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Summary

1. Wildlife populations live in increasingly human-altered landscapes.
Either because of their intrinsic values or due to instrumental values to humans,
wildlife populations are monitored to inform about their current status and
population trends and to forecast their future status in response to possible
changes in their environment. Monitoring wildlife across spatial units and over
time is a first step towards adaptive and evidence-based management.

2. This PhD dissertation consists of four articles that are centered on
developing new methods, enhancing concepts, and showcasing applications of
novel analytical approaches for quantifying landscape-level wildlife population
density using noninvasive monitoring data. At the core of this PhD dissertation
lie spatially explicit analytical models, namely spatial capture-recapture (SCR),
with the ability to yield scale-transcending estimates of population parameters,
while accounting for imperfect detection. This PhD dissertation is motivated
by applied questions raised during noninvasive genetic monitoring of large
carnivores in the Scandinavian Peninsula. However, the methodology and
findings have broader implications.

3. The first two articles focus on understanding and mitigating the
consequences of spatially variable and autocorrelated detection probability
when analyzing wildlife monitoring data. Detection probability – the probability
of detecting an individual from the target population, can vary across the study
area, because of, for example, certain landscape characteristics or the specifics
of the sampling design. Spatial autocorrelation in detection probability occurs
when detectability is more similar among neighboring than distant sampling
locations or devices. Both articles I and II use simulations to create and
test many scenarios that may occur during real-life sampling of wildlife in
monitoring studies. Article I evaluates the consequences of not accounting
for spatial variation in detectability when analyzing monitoring data with
SCR, with a specific focus on the impact on estimates of population size.
This study shows that a misspecified SCR model performs reasonably well
in many situations, from low to even intermediate levels of spatial variation
in detectability. However, Article I identifies problematic cases of highly

vii



spatially variable and autocorrelated detection, which can lead to pronounced
negative bias in population size estimates. Some of these extreme scenarios
are expected in the large-scale monitoring of large carnivores in Scandinavia,
which led to a follow-up study in the next chapter of this PhD.

4. Article II describes and tests three novel modeling approaches to
account for spatially variable and autocorrelated detection probability in SCR
with random effects. This study extends SCR with generalized linear mixed
models (GLMMs) and compares the performance of the SCR-GLMMs that do
and do not specifically account for spatial autocorrelation in detection proba-
bility. Article II then applies the new modeling approaches to Scandinavian
brown bear Ursus arctos monitoring data from central Sweden, where the
majority of the DNA data was collected opportunistically by volunteers and
no reliable measure of sampling effort was available to infer spatially variable
detectability. This empirical case study demonstrates the application of the
proposed modeling approaches and suggests considerable spatial heterogeneity
in the detection of bears, where detectability decreases in an east-to-west di-
rection towards the Swedish-Norwegian border. Further, Article II discusses
solutions to identify potential sampling gaps, where variation in the effort is
not fully known and highlights computation trade-offs in using such novel SCR
analyses in wildlife monitoring studies.

5. The next two articles demonstrate empirical applications of quan-
tifying variation in wildlife population density and its determinants at the
population level. Our current understanding of wildlife space use and habi-
tat selection is dominated by geographically limited studies that often make
inferences from a few instrumented individuals. Both articles III and IV use
noninvasive genetic monitoring data of the wolverine Gulo gulo across the
species’ entire range in the Scandinavian Peninsula and assess sex-specific
responses of the wolverine density to a suit of historical and present-day envi-
ronmental covariates. Both these articles predict the Scandinavian wolverine
density distribution and provide estimates of population size. Article III, as
a prelude to the next chapter, identifies the factors influencing the current
density distribution of the wolverine, with a focus on the role of the relict range
along the Swedish-Norwegian border, where the wolverine survived intense
human persecution by early 1970s. Article III reveals that distance from this
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transboundary alpine region is still one of the most important determinants
of wolverine density and the highest female and male wolverine densities are
expected closer to the relict range. However, current management conditions to
limit wolverine expansion, especially in southern Norway, interact with distance
from the relict range, and together with other topographic, climatic, and prey-
related factors, have shaped the current density distribution of the wolverine
in Scandinavia. This study is the first to look into the density determinants of
the Scandinavian wolverine population across its entire geographic range.

6. Article IV builds on the findings from Article III and quantifies the
dynamics of density determinants of the Scandinavian wolverine over a nine-
year monitoring period. This study quantified the change in the impact of the
environmental covariates over the past decade, as the wolverine has successfully
expanded from the alpine relict range into the boreal forest. Article IV
uses recently developed open-population SCR models that provide not only
estimates of annual density and its determinants, but also estimates of the
demographic parameters (i.e., recruitment and survival) needed to predict
changes in the population dynamics. This study reveals that, on the one
hand, whereas the role of the relict range is still important for determining the
wolverine’s density distribution, its significance is diminishing over time. On
the other hand, forest is appearing more and more as a significant predictor
of today’s wolverine density. Article IV tracks temporal trends in the main
determinants of male and female wolverine densities and it discusses the results
in relation to the population recovery of the wolverine in Scandinavia in the
presence of ongoing human pressure.
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Norsk sammendrag

1. Viltbestander lever i stadig mer menneskepåvirkedelandskap. Enten
på grunn av deres iboende verdier eller på grunn av instrumentelle verdier
for mennesker, overvåkes viltpopulasjoner for å informere om deres status og
populasjonstrender og for å forutsi deres fremtidige status som respons på
mulige miljøendringer. Overvåking av vilt på tvers av romlige enheter og over
tid er et første skritt mot adaptiv og kunnskapsbasert forvaltning.

2. Denne doktorgradsavhandlingen består av fire artikler som er sentrert
rundt det å utvikle nye metoder, forbedre konsepter og synliggjøre mulige
anvendelser av nye analytiske tilnærminger for å kvantifisere bestandstetthet
av vilt på landskapsnivå ved bruk av ikke-invasive overvåkingsdata. I kjer-
nen av denne doktorgradsavhandlingen ligger romlig eksplisitte analytiske
modeller, nemlig romlig fangst-gjenfangst (SCR), med evnen til å gi skalaover-
skridende estimater av populasjonsparametere, samtidig som de tar hensyn
til ufullkommen deteksjon. Denne doktorgradsavhandlingen er motivert av
anvendte spørsmål reist under ikke-invasiv genetisk overvåking av store rovdyr
på den skandinaviske halvøya. Metoden og funnene har imidlertid bredere
implikasjoner.

3. De to første artiklene fokuserer på å forstå og forebyggekonsekvensene
av romlig variabel og autokorrelert deteksjonssannsynlighet når man analyserer
viltovervåkingsdata. Deteksjonssannsynlighet - sannsynligheten for å oppdage
et individ fra målpopulasjonen kan variere på tvers av studieområdet på grunn
av, for eksempel, visse landskapskarakteristikker eller spesifikasjonene til prøve-
takingsdesignet. Romlig autokorrelasjon i deteksjonssannsynlighet oppstår når
deteksjonsevnen er mer lik blant nærliggende enn fjerne prøvetakingssteder
eller enheter. Både artikkel I og II bruker simuleringer for å lage og teste
mange scenarier som kan oppstå under virkelig prøvetaking av vilti overvåk-
ingsstudier. Artikkel I evaluerer konsekvensene av å ikke ta hensyn til romlig
variasjon i deteksjonsevnen når man analyserer overvåkingsdata med SCR,
med et særlig fokus på innvirkningen på estimater av populasjonsstørrelse.
Denne studien viser at en feilspesifisert SCR-modell fungerer rimelig godt i
mange situasjoner, fra lavt og opp til et middels nivå av romlig variasjon i
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deteksjonsevnen. Artikkel I identifiserer imidlertid problematiske tilfeller
av svært romlig variabel og autokorrelert deteksjon, som kan føre til en særs
negativ skjevhet i populasjonsstørrelsesestimater. Noen av disse ekstreme
scenariene forventes i den storskala overvåkingen av store rovdyr i Skandinavia,
noe som førte til en oppfølgingsstudie i neste kapittel av denne doktorgraden.

4. Artikkel II beskriver og tester tre nye modelleringsmetoder for å ta
hensyn til romlig variabel og autokorrelert deteksjonssannsynlighet i SCR med
tilfeldige effekter. Denne studien utvider SCR med generaliserte lineære bland-
ede modeller (GLMM) og sammenligner ytelsen til SCR-GLMM-er som tar og
ikke tar spesifikke hensyn til romlig autokorrelasjon i deteksjonssannsynlighet.
Artikkel II anvender deretter de nye modelleringstilnærmingene på overvåk-
ingsdata av brunbjørn Ursus arctos fra Sentral-Sverige, hvor majoriteten av
DNA-dataene ble samlet inn opportunistisk av frivillige og ingen pålitelige mål
for prøvetakingsinnsats var tilgjengelig for å konkludere med romlig detekt-
sjonsevne. Denne empiriske casestudien demonstrerer anvendbarheten av de
foreslåtte modelleringstilnærmingene og antyder betydelig romlig heterogenitet
i påvisningen av bjørn, hvor deteksjonsevnen avtar i øst–vest retning mot den
svensk-norske grensen. Artikkel II diskuterer videre løsninger for å identifis-
ere potensielle mangler i prøvetaking, der variasjonen i innsatsen ikke er fullt
kjent, og fremhever beregningsavveininger ved bruk av slike nye SCR-analyser
i viltovervåkingsstudier.

5. De to neste artiklene viser empiriske anvendelser av kvantifisering
av variasjon i bestandstetthet hos viltog dets determinanter på populasjon-
snivå. Vår nåværende forståelse av viltets arealbruk og habitatvalg består
i hovedsak av geografisk begrensede studier som ofte trekker slutninger fra
noen få instrumenterte individer. Både artikkel III og IV bruker ikke-invasive
genetiske overvåkingsdata for jerven Gulo gulo over hele artens utbredelsesom-
råde på den skandinaviske halvøya, og vurderer kjønnsspesifikke responser
av jervetettheten til en rekke historiske og nåværende miljøkovariater. Begge
disse artiklene forutsier den skandinaviske jervtetthetsfordelingen og gir esti-
mater av bestandsstørrelse. Artikkel III, som et frempek til neste kapittel,
identifiserer faktorene som påvirker dagens tetthetsfordeling av jerven, med
fokus på rollen til reliktområdet langs den svensk-norske grensen, der jerven
overlevde intens menneskelig forfølgelse tidlig på 1970-tallet. Artikkel III
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avslører at avstand fra denne grenseoverskridende alpine regionen fortsatt er
en av de viktigste determinantene for jervetetthet, og den høyeste tettheten av
hunn- og hannjerv forventes nærmere relikviene. Dagens forvaltningsforhold
for å begrense ekspansjon av jerven, spesielt i Sør-Norge, samhandler med
avstand fra reliktområdet, og sammen med andre topografiske, klimatiske
og byttedyrrelaterte faktorer, har formet dagens tetthetsfordeling av jerven i
Skandinavia. Denne studien er den første som ser på tetthetsdeterminantene
for den skandinaviske jervebestanden over hele dens geografiske utstrekning.

6. Artikkel IV bygger på funnene fra artikkel III og kvantifiserer
dynamikken i tetthetsdeterminanter for den skandinaviske jerven over en ni-års
overvåkingsperiode. Denne studien kvantifiserte endringen i virkningen av
miljøkovariatene i løpet av det siste tiåret ettersom jerven har ekspandert
fra det alpine reliktområdet til den boreale skogen. Artikkel IV bruker
nylig utviklede SCR-modeller for åpen populasjon som ikke bare gir realistiske
estimater av årlig tetthet og dens determinanter, men også estimater av de
demografiske parameterne (dvs. rekruttering og overlevelse) som trengs for å
forutsi endringer i populasjonsdynamikken. Denne studien avslører at på den
ene siden, mens rollen til reliktområdet fortsatt er viktig for å bestemme jervens
tetthetsfordeling, avtar dens betydning over tid. På den annen side fremstår
skog mer og mer som en betydelig prediktor for dagens jervetetthet. Artikkel
IV sporer tidsmessige trender i hoveddeterminantene for tetthet av hann- og
hunnjerv, og den diskuterer resultatene i forhold til bestandsgjenoppretting av
jerven i Skandinavia i nærværet av pågående menneskelig press.
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Synopsis





Variation in detectability and density of wildlife
populations: causes and consequences

You are trying to capture the fog, and no one can do that.
Patrick D. Smith, A Land Remembered

1 Introduction
Wildlife management emerged as a movement led by “sport hunters” in

North America, who witnessed devastating wildlife losses during the nineteenth
century. These sport hunters, as opposed to the traditional “market hunters”,
started developing codes of conduct and ethics to protect lands and take
responsibility for wildlife therein (Leopold 1933, Meine 2010, Brown et al.
2013). As time went on, these wildlifers realized that they needed reliable
up-to-date information about the status of wildlife populations to sustainably
harvest them and achieve conservation goals. Such quantities are key to
understanding population dynamics – the change in the size and composition
of a population over time.

To learn about the status and trends of wildlife populations, researchers
and managers typically sample the population. The size of the sample is
always less than the size of the population of interest. This is because the
entire population is practically impossible to count (as in a census); many
wildlife populations are distributed across hundreds to thousands of square
kilometers of heterogeneous landscape, and they often occur in low densities,
are mobile, and avoid humans (Thompson 2013, Kellner and Swihart 2014).
Logistically and economically efficient sampling is therefore a common goal
in wildlife population ecology and management. Traditionally, sampling has
been done by hunting, trapping and tagging, or tracking some individuals from
the target population (Krebs 1999, Buckland et al. 2000, Williams et al. 2002).
Besides being logistically challenging for studying large mammals, there are
ethical, welfare, and safety considerations in using such invasive approaches.
For sampling rare, elusive, or threatened wildlife, “noninvasive” data collection
methods that do not require physical capture or handling of animals have been
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developed during the past decades (Thompson 2013, Zemanova 2020). The
most popular noninvasive data collection methods are genetic sampling from
naturally shed biological material in the environment (e.g., feces; Lefort et al.
2022) and camera trapping (Burton et al. 2015). Noninvasive data collection
methods are promising tools for wildlife population monitoring by providing a
wealth of data over a long time and across large spatial extents (Lamb et al.
2019, Tourani 2022).

The goal of wildlife monitoring is not only to collect ecological data, but
also to provide reliable estimates of some population quantities across space
and time (Yoccoz et al. 2001, Pollock et al. 2002, Nichols and Williams 2006,
Jones et al. 2013). To derive estimates of wildlife population status from a
sample of the population, we use ecological modeling to provide quantitative
information about population processes and attempt to identify the underlying
drivers of population change (Krebs 1991, Buckland et al. 2000, Gimenez
et al. 2014, Kéry and Royle 2015, van de Schoot et al. 2021). By taking a
quantitative approach to understanding the population’s size and dynamics,
wildlife monitoring provides valuable insights into the ecology of the focal
population and could inform management efforts.

Despite the benefits of long-term wildlife monitoring, analyzing the resulting
data to draw reliable inferences is challenging. On the one hand, the analyst
has to deal with an incomplete and imperfect picture of the reality – when
species are elusive, mobile, and sparsely distributed across large areas, their
detection (e.g., confirming their presence) during the sampling is difficult
(Kellner and Swihart 2014, Gimenez et al. 2018). Yet, the data collection
process is not always fully known to the analyst. On the other hand, logistical
constraints, equipment inefficiency, and pooling data across multiple study
areas or sampling methods are common examples that cause survey error and
variability in wildlife monitoring data (Efford et al. 2013, Moqanaki et al. 2021,
Howe et al. 2022). These sources of variation, which can happen across space,
over time, or among individuals from the focal population, must be identified,
quantified, and accounted for during the analysis of wildlife monitoring data.
Failure to address variation in the sampling process may result in erroneous
results and misleading conclusions (Cubaynes et al. 2010, Kellner and Swihart
2014, Gimenez et al. 2018, Dupont et al. 2023).
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In this PhD dissertation, I studied two main sources of variation in wildlife
monitoring data: (i) imperfect and variable detectability of individuals from the
target population during the sampling; and (ii) factors and ecological processes
leading to spatial and temporal variation in the distribution of individuals
that form a population. Hierarchical models offer solutions to address these
issues by disentangling observation and ecological processes (Royle and Dorazio
2008, Lele and Dennis 2009, Kéry and Royle 2015, van de Schoot et al. 2021).
I used simulations and the comprehensive multinational database of large
carnivores in Scandinavia (rovbase.no and rovbase.se), which is composed
of individual identities and locations that have been collected over the past
decades using noninvasive DNA sampling. I modeled large-scale variation
in animal detectability and density, and quantified their determinants using
a hierarchical analytical framework, namely spatial capture-recapture (SCR;
Efford 2004, Borchers and Efford 2008, Royle et al. 2014, 2018). In this
Synopsis, first, I argue for the importance of wildlife monitoring to learn about
wildlife populations (i.e., research) and inform management decisions (i.e.,
action). Here, I also briefly describe the current system of monitoring and
management of large carnivores in Scandinavia. Second, I expand on the
two main sources of variation in wildlife monitoring data at the landscape
level; heterogeneous detectability and spatial distribution. I describe different
situations where such variation exists in wildlife monitoring and discuss some
of the solutions to identify and account for variability in the data. This is
the core of this PhD dissertation. For the modeling solutions, I focus on SCR
as the analytical framework on which this PhD is built. Finally, I discuss
quantitative approaches to provide reliable and spatially explicit estimates
of wildlife population density. Throughout this Synopsis, I summarize the
main findings of this PhD dissertation and identify remaining gaps and future
directions.

2 Monitoring for management
2.1 Why, what, and how?

Wildlife monitoring is the process of collecting and analyzing information
about a population, often at different points in time, to assess population

3



status and draw inferences about changes over time (Krebs 1991, Yoccoz et al.
2001, Jones et al. 2013). Sampling depends on the objectives of monitoring
(what to measure?) and the resources available. The main metrics of interest
are: (i) population size – abundance and density: How many of a given species
exist in this study area and how they are distributed in relation to certain
features of the area?; (ii) vital rates – e.g., reproduction, survival: Is this
population declining, stable, or increasing? How many of the yearlings are
expected to live until adulthood?; (iii) characteristics of the population – e.g.,
age and sex structure, behavior: what proportion of the population is breeding
females? In case of a disease outbreak, which individuals in what areas are
more susceptible?

Although wildlife monitoring appears as a critical tool for understanding
wildlife populations, it is a controversial endeavor. More information is always
welcome. However, in a real world of limited resources and changing priorities,
there is always a trade-off between allocating available resources to collecting
more information and increasing the effectiveness and efficiency of actions,
which are supposed to be based on the lessons learned from the monitoring
(Legg and Nagy 2006, Chadès et al. 2008, Jones et al. 2013, Maxwell et al. 2015).
Monitoring purely for science is therefore not a priority in many situations and,
instead, monitoring for adaptive management is favored (Nichols and Williams
2006, Williams 2011, Rist et al. 2013). Adaptive monitoring offers solutions to
reduce uncertainty and improve predictions drawn from wildlife monitoring, so
that the outcomes of interventions can be continuously improved.

To draw actionable inferences from wildlife monitoring, we either propose
a hypothesis and evaluate it or conduct retrospective analysis (Yoccoz et al.
2001, Nichols and Williams 2006, Betts et al. 2021). The former needs an
experimental design, where there are competing a priori hypotheses to develop
some predictions about the expected results of a change in the system. A
controlled experiment is subsequently developed to manipulate the system and
collect data before and after, or with and without, the manipulation. We would
then compare our predictions with estimates derived from the experiment to
draw causal inferences. Nevertheless, experimentation is not always possible
when dealing with applied questions and retrospective analysis is more common
in wildlife monitoring efforts. In this approach, we perform statistical analysis
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of the variable of interest, yet the observed pattern can be explained by more
than one hypothesis (Yoccoz et al. 2001, Legg and Nagy 2006, Nichols and
Williams 2006). For example, if we observed a declining trend in the population
size of a given carnivore population after trophy hunting, the decrease could be
either a result of hunting or an outcome of other factors, such as an increase in
juvenile mortality after a harsh winter or even survey errors. In other words,
although we have observed a significant negative correlation between population
size and hunting, such associations do not necessarily mean strong evidence
of the underlying cause. Thus, the observation of a correlation is usually not
sufficient to unambiguously disentangle the cause and the effect of multiple, and
sometimes confounding, factors. As a result, retrospective analyses only permit
weak inferences (Yoccoz et al. 2001, Legg and Nagy 2006, Stephens et al. 2015).
However, hypothesis testing is also possible in retrospective analysis, where a
priori hypothesis is developed to make predictions, which are then compared
with the monitoring data (Betts et al. 2021). Comparable conclusions can be
repeatedly obtained across multiple systems or species, which can be a sign of
strong support. The empirical studies in articles II-IV of this PhD dissertation
should be therefore seen as retrospective analyses that test hypotheses and
discuss results regarding the association between population size and sampling
design (Article II) or some environmental features of the Scandinavia Peninsula
(Articles III and IV), and not causal inferences.

2.2 Of wolverines and bears: Large carnivore monitoring and
management in Scandinavia

2.2.1 Background

This PhD was motivated by issues faced during the analysis of noninvasive
genetic monitoring data of large carnivores in Scandinavia. Specifically, the
empirical case studies in articles II-IV concern different aspects of how to
account for variation in detectability and spatial distribution, when quantifying
the population density of Scandinavian large carnivores. In this PhD, I use
“Scandinavia” and “Scandinavian Peninsula” to refer to the two Nordic countries
of Norway and Sweden (Fig. 1). The guild of large carnivores in Scandinavia,
which are members of the mammalian order Carnivora with an adult body
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Figure 1: Map of the Scandinavian Peninsula, where noninvasive genetic monitoring and
management of large carnivores are coordinated across different jurisdictions. In Norway
(left), eight carnivore management regions are color-coded in shades of blue and labeled with
numbers. In Sweden (right), counties are labeled with county names and three management
regions (Rovdjursförvaltningsområden) are shown with thick borders.
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mass greater than or equal to 15 kg (Wolf et al. 2018), consists of brown bear
Ursus arctos, gray wolf Canis lupus, wolverine Gulo gulo, and the Eurasian
lynx Lynx lynx (Swenson and Andrén 2005, Chapron et al. 2014; Fig. 2). In
articles III and IV, I analyze monitoring data of the wolverine from Norway
and Sweden. Article II involves a case study from the Scandinavian brown
bear monitoring in central Sweden.

Norway and Sweden are among the European countries that have witnessed
a partial recovery of their large carnivore community (Chapron et al. 2014,
Boitani and Linnell 2015, Lindsey et al. 2017; Fig. 2). Despite cultural
and socioeconomic similarities, Norway and Sweden differ considerably in
how they monitor and manage large carnivores (Swenson and Andrén 2005,
Sandström et al. 2009, Linnell et al. 2017, Sjölander-Lindqvist et al. 2020).
Here, I summarize important aspects of large carnivore monitoring and the
management systems in Norway and Sweden, from the past to the present.

2.2.2 From near extinction to recovery

Both the landscape and national policy regarding large carnivores have
changed greatly in Scandinavia through the past centuries (Linnell et al. 2000,
Swenson and Andrén 2005). Large carnivores were common almost throughout
the Peninsula by the mid-eighteenth century. From this time, government-
supported bounties were introduced as an official policy to exterminate large
carnivores, which continued until the late nineteenth century (Wabakken et al.
2001, Flagstad et al. 2004, Swenson and Andrén 2005). Besides an intensive
eradication of large carnivores and overhunting of their ungulate prey, the
landscape in Scandinavia also changed substantially. By the end of this period,
almost no true wilderness had remained in Norway and Sweden and the sharp
decline of large carnivores was evident (Linnell et al. 2000). Wolves were
functionally extinct, relict bear and lynx populations only persisted in parts of
Sweden, and the wolverine was restricted to alpine areas along the Swedish-
Norwegian border (Swenson et al. 1995, Wabakken et al. 2001, Spong and
Hellborg 2002, Flagstad et al. 2004; Fig. 2). Subsequently, public opinion
about the large carnivores started to change, which eventually resulted in the
abolishment of bounties, restricting carnivore killing to fewer areas and certain
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seasons, and making large carnivores the property of the State (Swenson and
Andrén 2005). The national policy and responses of large carnivores to the
paradigm shift varied among the carnivores. However, subsequent protection
measures after the Second World War eventually resulted in partial recovery
of large carnivore populations in Scandinavia in the post-1990s (Chapron et al.
2014; Fig. 2).

