genes at the base of the Poa-
ceae has led to sub- and neofunctionalization among FUL-like paralogs,
resulting in distinct expression patterns and developmental roles of
VRN1 and FULZ2 during inflorescence development (Preston et al., 2009;
Preston and Kellogg, 2007). Up-regulation of McFUL2 in M. caerulea and
DdFUL2/DdVRN1 in D. decumbens during vernalization might be another
example of independent recruitment of closely related genes. In this
case, we hypothesize that FUL-like gene recruitment has been a key
mechanism underlying convergent origins of a complex physiological
adaptation, like the parallel co-option of paralogous genes in convergent
evolution of cold tolerance (Sandve and Fjellheim, 2010; Schubert et al.,
2019a; Vigeland et al., 2013), C4 photosynthesis (Christin et al., 2009),
and floral zygomorphy (Hileman, 2014).

An interesting aspect of our study warranting further investigation is
the timing of VRN1/FUL2 recruitment into the PACMAD vernalization
pathway. In Pooideae, the regulon perceiving, amplifying, and trans-
mitting the vernalization signal is mostly conserved (although, see
Woods et al., 2017), and is posited to have evolved after the origin of the
subfamily (McKeown et al., 2016). This opens up the possibility that the
recruitment of VRNI/FUL2-mediated vernalization in the different
PACMAD subfamilies happened more recently in these clades as adap-
tations to increased temperature seasonality, and hence was temporally
independent of the VRN1/FUL2 co-option in Pooideae. Although FUL-
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like genes have often been recruited into the regulatory pathway
conferring vernalization response, other genes might be involved in
vernalization-responsive species where neither VRN nor FUL2 are cold
responsive. This supports the hypothesis of multiple independent origins
of vernalization response in PACMAD grasses harnessing different ge-
netic mechanisms.

5. Concluding remarks

Taken together, our results provide a basis for the evolutionary and
functional analysis of vernalization response and its underlying genetic
machinery in PACMAD grasses. A vernalization response was detected in
species from all four PACMAD subfamilies tested. We found evidence
consistent with one or both VRN1/FUL2 paralogs being involved in
vernalization-mediated flowering of M. caerulea (Arundinoideae) and
D. decumbens (Danthonioideae), and perhaps also T. triandra (Pan-
icoideae). This suggests that VRN1, FUL2, and possibly other FUL-like
genes like FUL3 and FUL4 (Chen and Dubcovsky, 2012; Li et al., 2019;
Yang et al., 2021) are easily co-opted into adaptations to deal with
increased temperature seasonality.
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Tables

Supplementary Table S1: Overview over the seven accessions retrieved from the United States
Department of Agriculture (USDA) Germplasm Resource Information Network (GRIN).

Species (Abbreviation) Subfamily GRIN ID Country Location
Bouteloua curtipendula Chloridoideae PI 476980 USA South Dakota
Bouteloua gracilis Chloridoideae PI591814 USA South Dakota
Calamovilfa longifolia Chloridoideae W6 50718  USA Nebraska
Muhlenbergia wrightii Chloridoideae PI 674964 USA Colorado
Themeda triandra (NSW) | Panicoideae PI 281968  Australia New South Wales
Themeda triandra (ZA1) Panicoideae P1206348  South Africa Eastern Cape
Themeda triandra (ZA2) Panicoideae PI1365061  South Africa Limpopo

Supplementary Table S2: Sampling locations for Danthonia decumbens and Molinia caerulea.

Species (Abbreviation) Subfamily Latitude Longitude  Country  Location

Danthonia decumbens (HV) — Danthonioideae  59.08259  11.03726 Norway  Kirkey, Hvaler
Danthonia decumbens (SY)  Danthonioideae  59.90340 10.29282 Norway  Altanasen, Sylling
Danthonia decumbens (VE) ~ Danthonioideae  61.49140  5.39683 Norway  Vevring kyrkje, Vevring
Molinia caerulea (HV) Arundinoideae 59.08860 11.03807 Norway Kirkey, Hvaler

Molinia caerulea (VM) Arundinoideae  59.94413 11.99221 Norway  Jerpset,Vestmarka




Supplementary Table S3: Test statistics and post-hoc contrasts for linear models calculating the
effects of temperature treatment and sampling time point on relative gene expression of VRN/ and
FUL2 in the temperate PACMAD species Bouteloua gracilis, Danthonia decumbens, Molinia
caerulea, and Themeda triandra.

B. gracilis D. decumbens M. caerulea T. triandra
VRN1 F-value P-value F-value  P-value F-value P-value F-value P-value
ANOVA 2.525 0.1069 13.61 0.0001 1.852 0.1842 0.5095  0.6813
Treatment 1.0332  0.32946 39.0900 0.0000 0.1619  0.69346 1.1931  0.2909
Timepoint 0.4382  0.52050 0.8156  0.3799 3.3314  0.08938 0.0001  0.9922
Timepoint x Treatment 6.1040  0.02946 0.9232  0.3509 2.0625 0.17293 0.3355  0.5705
Post-hoc (Tukey’s HSD) t-value  P-value t-value  P-value t-value  P-value t-value  P-value
Week 6: vernalized vs. control 3.742 0.003527
Week 8: vernalized vs. control 5.100 0.000213
FUL2 F-value P-value F-value  P-value F-value P-value F-value P-value
ANOVA 0.3945  0.7593 45.73 0.0000 4.081 0.02818 0.3293  0.8042
Treatment 0.0291  0.8674 136.6377 0.0000 3.7352  0.07377 0.6052  0.4480
Timepoint 1.0365  0.3287 0.3051 0.5884 5.5452  0.03365 0.0285  0.8681
Timepoint x Treatment 0.1180  0.7371 0.2528  0.6219 2.9623 0.10724 0.3544  0.5600
Post-hoc (Tukey’s HSD) t-value  P-value t-value  P-value t-value  P-value t-value  P-value
Week 6: vernalized vs. control 7.910 0.0000 0.293 0.9471
Week 8: vernalized vs. control 8.621 0.0000 2.571 0.0431




Supplementary Table S4: RT-qPCR primers used for gene expression analysis.

Name Sequence (5’-3°) Direction Gene Reference
McVRNI1_29F GTCGCGCTCATCATCTTCTC forward McVRNI

McVRNI1_190R TCTATATTCGTGGCGCCAGT reverse McVRN1

TtFULI1-127A_F  GTCGCGCTCATCATCTTCTC forward TtVRN1

TtFUL1-190A_R  CCATGCATGAATCGGTGGAG reverse TtVRN1

FULI1-14F GTGCAGCTGAAGCGGATC forward DAVRNI, BgVRN1

FULI-121R TCGCAGAGCACGGAGATC reverse DdAVRNI, BgVRNI

FUL2-123F GGTCGCCGTCATCGTCTT forward DdFUL2, BgFUL2

FUL2-281R TCATGGCACCAATTTCCCTC reverse DdFUL2, BgFUL2

McFUL2 F212 ATTCGTGGCACCAATTTCCC forward McFUL2

McFUL2_R363 CGTCATCGTCTTCTCCCCAA reverse McFUL2

TtFUL2-474A_F = CAGGCACAGACAAGCTCATC forward TtFUL2

TtFUL2-526A R TGCTGATCCTGCCTCATCAT reverse TtFUL2

GrassUBQSF CGCCGACTACAACATCCAG forward UBQ?3, all species McKeown et al. (2016)
GrassUBQ5R TCACCTTCTTGTGCTTGTGC reverse UBQS, all species McKeown et al. (2016)
EFla_594F GTGACAACATGATTGAGAGG forward EFla, all species McKeown et al. (2016)
EFla_1064R AGGTGTGGCAGTCCAGCACTG reverse EFla, all species McKeown et al. (2016)
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Abstract

The external cues that trigger timely flowering vary greatly across tropical and temperate plant taxa, the latter rely-
ing on predictable seasonal fluctuations in temperature and photoperiod. In the grass family (Poaceae) for example,
species of the subfamily Pooideae have become specialists of the northern temperate hemisphere, generating the
hypothesis that their progenitor evolved a flowering response to long days from a short-day or day-neutral ancestor.
Sampling across the Pooideae, we found support for this hypothesis, and identified several secondary shifts to day-
neutral flowering and one to short-day flowering in a tropical highland clade. To explain the proximate mechanisms
for the secondary transition back to short-day-regulated flowering, we investigated the expression of CCT domain
genes, some of which are known to repress flowering in cereal grasses under specific photoperiods. We found a shift
in CONSTANS 1 and CONSTANS 9 expression that coincides with the derived short-day photoperiodism of our exem-
plar species Nassella pubiflora. This sets up the testable hypothesis that trans- or cis-regulatory elements of these
CCT domain genes were the targets of selection for major niche shifts in Pooideae grasses.

Keywords: CCT domain genes, CONSTANS-like genes, flowering, grasses, photoperiod, Pooideae, VRN2.

Introduction shoot apical meristem (SAM) throughout the lifetime of the
plant. In the non-equatorial tropics, shortening photoperiods
signal that the rainy season or monsoon is coming to an end,
resulting in flowering of short-day grasses (Poaceae) such as rice
(Oryza sativa) and maize (Zea mays) at the end of the greening

: - - period, prior to the extreme heat of summer (Naranjo ef al.,
different external (e.g. photoperiod and temperature) and in- 2014; Mascheretti et al., 2015; Preston and Fjellheim, 2020).
ternal (e.g. age and hormone) signals that are integrated at the

The ability of plants to coordinate flowering with favorable en-
vironmental conditions results in optimization of reproductive
fitness through increased seed set and survival (Greenup ef al.,
2009). The exact timing of flowering is determined by several
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In contrast, lengthening photoperiods during the impending
warm season of temperate regions trigger flowering in long-
day plants such as the grasses wheat (Triticum aestivum) and
barley (Hordeum vulgare), circumventing the negative effects of
winter freezing (Nishida ef al., 2013; Chen ef al., 2014). Pho-
toperiodicity in flowering is thus a good predictor of current
plant distributions (Zhang et al., 2015; Preston and Fjellheim,
2020), but the evolutionary genetic basis of switches between
long- and short-day responses is not well understood.

Similar to angiosperms as a whole (Hochuli and Feist-Bur-
khardt, 2013; Mannion et al., 2014), the grass family evolved
when the terrestrial Earth was largely tropical (Burke et al.,
2016; Gallaher ef al., 2019; Schubert et al., 2019a), suggest-
ing that the ancestor would either have flowered under short
days or been daylength neutral (Preston and Fjellheim, 2020).
Indeed, of the ~12 000 extant grass species (Soreng ef al.,
2015), the majority remain in the tropics, with only a couple
of major subfamilies—Danthonioideae and Pooideae—domi-
nating southern and northern temperate regions, respectively
(Edwards and Smith, 2010; Visser et al., 2014; Schubert ef al.,
2020). Evidence suggests that the ability of an early Pooideae
ancestor to respond to inductive photoperiods was contingent
upon receiving a prolonged period of winter cold (vernaliza-
tion) (McKeown ef al., 2016), although data also suggest later
modifications to this ancestral vernalization pathway (Woods
et al., 2016). It is further hypothesized that the last common
ancestor of Pooideae evolved from a daylength-neutral/short-
to a long-day plant, the mechanisms underlying which are un-
known (Preston and Fjellheim, 2020).

Comparative analyses across both long- and short-day
angiosperms have revealed remarkable conservation in the
photoperiod flowering pathway, suggesting that flowering in
response to different daylengths evolved through fine-tuning
of a shared ancestral pathway (Andrés and Coupland, 2012;
Matsubara et al., 2014). Central in this pathway is the florigen
FLOWERING LOCUS T (FT). FT and related proteins act
as universal signals to integrate flowering pathways and pro-
mote reproduction. Crucial for perception of photoperiod are
various light receptors, one of which is PHYTOCHROME
C (PHYC). PHYC is a weak floral repressor in short days in
rice (Takano ef al., 2005), whereas it promotes flowering under
long days in barley and Brachypodium distachyon (Nishida et al.,
2013; Woods et al., 2014). Another gene family that has been
implicated in fine-tuning flowering is the CCT [CO, CO-
LIKE, and TIMING OF CAB EXPRESSION 1 (Robson
et al.,2001)] domain gene family of transcription factors, with
nine members in long-day barley (Pooideae) and 16 mem-
bers in short-day rice (Oryzoideae) (Griffiths ef al., 2003; Song
et al., 2015). Examples of CCT domain-containing genes
implicated in intraspecific variation in flowering responses are
barley PHOTOPERIOD 1 (PPD1) and its ortholog PSEU-
DORESPONSEREGULATOR 37 (PRR37) in rice, barley
CO1 and CO2 and their ortholog HEADING DATE 1 (Hd1)
in rice, COY, and barley VERNALIZATION 2 (VRN2) and

ortholog Grain number, plant height, and heading date 7 (Ghd7 or
Osl) in rice (Komiya et al., 2008; Xue et al., 2008; Stracke et al.,
2009;Takahashi et al.,2009; Lu et al.,2012; Koo ef al.,2013;Wei
et al., 2014; Zhang et al., 2015; McKeown ef al., 2016; Zheng
et al.,2016; Zhang et al., 2017; Shaw et al., 2020).

Like its CO ortholog in Arabidopsis thaliana (Brassicaceae),
CO1 in barley and wheat is up-regulated in the afternoon by
the PHYTOCHROME A and B (PHYA/B)-mediated circa-
dian clock under both long- and short-day conditions (Cam-
poli et al., 2012; Mulki and von Korff, 2016). In A. thaliana,
photoperiod regulation through CO occurs at the protein
level in the presence of light-induced stabilizing proteins,
resulting in the up-regulation of FT to induce flowering only
under long days (Yanovsky and Kay, 2002;Valverde et al., 2004;
Hayama et al., 2017). Although it has not been confirmed
that similar light-induced protein stabilization exists for CO1,
genetic evidence from barley and wheat cultivars with non-
functional PPD1 alleles has shown that this protein also pro-
motes flowering under long-day conditions, concomitant with
peak expression in the light (Campoli ef al., 2012; Mulki and
von Korff, 2016; Shaw et al., 2020). On the other hand, in the
presence of functional PPD1 and VRN2 alleles, at least wheat
CO1 is converted to a mild floral repressor under long days to
prevent precocious pre-winter flowering, probably as a result
of protein—protein interactions between PPD1, CO1, CO2,
and possibly VRIN2 (Shaw et al., 2020).

In rice, the CO1 ortholog Hd1 is also assumed to be regu-
lated by light- and dark-dependent proteins, and also forms an
Hd1/CO1-PRR37/PPD1-Ghd7/VRN2 protein complex
under long days to repress flowering via repression of Early
heading date 1 (Ehd1) and hence FT/Hd3a (Grifhiths et al.,
2003; Xue et al., 2008; Zhang et al., 2015; Fujino et al., 2019).
Together with the fact that rice Hd1 and wheat CO2 promote
and repress flowering under short days, respectively, these data
support a role for changing CO-like protein interactions in
transitions between short-day, day-neutral, and long-day flow-
ering photoperiodism (Kitagawa ef al., 2012; Song et al., 2015;
Mulki and von Korff, 2016).

In addition to positively and negatively regulating FT (also
named VVRN3;Yan et al., 2006) in barley and wheat, CO1 and
CO2 are involved in a regulatory feedback loop with VRIN2
(Mulki and von Korft, 2016). V'RN2 is a monocot-specific re-
pressor of flowering that is negatively regulated by vernaliza-
tion in the large ‘core’ Pooideae clade, comprising species such
as wheat, ryegrasses (Lolium sp.), and oats (Avena sp.). How-
ever, 'RN2 is not down-regulated in response to cold in other
‘non-core’ Pooideae clades, including vernalization-respon-
sive B. distachyon (Woods ef al., 2016). Under long days of the
early autumn, winter barley I'RN2 is strongly up-regulated
in leaves by the action of CO1, CO2, and PPD1 (Distelfeld
et al.,2009). Overexpression of CO1 and CO2 in spring barley
results in up-regulation of IV'RN2, leading to delayed flowering
in both long and short days (Mulki and von Korff, 2016). In
turn, VRIN2 negatively regulates CO1/2 and PPD1, thereby



dampening its own expression (Mulki and von Korff, 2016).
As winter approaches, low-temperature-induced expression of
the flowering promoter VERNALIZATION 1 (VRN1; Oliver
et al., 2009) results in the gradual repression of IV'RN2, and a
concomitant increase in FT, partly mediated by CO1/2 and
PPD1 (Song et al., 2015; Mulki and von Korft, 2016).

COY is a grass-specific paralog of VRN2/Ghd7 (Woods
et al.,2016), and overexpression in rice suggests that it acts as a
floral repressor (Kikuchi ef al., 2012). Based on expression and
functional analyses, this occurs under both short and long days,
where transcript abundance peaks early after dawn (Kikuchi
et al.,2012). Since barley IV'RIN2 is expressed at its highest level
towards the end of the light period (Trevaskis et al., 2006), and
rice Ghd7 is expressed at high levels throughout the light pe-
riod (Xue ef al., 2008), these data suggest evolution of 'RN2/
COY genes in terms of both photoperiodic and circadian reg-
ulation following both duplication and speciation events.

Here, we reconstruct the evolution of photoperiodic flow-
ering in Pooideae to test the hypothesis that flowering in re-
sponse to long days evolved early in the subfamily and hence
facilitated a range shift into northern temperate regions. We
show that ancestral Pooideae was probably long day responsive,
and that a secondary transition back to tropical climates was
coincident with a shift back to short-day flowering. To deter-
mine if this derived short-day responsiveness can be explained
by changes in the (co-)expression of CCT domain genes, we
assess relative transcript levels for long- and short-day light—
dark cycles across time in exemplar long- and short-day flow-
ering species.

Materials and methods

Plant growth and experimental conditions

Forty-seven Pooideae species (13 core and 34 non-core) and the
outgroup Ehrharta calycina from subfamily Oryzoideae (Supplemen-
tary Table S1) were selected to represent phylogenetic and geographic
diversity across Pooideae. The plants were grown under different
treatment conditions to score for long-day, short-day, or day-neutral
flowering. Fifteen plants were grown per treatment. All seeds were
stratified in moist soil (Gartnerjord, Tjerbo Torvfabrikk AS, Rakkes-
tad, Norway) in complete darkness for 6 d, first under 4 °C for 5 d,
followed by 1 d at room temperature. Seeds were then transferred to
an open greenhouse in long days (16 h light:8 h dark) at 17 °C and
grown for 4 weeks before the plants were randomized and assigned
to one of four treatments: 17 °C short days (8 h light:16 h dark), 17
°C long days, 4 °C short days, or 4 °C long days for 12 weeks. We
included vernalization in two of the treatments to see the effect of
photoperiod even in vernalization-responsive species. All short- and
long-day-grown plants were then maintained in short or long days,
respectively, at 17 °C until flowering (calculated as days to heading) or
termination of the experiment at 200 d. The experiment was repeated
following the same conditions, except for reduction of the vernaliza-
tion period to 8 weeks, switching the upper temperature to 20 °C, and
termination of the experiment at 120 d. Light intensity under vernal-
ization was 50 £ 5 umol m 2 s™', and for all other conditions it was
150 + 10 pmol m™ s™". Light used in the experiment was produced
by HQI lightning systems (LU400/X0O/T/40 Philips Osram, General
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Electric, Hungary) giving a red/far-red ratio of 1.8 + 0.2. Plants were
watered and fertilized (water containing 4% Yara Kristalon Indigo and
3% YaraTera Calcium Nitrate,Yara Norway AS), adjusted to an electron
conductivity of 1.5 as needed, and moved to a new position twice a
week within the chamber.

To investigate more closely molecular responses to different photo-
periods, two non-core Pooideae species in tribe Stipeae, long-day Olop-
tum miliaceum (USDA GRIN PI207772) and short-day Nassella pubiflora
(USDA GRIN PI478575), and the long-day flowering Meliceae spe-
cies Melica ciliata (Millennium Seed Bank 31675) were chosen for a
follow up-experiment based on results from the first growth experiment.
Ehrharta calycina (USDA GRIN PI1284803 and PI578674) from the sub-
family Oryzoideae was included as an outgroup. None of these species
had an absolute vernalization requirement. Growth experiments were
performed in two Conviron CMP6010 (Conviron, Winnipeg, Canada)
growth chambers. Approximately 160 seeds of each of M. ciliata, N. pubi-
flora, and O. miliaceum, and 88 seeds of E. calycina were sown on moist
filter paper and stratified under darkness for 4 d at 4 °C followed by 1 d
at room temperature. Seeds were then planted in Metro-Mix 380, grown
under long days at 20 °C for 4 weeks, and randomly assigned either to a
long-day 20 °C or short-day 20 °C treatment until flowering, death, or
termination of the experiment. For each plant, days to heading, number
of leaves on the main stem at flowering, and tillers at flowering were
recorded. The top fully expanded leaf of at least three plants without re-
peated measures were sampled at 2, 16, and 30 d after the initial 4 weeks
growth under long days at 2, 8, 14, and 20 h post-dawn (ZT).

DNA extraction and sequencing

Genomic DNA was extracted from leaf material using the DNeasy Plant
MiniKit (Qiagen, Valencia, CA, USA), following the manufacturer’s pro-
tocol. We obtained sequences for three DNA plastid regions matK, ndhF,
and rbcL, using custom Pooideae-specific primers (Schubert ef al., 2019a;
Supplementary Table S2). PCR was performed on a Tetrad 2 Thermal
Cycler (Bio-Rad, Hercules, CA, USA) and a Mastercycler ep Gradient
Thermal Cycler (Eppendorf, Hamburg, Germany) using JumpStart
REDTaq ReadyMix (Sigma-Aldrich, St. Louis, MO, USA) and standard
conditions with 58 °C annealing and 2 min extension. PCR products
were Sanger-sequenced in both directions using the same primers as for
PCR. Chromatograms and sequences were inspected in BioEdit (Hall,
1999), and automatic alignments generated with manual adjustments
(Supplementary Datasets S1-S3).