Figure 2: Past (≈ 1970s) and present distribution of large carnivores in the Scandinavian
Peninsula after Chapron et al. (2014): (a) Brown bear Ursus arctos; (b) Eurasian lynx Lynx
lynx; (c) Gray wolf Canis lupus; and (d) Wolverine Gulo gulo. The present distribution maps
show approximate areas of permanent (dark blue) and sporadic occurrence (light blue) of
each large carnivore species. Animal silhouettes are downloaded from public sources (e.g.,
phylopic.org). This PhD dissertation involves case studies of the wolverine (Articles III
and IV) and brown bear (Article II).
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2.2.3 Struggle on a modern landscape

Today, public opinion about the Scandinavian large carnivores is polarized
(Gangaas et al. 2013, Linnell et al. 2017). Although the majority of the urban
public either supports or is neutral towards large carnivores, it is the rural
stakeholders who are most affected by the population recovery and demand
active interventions (Røskaft et al. 2003, Hobbs et al. 2012, Widman and
Elofsson 2018). Wolves and bears are generally less tolerated than lynx and
wolverines (Ericsson et al. 2004, Kleiven et al. 2004, Gangaas et al. 2013, Dressel
et al. 2014, Rauset et al. 2016). Large carnivore populations in Scandinavia are
therefore subject to different management regimes to limit their population size
and distribution. The goal is to maintain viable populations, while minimizing
conflicts with farmers, livestock breeders, and hunters (Sandström et al. 2009,
Strand et al. 2019). As the recovery of the Scandinavian large carnivores
has resulted in increasing conflict with human interests, both countries have
considered monitoring of population size and its trends to be important for
informing management decisions (Liberg et al. 2012, Gervasi et al. 2016,
Aronsson and Persson 2017, Bischof et al. 2020). However, the monitoring
methods and implementation of the results have changed over time and may
also vary at the regional levels for different species (Fig. 1). To highlight
these differences, a closer look into each country’s general landscape and policy
regarding large carnivores is necessary.

2.2.4 No more wilderness

Contrary to the general perception of pristine, human-free, mountains and
forests, there is virtually no such wilderness across the Scandinavian Peninsula
(Linnell et al. 2000, Watson et al. 2016). Today, the landscape in Norway
and Sweden is primarily multiuse, and protected areas are often small and
restricted to unproductive mountain regions; thus, large carnivores are forced
to share the habitat with humans (Linnell et al. 2001b, Swenson and Andrén
2005, Rauset et al. 2016). Although the size of land areas in Norway and
Sweden are comparable (≈ 385 000 vs. 450 000 km2, respectively; Fig. 1),
the human population size of Sweden is almost twice Norway’s (10.5 vs. 5.4
million people). Human density and associated disturbances track the climate
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suitability and increase from north to south. Human areas are the highest
in the south, where the countries’ capitals and most of the major cities are
located.

The management of large carnivores in Scandinavia is largely influenced
by their acceptance by the livestock farming industry and hunters (Sandström
et al. 2009, Gangaas et al. 2013, Widman and Elofsson 2018, Strand et al.
2019). Almost the entire northern half of both countries contain semidomesti-
cated reindeer Rangifer tarandus husbandry areas, where the indigenous Sámi
pastoralists have herding rights under different management units and seasonal
grazing schemes (Jernsletten and Klokov 2002, Axelsson-Linkowski et al. 2020).
The share of Norway and Sweden in the global reindeer population and produc-
tion is considerable, which is the leading industry, culturally important, and
the traditional area of employment of the indigenous people in Scandinavia
(Jernsletten and Klokov 2002, Tveraa et al. 2007, Axelsson-Linkowski et al.
2020). By law, predation losses of semidomesticated reindeer should be fully
compensated, which annually exceeds tens of millions of US dollars in each
country (Mattisson et al. 2011, Persson et al. 2015, Bautista et al. 2019, Støen
et al. 2022). In addition, over two million free-ranging sheep Ovis aries graze
Norway’s forests and mountains, mostly in the southern areas (Strand et al.
2019). Although the pastures are fenced in Sweden, predation of sheep is an
issue of growing concern for the stakeholders in both countries (Karlsson and
Johansson 2010, Mabille et al. 2015, Widman and Elofsson 2018). Large carni-
vores also compete with hunters for several species of economically important
ungulates, such as moose Alces alces and roe deer Capreolus capreolus (Jonzén
et al. 2013, Andrén and Liberg 2015, Wikenros et al. 2020).

2.2.5 Carnivore management at multiple levels

In Norway and Sweden, the parliaments decide on reference areas and
population size goals for the favorable conservation status of large carnivores
(Linnell et al. 2017, Strand et al. 2019, Sjölander-Lindqvist et al. 2020). The
number of large carnivores allowed to exist in each country and in different
regions is therefore largely affected by political decisions, which consider the
national reference values in relation to international conventions that each of
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the countries is bound by (Sandström et al. 2009, Epstein 2014, Trouwborst
et al. 2017). The majority of current disagreements regarding large carnivore
management in Scandinavia concerns the wolf (Liberg et al. 2020, Linnell et al.
2017, Trouwborst et al. 2017), which is not the focus of this PhD dissertation.

Norway and Sweden have chosen different paths in large carnivore monitor-
ing and management (Swenson and Andrén 2005, Sjölander-Lindqvist et al.
2020). These differences are specifically related to the Convention on the
Conservation of European Wildlife and Natural Habitats (the Bern Conven-
tion) and, for Sweden, the European Directive on the Conservation of Natural
Habitats and of Wild Fauna and Flora (Habitats Directive 1992). Both Norway
and Sweden have signed the Bern Convention, but they implement their large
carnivore governance differently, in particular since 2000 (Sandström et al. 2009,
Linnell et al. 2017, Sjölander-Lindqvist et al. 2020). The Bern Convention
obliges the signatories to take appropriate measures to maintain viable popula-
tions of wild flora and fauna based on ecological, scientific, and cultural criteria.
However, signatories may make exceptions to the conservation measures to
prevent significant damage to forest and agricultural properties, unless the
exception is detrimental to the survival of the fauna or flora population (Epstein
2014, Trouwborst et al. 2017). In addition to the Bern Convention, Sweden,
as an EU member, also follows the Habitats Directive, which requires each
Member State of the European Union to take measures to reach and maintain
minimum levels of natural habitats and wild plants and animals, while taking
into account the economic, social, cultural, and regional dimensions (Habitats
Directive 1992). This includes the “minimum levels of large carnivores”, which
is much debated, particularly regarding the mitigation methods to address
human-carnivore conflicts (Epstein 2014, Linnell et al. 2017, Widman and
Elofsson 2018).

In Sweden, the Swedish Environmental Protection Agency (Naturvårdsver-
ket) has received the overall responsibility from the government to implement
the international conventions, which include large carnivore management prac-
tices. However, there is a decentralized policy in place to increase regional and
local influence over large carnivore management through wildlife management
delegations, led by the governor of each county (län, the next level of admin-
istration below the state; Fig. 1) and including representatives of different
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stakeholders (e.g., political parties, farmers, local businesses, hunters, nature
conservation groups). This delegation plays an advisory role in deciding on
guidelines and management plans for large carnivores, including recommending
minimum and interim levels of large carnivore populations in the given county.
In the northern areas, the Sámi Parliament also takes some responsibility for
the implementation of large carnivore management decisions. Meanwhile, in
parallel to the county-level management, three councils have been established
to coordinate the monitoring and management of large carnivores among the
counties in three northern, middle, and southern regions, known as Rovdjurs-
förvaltningsområden (Fig. 1). If designated large carnivores numbers are not
met, the power to take management decisions is re-centralized to the Swedish
Environmental Protection Agency (Sjölander-Lindqvist et al. 2020).

Large carnivores are strictly protected under the European Union’s Bern
Convention and Habitat Directive, but there is also room for management
flexibility (Linnell et al. 2017, Trouwborst and Fleurke 2019). As a signatory to
both conventions, the legal removal of large carnivores in Sweden is expected
to be in accordance with the designated criteria, which requires such decisions
to be made if there is no other alternative solution to address serious damages
to agricultural or other properties effectively (Epstein 2014). The definition of
what constitutes serious wildlife damage to human properties may vary. For
example, in reindeer grazing areas, 10% reindeer loss of a herding community
to large carnivore predation is defined as the maximum acceptable level of
annual losses (Mattisson et al. 2011, Hobbs et al. 2012, Persson et al. 2015).

In Norway, the national policy regarding large carnivores is decided by
the Norwegian Parliament, including measures to secure the survival of large
carnivores and the persistence of their habitats. Population goals for each of
the large carnivore species are decided for each of the eight carnivore manage-
ment regions (Fig. 1). Currently, the Ministry of Climate and Environment
is given the responsibility to implement the international conventions and
national interests in large carnivore governance, with delegated authority to
the Norwegian Environment Agency (Miljødirektoratet). The Ministry has
appointed regional large carnivore committees to make management decisions
that take into account the differences in human interests in different areas
and for different carnivore species. As a result, the population goals for large
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carnivores vary greatly across the different Norwegian carnivore management
regions (Fig. 1). Such decisions should also allow for local engagement. The fi-
nal authority regarding the regional management plans remains at the national
level. The regional government-appointed committees usually consist of re-
gionally elected politicians and, if applicable, members nominated by the Sámi
Parliament. This committee must comply with the national policies regarding
carnivores and may be also instructed by the Norwegian Environment Agency.
The committee’s decisions may include license, quota, or protective hunting of
large carnivores, but the population goals must be reached. At the same time,
the Ministry of Local Government and Modernization has also received the
responsibility to report on progress, and the Ministry of Agriculture has the
overall responsibility for semidomesticated reindeer (Sjölander-Lindqvist et al.
2020).

Norway follows a specific interpretation of the Bern Convention criteria to
be more flexible regarding large carnivore management (Linnell et al. 2017,
Trouwborst et al. 2017). Subsequently, Norway has developed a zonal manage-
ment system for each large carnivore species, with eight carnivore management
regions (Fig. 1). In a zone that is considered, for example, for the wolverine,
livestock must be protected against the wolverine only. Other large carnivores
(bear, wolf, and lynx) are not expected therein and will be removed. No zone
is considered entirely for all four large carnivores, and the southern zones
(≈ 45% of Norway’s land area) are prioritized for livestock (Strand et al. 2019).
The carnivore management zone for each species is considered to be large
enough to sustain a viable population, but “viable” is defined by the Norwegian
Parliament. Currently, the largest zone is designated for the lynx, followed by
the wolverine, and only small borderline zones are considered for the bear and
wolf (Strand et al. 2019; Fig. 2). The latest population target is 65 annual
reproductions for the lynx, 39 for the wolverine, 13 for the bear, and four for
the wolf. The population targets include part of the population that occurs
in Sweden. For the case of wolves, the latest population target allows for two
additional annual litters by wolf packs that have part of their territory in
Sweden (Strand et al. 2019). If population targets set by the Parliament are
met, lethal population control of large carnivores will be then practiced inside
the designated carnivore management regions.
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Box 1. Wolverine Gulo gulo as a study species

The wolverine’s global range (Abramov 2016) © Kjetil Schjølberg/Rovdata

The wolverine is the largest terrestrial species of the carnivoran family Mustelidae,
which also includes weasels, badgers, otters, ferrets, martens, and minks. The
wolverine’s geographic distribution range is primarily associated with the boreal zone
of the Northern Hemisphere, from northern Canada, Alaska and some of the western
lower states in the US, and in the mainland Fennoscandia towards western Russia and
Siberia, and parts of Central Asia to Mongolia and northern China (Landa et al. 2000,
Abramov 2016). Globally, the wolverine conservation status is currently considered
as “Least Concern”, but regionally, populations are considered to be threatened and
declining in both numbers and distribution (Abramov 2016). The main threats to the
wolverine are human-caused, from overharvesting and retribution killing, because of
their predation of livestock to habitat fragmentation and a changing climate (Abramov
2016, Fisher et al. 2022).

The wolverine population in Norway and Sweden is an example of a successful
recovery of a historically persecuted species in modern multiuse landscapes (Chapron
et al. 2014, Boitani and Linnell 2015). Following centuries of intense persecution,
the wolverine was eradicated from most of the Scandinavian Peninsula by the 1970s
and was restricted to the alpine region between Norway and Sweden (Flagstad et al.
2004). After introducing conservation interventions, today the Scandinavian wolverine
population has recolonized a major part of its historical range (Chapron et al. 2014,
Bischof et al. 2020). However, because there is no wilderness without human influence
in Scandinavia, the population expansion has caused conflict with sheep Ovis aries
owners and semidomesticated reindeer Rangifer tarandus herders (Hobbs et al. 2012,
Rauset et al. 2016). The wolverine population is therefore managed at the regional
level to balance the human interests and needs of an ecologically viable wolverine
population (Aronsson and Persson 2017, Gervasi et al. 2019).

Noninvasive monitoring of the wolverine population is an integral part of species
management in Scandinavia. Annually, authorities and volunteers collect and submit
putative wolverine DNA samples (e.g., scat, hair) to be genetically analyzed (Gervasi
et al. 2016, Ekblom et al. 2018). Samples are then identified to species and, if possible,
individual level, where many of them contain the date and location information.
Because the monitoring is done by hundreds of people across almost the entire
Scandinavia, there are many sources of variation in the monitoring data that must be
accounted for to estimate population-related variables of interest (Bischof et al. 2020,
Milleret et al. 2022b). Articles III and IV of this PhD dissertation focus on quantifying
density determinants and some other aspects of variation in the monitoring data of
the wolverine.
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2.2.6 Carnivore monitoring: from invasive to noninvasive, and from
indices to estimates

Since the late 1970s, Norway and Sweden have implemented different
monitoring and research programs to better understand the population size,
dynamics, and habitat requirements of large carnivores in Scandinavia (Swenson
et al. 1998, Andrén et al. 2002, Solberg et al. 2006, Kindberg et al. 2009, Liberg
et al. 2012, Gervasi et al. 2016, Åkesson et al. 2022). Besides research and
monitoring, both countries are also implementing population management
measures, including legal removal, which are expected to be informed by the
monitoring. Both countries believe that the success of the current management
efforts for large carnivores depends on the integration of different management
measures, research, and monitoring (Liberg et al. 2012, Gervasi et al. 2016,
Bischof et al. 2020). As discussed earlier, both countries are using a zonal
management system for large carnivores (Fig. 1), where county administration
representatives make regional management plans and conduct populating
monitoring (Strand et al. 2019, Sjölander-Lindqvist et al. 2020). Despite
sharing transboundary populations of large carnivores and the efforts to unify
the monitoring data through a shared database (rovbase.no and rovbase.se),
the population monitoring is still not fully coordinated, mainly because of the
differences in national and regional policy and each country’s international
obligations regarding the large carnivores (Bischof et al. 2016, 2020, Gervasi
et al. 2016, 2019, Aronsson and Persson 2017, Åkesson et al. 2022).

The population monitoring of large carnivores in Scandinavia has evolved
during the past decades and different methods have been used for different
species and in different carnivore management regions. The main objectives of
the monitoring programs for large carnivores are to locate and count individuals
or family groups, record reproduction events, identify the breeding pairs, and
estimate population size and genetic structure and inbreeding (Linnell et al.
2001a, Andrén et al. 2002, Liberg et al. 2005, 2012, Gervasi et al. 2016, Åkesson
et al. 2022). The goal is to maintain minimum viable populations of large
carnivores that are genetically connected with the neighboring populations
(within the Scandinavian Peninsula and, ideally, over Fennoscandina and
Karelian), while minimizing human-carnivore conflicts (Liberg et al. 2012,
Gervasi et al. 2016, Kopatz et al. 2021, Åkesson et al. 2022).
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Box 2. Brown bear Ursus arctos as a study species

The approximate extant range of the brown bear © Staffan Widstrand

The brown bear Ursus arctos is a member of the carnivoran family Ursidae, which
includes eight extant bear species. Despite the human-caused extirpation in North
Africa and substantial declines in distribution and population size in the remaining
continents (McLellan et al. 2017), the brown bear is still one of the most widely
distributed large carnivores.
Globally, the population status of brown bears is considered “Least Concern” with
a stable trend (McLellan et al. 2017). However, outside Russia and parts of North
America, many bear populations are small, isolated, and threatened with extinction,
because of human killing, habitat loss and fragmentation, and trades in body parts
(Can et al. 2014, McLellan et al. 2017).

The Scandinavian brown bear population is shared by Sweden and Norway. Like
other large carnivores of Scandinavia, the brown bear has experienced near extinction
in modern times (Swenson et al. 1995). The extermination efforts peaked in the
nineteenth century in both countries, where the historical bear population was larger
in Norway, and at first, Sweden was more successful in the population extirpation
(Swenson et al. 1995, 2017). By the 1930s, the bear population in both countries
was close to extinction. Whereas Sweden changed its policy, which eventually led
to the recovery of the bear population, bears were virtually extinct in Norway by
the 1970s (Swenson et al. 1995, Chapron et al. 2014). Today, although the Swedish
population of bears has partially recovered and reoccupied parts of its historical range,
the Norwegian population is managed intensively to be limited to the designated
carnivore management zones along the border with Sweden (Chapron et al. 2014,
Swenson et al. 2017, Strand et al. 2019).

The Scandinavian brown bear monitoring is a leading example of noninvasive
genetic sampling of wildlife (Swenson et al. 2011). Sampling of putative bear scats
and hair is conducted mostly opportunistically by authorities in Norway, as well as
hundreds of volunteers (e.g., hunters) during the hunting season in Sweden. Although
Norway samples its bear population every year, in Sweden a given region is sampled
every five years (Bischof et al. 2020). Because of the unstructured sampling design
that also varies at the county level and over time, especially in Sweden, substantial
variation in the monitoring data is expected. However, almost no unambiguous
measures of sampling effort are available to aid reliable population estimates of
the Scandinavian bear population (Bischof et al. 2020). In Article II, noninvasive
genetic monitoring data of female bears from central Sweden is used to demonstrate
novel modeling approaches for quantifying and accounting for spatially heterogeneous
detectability during large-scale wildlife monitoring to improve density estimates.
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In the early years of the Scandinavian large carnivore population monitoring,
mainly proxies of population size were obtained from snow-tracking surveys
(Liberg et al. 2012, Åkesson et al. 2022), direct observations of family groups
(Andrén et al. 2002, Kindberg et al. 2009), or other indirect measures such
as counts of active dens (Landa et al. 1998b). The resulting data often
did not allow for reliable population estimation of large carnivores using
conventional analytical frameworks; thus, different approaches to convert the
minimum observation counts to indices of abundance, density, or reproduction
metrics were used (Andrén et al. 2002, Kindberg et al. 2009, 2011, Liberg
et al. 2012). These count-based methods have the advantages of (i) being
relatively cheap to conduct; (ii) having a high potential to engage the public;
and (iii) minimally impacting the fitness, behavior, or welfare of the study
wildlife populations (Mech and Boitani 2007, Kojola et al. 2018, Moqanaki and
Samelius 2022). The main assumption is that the obtained indices correlate
with abundance or density; thus, they can indicate a change in the status of
the population. However, it has been shown that such indices can only be
trusted under certain conditions and if properly calibrated to provide inferences
about population size and dynamics (Gopalaswamy et al. 2015, Morin et al.
2022). The main disadvantage of these methods is that they do not necessarily
reflect abundance; indices often fail to account for different sources of sampling
errors and confounding factors, which makes the comparison of results between
different areas or over time unreliable (Sollmann et al. 2013, Kellner and
Swihart 2014, Stephens et al. 2015). For example, snow conditions during
the tracking period may change over time and in different regions, manpower
may vary and different personnel with varying experience and skills may be
involved in each monitoring season in different management regions, and certain
individuals from the target carnivore population are more likely to be sampled
more often (e.g., scent-marking males). All of these examples can cause spatial,
temporal, or individual heterogeneity in wildlife monitoring data and bias the
results (Krebs 1999, Pollock et al. 2002, Efford et al. 2013, Gimenez et al.
2018).

By the late 1990s, radio telemetry (and later, GPS-telemetry) of individuals
became an important additional source of information in the Scandinavian
large carnivore monitoring (Bjärvall et al. 1990, Landa et al. 1998a, Linnell
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et al. 2001a, Wabakken et al. 2001, Liberg et al. 2012). Every population-
level monitoring of wildlife aims to provide information on where the species
are, how many of them and where they are, and what could affect where
they are. Wildlife telemetry appears to be an ideal research tool to answer
these questions, as it provides fine-scale individual data about space use and
movement of the tagged individuals that are otherwise too rare and too elusive
to observe in the wild (Cochran and Lord 1963, White and Garrott 1990,
Cagnacci et al. 2010, Fuller and Fuller 2012). The general approach has been
to track a few individuals from each carnivore management region. In the
case of territorial carnivores (e.g., wolves), usually one “alpha” individual from
each pair or pack has been tagged with radio or GPS-telemetry devices to
collect information about their territory sizes and reproduction (Wabakken
et al. 2001, Liberg et al. 2012). The main disadvantages of wildlife tagging
for large-scale wildlife population monitoring are (i) the need to physically
capture and handle animals, which in the case of large carnivores, can be risky
for both the animal and investigators; (ii) telemetry devices are expensive
and come with considerable failures; (iii) trained wildlife veterinarians and
highly skilled personnel are required; and (iv) the resulting data may not be a
representative sample of the population, especially when few individuals are
tagged with collars (Powell and Boyce 2010, Kelly et al. 2012, Moqanaki and
Samelius 2022).

Since the 2000s, genetic sampling of DNA material has been increasingly
used to monitor large carnivore populations in Scandinavia (e.g., Flagstad
et al. 2004, Hedmark et al. 2004, Bellemain et al. 2005, Liberg et al. 2005,
2012, Brøseth et al. 2010, Åkesson et al. 2016, 2022, Bischof et al. 2016,
2020, Gervasi et al. 2016, 2019). Specifically, noninvasive DNA sampling
of naturally shed biological material, such as feces (or scats), hair, urine,
saliva, and secretion, can be combined with snow tracking, which provides a
wealth of data to study species occurrences, individual identification and sex,
genetic structure and relatedness, and hormones and diseases (Schwartz et al.
1998, Taberlet et al. 1999, Waits and Paetkau 2005, Lamb et al. 2019, Beng
and Corlett 2020). Although there are disagreements about the terminology
(e.g., Lefort et al. 2022), I use noninvasive genetic sampling here as it is
commonly used in the literature: obtaining target DNA from naturally shed
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samples, without capturing or even observing the animals (Taberlet et al. 1999).
Noninvasive genetic sampling provides a unique opportunity to repeatedly
sample a significant proportion of the population across large spatial extents
(Lukacs and Burnham 2005, Kelly et al. 2012, Moqanaki and Samelius 2022).
There is also potential to engage the public in the sampling with little survey
costs (Bellemain et al. 2005, Cretois et al. 2020). DNA sampling can be, however,
limited by the associated costs of optimal sample collection, preservation,
storage, and genetic analysis (Taberlet et al. 1999, Waits and Paetkau 2005,
Schwartz et al. 2007, Beng and Corlett 2020). The quality and quantity of
target DNA in noninvasive samples, such as scats and hair, are also low, which
means a significant portion of the samples may fail in providing the expected
data resolution in the presence of high genotyping errors (Taberlet et al. 1999,
Waits and Paetkau 2005, Schwartz et al. 2007, Lampa et al. 2013, Moqanaki
and Samelius 2022).

Another DNA-based source of information in the large carnivore population
monitoring in Scandinavia arises from the genetic sampling of dead carnivores.
These dead recoveries are made after legal removal of individual carnivores,
licensed hunting, and other mortality causes discovered by or reported to the
authorities (Spong and Hellborg 2002, Flagstad et al. 2004, Hedmark et al.
2004, Tallmon et al. 2004, Liberg et al. 2005, Åkesson et al. 2016, Kopatz
et al. 2021). The integration of this type of data with noninvasive genetic
sampling provides additional information about the fate and, often, age class
of individuals that can be used to improve ecological inferences (Sandercock
2006, Bischof et al. 2020, Dupont et al. 2021, Hostetter et al. 2021).