Ancestral state reconstruction of flowering responses

Phylogenetic trees were generated for the concatenated matK, ndhF,
and rbcL chloroplast dataset in MrBayes on XSEDE (Miller et al., 2010)
implemented through the CIPRES Science Gateway v.3.3. The dataset
was partitioned by gene, rooted with sequences from maize (Zea mays
ssp. mays), and run twice for 10 million generations sampling every 1000
generations, with four chains, 25% burn-in, and other default param-
eters. The consensus tree was visualized in FigTree v1.4.3 (http://tree.
bio.ed.ac.uk/software/figtree/) and edited in Adobe Ilustrator CS6. To
account for uncertainty in topology prior to ancestral state reconstruc-
tion, 200 rooted trees with branch lengths were collated from the two
independent runs as input for BayesTraits v2 (Pagel et al., 2004; Pagel and
Meade, 2006). BayesTraits was run using the Multistate function, and a
one-rate/symmetrical model was chosen based on results of stepping-
stone estimation comparing symmetrical and asymmetrical state tran-
sition models. Markov chain Monte Carlo (MCMC) analyses were run
with 10 million generations, sampling every 1000th generation, with a
burn-in of 25%. Trait states for all internal nodes in the Bayesian con-
sensus tree were inferred by calculating the means of posterior probability
distributions for each node.
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Scanning electron microscopy

To document if differences in time of transition reflect the flowering
phenotype, we chose a representative subset of our focal species to inves-
tigate this at the level of SAM development under different photoperiods.
‘We documented the developmental stage of O. miliaceum, N. pubiflora, and
E. calycina SAMs across time points and treatments by dissecting meri-
stems and subjecting them to SEM. At 2, 16,27, and 41 d after onset of
treatment, three SAMs from each species were fixed in formalin acetic
acid (FAA) (50% ethanol, 5% glacial acetic acid, 10% of 37% formalde-
hyde) solution for 8-12 h. Following this, meristems were progressively
transferred in five steps from 50% to 100% ethanol before critical point
drying. Meristems were mounted on stubs, sputter coated with argon,
and photographed using a JEOL 6060 SEM with an accelerating voltage
of 25 kV.

RNA extraction, cDNA synthesis, and quantitative PCR

Leaves of M. ciliata, O. miliaceum, N. pubiflora, and E. calycina were flash-
frozen in liquid nitrogen, stored at =80 °C, and later macerated for RNA
extraction using TriReagent (Ambion, Thermo Fisher Scientific, Wal-
tham, MA, USA) followed by removal of DNA by DNase treatment with
the TURBO DNA-free kit (Ambion). cDNA was then synthesized from
500 ng of RNA using the iScript cDNA synthesis kit (Bio-Rad, Her-
cules, CA, USA). All procedures followed the manufacturer’s instructions.

A COY ortholog from E. calycina and VRN2 orthologs from N. pubi-
flora and O. miliaceum were amplified in a standard PCR with cDNA
pooled across time points and treatments for each species using previ-
ously published (Woods et al., 2016), as well as newly designed, primers
(see Supplementary Table S2). Amplicons were ligated into pGEM-T
(Promega, Madison, WI, USA), plasmids used to transform compe-
tent DH5a Escherichia. coli cells, and ~10 clones were sequenced per
amplicon by the Advanced Genomes Technology Core at The Univer-
sity of Vermont. VRN2 from M. ciliata has previously been published
(Woods et al., 2016).To identify orthologs of CO9 from O. miliaceum, N.
pubiflora, and M. ciliata, as well as orthologs of PPD1, CO1, and PHYC
from all Pooideae species, we generated transcriptomes for each spe-
cies from leaves sampled in both conditions throughout a 24 h cycle.
Briefly, leaves were flash-frozen in liquid nitrogen, and total RNA was
extracted from homogenized tissue using the RNeasy Plant Mini Kit
(Qiagen) including purification using the Invitrogen TURBO DNA-
free kit (Thermo Fisher Scientific). Sequencing libraries with an insert
size of 350 bp were constructed with the TruSeq Stranded mRNA Li-
brary Prep kit (Illumina, San Diego, CA, USA). Library preparation and
paired-end sequencing was carried out by the Norwegian Sequencing
Centre (NSC) at the University of Oslo on an Illumina HiSeq 4000
System (Illumina) with 150 bp reads. Read trimming and quality as-
sessment of the transcriptomes followed Schubert et al. (2019b). The
target sequences were identified through a BLAST search against the
transcriptomes from the respective species using verified sequences from
H. vulgare as queries (Supplementary Datasets S4-S7).

Nucleotide sequences of PHYC, PPD1, CO1/CO2/Hd1, VRN2/
Ghd7, or CO9 were identified in model grass species through BLAST
searches using verified sequences from H. vulgare as queries (see Supple-
mentary Datasets S4-S7). To verify orthology, new sequences from our
focal species were aligned with sequences of model species using MAFFT
(Katoh and Standley, 2013) followed by manual adjustments, and max-
imum likelihood phylogenetic analysis using PHYML through NGPhy-
logeny.fr using default parameters and 500 bootstrap replicates (Dereeper
et al., 2008; Lemoine et al., 2019).

For each target gene and focal species, we designed primers for quan-
titative reverse transcription—PCR (RT—qPCR) (Supplementary Table
S2). Primers for VRN3 and the housekeeping genes UBIQUITIN 5
(UBQS5) and ELONGATION FACTOR 1a (EFla) were either pre-
viously published (Ream et al., 2014) or designed based on conserved

regions in alignments of Lolium perenne, wheat, and Oryza brachyantha
or rice, whereas VRN2 primers were constructed based on previously
published alignments (McKeown et al., 2016). All new primers were
designed using Primer3 (Rozen and Skaletsky, 2000), and the amplifi-
cation efficiency of each primer pair was determined using a dilution
series as previously described (Scoville ef al., 2011). To quantify relative
gene expression, target gene critical threshold ¢(T) values were normal-
ized against the geometric mean of the two housekeeping genes after
correction for primer efficiency with three technical and at least three
biological replicates.

Western blot

An alignment was made of translated transcript sequences of CO9 and
IVRN2 from N. pubiflora, O. miliaceum, and M. ciliata as well as a selec-
tion of other grass species (Supplementary Dataset S8). Polyclonal
antibodies were constructed for N. pubiflora and O. miliaceum (anti-
genic peptide sequence RRGMRCGVADLNRGC) and M. cliata (a
mix of the antigenic peptide sequences AGRRCGVAADLNLRC and
VDQQEPAVIGGGGAC) to avoid cross-reactivity with VRIN2. Leaf
tissue was sampled from three biological replicates of each species sub-
jected to long or short days at ZT2, 8, 14, and 20 one week after start
of treatment, as previously described. Approximately 100 mg of tissue
was ground in liquid nitrogen using a mortar and pestle, before adding
200 ul of DTE extraction buffer [3 mM DTT, 20 mM sucrose, 3 mM
Na,CO;, 0.5% SDS, 1 mM EDTA, and 1:100 v/v of protease inhibitor
cocktail (Sigma)]. Each sample was mixed briefly by vortexing, sonicated
for 2.5 min (5 s on, 5 s off for a total of 5 min), and centrifuged at 12 000
¢ for 20 min at 4 °C.The supernatant was then transferred to a fresh tube
and centrifuged for another 15 min. A 50 pl aliquot of the supernatant
was precipitated using 500 ul of 10% trichloroacetic acid (TCA), and
centrifuged at maximum speed (20 000 g) for 10 min at 4 °C.The liquid
was removed, and the pellet left to air-dry before being dissolved in 0.1%
NaOH.The concentration of protein extract was measured using a Qubit
protein assay kit after adding 1:1 volume of 2X Laemmli sample buffer
containing 5% B-mercaptoethanol. Three technical replicates of protein
extract were incubated at 75 °C for 10 min, put briefly on ice, and cen-
trifuged at 12 000 ¢ for 1 min at 4 °C.

A 25 pg aliquot of protein was applied to a 12% Mini-PROTEAN®
TGX Stain-Free™ Precast Gel, using 3 pl of Precision Plus Pro-
tein Unstained Standard as a marker. The gel was run at 200 V for
40-45 min in 1X Tris/Glycine/SDS buffer (Bio-Rad), UV-activated
for 1 min using GelDoc Stain Free gel application, and the proteins
blotted onto a 0.2 um polyvinylidene difluoride (PVDF) membrane
using the Trans-Blot Turbo Mini 0.2 pm PVDF Transfer Packs (Bio-
Rad) and Trans-Blot® Turbo™ Transfer System (Bio-Rad). The Turbo
program was set at 25V and 2.5 mA for 3 min, and the membrane was
analyzed using GelDoc Stain Free Blot application for loading control
and normalization as per the manufacturer’s instructions. After being
left to air-dry, the membrane was activated for 3 min with methanol
and blocked in 2% dry milk solution in 1X TBS-T (500 mM NacCl,
20 mM Tris=HCI pH 7.5) for 1 h at room temperature. After washing
twice for 10 min in TBS-T, the membrane was incubated with primary
antibody diluted in blocking solution at 4 °C overnight. Dilutions
were 0.25 pg ml™" for N. pubiflora and 0.5 pg ml™ for O. miliaceum.
Following this, membranes were washed for 6 X 10 min in TBS-T
followed by incubation for 1 h at room temperature with a 1:1000 di-
lution of mouse anti-rabbit horseradish peroxidase (HRP)-conjugated
secondary antibody (SC-2357 Santa Cruz Biotechnology, Dallas, TX,
USA). Subsequently, the membrane was washed 6 X 10 min in TBS-T
and the signal was developed using Clarity™ Western ECL Substrate
(Bio-Rad). After visualizing the signal using the GelDoc Chemi ap-
plication, quantitation and analysis were performed using the Image
Lab 6 software.



Statistical analyses

To capture both qualitative and quantitative variation in flowering be-
havior across species, we calculated both the proportion of individuals
flowering per treatment and absolute dates to heading per treatment. In
cases where flowering consistently occurred in the absence of vernaliza-
tion, we used non-vernalized long- and short-day-treated plants to cal-
culate the photoperiod response. However, when plants had an absolute
requirement for vernalization to flower, we used vernalized long- and
short-day-treated plants to calculate the photoperiod response. We classi-
fied species as long day responsive if the proportion of individuals flow-
ering was significantly more (P<0.05 as determined by a ) test), and/or
days to heading was significantly less (P<0.05 determined by a two-tailed
t-test) in long as compared with short days, and vice versa for short-day-
responsive species.

For the relative gene expression data, two-way ANOVAs were per-
formed with expression of PHYC, PPD1, CO1, VRN2, and CO9 as de-
pendent variables, and treatment and ZT time as independent variables.
We removed the effect of sampling day (samples were taken at days 2,
16, and 30 after onset of treatment) by centering and standardizing ex-
pression data for all days using the ‘scale’ and ‘center’ functions in R.This
was repeated for all genes and species, except for VRN3 that is expected
to increase in expression only after receiving several upstream inductive
signals; in this case, expression was analyzed over the three sampling days
separately. Analyses were done using both raw and transformed data, and
analyses where the residuals best fitted a normal distribution were chosen
for further interpretation. To investigate the effect of photoperiod on ex-
pression at specific time points, we performed post-hoc contrasts for all
species, genes, and time points. All ANOVAs and post-hoc tests were car-
ried out in R (RCoreTeam, 2016) using the stats and emmeans (Lenth,
2021) packages.

Each western blot was run with one complete set of samples from
both treatments from one species, with three technical replicates. Three
biological replicates were run per species. One of the replicates of
M. ciliata produced smeared bands and we were unable to quantify protein
abundance. As values cannot be compared directly across different blots,
we removed the effect of blotting gels by centering and standardizing the
protein expression data per blot using the ‘scale’ and ‘center’ functions in
R, before averaging over technical replicates, and the biological repli-
cates for each time points in each treatment. Graphs of mRNA and pro-
tein abundance were plotted in R (RCoreTeam, 2016), using packages
ggplot2 (Wickham, 2016), tidyverse (Wickham et al., 2019), ggalt (Rudis
et al., 2017), and patchwork (Pedersen, 2019). We visually inspected the
resulting graphs to find the diurnal expression pattern.

Results
Long-day flowering evolved early in Pooideae

Of the 47 Pooideae species tested for flowering responses to
different photoperiods, we characterized 21 as long day re-
sponsive, five as short day responsive, and five as day neutral. For
the remaining species, five (Diarthena obovata, Duthiea brachy-
podium, Hesperostipa spartea, Nassella neesiana, and Schizachne
purpurascens) failed to give a statistically clear response due to
too few individuals flowering, and 11 species were completely
non-flowering (Ampelodesmos mauretanicus, Brachypodium pinna-
tum, Brachypodium sylvaticum, Diarrhena americana, Helictrotrichon
hookeri, Helictotrichon pubescens, Lygeum spartum, Phaenosperma
globosa, Stipa barbata, Stipa lagascae, and Stipa pennata; Fig. 1).
Twenty-two species flowered in adequate numbers without
vernalization, five of which were identified as short day re-
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sponsive, either because they flowered significantly faster (NN.
pubiflora and Nassella brachyphylla, t-test, P<0.05) or because
significantly more individuals flowered (Nassella cernua, Nassella
lepida,and Nassella pulchra, ¥ test, P<0.05) in short than in long
days. The five species identified as day neutral either showed
no significant difference in flowering time between photope-
riodic treatments (Glyceria striata, Macrochloa tenacissima, Bromus
inermis, and Boissera squarrosa, t-test, P>0.05) or produced con-
flicting results between different treatments in flowering time
and frequency (Nardus stricta). Twelve species were identified
as long day responsive in the absence of vernalization due to
them flowering faster (Glyceria occidentalis, Achnatherum bromoi-
des, Piptochaetium avenaceum, and Achnella caduca, t-test, P<0.05),
or with significantly more individuals flowering (Brachypodium
distachyon, Melica altissima, Melica californica, M. ciliata, Melica
transsilvanica, O. miliaceum, Elymus caninus, and Elymus hystrix, X2
test, P<0.05) in long versus short days.

Nine species (Melica nutans, Festuca pratensis, Poa alpina, Dacty-
lis glomerata, Anthoxanthum odoratum, Lolium perenne, Piptatherum
aequiglume, Hordeum bulbosum, and Hordeum vulgare) flowered
in adequate numbers only after vernalization. Of these, only
M. nutans flowered in response to both photoperiods and was
scored as long day responsive because flowering was faster in
long compared with short days (-test, P<0.05).All other Pooi-
deae species were evaluated as long day responsive as signifi-
cantly more individuals flowered in long than in short days
(x* test, P<0.05). As predicted, the outgroup species E. calycina
(Oryzoideae) was classified as short day responsive as it flow-
ered significantly more in short versus long days without ver-
nalization (P<0.05).

To reconstruct the ancestral history of Pooideae photo-
periodic flowering, we added several GenBank accessions to
our new chloroplast dataset, resulting in alignment lengths of
1582 bp for matK, 1348 bp for ndhF, and 1104 bp for rbcL.
Bayesian ancestral state reconstruction based on this concat-
enated dataset and flowering behaviors supported an early
origin of long-day-induced flowering at or around the base
of Pooideae (Fig. 2). In addition, at least four transitions to
day-neutral flowering were inferred to occur in as many tribes
across the tree, and one origin of short-day flowering was
inferred near the base of Nassella (tribe Stipeae). We here ig-
nore previous reports on day-neutral flowering in artificially
selected crop cultivars (Dubcovsky et al., 2006; Beales ef al.,
2007; Faure et al., 2012; Campoli et al., 2013; Nishida et al.,
2013; Turner ef al., 2013; Pankin et al., 2014), as we focus on
reconstructing the natural evolution of photoperiodic flow-
ering. No transitions from short- to long-day photoperiodic
flowering were inferred in Pooideae. The position of long-day
Achnella caduca within the short-day Nassella tribe should be
qualified by it being a hybrid between Nassella viridula and
Achnatherum hymenoides. These data support the hypothesis that
loss of long-day flowering (i.e. day neutrality) is easier than to
gain than short-day flowering, or that there has been stronger
selection pressure for the former.
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Fig. 1. Flowering behavior for 31 of the 47 tested Pooideae species as well as Ehrharta calycina of the Oryzoideae. Comparisons were made between
either long- or short-day treated plants (LD/SD) or between vernalized plants followed by long- or short-day treatments (VLD/VSD). (A) Barplots of
proportion of individuals flowering under different photoperiods. (B) Boxplots of days to heading under different photoperiods. Three species are
included in both (A) and (B) as they flowered in both compared treatments, but in inadequate numbers for t-tests (Melica altissima) or results were
conflicting between comparisons of proportion of plants flowering and heading dates (Elymus caninus and Nardus stricta). Nassella pulchra and Nassella
lepida flowered with only one individual in one of the treatments, and plots for heading date are not shown. The remaining 18 species failed to flower
consistently enough to score. *P>0.05, **P>0.005, ***P>0.001. Red color indicates long-day treatment and blue color indicates short-day treatment.
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Fig. 2. Consensus Bayesian Pooideae tree showing Bayesian state reconstruction for photoperiodicity in flowering. Colored internal branches refer to
best-supported [>0.50 posterior probability (PP), shown as numbers above branches] inferred character states: long day (red), short day (dark blue), and
day neutral (green). Extant species with light blue branches did not flower, and the internal branches were inferred as ambiguous (PP=0.33 long day, 0.33
short day, and 0.33 day neutral). Tip branches are colored based on results of experiments (see Fig. 1). The topology is supported by >0.95 PP except
branches bearing a double backslash. Outgroups are Zea mays (Panicoideae), and Ehrharta calycina and Oryza sativa (Oryzoideae).

FT/VRN3 mRNA is a consistent marker of flowering

To complement our ancestral reconstruction with gene ex-
pression analyses, we conducted a second flowering time ex-
periment under different photoperiods in exemplar species:
outgroup E. calycina, long-day Pooideae M. ciliata and O. mili-
aceum, and short-day Pooideae N. pubiflora. Unexpectedly, E.
calycina plants failed to flower under either long or short days
in our follow-up experiment. The lack of adult vegetative or
inflorescence meristems at day 27 in both photoperiods sug-
gests that these plants failed to become competent to flower
(Supplementary Fig. S1). This result was consistent with no
detectable FT/VRN3 expression.

For M. cliata and O. miliacenm, ANOVA verified the pre-
diction that FT/IVRN3 expression would be higher in long as
compared with short days (P<0.001 and P<0.001, respectively,
Fig. 3), consistent with clear spikelet meristems being visible by
day 41 under long but not short days in O. miliaceum (Supple-
mentary Fig. S1; data for M. ciliata not collected). In contrast,
and in line with the observation of well-developed inflores-

cences at day 41 in short but not long days (Supplementary
Fig. S1), N. pubiflora showed significantly higher FT/VVRN3 in
short days (P<0.001) (Fig. 3).

Pooideae PHYC and PPD1 expression is generally
conserved

After phylogenetically confirming orthology with other sin-
gle-copy PHYC- and PPD1-like grass genes, we determined
transcript levels for our focal Pooideae taxa, first to determine
any differences between naturally occurring long- and short-
day Pooideae, and second to provide context for expression of
other CCT genes whose protein products potentially interact
with PPD1. For PHYC, ANOVA showed no significant effect
of photoperiod on expression for long-day O. miliaceum and
M. ciliata or short-day N. pubiflora (Fig. 4). In contrast, photo-
period had a significant effect on expression levels of PPD1
for both O. miliaceum and M. ciliata (P<0.001 for both, Fig. 4).
Post-hoc tests showed significantly higher expression in long
as compared with short days at ZT2, ZT8, and ZT14 in O.
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**P<0.001, **P<0.01, *P<0.05.

miliacenm (P<0.005, P<0.001, and P<0.05, respectively) and
ZT8 and ZT14 in M. ciliata (P<0.005 and P<0.001, respec-
tively). ANOVA showed no significant effect of photoperiod
on PPD1 expression in N. pubiflora (Fig. 4); however, the post-
hoc test showed that expression was higher in long days at
ZT14 (P<0.05). For all species, expression peaked in the dark
in both photoperiods.

Evolution of CO1 and CO9 expression is consistent
with derived short-day flowering in Stipeae

Previous authors have suggested that CO1 and CO2 were de-
rived from a segmental duplication event at the base of grasses
(Higgins ef al., 2010). Since both Pooideae copies have been
implicated as flowering promoters in the absence of a func-
tional PPD1, or flowering repressors in the presence of PPD1,
and CO1 is expressed more highly than CO2 at least in wheat,
we chose CO1 for further analysis (Shaw ef al., 2020). No ef-
fect of photoperiod on CO1 expression was identified in long-
day O. miliaceumn and M. ciliata. However, ANOVA showed a
significantly higher expression of COT in long versus short

days in N. pubiflora (P<0.001), and post-hoc tests identified
significant differences identified at ZT8, 14, and 20 (P=0.05,
P<0.05, and P<0.001, respectively). For all species, expression
was at its lowest at ZT2 for both photoperiods and increased
throughout the day.

It was previously reported that barley CO9 is more highly
expressed under short versus long days, and peaks in expres-
sion during the light (Kikuchi ef al., 2012). No data are cur-
rently available for the model species rice or B. distachyon. To
determine if photoperiod regulation of COY is conserved
across the BOP clade, and if changes in regulation are asso-
ciated with the secondary shift to short-day Pooideae flow-
ering, COY expression was profiled in all focal species (Fig. 4).
ANOVA and post-hoc tests showed that CO9 expression in
the short-day outgroup E. calycina and long-day M. ciliata was
similar in abundance across photoperiods, with the peak of
expression coinciding with the light period under both con-
ditions (Fig. 4). This pattern for M. ciliata CO9 appeared to be
confirmed at the protein level based on results of the western
blot (Fig. 5; but see the Discussion for potential caveats) (E.
calycina not tested). ANOVA did not identify a significant
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Fig. 4. Relative expression of PHYC, PPD1, CO1, CO9, and VRNZ in long- and short-day-treated plants of (A, D, G, J, N) Oloptum miliaceum, (B, E, H,
K, O) Nassella pubifiora, and (C, F, I, L, P) Melica ciliata. (M) Relative expression of CO9 in Ehrharta calycina. Sampling time points are given as Zeitgeber
time (ZT) indicating hours after dawn. Error bars indicate the SE. A white background represents time points that are in the light period in both treatments,
a light gray background represents time points that are in the dark in the short-day treatment and in the light in the long-day treatment, whereas a dark
gray background represents time points that are in the dark in both treatments. ***P<0.001, **P<0.01, *P<0.05.

effect of photoperiods on expression for O. miliaceum and N.
pubiflora COY. However, in both species, variation in perio-
dicity resulted in a peak of expression in the light for long days
and dark for short days for mRINA (Fig. 4), with a significant
difference of expression between long and short days at ZT2
(P=0.01, Fig. 4). Furthermore, whereas the peak of mRNA
expression was in the light for long days and the dark for
short days (Fig. 4), CO9 protein peaked in abundance during
the light of both photoperiods and species (Fig. 5), potentially
suggesting transcriptional instability or protein degradation in
the dark.

VRN2 expression has evolved in both long- and short-
day Stipeae

IVRN2/Ghd7 is positively regulated by long days in rice and
barley (Trevaskis ef al., 2006; Xue et al., 2008).To determine if

this long-day response is generally conserved, or has evolved in
short-day Pooideae taxa, we assessed V'RIN2 expression in M.
cliata, O. miliaceum, and N. pubiflora (Fig. 4). Unfortunately, we
were unable to amplify the rice Ghd7 ortholog from E. calycina,
suggesting either low expression in leaf tissues under our ex-
perimental conditions or high levels of sequence divergence
relative to rice. ANOVA showed a significant effect of photo-
period on expression of VRN2/Ghd7 in M. ciliata (P<0.0001)
and expression was higher in long as compared with short days
at all time points (P<0.01, P<0.01, P<0.001, and P<0.05, re-
spectively, Fig. 4), peaking in the light in both photoperiods
(Fig. 4). Contrary to prediction, O. miliaceum showed no sig-
nificant difference in VRN2/Ghd7 transcript levels between
photoperiods (Fig. 4), and expression during the light period
in both long and short days. Finally, despite its relatively close
relationship to O. miliaceum, and its short-day responsiveness,
N. pubiflora VRN2/Ghd7 was expressed at a significantly higher
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level under long compared with short days (P<0.0001) at all
time points (P<0.05, P<0.01, P<0.01 and P<0.001, respec-
tively, Fig. 4). Interestingly, expression peaked during the dark
for both photoperiods (Fig. 4). Beyond expression patterns
within species averaged across days, interspecific compari-
sons of 'RN2 demonstrated relatively weak expression for M.
ciliata and O. miliaceum under both photoperiods, with much
stronger expression observed for N. pubiflora VRN2 under long
days by treatment day 16 (Supplementary Fig. S2). Assuming
that VRIN2 is a conserved repressor of flowering, these data are
consistent with stronger long-day suppression of flowering in a
short-day versus long-day species.

Discussion

Variation in photoperiodic flowering correlates with
major niche transitions in the BOP clade

Pooideae is the most dominant grass subfamily of the northern
temperate, continental, and Arctic regions (Hartley, 1973). We

hypothesized that one of the keys to this success was the use of
lengthening days in the spring and summer as a cue to flower
rapidly at the appropriate time within limited growing seasons.
In line with predictions of this hypothesis, ancestral state recon-
struction of photoperiodic flowering responses supports both
the dominance of long-day-induced flowering in Pooideae, and
its evolution relatively early in the subfamily, after it diverged
from Bambusoideae (bamboos). An obvious caveat to our study
is the lack of exhaustive sampling across Pooideae, at both the
inter- and intraspecific level. However, we believe our attempt
to capture accessions spanning geographic variation within the
subfamily makes our findings robust to any sampling deficits.
An early origin of vernalization-mediated flowering was pre-
viously reconstructed for Pooideae (McKeown et al., 2016),
which together with our data (Fig. 2) suggests that the dual pho-
toperiod—temperature induction of flowering long known from
winter Pooideae cereals (Heide, 1994) was a key step toward
colonizing newly expanding temperate climates. Recent dating
of the grasses (Burke ef al., 2016; Gallaher et al., 2019; Schu-
bert ef al., 2019a) places the origin of Pooideae at the transition



between the Cretaceous and Paleocene, 60—70 million years ago
(Mya), at a time when mean temperatures were relatively high
(Zachos et al., 2001) and seasonality in temperature relatively
low (Archibald ef al.,2013). Biogeographic studies suggest a Eur-
asian origin for Pooideae (Bouchenak-Khelladi ef al., 2010), and
a recent reconstruction of the ancestral niche of Pooideae sug-
gests that its ancestor experienced frost (Schubert et al., 2019a),
consistent with a cold micro-habitat origin, possibly in montane
Eurasia. Together, these results imply that Pooideae was already
to some degree adapted to the cool, seasonal northern climates
that developed after the Eocene—Oligocene (E-O) boundary 34
Mya (Stromberg, 2011), and that the early origins of vernaliza-
tion responsiveness and long-day flowering played crucial roles
in the shift of Pooideae from tropical to temperate regions.

Equally as interesting was the evolution of short-day-responsive
species within the Stipeae tribe that correlates with a shift back to
the tropics (Fig. 2). Specifically, Nassella pubiflora, N. neesiana,and N.
brachyphylla are all native to the South American Andes, although
N. neesiana has been introduced to other parts of the world (www.
gbif.org). On the other hand, N. cernua, N. lepida, and N. pulchra are
endemic to California. Faster flowering under the short- versus
long-day conditions of our experiment seems counter-intuitive
to the fact that N. pulchra naturally flowers in June and July. How-
ever, we previously found that this species also has a strong ver-
nalization response (McKeown et al., 2016). We thus suggest that
vernalization responsiveness has adapted N. cernua, N. lepida, and N.
pulchra to the northern warm temperate growth cycle by blocking
flowering in the shortening days of warm autumns. Whereas long
days alone would delay flowering, the coincidence of lengthening
days after a winter cold spell allows some physiological release,
resulting in eventual flowering in the summer.

In addition to flowering, many traits, such as abscission, dor-
mancy, cold acclimation, senescence, growth, and metabolism,
are under the control of photoperiod (Salisbury, 1981). Mo-
lecular crosstalk between the networks controlling these traits
has the potential to constrain their evolution through antag-
onistic or adaptive pleiotropy. In our experiment, most spe-
cies flowered under both long and short days, although it was
usually faster or biased in one condition (Fig. 1). This is con-
sistent with data found for other grass species (Preston and
Fjellheim, 2020), and suggests that Pooideae have the molec-
ular machinery to flower under both photoperiods. Given this
interpretation, other internal or external constraints must be
invoked to account for the strong partitioning in geographic
space between the Pooideae and other grass subfamilies (Visser
et al., 2014). One possible explanation is that competition
prohibits the expansion of species with maladapted flowering
phenotypes into areas already occupied by species with more
favorable flowering responses (Sherry ef al., 2007). If long-day-
responsive flowering evolved early in Pooideae species inhabit-
ing a cold Eurasian montane micro-niche, it could have given
the Pooideae a competitive advantage and been an important
facilitator for the group’s rapid expansion into the emerging
and expanding temperate biomes that followed the E-O split.
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Conservation of flowering time gene expression across
Pooideae

The ability of many grasses to flower under both long and
short days, but still be faster flowering under certain photo-
periods, underscores the complexity of the flowering time
gene network (Shaw et al., 20205 this study). In this regard,
understanding what aspects of flowering control are conserved
provides important context to determine how the pathways
might have changed. In the case of the evolutionary transition
to short-day flowering in Stipeae, we noted that expression of
PHYC and PPD1 in our exemplar short-day flowering species
N. pubiflora broadly matched the pattern found for long-day
species (Fig. 4).

PHYC conveys photoperiod sensitivity to plants, with wild-
type alleles promoting flowering in long-day barley, but repress-
ing flowering in short-day rice (Takano ef al., 2005; Nishida et
al.,2013). These opposing roles are mediated through epistatic
interactions with other flowering time genes, as exemplified
by the fact that expression of barley HvPHYC actually delays
flowering in a rice phyA/phyC background (Nishida ef al.,
2013). In our focal species, M. ciliata, O. miliaceum, and N. pubi-
flora, PHYC mRNA levels were similar under both long and
short days, and, as in the case of barley, generally peaked after
dusk (Nishida er al., 2013).

PPD1 is a downstream target of PHYC whose exact func-
tion is again affected by epistatic interactions with other flow-
ering time genes (Zhang ef al., 2019; Shaw et al., 2020). In
wheat and barley, PPD1 is expressed under both long and short
days during the light period, but only accelerates flowering
under long days or in response to a flash of light during long
nights (i.e. short days) (Nishida et al., 2013; Pearce et al., 2017).
Although the PPD1 ortholog PRR37 delays flowering under
long days in its native rice (Zhang et al., 2019), like PHYC its
expression in long-day plants accelerates flowering, suggesting
conservation of protein function (but see the effect of mu-
tant alleles on day-length sensitivity) (Koo et al., 2013; Shaw
et al., 2020). PPD1 transcript abundance in O. miliaceum, N.
pubiflora, and M. ciliata peaked in the light in both treatments
(Fig. 4), as in wheat and barley (Shaw et al., 2020; Gauley and
Boden, 2021), and was higher under long versus short days.
Given the roles of PHYC and PPD1 in photoperiodicity, it
is not surprising that their expression patterns are conserved
across long- and short-day grasses. On the other hand, it would
be interesting to assess perturbations in their expression pat-
terns that might explain loss of long-day photoperiodism in
non-core Pooideae, such as high latitude Nardus stricta and the
widespread Eurasian—North American Glyceria striata.

Evolution of VRN3 and CCT family gene expression in
both short- and long-day flowering Pooideae

As expected based on similar work across a range of angio-
sperms (Andrés and Coupland, 2012), FT/IVVRN3 expression
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tracked the flowering behavior of our focal Pooideae grasses
(Fig. 3). Among others, CCT domain-containing genes are
known direct regulators of FT/IVRN3 and often function in
a photoperiod-dependent manner (Shen et al., 2020). These
attributes make them good candidates to explain evolutionary
transitions between long-day, short-day, and day-neutral flow-
ering in Pooideae through the differential regulation of FT/
VRN3.

In the absence of a functional V'RN2/Ghd?7 allele, or when
VVRN2/Ghd7 transcripts are low, both CO1 and PPD1 have
been shown to promote the expression of FT/VRN3 in
grasses, leading to the acceleration of flowering (Campoli et
al.,2012;Yang et al., 2014; Mulki and von Korff, 2016; Zhang
et al., 2017). For long-day M. cliata and O. miliaceum, CO1
was expressed in a similar manner to rice and sorghum in that
its expression level was no different in long versus short days
(Fig. 4). However, PPD1 was more highly expressed in long
as compared with short days, whereas JVRIN2 expression was
low under both photoperiods (Fig. 4). Assuming conservation
of the model from wheat, barley, and rice, the lack of strong
VRN?2 transcription suggests that CO1-PPD1 will work as
part of a floral activator complex under long-day conditions,
consistent with long-day-regulated flowering in both M. ciliata
and O. miliaceum.

In contrast to M. ciliata and O. miliaceum, CO1 and VRN2
transcripts were both high specifically under long days in the
derived short-day flowering species N. pubiflora (Fig. 4; Sup-
plementary Fig. S2). In wheat, barley, and rice, high levels of
functional VRIN2/Ghd7 form a repressor complex with Hd1/
CO1 and PRR37/PPD1 (Yang et al., 2014; Mulki and von
Korft, 2016; Fujino et al., 2019). Thus, again assuming func-
tional conservation of the CO1-PPD1-VRN2 complex,
these data provide at least a partial mechanism for the evolu-
tion of short-day flowering in Stipeae, whereby the VRN2—
PPD1-CO1 repressor complex is strengthened specifically
under long days.

In addition to the CCT domain-containing genes CO1,
VRN2, and PPD1, CO9 has been implicated as a repressor
of flowering under both long and short days in barley, but no
data are available for rice or sorghum (Kikuchi ef al., 2012).
Expression data from the short-day rice relative Ehrharta calyc-
ina and long-day M. ciliata revealed a conserved pattern of ex-
pression, with no difference between long and short days, and
transcript levels peaking in the light under both photoperiods
(Fig. 4). In contrast, COY9 expression peaked in the morning
under long days and in the dark under short days for O. mili-
aceum and N. pubiflora, revealing a shift in the diurnal rhythm
within Stipeae (Fig. 4). Since light is required to stabilize at
least A. thaliana CO protein (Hayama ef al., 2017), we com-
pared mRNA with protein accumulation in all three non-
core Pooideae species and found that the short-day dark peak
for O. miliaceum and N. pubiflora CO9 appeared to deteriorate
at the protein level. As a result, CO9 protein was higher under
long versus short days, representing a second avenue by which

the loss of short-day flowering repression could have evolved
in N. pubiflora (Fig. 5).

A potential caveat to the protein data relates to the fact that
the western blot band for the CO9 antibody was ~8 kDa larger
than predicted based on the amino acid sequences derived
from transcriptomes of the target species (Supplementary Fig.
S3).This result might be interpreted as non-specific binding to
off-target proteins. However, given that the results were con-
sistent using two independent antibodies that were designed
to avoid cross-targeting to other CO-like proteins, and were
generally in line with the mRNA expression profiles, we feel
this unlikely. Rather, we posit that the larger size indicates
ubiquitination of the target CO9 proteins, which is a common
mechanism of regulating flowering time proteins (Pifeiro and
Jarillo, 2013). In particular, light—dark regulation of A. thaliana
CO involves its ubiquitination (Liu ef al., 2008).

Assuming correct interpretation of the protein data, less
clear is the effect of high long-day CO9 protein expression in
O. miliaceum that flowers more rapidly under long days (Fig. 5).
One possible explanation is that short-day flowering evolved
early in Stipeae, with the unique gain of short-day-specific
VRN2 expression in O. miliaceum resulting in a novel block
to flowering under short photoperiods. One argument against
this is the fact that VRN2 levels are relatively low in O. mili-
aceum. Investigation into further Stipeae species and the use of
functional approaches will be required to test these alternative
hypotheses.

Conclusions

Daylength is used as a cue to promote or repress the reproduc-
tive transition in most plants, and the photoperiod pathway
largely shares a common evolutionary basis (Andrés and Cou-
pland, 2012).We have shown that a switch from short- to long-
day induction of flowering was probably a major evolutionary
innovation allowing Pooideae grasses to establish and diver-
sify within temperate climates. However, whereas transitions
to daylength-neutral flowering are common and phylogeneti-
cally widespread, reversions to short-day flowering appear rel-
atively difficult and/or uncommon. We suggest that changes in
the diurnal and long-term regulation of CCT domain genes
by photoperiod have been important drivers of ecologically
important niche shifts. Together, these data highlight both the
complexity and flexibility of flowering time evolution in plants
and provide novel hypotheses that can be tested through fur-
ther sampling and functional analyses.
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Supplementary figure S1. Effect of photoperiod on Pooideae flowering. A.
Nassella pubiflora shoot apical meristem (SAM) with 2 long-days. B. N. pubifiora
SAM with 2 short-days. C. N. pubiflora SAM with 16 long-days. D. N. pubiflora
SAM with 16 short-days. E. N. pubiflora SAM with 41 long-days. F. N. pubiflora
inflorescence with 41 short-days. G. Oloptum miliaceum inflorescence with 41
long-days. H. O. miliaceum SAM with 41 short-days. 1. Ehrharta calycina SAM
with 27 long-days. J. E. calycina SAM with 27 short-days. Scale bar is 100 pm.
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Supplementary figure 2. Relative expression of VRNZ2 in long- or short-day treated plants of

A. Oloptum miliaceum, B. Nassella pubiflora and C. Melica ciliata. Sampling time points are given as
zeitgeber time (ZT) indicating hours after dawn per sampling day. Error bars indicate standard error.
White background represents time points that are in the light period in both treatments, light gray
background represents time points that are in the dark in the short-day treatment and in the light in the
long-day treatment, whereas dark gray background represents time points that are in the dark

in both treatments
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Supplementary figure 3. Western blots of CO9 proteins. A) Size of bands in relation to a ladder for the two antibodies.
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final blots as the ladder then dominated the blot during exposure B) Exemplary blots for Melica ciliata, Nassella pubiflora
and Oloptum miliaceum, stain free blots to the left and the CO9 blots to the right. Green dots represent the target bands.



Supplemental table 1. Material used in the study.

Species Seed bank Accession number Location
Achnatherum bromoides GRIN P1253581 Israel
Achnella caduca GRIN PI578861 USA
Anthoxanthum odoratum NORDGEN NGB16571 Finland
Ampelodesmos mauretanicus  B&T World Seeds BTWS 62975 Unknown
Boissiera squarrosa GRIN PI314138 Uzbekistan
Brachypodium distachyon GRIN PI1253334 Morocco
Brachypodium pinnatum GRIN PI325216 Russia
Brachypodium sylvaticum Unknown Unknown
Bromus inermis NORDGEN NGB5420 Norway
Dactylis glomerata NORDGEN NGB7723 Norway
Diarrhena obovata B&T World Seeds BTWS 516238 Unknown
Diarrhena americana B&T World Seeds BTWS 405986 Unknown
Duthiea brachypodium GRIN W6 23553, 23539,23613  China
Elymus caninus Collected by Thomas Marcussen ~ TM-Langebat 2015 Norway
Ehrharta calycina GRIN PI1284803 Australia
Ehrharta calycina GRIN PI578674 USA
Elymus hystrix MSB 235174 Unknown
Festuca pratensis NORDGEN NGB2910 Norway
Glyceria occidentalis GRIN Ames31334 USA
Glyceria striata GRIN PI1387926 Canada
Helictotrichon hookeri MSB 336026 Canada
Helictotrichon pubescens MSB 65160 UK
Hesperostipa spartea GRIN PI372565 Canada
Hordeum bulbosum GRIN P1639320 Tadjikistan
Hordeum vulgare Cultivar Sonja

Lolium perenne NORDGEN NGB14263 Sweden
Lygeum spartum MSB 105167 Unknown
Macrochloa tenacissima GRIN P1239234 Tunisia
Melica altissima GRIN W625184 Kazakhstan
Melica californica GRIN W647499 USA
Melica ciliata GRIN P1494705 Romania




Melica nutans

Melica transsilvanica
Nardus stricta

Nassella brachyphylla
Nassella cernua
Nassella lepida

Nassella neesiana
Nassella pubiflora
Nassella pulchra
Piptatherum aequiglume
Oloptum miliaceum
Piptochaetium avenaceum
Phaenosperma globosum
Poa alpina

Schizachne purpurascens
Stipa barbata

Stipa lagascae

Stipa pennata

GRIN

GRIN

Collected by Siri Fjellheim
GRIN

GRIN

GRIN

GRIN

GRIN

GRIN

GRIN

GRIN

GRIN

B&T World Seeds
NORDGEN

MSB

GRIN

GRIN

GRIN

P1442519
P1619447
SF-Reros 2014
P1478588
W645567
Wo645113
PI237818
P1478575
NSL439946
PI1271588
P1207772
P1266189
BTWS 448347
NGB1197
428103
PI384952
P1252059
PI314395

Belgium
China
Norway
Peru
USA
USA
Spain
Peru
USA
India
Israel
Jordan
Unknown
Sweden
USA
Iran
Jordan

Russia




Supplemental table 2.

Primer sequences used in this study.