2.2.7 Rovbase

All large carnivore monitoring data in Scandinavia are recorded in a unified
database called Rovbase (www.robase.se and www.rovbase.no). The goal
is to maintain a common monitoring program with shared protocols for the
transboundary wildlife populations, to improve the quality and quantity of the
monitoring data (Liberg et al. 2012, Gervasi et al. 2016). This shared database
also facilitates communication and collaboration between the authorities and
responsible organizations in Sweden and Norway. Rovbase is curated by
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Rovdata at the Norwegian Institute for Nature Research (NINA) through
funding provided by the Norwegian and Swedish governments. The database
is partly open to the public as soon as the data is ready. Different levels of
access to the data are defined, because some level of precaution is required in
providing fine-scale location data of large carnivores, as well as the personal
information of data contributors.

Rovbase offers different features for different large carnivore stakeholders.
For example, the database contains and shows geographical locations of obser-
vations of any damages caused by predators in Norway and Sweden. These
records mostly concern the four large mammalian carnivores (wolf, bear, lynx,
and wolverine; Fig. 2). Rovbase also contains records of damages caused by
golden eagles Aquila chrysaetos and occasionally other wildlife. A considerable
proportion of the data stored in Rovbase is based on information provided by
local sources and individuals. Thus, the integration of local knowledge and com-
munity science into the monitoring is an important aspect of Rovbase. Besides
the opportunistic data recorded by the public, Rovbase also contains official
monitoring data collected in a structured manner by management authorities
in each country. The main categories of official monitoring data are (i) Official
investigations of livestock losses and semidomesticated reindeer predation;
(ii) Carnivore signs and tracks, including active dens, examined and verified
by authorities; (iii) DNA samples, such as tissue, scat, hair, and saliva from
bite marks, collected by field personnel of management authorities or as part
of research projects. As of January 2023, Rovbase contained approximately
188 000 observation records of large predators, 71 000 sheep predation events,
35 000 predator attacks of semidomesticated reindeer, 14 000 dead recoveries of
large predators, and 151 000 processed DNA samples (rovbase.no/om).

Rovbase also provides an overview of government-sponsored compensations
paid for livestock predation by predators. There are differences between the
resolution of the data available from Norway and Sweden. For example in
Sweden, currently, only records of damages to semidomesticated reindeer are
registered. This is in part because compensations are paid based on carnivore
existence and not based on damage or loss (Mattisson et al. 2011, Tveraa et al.
2014, Persson et al. 2015, Swenson et al. 2017).
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In this PhD dissertation, I used the genetic monitoring data of the wolverine
(Box 1) and brown bears (Box 2) that are maintained by Rovbase. In Articles
III and IV, I used the noninvasive genetic monitoring data of the wolverine
from Norway and Sweden over multiple sampling months in years 2019 (Article
III) and 2014 - 2022 (Article IV). In Article II, noninvasive genetic monitoring
data of female brown bears from central Sweden were used. Below, I summarize
the wolverine and brown bear data in Scandinavia.

2.2.8 Wolverine genetic monitoring in Scandinavia

Since the mid-1990s, total counts of reproductive units at wolverine natal
dens are used to assess the minimum size of the Scandinavian wolverine
population (Landa et al. 1998b, Brøseth et al. 2010). The main assumption
is that the proportion of reproducing female wolverines remains more or less
unchanged in the population over years; thus, a minimum population size
estimate can be obtained by averaging every three years of den count data and
using extrapolation (see Landa et al. 1998b, Brøseth et al. 2010). Using this
approach, however, no analytical method is used to account for those natal dens
that are not detected during the sampling and the uncertainty in registering
successful reproduction events (i.e., imperfect and variable detection; Gervasi
et al. 2014, Kellner and Swihart 2014). Nonetheless, the authorities had to base
their decisions on these proxies as representatives of the wolverine population,
despite the uncertainties and potential sources of errors (Brøseth et al. 2010,
Gervasi et al. 2014, 2016). By the early 2000s, noninvasive genetic monitoring
of wolverines was introduced to improve the estimates of population trends,
which is used together with the minimum population size based on the den
counts (Flagstad et al. 2004, Hedmark et al. 2004, Brøseth et al. 2010, Gervasi
et al. 2016, Bischof et al. 2020, Milleret et al. 2022b).

Norway and Sweden follow comparable sampling protocols for the genetic
monitoring of the wolverine. The protocol was first developed in 2002 for
the southern part of the Scandinavian Peninsula, which was then eventu-
ally employed in the northern part as well since 2008 (Gervasi et al. 2016).
There has been variation in the monitoring intensity between the countries,
as Sweden tends to sample the northern areas of the country less structured
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compared to Norway (Gervasi et al. 2016, Bischof et al. 2020, Milleret et al.
2022b). Consequently, there is substantial spatiotemporal heterogeneity in the
wolverine monitoring data, specifically during the first decade of noninvasive
genetic sampling. In recent years, Norrbotten County in northern Sweden has
not been searched comprehensively, which led to substantial spatiotemporal
variation in the structured genetic sampling of the wolverine (Bischof et al.
2020, Milleret et al. 2022b). Article IV analyzes the wolverine monitoring data
across Scandinavia and how it is affected by this issue.

Two main sources of wolverine DNA are: (i) noninvasive genetic samples,
such as scat, hair, and secretion, that are naturally shed in the environment
and collected without physically handling or capturing wolverines (Gervasi et al.
2016); and (ii) Muscle tissue samples obtained from legally shot wolverines
or those with other causes of death that are registered in Rovbase (i.e., dead
recoveries; Gervasi et al. 2016, Dupont et al. 2021). Dead recoveries often
contain age information, which is obtained from a method using the upper
premolar of the dead wolverines (i.e., counting cementum annuli; Landa and
Skogland 1995, Gervasi et al. 2016).

Wolverine noninvasive DNA is collected annually through two main sampling
processes (Milleret et al. 2022b); structured and unstructured. First, in
“structured” searches conducted by authorities, where most samples are collected
on snow and during visits to natal dens, search tracks are recorded by GPS as
a measure of sampling effort. To minimize the inclusion of samples from cubs
or juveniles that are less than one-year-old, samples are collected in different
periods, when yearlings have not emerged from their dens (Gervasi et al. 2016).
In the structured sampling between 2014 and 2022, the total effort was on
average about 264 686 km of search tracks per year (range: 197 673 to 316 839
km). In articles III and IV of this PhD dissertation, the wolverine DNA samples
and, in turn, the estimates, are restricted to the primary monitoring period
between December 1 and June 30 each year. Second, DNA sampling is also
conducted in an “unstructured” manner both by authorities and the public.
No direct measure of effort during the unstructured sampling is available. The
unstructured sampling contributes considerably to the sample quantity and
spatial coverage over Scandinavia for the wolverine (Milleret et al. 2022b).
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In Norway, the collection of putative wolverine noninvasive DNA samples is
coordinated at the level of counties by the governmental organization Statens
Naturoppsyn (SNO). Noninvasive genetic sampling is conducted by field person-
nel of SNO, wardens at Statskog Fjelltjenesten (statskog.no) and Fjellstyrene
(fjellstyrene.no), local predator contacts, hunters, and other volunteers. In
Sweden, DNA sampling is coordinated by the County Administrative Boards
(Länsstyrelserna) at subnational levels and is carried out by field officers from
Länsstyrelserna.

The laboratory processing of DNA samples has evolved throughout the
past decades and has been done by more than one lab (Flagstad et al. 2004,
2019, Hedmark et al. 2004, Brøseth et al. 2010, Gervasi et al. 2016, Ekblom
et al. 2018). The process, from DNA extraction to genotyping, is now largely
automated to increase efficacy and minimize human errors. Genus-specific and
microsatellite nuclear markers, as well as Y-chromosome specific markers for
sex determination, are also accompanied by a Single Nucleotide Polymorphism
(SNP) chip. After DNA extraction and identification of target DNA segments
in each sample using polymerase chain reaction (PCR) techniques, DNA
profiles are generated from as many nuclear markers as possible. Samples
with identical DNA profiles are classified as one individual. Multiple reliability
criteria are used to ensure high sample quality and negligible genotyping error
rates (Gervasi et al. 2016, Ekblom et al. 2018, Flagstad et al. 2019).

2.2.9 Bear genetic monitoring in Scandinavia

Traditionally, the population monitoring of brown bears in Scandinavia
was based on proxies derived from observation counts of females with cubs
of the year (Swenson et al. 1994, 1995, Solberg et al. 2006, Ordiz et al. 2007,
Kindberg et al. 2009). The main assumption is that in relatively small bear
populations, demographic parameters, such as age structure and proportion
of reproducing females, are reasonably stable over time and, because female
bears with accompanying cubs are more easily recognizable, trends in their
numbers are correlated with the total population trends (Swenson et al. 1994,
1995, Ordiz et al. 2007, Kindberg et al. 2009). The main advantage of such
a proxy was the relatively low cost of collecting low-tech observation counts,
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although observations of bears from a helicopter, as a superior method that
increases the chance of observing the bears, is significantly more expensive
(Solberg et al. 2006, Ordiz et al. 2007). The disadvantages are similar to
those described for the wolverine count-based proxies; bear family groups are
not always individually identifiable, total observation counts do not account
for those bear families that were missed during the sampling (i.e., imperfect
detection), substantial variation in effort may occur between years and across
different spatial units, demographic characteristics of a hunted population can
vary considerably from year to year, and, as the Scandinavian brown bear forms
a transboundary population, there is a risk of violation of geographical closure
assumption, i.e., double counts of family groups that live in the border areas
(Solberg et al. 2006, Bischof and Swenson 2012, Bischof et al. 2016, Moqanaki
et al. 2018). Subsequently, attempts were made to correct for these observation
errors and convert the observation counts to more reliable abundance indices
or even total population size estimates (e.g., Ordiz et al. 2007, Kindberg et al.
2009, 2011).

Because the potential errors and uncertainties surrounding the count-based
indices were known, this method eventually received little trust from the
management authorities. Specifically in Norway, the bear zones are limited
to four small areas next to the border with Sweden and the uncorrected
double-counting of bears could lead to substantial overestimation of the bear
population (Bischof and Swenson 2012, Bischof et al. 2016, Swenson et al. 2017).
In the mid-2000s, noninvasive genetic sampling of the Scandinavian brown
bear revolutionized the field of wildlife monitoring by using noninvasive DNA
samples and became the main source of information regarding the population
status of bears (Tallmon et al. 2004, Bellemain et al. 2005, Solberg et al. 2006,
Swenson et al. 2011, Bischof and Swenson 2012).

Norway and Sweden differ considerably in their sampling protocols for the
noninvasive genetic monitoring of the brown bear population. Norway samples
the same five regions every year. Norway’s SNO has primary responsibility for
the collection of putative bear samples (e.g., scat and hair) in Norway. To do
so, often a targeted sampling design is followed to collect bear DNA during
snow tracking, visits to known active dens, and during official investigations
related to livestock loss and observation reports from the public. In addition,
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putative bear samples are collected opportunistically by hunters during the
hunting season in the fall, as well as by hikers, landowners, and other volunteers
throughout the year (Bischof et al. 2020).

In Sweden, bear scats are predominantly collected by volunteers, mainly
hunters, between August 21 and October 31 each year (Bellemain et al. 2005).
The collection is coordinated by the Swedish Museum of Natural History at the
national level, and at the county or regional level by Länsstyrelserna. The main
difference from the bear sampling in Norway is that Sweden samples different
regions in different years and that the country did not conduct any noninvasive
genetic sampling in 2013 and 2018 (Bischof et al. 2020). Such interruptions
and spatiotemporal variations in sampling effort pose considerable challenges
in combined analyses of the monitoring data throughout Scandinavia.

The lab protocols have been constantly optimized throughout the past years
(Tallmon et al. 2004, Bellemain et al. 2005, Swenson et al. 2011, Andreassen et al.
2012, Kopatz et al. 2021). All putative bear DNA samples are analyzed with as
many nuclear markers as possible and at least a marker for sex determination.
Genetically identified bear samples are then assigned to a unique bear individual
based on a reliability threshold described in detail elsewhere (e.g., Andreassen
et al. 2012, Kopatz et al. 2021).

In Article II, bear noninvasive DNA samples from the Swedish counties of
Jämtland and Västernorrland (Fig. 1) that were genetically assigned to female
bears, for which coordinates, collection date, and individual identity were
available, were used in the analysis. Because of the opportunistic nature of the
sampling design and engagement of volunteers, substantial spatial heterogeneity
in bear detectability is expected. Article II, as a follow-up of Article I, uses
bear monitoring data from central Sweden as a case study to show a rather
extreme scenario of spatial variation in detectability and how analysts can
account for such variations, when there is no direct measure of sampling effort.
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3 Drawing population-level inferences
3.1 Hierarchical models

Because of spatial variation in detectability and distribution of individuals,
a corresponding change in the resulting data is expected (e.g., number of
detections). Such variations do not necessarily reflect a change in the population
and, therefore, should be accounted for when analyzing the data. Otherwise,
we would be unable to disentangle between sampling effort and variation in
the animal distribution or density in space or time (McCarthy et al. 2013,
Guillera-Arroita et al. 2014). To address these issues, methods have been
developed to estimate and account for detection probability in the estimates
of ecological parameters. These methods include hierarchical models, such
as capture-recapture, distance sampling, and occupancy models (Kellner and
Swihart 2014, Buckland et al. 2023). These models describe the data as the
result of two (or more) conditionally linked processes (Royle and Dorazio 2008,
Kéry and Royle 2015): (i) the ecological (or state) process: e.g., where the
species or individuals from the population occur; and (ii) the observation
process: how the species or individuals are detected at sampling sites where
they are present. In other words, separate assumptions are used to describe
variability in observed quantities from the variability in unobserved (i.e., latent)
quantities of parameters of interest (Dorazio 2016). This multilevel statistical
modeling structure is typically known as hierarchical models (Royle and Dorazio
2008, Kéry and Royle 2015). These models are called hierarchical as they
model multiple levels of variation in the data, making them ideal tools to
account for imperfect detectability and variation in large-scale and long-term
wildlife monitoring data.

In a hierarchical model, different types of monitoring data can be modeled
statistically by considering multiple sources of variation in the processes that
resulted in the data, including variations in both sampling and the ecological
metrics, such as occupancy, habitat use, species richness, or population size
and vital rates (Royle and Dorazio 2008, Kéry and Royle 2015). The key to
the estimation of the detection probability of wildlife is to collect data through
repeated sampling (Otis et al. 1978, Krebs 1999, MacKenzie et al. 2005). For
example, if observations of a species community are recorded, multiple visits
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to the study sites or independent observations by multiple observers within a
single visit would allow the estimation of detection probability and its potential
variation in the study sites. The higher the detectability during a survey
(e.g., using more efficient sampling methods) and the more the number of
surveys (e.g., more visits or more independent surveyors), the higher the overall
probability of detecting species or individuals. If the overall detectability is
high and correlated with the spatial variation in the population size, then
imperfect detection would not be a major problem in estimating population
inferences (McCarthy et al. 2013, Guillera-Arroita et al. 2014, Moqanaki et al.
2021). Nonetheless, such high sampling efforts, if ever possible, come with a
substantial cost and many studies attempt to quantify the trade-offs (Caughlan
and Oakley 2001, Nichols and Williams 2006, Maxwell et al. 2015).

As noted above, one of the main advantages of hierarchical models as tools
for analyzing wildlife monitoring data is that they allow for the incorporation
of uncertainty and variation in the data at multiple levels (Royle and Dorazio
2008, Cressie et al. 2009, Kéry and Royle 2015, van de Schoot et al. 2021).
When estimating population size, which is the focus of this PhD dissertation, a
hierarchical model can account for the uncertainty in the detection probability
of individuals from the population, as well as the spatial or temporal variation
in population density across different regions. This makes the estimates more
robust and reliable compared to alternative models that ignore these sources of
variation (Royle et al. 2014, Schofield and Barker 2014). Hierarchical models
also allow for the incorporation of multiple sources of data, such as data from
different monitoring methods. Multiple types of monitoring data are actively
used in the large-scale monitoring of large carnivores in Scandinavia (Solberg
et al. 2006, Liberg et al. 2012, Gervasi et al. 2016, Åkesson et al. 2022). This
can provide a more complete picture of population dynamics and can improve
the population estimates by reducing uncertainty (Bischof et al. 2020, Dupont
et al. 2021).

3.2 Spatial capture-recapture

Capture-recapture models are ubiquitous tools in the estimation of popula-
tion size and dynamics in ecology (Otis et al. 1978, Krebs 1991, Lukacs and
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Burnham 2005, Buckland et al. 2023). These models boil down to the estima-
tion of detection probability from repeated encounters of, often, individually-
identified animals, which provides a link between the observation of individuals
and the population parameters (Nichols 1992, Royle et al. 2014). Conventional
capture-recapture methods model detection probabilities as time- or occasion-
specific and, therefore, detections are not linked to the detection locations
and characteristics of the detection locations. Spatial capture-recapture (also
referred to as spatially explicit capture-recapture) extends capture-recapture
models by incorporating this readily available spatial information, and makes
a powerful analytical tool for estimating wildlife population size and vital rates
(Efford 2004, Borchers 2012, Royle et al. 2014, 2018). The framework is based
on the assumption that individuals in a population have a probability of being
detected that varies with their location in space, and that this probability can
be modeled using statistical methods (Borchers and Efford 2008, Royle et al.
2018). Since the introductory paper by Efford (2004), spatial capture-recapture
has been widely used in ecology to estimate the population size and dynamics
of a range of species at various temporal and spatial scales, from insects to
large terrestrial mammals and even marine megafauna (Tourani 2022).

As a hierarchical model, the most basic spatial capture-recapture model
has two primary components (Borchers 2012, Royle et al. 2014): (i) a model of
the detection process that led to the observed spatial patterns in individual
detections (e.g., noninvasively collected DNA samples) – the probability of
detecting an individual from the population at a given location in space; (ii) a
model of the ecological process, whereby individuals are distributed in space
– the mechanism by which population density is realized across the study
landscape. Thus, spatial capture-recapture models use the spatially referenced
individual detection histories to estimate different population parameters, while
accounting for imperfect detection (Efford 2004, Borchers 2012, Royle et al.
2014).

The choice of the spatial detection probability model is one of the key
steps in spatial capture-recapture, which is used to estimate the probability of
detecting an individual from the target population at a given location (Borchers
and Efford 2008, Royle et al. 2014). A standard spatial capture-recapture
framework assumes every individual from the population of interest has a
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home-range location that is fixed during the sampling season. The detectability
changes with distance from individual’s home-range center (“activity center”),
while this location is unknown to the analyst (Efford 2004, Borchers and
Efford 2008, Royle et al. 2014). In other words, the location of individuals
in space is represented by their activity centers within the spatial domain of
interest. Individuals may be detected at a fixed grid of detectors that represent
observation and search locations or devices (e.g., physical traps, camera traps),
or can be discretized to the nearest grid cell center, where individuals can be
detected continuously in space (Borchers 2012, Royle et al. 2014).

Spatial capture-recapture models account for spatial variation in detection
probability that is linked to how far the individual locations are in relation
to detectors. To do so, the spatial information contained in the patterns of
individual detections and non-detections are used through an explicit model
for detection probability as a function of the distance from individuals’ activity
center (such as the half-normal form; Royle et al. 2014, Dey et al. 2022). Spatial
capture-recapture is therefore a powerful analytical tool to estimate density
and derive spatially explicit information on the ecology of wild populations
(Borchers 2012, Royle et al. 2018).

A conventional spatial capture-recapture model can estimate density, the
effect of spatial, temporal, and individual covariates on detection, and the
effect of spatial covariates on density, with the assumption that the target
population was demographically closed during sampling (i.e., no births, mor-
tality, immigration or emigration; Royle et al. 2014). However, monitoring
data across multiple years (i.e., detection of individuals in more than one year)
can be used to study temporal variation in density and its determinants by
reconstructing individual detection histories over the sampling years (Gardner
et al. 2010, Royle et al. 2014). By extending the single-season model to an
open-population model, we can also estimate interannual movement and vital
rates (e.g., survival and recruitment; Ergon and Gardner 2014, Chandler et al.
2018, Efford and Schofield 2022). Subsequently, spatial capture-recapture mod-
els have been used recently to estimate large-scale and long-term population
density and vital rates of different species of large carnivores in Scandinavia
(Bischof et al. 2016, 2020, Milleret et al. 2022a).
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3.3 A Bayesian approach

In this PhD, I built on custom spatial capture-recapture models using the
open-source software R (R Core Team 2022) and software-package NIMBLE
(de Valpine et al. 2017, 2022). These models use the Markov chain Monte Carlo
(MCMC) method in a Bayesian framework (Bischof et al. 2021, Turek et al.
2021). Bayesian inference is different from the frequentist inference in several
ways, but for this PhD, the main benefits were those outlined for Bayesian
hierarchical models in ecology (Ellison 2004, Royle and Dorazio 2008, Lele and
Dennis 2009, Kéry and Royle 2015, Dorazio 2016, van de Schoot et al. 2021): (i)
increasing availability and flexibility of efficient open-access tools for ecologists;
(ii) access to posterior distributions of all parameter estimates, which facilitates
their reporting and interpretation (e.g., Bayesian credible interval); (iii) using
prior knowledge along with the sample data; and (iv) providing a quantitative
measure of the probability of a hypothesis being true, given the available data.

MCMC is a customizable approach that is widely used in ecological mod-
eling (Ellison 2004, Hobbs and Hooten 2015, Kéry and Royle 2015). MCMC
algorithms explore the range of plausible values that may explain the data.
More technically, MCMC is a method to sample from the posterior distribution
of latent (i.e., unknown or partially known) ecological parameters, given the
observed quantities and assumptions about the prior distribution of parameters.
One of the main limitations of MCMC in Bayesian hierarchical modeling is
computation; when a model has many latent states and parameters, such as the
large-scale spatial capture-recapture models used in this dissertation, MCMC
may require several hours to even weeks to run (Ponisio et al. 2020, Turek et al.
2021, McCrea et al. 2023). For the modeling framework of this PhD, a number
of methods have been used to dramatically improve MCMC estimation and
efficiency, making large-scale estimation of density and detectability possible
(Bischof et al. 2021). More details can be found in the studies cited in each
chapter of this PhD.

3.4 The power of simulations

We almost never know the true values of ecological parameters of interest,
let alone validate different analytical methods and their estimates of the truth.
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Simulation studies have greatly assisted scientists in developing analytical
tools, as well as evaluating the uncertainty and potential biases of ecological
models. Simulations are transforming the way monitoring data are collected
and used to infer and understand complex ecological processes (Kéry and Royle
2015, Gomes et al. 2019). Regardless of the analytical approach, frequentist,
Bayesian, and machine learning modelers use and benefit from simulation
studies. The main advantage of simulations is that the “truth” is known
by the analyst. Thus, it is possible to test and validate the performance of
ecological models under different scenarios of data realization and violation
of model assumptions. Simulation studies allow flexible parameterization of
processes of interest, where assumptions are known to be met (or violated) and,
therefore, realistic modeling at different stages of a study can be performed
(Kéry and Royle 2015, Murr et al. 2022, DiRenzo et al. 2023). In addition,
simulations can advance theoretical understanding of problems raised during
wildlife monitoring and quantify the performance of different data collection
and analytical methods in real-world conditions, as well as probabilistically
inform potential future outcomes of changes in the environment or management
actions (Hoban 2014, DiRenzo et al. 2023): how many samples are required to
answer this question? which model is superior to use to analyze the resulting
data? How has the model performed in the analysis?

Simulation studies are not intended to replace, but rather to assist empirical
studies. Simulations are indeed limited by their realism, flexibility, and accessi-
bility. In recent years, advances in computational science and engineering have
resulted in increasing processor power, access to cluster computing facilities,
and increasingly open-access software tools (Hoban 2014, Gomes et al. 2019,
DiRenzo et al. 2023, McCrea et al. 2023). All these recent advances strongly
favored large simulation studies. Articles I and II of this PhD dissertation
involve extensive simulations to create and test many scenarios of spatially
variable detectability in wildlife sampling using spatial capture-recapture.

4 This PhD dissertation
This PhD dissertation aims at answering the question; how do spatial

variations in detectability and density influence population estimates of large
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carnivores in Scandinavia? Articles I and II provide novel insights about
spatially variable and autocorrelated detectability in monitoring data. Articles
III and IV account for such variable detectability during large-scale noninvasive
monitoring of the wolverine in Scandinavia, while focusing on variation in the
spatial distribution of individuals (i.e., density). Some aspects of this PhD are
specific to the monitoring of large carnivores in Scandinavia, whereas others
involve technical issues that are commonly encountered in large-scale wildlife
monitoring studies. Here, I argue that ignoring these sources of variation in the
monitoring data can lead to substantial biases in the estimates of population
size and, in turn, erroneous conclusions about the status of target populations.
I highlight the advantages of using hierarchical models for accounting for
variation in detectability and quantifying variation in density, when analyzing
large-scale wildlife monitoring data, especially using spatial capture-recapture
models of population density.