2 Primer Sequence Species Reference
5}
@)
Chloroplast marker
o ndhF Po 1F CCGATGCTATGGARGGACCC Pooideae in Fig. 2 | (Schubert et al., 2019)
§ ndhF Po 652F TTTTTCCCCATAARGATATTGAA Pooideae in Fig. 2 | (Schubert et al., 2019)
g matK Po_1F TGTTCTGACCATATTGCACTATG Pooideae in Fig. 2 | (Schubert et al., 2019)
§ matK_Po 1526 ACGCTCACTGTGTGATCCAC Pooideae in Fig. 2 | (Schubert et al., 2019)
rbcL Po 1F ACCACAAACAGAAACTAAAGC Pooideae in Fig. 2 | (Schubert et al., 2019)
j: rbcL Po 590R CATAAATGGTTGTGAGTTTACG Pooideae in Fig. 2 | (Schubert et al., 2019)
Cloning
3 CO-like 994f GAGAAGCARATCCGSTAYGMGTC | NP, OM, EC (Woods et al., 2016)
% CO-like 1175r CGGAACCAYCCGAGGTSRAG NP, OM, EC
<
qPCR
| LolEflaF CCTTGCTTGAGGCTCTTGAC OM, NP, MC (Woods et al., 2016)
E LolEflaR GTTCCAATGCCACCAATCTT OM, NP, MC (Woods et al., 2016)
GrassUBQSF CGCCGACTACAACATCCAG NP, OM, EC, MC | (Woods et al., 2016)
g’ GrassUBQ5R TCACCTTCTTGTGCTTGTGC NP, EC, MC (Woods et al., 2016)
UBQS5_poace_R1 CAGTAGTGGCGGTCGAAGTG OM
| Elf4a_poaceae F2 CGCAAGGTGGACTGGCTCAC EC
% Elf4a_poaceae R2 GAACTCCCTCATGATGATGT EC
NassPub VRN3 1012 f | GCAGGAGGTGGTATGCTACG NP (McKeown et al., 2016)
NassPub_VRN3_1304_r | CCCTGGTGTTGAAGTTCTGG NP (McKeown et al., 2016)
OM_VRN3 seq 354F GGAGGTGATGTGCTACGAGA OM
on| OM_VRN3 seq 480R | CCTGGTGTTGAAGTTCTGGC OM
é cMelica_ VRN3 401 f | TGGTCACTGATATCCCTGGAA MC
cMelica VRN3 612 r | AACAGCACGAACACGAAGC MC
EC FT 3IF AGCGACCCCAATCTTAGAGAG EC
EC FT 158R GTTGAAGTTCTGGCGCCAC EC




NassPub qVRN2 f GGTACGAGTCCAGGAAAGCA NP (Woods et al., 2016)
NassPub_qVRN2 altr | GAGGTCGAGTCTGCTTGGATGT NP (Woods et al., 2016)
~| OM_VRN2a.F3 AGGAAAACTTACGCCGAGATG oM
E OM_VRN2a.R3 ACGTCTTGAGCTACCTTGGC OM
MelCil.VRN2.F2 GGAGCCAATTATGGTCATCG MC
MelCil.VRN2.R1 CATGTACCTCGTCACCTTCG MC
NP_CO9_497F GGAGAGAAATACCGTTCACCG NP
NP_CO9 715R ACCGGATCTGCTTCTCGTAC NP
OM_CO9 _8&F TCTGCGGGAGAGAAACGTTA OM
o| OM_CO9 241R ACCGGATCTGCTTCTCGTAC oM
8 MelCil.C09.300q.F CTCGAGCATGTGAAGGGTTG MC
MelCil.C0O9.501q.R AGATGACGGAGAGGTTGCAA MC
EC_CO9_gper_188F GCGTACATAGGCCAAGCATT EC
EC_CO9 gper 296R | CTGCTAGTCATCGATCACATACA | EC
OM ppdl 68 F ACTCGCCATCTCTTCTCCCT OM
OM ppdl 230 R TTCTTGTGGAGGAAGCGGTC oM
3 NP ppdl 1601 F CTGCTCCGATGAAACAGGGT NP
& NP ppdl 1790 R TCACCCATCTTCTTGCCCAC NP
MC PPDI 1212F GCCGCATGATAACAGCTTGG MC
MC PPDI 1392R CGCTGACGTGTGTGCATTAG MC
COl_NPUB 468 F CAGTGAGAGCAACAACAGCA NP
CO1_NPUB 650 R ACACACTCGTTCCCTTCCTT NP
| CO1_OMIL_414_F AAAGGAGGTGGAGTCTTGGC OM
8 COl1 OMIL 645 R CTCGCTCCCTTCCTTCTCTC OM
MelCil.CO1.FP1 CGTATCAGCAGCAACCAAGAGC MC
MelCil.CO1.RP1 CGCTCAACATTACAGCCTGC MC
OM PHYC 3867 F TGGGAGAGCCTAGCTGATGT OM
OM PHYC 3950 R TCCTGCTCCCCAAACATCAC OM
S NP PHYC 592 F CAGCCTATCAGCCTCTGTGG NP
E NP PHYC 720 R CCCGTCCTCCTCATCCTCAT NP
MelCil.PHYC.FP CCACTTCGACTACTCCTCGTCG MC

MelCil.PHYC.RP

GCATGTTCTGGAGGTAGGCAGAG

MC
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Abstract

Photoperiod is an integral cue for the coordinated growth and development of plants. In
combination with the circadian clock, plants utilise this signal to maximise fitness through the
synchronisation of biological processes with favourable conditions. Although photoperiodic
processes are well-studied in plants, genome-wide responses to photoperiod in wild crop
relatives are scarce. Here, we explore the diurnal transcriptome of Melica ciliata, a perennial,
temperate grass under contrasting photoperiods simulating long (LD) and short days (SD). We
use functional data analysis (FDA) to explore the diurnal transcriptomic landscape of M. ciliata
and demonstrate the applicability of this statistical framework for the biological analysis of
time-course expression data generated from de novo transcriptome sequencing data. Aided by
functional principal components analysis (FPCA), we were able to detect and classify gene
expression in M. ciliata according to diurnal rhythmicity and photoperiodic responsiveness.
This approach revealed novel associations between circadian clock and photoreceptor genes
and central metabolic and developmental processes, emphasising the significant impact of

photoperiod on global expression dynamics in temperate grasses.
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Introduction

Light is the energy source and the dominant signalling input for photoautotrophic organisms.
Availability and quality of light varies not only within a single day but also substantially
throughout the course of a year in non-equatorial habitats. Surviving, growing, and developing
under fluctuating light conditions is imperative for the reproductive and evolutionary success
of plants (Green et al. 2002, Michael et al. 2003, Dodd et al. 2005). Consequently, metabolism,
growth and developmental transitions are tightly coordinated with diurnal and seasonal changes
in daylight conditions. A wide range of processes such as photosynthesis, growth rates, whole
plant architecture and direction of growth, carbon supply during night, various developmental
processes such as flowering, abiotic stress responses, plant defence, and hybrid vigour are
under photoperiodic control (Miiller ez al. 2014, Bendix et al. 2015, Flis et al. 2016). These
light-mediated processes have captivated plant biologists for centuries (Quetelet 1842, Gafiner
1918, Garner and Allard 1920, 1923, 1931).

Plants synchronise their seasonal and diurnal behaviour with the environment using an
endogenous time-keeping mechanism known as the circadian clock, a regulatory machine with
relatively simple architecture and complex developmental functions. The circadian clock is
driven by oscillations generated by a set of transcriptional regulators and feedback loops that
initiate physiological responses, with one part depending on light quality, quantity and
photoperiod, and another part oscillating independently of environmental signals (Greenham
and McClung 2015). Oscillatory gene expression in plants is commonly divided into two
classes: circadian and diurnal. Circadian genes have a period close to 24 hours and are regulated
autonomously, yielding predictable, thythmic patterns of expression. They maintain oscillating
expression even under the absence of environmental cues, the constant breaks between which
are referred to as the free-running period. Circadian oscillations are adjusted by exogenous
signals following coherent rhythms, such as periodical changes in photoperiod, irradiance, and
temperature (Wijnen and Young 2006), but also by metabolites such as sugars and various
hormones (Webb et al. 2019). These signals coordinate internal rhythms of the clock to external
rhythms of environmentally important conditions. Diurnal fluctuations in gene expression, on
the other hand, synchronise with the day-—night cycle and are commonly entrained by

photoperiod (Andrés and Coupland 2012, Laosuntisuk et al. 2023).

The genetic mechanisms underlying circadian and diurnal rhythms that trigger flowering and

other developmental transitions have largely been elucidated in model systems like
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Arabidopsis thaliana. The light signal itself is perceived by PHYTOCHROME (PHY)
photoreceptors, acting through CRYPTOCHROMEs (CRYs), PHYTOCHROME
INTERACTING PROTEINs (PIFs) and ZEITLUPE (ZTL) to provide input to the oscillatory
system (Somers et al. 1998, 2004, Martinez-Garcia et al. 2000, Hsu and Harmer 2014). The
circadian clock consists of a morning and an evening complex that form feedback loops to
ensure oscillation of the clock. At the centre of the clock are the genes CIRCADIAN CLOCK
ASSOCIATED 1 (CCAIl), LATE ELONGATED HYPOCOTYL (LHY) and TIMING OF CAB
EXPRESSION 1 (TOCI), which form interlocking feedback loops with PSEUDO-RESPONSE
REGULATOR (PRR) 9, PRR7 and PRRS5 during the morning and GIGANTEA (GI), EARLY
FLOWERING (ELF) 3, ELF4 and LUX ARRYTHMO (LUX) in the evening (Schaffer et al.
1998, Wang and Tobin 1998, Fowler et al. 1999, McWatters et al. 2000, Alabadi et al. 2001,
Nakamichi et al. 2010, 2012, Helfer et al. 2011, Nusinow et al. 2011, Gendron et al. 2012,
Herrero et al. 2012, Huang et al. 2012, Pokhilko et al. 2012). These circadian clock genes are
largely conserved between monocots and dicots and regulate daily rhythms through oscillations
of transcription factors influencing a wide range of biochemical and developmental processes

(McClung 2010, Greenham and McClung 2015).

Although individual genes of the molecular clock are well-characterised, studies that capture
global transcriptome-level responses to photoperiodic changes are scarce, especially in non-
model organisms. As climates change, constant photoperiods will be linked to novel
environmental conditions, potentially providing a mismatch between environmental cues and
the responses they have invoked to evolve. As such, we need to improve knowledge on how
plants respond to these changes by unravelling how they perceive and respond to a shifting

environment on a molecular genetic level.

Diurnal or seasonal shifts in physiology and development are critical determinants of
organismal fitness. In plants, processes such as photosynthesis and respiration are largely
negatively correlated during the day and night, whereas the transition from vegetative to
reproductive growth occurs over the course of a year for many temperate taxa (Venkat and
Muneer 2022). Work on A. thaliana has elucidated a plethora of molecular connections
between the circadian clock and the photoperiod pathway that regulate the seasonal transition
to flowering (Johansson and Staiger 2014, Gendron and Staiger 2023). Many elements of this
time-of-day-dependent sensitivity appear to be conserved across angiosperms, but variation in

LD versus SD responses suggests at least some level of evolutionary divergence (Brambilla et
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al. 2017). The genetic basis of daily fluctuations in growth, metabolism, and stress responses
is less well understood, although this too is an active area of research (Seo and Mas 2015,

Dakhiya et al. 2017, Markham and Greenham 2021).

In this study, we take a novel approach to elucidate how light in general, and contrasting
photoperiods in particular, affect gene expression in Melica ciliata (hairy melic, silky-spike
melic, or eyelash pearl grass; Meliceae), a perennial Pooideae grass adapted to seasonal
temperate climates. Due to its placement in an early-diverging lineage within Pooideae, M.
ciliata is a useful study taxon in comparative evolutionary analyses involving other
agronomically important grass species, such as wheat (Triticum aestivum), barley (Hordeum
vulgare), oat (Avena sativa), ryegrasses (Lolium spp.), fescues (Festuca spp.), and the model

species Brachypodium distachyon (Soreng et al. 2022).

A common issue arising during the analysis of time-dependent expression data is that of
temporal resolution. Many analytical tools have been developed to study oscillatory gene
expression (Hughes e al. 2017). However, the underlying computation often demands dense
sampling over several periods, and a large number of biological replicates to successfully
estimate oscillation parameters such as phase and amplitude of gene expression with sufficient
confidence and statistical power (Wu et al. 2016, Hughes e al. 2017, Sun et al. 2020). An
elegant method of dealing with temporal data is considering data as a set of continuous
functions rather than a compilation of point measurements or estimates with complex variance
structure. Functional data analysis (FDA) provides a statistical framework to analyse such data
over a continuum. This is particularly relevant for commonly collected biological samples used
to investigate temporal features of developmental processes that are controlled by the
coincidence of external stimuli at specific time points, such as photoperiodism in plants.
Although FDA approaches have proven successful for the classification of periodic gene
expression patterns in a few single-gene and microarray studies (Barra 2004, Leng and Miiller
2005, Song et al. 2007, 2008), they have been largely overlooked for the analysis of whole
transcriptomes. Here, we use functional principal components analysis (FPCA) to identify and
characterise genes expressed in thythmic and arhythmic patterns to quantify how many genes
follow differential diurnal expression patterns under short-day (SD) versus long-day (LD) light
regimes. We then explore the biological processes that each category of genes is associated

with to gain insight into the overall photobiology of this long-day flowering species.
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Methodology
Growth experiment

Melica ciliata seeds were originally collected on September 19, 1984, approximately 8 km
outside the city of Mangalia, Romania where daytime fluctuates from 8:50 hrs (hibernal
solstice) to 15:25 hrs (estival solstice). The seeds were retrieved from the US National Plant
Germplasm System (NPGS) maintained by the Agricultural Research Service (ARS) of the
United States Department of Agriculture (USDA) via the Global Germplasm Resources
Information Network (GRIN-Global) under the accession number PI 494705. M. ciliata has
previously been identified as an obligate long-day plant that is not flowering in photoperiods
shorter than 8 h (Fjellheim ef al. 2022).

Approximately 200 seeds were sown out in moist soil (Gartnerjord, Tjerbo AS, Norway) and
stratified under complete darkness at 4 °C for five days, followed by one day at room
temperature in trays wrapped in light-impermeable plastic foil. Following stratification, seeds
were germinated in a greenhouse in LDs (16 h light : 8 h dark) at 17 °C. Seedlings were
individually transplanted into 7-cm pots containing gardening soil. Four weeks after
germination, plants were randomly assigned to growth chambers with either LD photoperiod
(16 light : 8 h dark) or SD photoperiod (8 h light : 16 h dark). The photoperiods were aligned
in the middle of the light period (Fig. 1A) and temperature maintained at 17 °C. In both
treatments, temperature was maintained at 17 °C and relative humidity kept at 50-55%. Light
conditions were generated with ConstantColor CMH Tubular Clear high-intensity ceramic
metal halide discharge lamps (CMH400/TT/UVC/U/830/E40, GE Lighting Kft., Hungary)
supplied with clear AGL B22 60 W bulbs (NARVA Lichtquellen GmbH + Co. KG, Germany)
to adjust incandescence. The average irradiance was 185 pumol m™ s™! at plant level with an
average red/far-red (R/FR) ratio of 2.1-2.3. Plants were moved to a new position twice-weekly
to minimise room effects in the greenhouse and the growth chambers and fertilised with water
containing 4% YaraTera Kristalon Indigo and 3% YaraTera Calcinit (Yara Norge AS,
Norway). Seven days after transferring plants to the growth chambers, samples were taken
every 4™ hour throughout the 8" day of the treatment at 03:00, 07:00, 11:00, 15:00, 19:00, and
23:00 h (Fig. 1A). At each time point, tissue from the longest, fully emerged leaf was sampled
from four individual plants, immediately flash-frozen in liquid nitrogen, and stored in 2 ml
DNA LoBind tubes (Eppendorf AG, Germany) at -80 °C until RNA isolation. In the dark

period, samples were taken under dim green light to minimise interference with light-induced
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gene expression. Plants were kept in the growth chamber after sampling, and the experiment
was terminated after all individuals in LD started heading. For each photoperiod, a total of 24
measurements was available per transcript: four biological replicates per time point at six

evenly spaced sampling time points.
RNA purification and sequencing

Frozen leaf tissue was disrupted in a ball mill (QIAGEN TissueLyser) using 2 mm tungsten
carbide beads (QIAGEN) under a constant supply of liquid nitrogen. Total RNA was extracted
from homogenised tissue using the RNeasy Plant Mini Kit (QIAGEN), following the
manufacturer’s protocol. The extracts were further purified using Invitrogen TURBO DNA-
free Kit (ThermoFisher Scientific) to remove residual DNA. Purity, concentration, and
integrity of the isolated RNA was evaluated using an Invitrogen Qubit fluorometer
(ThermoFisher Scientific), a NanoDrop 8000 Spectrophotometer (ThermoFisher Scientific),
and a 2100 Bioanalyzer (Agilent). Sequencing libraries with an average insert size of 350 bp
were constructed with the TruSeq Stranded mRNA Library Prep kit (Illumina) for every
individual sample. Library preparation and paired-end sequencing was carried out by the
Norwegian Sequencing Centre (NSC) at the University of Oslo on an Illumina HiSeq 4000
system with 150-bp reads.

Transcriptome Assembly

Adapters were removed from the raw reads using trimmomatic v0.39 (Bolger et al. 2014), also
removing the leading and trailing low-quality bases with a phred-score Q < 20. Reads were
scanned with a 5-bp sliding-window, a lower cut-off at Q = 20, and minimum read length was
set to 40 bp. Read quality was evaluated with FastQC v0.11.9 (Andrews 2010). A de novo
transcriptome was assembled using Trinity v2.8.4 (Grabherr et al. 2011) with default
parameters and considering strand-specificity. Transcriptome completeness was assessed by
Benchmarking of Universal Single-Copy Orthologues (BUSCO) (Simdo et al. 2015,
Waterhouse et al. 2017) using the Embryophyta database in OrthoDB v10 (Kriventseva ef al.
2019).

Contaminant transcripts were identified with blastn v2.10.1 (Altschul ez al. 1990, Camacho et
al. 2009), and Corset v1.07 (Davidson and Oshlack 2014) by querying individual Trinity
contigs against NCBI’s ‘nt’ database (NCBI Resource Coordinators 2017). Full taxonomic

information was assigned to the blast hits with the R package taxonomizr v0.6.0 (Sherrill-Mix
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2019). In case of ambiguity below the taxonomic rank ‘class’, information was reduced to one
entry by retaining the taxonomy for the hit with the lowest E-value. Contigs were regarded
contaminants if phylum did not match ‘Streptophyta’ and superkingdom was other than

‘Eukaryota’, or unassigned.

Fragments of ribosomal, plastid, and mitochondrial transcripts were further removed to reduce
their influence on relative read count estimates. We obtained complete chloroplast genomes
for B. distachyon (GenBank: LT558588.1) and Phaenosperma globosa (GenBank:
KM974745.1), complete mitochondrial genomes for H. vulgare spontaneum (AP017300.1)
and rice (Oryza sativa) (GenBank: JF281153.1), and ribosomal sequences for various non-
plant species (MH047190.1, MH047190.1, AB250414.1, KT445934.2, JQ997495.1) from
NCBI GenBank (Benson ez al. 2013) and added them as baits to the de novo transcriptomes.
For each individual sequencing library, paired-end reads were aligned to de novo
transcriptomes with Bowtie v2.4.1 (Langmead and Salzberg 2012), allowing reads to be
mapped to multiple contigs during the inference of read counts. The resulting SAM files were

sorted and converted to BAM files using SAMtools v1.11 (Li et al. 2009).

Gene-level counts were obtained by combining reads mapping to multiple transcripts with
Corset v1.07 (Davidson and Oshlack 2014), a method that merges de novo transcripts with high
sequence similarity and shared expression patterns into transcript clusters. First, we ran Corset
with a high -D parameter which prevents transcripts from being assigned to different clusters.
Secondly, we ran Corset with default values for the -D option to only allow clustering of
transcripts that share a significant number of reads. We then removed all transcripts from the
second Corset run that clustered with previously added chloroplast, mitochondrial and
ribosome baits. Silent transcript clusters were discarded, and only clusters with a raw count >

1 in at least five samples, or all four replicates of the same timepoint, were retained.
Reference proteome processing, functional annotation, and orthologue inference

We used annotated genomes and coding sequences (CDSs) for barley (H. vulgare, IBSC v2),
Aegilops tauschii strangulata (Aet v4.0), T. wurartu (ASM34745v1), B. distachyon
(Brachypodium_distachyon v3.0), Japonica rice (Oryza sativa japonica, IRGSP-1.0), and
Indica rice (O. sativa indica, ASM465v1) from Ensembl Plants (Howe et al. 2020, Yates et al.
2020) for orthologue inference and annotation. CDSs were aligned to chromosome-level

genome sequences with GMAP v2019-06-10 (Wu and Watanabe 2005) and redundant
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transcripts were combined with the merging function from GffRead v0.11.6 (Pertea and Pertea
2020), discarding any transcripts lacking start- or stop-codons. Processed transcriptomes were

then translated to reference proteomes using GffRead.

The resulting non-redundant proteomes of barley, B. distachyon, and rice were used as
references for functional annotation of de novo transcripts using blastx implemented in
DIAMOND v0.9.22 (Buchfink et al. 2015). Using the BLAST trace-back operation (BTOP)
string, we identified and removed frameshifts introduced to the de novo-transcripts during the
transcriptome assembly with Trinity (Leder ef al. 2021). Finally, amino acid sequences were
obtained with exonerate v2.2.0 (Slater and Birney 2005) and used to infer orthologues with
OrthoFinder v2.5.4 (Emms and Kelly 2015, 2019) and IQ-TREE v2.2.0.3 (Minh et al. 2020).

Normalisation of read counts and gene expression profiling

After removing lowly expressed transcripts with a read count below 10 in at least 75% of
samples from each time point and photoperiod treatment, we calculated normalisation factors
for the quantification of gene expression with the trimmed mean of M values (TMM) method
using the calcNormFactors function implemented in edgeR v3.36.0 (Robinson et al. 2010).
Normalisation-factor scaled counts per million reads mapped (CPM) were calculated with the

function cpm.DGEList from edgeR and log>-transformed with a default prior count of 2.
Fitting transcript expression curves and expression difference curves

For each photoperiod treatment (LD and SD), 24 logo(CPM)-measurements for each of the
62,727 transcripts were used to estimate the underlying curve (Fig. 1B). Each quadruplicate
was replaced by its mean (Fig. 1B), and these sets of six means per transcript and treatment
were used as the raw data for the original transcript expression curves. Standardised data (z-
scores) were calculated by subtracting the mean and dividing by the standard deviation of each
transcript-treatment combination. We also calculated the differences in transcript expression
between LD and SD treatment (i.e., differences in raw data) by subtracting the six means from

the SD treatment from the six LD treatment means.