4.1 Coping with imperfect and variable detection

Sampling wildlife populations for an estimate of population size typically
involves recording the presence of some individuals from the target population.
We then make ecological inferences about the status of the population (or other
metrics) based on this sample from the population (Krebs 1999, Thompson
2013). This is contrary to complete counts (i.e., censuses); many factors, from
species elusiveness to observer errors and confounding environmental conditions,
prevent almost all wildlife censuses in real life. In other words, the probability
to detect and record all the required information from every single individual in
the population is less than one. Thus, there is virtually no “perfect” sampling
and there is always a chance that we miss some information that is crucial for
making inferences about the target population (Williams et al. 2002, Kellner
and Swihart 2014, Gimenez et al. 2018). We, therefore, define detectability
on a probabilistic scale – the probability to detect a species or an individual
during a survey, given that it occupies the sampling site (Gu and Swihart 2004,
McCarthy et al. 2013). Imagine we have searched an area for a species, but we
did not find it (Fig. 3). This means either the species did not occur therein (i.e.,
true absence) or we did not find it (i.e., missed detection). Here I do not discuss
false-positive detections (i.e., species or individual misidentifications), which
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are also important to be accounted for when there is such a risk (Royle and
Link 2006, McClintock et al. 2010, Augustine et al. 2020). The fact that there
are always individuals or events that remain undetected during the sampling
means that conclusions drawn from the data may provide an incomplete picture
of the true state of the population, unless appropriate methods are used to
disentangle the state variable from imperfect detection (Royle and Dorazio
2008, Guillera-Arroita et al. 2014, Kéry and Royle 2015).

Ignoring detectability might not be a major problem in some situations, if
the biasing effect is consistent across space and time (Guillera-Arroita et al.
2014). However, in many situations detectability is not only imperfect, but also
variable. This variability refers to the fact that the probability of detecting an
individual or target species can vary depending on various factors, such as the
species’ ecology and behavior, the monitoring method, different environmental
features in the study area, or phenotypic differences (e.g., age, sex, body size)
among the individuals. Detection probability is imperfect and variable, due to
several factors that are collectively considered as sampling error, which is a
common challenge in population monitoring and estimation (Guillera-Arroita
et al. 2014, Kellner and Swihart 2014; Fig. 3).

Imperfect and variable detection can lead to biased estimates of population
size, as well as incorrect conclusions about population trends and dynamics.
For example, if detectability is lower for certain groups (e.g., females; Fig.
3), population estimates based on the heterogeneous monitoring data will be
unrepresentative of this variation, leading to an underestimation of the actual
population size (Gimenez et al. 2018). Likewise, if detectability varies across
different regions or habitats (Fig. 4), but we mistakenly assume spatially
homogeneous detectability, population estimates will be biased (Link 2003,
MacKenzie et al. 2005, Royle 2006, Efford et al. 2013). Spatially heterogeneous
detectability is the focus of articles I and II of this PhD dissertation that I
discuss in more detail below. Nevertheless, imperfect and variable detection is
almost impossible to avoid during the sampling of wildlife populations, because,
by definition, a fraction of the total population is sampled at one point in time
(Williams et al. 2002, Royle and Dorazio 2008, Kellner and Swihart 2014).
When sampling is conducted at large spatial extents over thousands of km2,
such as the noninvasive genetic monitoring of large carnivores in Scandinavia,
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imperfect and variable detection is expected to be a major issue to deal with
when collecting and analyzing wildlife monitoring data.

(a) (b)

(c) (d)

Figure 3: Examples of different sources of variation in detectability during wildlife moni-
toring: (a,b) Spatial heterogeneity: (a) During a sign survey in an alpine habitat, the
more rugged the area and the denser the vegetation, the more likely that some signs of
animal presence are missed. It is also likely that investigators tend to search lower elevations
more intensively than higher elevation areas because of the accessibility. (b) In drive counts,
animals closer to the road, like this Cape buffalo Syncerus caffer, are more likely to be
detected than those farther away. (c) Temporal heterogeneity: During the breeding
season, rock wrens Salpinctes obsoletus (red circle) move to dry rocky locations, where their
calling and displays peak, which altogether makes the bird easier to spot. (d) Individual
heterogeneity: Coalitions of male Asiatic cheetahs Acinonyx jubatus venaticus had higher
detectability than females during a camera-trap survey in central Iran, because adult males
were moving together and were frequently visiting scent-marking locations, where several of
the camera traps were installed (Photos a-c: E. Moqanaki, d: ICS/DoE/CACP).
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4.2 Articles I and II: Unknown spatial heterogeneity in de-
tectability

The first two articles of this dissertation study the consequences of un-
known and unmodeled spatial heterogeneity in detectability for population
size estimation using spatial capture-recapture analysis (Article I) and propose
model-based solutions to accommodate the heterogeneity to improve the esti-
mates (Article II). The research question was guided by the analysis of large
carnivore monitoring from Scandinavia, where different sampling designs and
varying efforts were incorporated across two countries in which for a consider-
able portion of the data, no direct measure of sampling effort was available
(Bischof et al. 2020).

Detection probability varies across space and time and among individuals.
Common examples in wildlife monitoring are differences in the local environ-
ment that cause variable detectability, varying sampling effort and designs
across a landscape, and variation in exposure of individuals to detection (Mo-
qanaki et al. 2021, Stevenson et al. 2022, Howe et al. 2022; Fig. 4). Besides
the amount of variation in detection probability that may have biasing effects
on population estimates, the spatial structure of the variation in detection
probability may also have a substantial impact on the inferences. Spatial
autocorrelation (Dormann et al. 2007, Guélat and Kéry 2018, Gaspard et al.
2019) in detection indicates a situation where baseline detection probability at

Figure 4: A schematic representation of a scenario of spatially heterogeneous detectability,
where detection probability is decreasing with increasing ruggedness.
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a detector is correlated with neighboring detectors. Consequently, the residuals
of a spatial capture-recapture model for predicting the values of detectability
will be spatially structured. There are many realistic scenarios that may induce
spatial autocorrelation among detections, such as selection of certain habitats
by the species or habitat connectivity that would make some individuals more
exposed to detection than the others (Royle et al. 2013, Morin et al. 2017,
Stevenson et al. 2022; Fig. 4). These would violate the assumption of indepen-
dence between detectors, conditional on the activity center location, in spatial
capture-recapture analysis (Efford et al. 2009).

Model-based approaches to accommodate the effect of spatial heterogeneity
in detection probability are implemented in spatial capture-recapture when
the source of heterogeneity is known (Efford et al. 2013, Royle et al. 2013,
Sutherland et al. 2015). One of the advantages of spatial capture-recapture
models over the non-spatial capture-recapture is indeed the ability to address
the effects of known spatial variation in the effort, thus providing a more
realistic model of the observation process (Borchers and Efford 2008, Royle
et al. 2014, 2018). Further, previous studies have found that random spatial
variation in detection probability does not have to be a major cause for concern
for inferences drawn from spatial capture-recapture studies, at least in terms of
biased parameter estimates (e.g., Bischof et al. 2017, Clark 2019, Paterson et al.
2019), because, contrary to the conventional capture-recapture, individuals can
be detected by multiple detectors (Borchers 2012, Royle et al. 2014).

Many unknown or unrecorded factors may cause additional heterogeneity
in detection probability. For example, it is common that during sampling, sur-
veyors do not search randomly, because of their prior knowledge or accessibility
(Gervasi et al. 2014), or where a camera trapping or DNA search effort was
conducted more intensively in a specific habitat type, inducing some forms of
undocumented preferential sampling (Conn et al. 2017). Likewise, equipment
failure and human errors can cause detectors to perform in clusters of varying
effectiveness unbeknownst to the analyst. As a result, there will be groups
of detectors whose detectability is spatially correlated, and the intensity of
effort also varies across the study area (Fig. 4). Thus, one can expect that
combinations of different search intensities and spatial autocorrelation may
result in different biasing effects in spatial capture-recapture analysis.
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Articles I and II use extensive simulations to quantify the consequences
of ignoring variation in detectability in a wide range of situations of spatially
variable and autocorrelated detectability that can occur during wildlife moni-
toring (Figs. 3 and 4). The general approach is: (i) create different scenarios
of spatially heterogeneous detectability based on real-life examples from the
literature, especially the noninvasive genetic monitoring of large carnivores in
Scandinavia; (ii) generate spatial capture-recapture data from a population
with predefined characteristics, so that the data are deliberately affected by
different levels of spatially heterogeneity detectability; (iii) fit a conventional,
single-season, spatial capture-recapture model that does not account for the
spatially heterogeneous detectability (i.e., a model with a misspecified observa-
tion submodel), to mimic situations where the variability in detection remains
unknown and, in turn, unmodeled; (iv) evaluate the performance of the model.
Knowing the true (simulated) values, we can quantify the model performance
in different scenarios and evaluate bias – the systematic difference between the
true parameters and their estimates; precision – how close the estimates are to
the true simulated value as a measure of observation error; and coverage – the
proportion of the times that the estimated credible interval covered the true
value (Walther and Moore 2005, DiRenzo et al. 2023).

Article I describes two broad cases of spatially varying detectability (and,
thus, baseline detection probability or magnitude of the detection function),
and includes simulation scenarios with different levels of spatial autocorrelation
among detectors – i.e., when detection locations close to each other exhibit
similar sampling effort than those further apart: (i) continuous spatial variation
in detectability, such as when elevation gradient (Fig. 4), distance from the
road, or the number of camera-trap days affect the detection probability; and
(ii) discrete spatial variation in detectability, because of two regions of high
and low detectability across the study area, the underlying habitat (e.g., forest
vs. agricultural fields), different sampling designs, or personnel with varying
skills. In these simulations, there was no variation in population density
and individuals had equal home range sizes. Such simplistic assumptions
help to isolate and monitor the components of interest in simulations, even
though they are not realistic in the wild. Fitting the conventional spatial
capture-recapture model with a misspecified observation submodel to the
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simulated data sets revealed that spatial autocorrelation in detectability can
be a greater source of concern for population size estimation than spatial
variation alone. This is good news that conventional spatial capture-recapture
with a misspecified observation submodel that does not account for spatial
variation in detectability can perform reasonably well in situations of low to
intermediate spatial heterogeneity in detectability. However, the estimates of
population size were negatively biased, precision decreased, and the coverage
probability declined to near zero when the level of spatial autocorrelation
was high, particularly when there were considerable patches with very little
sampling effort. These scenarios are specifically expected when citizen-science
(i.e., participatory) data or some form of opportunistic data collection in certain
regions across the study area are integrated with the structured sampling, but
these clusters remain unknown to analysts, because there is no unambiguous
measure of sampling effort (Bird et al. 2014, Altwegg and Nichols 2019, Sicacha-
Parada et al. 2021).

Solutions are discussed in Article I to avoid such scenarios when designing
and collecting spatial capture-recapture data, from aiming for more structured
and balanced sampling designs to encouraging the volunteers to record their
effort or at least more evenly search for animal detections. A partial solution
to account for unknown varying effort is to proxy the knowledge of possible
sources of non-randomization in sampling (e.g., accessibility) by using a spatial
covariate as a fixed effect on detection probability (Bischof et al. 2020). However,
there are many situations in which some sources of spatial heterogeneity remain
unmodeled. Thus, the development of methods to test and correct for unknown
spatial heterogeneity in detection probability is required in spatial capture-
recapture studies to deal with situations where the data, in part or as a whole,
inherently lacks information on the observation process. This study paved the
road for Article II.

Article II builds on the simulation set-up from Article I, to recreate the
problematic scenarios of spatially heterogeneous detectability to test and evalu-
ate novel modeling approaches to account for the variability. Specifically, three
new extensions of spatial capture-recapture models are introduced that use the
information from the detection data to describe the underlying spatial structure
in detectability and improve the estimates of population size using random
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effects. Article II shows that all the proposed models perform reasonably
well in different scenarios of spatially autocorrelated detectability that were
considered, but the models that use the spatial information in the detections to
explicitly account for spatial autocorrelation between detectors outperform the
rest of the models. Furthermore, noninvasive genetic monitoring data of female
brown bears from two counties in central Sweden are used to demonstrate the
real-life applications of these models, where such substantial spatial variation
in the effort is suspected but there is no direct measure to account for it. In
addition, Article II shows how mapping the detection probability surface and
model evaluation metrics can help the investigator to locate potential areas of
varying sampling effort. The trade-offs in using such new extensions of spatial
capture-recapture are discussed in Article II. A limitation is that currently,
goodness-of-fit tests are lacking for spatial capture-recapture to inform the
analyst about the fit, because by definition the sources of heterogeneity in
detectability are unknown or only partially known, so the model assumptions
(e.g., the conditional independence assumption; Efford et al. 2009) may be
violated without obvious hints in the results.

4.3 Articles III and IV: Explaining variation in density

Many fundamental questions in ecology and wildlife management are about
population size and factors leading to variation in population size (abundance
and density) and structure (e.g., sex-age ratio): how many of a given species
exist in a protected area and where are they distributed? Why are there more
breeding females of a species in one locality compared to another locality? What
has caused a decline in the numbers of conservation-dependent species? All
these questions have a strong spatial component; the distribution of individuals
in a specific geographical area (Fig. 5). Even if there are traditionally well-
established analytical frameworks to estimate animal abundance (Otis et al.
1978, Krebs 1999, Buckland et al. 2000, 2023, Pollock et al. 2002, Lukacs and
Burnham 2005), it is challenging to convert these numbers to density, because
of spatial variation in distribution of individuals (Efford 2004, Borchers 2012,
Royle et al. 2014). Many factors lead some individuals to aggregate in, avoid,
or specifically select for specific locations, causing variation in density. This
spatial variation in animal abundance, combined with the logistical challenges of
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sampling large spatial extents, has most likely plagued most wildlife monitoring
data (Yoccoz et al. 2001, Pollock et al. 2002, Williams et al. 2002). For example,
because resources are distributed unevenly in a landscape, more individuals
are expected to gather near the habitats with more water, food, and cover
(Fig. 5). Therefore, sampling near these localities would likely result in more
data compared to other areas. Likewise, individuals from the population

(a) (b)

(c) (d)

Figure 5: An even distribution of individuals from a population in space or time is unlikely
(a). Spatial heterogeneity in the environment induces substantial variation in population
density. (b) California mussel Mytilus californianus beds can be found on open rocky coasts
with high salinity and low sediment conditions. However, the mortality rate in such intertidal
open coastal environments is high. (c) Diving birds, such as these gregarious cormorants
of the family Phalacrocoracidae, aggregate on bare rocks offshore for resting. (d) Water
sources in arid environments are rare and proximity to them is an important determinant
of variation in wildlife density, particularly during the hot season for the Persian gazelles
Gazella subgutturosa (Photos a-c: E. Moqanaki, d: ICS/DoE/CACP).
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(intraspecific) and also between species (interspecific) constantly interact and
compete with each other over resources, which has consequences on how species
and individuals are distributed in space. Humans are also one of the main
drivers of variation in animal density, by directly or indirectly competing with
wildlife by hunting or killing them and changing the distribution and availability
of resources in a given landscape (Nyhus 2016). A representative sample of the
population should account for such spatial variations. However, in addition
to the design-based solutions, such as conducting spatially balanced sampling,
model-based approaches that explicitly account for the heterogeneous spatial
distribution of individuals from the population have many advantages (Royle
et al. 2018, Buckland et al. 2023).

Spatial distribution can be modeled as a function of spatial covariates; for
example, the availability or percentage of a certain habitat type or human
disturbances. By modeling the relationship between species abundance and
spatial covariates using appropriate models, one can estimate variation in
density and density-dependent processes (e.g., dispersal, growth rate). Articles
III and IV of this PhD dissertation study variation in the Scandinavian wolverine
density at the landscape level, where the population has successfully recovered
in recent decades.

Wildlife populations vary in size and composition across their natural
habitats. Variations in population size and dynamics are both natural and
a consequence of human pressure. For example, part of the habitat that
is more productive may support a larger proportion of the population, or
individuals from the target population may actively select some habitat types
that are disproportionately distributed across the landscape. In addition,
human disturbances may cause local extinctions or force the wildlife population
to avoid certain areas for some periods of time.

Although estimates of abundance, density, and trends of wildlife populations
are highly sought after by scientists and wildlife managers for the reasons
discussed above, many studies fail to provide such metrics at ecologically
meaningful extents. First, long-term monitoring data of wildlife over the
entire population is lacking for many species (Krebs 1991, Hayes and Schradin
2017). Especially for large carnivores that use very large areas, persist in low
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density, and move over long distances, effectively sampling a large enough
proportion of the population over several generations is extremely challenging
(Kelly et al. 2012, Smith et al. 2017, Morin et al. 2022). Second, even if
such comprehensive monitoring data is available, appropriate analytical tools
are required to address different sources of variability in the data to provide
reliable and robust estimates of population parameters. Despite the recent
advances, these models are usually very complex to build, and fitting them to
the empirical data is challenging (Royle and Dorazio 2008, Newman et al. 2014,
Royle et al. 2014, Kéry and Royle 2015). Particularly for Bayesian inferences,
computation limits wider applications (Hobbs and Hooten 2015, Ponisio et al.
2020, Turek et al. 2021). Articles III and IV of this PhD dissertation overcame
these challenges by using (i) a comprehensive monitoring data set of genetically
identified wolverine individuals across the entire Scandinavian population; and
(ii) efficient Bayesian spatial capture-recapture models that are able to provide
spatially explicit estimates of population size at this substantially large spatial
extent with reasonable run times, while accounting for variable and imperfect
detection (Bischof et al. 2020, Turek et al. 2021).

Besides the technical novelty and contribution to the analytical framework,
the story of wolverines in Scandinavia, from near extinction by the 1970s to
recovery (Flagstad et al. 2004, Chapron et al. 2014), provides an exciting
opportunity to explore some fundamental ecological questions about species-
habitat relationships in heterogeneous landscapes. How animals use space at
different scales is an important topic in many questions raised in large carnivore
monitoring and management. Spatial capture-recapture models in Articles
III and IV quantify animal space use at the home-range level, also known as
the second-order habitat selection (Johnson 1980, Royle et al. 2014), with the
added benefit of modeling detectability to estimate population density (Royle
et al. 2013). Both these articles include several explicit landscape covariates
that are believed to have influenced how individual wolverines distribute their
home ranges, thus explaining variation in population density. Articles III and
IV pay special attention to mapping density surfaces, as abundance and density
values alone have limited use for addressing increasing challenges on multi-use
landscapes where humans and wildlife have to share resources. By estimating
locations of activity centers for both detected and undetected individuals from
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the population, abundance and density can be extracted at any spatial unit of
interest using spatial capture-recapture, which is not easily possible for many
other statistical models of population size (Royle et al. 2018, Buckland et al.
2023). Both these studies account for possible differences in the responses of
female and male wolverines to the spatial determinants of density. Wolverines,
like many other mammals, exhibit sexual dimorphism – i.e., adult males and
females differ in size and some ecological and behavioral traits (Shine 1989,
Isaac 2005). Because there are sex differences in energy requirements and
variability in fitness and survival, both these studies hypothesize that there are
differences between the density and effect of spatial determinants of density
at the population level between female and male wolverines. Articles III and
IV are among the first attempts to quantify wolverine density variation across
the species’ entire range in the Scandinavian Peninsula, and both improve our
understanding of wolverine population size and dynamics that are otherwise
often studied at comparatively much smaller extents (Fisher et al. 2022).

Article III is focused on the role of “relict range” in determining the current
density of the wolverine in Scandinavia. As discussed earlier (Box 1), the
wolverine population has recovered from centuries of direct persecution by
humans (Landa et al. 2000, Flagstad et al. 2004, Chapron et al. 2014). At
some point by the 1970s, the population size and distribution range was limited
to a narrow alpine area along the Norwegian-Swedish border (i.e., the relict
range; Fig. 2). Previous studies have shown the importance of this border
area as a source landscape for the wolverine population (e.g., Gervasi et al.
2019). Article III hypothesizes that distance from this alpine transboundary
area is still an important determinant of wolverine density, but this effect
interacts and varies at different coarse management zones considered for the
wolverine in Scandinavia. Article III finds strong evidence to support this
hypothesis and shows that the highest wolverine densities for both sexes are
expected closer to the relict range. Further, higher wolverine densities near
the relict range are more pronounced in the northern areas, where not only
the environmental conditions for the wolverine are probably more favorable,
but also more wolverine reproductions are tolerated based on the current
management goals. In contrast, in southern areas, lower wolverine densities
were estimated, where management pressure is higher and farther distance from
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the relict range has to be traveled to recolonize the historical range. Article
III suggests sex-specific differences in the density distribution of the wolverine,
and that the current Scandinavian population is likely to be highly skewed
towards females.

Article IV builds on the findings from Article III, and advances our un-
derstanding of wolverine density distribution in Scandinavia by specifically
looking into the temporal trends in the effect of spatial determinants of density.
To approach the research question in this article, cutting-edge open-population
spatial capture-recapture models are used. Article IV has two main ecological
hypothesizes: as the wolverine has successfully recolonized many areas of its
historical range in Scandinavia, (i) the negative effect of distance from the
relict range on wolverine density that was observed in Article III has not
been static; as wolverines started their recovery, the expansion frontline was
the relict range and thus the effect of this covariate has been very strong.
As the wolverine successfully established itself farther away from the relict
range, this effect has become weaker over the years. (ii) Because the wolverine
population has been limited to the Norwegian-Swedish border for a long time,
the species has been mainly associated with lower productive alpine areas with
low human disturbances. This has possibly created an incomplete picture of
wolverine ecology, that the species does not select the boreal forest (but see
Glass et al. 2022). However, after about three decades of expansion, there
are now wolverines in both alpine areas and boreal forests. Thus, it is likely
that the effect of boreal forest has been less significant in the early years of
recovery, but it is now becoming more strongly positive. Although Article IV is
limited by the availability of monitoring data from the last decade, two decades
after the start of the recovery in the 1970s, this study shows temporal changes
in the effects of the spatial determinants of density for the wolverine. These
results are particularly interesting, given the relatively short period to study
the density dynamics of a long-living carnivore species. Article IV discusses
the implications of the findings for such a recovering population on a landscape
that no longer holds any intact wilderness areas to separate large carnivores
from humans. Further, potential confounding factors and future directions
to incorporate these findings into wolverine monitoring and management in
Scandinavia are discussed.
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5 Concluding remarks
This PhD dissertation focuses on cases of spatial variation in detectability

and density when analyzing large-scale wildlife monitoring data and devel-
ops approaches in spatial capture-recapture to address them. The spatial
capture-recapture framework is increasingly popular for analyzing wildlife
monitoring data to estimate population parameters and detectability (Royle
et al. 2018, Tourani 2022). The benefits of using spatial capture-recapture
models for explicitly estimating abundance, density, and population trends
of large carnivores in Scandinavia have already been demonstrated (Bischof
et al. 2016, 2017, 2020). This PhD dissertation contributes to the ongoing
efforts to provide reliable population estimates for applied questions faced by
large carnivore monitoring and management in Scandinavia. Nonetheless, by
demonstrating usefulness and applicability, these studies can also motivate
similar efforts at the landscape level for other rare, elusive, threatened, or
socially and economically important species, where conservation scientists and
managers require reliable information to guide their actions.
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Abstract

Context Spatial capture-recapture (SCR) models are

increasingly popular for analyzing wildlife monitoring

data. SCR can account for spatial heterogeneity in

detection that arises from individual space use

(detection kernel), variation in the sampling process,

and the distribution of individuals (density). However,

unexplained and unmodeled spatial heterogeneity in

detectability may remain due to cryptic factors, both

intrinsic and extrinsic to the study system. This is the

case, for example, when covariates coding for variable

effort and detection probability in general are incom-

plete or entirely lacking.

Objectives We identify how the magnitude and

configuration of unmodeled, spatially variable detec-

tion probability influence SCR parameter estimates.

Methods We simulated SCR data with spatially

variable and autocorrelated detection probability. We

then fitted an SCR model ignoring this variation to the

simulated data and assessed the impact of model

misspecification on inferences.

Results Highly-autocorrelated spatial heterogeneity

in detection probability (Moran’s I = 0.85–0.96),

modulated by the magnitude of the unmodeled

heterogeneity, can lead to pronounced negative bias

(up to 65%, or about 44-fold decrease compared to the

reference scenario), reduction in precision (249% or

2.5-fold) and coverage probability of the 95% credible

intervals associated with abundance estimates to 0.

Conversely, at low levels of spatial autocorrelation

(median Moran’s I = 0), even severe unmodeled

heterogeneity in detection probability did not lead to

pronounced bias and only caused slight reductions in

precision and coverage of abundance estimates.

Conclusions Unknown and unmodeled variation in

detection probability is liable to be the norm, rather

than the exception, in SCR studies. We encourage

practitioners to consider the impact that spatial

autocorrelation in detectability has on their inferences

and urge the development of SCR methods that can

take structured, unknown or partially unknown spatial

variability in detection probability into account.
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Introduction

Imperfect detection is one of the primary challenges to

the estimation of the size of wild populations.

Regardless of the data collection method employed,

rarely, if ever, are all individuals in a population

detected. This challenge is amplified with the increas-

ingly widespread application of non-invasive sam-

pling methods for making landscape-level

assessments across time and space, such as camera

trapping and non-invasive DNA sampling (Burton

et al. 2015; Beng and Corlett 2020), which often trade

off local sampling intensity for extent of spatial

coverage (grain vs. extent; Chandler and Hepinstall-

Cymerman 2016; Steenweg et al. 2018). Capture-

recapture and, more recently, spatial capture-recapture

(SCR) models estimate and account for imperfect

detection, thereby producing robust estimates of the

focal ecological parameters (Chao 2001; Efford 2004;

Lukacs and Burnham 2005; Borchers and Efford 2008;

Royle et al. 2014). SCR has become particularly

popular as it exploits the information contained in the

spatial configuration of detections and non-detections

across the study area to produce spatially explicit

estimates of abundance (i.e., density; Borchers and

Efford 2008; Royle and Young 2008; Royle et al.

2018).

In most field studies, detection probability—the

probability of detecting a species or individual when it

is present—is not only imperfect but also variable.

Detection probability can vary across individuals,

time, and space (Gimenez et al. 2008; Kellner and

Swihart 2014; Conn et al. 2017; Guélat and Kéry

2018). The implications and treatment of individual

and temporal variability in detection probability have

been extensively documented in the non-spatial cap-

ture-recapture literature (Chao 2001; Link 2003;

Borchers et al. 2006; Gimenez et al. 2018a). SCR

models are particularly well-suited to account for

spatially variable detectability, as studies are usually

configured into discrete detection locations referred to

as detectors (or traps) that are distributed across the

study area (Efford et al. 2013; Royle et al. 2014).

Spatial variation in detection probability resulting

from individual space use relative to detector loca-

tions, i.e. the declining probability of detection with

increasing distance from an individual’s activity

center (AC), is in fact exploited by SCR models to

estimate the distribution of individual ACs (Borchers

and Efford 2008; Royle and Young 2008). Other

potential sources of spatial heterogeneity in detectabil-

ity include those caused by the study itself, such as

variable search effort, and local intrinsic and extrinsic

factors that influence the detectability of animals.

Known sources of variation in detection probability

can be modeled and accounted for in SCR (Efford

et al. 2013; Efford and Mowat 2014; Royle et al.

2014). This is the case when variable sampling effort

is recorded, for example, during camera trapping or

non-invasive DNA sampling (Royle et al. 2009;

Efford et al. 2013), or when spatial covariates, such

as habitat proxies for vulnerability to detection, are

used (Bischof et al. 2017; Kendall et al. 2019).

In many wildlife monitoring studies, spatial hetero-

geneity in detection probability remains partially

unknown. Unaccounted environmental factors may

impact exposure to detectors; for example, site-

specific characteristics may affect visibility, or local

climate can influence genotyping success rate of non-

invasively collected DNA samples (Efford et al. 2013;

Kendall et al. 2019). Survey effort may also vary

across the study area unbeknownst to the investigator.

For example, many large-scale monitoring programs

combine structured sampling with unstructured data

collection methods to increase the spatial extent and

sampling intensity, and involve members of the public

in the process (Thompson et al. 2012; Conn et al. 2017;

Altwegg and Nichols 2019; Bischof et al. 2020a;

Sicacha-Parada et al. 2021). Data from unstructured

sources introduce unknown spatial heterogeneity in

detection probability in SCR studies. In the analysis of

monitoring data, ignoring the variability in detection

can seriously degrade population inferences (Nichols

and Williams 2006; Gimenez et al. 2008; Gerber and

Parmenter 2015). However, it has also been previously

shown that spatially random variation in detection

probability does not seem to be a major source of bias

in parameter estimates from SCR analysis (Bischof

et al. 2017). In such situations, most individuals in the

sampling grid will be detected by at least one detector,

if detectors are spaced closely enough (high grain) and

cover a large enough area (large extent) relative to

home range sizes in the study population (Sollman

et al. 2012; Efford and Fewster 2013).

Spatial autocorrelation in detection probability—

when detectability is more similar among neighboring

than distant detectors—is common in ecological

studies (Guélat and Kéry 2018). Observed and
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unobserved spatially autocorrelated variation in detec-

tion probability could have many causes (Gaspard

et al. 2019), divided into two broad categories. On the

one hand is the nature of the data collection; for

example, regional differences in the mobilization of

volunteers for non-invasive DNA collections, varia-

tion in camera trap efficiency due to inadvertent scent

contamination at a cluster of sites, or reduced physical

capture success in traps installed by a less-experienced

operator in their designated area (Kristensen and

Kovach 2018; Bischof et al. 2020a; Tourani et al.

2020a). On the other hand are characteristics of the

study species and its environment, such as spatial

variation in site attractiveness or individual behaviors

(e.g., shyness) that lead to variable detectability

(Efford et al. 2013; Howe et al. 2013; Stevenson

et al. 2021). Variable detection probability that is

highly autocorrelated may disproportionately affect

the overall detectability of certain individuals in the

population based on the location of their ACs. When

areas with virtually zero probability of detection are

known, for example in clustered sampling designs,

they can be specified as detector-free regions (or

holes) in the sampling grid and be treated like the

unsampled habitat buffer in SCR (Efford and Fewster

2013; Royle et al. 2014). In extreme cases, however,

large swaths of the study area, and the individuals

inhabiting them, may be left unsampled, unbeknownst

to the investigator. This can occur when, for example,

SCR data are obtained opportunistically (e.g., con-

tributed by citizen scientists), where the incomplete

information about the detection process makes it

unclear whether areas without detections were sam-

pled or not (i.e., true vs. false negatives; Thompson

et al. 2012; Bird et al. 2014; Bischof et al. 2020a). We

expect flawed inferences from SCR studies if auto-

correlated heterogeneity in detection probability

remains cryptic, and thus unaccounted for. Specifi-

cally, when detection probability is not correlated with

animal density (Clark 2019; Paterson et al. 2019), we

predict that an SCR model ignoring contiguous areas

with low or zero detection probability would produce

positively biased estimates of average detection prob-

ability as it is inferred from areas with detections, and

therefore negatively biased estimates of density

(Royle et al. 2013; Guélat and Kéry 2018).

Most, if not all, SCR analyses of empirical data that

are collected across large spatial extents, ignore some

sources of spatial variation in detection probability.

The extent to which the misspecification of the

detection process in the presence of variable and

spatially autocorrelated detection probability may

affect the estimates of focal parameters in SCR studies

has not yet been systematically investigated. Using

simulations with an envelope that includes scenarios

encountered during wildlife monitoring, we quantify

how unmodeled, spatially variable detection proba-

bility influences parameter estimates obtained via

SCR. Specifically, our objective in this study is to

identify scenarios where unmodeled heterogeneity in

detection probability can lead to problematic infer-

ences in SCR analysis. We do so with a focus on both

the magnitude of variability in detection probability

and the autocorrelation therein.

Methods

Spatial capture-recapture model

For the purpose of this study, we used a standard,

single-session SCR model in a Bayesian framework

(Royle et al. 2014; see the model code in Online

Appendix 1). Our model is composed of two hierar-

chical levels:

1. The ecological sub-model reflects the underlying

ecological process of interest and describes the

distribution of individuals in space, i.e. density.

Following a homogeneous point process (Royle

et al. 2014), we assume every individual i in the

population has a fixed AC (or home range center;

si) and that these individual ACs are randomly

distributed across the habitat S according to a

uniform distribution:

si �UniformðSÞ ð1Þ

We used a data augmentation approach to account

for those individuals in the population that are not

detected (Royle et al. 2007). Detected and aug-

mented individuals make up the super-population

of size M (see below). A latent state variable zi
describes inclusion of individual i in the popula-

tion, governed by the inclusion probability w:

zi �BernoulliðwÞ ð2Þ
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where zi takes value 1 if individual i is a member

of the true population and 0 otherwise. Population

size N is therefore:

N ¼
XM

i¼1

zi ð3Þ

2. The observation sub-model describes the individ-

ual and detector-specific probability of detection

pij as a function of Euclidean distance dij between

the location of an individual AC and a given

detector j. We used the half-normal detection

function to model pij (Borchers and Efford 2008;

Royle et al. 2014):

pij ¼ p0 exp �d2ij

.
2r2

� �
ð4Þ

where p0 is the baseline detection probability (or

magnitude of the detection function). In the half-

normal model, the detection probability pij
decreases monotonically with distance dij from si
(Borchers and Efford 2008; Royle et al. 2014).

The spatial scale parameter r defines the rate of

decline in pij with distance dij from detector j to the

si. By including the spatial information through an

explicit model for detection, SCR accounts for one

important source of spatial variation in detection

probability: the location of an individual’s AC

relative to the detectors (Borchers and Efford

2008; Royle et al. 2014).

We considered the observations of individuals at

detectors as the outcome of a Bernoulli process

(detections [yij ¼ 1] and non-detections [yij ¼ 0])

with probability pij and conditional on the state zi
of individual i:

yij �Bernoulli pij zi
� �

ð5Þ

Importantly, this observation model assumes

constant baseline detection probability among

detectors, and thus does not account for additional

detector-specific variation in detectability.

Simulation

General approach

To evaluate the consequences of unmodeled spatial

heterogeneity in detectability, we generated SCR data

sets with varying patterns of spatial heterogeneity in

the baseline detection probability (i.e., detector-speci-

fic p0 ¼ p0j ), before fitting SCR models assuming

constant baseline detection probability across detec-

tors. We considered two types of scenarios: continu-

ous and categorical spatial variation in detectability.

For each scenario, we varied both the level of spatial

autocorrelation and the magnitude of the spatial

variation to resemble sampling configurations and

intensities that may occur in real-life studies (Fig. 1).

We also included a reference scenario without spatial

heterogeneity in detection probability; thus, the

observation sub-model was not misspecified.

Set up

For all simulations, we used a 20� 20-distance unit

(du) square grid of 400 detectors with 1 du inter-

detector spacing. The habitat S included the region

covered by detectors and a 4.5-du wide buffer around

it (i.e., three times the simulated value for r; Efford
2011) for a total area of 29� 29 du2 (Fig. 1). The

buffer allows individuals with ACs located outside but

near the detector area to be detected within. We fixed

the values for the true population size to N ¼ 250 and

the spatial scale parameter of the half-normal detec-

tion function to r ¼ 1:5 du across all simulation

scenarios for simplicity. We set the size of the

augmented population size to be 2.5 times the

simulated number of ACs (M ¼ 625). With this set

up, we detected, on average, about 40% (range =

15–60%) of the true population size N under any given

scenario (Table S2.1, Online Appendix 2).

Detector-level covariates

We generated spatially autocorrelated covariates of

the baseline detection probability encompassing the

extent of the 20� 20 du2 detector grid with the same

spatial resolution (1 du) using a function developed by

Guélat (2013), with minor modifications (Online

Appendix 1). The detector-specific, spatial covariate

X was generated using a multivariate normal

distribution:

X�MVN 0; Rð Þ ð6Þ

where the covariance matrix R determines the spatial

association between detectors. R is calculated using a
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function D representing the decay in correlation

between pairs of detectors with distance. We followed

Guélat (2013) and modeled the covariance of X at two

detectors j and j0 as an exponential decay with

distance:

D djj0
� �

¼ exp �/djj0
� �

ð7Þ

where djj0 is the distance between detectors j and j0, and
/ is the rate determining how rapidly correlation

declines with distance. We varied / to simulate

covariates with low (/ ¼ 1000), intermediate

(/ ¼ 1), or high (/ ¼ 0:001) spatial autocorrelation

(Fig. 1). We randomly generated 100 covariate

Fig. 1 Examples of spatially variable and autocorrelated

baseline detection probability (higher = darker blue shading)

in grid of detectors (gray dots) centered in a habitat (entire area

surrounded by the blue line with rounded corners). Shown in

rows, spatial variation may be continuous or categorical (with

different proportion of area in the lower detectability category).

Shown in columns, spatial autocorration may vary from high

(Moran’s I � 1) to low (Moran’s I � 0). For a detailed

description of each scenario, see the main text.
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surfaces for each simulation scenario and scaled the

resulting values. We then extracted the spatial covari-

ate values for each detector grid cell Xj (but see below

the extra step for simulating continuous spatial

variation in detectability). We quantified the realized

spatial autocorrelation using the Moran’s index of

global spatial autocorrelation, Moran’s I (Moran 1950;

Sokal and Oden 1978; Lichstein et al. 2002) for each

simulated spatial covariate with the R package ‘raster’

(Hijmans 2019). I ranges from �1 (perfectly nega-

tively correlated) to 0 (no correlation) and 1 (perfectly

positively correlated).

Simulation scenarios

1. Continuous, detector-level variation in detectabil-

ity—Continuous spatial variation in detection

probability may arise in situations where an

underlying habitat covariate, such as elevation,

forest cover, or distance from a feature (e.g., roads

or human settlements) linearly affects baseline

detection probability at detectors (Fig. 1) but

remains unmodeled. We modeled the detector-

specific baseline detection probability p0j as a

linear function of the simulated spatial covariate

X:

logit p0j
� �

¼ b0 þ bXXj ð8Þ

where b0 is the intercept value of the simulated

baseline detection probability p0 on the logit scale

and bX is the regression coefficient of the covari-

ate effect. We kept b0 constant across simulations,

which corresponds to an intercept value of 0.15 for

p0. We used two values of bX to generate low

(bX ¼ �0:5) or high (bX ¼ �2:0) amounts of

spatial variation in detection probability. Gener-

ating spatial covariates directly as spatially auto-

correlated rasters as described above, leads to less

tractable outcomes as the level of spatial autocor-

relation / influences not only the spatial distribu-

tion, but also the density distribution of the

covariate. To ensure that the density distribution

of spatial covariates on detection probability

remained comparable across simulations, regard-

less of the level of autocorrelation, we mapped a

uniformly-distributed spatial covariate with val-

ues in the range between �1:96 and 1.96 onto the

spatially autocorrelated similarity raster created as

described above (see the code in Online Appendix

1). As a result, the mean covariate value and

variance were constant across simulations, regard-

less of the level of spatial autocorrelation. In other

words, we sought stationarity when all simulations

of a given scenario are considered jointly, but not

within a given simulated detector grid. Following

Eq. 8, the detector-specific baseline detection

probability p0j was between 0.06 and 0.32 (median

= 0.15) when the variation in detectability was low

(bX ¼ �0:5). By increasing bX to �2:0, p0j was

between 0.003 and 0.9 (median = 0.15; Table S2.1,

Online Appendix 2). pij was then calculated by

reformulating Eq. 4:

pij ¼ p0j exp �d2ij

.
2r2

� �
ð9Þ

Finally, the SCR data yij was generated by

realizing the detection process following Eq. 5.

Note that such large differences in p0j do not

translate into a correspondingly large differences

in overall detectability. The probability of detect-

ing any given individual at least once, depends not

only on p0j , but also on the scale parameter of the

detection function r, and the position of its AC

relative to the entire detector grid. Comparatively

extensive spatial differences in baseline detection

probabilities have been reported for three large

carnivore species in Scandinavia (Bischof et al.

2020a). For example, p0 estimates (after conver-

sion from binomial to Bernoulli) for wolves Canis

lupus ranged from near 0 to 0.8, depending on

administrative region.

2. Categorical, detector-level variation in

detectability—In real-world monitoring studies,

this situation arises when there are at least two

regions with different sampling intensity across

the study area; for example, two regions with

varying sampling effort (or different sampling

protocols that lead to varying sampling intensity),

or two contrasting landscapes (e.g., forest vs.

grassland) or detector types (e.g., camera traps on

and off trails) across the study area that influence

the detection probability (Fig. 1). To represent this

situation, we transformed the underlying contin-

uous spatial covariate into a binary one (Xj ¼ 0 or

1) before simulating scenarios with two classes of

123

2884 Landscape Ecol (2021) 36:2879–2895



detector-specific baseline detection probability p0j
using Eq. 8. The R code in Online Appendix 1

shows the method used to define the cut-off value

to discretize the spatial covariates. We used the

same values of bX to generate low or high amount

of spatial variation in detectability between the

discrete classes of detectors. With this set-up, the

baseline detection probability at a group of

detectors (Xj ¼ 0) was equal to the intercept value

(p0j ¼ b0 ¼ 0:15), and p0j for the remaining

detectors with lower detectability (Xj ¼ 1) was

either 0.1 (when bX ¼ �0:5) or 0.02 (bX ¼ �2:0)

depending on the simulated amount of spatial

variation in detectability (Table S2.1, Online

Appendix 2). In addition, we considered an

extreme case, where a portion of the study area

remained entirely unsampled unbeknownst to the

investigator, and therefore unaccounted for in the

model. This situation could be encountered in, for

example, volunteer-based monitoring programs,

where SCR data are collected opportunistically

but no or only limited spatial information exists

about the spatial configuration of sampling.

Logistic issues, such as systematic equipment

failure (e.g., trap malfunction or damage) or

human error, if unreported, may also result in

clusters of detectors that remain inactive without

the investigator’s knowledge. We set bX to

�10000, so that p0j � 0 for detectors with a

covariate value of Xj ¼ 1, and therefore no

detection could occur at these inactive detectors.

To evaluate the potential effect of the proportion

of detectors with a different baseline detection

probability, we varied the proportion of detectors

assigned to each class of the discrete covariate

simulated (Fig. 1). We simulated SCR data sets

with 25% (n = 100 detectors), 50% (n = 200), or

75% (n = 300) of the detectors assigned to the

lower detectability class (Xj ¼ 1).

Simulation realization—In total, we generated six

simulation scenarios of continuous spatial variation in

baseline detection probability with the combinations

of two values of bX and three levels of spatial

autocorrelation /. For the discrete categorical varia-

tion in baseline detection probability, we simulated 27

scenarios from all possible combinations of the three

values of bX, three different proportions of detectors

with lower detectability, and three levels of spatial

autocorrelation. Finally, we included a scenario of

constant detection probability across detectors for

reference, i.e. the observation sub-model was correctly

specified. We repeated the data simulation procedure

100 times for each combination of parameters, result-

ing in a total of 3400 simulated SCR data sets

(Table S2.1, Online Appendix 2).

Additional simulations—Another common formu-

lation of the detection process in SCR is the Poisson

distribution. This models count-based data arising

from sampling methods in which individuals can be

detected multiple times at a detector during a single

occasion, such as in camera trapping studies (Royle

et al. 2014). To evaluate the consequences of similar

model misspecification in SCR models with a Poisson

detection process, we simulated additional count-

based SCR data sets and repeated the analysis. We

simulated SCR data with counts as observations and

fitted a standard, single-session, Poisson-distributed

SCR model assuming homogeneous baseline detec-

tion rate. A description of the data simulation proce-

dure and fitting of the misspecified Poisson SCR

model is provided in Online Appendix 3.

SCR model fitting and evaluation of model

performance

We fitted the SCRmodel described earlier, which does

not account for spatial variability in baseline detection

probability, to the simulated data sets using NIMBLE

(version 0.8.0; de Valpine et al. 2017), nimbleSCR

(Bischof et al. 2020b), and R 3.6.1 (R Core Team

2019). We chose vague priors for all primary param-

eters (w, r, p0, and k0 as the baseline detection rate in

the Poisson SCR model; Table S1.1, Online Appendix

1). We used a local evaluation approach to reduce

computation time (Turek et al. 2021). We drew from 3

chains, 15000 Markov chain Monte Carlo (MCMC)

samples each, and discarded the initial 5000 samples

as burn-in. We visually inspected the mixing of the

chains using trace-plots and considered models as

converged when all parameters had a potential scale

reduction value (Rhat) \1:10 (Brooks and Gelman

1998). We removed from further analysis simulation

runs that had failed to reach convergence. R code

exemplifying the SCR data simulation for each

scenario and model fitting are provided in Online

Appendix 1.
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To quantify the consequences of unaccounted

spatial heterogeneity in detection probability for

SCR models, we calculated the relative bias (RB),

coefficient of variation (CV), and coverage probability

of the 95% credible intervals (hereafter, coverage;

Walther and Moore 2005) of the estimates of popu-

lation size (N̂) and spatial scale parameter (r̂). RB was

calculated as:

cRB hð Þ ¼ ĥ� h0
� �.

h0 ð10Þ

where ĥ is the posterior mean estimate for the

parameter of interest and h0 is the true (simulated)

value of that parameter. CV was calculated to assess

the precision of each parameter estimate as:

dCV hð Þ ¼ cSD hð Þ
.
ĥ ð11Þ

where cSDðhÞ is the standard deviation of the MCMC

posterior samples of that parameter. Further, we

calculated the coverage as a metric of model fit,

which was computed as the proportion of simulation

runs in which the 95% credible interval of the

parameter estimate included the simulated value of

that parameter (Walther and Moore 2005).

Results

Overview

Of the 3400 simulation runs, 3384 (99.5%) reached

convergence and were retained: 599 (99.8%) and 2685

(99.4%) for the continuous and categorical scenarios

of spatial variation in detectability, respectively

(Table S2.2, Online Appendix 2). Our results indicate

that the misspecified SCR model was robust to

unmodelled spatial heterogeneity in detection proba-

bility for most of the scenarios explored. Population

size (N̂) and spatial scale parameter (r̂) estimators

exhibited pronounced bias only in the presence of high

spatial autocorrelation and high amount of variation in

detectability among detectors (Fig. 2). Precision

(Fig. 3) and coverage (Fig. 4) were also affected in

our extreme scenarios when the detector-specific

variation in detection probability remained unmod-

eled. The consequences of spatial autocorrelation were

amplified with increasing proportions of detectors

with lower detectability in the categorical scenarios

and, in certain situations, when the amount of variation

in detection probability was high (Table S2.2, Online

Appendix 2). Qualitatively, misspecification of the

observation sub-model for Bernoulli- and Poisson-

distributed data had comparable consequences.

Results for the simulations with the Poisson SCR

model are provided in Online Appendix 3.

Continuous, detector-level variation

in detectability

We observed increasingly negative bias in N̂ with

increasing spatial autocorrelation (Fig. 2; Table S2.2,

Online Appendix 2). The magnitude of RB in N̂

obtained with high spatial autocorrelation (simulation

scenarios 1 and 4: median Moran’s I = 0.96; median

RB(N̂) = 16%) was substantially greater than that for

scenarios with low spatial autocorrelation (scenarios 3

and 6: median Moran’s I = 0; median RB(N̂) = 0:2%).

This pattern was amplified when the amount of

variation in detectability was high (scenario 4: median

RB(N̂) = 30%). In contrast, we detected no noticeable

bias in r̂ (Fig. 2), even when the amount of variation in

detectability was high and spatial autocorrelation was

high or intermediate (scenarios 4 and 5: median RB(r̂)
= 4% and 7%, respectively).

The pattern in precision of N̂ and r̂ were almost

identical across the scenarios considered (Fig. 3).

cFig. 2 Relative bias (RB) for population size (N̂) and the spatial
scale parameter of the half-normal detection function (r̂)
estimated by a spatial capture-recapture model fitted to

simulated data sets. Spatial variation in detection was simulated

but not accounted for in the estimation model. Numbers

provided on the x-axes refer to the unique ID of the simulation

scenario and link with the more detailed information provided

for each simulation in Online Appendix 2. Violins show the

biasing effects of spatial autocorrelation at the detector-level

covariates simulated (decreasing from dark [High] to light

colors [Low]) in different scenarios of continuous (top row) and

discrete categorical (bottom three rows) variation in baseline

detection probability. For the categorical scenarios, the propor-

tions of detectors that belong to a group of detectors with lower

detectability increases from top (25%) to bottom (75%).