Continuous curves were fitted to each set of six raw data points (Fig. 1B), resulting in 62,727
pairs of continuous transcript expression curves for each photoperiod (Fig. 2A). Throughout
the paper, these will be denoted raw expression curves. Similarly, 62,727 pairs of standardised

expression curves were fitted to the standardised data. Finally, 62,727 transcript expression
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difference curves were fitted to the difference data. All curves were estimated using a 7-term
Fourier series expansion assuming a 24-h period and smoothed with a roughness penalty of A
=2.5. The value of the smoothing parameter was set according to a generalized cross-validation
criterion. Individually fitted curves formed the basis for the subsequent FPCAs. Data
processing and statistical analyses were carried out in R v4.2.2 (R Core Team 2022) using the

R package fda v6.0.5 (Ramsay et al. 2022) for curve fitting and FPCA.
Analysing temporal variation by FPCA

FDA denotes statistical techniques specifically developed for analysing curve data (Ramsay
and Silverman 2002, 2005). In FDA, a set of discrete temporal observations is transformed into
a single, continuous curve. Statistical analyses are then performed on a sample of continuous
functions, rather than on the original data points. Curve fitting is therefore a mandatory,
preparatory step of FDA. In a sample of curves, the mean curve is used descriptively, usually
in combination with results from an FPCA. The FPCA is used to identify and describe the
temporal variation in the data and allowing the characterisation and interpretation of diurnal
changes in transcript levels over time. Similar to traditional PCA, FPCA seeks to decompose
the variation in a data set and express it by a combination of principal components (PCs), which
are common for the sample and can be interpreted biologically, and corresponding individual
PC scores. In FPCA, these components are curves (functional PCs, FPCs), and the variation of
interest is temporal. The FPCA also assigns FPC scores to each individual curve. These FPC
scores quantify how the trajectory of the individual curve corresponds to the general features
of the corresponding FPC curve. This is commonly visualised by showing how an individual
trajectory deviates from the mean curve if its FPC scores are high or low. An individual curve

with all FPC scores equal to 0 equals the mean curve.

We characterised the circadian transcriptome of M. ciliata with five FPCAs. First, we
considered expression curves from LD and SD separately and conducted FPCAs on each set
0f 62,727 curves (FPCALp and FPCAsp, respectively). Second, to compare expression between
both photoperiods, we pooled the expression curves from both treatments and conducted
FPCAs on all 2 x 62,727 curves. Separate FPCAs were done for the raw (FPCAraw) and
standardised curves (FPCAz). Third, we conducted an FPCA of the difference curves (LD -
SD, raw data, FPCAp).

10



285
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310

311
312
313
314
315

Photoperiodism in Melica ciliata Paliocha et al.

Defining groups of expression profiles based on differing diurnal rhythms and expression

levels

To explore the impact of photoperiods on the rhythm and expression level of transcript pairs
from contrasting treatments, we used the output of the combined FPCA analysis to divide the
transcripts into pre-defined groups (Hoffman ef al. 2010). Because differences in expression
level and rhythm are gradual, cut-off values are needed when defining differences or
similarities in FPCA scores. Since FPCA scores follow a standard normal distribution, the
distance between a score to the mean (0) is proportional to the correlation between the original
curve and the corresponding eigenfunction. Distances can thus be used as a proxy for how
much expression deviates from the mode of variation captured by the respective FPC. We
tested different combinations of cut-offs for the criteria from a range of 0.50—1.50 standard
deviations from the mean, which is a conservative approach to defining a transcript as rhythmic
or not. More specifically, expression levels of transcript pairs were defined as similar if the
difference in FPCA scores between LD and SD transcripts fell within £0.75 standard deviations
from the mean of the differences between FPCA scores. By contrast, they were defined as
different if they fell outside 1 standard deviation. Low FPCA scores were defined as values
that fell within £0.75 standard deviations around the mean FPCA score, and extreme values
were those that fell outside 1 standard deviation. Finally, to detect transcripts that have similar
rhythms in both treatments, we used the variance in the curvature of the difference curves as a
criterion. We defined transcripts as having a similar rhythmic expression pattern if the variance
of the curvature was among the lowest 5% in the data set. Transcript pairs were assigned to
group 1-5 based on a combination of these criteria, as shown in Tab. 1: 1) similar expression
levels in LD and SD and no rhythmic pattern, 2) different expression levels in LD and SD and
no rhythmic pattern, 3) similar expression levels in LD and SD and similar rthythm, 4) different

expression levels in LD and SD and similar rhythm, and 5) different thythm in LD and SD.
Heat maps and clustering

Hierarchical clustering was performed on transcripts considered different in both rhythm and
level (group 5). First, we calculated pairwise Pearson correlation coefficients (PCCs) between
the standardised LD and SD gene expression profiles. Thereafter, we performed hierarchical
clustering on the distance correlation (1 - PCC) matrix using Ward’s method (Ward 1963,

Murtagh and Legendre 2014). The dendrogram was pruned to retain minimum 1000 transcripts

11
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per cluster using dynamicTreeCut v1.63-1 (Langfelder et al. 2007), and the results visualised
with ComplexHeatmap v2.13.1 (Gu et al. 2016).

Functional enrichment analyses

We performed enrichment analyses for gene ontology (GO) terms (Gene Ontology Consortium
2004) on the gene sets identified by the FPCAs and within the clusters in group 5. Plant-specific
GO slim annotations for the reference species were downloaded from Ensembl Plants (Howe
et al. 2021) using biomaRt v2.52.0 (Durinck et al. 2005), and assigned to orthogroups
containing orthologues from at least one reference and M. ciliata. Enrichment tests for
biological process (BP) annotations with at least 25 annotated genes per term were performed
with the R package topGO v2.48.0 (Alexa et al. 2006) using Fisher’s exact test (P < 0.05), and

the weightO1 algorithm with all annotated transcripts as background.
Candidate gene expression profiling

Expression profiles for putative circadian clock and photoreceptor genes (Higgins et al. 2010,
Ream et al. 2014, Woods et al. 2017, MacKinnon et al. 2020, Fjellheim et al. 2022) were
visualised individually. To highlight photoperiodic variation in terms of gene expression level
and rhythm, we reported both raw as well as standardised expression curves. Candidate genes
were identified through the closest B. distachyon, or barley orthologue as inferred by
OrthoFinder. FPCA scores for transcripts originating from these candidate loci are also

highlighted in Fig. 6.

Results

Summary of transcriptome and annotation

A total of 48 samples were obtained during the growth experiment, yielding 47 RNA-seq
libraries (library preparation failed for one biological replicate in 16h:LD) with a total of
4,648,195,586 reads assembled into 568,337 Trinity contigs producing 150,509 Corset clusters
(‘transcripts’). Following normalization and pre-processing, 62,727 transcripts were retained
and used for orthologue inference. A total of 25,931 orthogroups containing M. ciliata and a
minimum of one reference species was recovered in this analysis. In terms of completeness,
the assembled de novo transcriptome has 1.2% missing and 8.4% fragmented, and 90%

complete BUSCOs (29.4% single-copy, 61% duplicated).
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FPCA of smoothed expression curves

FPCA of separate LD and SD expression curves

The main temporal characteristics in the expression curves are markedly different between
plants grown under LD and SD. The curve characteristic accounting for the largest part of the
temporal variation in the LD data (FPClyp, Fig. 2A) is a marked expression incline or decline
at 15 h paired with moderate changes during the rest of the day. This accounts for about half
of the variation in LDs. The most dominant characteristic in the SD expression curves, in
contrast, consists of a steep incline or decline around 4 h. This latter pattern is followed by an
equally sharp change in the opposite direction around 15 h (FPClsp, 51.7%; Fig. 2B), with less
variation between the curves obtaining extreme FPCA scores compared to that observed for
LDs (Fig. 2A-B, lower panel). The second most important curve characteristic consists of late
morning peaks/troughs between 3—11 h in LDs (FPC2yp, 18.3%) and 4-12 h in SDs (FPC2sp,
26.3%) with sign changes occurring around 15 h and 16 h, respectively. Oscillations beyond
these patterns account for 29.5% in LDs and 19.8% in SDs (FPC3 + FPC4), demonstrating that
gene expression in SDs is dominated by fewer and more pronounced peaks than under LD

conditions.

FPCA of all expression curves

Considered together, transcript expression curves displayed large variation, both in the general
level of transcript expression, and in diurnal behaviour. FPCA of the raw expression curves
(Fig. 3A) show that the most dominant temporal variation in these curves is differences in the
overall expression level (Fig. 3A, FPClraw). This characteristic explains 94.1% of the total
variation in the original raw curves. Due to dominance of overall expression level, temporal
fluctuations are to a very little extent captured by FPClraw. Diurnal variation is captured by

FPC2—4raw, but the amount of variance explained by these components is small.

In the standardised curves (Fig. 3B), fluctuations in temporal variation are accentuated. The
first four FPCs account for 97% of the temporal variation (47.4%, 23.4%, 14.9% and 11.36%,
respectively) (Fig. 3B). FPC1z explains approximately half of the temporal variance in the
combined data set (47.4%, Fig. 3B). This component identifies expression profiles that
peak/trough in the early morning at 4 h and a peak/trough in the other direction around 15 h.
The overall pattern captured by FPC27 (23.4%, Fig. 3B) is similar in shape, but with a wider
first peak/trough at 611 h and a phase shift towards the evening/night, culminating in a

pronounced peak/trough in the opposite direction at 22h. Minor perturbances in gene
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expression are described by FPC3z (14.9%) and FPC4z (11.6%), capturing variance beyond
the main patterns identified by FPC1-27.

FPCA of difference curves

To identify transcripts differentially expressed between LDs and SDs, we computed difference
curves (LD - SD, raw curves) and conducted an FPCA on those in order to complement the
separate and combined FPCAs of individual curves. The most prominent temporal feature in
FPClp are differences attributed to the previously identified peaks/troughs occurring at 15 h
as well as towards midnight (46%, Fig. 3C). The latter midnight peak/trough constitutes the
main characteristic in FPC2p (32.4%, Fig. 3C), whereas FPC3p (11.4%) and FPC4p (5.9%)
accounts for differences occurring during the early morning, coinciding with the transition from

light to dark in the respective treatments (LDs in FPC3p and SDs in FPC4p).
Classification of transcripts into groups

In total, 37,807 (60.2%) transcripts were assigned to at least one of five pre-defined groups
based on their FPCA scores from the combined FPCAs (Fig. 3). Out of the transcripts that were
defined arhythmic/non-oscillatory, 356 have a similar expression level in LDs and SDs (Fig.
4A, group 1), whereas 26 transcripts are expressed at different levels in LDs and SDs (Fig. 4B,
group 2). Transcripts with diurnal expression profiles were similarly divided into being
expressed at similar (Fig. 4C, group 3) or different (Fig. 4D, group 4) levels in LDs and SDs.
A total of 102 transcripts with diurnal oscillations and similar absolute levels of expression
were identified, whereas 62 transcripts with similar diurnal expression curves, but different
levels, were identified between LDs and SDs. The majority of classified transcripts (37,261)
fell into a category containing profiles with different levels and/or different diurnal expression
patterns between the two photoperiods (Fig. 4G—H, group 5) and were therefore divided into

smaller sets using hierarchical clustering (see next section).
Clustering and GO enrichment

The largest of our pre-defined categories consisted of transcripts with different diurnal rhythms
under opposite photoperiods (Group 5, Fig. 4, Tab. 1). To identify transcripts that were
similarly affected by photoperiod we clustered them based on their rhythms and examined the
clusters for enrichment of specific biological processes. The most prevalent characteristic of
LD gene expression were marked expression peaks and troughs centred around 15 h.

Corresponding SD profiles in these clusters were often shifted in phase with expression peaks
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occurring both earlier (cluster 9, Fig. 5) or later (clusters 2-3, Fig. 5) in SD than in LD.
Furthermore, a large number of genes displayed widening and narrowing of expression profiles
under contrasting photoperiods, as seen in clusters 5 and 8 (Fig. 5). Changes in gene expression
frequently coincided with light—dark/dark—light transitions in LD, whereas directional changes

in SD expression occurred during light or dark phases in most clusters.

We detected significant enrichment of 28 plant GO slim terms in the different clusters.
Enrichments for biological processes ‘response to biotic stimulus’, ‘response to external
stimulus’, and ‘response to stress’ were, each occurring in six clusters. In total 11 GO slim
terms were distinct to only one cluster, such as ‘reproductive structure development’ (cluster
9, Fig. 5) and ‘reproduction’ (cluster 5, Fig. 5). The term ‘circadian rhythm’ had in total two
occurrences in clusters harbouring orthologs of many of our pre-defined candidate genes
(cluster 1 and 9, Fig. 5) and co-occurred with terms related to development such as ‘cell
differentiation’ and ‘reproductive structure development’. Notably, these genes reached peak
expression during dawn (cluster 1 SD, Fig. 5) and dusk (cluster 9 LD, Fig.5), indicating a
potential role of morning and evening protein complexes in SD and LD gene expression in M.
ciliata. Circadian marker gene expression was associated with metabolic as well as
developmental processes, suggesting the involvement of multiple transcriptional systems
controlling basic functions influenced by photoperiod. The term ‘photosynthesis’ was enriched
in only a single cluster featuring increasing gene expression during the light period in both LD
and SD (cluster 9, Fig. 5), with peak gene expression towards the end of the day in LD and
peaks centred around noon in SD. Interestingly, the term ‘growth’ was significantly enriched
in only a single cluster characterised by peak gene expression during dark in both LD and SD
(cluster 11) and early morning in LD, indicating that biomass production in M. ciliata

predominately occurs during night and early day, irrespective of photoperiod.
Proof of concept for gene discovery

We identified a set of known clock and photoperiod pathway genes from the literature and
examined their expression to assess FPCA’s ability to identify genes involved in diurnally-
regulated processes. Most of these transcripts had extremely high or low FPC1z and FPC2z
scores (cf. Fig. 3B), as indicated by their positions toward the periphery of the first FPCz plot
(Fig. 6A). A few of these genes also had extreme FPC3z and FPC4z values, such as CONSTANS
9(C09), CO1, CO2, and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2
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(LNK2), consistent with their peaking in expression throughout the day specifically under LD
conditions (Fig. 6B).

The majority of clock and photoperiod pathway genes followed different diurnal fluctuations
under LDs versus SDs. This is evident from the fact that transcripts obtain different relative
scores across all four main FPCz axes (Fig. 6), as well as from the expression profiles of a
subset of clock and photoreceptor genes that show common phase-shift patterns (e.g.,
PRRI/TOCI) (Fig. 7). In general, the clock genes and photoreceptors were expressed at the
same level in both photoperiods, although differences in diurnal thythms between photoperiods
give time-specific differences in expression levels between LDs and SDs. The exception is the
flowering pathway integrator gene FLOWERING LOCUS T 1 (FTI), which was barely
expressed in SDs, and highly expressed in LDs. Some genes had very similar absolute
expression levels under both, LDs and SDs, including ELF3, LWD, CRY2, PHOT2, PHYA,
PHYB, PHYC and LUX, with their rhythmicity only being evident from standardised expression
profiles. Another set of genes, such as CCA1, GI, LNK1, TOC1, PRR37, PRR73, PRR95, CRY2,
PHOT2, PHYC, and RVES6, was expressed at similar levels and with similar diurnal rhythms,
but with a slight phase shift between photoperiods. Interestingly, the latter genes all shifted in
the same direction, with a delayed expression peak in LDs. Some genes also showed large
differences in rhythmicity in the two photoperiods (e.g., CO9, CO1, CO2, LNK2, REV2, CRY1,
PHOTI, RVEG6S, and ZTL), with more than one peak through the day in at least one of the

treatments.

Discussion

Functional data analysis provides a useful framework for temporal gene expression

analysis

The ability to detect time-dependent changes in transcription is critical for the study of
rhythmic gene regulation. Functional data analysis provides a powerful framework for the
exploration of temporal regulatory relations in transcriptomes. By treating expression profiles
as continuous functions over time rather than a set of point estimates, FDA overcomes many
limitations of more conventional approaches that can obstruct the exploration of time-
dependent relationships. Obtaining good time-series gene expression data that reveal transient
changes is challenging when resources are limited and requires careful balance between sample

size and temporal resolution. A common outcome of this trade-off is data too complex to be
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analysed with conventional approaches that detect differentially expressed genes between
predefined contrasts (Conesa et al. 2016, McDermaid ef al. 2018, Raghavan et al. 2022). On
the other hand, the time-series may be too sparse to be explored with methods commonly
applied assess rhythmicity in gene expression analyses (e.g., Wu ef al. 2016). We believe that
the analytical methods applied in this study offer a more nuanced understanding of longitudinal
gene expression data in non-model organisms and blaze way for the comprehensive analysis
of time-dependent processes across different species. The methodological framework outlined
in this study identifies genes involved in diurnal and photoperiodic mechanisms, deepening our
understanding of plant physiology, and illuminating evolutionary origins of adaptations to

different day lengths.

Photoperiod has an almost universal impact on both the level and rhythmicity of gene

expression

The most prominent signal from our analysis is that the expression profiles of M. ciliata genes
under contrasting photoperiods can be characterised by just a few basic expression patterns
(Fig. 2A—B). Irrespective of photoperiod, there is a peak/through at 15:00 h, explaining most
of the variation in SDs (FPClsp) and a little less in LDs (FPC2rp), and another peak/through
in the morning (FPC1Lp; FPC2sp). There are also photoperiod-dependent peaks/throughs that
have a major impact on gene expression during the dark period (Fig. 2A—B), with SDs inducing
more pronounced expression peaks/throughs during the dark period than LDs (Fig. 2A-B).
These data suggest that dawn and dusk are major elicitors of gene activation in M. ciliata. This
closely parallels findings in other grasses like maize (Khan et al. 2010), B. distachyon
(MacKinnon et al. 2020), sugarcane (Saccharum sp.) (Hotta et al. 2013), and barley (Miiller et
al. 2020) that identified dawn and dusk as influential regulatory signals (Deng et al. 2015,
Greenham and McClung 2015).

Another compelling pattern when comparing the expression responses in SD versus LD is that
94.1% of the total variance in the M. ciliata transcriptome is explained by differences in overall
gene expression level irrespective of rhythmicity (Fig. 3A, FPClraw). The amount of mRNA
produced can be significantly influenced by the quantity of light, resulting in differential
transcript abundance (Tobin and Silverthorne 1985). It is thus plausible that the observed
variation captured by FPClraw can be attributed to differential transcriptional activity due to

contrasting light amounts.
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To identify genes responding to changes in photoperiod, we developed a pipeline to sort the
genes into five a priori groups based on a set of FPC analyses, covering all possible
combinations of phase and expression level variation (Table 1, Fig. 4). Ninety-nine percent of
transcripts fall into group 5, which is characterised by different diurnal oscillations between
LDs and SDs. In terms of variation in phase, the high ratio of photoperiod-dependent (group 5,
Fig. 4E-H, 5) to photoperiod-independent (group 3 and 4, Fig. 4C-D) M. ciliata transcripts is
in line with previous studies showing that many of the pathways influenced by the circadian
clock are linked to exogenous signals, with few rhythms being upheld entirely independent of
photoperiod (Huang et al. 2017, MacKinnon et al. 2020). For instance, null mutations in the
central rice clock gene OsG/ did not measurably impair key facets of primary metabolism and
yield, such as photosynthesis and the rate of carbon assimilation under field conditions with
strong environmental cues (Izawa et al. 2011). However, the majority of genes underwent
phase shifts in the OsGI mutant, demonstrating that photoperiodic gene expression is the result
of crosstalk between hub genes of the circadian clock and external cues that set the state of
photoperiod-dependent oscillations (Izawa et al. 2011). Global gene expression thus seems
coordinated by the perception of exogenous signals and is fine-tuned through phase shifts of
central circadian clock genes that generate oscillations but are themselves subject to

adjustments by environmental cues.

Merely 164 of the 37,807 transcripts classified as rhythmic had similar expression patterns
under both, LDs and SDs (0.43%; Fig. 4C-D). Since our experimental design only involved
changes in photoperiod, it appears that these genes are not entrained by light cues and therefore
likely a part of the M. ciliata circadian clock or directly influenced by it. Previous studies in
other grass taxa have generally found higher percentages of expressed genes following
circadian clock oscillations, with reports ranging from 1.6% in Setaria viridis (Huang et al.
2017) to 3.6% in B. distachyon (MacKinnon et al. 2020) and 33% in sugarcane (Hotta et al.
2013), and most estimates falling between 6-15% (MacKinnon et al. 2020). The disparity
between studies probably reflects a combination of true biological variation across study
species, as well as variation in environmental parameters and analytical approaches like

sequencing technology and choice of statistical methods.

In our analyses, groups were identified by a combination of temporal patterns in the raw,
standardised, and difference curves. Standardised curves played a major role in identifying the

largest group (different rhythm in SD and LD, group 5, Fig. 4G—-H). When standardising the
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data, even small temporal fluctuations will be exaggerated, and transcripts with low read counts
may express the same temporal pattern as more abundant transcripts. Measurement errors in
lowly expressed transcripts may therefore cause artifacts in curve patterns, artificially inflating
rhythmic differences between treatments. Hence, the estimated proportion of transcripts

without rhythmic expression might be somewhat underestimated.
Circadian clock genes show differential entrainment in LDs and SDs

Specific analysis of several well-characterised genes controlled by the circadian clock (Fig. 6,
7), such as the morning-loop genes CCAI, REV2, REVS86, REVS9 and ZTL and the evening
complex genes PRR1/TOCI and PCLI/LUX, indicate that the overall dynamic of the M. ciliata
circadian clock is congruent with what has been resolved in other species (Higgins ez al. 2010,
Hong et al. 2010, Koda et al. 2017, Weng et al. 2019, MacKinnon et al. 2020, Miiller et al.
2020, Rees et al. 2022). In A. thaliana, rice, and M. ciliata, the single daily expression peak of
the morning loop genes (CCAI, REV2, REV6S8, REVS86 and ZTL) occurs just after dawn in LDs
and before dawn in SDs, suggesting slightly different entrainment of the 24-hour cycle
depending on photoperiod (Alabadi e al. 2002, Lee et al. 2022). By contrast, 4. thaliana, rice,
and M. ciliata PRR1/TOCI, at least the former of which peaks every 23—24 h under constant
photoperiods, are upregulated at dusk under both LDs and SDs (Murakami et al. 2007, Nagel
et al. 2015). A central component of the evening complex, ELF3, shows highly contrasting
expression profiles under LDs and SDs. Its expression in LDs follows expression of the evening
complex, whereas its expression peaks in the dark period just before dawn in SDs. In barley,
ELF3 induces transcriptional oscillations (Deng et al. 2015), and plants with non-functional
ELF3 show disrupted circadian rhythms and flower early irrespective of photoperiod (Faure et
al. 2012, Zakhrabekova et al. 2012). However, in wheat (7. aestivum and T. monococcum), the
evening complex gene ELF3 seems to reach peak expression towards the end of the dark period
(Alvarez et al. 2016, 2023, Wittern et al. 2023), indicating some diversity in the architecture
of mechanisms perceiving light—dark transition. Our results indicate that ELF3 is a central
component in modulating photoperiodic responses of the circadian clock, in particular

mediating photoperiodic induction of flowering in M. ciliata.