Background colors correspond to three different sets of

simulation scenarios with similar values of the magnitude of

the covariate effect: Low (bX ¼ �0:5; light gray), High

(bX ¼ �2:0; white), and Extreme (bX ¼ �10000; dark gray).

Yellow violins labeled as Reference in the top row show the

results for a baseline scenario without heterogeneity in detection

probability
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When the amount of variation in detectability was low

(scenarios 1–3), precision of the parameter estimates

were comparable to those of the reference scenario

without spatial heterogeneity in detection probability

(scenario 7: median CV(N̂) = 7% and median CV(r̂) =

5%). Precision of N̂ and r̂ were inflated when the

magnitude of variation in detectability was high

(scenarios 4–6: median CV(N̂) = 5% and median

CV(r̂) = 3%), where increasing the spatial
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autocorrelation slightly decreased the precision of N̂

(scenario 4; Table S2.2, Online Appendix 2).

Coverage of both N̂ and, to a lesser extent, r̂ were

drastically impacted by spatial autocorrelation (Fig. 4;

Table S2.2, Online Appendix 2). In situations of high

spatial autocorrelation and low variability in detection

probability, we observed a 14% reduction in coverage

of N̂, compared to low spatial autocorrelation (from

Coverage(N̂) = 93% in scenario 3 to Coverage(N̂) =

80% in scenario 1). The combination of high spatial
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autocorrelation and high variation in detectability led

to coverage of N̂ as low as 3% (scenario 4; Fig. 4). The

pattern was less pronounced for r̂ (scenario 4:

Coverage(r̂) = 70%). However, we detected a drastic

decrease in the coverage of r̂ for the scenario of

intermediate spatial autocorrelation and high amount

of variation in detectability (scenario 5: median

Moran’s I ¼ 0:63, Coverage(r̂) = 26%; Fig. 4).

Categorical, detector-level variation

in detectability

We observed increasing negative bias in N̂ with

increasing spatial autocorrelation and increasing pro-

portion of detectors with lower detectability (Fig. 2;

Table S2.2, Online Appendix 2). The bias was

particularly pronounced in scenarios of extreme,

spatially autocorrelated variation in detectability

(median Moran’s I = 0.86), where 50% or more of

detectors were inactive, ultimately leading to an entire

region with little or no sampling (scenarios 23 and 32:

median RB(N̂) = 49%). However, when the variation

in detectability was low (scenarios 8–10, 17–19, and

26–28), N̂ was minimally affected in terms of bias

regardless of the spatial autocorrelation and propor-

tions of detectors with lower detectability (Table S2.2,

Online Appendix 2). Similarly, when spatial

autocorrelation in detectability was low, N̂ remained

relatively unbiased even in the extreme scenarios of a

portion of detectors being inactive. We observed no

systematic bias in r̂ under any of the scenarios tested

(Fig. 2; Table S2.2, Online Appendix 2).

Precision of N̂ and r̂ decreased with increasing

proportions of detectors with lower detectability and

increasing variation in detectability (Fig. 3;

Table S2.2, Online Appendix 2). However, precision

increased with spatial autocorrelation. For the extreme

scenario of a partially-sampled area, when 75% of the

detectors were inactive and spatial autocorrelation was

low (scenario 34; Fig. 3), median CV(N̂) and median

CV(r̂) increased by 249% and 242%, respectively,

compared to the reference scenario. In contrast, the

increase in median CV(N̂) and median CV(r̂) was

129% and 145%, respectively, for the scenario of high

spatial autocorrelation (scenario 32; Table S2.2,

Online Appendix 2).

The coverage of N̂ drastically decreased with

increasing spatial autocorrelation (Fig. 4). With high

spatial autocorrelation, the coverage of N̂ dropped to

between 39% and 44% in the presence of high

variation in detectability and higher proportions of

detectors with lower detectability (scenarios 29 and

20). When more than 50% of the detectors were

inactive, coverage of N̂ was near 0 (scenarios 23 and

32; Fig. 4). Coverage was nominal for r̂ under low and

high levels of spatial autocorrelation, and only

decreased to between 79% and 87% when spatial

autocorrelation was intermediate (scenarios 15, 24,

and 33: median Moran’s I = 0.42; Table S2.2, Online

Appendix 2).

Discussion

Our study revealed that unmodeled spatial variation in

detection probability, which is ubiquitous in wildlife

monitoring studies, can have pronounced conse-

quences for inferences from SCR analyses. The

critical factor is spatial autocorrelation in detection

probability: highly autocorrelated and highly variable

detectability leads to pronounced bias and reduction in

precision and coverage of SCR estimates of popula-

tion size, the main parameter of interest in such studies

(Royle et al. 2014, 2018). Conversely, at low levels of

spatial autocorrelation, SCR model estimates

bFig. 3 Coefficient of variation (CV) for population size (N̂) and
the spatial scale parameter of the half-normal detection function

(r̂) estimated by a spatial capture-recapture model fitted to

simulated data sets. Spatial variation in detection was simulated

but not accounted for in the estimation model. Numbers

provided on the x-axes refer to the unique ID of the simulation

scenario and link with the more detailed information provided

for each simulation in Online Appendix 2. Violins show the

effects of spatial autocorrelation in the detector-level covariates

simulated (decreasing from dark [High] to light colors [Low]) in

different scenarios of continuous (top row) and discrete

categorical (bottom three rows) variation in baseline detection

probability. For the categorical scenarios, the proportions of

detectors that belong to a group of detectors with lower

detectability increases from top (25%) to bottom (75%).

Background colors correspond to three different sets of

simulation scenarios with similar values of the magnitude of

the covariate effect: Low (bX ¼ �0:5; light gray), High

(bX ¼ �2:0; white), and Extreme (bX ¼ �10000; dark gray).

Yellow violins labaled as Reference in the top row show the

results for a baseline scenario without heterogeneity in detection

probability, which was included for reference. The dashed lines

show median CV for the parameter estimates achieved in the

reference scenario
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remained robust even to extremely high levels of

unmodeled spatial heterogeneity in detection proba-

bility. Estimates of the spatial scale parameter of the

half-normal detection function were, however,

unbiased and coverage remained comparatively high

for most scenarios of spatially autocorrelated detec-

tion probability. Nonetheless, the pattern of reduction
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in precision of the estimates of the scale parameter was

similar to those in the estimates of population size.

SCR is a powerful analytical tool for spatially

explicit inference on the ecology of wild populations

while accounting for imperfect detection (Royle et al.

2018). One of the advantages of SCR models over

non-spatial capture-recapture models is the ability to

address the effects of known spatial variation in

detectability as a result of the spatial configuration of

ACs relative to detectors and detector-specific char-

acteristics; thus, providing a more realistic model of

the detection process (Efford et al. 2013; Royle et al.

2014). Yet, despite the spatially explicit nature of SCR

data collection and analysis, it is liable to be afflicted

by unknown or undocumented variation in detection

probability; for example, due to inadvertent (e.g.,

equipment failure, within-individual variations) or

design-induced factors (e.g., non-random or preferen-

tial sampling), or as the result of pooling or integrating

data across multiple survey methods or detectors

(Efford et al. 2013; Howe et al. 2013; Efford and

Mowat 2014; Royle et al. 2013, 2014; Gerber and

Parmenter 2015). Consistent with our predictions,

failure to adequately account for variable and spatially

autocorrelated detection probability may bias SCR

parameter estimates, impact estimates of precision,

and generally lead to erroneous inferences. In extreme

cases among the ones we considered, this led to up to

65% bias and to virtually zero probability that the

credible interval contains the true value of population

size (Table S2.2, Online Appendix 2). Comparable

results are reported when individual heterogeneity

remains unaccounted for in both spatial and non-

spatial capture-recapture (Royle et al. 2013; Gimenez

et al. 2018a, Stevenson et al. 2021). Thus, a misspec-

ified detection model may not only impact inferences,

but also reduce the chance of meeting the management

and conservation objectives that often motivate these

studies.

We observed the strongest systematic bias in cases

where a substantial and distinct region of the detector

space was unsampled, essentially leaving a hole in the

detector grid that remained unaccounted for in the

model. The pronounced negative bias in N̂ that arises

in these situations can be explained if we consider that

individuals with ACs within such a hole have a high

chance of being missed entirely during sampling,

essentially creating a latent class of individuals with

very low or zero detectability. This is the case when a

portion of detectors are assumed to be active or

searched when they are not. As a consequence,

detection probability estimates are biased high as they

are based primarily on recaptures of individuals

detected in active regions of the detector grid, and

estimates of abundance and density are consequently

biased low. This pattern is amplified by the magnitude

of variation in detection probability between regions

of lower and higher detectability, and by the size of the

region with lower detection probability (Table S2.2,

Online Appendix 2).

Situations where entire regions of the study area

remain unsampled are fairly common in monitoring

studies, where the data are gathered opportunistically,

either in part or as a whole (Conn et al. 2017; Altwegg

and Nichols 2019; Sicacha-Parada et al. 2021).

Unstructured sampling can augment information,

and thus improve population inferences about rare or

elusive species (Thompson et al. 2012; Tenan et al.

2017; Sun et al. 2019; Bischof et al. 2020a). Oppor-

tunistically-collected data obtained as part of public

surveys (e.g., citizen-science data) are sometimes

integrated into monitoring programs as this allows

investigators to sample areas at unprecedented scales

with lower costs and the added benefit of public

involvement in management and conservation prac-

tices (Altwegg and Nichols 2019; Bischof et al. 2020a;

Sicacha-Parada et al. 2021). To minimize and account

for variation in detection probability in such sampling

bFig. 4 Coverage probability of the 95% credible intervals of

population size (N̂) and the spatial scale parameter of the half-

normal detection function (r̂) estimated by a spatial capture-

recapture model fitted to simulated data sets. Spatial variation in

detection was simulated but not accounted for in the estimation

model. Numbers provided on the x-axes refer to the unique ID of

the simulation scenario and link with the more detailed

information provided for each simulation in Online Appendix

2. Points show the effects of spatial autocorrelation of

continuous (top row) or discrete categorical (bottom three rows)

baseline detection probabilities (decreasing from dark [High] to

light colors [Low]). For the categorical scenarios, the propor-

tions of detectors that belong to a group of detectors with lower

detectability increases from top (25%) to bottom (75%).

Background colors correspond to three different levels of

variation in the baseline detection probability: Low

(bX ¼ �0:5; light gray), High (bX ¼ �2:0; white), and Extreme

(bX ¼ �10000; dark gray). Yellow points labeled as Reference

in the top row show results for a baseline scenario without

heterogeneity in detection probability
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schemes, volunteers should be encouraged to visit all

habitats within the study area, reduce variability in

observer proficiency by providing standardized train-

ing, and collect data on potentially relevant covariates

(Altwegg and Nichols 2019).

We considered a wide range of scenarios in terms of

the magnitude and spatial configuration of variability

in detection probability. Our extreme scenarios of

unknown and unmodeled, high spatial variation and

high autocorrelation in p0 are probably less common,

but plausible, in real-life SCR monitoring studies.

These scenarios were specifically motivated by our

previous work on landscape-scale monitoring of large

carnivores, where spatial variation in effort can be

challenging to quantify because the data are collected

in a structured fashion by field personnel associated

with multiple jurisdictions and opportunistically by

volunteer members of the public (Bischof et al.

2016, 2017, 2020a; Milleret et al. 2020). These SCR

studies revealed significant differences in baseline

detection probability across administrative units (i.e.,

counties in Sweden and large carnivore management

regions in Norway). Even after controlling for spatio-

temporal variations in sampling effort by including

detector-level and individual covariates on the base-

line detection probability, spatial variation in

detectability remained substantial, presumably linked

with unmeasured regional differences in search effort

by volunteers and sampling configuration imple-

mented by the authorities (Bischof et al. 2020a).

Nevertheless, we expect the consequences of such an

unmodeled spatial heterogeneity to be relaxed when

detection probability is relatively high. In such

situations, unknown and unmodeled variation in

detectability is likely to be less problematic as

individuals from the population are more likely to be

detected at multiple detectors (i.e., increase in both the

proportion of detected individuals from the population

and spatial recaptures). The effects of spatial hetero-

geneity in detectability may also be mediated by

species space-use characteristics. Here, we simulated

a target population with intermediate home-range

overlap (k ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Density

p
¼ 0:83; Efford et al. 2016)

with a density of 0.3 AC/du2, which was constant

across simulation scenarios. For species with small

home-range sizes, where the spatial scale parameter is

small relative to the distance between detectors,

unmodeled spatially autocorrelated detection

probability may lead to more problematic inferences

due to the increased risk of individuals going

completely undetected in the resulting ‘‘holes’’ in the

detector grid. In addition, we assumed homogeneous

population density across the study area, which is

rarely, if ever, the case in wild populations. Previous

studies have suggested that the consequences of

unmodeled heterogeneity in detection probability

could be amplified when detectability is correlated

with density (e.g., Clark 2019; Paterson et al. 2019).

As a positive correlation between animal density and

detection probability results in a positive bias in

estimates of population size, we expect that the biasing

effects we detected would be comparatively less

pronounced when the unmodeled detection probability

is spatially autocorrelated but the effects of unmodeled

spatial heterogeneity would not be mitigated. The

misspecification of the observation sub-model may

also lead to confounding effects between variation in

detection probability and animal density that must be

accounted for in order to avoid flawed inferences

(Efford et al. 2013).

When the drivers of spatial variation in detection

probability are known or suspected, the variation can

be accounted for by, for example, including relevant

covariates (e.g., transect length, camera trap nights,

habitat or line-of-sight visibility) in the observation

sub-model of SCR models (Royle et al. 2009, 2014;

Efford et al. 2013; Efford and Mowat 2014; Bischof

et al. 2017, 2020a). In the absence of proxies that can

serve as fixed or random effects, how should inves-

tigators deal with unknown spatial heterogeneity in

detectability in SCR analyses? One solution would be

to discard affected data, such as observations con-

tributed by members of the public without corre-

sponding measures of search effort. This, however,

would lead to a loss of potentially valuable informa-

tion, both in terms of number of individuals detected

and spatial recaptures (Marques et al. 2011; Sollmann

et al. 2012; Tourani et al. 2020b). Explicitly modeling

spatially autocorrelated detectability, for example

using mixture methods (e.g., by drawing baseline

detection probability at each detector from a finite

mixture of distributions; Royle 2006) or conditional

autoregressive (CAR) models, may offer a solution.

CAR models have been implemented in other hierar-

chical modeling frameworks, such as non-spatial

capture-recapture and spatial distribution modeling

(e.g., Johnson et al. 2013; Chen and Ficetola 2019;
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Nicolau et al. 2020), but we are not aware of similar

extensions in SCR studies. The added complexity

resulting from the inclusion of an autoregressive

component on a latent variable like detection proba-

bility could pose a significant computation barrier to

implementation in Bayesian SCR at large spatial

scales. However, recent advances in both software (de

Valpine et al. 2017; Bischof et al. 2020b) and Bayesian

SCR model formulations (Milleret et al. 2018; Turek

et al. 2021) have improved model fitting efficiency,

allowing fitting SCR models of unprecedented com-

plexity and spatial scales (Bischof et al. 2020a); thus,

opening new possibilities.

Goodness-of-fit tests could help practitioners diag-

nose potential violations of model assumptions,

including unmodeled spatial variation in detection

probability, and determine whether there is a need to

account for it in the model in the first place. Such

diagnostics should be an integral part of any ecological

modeling exercise (Conn et al. 2018), and Bayesian

p-values (Gelman et al. 1996) have been proposed as a

general framework for goodness-of-fit testing of

Bayesian SCR models (Royle et al. 2014). However,

goodness-of-fit diagnostics for SCR is a developing

field of research and specific tests and recommenda-

tions, such as those that were developed for non-

spatial capture-recapture models (e.g., Gimenez et al.

2018b) are still lacking. Thus, testing and accounting

for possible violations, as well as correcting model

estimates, is still challenging in SCR.

Conclusions

Unmodeled spatially autocorrelated variation in detec-

tion probability can noticeably impact the reliability of

inferences derived using SCR, when variability in

detection and spatial autocorrelation is high. This

specifically affects estimates of abundance and den-

sity, primary parameters in wildlife monitoring stud-

ies, and can therefore have severe consequences for

wildlife management and conservation. Unobserved

spatial variability in detection probability is likely

ubiquitous in real-life SCR studies, and we encourage

research to develop approaches that help practitioners

diagnose and account for it.
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Appendix 1: R scripts and model parameters

R scripts for simulating spatially autocorrelated detector-specific covariates and

single-session spatial capture-recapture analysis in NIMBLE can be found here:

https://github.com/eMoqanaki/HeterogeneousDetectionSCR

Table S1.1: Description, prior distribution, and initial values for the focal parameters
estimated by the spatial capture-recapture model used in this study.

Parameter Description Prior Initial values
ψ Inclusion probability Uniform(0,1) Uniform(0,1)
σ Scale parameter of the detection function Uniform(0,50) Uniform(0,10)
p0 Baseline detection probability Uniform(0,1) Uniform(0,1)
λ0 Baseline detection rate Uniform(0,10) Uniform(0,10)
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Appendix 3: Additional simulations

We performed an additional simulation study by repeating the analysis described in

the main text. Here, we simulated count data arising from a Poisson detection process

instead of binary data from the Bernoulli process. We then fitted a Poisson spatial

capture-recapture (SCR) model, assuming homogeneous baseline detection rate to

evaluate the consequences of model misspecification and compare the results with that

of the Bernoulli simulations and observation model. The code to simulate data and fit

the model is available in Appendix 1. We followed the simulation set up and population

characteristics described in the main text. In brief:

1. Poisson observation process – We reformulated the observation sub-model of our

standard, single-session, SCR model (Equation 5; see the main text), assuming that

the detection histories for the observed individuals followed a Poisson distribution:

yij ∼ Poisson(λij zi) (3.1)

Here, λij is the mean number of detections of individual i at detector j and is described

using the half-normal detection function:

λij = λ0 exp(−d2ij/2σ2) (3.2)

In this formulation, λ0 is the expected detection rate when dij = 0.

2. Simulation of Poisson-distributed SCR data – To simulate scenarios that were

comparable to the Bernoulli detection process in terms of number of detected individuals

and number of detections (Table S2.1, Appendix 2), we approximated the intercept

6



value of p0 (= 0.15) in the Bernoulli-distributed simulations to λ0 by:

λ0 = −log(1− p0) = 0.1625189 (3.3)

We repeated the same procedure described in the main text to simulate the spatial,

detector-level covariate Xj (see Equations 6 and 7). We included only two combinations

of φ = 0.001 or high (Moran’s I ≈ 1) vs. φ = 1000 or low (Moran’s I ≈ 0) spatial

autocorrelation in the detector-specific baseline detection rate λ0j .

3. Simulations – To model λ0j , we reformulated Equation 8 in the main text as:

λ0j = exp(log(λ0) + βX Xj) (3.4)

Note that by approximating p0j to λ0j in this fashion, we maintained a comparable

baseline detection probability. Thus, the Bernoulli observation sub-model described

in the main text can be considered a compressed version of the Poisson model, where

detections are compressed into singletons.

We considered the same two types of scenarios of continuous and categorical spatial

variation in detectability as described in the main text, where yij was instead simulated

by realizing the Poisson detection process (detections [yij = 1, 2, 3, . . . ] and non-

detections [yij = 0]). We considered βX = −0.5 or −1 for simulating low and high

amount of variation in the detector-specific, baseline detection rate λ0j , respectively. For

the alternative scenarios of continuous spatial variation in detectability (Xj = −1.96 -

1.96), λ0j then ranged between 0.06 and 0.43 (median λ0j = 0.16) when βX = −0.5, and

between 0.02 and 1.15 (median λ0j = 0.16) when βX = −1 following Equation 3.4. For

the alternative scenarios with categorical spatial variation (Xj = 0 or 1), λ0j was equal

to the intercept value of λ0 = 0.16 (Equation 3.3) for a varying percentage of detectors

7



with higher detectability (25%, 50%, or 75%), and was 0.1 (βX = −0.5), 0.06 (βX = −1),

or 0 (βX = −10000) for the group of detectors with lower detectability depending on

the simulation scenario (Table S3.1, Appendix 3). Together with a reference scenario

of constant detection rate (i.e., no model misspecification), we generated 23 additional

simulation scenarios with 25 repetitions each, leading to 575 Poisson-distributed SCR

data sets in total (Table S3.1, Appendix 3). See the main text for information on SCR

model fitting and the approach to evaluate model performance.
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Figure S3.1: Relative bias (RB) for population size (N̂) and the spatial scale parameter
of the half-normal detection function (σ̂) estimated by a mis-specified, standard spatial
capture-recapture model fitted to Poisson-distributed data sets simulated (n = 25). Violins
show the effects of spatial autocorrelation in the detector-level covariates simulated in
different scenarios of continuous (top row) and categorical (bottom three rows) spatial
variation in baseline detection rate. Numbers provided on the x-axes refer to the unique ID
of the simulation scenario and link with the more detailed information provided for each
simulation in Table S3.1 in Appendix 3.
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Figure S3.2: Coefficient of variation (CV) for population size (N̂) and the spatial scale
parameter of the half-normal detection function (σ̂) estimated by a mis-specified, standard
spatial capture-recapture model fitted to Poisson-distributed data sets simulated (n = 25).
Violins show the effects of spatial autocorrelation in the detector-level covariates simulated
in different scenarios of continuous (top row) and categorical (bottom three rows) spatial
variation in baseline detection rate. The dashed lines show median CV for the parameter
estimates achieved in the reference scenario. Numbers provided on the x-axes refer to the
unique ID of the simulation scenario and link with the more detailed information provided
for each simulation in Table S3.1 in Appendix 3.
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Figure S3.3: Coverage probability of the 95% credible intervals of population size (N̂)
and the spatial scale parameter of the half-normal detection function (σ̂) estimated by a
mis-specified, standard spatial capture-recapture model fitted to Poisson-distributed data
sets simulated (n = 25). Violins show the effects of spatial autocorrelation in the
detector-level covariates simulated in different scenarios of continuous (top row) and
categorical (bottom three rows) spatial variation in baseline detection rate. Numbers
provided on the x-axes refer to the unique ID of the simulation scenario and link with the
more detailed information provided for each simulation in Table S3.1 in Appendix 3.
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A B S T R A C T

Spatial capture-recapture (SCR) models are now widely used for estimating density from repeated individual
spatial encounters. SCR accounts for the inherent spatial autocorrelation in individual detections by modelling
detection probabilities as a function of distance between the detectors and individual activity centres. However,
additional spatial heterogeneity in detection probability may still creep in due to environmental or sampling
characteristics. if unaccounted for, such variation can lead to pronounced bias in population size estimates.

In this paper, we address this issue by describing three Bayesian SCR models that use generalized linear
mixed modelling (GLMM) approach to account for latent heterogeneity in baseline detection probability
across detectors with: independent random effects (RE), spatially autocorrelated random effects (SARE) with
components of prior covariance matrix modelled as a decreasing function of inter-detector distance, and a
two-group finite mixture model (FM) to identify latent detectability classes of each detector. We test these
models using a simulation study and an empirical application to a non-invasive genetic monitoring data set
of female brown bears (Ursus arctos) in central Sweden.

In the simulation study, all three models largely succeeded in mitigating the biasing effect of spatially
heterogeneous detection probability on population size estimates. Overall, SARE provided the least biased
population size estimates (median RB: -9% – 6%). When spatial autocorrelation in detection probability was
high, SARE also performed best at predicting the spatial pattern of heterogeneity in detection probability. At
intermediate levels of autocorrelation, spatially-explicit estimates of detection probability obtained with FM
were more accurate than those generated by SARE and RE. The empirical example revealed patterns consistent
with the results from the simulation study. We found that ignoring spatial heterogeneity in detection probability
led to at least 22% lower estimate of bear population size compared to models that accounted for it (i.e., SARE
and RE models). When the number of detections per detector is low (≤ 1), the GLMMs considered here may
require dimension reduction of the random effects by pooling baseline detection probability parameters across
neighbouring detectors (‘‘aggregation’’) to avoid over-parameterization.

The added complexity and computational overhead associated with SCR-GLMMs may only be justified in
extreme cases of spatial heterogeneity, e.g., large clusters of inactive detectors unbeknownst to the investigator.
However, even in less extreme cases, detecting and estimating spatially heterogeneous detection probability
may assist in planning or adjusting monitoring schemes.

1. Introduction

Spatial capture-recapture (SCR) models are now widely used to
estimate demographic parameters, particularly density. SCR data inher-
ently varies across space because animal movements are not completely
random and an individual is more likely to be detected close to its
centre of activity (‘activity centre’, AC). SCR models account for and,

∗ Corresponding author.
E-mail address: soumenstat89@gmail.com (S. Dey).

in fact, exploit such spatial heterogeneity in detection by modelling the
detection probability as a decreasing function of distance between a
detector - e.g., an observer, a trap, or a search location - and a latent
AC (Efford, 2004; Borchers and Efford, 2008). However, the relative
distance between a detector and an AC may not be the only cause of
variation in detection probability. Spatially variable and autocorrelated
detection probability can occur due to various other factors, such

https://doi.org/10.1016/j.ecolmodel.2023.110324
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as local differences in how animals use space and how sampling is
performed (Moqanaki et al., 2021; Stevenson et al., 2021).

Known sources of variation in detection probability are readily mod-
elled in SCR using covariates, for example, through proxies or direct
measures of sampling effort (Efford et al., 2013), resource selection data
obtained from telemetry studies (Royle et al., 2013), or information
about landscape connectivity (Sutherland et al., 2015). However, not
all sources of variation are known and fully observed. For example,
local site-specific characteristics affecting detector exposure, or effect
of local atmospheric conditions on the genotyping success rate of non-
invasively collected DNA samples may remain unaccounted for during
SCR analyses (Efford et al., 2013; Kendall et al., 2019; Moqanaki
et al., 2021). Furthermore, large-scale wildlife monitoring programmes
sometimes include both structured and unstructured sampling data.
The latter may be data collected by the general public to increase
the extent and intensity of sampling (Thompson et al., 2012; Bischof
et al., 2020a). Unstructured and opportunistic sampling data is likely to
be associated with unknown spatial variation in detection probability.
Unmodelled spatial variation in detection probability, particularly in
the presence of high spatial autocorrelation, can lead to biased and
overdispersed population size estimates in SCR analyses (Moqanaki
et al., 2021). A worst-case scenario are pockets or clusters of detectors
where, unbeknownst to the investigator, detection probability is null.

Adequately accounting for spatial heterogeneity and autocorrela-
tion in detection probability is essential for obtaining reliable statis-
tical inference in SCR analyses (Moqanaki et al., 2021; Howe et al.,
2022). In the absence of known covariates, the effect of detector-
specific variation in detection probability can be modelled by us-
ing a function that explains the true pattern of heterogeneity. This
function is always unknown and we approximate it using random
effects, i.e., by extending SCR with generalized linear mixed models
(GLMM). Bayesian implementation of SCR-GLMMs allows modelling
and estimation of heterogeneous detection probability surfaces in SCR
models (Hooten et al., 2003). Spatially-explicit estimates of detection
probability can in turn reveal problematic areas (e.g., regions with very
low detection probability), which are important to wildlife monitoring
and conservation.

Using simulations, we describe and test three extensions of Bayesian
SCR-GLMMs that aim to account for latent spatial heterogeneity in
detection probability via the use of random effects: (1) a simple GLMM
extension of the basic single-season SCR model by assigning inde-
pendent random effects (RE) to detector-specific baseline detection
probabilities — with the aim to account for unknown spatial variation
in detection probability among detectors; (2) a GLMM extension of
the basic single-season SCR model incorporating spatial autocorrelation
between detectors by means of spatially autocorrelated random effects
(SARE), where covariance is modelled as a function of inter-detector
distance, thus implicitly defining an ordered neighbourhood structure;
and (3) a two-group finite mixture (FM) model to identify latent
detectability classes of detectors.

We assessed and compared these three structurally different models
in terms of (i) their ability to produce unbiased abundance estimates,
(ii) their capacity to realistically predict detection probability surfaces,
(iii) their model complexity, and (iv) their computational overhead.
Finally, we considered the role that model comparison could play
in selecting the ‘best’ SCR model under different conditions. Finally,
we provide an empirical demonstration of our modelling approaches
by applying them to a non-invasive genetic monitoring data set on
brown bears (Ursus arctos) from central Sweden. We chose this example
because a large proportion of the data were collected opportunistically
by volunteers without reliable measures of sampling effort or spatial
variation therein.

2. Methods

We first describe a basic single-season SCR model, where we assume
a homogeneous baseline detection probability across all the detectors.

Following that, we describe three extensions of the SCR model, namely:
(i) a SCR-GLMM with independent random effects (RE), (ii) a SCR-
GLMM with spatially autocorrelated random effect (SARE), and (iii) a
SCR-GLMM with two-group mixture to model detector-specific baseline
detection probabilities (FM). Lastly, as a reference point for making
comparisons, we use a SCR-GLM model where the known true cause
of the variation in detection probability is modelled using fixed effects.

2.1. Model 1: Basic single-season SCR model (SCR)

A single-season SCR model typically consists of two submodels:
a submodel for the spatial distribution of individual ACs within a
given habitat  ⊂ R2, and another submodel for the individual and
detector-specific observations, conditional on the location of ACs.

2.1.1. The ecological submodel
We considered 𝑁 individuals to reside in  , each of whom was

assumed to move randomly around its AC (with coordinates 𝒔𝑖). Fol-
lowing a homogeneous point process, each individual AC was assumed
to be uniformly distributed across the habitat  :

𝒔𝑖 ∼ Uniform(), 𝑖 = 1, 2,… , 𝑁. (1)

In our analysis, the location 𝒔𝑖 of individual ACs and the number
of these ACs (𝑁) are both unknown. We used a data augmentation
approach to model 𝑁 (Royle et al., 2007), with a large integer 𝑀 as
an upper bound for 𝑁 . We introduced a vector of 𝑀 latent binary
variables 𝒛 = (𝑧1, 𝑧2,… , 𝑧𝑀 )′ such that 𝑧𝑖 = 1 if individual 𝑖 is a member
of the population and 𝑧𝑖 = 0 otherwise. Then we assumed that each
𝑧𝑖 follows a Bernoulli distribution with inclusion probability 𝜓 , the
probability that an arbitrary individual from the augmented population
of 𝑀 individuals is a member of the population under study:

𝒛𝑖 ∼ Bernoulli(𝜓). (2)

Consequently, population size 𝑁 =
∑𝑀
𝑖=1 𝑧𝑖 is a derived parameter,

following a binomial distribution with parameters 𝑀 and 𝜓 .

2.1.2. The observation submodel
We considered one sampling occasion and a set of 𝐽 detectors

located in  . The capture history of the 𝑖th individual is denoted as
(𝑦𝑖1, 𝑦𝑖2,… , 𝑦𝑖𝐽 ), where each 𝑦𝑖𝑗 is binary, i.e., 𝑦𝑖𝑗 is 1 if individual 𝑖 is
detected at detector 𝑗 and 0 otherwise. The observed capture-recapture
data set, denoted by 𝒀obs, is of dimension 𝑛× 𝐽 , where 𝑛 is the number
of detected individuals during the SCR survey. We augmented this data
set 𝒀obs with 𝑀 − 𝑛 ‘‘all-zero’’ capture histories 𝟎𝐽 following the data
augmentation approach. The zero-augmented data set is denoted by 𝒀
and is of dimension 𝑀 ×𝐽 . We assumed a Bernoulli model for each 𝑦𝑖𝑗 ,
conditional on 𝑧𝑖:

𝑦𝑖𝑗 ∼ Bernoulli(𝑝𝑖𝑗𝑧𝑖), (3)

where 𝑝𝑖𝑗 denotes the detection probability of the 𝑖th individual at the
𝑗th detector. The detection probability 𝑝𝑖𝑗 is a decreasing function of
distance, modelled following a half-normal form (Efford, 2004):

𝑝𝑖𝑗 = 𝑝0 exp
(
−
𝑑2𝑖𝑗
2𝜎2

)
, (4)

where 𝑑𝑖𝑗 = 𝑑(𝒔𝑖,𝒙𝑗 ) = ‖𝒔𝑖 − 𝒙𝑗‖ is the Euclidean distance between the
detector location 𝒙𝑗 and individual AC 𝒔𝑖, 𝑝0 is the baseline detection
probability, and the scale parameter 𝜎 quantifies the rate of decline in
detection probability 𝑝𝑖𝑗 with distance 𝑑𝑖𝑗 . The full SCR model can thus
be written as:

𝜓 ∼ Uniform(0, 1)
𝜎 ∼ Uniform(0, 50)
logit(𝑝0) ∼  (0, 22)

𝑖 =1, 2,… ,𝑀 ∶
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𝒔𝑖 ∼ Uniform()
𝑧𝑖 ∼ Bernoulli(𝜓)
𝑝𝑖𝑗 = 𝑝0 exp(−𝑑2𝑖𝑗∕(2𝜎

2)) for 𝑗 = 1, 2,… , 𝐽

𝑦𝑖𝑗 ∼ Bernoulli(𝑝𝑖𝑗 𝑧𝑖) for 𝑗 = 1, 2,… , 𝐽 (5)

By modelling detection probability 𝑝𝑖𝑗 in terms of individual ACs and
fitting a decreasing detection function (as in (4)) using the distance
between ACs and detector location, the SCR model accounts for the
spatial autocorrelation within individual capture histories. However,
under this model, detection probabilities 𝑝𝑖𝑗 and 𝑝𝑖𝑗′ are equal at two
detectors 𝑗 and 𝑗′ when they are located at the same distance from
the AC 𝒔𝑖 regardless of other potential sources of variation between
the two detectors. In other words, this model does not consider the
additional variation in detection probability that may be present at
different detectors due to their locations in the landscape and other
heterogeneous characteristics.

2.2. Model 2: Independent random effects SCR model (RE)

To account for spatial heterogeneity in detection probability, caus-
ing detector-specific variation in detection probabilities, we used a
simple GLMM extension of the basic single-season SCR model (Model
1). Here, we assigned a logistic-regression type model to baseline
detection probability for each detector:

logit(𝑝0𝑗 ) = 𝜇 +𝑊𝑗 , 𝑗 = 1, 2,… , 𝐽 , (6)

where 𝜇 denotes the intercept and 𝑊𝑗 denotes the random effect for the
𝑗th detector. The detection probability 𝑝𝑖𝑗 for individual 𝑖 at detector 𝑗
is expressed as

𝑝𝑖𝑗 = 𝑝0𝑗 exp
(
−
𝑑2𝑖𝑗
2𝜎2

)
. (7)

We assumed a  (0, 𝜎2𝑤) prior for each 𝑊𝑗 , 𝑗 = 1, 2,… , 𝐽 and a (0, 22) prior for 𝜇. The variance parameter 𝜎2𝑤 can be given a weakly
informative prior. Note that the RE model does not specifically account
for spatial autocorrelation in detection probability across detectors.

2.3. Model 3: Spatially autocorrelated random effects SCR model (SARE)

We extended the basic single-season SCR model (Model 1) to ac-
count for spatial autocorrelation among detectors. In particular, we
developed a SCR model for situations where detectors at close prox-
imity are more likely to have similar detection probability compared
to more distant detectors. We modelled this spatial autocorrelation by
introducing an autocorrelated random effect 𝑾 = (𝑊1,𝑊2,… ,𝑊𝐽 )′ of
length 𝐽 . We assumed 𝑊 to follow a multivariate normal distribution
with mean 𝟎𝐽 and covariance matrix 𝛤 = ((𝛾𝑗𝑗′ )), which controls the
spatial dependence between detectors. We modelled each element 𝛾𝑗𝑗′
of this covariance matrix as a decreasing function of distance between
detectors 𝑗 and 𝑗′ following (Moqanaki et al., 2021),

𝛾𝑗𝑗′ = exp(−𝜙 𝛿𝑗𝑗′ ), (8)

where 𝛿𝑗𝑗′ = 𝑑(𝒙𝑗 ,𝒙𝑗′ ) = ‖𝒙𝑗 − 𝒙𝑗′‖ is the Euclidean distance between
the detector locations 𝒙𝑗 and 𝒙𝑗′ . This covariance function implicitly
defines an ordered neighbourhood for each detector and 𝜙 controls the
rate of distance-dependent decay of spatial autocorrelation between the
detectors. In particular, detectors are highly autocorrelated if 𝜙 is small
(e.g., 0.05), and autocorrelation decreases as 𝜙 increases (Figs. 1 and
4). Similar to the RE model, the detection probability 𝑝𝑖𝑗 for individual
𝑖 at detector 𝑗 is then expressed as

𝑝𝑖𝑗 = 𝑝0𝑗 exp
(
−
𝑑2𝑖𝑗
2𝜎2

)
, (9)

where

logit(𝑝0𝑗 ) = 𝜇 +𝑊𝑗 , 𝑗 = 1, 2,… , 𝐽 . (10)

Here, we assigned a  (0, 22) prior for 𝜇 and a  (0, 52) prior for
log-transformed 𝜙.

When 𝜙 = 0, each component 𝛾𝑗𝑗′ = 1 (for any 𝑗 and 𝑗′), the random
effect 𝑾 becomes a degenerate process, implying exact dependence
between the detectors. Hence, the value of each random effect 𝑊𝑗 is
identical at any location of the detector grid. This is equivalent to
the basic single-season SCR model. Conversely, when 𝜙 → ∞, the
covariance matrix 𝛤 reduces to an identity matrix, and consequently,
the SARE model reduces to a SCR-GLMM with independent random
effects (RE).

2.4. Model 4: Two-group finite mixture SCR model (FM)

Variable sampling intensity could be associated with ordered classes
of unknown variation in detection probability across the landscape. For
our study, we proposed using a two-group finite mixture SCR model
(FM) to model heterogeneity in detection probability between detectors
(Cubaynes et al., 2010; Turek et al., 2021). Here, we defined two groups
of heterogeneity, viz., 1 and 2, and introduced two detection probabil-
ity parameters 𝜂1 and 𝜂2, where 𝜂𝑘 is the detection probability of the 𝑏th
subgroup, 𝑏 = 1, 2. A constraint is imposed on these parameters 𝜂1 < 𝜂2
to ensure identifiability. Further, we defined binary indicator variables
𝑢𝑗 (𝑗 = 1, 2,… , 𝐽 ) to indicate the subgroup that a detector belongs to:

𝑝0𝑗 = (1 − 𝑢𝑗 ) 𝜂1 + 𝑢𝑗 𝜂2, 𝑗 = 1, 2,… , 𝐽 . (11)

MCMC computation allows the binary classification in our two-
group mixture model to implicitly account for the group membership
probabilities Pr(𝑢𝑗 = 1) and consequently, allows estimation of each 𝑝0𝑗
via (11) accounting for the uncertainty in the group membership prob-
abilities of each detector. We assigned a Bernoulli prior to each 𝑢𝑗 with
probability 𝜋 of being assigned to second group. We further assumed
bounded uniform priors over the (0, 1) interval for the probability
parameters 𝜂1, 𝜂2, and 𝜋.

2.5. Model 5: SCR model with known fixed effects (FE)

For the sake of assessing and comparing the performance of the
above models, we considered a GLM extension of basic single-season
SCR model (Model 1) using detector-specific effects (i.e., the true
source of variation) to model baseline detection probability. This can
be executed by supplying the known simulated effect 𝑾 as an observed
‘‘virtual" covariate and then model the baseline detection probability:

logit(𝑝0𝑗 ) = 𝜇 +𝑊𝑗 . (12)

Consequently, the detection probability 𝑝𝑖𝑗 is expressed as:

𝑝𝑖𝑗 = 𝑝0𝑗 exp
(
−
𝑑2𝑖𝑗
2𝜎2

)
. (13)

The rest of this FE model remains the same as the basic SCR (Model 1).

3. Simulation study

For simulations, we used a 32 × 32 detector array (number of traps
𝐽 = 1024) with 1 distance unit (du) of minimum inter-detector spacing.
The detector array is centred on a 41 × 41 du habitat, surrounded
by a 5-du habitat buffer (Fig. 1). We used a 𝜎 value of 1.5 for all
the simulations so that the buffer width is larger than 3𝜎; resulting in
negligible detection probability of individuals with ACs near the habitat
boundary (Efford, 2011). We simulated SCR data sets for 𝑁 = 300
individuals leading to a population-level home range overlap index
𝑘 = 𝜎

√
Density = 0.63 (Efford et al., 2016). We set the size of the

augmented population 𝑀 to be 500.



Ecological Modelling 479 (2023) 110324

4

S. Dey et al.

Fig. 1. Examples of spatially variable and autocorrelated baseline detection probability surfaces 𝒑𝟎 = (𝑝01 , 𝑝02 ,… , 𝑝0𝐽 )′. The colour gradient corresponds to different values of
baseline detection probability. The surface is overlayed on a grid of detectors (grey dots) centred in a habitat (entire area surrounded by the red line with rounded corners). Shown
in rows, spatial variation in detection probability can be either continuous or categorical (with 50% of the detectors remaining inactive while the rest have a constant baseline
detection probability). Shown in columns, spatial autocorrelation may vary from intermediate (Moran’s I ≈ 0.3) to high (Moran’s I ≈ 1).

3.1. Simulation scenarios

For each simulation, we used the SARE model (Model 3, Section 2.3)
to generate SCR data with spatially autocorrelated detection probability
between detectors. We created simulation scenarios by varying spatial
autocorrelation rate parameter 𝜙 with high (𝜙 = 0.05) and intermediate
(𝜙 = 1) spatial autocorrelation to simulate spatially varying random
effect 𝑾 = (𝑊1,𝑊2,… ,𝑊𝐽 )′ (Fig. 1).

3.1.1. Continuous detector-specific variation in detection probability
Detection probability may exhibit continuous spatial variation if

it is linked with underlying habitat characteristics, such as elevation,
forest cover, or distance from roads that influence animal behaviour
or detection effort and efficiency (Moqanaki et al., 2021). For sim-
plifying the interpretation of 𝜇 in SARE (Model 3), we transformed
it into a new variable 𝜂 via the link 𝜇 = logit(𝜂). Here, 𝜂 can also
be viewed as the average baseline detection probability, providing a
clearer interpretation for the readers. In simulations, we used three
values of 𝜂 to generate low (𝜂 = 0.1), intermediate (𝜂 = 0.3), and high
(𝜂 = 0.6) baseline detection probability for each detector, subject to
spatial autocorrelation infused by 𝑾 (Fig. 1, row 1).

3.1.2. Categorical detector-specific variation in detection probability
Discrete differences in sampling or environmental characteristics

can lead to categorical classes of variation in detection probability
between detectors. We considered an extreme case, where 50% of the
detectors would remain inactive, and the remaining detectors would
have a constant detection probability (Moqanaki et al., 2021). Thus, a
portion of the study area would remain entirely unsampled. To simulate
such scenarios, we transformed each 𝑝0𝑗 into a discrete variable taking

only one of the two values 0 and logit(𝜂) to create two classes of
detector-specific baseline detection probability using (10):

𝑝0𝑗 =

{
0, if 𝑊𝑗 ≤ 𝑞50
logit(𝜂), otherwise,

(14)

where 𝑞50 is the 50% quantile of the effect 𝑊𝑗 ’s. We used two values of
𝜂 to generate low (𝜂 = 0.1) and intermediate (𝜂 = 0.3) levels of baseline
detection probability for active detectors (Fig. 1, row 2).

In summary, we divided all simulation scenarios in two broad
setups, viz. continuous and categorical, with respect to detector-specific
variation in detection probability. In the continuous setup (‘CON’),
we generated six simulation scenarios by combining two levels of
autocorrelation 𝜙 and three levels of detection 𝜂. In the categorical
setup (‘CAT’), we generated four simulation scenarios by combining
two levels of 𝜙 and two levels of 𝜂. Thus, in total, we generated 10
simulation scenarios. For each simulation scenario, we generated 100
independent SCR data sets, resulting in 1000 simulated SCR data sets
in total (Table 1).

3.2. Curse of dimensionality

In many SCR studies the majority of detectors are associated with no
or very few detections (Gerber and Parmenter, 2015; Tourani, 2022).
In such situations, fitting complex models such as SARE, FM, and
RE, which involves large number of parameters and latent variables,
may lead to poor Markov chain Monte Carlo (MCMC) convergence,
below par mixing, and over-fitting. This phenomenon is known as
the curse of dimensionality and expected to occur when models are
over-parameterized (Wikle and Hooten, 2010).

We mitigated this issue by dimension reduction of the random
effects. To do this, we aggregated random effects that are used to model
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Table 1
Summary of simulated spatial capture-recapture data sets. The number of detected individuals, the total number of detections, the number of detections per detector, the number
of detections per individual and the number of detections per detected individual are calculated over 100 replications for each of the 10 simulation scenarios are tabulated. The
last three columns show mean values.

Scenario 𝜂 𝜙 No. of detected individuals No. of detections Detections per
detector

Detections per
individual

Detections per detected
individual

Mean 2.5% 97.5% Mean 2.5% 97.5%
Quantile Quantile Quantile Quantile

Continuous

1 0.1 1 179 164 197 372 326 432 0.36 1.24 2.08
2 0.1 0.05 163 92 224 407 127 921 0.40 1.36 2.33
3 0.3 1 229 215 245 926 843 1041 0.90 3.09 4.04
4 0.3 0.05 221 186 250 984 446 1814 0.96 3.28 4.37
5 0.6 1 244 233 255 1610 1495 1753 1.57 5.37 6.59
6 0.6 0.05 243 223 257 1675 1106 2357 1.64 5.58 6.87

Categorical

7 0.1 1 103 89 119 140 138 162 0.14 0.47 1.37
8 0.1 0.05 93 82 111 144 144 166 0.14 0.48 1.55
9 0.3 1 186 170 205 415 412 468 0.41 1.38 2.23
10 0.3 0.05 150 128 176 422 419 492 0.41 1.41 2.82

baseline detection probability, such that a single random effect value
is assigned to a cluster of neighbouring detectors. Note that we are not
aggregating detections themselves. For instance, in SARE, if each clus-
ter contains 𝑛𝑐 detectors, then each detector belonging to a cluster (say,
𝑗th) will share the same random effect value 𝑊𝑗 , 𝑗 = 1, 2,… , 𝐽∕𝑛𝑐 (𝐽
being the total number of detectors). Here, we aggregated the random
effects by a factor of 4 (squares of 4 × 4 detectors = one cluster). When
aggregated, the 32 × 32 detector grid (i.e., 1024 detectors; Fig. 1) forms
a grid of 8 × 8 clusters.

3.3. Model fitting description

We fitted five SCR models to the same simulated datasets: (i) basic
single-season SCR model without aggregation (Section 2.1), (ii) RE
model, both with and without aggregation (Section 2.2), (iii) SARE
model, both with and without aggregation (Section 2.3), (iv) FM model,
both with and without aggregation (Section 2.4), and (v) FE model
without aggregation (Section 2.5). The models were fitted using MCMC
simulation with NIMBLE (de Valpine et al., 2017; NIMBLE Development
Team, 2021) in R version 3.6.2 (R Core Team, 2019). We used the R
package nimbleSCR (Bischof et al., 2020b; Turek et al., 2021), which
implements the local evaluation approach (Milleret et al., 2019) to
increase MCMC efficiency. For each simulated data set, we ran three
chains of (i) 30,000 iterations for both basic single-season SCR and
FE model including burn-in 12,000 iterations, (ii) 100,000 iterations
for SARE and RE including burn-in 20,000 iterations (both with and
without aggregation), and (iii) 60,000 iterations for FM (without ag-
gregation) including burn-in 12,000 iterations and 20,000 iterations
for FM (with aggregation) including 4000 iteration burn-in. MCMC
convergence of each model was monitored using the Gelman–Rubin
convergence diagnostic 𝑅̂ (with upper threshold 1.1, Gelman et al.,
2014a) and visual inspection of traceplots.

3.4. Model performance measures

We used relative bias, coefficient of variation, and coverage proba-
bility to evaluate the performance of each fitted models with respect
to estimation of focal parameters (e.g., 𝑁 , 𝜎). Suppose {𝜃(𝑟) ∶ 𝑟 =
1, 2,… , 𝑅} denotes a set of MCMC draws from the posterior distribution
of a scalar parameter 𝜃.