A well-known pattern of circadian rhythm genes is the delay in phase in response to
lengthening day (Leung et al. 2022). This largely holds true also for the set of pre-defined
photoperiod and circadian genes in our work (Fig. 7). This likely reflects plants tracking the

end of the photoperiod to take advantage of photosynthetic input to maximize metabolic
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processes, corroborating findings from barley, maize, Arabidopsis, and Ipomoea nil (Hayama

et al. 2007, 2018, Jonczyk et al. 2011, Deng et al. 2015, Seluzicki et al. 2017).

A noteworthy pattern is the lack of circadian clock and photoreceptor genes among transcripts
with high scores in FPC2z. This suggests that only a limited number of M. ciliata clock
components and photoreceptors are expressed in the middle of the dark period. This aligns with
observations made in Arabidopsis and crop species where several flowering genes, such as
GIGANTEA (GI), FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKFI1), ZEITLUPE (ZTL),
LOV KELCH PROTEIN 2 (LKP2) and FLOWERING BHLH 1-4 (FBH-4), reach peak activity
during light (Brambilla and Fornara 2017). An exception are CO/ and CO2 that are expressed
in the afternoon under both light and dark conditions. In 4. thaliana, CO expression is confined
to the afternoon due to the repressive action of CYCLING DOF FACTORs (CDFs) and
inductive photoreceptors. However, the night peak that requires additional activators is
currently unexplained (Brambilla and Fornara 2017). Further dark-expressed genes are likely
associated with processes such as defence, stress, and respiration (e.g., cluster 2, 3, 8, 12; Fig.

5).

Expression profiles of the circadian clock and photoreceptor candidate genes (Fig. 7) provide
proof-of-concept for the use of our FPCA approach to identify photoperiod-responsive genes.
Most of these genes follow one of the four main expression patterns. Their scores as described
by the principal component curves of the FPCAs (Fig. 3) fit well with their diurnal expression
patterns (Fig. 7), indicating that our approach is suitable for gene discovery and comparative

analyses.
Linking transcriptional behaviour to temporally variable biological processes

The by far largest of our pre-defined group was the one containing transcripts with different
diurnal rhythms in contrasting photoperiods (Group 5, Fig. 4, Table 1). A variety of clusters
with differential gene expression profiles were identified, suggesting that many different
photoperiod sensing systems or transcriptional networks control gene expression. We find that
various terms reflecting metabolism are enriched across most differential gene expression
profiles, suggesting that different photoperiodic sensing systems/pathways control basic
functions. Several differential expression patterns are found across the circadian clock genes
and photoreceptors (Fig. 7) and they are co-expressed with genes enriched for different

functions such a carbohydrate metabolic process, transport, reproduction and DNA metabolic
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processes (CO1/2, PHOTI, RVE86, CCAl, REV2 and RVEG68), response to chemical, circadian
rhythm, lipid metabolic process, response to endogenous stimulus, multicellular organism
development, secondary metabolic process, cell differentiation (CO9, LNK1, LNK 2 and CRY?2)
and response to endogenous stimulus, circadian rhythm, photosynthesis, response to abiotic
stimulus, reproductive structure development (G, PRR37, PRR73 and PRRY5). This suggests
that different mechanisms connect the photoperiod with the circadian clock, similar to what
has been found in Arabidopsis thaliana for flowering and metabolism (Liu e al. 2021, Leung
et al. 2022). Reproduction is enriched in a group which also contain central flowering genes
like CO1/2, PHOTI, RVES86, CCAIl, REV2 and RVEGS. Interestingly, also carbohydrate
metabolism and transport is enriched in this cluster, which has a strong peak in the morning in
LD whereas their expression is in the dark in SD. It is known that sugar signaling through
transport to the SAM is involved in flowering in Arabidopsis thaliana and likely also in other
species (Turnbull 2011). The co-regulated genes in this cluster may thus be essential for the

LD-flowering induction in M. ciliata.

Numerous genes influenced by changing photoperiod were associated with sensory
processes involved in anticipation and transmission of biotic stimuli and abiotic stress,
indicating complex relationships with multiple photoperiod-sensing systems in M. ciliata. This
aligns with findings from Arabidopsis where light-induced transcriptional rewiring is prompted
by numerous photoreceptors transferring light signals into circadian and photoperiod pathways
(Ma et al. 2001). Substantial co-regulation of response processes with core circadian clock
genes signifies the importance of photoperiodic entrainment of adaptive traits. In fact, many
stress-responsive genes are under circadian regulation to limit energy-demanding responses to
times when stress is most severe and most beneficial to survival (Yakir ez al. 2007, Markham
and Greenham 2021). Exploring the linkages between circadian stress responses and their
entrainment by photoperiod in M. ciliata provides an exciting opportunity for further
investigation. This is particularly relevant given the greater abundance and diversity of
circadian clock-regulated stress-responses in undomesticated species than cultivated crops
(Markham and Greenham 2021), and their cross-talk of stress signals with reproductive

development and flowering (Riboni et al. 2014, Takeno 2016).
Conclusions

Our results show great flexibility of the circadian clock in controlling different biological

processes in a temperate, perennial grass. Such flexibility is likely a central part of adaptation
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to environments that vary across time (e.g., seasons) and space (e.g., latitude), like flowering,
bud burst, seed set and senescence. Photoperiod and temperature are major signals plants rely
on to time phenological events and are thus the two major regulators of rhythmicity in gene
expression. With ongoing climate change, the flexibility of the clock will dictate how well
plants can respond to novel combinations of temperature and photoperiod. As of today, we
know little about the variation in photoperiodic responses of diurnal rhythms within and across
species and more comparative studies are needed. The approach used here can easily be
extended to evaluate photoperiodic gene expression and the evolution of day-length responses

across species.
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Figure and Table Texts

Figure 1: Overview of the data collection and curve fitting process. A) Plants were subjected
to contrasting photoperiods imitating long day (16 h light : 8 h dark) and short day (8 h light :
16 h dark). Samples were taken every 4" hour (dotted lines) after one week of acclimation in
the growth chamber, starting at 4:00 h. B) Two upper panels: Yellow and brown dots are single
transcript expression measurements in log2(CPM); quadruplets at each time point in LD and
SD, respectively. These were replaced by their respective means (dashes in the left plot). The
six means were used to fit a smoothed curve (central plot). The variation in curve trajectories
is exemplified by transcript expression curves of 14 randomly chosen transcripts (right plot).
Lower panel: The left plot shows the differences between transcript expression means from
short day and long day treatment, for the measurements in the plots above. The middle plot
shows the resulting smoothed difference curve, and the left plot shows variation in difference
curve trajectories, for 14 different transcripts. The background colour of the plot indicates light
period (white) or darkness (grey).

Figure 2: Results from functional principal component analyses (FPCA) of standardised
transcript expression curves from LD (A) and SD (B) treatments, respectively. The top rows
show the temporal variation identified by the principal component curves (i.e., how the shape
of an individual curve differs from the mean curve if a multiple of the FPC curve is added to
(++) or subtracted from (--) the mean curve, where the multiple corresponds to 1 SD of the
corresponding FPC scores) and the bottom rows contain individual curves with extreme scores
of one of the FPCs from LD (yellow lines), and SD (brown lines).

Figure 3: Results from FPCA of fitted transcript expression curves from both long and short-
day treatments for A) raw data B) standardised data, and C) differences in transcript
measurements (LDraw - SDraw). The top row shows the temporal variation identified by the
principal component curves (i.e., how the shape of an individual curve differs from the mean
curve if a multiple of the FPC curve is added to (++) or subtracted from (--) the mean curve,
where the multiple corresponds to 1 SD of the corresponding FPC scores) and the bottom row
contain individual curves with extreme scores of one of the FPCs. Yellow and brown lines are
transcript curves from long day and short day-treatment, respectively. The background colour
of the plot indicates light period (white) or darkness (grey), with light grey indicating darkness
in one of the treatments, and darker grey indicating darkness in both treatments.

Figure 4: Transcript expression curves classified to the pre-specified groups (see Tab. 1). A—
D) show curves classified to group 1-4, respectively. E-H) show curves classified to group 5.
Since the transcripts in group 5 span a diverse set of trajectories and differences, these curves
were sorted according to their FPCAp scores, and displayed in separate columns, according to
the lower and upper tails of the FPC1-4p scores. The upper plots show the raw expression
curves, the second and third plots show centred curves and standardised curves, respectively.
The lower plots show the corresponding difference curves (of the raw expression curves).
Yellow and brown lines are raw expression curves from long day (LD) and short day (SD)
treatment, respectively, and these are plotted in pairs. Green lines are differences in transcript

34



1092
1093
1094

1095
1096
1097
1098
1099
1100
1101

1102
1103
1104
1105

1106
1107

1108
1109
1110

Photoperiodism in Melica ciliata Paliocha et al.

expression between LD and SD. The background colour of the plot indicates light period
(white) or darkness (grey), with light grey indicating darkness in one of the treatments, and
darker grey indicating darkness in both treatments.

Figure 5. Hierarchical clustering of transcripts with differing SD and LD expression patterns
as identified by the FPCA analyses (‘Group 5°). The dendrogram is pruned to a minimum
cluster size of 1,000 transcript pairs. Light and dark period indicated by the bars at the bottom.
Significant GO enrichments for all transcripts in a given cluster are shown to the right (P <
0.05, Fisher’s exact test, biological process annotation). Expression values are standardised.
Placement of Brachypodium distachyon (Bd) photoreceptors and circadian clock orthologues
is indicated with arrows.

Figure 6. Score plots of FPCAz. A) FPClz and B) FPC2z Grey lines indicate 1 standard
deviation. FPCA scores of Brachypodium distachyon (Bd) orthologues involved in circadian
clock activity and photoperiodic flowering are highlighted. Transcripts represented more than
once represent multiple isoforms or paralogues.

Figure 7. Expression profiles of known A) circadian clock and B) photoreceptor genes. The
top row shows fitted raw curves and the bottom row shows standardised curves.

Table 1. Overview of pre-specified groups and corresponding criteria for the identification
these. The specifications of the terms similar, different, low, and extreme, in relation to levels,
FPCA scores, rhythm and variance, are described thoroughly in the main text.
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Evolution of photoperiodic flowering in Stipeae Paliocha ef al.

Abstract

Flowering time, a crucial adaptive trait influenced by various forces such as photoperiod, plays
a pivotal role in the evolutionary trajectory of temperate grasses (Pooideae). Certain species in
the ancestrally long-day (LD) responsive Pooideae tribe Stipeae have transitioned back to short-
day (SD) responsive flowering in a clade that is now found in neotropical montane habitats.
Considering the evolutionary significance of flowering time in habitat transition, our objective
is to identify key differences within diurnal organisation of gene expression that may explain
the evolution of opposite photoperiodic flowering strategies between closely related Pooideae
species. Here, we take advantage of comparative transcriptomics and functional data analysis
to investigate the temporal organisation of global gene expression in two closely related LD
and SD plants, Oloptum miliaceum and Nassella pubiflora (Poaceae: Pooideae, tribe Stipeae).
We identified candidate genes involved in the evolution of divergent photoperiodic flowering
responses that possibly facilitate the transition from LD- to SD-flowering in Pooideae. Further,
our findings indicate that the diurnal transcriptome undergoes substantial rewiring in response
to daylength changes in both species. However, the differential expression between them was
confined to a limited subset of annotated orthologous genes. Divergent gene expression
between LD- and SD-flowering Stipeae was notably pronounced under SDs and involved floral
integrators, light-signalling genes, and target genes of the circadian clock associated with

flowering.

Introduction

Adequately timed flowering is crucial to ensure reproduction when environmental
conditions are most favourable. In seasonally variable habitats, flowering is limited by
periodical changes of the environment that are unfavourable to reproduction and survival.
Under such conditions, daylength is the most reliable environmental cue. Many plants have
therefore adopted flowering strategies that make use of photoperiod to pre-empt optimal
conditions of flowering (Garner and Allard 1920, Murfet 1977, Béurle and Dean 2006). In
temperate habitats where growth and reproduction are confined to a relatively short growing
season, increasing daylengths in spring trigger or significantly hasten flowering in long-day
(LD) plants, such as Arabidopsis thaliana and barley (Hordeum vulgare). Conversely,
flowering in tropical and sub-tropical plants is often accelerated when daylength falls below a
certain threshold to ensure reproduction between the rainy and dry season, like in the short-day

(SD) plants rice (Oryza sativa) and maize (Zea mays) (Colasanti and Coneva 2009). In the grass
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family (Poaceae), radiations into temperate habitats are closely tied to the acquisition of
adaptive traits to seasonal fluctuations of the environment like cold acclimation and frost
tolerance (Humphreys and Linder 2013, Vigeland et al. 2013, Zhong et al. 2018, Schubert,
Grenvold, et al. 2019), timely flowering triggered by prolonged periods of cold (vernalisation)
(McKeown et al. 2016, Woods et al. 2016, Paliocha, Schubert, Preston, et al. 2023), and
photoperiod (Fjellheim ez al. 2022). Pooideae are the most dominant grass lineage in temperate
zones (Hartley 1973, Schubert er al. 2020), and the prevailing understanding of their
evolutionary trajectory suggests sequential gain of these key traits from an ancestral species
likely exhibiting SD-flowering or day-neutrality (Preston and Fjellheim 2020). There is
considerable support for a relatively early acquisition of temperate adaptations in Pooideae that
predate or coincide with major diversification events during the Eocene—Oligocene cooling
period and expansion of temperate habitats (Schubert, Marcussen, et al. 2019, Preston and
Fjellheim 2020). Ancestral Pooideae swiftly adapted to these emerging niches at higher
latitudes, as evidenced by the gain of LD-flowering which is inferred to have happened at the
base of the subfamily (Preston and Fjellheim 2020, Fjellheim ez al. 2022). However, a lineage
in the early-diverging tribe Stipeae seems to have transitioned back from warm temperate to
tropical montane habitats accompanied by the reversion to the ancestral SD-flowering strategy
(Fjellheim et al. 2022). This is exemplified by the genus Nassella (needlegrasses) which is
particularly diverse in South American highlands (Cialdella et al. 2014, Soreng et al. 2022),
and inferred to primarily consist of SD-flowering species evolved from a LD-responsive
ancestor (Fjellheim er al. 2022). This peculiar, lineage-specific reversal of photoperiodic
flowering behaviour can partly be attributed to differential shifts in diurnal regulation of genes
involved in the daylength-mediated flowering (Fjellheim ez al. 2022).

The photoperiodic flowering pathway is tightly linked to endogenous cues produced by
the circadian clock. Plants discern between LDs and SDs depending on whether light cues
coincide with internal cycles generated by circadian oscillators, thereby periodically altering
their sensitivity to periods of darkness and light (Johansson and Staiger 2014). The circadian
clock is a complex regulatory network comprised of interlocking morning, central, and evening
loops that peak during different times of the day and sustain rhythmic oscillations through
mutual feed-back (Calixto ef al. 2015, Creux and Harmer 2019). In Arabidopsis, the morning
loop is comprised of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED
HYPOCOTYL (LHY) which repress PSEUDO-RESPONSE REGULATORs (PRRs) such as
PRRY, PRR7, and PRR5. These, in turn, are themselves repressors of CCA/ and LHY, thus
forming the morning feedback loop. Mutual repression between CCA1/LHY, TIMING OF

3
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CAB EXPRESSION 1 (TOC1), and GIGANTEA (GI) forms the central loop. TOC1 represses
the transcription of G/ and components of the third feedback circuit peaking at dusk, the evening
complex (EC), like LUX ARRHYTMO (LUX or PHYTOCLOCK 1 (PCLI)), EARLY
FLOWERING 3 (ELF3), and ELF4 (Covington et al. 2001, Helfer ez al. 2011, Nusinow et al.
2011, Huang and Nusinow 2016). In synergy with external cues like temperature and
photoperiod, the rhythms established by the circadian clock orchestrate the expression of a
myriad of genes involved in an extensive array of developmental and metabolic processes
(Hotta et al. 2007, Covington et al. 2008, Dalchau et al. 2010). Light signals are perceived by
a system of photoreceptors like PHY TOCHROMESs and CRYPTOCHROME:s at the beginning
of the photoperiodic flowering cascade (Lin 2000, Sanchez et al. 2020). These act as floral
promotors or repressors in different species, depending on the configuration of the downstream
signalling pathways they network with (Sanchez et al. 2020). Signalling components such as
PHYTOCHROME INTERACTING PROTEINs (PIFs), and ZEITLUPE (ZTL) eventually
convey daylength information into the oscillatory system, forming the basis of light entrainment
and developmental responses to photoperiod. Due to its central role the core clock mechanism
is remarkably conserved between LD and SD plants, implying that evolution of daylength-
mediated flowering occurs through precise adjustments within a shared, ancestral pathway
(Amasino and Michaels 2010, Andrés and Coupland 2012).

The main flowering signal produced by the Arabidopsis circadian clock is CONSTANS
(CO) which is transcribed in a stable oscillatory pattern culminating during the second half of
the day. CO is a floral activator fostering the expression of the Arabidopsis florigen
FLOWERING LOCUS T (FT). As translation of CO mRNA is regulated by enzymatic
complexes degraded in dark (Valverde et al. 2004), FT transcription is promoted only when
late afternoon light and CO transcription coincide as it is the case under lengthening
photoperiods. Diversity in the output layer of the photoperiodic flowering pathway is associated
with plasticity of photoperiodic flowering responses in temperate grasses. Variation of grass
orthologs of ArCO and their interactions with other members of the CCT (CO, CO-like, and
TOCI; Strayer et al. 2000) domain gene family and PRRs have been identified as primary
drivers of photoperiod responses in LD, SD, and day-neutral species (Mizuno and Nakamichi
2005, Brambilla and Fornara 2017, Liu et al. 2020). Central CCT domain genes fine-tuning
flowering time include PHOTOPERIOD 1 (PPDI) known as PRR37 in rice, barley CO/ and
CO2 and their orthologue in rice HEADING DATE 1 (HDI), the paralogues CO9 and
VERNALIZATION 2 (VRN2) and their rice orthologue GRAIN NUMBER, PLANT HEIGHT,
AND HEADING DATE 7 (GHD?7) (Trevaskis et al. 2006, Takahashi e al. 2009, Higgins et al.

4
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2010, Kikuchi et al. 2011, Lu et al. 2012, Koo et al. 2013, Woods et al. 2016, Zheng et al.
2016, Zhang et al. 2017, Shaw et al. 2020). A key difference between LD- and SD-flowering
grasses is how these genes interact with each other on the protein level (Preston and Fjellheim
2020). In the core-Pooideae cereal wheat (7riticum aestivum), VRN2 acts as a floral repressor
by inhibiting the expression of VRN3/FTI through its interaction with NUCLEAR FACTOR-
Y (NF-Y) protein complexes (Li et al. 2011). However, CO2 competes with VRN2 in this
binding, thereby counteracting its repressive function (Li et al. 2011). This antagonistic
interaction between VRN2 and CO2 introduces flexibility to the regulation of flowering in
wheat depending on the relative abundance of their protein products (Li er al. 2011).
Conversely, in rice, this relationship is reversed, as the VRN2 orthologue GHD?7 alters the role
of the functional rice CO-orthologue HD1a from a floral promotor to an indirect repressor of
the rice VRN3/FTI-ortholog HD3a under LDs, thus delaying the flowering process under non-
inductive daylengths (Okada ef al. 2017, Herath 2019). Diversification of CCT domain genes
is an important factor of flowering time in grasses and has been crucial for the domestication
of major crops like barley, sorghum (Sorghum bicolor), and wheat (Cockram et al. 2012), and
it is thus reasonable to posit that their role in enabling niche transitions in grasses is of equal
importance on larger evolutionary scales.

Similar to the competitive binding of CCT domain genes is the formation of florigen
activator complexes (FACs) and florigen repressor complexes (FRCs) at the shoot apex
encompassing phosphatidylethanolamine-binding proteins (PEBPs) from the F7/TFLI-like
gene family, known as VERNALIZATION 3 (VRN3) or FTI in temperate grasses (Yan et al.
2006) and HEADING DATE 3a (HD3a) in rice. Analogously to phloem-mobile hormones,
FT/TFLI-like genes are expressed in leaves, transported through the vascular system to the
shoot apex where they deliver potent flowering signals (Conti and Bradley 2007, Jaeger and
Wigge 2007, Zeevaart 2008). In the shoot apical meristem (SAM), FT1 forms a FAC with 14-
3-3 and FD-like proteins (Li and Dubcovsky 2008, Lv et al. 2014), which ultimately alters the
developmental faith of the meristem from vegetative to reproductive. Despite high sequence
similarity, TFL1 antagonises the function of FT1 and represses floral meristem formation
(Hanzawa et al. 2005, Danilevskaya et al. 2010, Hanano and Goto 2011). In rice, for instance,
TFL1-like competes with the FT1 orthologue HD3a during the polymerisation of the florigen
compound which leads to the assembly of FRCs mitigating the floral transition (Kaneko-Suzuki
et al. 2018). Formation of such repressive transcription factor complexes involving VRN3/FT1-
antagonising TFL1 proteins is a common mode of flowering regulation across Poaceae (Jensen

et al. 2001, 2004, Ahn et al. 2006, Olsen et al. 2006, Kikuchi et al. 2009, Danilevskaya et al.

5
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2010, Li et al. 2015, Brambilla ez al. 2017, Bi et al. 2019, Giaume ef al. 2023, Linhares-Neto
et al. 2023). Noteworthy, FT/TFLI-like genes have significantly proliferated in monocots and
have undergone a particularly dramatic expansion in grasses where at least 12 distinct F'7-like
lineages are reported (Chardon and Damerval 2005, Bennett and Dixon 2021). Although
fundamentally conserved, grass F'7/TFLI-like genes are strongly divergent relative to eudicot
FT/TFLI orthologues, reflecting their versatility in the initiation and modulation of floral
transition. Diversity and expansion of F7/TFLI-paralogues in grasses suggests strong
evolutionary  selection pressure towards diverse flowering responses through
neofunctionalisation of these central developmental regulators (Bennett and Dixon 2021, Jin et
al. 2021) that may form many different flowering promoting or repressing compounds
depending on the current environmental context (Lv et al. 2014, Liu et al. 2020).

As such, there are several possible layers in which photoperiodic flowering can be fine-
tuned to promote flowering under the most suitable conditions. This fine-tuning is often
achieved through the precise coordination and coinciding diurnal expression of various
components within the floral network. It can involve regulatory novelties in the photosensory
system, adjustments to the circadian clock, or variations in clock output genes or floral
integrators that act as either floral promotors or inhibitors (Sanchez ez al. 2011, 2020). This
intricate interplay allows for the dynamic modulation of flowering responses and ensures
flowering adaptation to specific photoperiodic environments, thus facilitating the spread of
temperate grass lineages into novel habitats (Preston and Fjellheim 2020). To delve deeper into
this line of investigation, we examine whether diurnal expression shifts also occur at the whole-
transcriptome level in two selected Stipeae species with opposing photoperiodic flowering
strategies, namely Oloptum miliaceum and its SD-flowering relative Nassella pubiflora
(Fjellheim ef al. 2022). Our objective is to determine if shifts in diurnal gene regulation in
response to photoperiod are a universal mode of adaptive flowering evolution in temperate
grasses. Moreover, we aim to identify regulatory divergence of diurnally expressed genes
involved in light-signalling, the circadian clock, and flower development to provide a more
comprehensive understanding of the molecular basis of reversible flowering strategies

associated with habitat transitions in Pooideae.

Materials and Methods
Plant Material
Seeds for the experiment were retrieved from the US National Plant Germplasm System

(NPGS) via the Global Germplasm Resources Information Network (GRIN-Global). Nassella
6
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pubiflora (Desvaux 1853) seeds (GRIN accession number PI 478575) were gathered in
September 1981 in Puno, Peru on a field trial plot maintained by the Universidad Nacional del
Altiplano de Puno at an altitude of 3835 m.a.s.1., with daytime fluctuating from 10:15-12:14
hrs (austral hibernal—austral estival solstice). N. pubiflora is a perennial, montane grass species
with a native range from Ecuador to north-western Argentina (Barkworth and Torres 2001). NV.
pubiflora is a facultative SD plant (Fjellheim ez al. 2022). Seeds of Oloptum miliaceum
(Hamasha et al. 2012) (GRIN accession number PI 207772) collected at the Newe Ya’ar
Research Centre, Agricultural Research Organization, Northern District, Israel in April 1953,
which has an approximate annual daytime range from 9:56—14:15 hrs (boreal hibernal-boreal
estival solstice). O. miliaceum (2n = 24, Romaschenko et al. 2012) is a subtropical grass with
perennial life-history natively occurring in Macronesia, the Mediterranean, and middle East to
Iran. O. miliaceum is a facultative LD plant (Fjellheim et al. 2022). Both study species belong
to the early-diverging Pooideae tribe Stipeae that split from the remaining Pooideae ~59.6—
48.99 mya, and started diversifying during the late Eocene, ~38.6-33.37 mya (Schubert,
Marcussen, et al. 2019, Gallaher et al. 2022, Soreng et al. 2022). Both species are unresponsive

to vernalisation (McKeown et al. 2016).

Growth Experiment and Sampling

Seeds were stratified in plastic foil-wrapped trays filled with moist soil under darkness at 4 °C
for five days followed by one day at room temperature. Seed trays were then transferred to a
greenhouse and germinated under LDs (16 h light : 8 h dark) at 17 °C. Individual seedlings
were transferred to 7 x 7 x 7 c¢cm pots filled with gardening soil (Gartnerjord, Tjerbo AS,
Norway). After germination and four weeks of pre-growth, we randomly assigned plants to
growth chambers with photoperiods simulating either LD (16 h light : 8 h dark) or SD (8 h light
: 16 h dark). Both treatments were symmetrically aligned around noon. Light conditions were
generated with ConstantColor CMH Tubular Clear high-intensity metal halide discharge lamps
(CMH400/TT/UVC/U/830/E40, GE Lighting Kft., Hungary), providing an average
photosynthetic photon flux density of 185 pmol x m? x s at plant level. Red/far-red ratios
were adjusted with incandescent light bulbs (AGL B22 60 W clear, NARVA Lichtquellen
GmbH + Co. KG, Germany) to an average of 2.1-2.3 at plant height. To minimise room effects,
we used two growth chambers per treatment, and moved plants to new positions twice a week.
Plants were fertilised twice-weekly with water containing 4% YaraTera Kristalon Indigo and
3% YaraTera Calcinit (Yara Norge AS, Norway). Relative humidity and temperature in the

growth chambers were kept constant and maintained at 50-55% and 17 °C, respectively.
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Tissue of the longest, fully emerged leaf was harvested seven days after transfer to the
growth chambers. We sampled four individual plants per species and treatment, starting at
03:00 h every 4% hour until 23:00 h, in total six time points per treatment. During the dark
period, sampling was carried out under dim green light to minimise interference by
photosynthetically active radiation. Leaf tissue was cut into 2 ml LoBind tubes (Eppendorf AG,
Germany) and immediately flash-frozen in liquid nitrogen and stored at -80 °C until RNA
purification. Plants were kept in growth chambers until the emergence of inflorescences
(heading). Heading was registered daily until all plants had started to produce inflorescences,
whereupon the growth experiment was terminated. Days to heading (DTH) were calculated

from the germination date of the individual plants.

RNA Isolation, Library Preparation, and Sequencing

Frozen leaves were disrupted with 2 mm tungsten carbide beads in a TissueLyser ball mill
(QIAGEN) under the constant supply of liquid nitrogen. Total RNA was isolated from frozen,
finely ground tissue using the RNeasy Plant Mini Kit (QIAGEN), following the manufacturer’s
protocol. Residual DNA was removed with the Invitrogen TURBO DNA-free kit
(ThermoFisher Scientific). Integrity, purity, and concentration of the RNA extracts was
evaluated with an Invitrogen Qubit fluorometer (ThermoFisher Scientific), a NanoDrop 8000
spectrophotometer (ThermoFisher Scientific), and a 2100 Bioanalyzer (Agilent). Paired-end
sequencing libraries with an average insert size of 350 bp were constructed with the TruSeq
Stranded mRNA Library Prep kit (Illumina) for every individual sample. Library preparation
and paired-end sequencing was carried out by the Norwegian Sequencing Centre (NSC) at the

University of Oslo on an Illumina HiSeq 4000 system with 150-bp reads.

Transcriptome Assembly

Sequencing adapters and low-quality bases were removed with trimmomatic v0.39 (Bolger et
al. 2014) using a 5-bp sliding-window. The lower phred-score cut-off was set to O = 20, and
the minimum read-length to 40 bp after evaluating the read quality with FastQC v0.11.9
(Andrews 2010). De novo transcriptomes were assembled with Trinity v2.8.4 (Grabherr ef al.
2011, Haas et al. 2013) with default parameters. Benchmarking of Universal Single-Copy
Orthologs (BUSCO) was carried out to evaluate the completeness and quality of the resulting
transcriptome assemblies (Siméo ef al. 2015, Waterhouse et al. 2017) with OrthoDB v10 at

Embryophyta level as reference (Kriventseva et al. 2019).
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Phylogenetic placement of individual Trinity contigs was determined to remove putative
contaminant sequences using blastn v2.10.1 (Altschul et al. 1990, Camacho et al. 2009) and
NCBI’s ‘nt’ database (NCBI Resource Coordinators 2017). Taxonomic information of the
BLAST results was obtained with taxonomizr v0.6.0 (Sherrill-Mix 2019) for the hit with the
lowest E-value. Contigs were removed from the assembly when phylum was other than
‘Streptophyta’ and superkingdom was other than ‘Eukaryota’, or unassigned. Furthermore, we
removed fragments of ribosomal, mitochondrial and plastid transcripts by adding baits to the
transcriptomes. We added chloroplast genomes of B. distachyon and Phaenosperma globosa
(GenBank IDs: LT558588.1, KM974745.1), complete mitochondrial genomes of H. vulgare
spontaneum and O. sativa (AP017300.1, JF281153.1) as well as ribosomal sequences from
various non-plant species (MH047190.1, MHO047190.1, AB250414.1, KT445934.2,
JQ997495.1) to the transcriptomes. These sequences were downloaded from NCBI GenBank
(Benson et al. 2013). All reads mapping uniquely to these baits were removed prior to read
normalisation to reduce the influence of contaminant, plastid, organelle, and ribosomal RNA

on the estimation of relative read counts.

Ortholog Inference

Orthologs were inferred with OrthoFinder v2.5.4 and IQ-TREE v2.2.0.3 (Emms and Kelly
2015, 2019, Minh et al. 2020). We used publicly available coding sequences and annotated
genomes from Hordeum vulgare (IBSC_v2), Aegilops tauschii subsp. strangulata (Aet v4.0),
Triticum urartu (ASM34745v1), Brachypodium distachyon (Brachypodium_distachyon_v3.0),
Oryza sativa var. japonica (IRGSP-1.0), and O. sativa var. indica (ASM465v1) to anchor
orthologs from our study species. After sourcing the references from Ensembl Plants (Howe et
al. 2020, Yates et al. 2020), we aligned the coding sequences to chromosome-level genome
sequences with GMAP v2019-06-10 (Wu and Watanabe 2005). Redundant transcripts were
merged and translated to amino acid sequences with GffRead v0.11.6 (Pertea and Pertea 2020).
Transcripts without start- or stop-codons were discarded.

The resulting non-redundant proteomes of H. vulgare, B. distachyon, and O. sativa were
used as references for functional annotation of de novo-transcripts with DIAMOND v0.9.22
(Buchfink et al. 2015). We also added the de novo transcriptome of the non-core Pooideae
species Melica ciliata to increase phylogenetic resolution (Paliocha, Schubert, Hvidsten, ez al.
2023). Frameshifts introduced to the de novo-transcripts during the transcriptome assembly
with Trinity were identified using the strand information from the BLAST trace-back operation

(BTOP) string (cf. Leder ef al. 2021). Finally, amino acid sequences for O. miliaceum, N.
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pubiflora, and M. ciliata were obtained with exonerate v2.2.0 (Slater and Birney 2005) and
used for ortholog detection in OrthoFinder.

Generation of Expression Data

RNA-sequencing reads were aligned to the processed and cleaned de novo transcriptomes using
Bowtie v2.4.1 (Langmead and Salzberg 2012), allowing for multimapping. Output files were
processed, sorted, and compressed with SAMtools v1.11 (Li et al. 2009). Gene-level counts
were obtained with Corset v1.07 (Davidson and Oshlack 2014), which combines reads mapping
to multiple Trinity contigs based on sequence similarity and expression patterns into so-called
‘clusters’. Initially, Corset was executed with a high -D parameter to enforce unambiguous
mapping and target putative contaminant reads mapping exclusively to bait sequences.
Subsequently, another run of Corset was performed with default -D values, allowing clustering
of contigs sharing a significant number. We excluded reads mapping to chloroplast,
mitochondrial, and ribosome baits during the first run and removed bait sequences alongside

silent transcript clusters prior to downstream analysis.

Normalisation and Estimation of Expression Profiles

Read counts were normalised with the trimmed mean of M (TMM) method implemented in
edgeR v3.36.0 (Robinson et al. 2010) after removal of transcripts with <100 counts per time
point or <250 counts in total. Two faulty libraries in N. pubiflora were removed from the
analysis at LD19 and SD19, resulting in » = 2 remaining samples for timepoint SD19 due to
the loss of one sample during tissue disruption. Size of the remaining two N. pubiflora SD19
libraries varied considerably, ranging from 4,327,911 (sample NOS5) to 37,326,514 reads
(sample N33). A much higher frequency of zero counts in sample NO5 compared to the
remaining replicate library led to the introduction of a prominent expression trough in N.
pubiflora SD profiles at 19:00 h. To retain some level of variability and statistical power for
comprehensive analysis in SD19, we decided to retain the NO5 sample in the data set.
Consequently, we excluded transcripts with zero counts in at least one biological replicate for
each sampling time point from further analysis to avoid ambiguity between lowly expressed
transcripts and technical artifacts. Normalisation factors were calculated after the removal of
lowly expressed genes for each species X treatment x timepoint combination and normalised,
log-transformed counts per million reads (logz2CPM) were calculated with edgeR. The
expression at each time point was summarised by computing the mean. We then transformed

the profile of each individual transcript to z-scores to enable interspecific comparison. This
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transformation involved subtracting the mean expression of a transcript in a treatment and

dividing by the treatment-wise standard deviation.

Assembly Thinning

To minimise redundancy of the transcriptomes, we merged transcripts in multi-copy orthologs
by expression similarity. We computed pairwise Pearson correlation coefficients (p) of the
smoothed expression profiles between orthologs with >2 transcripts per species. Orthologs with
exactly two transcripts were summarised into a single mean profile per species and treatment if
p >0.70. For multi-copy orthologues with more than two transcripts, we performed hierarchical
clustering of the expression profiles using Ward’s clustering criterion and correlation distance
(1 - p) as a measure (Ward 1963, Murtagh and Legendre 2014). The resulting dendrograms
were cut at a height corresponding to p = 0.70, and expression profiles within the same group
merged by calculating their mean. Thinning reduced the total number of available profiles in

the LD and SD transcriptomes of O. miliaceum and N. ciliata from 75,357 to 53,000.

Functional Principal Component Analysis

Continuous expression curves were interpolated, smoothed, and evaluated at a 51-point grid
spanning 24 h with a roughness penalty of 1 =2.5 determined with generalised cross-validation
and manual inspection. Principal component weight functions were approximated through a 7-
term Fourier series expansion assuming a 24-h period to emphasise diurnal oscillations. All
statistical analyses were carried out in R v4.2.2 (R Core Team 2022), using the R package fda
v6.0.5 (Ramsay et al. 2009, 2022) for curve approximation and functional data analyses.
Functional principal components (FPCs) were estimated after a centring procedure involving
the subtraction of the mean function from each individual gene expression curve to warrant

normally distributed FPC scores with mean zero and unit variance.

Identification of Differential Diurnal Expression

The smoothed circadian expression profiles were treated as a sample of random functions and
evaluated with functional principal components analysis (FPCA) to assess variation of temporal
expression in response to photoperiod and identify genes with differential diurnal rhythms.
Initially, we considered the LD and SD transcriptomes separately to characterise the most
dominant modes of variance in diurnal gene expression in each species to investigate if the
circadian transcriptomes of N. pubiflora and O. miliaceum could be decomposed in a similar
manner. Next, we combined the LD and SD transcriptomes of our study species and ran joint

FPCAs with the goal of identifying genes with different diurnal expression across species
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within each treatment. All FPCAs incorporated a centring procedure to ensure that the FPC
scores adhered to standard normal distributions. Hence, FPC scores provided a consistent and
comparable measure of temporal variation that we used as indicative measure for circadian
rhythmicity across species. We opted to incorporate the FPCs that accounted for up to 95% of
the total variance (FPC1-4 in LD and SD).

To efficiently combine the features captured by the first four FPCs, we computed the
Mabhalanobis (1936) distance (D?) derived from the scores distributions of FPC1-4 and used it
as a proxy measure for circadian rhythmicity (Supplementary Fig. S1). D? is essentially the
squared sum of FPC scores and can be approximated by a y>-distribution with four degrees of
freedom (corresponding to the number of FPCs used as input; cf. Leemis 1986) and provides a
statistically robust measure for the distance from the centre of a multivariate PC score
distribution (Brereton 2015). In the context of FPCA, centrality of a FPC score can be
understood as the deviance of the corresponding expression curve from the mean expression
curve along the main direction of change identified by the respective FPC. To detect rhythmic
transcripts, we focused on the upper 10% of the D-distribution. Orthologous transcripts falling
within this top decile for both species were deemed to display significant circadian variation.
To pinpoint transcripts with different rhythmic profiles that have diverged between species
within the same photoperiod, we computed pairwise differences between FPC1-4 scores of all
transcripts from the same orthogroup. We applied the same procedure as above on the standard
normal distribution of the FPC score differences (Nassella - Oloptum) to detect differential
time-dependency between orthologous LD and SD transcripts in O. miliaceum and N. pubiflora.
Intersecting the resulting lists of rhythmic and different transcripts yielded orthologous gene
pairs with differential circadian expression. These were used in subsequent analyses to detect

candidate genes linked to photoperiodic flowering.

Circadian marker genes

We used a pre-defined set of circadian marker genes to demonstrate the efficacy of our
analytical approach and provide an instructive example of diurnal expression dynamics of
central developmental pathways in closely related LD and SD species. This gene set comprised
photoreceptors, circadian clock genes from the morning- and evening-loop as well as
transcription factors involved in photoperiodic flowering characterised in different model and

crop species.

Candidate gene identification
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Orthologs with differential circadian gene expression between N. pubiflora and O. miliaceum
were classified by hierarchical clustering using Ward’s method (Ward 1963, Murtagh and
Legendre 2014) with the distance correlation matrix (1 - p) of LD and SD profiles as input.
Hierarchical cluster dendrograms were cut with dynamicTreeCut v1.63-1 (Langfelder et al.
2007). The resulting clusters were tested for enrichment of biological processes using slimmed,
plant-specific gene ontology (GO) terms (Gene Ontology Consortium 2004). GO slim
annotations for the reference species were downloaded Ensembl Plants using biomaRt v2.52.0
(Durinck et al. 2005, Howe et al. 2021). Enrichment tests were carried out using the weighted
Fisher’s exact test implemented in topGO v2.48.0 using all expressed genes annotated in the de
novo transcriptomes as background (Fisher 1922, Alexa et al. 2006). The cut-off for false
discovery rate (FDR) corrected P values was set to 0.05. Heatmaps were generated with

complexHeatmap v2.13.1 (Gu et al. 2016).

Results

Presence of opposite flowering strategies in Stipeae

Comparative analysis of flowering time (DTH) confirmed the presence of differential
photoperiodic flowering responses in our study species (Fig. 1). While the commencement of
reproductive growth was not obligatory restricted to a specific photoperiod in neither O.
miliaceum nor N. pubiflora, we detected significant differences in the timing of inflorescence
emergence. Individuals of O. miliaceum exposed to LD flowered on average significantly
earlier compared to plants under SD conditions, with DTH 57.6 £ 0.66 (mean + SE) in LD, and
82.4+2.21 in SD. Instead, flowering in N. pubiflora was promoted by SDs with DTH ranging
from 80.0 + 0.64 in SD to 92.8 + 0.97 in LD. Opposite photoperiodic flowering responses in
Nassella and Oloptum align with previous results on flowering time (Fjellheim et al. 2022),
validating the presence of distinct adaptive strategies for optimal reproduction in response to

different daylengths in the early-diverging Pooideae tribe Stipeae.

Differential effects of long and short days gene regulation

Whole-transcriptome FPCA captured the most essential temporal features of global gene
expression in N. pubiflora and O. miliaceum. Across both species and photoperiods, four FPCs
captured >95% of the cumulative variance in the data. The first two components revealed
distinct expression peaks and troughs under contrasting photoperiods, while FPC3 and FPC4

captured less deterministic diurnal perturbations throughout the day. Notably, features
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identified in SD showed greater similarity between species compared to LD, which displayed
more species-specific patterns.

In Nassella plants exposed to SD, FPC1 captured patterns of peak and trough expression
during dawn and dusk interspersed by sign changes near 11:00 h, accounting for 41.3% of the
cumulative variance in the LD data (Fig. 2A). This pattern was complemented by FPC2
(36.5%), which identified expression peaks and troughs centred around 11:00 h and mid-night
(Fig. 2A). Less conspicuous perturbations of N. pubiflora LD expression were covered by FPC3
(16.6%) and FPC4 (10.2%). Similar dynamics were apparent under SDs (Fig. 2B), with slightly
more evenly distributed explained variance between the first two components. FPC1 (39.5%)
contrasted curves with expression peaks and troughs centred around noon and the late dark
period located at 03:00 h. The second FPC explained (36.5%) of the SD variance in Nassella
and contrasted transcripts with peaks/troughs aligned with dusk and dawn (Fig. 2B), indicating
the importance of dark/light transitions for diurnal gene regulation. Minor deviances from the
SD mean expression were explained by FPC3 (12.9%) and FPC4 (8.8%) and contributed
slightly less to the total temporal variation than the corresponding components in LD (Fig. 2B).

In Oloptum, the first two FPCs in LD identified through and peak expression centred
around 15:00 h (FPCI, 36.9%) and 07:00 h (FPC2, 38.2%), respectively (Fig. 3A). Both
components also accounted for peak/troughs during the dark period. FPC1 identifies symmetric
profiles with more evenly spaced light and dark extremes than FPC2, with less pronounced
changes in the former from 15:00 h to 03:00 h. The remaining two FPCs in O. miliaceum LD
accounted for 11.8% and 8.6% of the summative temporal variance and identified minor
perturbations during dawn and dusk (FPC3) and the dark phase (FPC4). Short-day expression
in O. miliaceum was distinguished by prominent expression peaks troughs during the late dark
phase (07:00 h), followed by sign changes centred around noon and expression culminating
into wider and more attenuated peaks and troughs from the onset of the dark period (FPC1, Fig.
3B). Oscillations identified by FPCI accounted for almost half of the total variance in O.
miliaceum SD expression curves (46.7%). The second FPC (35.4%) contrasted SD profiles with
more symmetric expression with peaks and troughs centred around 11:00 h and 03:00 h, and
sign changes coinciding with dark—light transition. Variance captured by FPC3 (8.8%) and
FPC4 (7.1%) was caused by minor fluctuations (Fig. 3B).

Global and circadian clock gene expression in Nassella and Oloptum

Combined N. pubiflora and O. miliaceum FPCAs identified comparable modes of temporal

variation in the LD and SD data, as evidenced by the consistent loadings and contributions of
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FPC1-4 across both treatments (Fig. 4B, D). The first two FPCs accounted for most of the
cumulative variance, jointly explaining 73.5% (LD) and 77.4% (SD). Transcripts with
peak/trough expression around 07:00 h and 15:00 h, and directional changes at 11:00 h were
contrasted by FPC1 under both photoperiods. Conversely, FPC2 seized variation introduced
through peaks/troughs during the light (~11:00 h) and dark period (~02:00 h). The last two
components (FPC3—4) identified minor diurnal oscillations in both photoperiods.

Genes exhibiting oscillating expression profiles that align with the primary features
delineated by the FPC functions were characterised by high or low scores on one of the initial
four FPCs. As such, orthologs of circadian marker genes mostly accumulated in the tails of the
LD and SD scores distributions (Fig. 4A, C), resulting in high D? values (Supplementary Fig.
S). Expression profiles of these genes further validated the suitability of our approach for
detecting diurnal oscillations (Fig. 5A). We observed stable diurnal gene expression in
numerous orthologous circadian clock components such as CO1/2, GI, TOCI/PRRI, and
PRR?73 (Fig. 5B) under both photoperiods, indicative of high degree of conservation between
the photoperiodic entrainment of circadian clock genes in Nassella and Oloptum. Noteworthy
exceptions were the morning-loop genes CCA/ and RVEG6S, and the evening complex
constituents ELF'3 and PCL1/LUX with mismatched expression between species under LD and
SD. Although diurnal variation in OmCCAI and LUX expression was almost identical in both
treatments, expression of OmLUX and OmCCA 1 were shifted in phase, with a noticeable ~2-3
h lag relative to Nassella (Fig. 5B). The CCT domain transcription factor PPD/ pointed out as
instrumental to the evolution of variable flowering strategies in Stipeae (Fjellheim et al. 2022)
reached peak expression at 7:00 and 17:00 under both photoperiods (Fig. 5C).

When the diurnal expression profiles of rhythmically expressed genes varied between
species, orthologous gene pairs accumulated scores at opposing ends of the FPC score
distributions (Fig. 5SA). Such regulatory divergence was most noticeable between orthologues
known to confer light signals such as CRYI, PHOTI, PHYC, and ZTL with markedly altered
profiles across species (Fig. 5B). Diurnal expression of PHOT, for instance, exhibited a phase
shift between Oloptum and Nassella under LD, whereas up- and down-regulations occurred at
similar time points in SD, although with mismatched trough expression during the late dark
phase (Fig. 5B). In the case PHYC, we noticed a trough in Nassella LD around 19 h under LD
that was absent in OmPHYC. Comparably, NpPHYB had a trough in the early SD dark phase
that lacked in OmPHYB (Fig. 5B).

Light-signalling and flowering genes are most divergently expressed
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To isolate interspecific shifts in LD and SD gene expression, we estimated the main modes of
diurnal variance using FPCA in the combined LD and SD transcriptomes of N. pubiflora and
O. miliaceum. Information captured by the FPCs allowed us to isolate the most divergently
expressed genes between species. While altered photoperiod caused considerable rewiring of
the circadian transcriptome in both species, differential interspecific expression shifts were
limited to only a small subset of the annotated orthologues.

Under LD, expression of diurnally expressed genes seemed to be more coordinated in
Nassella, with peak and trough expression preferentially tethered to dark/light transitions (Fig.
6A). In contrast, O. miliaceum displayed less coordinated regulation under LDs with most of
the diurnal variation caused by minor perturbations (Fig. 6A). Clustering and enrichment
analyses of LD-divergent genes revealed association with metabolic and response processes
(Fig. 6A).

Diurnal oscillations under SDs, however, appeared to play a more substantial role in
differential regulation of developmental processes that could potentially underlie the observed
variations in flowering phenotypes between the two species (Fig. 6B). Furthermore, the
expression patterns in SD displayed more prominent peaks and troughs, suggesting a higher
degree of coordination in gene expression in both species (Fig. 6B). Divergent timing of these
expression peaks and troughs, however, suggest that differential phasing may the predominant
mode of gene expression evolution under SD conditions. We found in total eight orthologous
genes associated with ‘flowering development’, nine orthologues associated with ‘response to
light stimulus’ as well as one circadian clock gene (ELF3) among the orthologues expressed
genes in SD (Fig. 6C; Tab. 2). Remarkably, ELF3 was the only core circadian clock gene
defined a priori that emerged as a potential candidate through our analysis. Transcription
profiles of candidate genes with putative effects on photoperiodic flowering evolution are more
thoroughly discussed in the next section.

Table 1: Number of Nassella pubiflora and Oloptum miliaceum orthologues (transcripts)
deemed to be rhythmically expressed, have sufficiently diverged expression patterns between

species, and both, diurnally expressed (rhythmic) and divergent between species. Orthologues
with divergent diurnal control visualised in Fig. 6.

Photoperiod Species Rhythmic Divergent Both
Nassella pubiflora 1,079 (1,099)

LD Oloptum miliaceum 1,072 (1,090) 670 (694) 300

D Nassella pubiflora 975 (993) 590 (630) 257

Oloptum miliaceum 1,031 (1,049)
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Discussion

The transition of Pooideae grasses from tropical to northern temperate climates (Gallaher et al.
2019, Schubert, Marcussen, et al. 2019) likely required the evolution of multiple traits, some
of which influence the timing of phenological events such as flowering (Preston and Fjellheim
2020). It was previously demonstrated that vernalisation-based flowering competency and LD
flowering induction evolved early in the evolutionary history of Pooideae, consistent with these
being key traits underlying the tropical to temperate niche transition (Heide 1994, McKeown et
al. 2016, Woods et al. 2016, Fjellheim et al. 2022). Since then, vernalisation responsiveness
and LD-flowering have been lost repeatedly following both natural and artificial selection
(Trevaskis et al. 2007, King and Heide 2009, Fjellheim et al. 2014). In the case of flowering
induction by LDs, most losses have involved the evolution of day-neutral flowering, with a
single inferred reversion back to SD-flowering in or before the origin of low latitude-tropical
montane Nassella (Fjellheim ef al. 2022). Comparative analyses between SD-flowering N.
pubiflora and its close LD-flowering relative, O. miliaceum indicate that the LD- to SD-
flowering reversal occurred via modifications in the diurnal expression cycle of genes in the
CCT domain family (Fjellheim ef al. 2022). To find other candidate genes involved in this trait
shift, we compared diurnal gene expression cycles across the two species and discuss the results

here.

Stipeae are a promising system for the study of photoperiodic flowering strategies

Despite having diverged ~20-25 Mya (Schubert, Marcussen, et al. 2019, Gallaher et al. 2022),
diurnal gene regulation is remarkably conserved between SD-flowering N. pubiflora and LD-
flowering O. miliaceum. Most genes exhibited the same fundamental pattern of diurnal
oscillations in both species. Under both LD and SDs, peak/trough expression was centred
around the middle of the dark and light periods and transitions between light and dark. These
predominant patterns explained the same variance in gene expression across Nassella and
Oloptum, indicating comparable contribution of these major diurnal oscillations to circadian
gene expression under LDs and SDs (Fig. 3—4). Across the plant kingdom, comparative diurnal
transcriptome analyses have revealed conserved, overarching expression dynamics, even
among photosynthetic eukaryotes exhibiting diverse morphology, life-cycles, and
photoperiodic adaptations (Ferrari et al. 2019). This parallels observations in our focal Stipeae
species, where most of the diurnal gene expression was conserved, with only 300 and 257

divergently expressed transcripts identified under LD and SD, respectively.
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Interspecific differences manifested through unique lengths or timings of peak and
trough expression that are likely caused by differential responses to changes in photoperiod
(Fig. 6A, C). In fact, divergent selection by contrasting diurnally-varying environments is
known to generate diversity in the onset and offset of biological processes across terrestrial
plants (Filichkin ez al. 2011, de los Reyes et al. 2017, Serrano-Bueno et al. 2017). For example,
temporal partitioning of metabolism and growth is greatly influenced by photocycles
(Covington et al. 2008, Michael et al. 2008), with even closely related species exhibiting time-
rewiring of fundamental mechanisms like photosynthesis (Jiang et al. 2023). This pattern is
also evident in N. pubiflora and O. miliaceum, indicating that Stipeae grasses provide an ideal
study system for investigating the evolutionary adaptations to photoperiods due to their
remarkable conservation of diurnal gene expression and response to contrasting daylengths,
with the few differences linked to crucial adaptive processes.

Regulatory divergence of basic processes is evident from the prevalence of GO terms
related to metabolism (LD, Fig. 6A) and development (SD, Fig. 6B) among the most
divergently expressed genes in our study. This is illustrated by severe differential regulation of
the photosynthesis genes LIGHT-HARVESTING COMPLEX (LHC) A4 and LHCB7 (Wang et
al. 1997, Harmer et al. 2000) between Nassella and Oloptum under SDs and LDs, and
transcriptional divergence of genes related to metabolic processes in LDs (Fig. 6A).
Furthermore, we observed greater divergence between the transcriptional profiles of genes
involved in developmental processes related to flowering in the SD-divergent compared to the
LD-divergent gene set (Fig. 6B). This suggests an asymmetry in the transcriptional remodelling
of floral regulatory networks, with more pervasive changes under SDs. Given that N. pubiflora
and O. miliaceum have comparable life-history strategies (perennial) and growth habits
(tussock-forming), divergent expression under SDs indicates that these regulatory alterations
might be a consequence of adaptation to SDs from an ancestral LD-flowering state in an
ancestor of N. pubiflora. This aligns with the proposed evolutionary history of the genus
Nassella, which is thought to have originated from a LD-flowering ancestor (Preston and
Fjellheim 2020, Fjellheim ef al. 2022).

Photoperiod signal processing is largely conserved, but perception and integration seem
to have diverged

Floral induction by photoperiodic cues involves a series of sequential events, starting with the
perception of light signals by photoreceptors. These cues are then relayed to and processed by

the circadian clock, leading to the activation of floral integrators. Ultimately, the expression of
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specific genes responsible for modulating meristem identity is triggered, resulting in the
initiation of flowering (Cao ef al. 2021). We observed a largely conserved systemic response
of circadian clock genes to daylength signals between O. miliaceum and N. pubiflora (Fig. 5).
This suggests that reversion to SD-flowering in Nassella happened via reprogramming of the
photosensory system or specific flowering-time genes outside the endogenous time-keeping
system rather than the core circadian circuitry itself. This is supported by the occurrence of
light-signalling genes such as LIGHT-INDUCED, RICE 1 (LIRI), ULTRAVIOLET
RESISTANCE LOCUS 8 (UVRS), and the PHYB-interacting factor VASCULAR PLANT ONE-
ZINC FINGER 1 (VOZI) among the orthologues exhibiting the most species-specific SD
expression (Table 1, Fig. 5). It is reported that at least LIR/ and VOZI play minor, but
significant roles in promoting of non-reproductive growth in Lolium perenne and stabilising
CO in Arabidopsis, respectively (Ciannamea et al. 2007, Yasui et al. 2012, Kumar et al. 2018).
While UVRS is not directly implicated in the floral transition, its involvement in UV-B-induced
photomorphogenesis and the observed species-specific expression patterns further strengthens
the hypothesis that light perception happens through different mechanisms in Nassella and
Oloptum (Favory et al. 2009, Chen ef al. 2023). Additional means of differential integration of
photoperiod signals between our study species may include distinct regulation of chromatin
structure and post-transcriptional modifications, as evidenced by the species-specific
expression of the histone methyltransferase gene JUMONJI 706 (JMJ706) (Sun and Zhou
2008), and SUPPRESSOR OF GENE SILENCING 3 (SGS3) involved in post-translational gene
silencing under LDs and SDs, respectively (Peragine et al. 2004).

Divergent regulation of floral integrators

Due to the pivotal role of FLOWERING LOCUS T (FT) and CENTRORADIALIS/TERMINAL
FLOWER 1 (CEN/TFLI) genes in the floral transition, their identification as possible
determinants of reversible photoperiodic flowering behaviour deserves particular attention.
FT/TFLI-like genes, represented by CEN/TFLI in our species, play a crucial role in floral
transition and are important determinants of flowering behaviour (Shannon and Meeks-Wagner
1991, Bradley et al. 1996, Pnueli et al. 1998, Banfield and Brady 2000, Comadran et al. 2012,
Lietal 2015, Biet al. 2019, Périlleux et al. 2019). While CEN/TFL1 acts as a floral repressor,
antagonising the function of its close homologue FT1 in many species, its role in grasses is
more versatile and context-dependent. In rice, for instance, CEN/TFL1-like competes with the
FT1 orthologue HEADING DATE 3a (HD3a) during the polymerisation of the florigen

compound which leads to the assembly of FRCs mitigating the floral transition (Kaneko-Suzuki
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et al. 2018). Cereal CEN/TFLI genes are well-characterised, and allelic variation in CEN/TFL1
loci is known to fine-tune phenological adaptation along latitudinal daylength clines in both
rice and barley (Fernandez-Calleja et al. 2021, Zhou et al. 2021). Interestingly, the role of
CEN/TFLI as a floral repressor is not universally conserved in grasses, as observed in the case
of the Chionochloa pallens (Danthonioideae), where flowering is promoted by CpCEN/TFLI
in response to specific endogenous signals (Samarth ez al. 2022). In case of Stipeae, regulatory
divergence of CEN/TFLI was most pronounced under SDs. Although FT/TFL1-like primarily
regulate flowering through successive accumulation at the SAM (Corbesier et al. 2007, Faure
et al. 2007, Gauley and Boden 2020), F'7/TFL1-like expression follows the diurnal oscillations
of their regulators (e.g., Kikuchi ez al. 2009). Thus, the intriguing SD expression pattern of
NpCENI/TFLI, characterised by a trough coinciding with the onset of the light period and
gradually increasing expression throughout the day, indicates its responsiveness to SDs in
Nassella. Conversely, its ortholog in O. miliaceum did not exhibit a tightly coupled response to
alternating light and dark periods. This suggests that NpCEN/TFLI functions distinctly from its
O. miliaceum counterpart under SDs, making it a potential candidate responsible for SD-
flowering in Nassella. Due to their close ties to photoperiod, early flowering, and their emerging
role as a flowering promoters, it is tempting to conclude that functional and regulatory
diversification of CEN/TFLI genes have been important for the photoperiodic calibration of
flowering time (Gaudinier and Blackman 2020), thereby aiding range expansions in wild
Pooideae. Interactions between CEN/TFL 1 and other rhythmically expressed genes transmitting
photoperiodic signals deserves further attention to elucidate their capacity to foster promote
shifts between LD, SD, and day-neutral flowering.

In addition to CEN/TFLI genes, we detected species-specific regulatory patterns of
flowering genes known to be upstream of VRN3/F'T, possibly contributing to the generation of
the observed opposite photoperiodic flowering responses. For instance, ELF3, a central
constituent of the evening complex in the circadian clock, acts as a gatekeeper of light-
dependent flowering and is involved in transmitting photoperiodic cues into the flowering
pathway (Huang et al. 2017, Woods et al. 2019, 2023, Anwer et al. 2020, Miiller et al. 2020,
Bouché et al. 2022, Alvarez et al. 2023, Wittern et al. 2023). It interacts with PPD1, the primary
target of ELF3-mediated flowering repression (Woods er al. 2023). Although directly
repressing PPD1 transcription (Gao ef al. 2019, Andrade et al. 2022, Alvarez et al. 2023), ELF3
has no known DNA-binding activity and likely acts via PCL1/LUX transcription factors that
can recognise cis-regulatory motifs in the PPDI promoter (Woods et al. 2019, 2023). The
simultaneous downregulation of PPD1 and peak expression of ELF3 and PCLI/LUX in both of
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our focal species supports this model. However, transcriptional deactivation of OmPPD]1 is less
pronounced than anticipated, suggesting that the prolonged and shifted peaks in OmELF3 and
OmPCLI1/LUX expression attenuate OmPPD] transcription far into the light period. However,
considering the substantial impact of non-functional ppd| alleles on the timing of CO/ and CO2
expression in barley (Turner et al. 2005), and the absence of differential timing of CO1/2
between our focal species, the aberrant OmPPD I pattern should be verified to rule-out technical
artifacts due to low gene expression and read-count normalisation filtering in O. miliaceum
(Gao et al. 2019, Woods et al. 2019, 2023, Andrade et al. 2022, Alvarez et al. 2023).

Another interesting candidate warranting further investigation is EARLY HEADING
DATE 3 (EHD3), a grass-specific transcription factor (Zhang and Yuan 2014) and part of the
flowering pathway unique to rice. Notably, under SDs, NpEHD3 and NpCEN/TFLI
demonstrate markedly opposing expression patterns. The unique peak/trough expression that
differentiates NpCEN/TFLI in LDs versus SDs coincides with the lowest point of NpCO1/2
expression. This pattern suggests a potential connection between EHD3 and CEN/TFLI,
possibly through an undiscovered regulatory mechanism involving OsHD1 orthologues CO/
and CO2. Similar to N. pubiflora, rice is a facultative SD plant that experiences accelerated
flowering under SDs but also flowers under LD, albeit significantly later (Brambilla and
Fornara 2013). Inrice, EHD3 is part of the alternative regulatory pathway supporting flowering
under LDs where it acts as the transcriptional repressor of GHD?7. Contrary to the Pooideae
orthologue VRN2, GHD7 does not directly repress transcription of the rice F71 orthologue
HD3a. Rather, GHD7 acts via repression of the B-type response regulator EARLY HEADING
DATE 1 (EHD1) which promotes HD3a expression (Doi et al. 2004, Zhao et al. 2015). The
function of EHD1 is exclusive to rice and it does not appear to have any immediate, functionally
conserved orthologues in Pooideae (Vicentini ef al. 2023). Rice EHD3 triggers flowering
through the downregulation of the floral repressor GHD7 and upregulation of EHDI
(Matsubara et al. 2011). Although EHD3 orthologues are present in B. distachyon and our study
species, their functions have not yet been characterised due to the absence of their main target
gene in Pooideae. Interestingly, there is an indirect link between EHD3 and rice CEN/TFL1
(RCN). In rice plants with a non-functional HDIa (orthologue of Pooideae CO//2) and non-
functional EHD1, expression of rice CEN/TFL1 orthologues RCNI and RCN2 was significantly
elevated, although this was tested only after floral transition (Endo-Higashi and Izawa 2011).
This suggests the presence of a regulatory module involving EHD3 and CEN/TFL1-like florigen

antagonists awaiting further characterisation.
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Conclusions

In this study, we use a well-established statistical framework in a novel context and highlight
its feasibility for the detection of rhythmically divergent gene expression in whole-
transcriptome data across species and photoperiods. FPCA is a convenient tool for
dimensionality reduction of large, time-dependent gene expression data sets and can condense
complex temporal regulatory processes into variables with direct biological interpretability.
Using this approach, our data support strong conservation of core circadian clock gene
expression, even between species with opposite flowering behaviours. We find notable
interspecific shifts in the diurnal expression patterns of at least three major flowering genes and
several photoreceptors. Collectively, these findings demonstrate that the evolution of flowering
time is intimately tied to shifts in diurnal expression of relatively few, but central genes that

convey daylength cues into important developmental pathways.
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Figure 1: Flowering responses of two Stipeae grasses with opposite flowering phenotypes. Long day (LD) promotes rapid
flowering in Oloptum miliaceum but has a negative effect on heading date in Nassella pubiflora. Conversely, emergence of
inflorescences is promoted by short day (SD) in N. pubiflora but delayed in O. miliaceum. Coloured dots indicate heading
individuals under each photoperiod. Black dot represents median heading date under each photoperiod, black bar indicates
interquartile range, and black line indicates range between minimum and maximum. P values obtained with Student’s #-test,
two-tailed.
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Figure 2: Temporal variation of the Nassella pubiflora transcriptomes under A) long days (LD, yellow lines) and B) short days
(SD, grey lines) described by functional principal component analysis (FPCA). Upper panel visualises the effect of the standard
deviations of the first four functional principal components visualised as perturbations from the mean (mean + 1 SD). Lower
panel shows expression profiles of transcripts with the 0.5% highest/lowest score on the corresponding FPC.
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Figure 3: Temporal variation of the Oloptum miliaceum transcriptomes under A) long days (LD, yellow lines) and B) short
days (SD, grey lines) described by functional principal components analysis (FPCA). Upper panel visualises the effect of the
standard deviations of the first four functional principal components visualised as perturbations from the mean (mean + 1 SD).
Lower panel shows diurnal expression profiles of transcripts with the 0.5% highest/lowest score on the corresponding FPC.
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Supplementary Figure S1: Determination of expression dissimilarity and divergence using
functional principal component (FPC) scores and squared Mahalanobis distance (D?). A)
Calculation of interspecific score differences on FPC axis 1-4. B) Approximation of pairwise
D? between ortholog expression in long (LD, yellow) and short day (SD, grey). C) Quantile
comparison of estimated D? values and a y? distribution.
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