Relative bias. Relative bias (RB) is calculated as

R̂B(𝜃) =
𝜃̂ − 𝜃0
𝜃0

, (15)

where 𝜃̂ denotes the posterior mean 1
𝑅
∑𝑅
𝑟=1 𝜃

(𝑟) and 𝜃0 gives the true
value.

Coefficient of variation. Precision was measured by the coefficient of
variation (CV):

ĈV(𝜃) = ŜD(𝜃)
𝜃̂

, (16)

where ŜD(𝜃) =
√

1
𝑅
∑𝑅−1
𝑟=1 (𝜃(𝑟) − 𝜃̂)2 is the posterior standard deviation

of parameter 𝜃.

Coverage probability. Coverage probability was computed as the pro-
portion of converged model fits for which the estimated 95% credible
interval (CI) of the parameter 𝜃 contained the true value 𝜃0.

3.4.1. Effective sample size and MCMC efficiency
To compare the efficiency of the different MCMC algorithms of the

fitted models, we computed the effective sample size (ESS) and MCMC
efficiency (= ESS/MCMC run time) of each top-level parameter for each
of the model runs. We used the ‘effectiveSize’ function from the R
package coda to compute ESS (Plummer et al., 2006). The calculation of
ESS is based on the combined samples of the converged MCMC chains
after discarding the burn-in period. The MCMC computation time was
calculated excluding the burn-in period. To obtain stable estimates of
the quantities of interest, it is recommended to have ESS greater than
400 (Vehtari et al., 2021).

Although MCMC algorithms are used to generate sample from pos-
terior distributions, efficiency can vary between different algorithms.
There are two primary measures of efficiency of MCMC algorithms
— quality of MCMC mixing and speed of MCMC computation. We
computed ‘MCMC efficiency’ as a combined metric to assess both of
these characteristics of MCMC algorithms, so that we could compare the
efficiency of different MCMC algorithms. We reported the mean MCMC
efficiency for each top-level parameters in the model and across all the
converged replicates in each scenario.

3.4.2. Spatial accuracy of predicted baseline detection probability surfaces
Baseline detection probability surfaces obtained from SCR analyses

are useful in evaluating the performance of our SCR models as they
have the potential to reveal spatial patterns in detection probabil-
ity, such as pockets with very low or very high detection probabil-
ity, that could be of practical relevance. We compared the accuracy
of the detector-specific baseline detection probability surfaces pre-
dicted by the different models with the true simulated surface 𝒑𝟎 =
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Table 2
Percentage of converged replicates with respect to the top-level parameters (e.g., 𝑁 , 𝜎, 𝜂, log(𝜙), 𝜋) for the 100 replicated data sets for each
of the 10 simulation scenarios and five fitted models. Here, ‘1 × 1’ indicates that the model is fitted without aggregation and ‘4 × 4’ refers to
the level to aggregation of the random effects (Section 3.2).

Scenario 𝜂 𝜙 SCR RE SARE FM FE

1 × 1 4 × 4 1 × 1 4 × 4 1 × 1 4 × 4

Continuous

1 0.1 1 100 34 100 0 18 14 84 100
2 0.1 0.05 100 42 100 0 67 6 86 100
3 0.3 1 100 11 100 0 39 24 97 100
4 0.3 0.05 100 16 100 0 94 11 99 100
5 0.6 1 100 8 100 0 29 6 96 100
6 0.6 0.05 100 6 100 0 87 5 99 100

Categorical

7 0.1 1 100 78 100 0 5 0 66 100
8 0.1 0.05 100 60 100 0 79 2 86 100
9 0.3 1 100 25 100 0 39 48 80 100
10 0.3 0.05 100 20 100 0 96 24 99 100

Table 3
Mean MCMC efficiency of the fitted models (SCR, RE, SARE, FM, and FE). Here we report ‘MCMC efficiency’ averaged over each top-level
parameters in a model (e.g., 𝑁 , 𝜎, 𝜂) and over each of the converged replicates. MCMC efficiency is calculated as ‘ESS/MCMC run time’ where
the ESS (i.e., effective sample size) is based on the combined samples from the converged MCMC chains after discarding the burn-in period.
MCMC run time is calculated excluding the burn-in period. Scenarios without any converged replicates are denoted by ‘–’. Here, ‘1 × 1’ indicates
that the model is fitted without aggregation and ‘4 × 4’ refers to the level to aggregation in the random effects (Section 3.2).

Scenario 𝜂 𝜙 SCR RE SARE FM FE

1 × 1 4 × 4 1 × 1 4 × 4 1 × 1 4 × 4

Continuous

1 0.1 1 1.22 0.56 0.54 – 1.03 0.07 0.04 1.07
2 0.1 0.05 1.31 0.49 0.52 – 0.81 0.09 0.05 1.06
3 0.3 1 1.85 0.81 0.87 – 1.36 0.09 0.06 1.32
4 0.3 0.05 1.92 0.85 0.83 – 1.26 0.11 0.07 1.31
5 0.6 1 2.10 0.85 1.00 – 1.56 0.11 0.06 1.41
6 0.6 0.05 2.14 0.90 1.00 – 1.41 0.12 0.07 1.42

Categorical

7 0.1 1 0.41 0.18 0.23 – 0.77 – 0.01 0.88
8 0.1 0.05 0.84 0.36 0.31 – 0.27 0.06 0.04 0.90
9 0.3 1 1.39 0.61 0.59 – 0.70 0.08 0.04 1.18
10 0.3 0.05 2.31 0.90 1.00 – 0.54 0.13 0.09 1.15

(𝑝01, 𝑝02,… , 𝑝0𝐽 )′. We quantified the accuracy by calculating the ex-
pected sum of squared errors (SSE). In practice, we first obtained
posterior MCMC sample of baseline detection probability surface 𝒑𝟎 =
(𝑝01, 𝑝02,… , 𝑝0𝐽 )′ and computed the mean squared error for detector 𝑗:
SSE𝑗 =

1
𝑅
∑𝑅
𝑟=1(𝑝

(𝑟)
0𝑗 − 𝑝0𝑗 )

2, where {𝑝(1)0𝑗 , 𝑝
(2)
0𝑗 ,… , 𝑝(𝑅)0𝑗 } denotes a posterior

MCMC sample of 𝑝0𝑗 , 𝑗 = 1, 2,… , 𝐽 . Finally, we calculated total error
sum of squares SSE =

∑𝐽
𝑗=1 SSE𝑗 as a measure of predictive accuracy

of detection probability surface. Smaller SSE implies a more accurate
prediction (closer to the truth) of the baseline detection probability
surface. We used 𝛥SSE, relative to the model with the lowest SSE (𝛥SSE
= SSE − min{SSE}), to compare the accuracy of predicted baseline
detection probability surface amongst the different models.

3.4.3. Model comparison using WAIC
We compared the fitted models using Watanabe–Akaike information

criterion (WAIC) (Watanabe, 2010), which is computed as

WAIC = −2
𝑀∑
𝑖=1

log
( 1
𝑅

𝑅∑
𝑟=1

𝑓 (𝐘𝑖 |𝜽(𝑟))
)
+ 2 𝑝𝑤, (17)

where 𝑓 (𝐘𝑖 |𝜽) denotes the likelihood of 𝑖th individual capture history
𝐘𝑖 = (𝑦𝑖1, 𝑦𝑖2,… , 𝑦𝑖𝐽 )′ in the model. Here, we adopted the second of the
two variants of the penalty term 𝑝𝑤 proposed by Gelman et al. (2014b):

𝑝𝑤 =
𝑀∑
𝑖=1

{ 1
𝑅 − 1

𝑅∑
𝑟=1

(
log 𝑓 (𝐘𝑖 |𝜽(𝑟)) − 1

𝑅

𝑅∑
𝑟=1

log 𝑓 (𝐘𝑖 |𝜽(𝑟))
)2}

. (18)

A model with smaller WAIC is preferred. We use 𝛥WAIC (= WAIC −
min{WAIC}) to compare the different models in terms of their model
fit and complexity.

4. Empirical example

The brown bear population in Sweden is monitored primarily using
non-invasive genetic sampling of scats and hair (Bischof et al., 2016,
2020a). The majority of samples are collected voluntarily by hundreds
of hunters. Due to the opportunistic nature of sample collection, there
are no direct measures of sampling effort available. Sampling effort,
meanwhile, is liable to be both spatially heterogeneous and spatially
autocorrelated (Isaac and Pocock, 2015). Thus, this data set offers
a good case study to demonstrate the application of our modelling
approaches. For this analysis, we considered genetic samples of adult
female bears with confirmed individual identity, sex, location, and sam-
pling date from two Swedish counties of Jämtland and Västernorrland
during the monitoring from 1 April to 30 November 2020 (Fig. 2) that
were stored in the Scandinavian large carnivore monitoring database
Rovbase 3.0 (www.rovbase.se). The data set was composed of 2207
successfully genotyped non-invasive genetic samples associated with
731 individual female bears (Fig. 2(b)). Bear detections were assigned
to the closest detector in a grid of 3152 detectors at 5 km resolution. On
average, there were 0.7 detections per detector (range: 0 – 14, Fig. 2(c))
and 3 detections per detected individual (range: 1 – 31).

For the purpose of demonstration, we fitted five single-season mod-
els – SCR, RE, SARE, FM, and FE (as described in Section 2) – to the
bear data and compared estimates of baseline detection probability and
population size. Because of the low number of detections per detector,
we aggregated the random effects to 20 km resolution for models SARE,
FM, and RE, so that each random effect value was shared by a maxi-
mum of 16 detectors. In an effort to model the spatial heterogeneity in
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Fig. 2. Illustration of the study area, individual detection locations and detector-specific counts in the non-invasive genetic monitoring data of female brown bears (Ursus arctos)
from central Sweden, April - November 2020. (a): study area (yellow shaded): the two counties from central Sweden, Jämtland and Västernorrland. (b): detection locations of
individual female brown bears during non-invasive genetic monitoring. (c): the number of female bear detections assigned to each detector (at 5 km resolution) across the study
area.

detection probability with the FE model, we picked three spatial covari-
ates (Figure S5, Supp. material) that were known to play an important
role in detectability (Bischof et al., 2020a): (i) distance (m) from the
nearest road, as a measure of site accessibility during sampling, (ii)
a binary covariate indicating whether an observation from a large
carnivore was recorded by members of the public (www.skandobs.
se) or the authorities (www.rovbase.se) during the sampling period.
This binary covariate distinguishes areas with very low detectability
from those where carnivore DNA samples, if present, could have been
detected and submitted for genetic analysis (see Milleret et al., 2022).
In addition, (iii) separate intercepts were estimated for the two counties
(𝜇(Jämtland) = 𝜇1, and 𝜇(Västernorrland) = 𝜇2):

logit(𝑝0𝑗 ) = 𝜇(county𝑗 ) + 𝒙′𝑗𝜷, (19)

where county𝑗 denotes the county corresponding to the 𝑗th detector,
𝜷 = (𝛽1, 𝛽2)′ denotes the vector of regression coefficients (without
intercept) and 𝒙𝑗 = (𝑥1𝑗 , 𝑥2𝑗 )′ denotes the distance to the nearest road
and the presence/absence of other observations at the 𝑗th detector. We
ran four MCMC chains for each of the five models. The chain lengths,
burn-in period and thinning rate were as following: (i) SCR: 50,000

iterations, burn-in = 6000, thinning rate = 1, (ii) RE: 13,000 iterations,
burn-in = 5000, thinning rate = 1, (iii) SARE: 300,000 iterations, burn-
in = 160,000, thinning rate = 2, (iv) FM: 40,000 iterations, burn-in =
2000, thinning rate = 1, and (v) FE: 21,000 iterations, burn-in = 6000,
thinning rate = 1. We followed the same procedure to assess model
performance as we did in the simulation study, but reported posterior
parameter estimates, as RB could not be calculated for the empirical
example.

5. Results

5.1. Simulation study

5.1.1. Model convergence, effective sample size and MCMC efficiency
During comparison and interpretation, we only considered models

that had reached convergence and exhibited proper mixing of all the
top level parameters (e.g., 𝑁 , 𝜎, 𝜙, 𝜂), with 𝑅̂ ≤ 1.1. While all SCR and
FE models converged, convergence of the SARE, RE, and FM models
was challenging without aggregating the random effects (Table 2). Only
under the extreme categorical scenarios with low baseline detection
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Fig. 3. Performance of the estimator of population size (𝑁) from five models (i) SCR, (ii) RE (aggregation 4 × 4), (iii) SARE (aggregation 4 × 4), (iv) FM (aggregation 4 × 4),
and (v) FE. From top to bottom, (1) relative bias (RB, in %), (2) coefficient of variation (CV, in %), and (3) coverage probability of the 95% credible interval (in %) of 𝑁 for
simulation scenarios under average baseline detection probability 𝜂 = 0.3. Violins represent the distribution of RB and CV over 100 simulations. (Values above the bars represent
the corresponding coverage probability. Labels on the 𝑥-axis refer to scenarios with continuous (‘‘CON’’) and categorical (‘‘CAT’’) detector-specific variation in baseline detection
probability for high autocorrelation (𝜙 = 0.05) and intermediate autocorrelation (𝜙 = 1) scenarios. All results shown are based on models that met convergence criteria.

probability (𝜂 = 0.1), the convergence rates (i.e., the number of
converged models out of 100 repetitions) of RE were found to be higher
(≥ 60%) than the other two GLMM models. The convergence rate of the
RE and FM models improved substantially when random effects were
aggregated (66% – 100%). The convergence rate for the SARE model
also improved substantially (67% – 96%) after aggregating the random
effects under high spatial autocorrelation scenarios (𝜙 = 0.05), whereas
the improvement was less pronounced (5% – 39%) under intermediate
autocorrelation scenarios (𝜙 = 1).

For all the models that converged, the mean ESS was considerably
higher than the suggested threshold of 400, indicating that the MCMC
chains were long enough to provide stable estimates (Tables S6 – S9,
Supp. material). SCR and FE had the highest MCMC efficiency (mean
MCMC eff. > 0.8) under most scenarios except for the extreme categor-
ical scenario with 𝜂 = 0.1 and 𝜙 = 0.05, where SCR had a relatively
lower mean MCMC efficiency 0.41 (see Table 3). MCMC efficiency of
both SARE and RE models were 1.5 – 2 times lower than SCR and FE
models in these scenarios despite spatial aggregation of the random
effects. Among the three GLMM formulations, SARE showed the highest
MCMC efficiency in most scenarios (mean: 0.8 – 1.6 in continuous and
0.27 – 0.77 in categorical scenarios). FM model had the lowest MCMC
efficiency (mean: 0.01 – 0.1) across all scenarios, primarily due to the
higher MCMC computation time (Table S9). Considering the overall
poor MCMC convergence of the three GLMMs when fitted without
aggregation, we only considered the results with dimension reduction.

5.1.2. Estimates of population size
All five models showed negligible bias in population size 𝑁 esti-

mates under most simulation scenarios tested here. Both SARE and FE
(models that account for spatial autocorrelation) estimated population
size with moderate accuracy across all the scenarios (median RB: −9%
– 6%) (Tables S3, S5). Although SCR and RE did not specifically model
spatial autocorrelation between detectors, population size estimates
from these models showed negligible bias (median RB: −10% – 5%) in
most scenarios considered (Tables S1 and S2, Supp. material). However,
under scenarios with categorical spatial variation in baseline detection
probability and high autocorrelation (𝜙 = 0.05), the SCR model showed
approximately 30% negative bias in population size (Fig. 3). The RE
model produced an elevated negative bias (median RB: −17%) under
the categorical scenario with 𝜂 = 0.3 and 𝜙 = 0.05 (Table S2). The FM
model also showed a similar level of accuracy in estimating population
size compared to the SARE and FE models for all continuous scenarios
(Table S4). Although the FM model seemed to be structurally better
suited for the scenarios with categorical variation in detection proba-
bility (due to the integration of membership in discrete detectability
groups), it showed an 11% negative bias in each of the categorical
scenarios with high autocorrelation.

The coefficient of variation (CV) in population size estimated with
the five fitted models varied moderately (median CV: 3% – 16%) under
𝜂 = 0.1 and was less than 8% for the remaining scenarios with 𝜂 ≥
0.3. Coverage probabilities for the SCR model were > 90% for the
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Fig. 4. Illustration of baseline detection probability surfaces for simulation scenarios under average baseline detection probability 𝜂 = 0.3. In rows: simulated baseline detection
probability surface (‘REF 1 × 1’), aggregated simulated baseline detection probability surface (average by clusters of 16 detectors; ‘REF 4 × 4’), mean predicted baseline detection
probability surfaces from four models: SCR, RE (aggregation 4 × 4), SARE (aggregation 4 × 4) and FM (aggregation 4 × 4). Labels on the 𝑥-axis refer to scenarios with continuous
(‘‘CON’’) and categorical (‘‘CAT’’) variation in baseline detection probability. Second and fourth columns represent high autocorrelation among detectors (i.e., under 𝜙 = 0.05),
whereas first and the third column represent intermediate autocorrelation (i.e., under 𝜙 = 1). Colours correspond to different values of baseline detection probability.

scenarios with intermediate autocorrelation (𝜙 = 1). But when spatial
autocorrelation was high (𝜙 = 0.05), coverage declined drastically (65%
– 97% coverage) for the continuous scenarios and dropped to less than
20% for the categorical scenarios (Table S1). Coverage probabilities

for SARE, RE, and FE were ≥ 90% (coverage for FM ≥ 81%) for all
the scenarios except for the extreme categorical scenario with 𝜂 = 0.3
and 𝜙 = 0.05, where coverage probabilities were 0.77, 0.29, and 0.51,
respectively (Tables S2-S5).
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Fig. 5. Model comparison using SSE and WAIC from the simulation study for simulation scenarios under average baseline detection probability 𝜂 = 0.3. 𝛥SSE and 𝛥WAIC were
calculated among four models (SCR, RE (aggregation 4 × 4), SARE (aggregation 4 × 4), and FM (aggregation 4 × 4), but ignoring the FE model). Violins represent the distribution
over 100 replicated data sets in each scenario. The number above each violin represents the frequency of times (out of the 100 replicated data sets) when the metric (e.g., 𝛥SSE,
𝛥WAIC) of a respective model is minimum among the five models. Labels on the 𝑥-axis refer to scenarios with continuous (‘‘CON’’) and categorical (‘‘CAT’’) detector-specific
variation in detection probability. Grey shaded background indicates scenarios with high autocorrelation among detectors (𝜙 = 0.05), whereas white background indicates scenarios
with intermediate autocorrelation (𝜙 = 1). All results shown based on models that met convergence criteria.

5.1.3. Detection probability surfaces and model comparison
Both the SARE and FM models produced reliable detection proba-

bility surfaces in the presence of high spatial autocorrelation between
detectors (Fig. 4). SARE-generated surfaces were more accurate in
estimating surfaces of baseline detection probability, with the lowest
SSE in 65% – 94% of the replicates in both continuous and categorical
scenarios with high autocorrelation. Although FM was more precise
than SARE and RE in scenarios with intermediate autocorrelation, the
SCR model (which assumes homogeneous baseline detection probabil-
ity) had the lowest SSE in 72% – 97% of the replicates in these scenarios
(Figs. 5, S2).

Under the scenarios with continuous spatial variation in detectabil-
ity and high autocorrelation, SARE was selected as the best model 4 –
6 times more frequently than the other models based on WAIC when
𝜂 ≥ 0.3. With intermediate autocorrelation, FM and RE were selected
1.5 – 2 times more frequently than the other models when 𝜂 was 0.3 and
0.6, respectively. For all remaining scenarios (including the scenarios
with categorical spatial variation), the SCR model was selected.

5.2. Empirical example

All bear models converged and effective sample sizes of all top-
level parameters (e.g., 𝑁 , 𝜎, 𝜙, 𝜂) were higher than the threshold of
400, which ensured stable estimates (Table 4, Fig. 2). MCMC efficiency
of 𝑁 was highest for the SCR model (≈ 0.114) and lowest for the RE
model (≈ 0.0006). Among the three GLMMs, 𝑁 had the highest MCMC
efficiency (≈ 0.0175) under the SARE model.

Based on WAIC values, the best model was SARE followed by RE,
FE, FM and finally SCR (Table 4). Estimates of the number of female
brown bears (𝑁) were (a) at least 22% lower under the SCR model
and (b) at least 18% lower under the FM model compared to the
SARE and RE models (Table 4, Figure S6). The 95% CI also showed
a similar pattern, with the CI width being larger for the SARE, RE,
and FE models (CI width: 213, 234, and 181, respectively) than for the
SCR and FM models (CI width: 127 and 141, respectively). However,
the CVs of the population size estimates were rather low (2% – 4%)
under all five fitted models. The SCR-GLMMs, especially the SARE and
RE models, also predicted the largest heterogeneity for the baseline
detection probability surface (range: 0.0005 – 0.14; Fig. 6).

6. Discussion

Using a simulation study, we developed and tested three SCR-
GLMMs; an independent random effects SCR model (RE), a spatially
autocorrelated random effects SCR model (SARE), and a two-group
finite mixture SCR model (FM). We assessed and compared the per-
formance of these three models in terms of their ability to account for
latent spatial heterogeneity and autocorrelation in detection probability
among detectors. The SARE model, the data-generating model in the
simulation study, was the most reliable model in estimating population
size across all the tested scenarios. When autocorrelation was high
(𝜙 = 0.05), the SARE model also performed best in predicting the
baseline detection probability surface (as indicated by SSE). Population
size estimates from the RE and FM models were largely unbiased in the
presence of continuous detector-specific variation in baseline detection
probability surface, but subject to a pronounced negative bias when
fitted to the extreme scenarios with categorical variation and high
autocorrelation. The FM model outperformed the SARE and RE models
in terms of SSE for predicted surfaces of baseline detection probability
when autocorrelation was at intermediate level (𝜙 = 1).

Unknown latent and autocorrelated variation in detection proba-
bility among detectors is common in SCR studies (Stevenson et al.,
2021). As shown by Moqanaki et al. (2021), failure to properly account
for spatially autocorrelated detection probability may result in biased
and overdispersed population size estimates (Fig. 3). In this study, we
presented a Bayesian SCR-GLMM (SARE) that specifically accounts for
spatial autocorrelation between detectors. The primary advantages of
modelling spatial autocorrelation among detectors include the ability
to use the information on detector configuration to correctly account
for uncertainty in the estimates. In a practical context, this may aid the
identification of locations or regions inside the study area with very
low or no sampling effort. Fitting the basic SCR model in cases of high
autocorrelation produced a 30% RB with approximately zero cover-
age probability, whereas the SARE model showed less than 10% RB
and coverage probability over 77%. Even models that allow variation
among detectors but do not explicitly account for spatial autocorrela-
tion (RE and FM models) were able to produce estimates of population
size with little bias in most cases.
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Table 4
Population size estimates for female brown bears (Ursus arctos) in central Sweden. Provided are the posterior mean, coefficient of variation
(CV), 2.5%, 50% and 97.5% quantiles, 𝑅̂, effective sample size (ESS), MCMC efficiency (=ESS/MCMC run time), full MCMC run time of a single
chain (in hours) and 𝛥WAIC for the population size estimate (𝑁) for the five models (SCR, FE, RE, SARE, and FM) fitted to the non-invasive
genetic monitoring data of female brown bears collected in Jämtland and Västernorrland counties between 1 April and 30 November 2020. This
empirical analysis was conducted with the sole purpose of demonstrating the application of the various models developed here. The model is
overly simplistic; for example, it ignores likely spatial heterogeneity in density. For this reason, abundance estimates presented here are neither
intended nor suitable for interpretation as an actionable result in terms of population management.

Models Mean CV 2.5% 50% 97.5% 𝑅̂ ESS MCMC MCMC 𝛥WAIC
Quantile Quantile Quantile efficiency run time

SCR 1290.98 0.025 1229 1290 1356 1.000 14 500 0.1138 10.05 896.02
RE 1653.54 0.036 1545 1651 1779 1.008 835 0.0006 155.89 203.37
SARE 1721.91 0.032 1617 1721 1830 1.011 7 659 0.0175 65.17 0.00
FM 1353.46 0.027 1283 1353 1427 1.008 7 885 0.0057 66.57 505.56
FE 1621.38 0.029 1533 1621 1714 1.004 2 641 0.0132 19.39 371.49

Fig. 6. Illustration of the predicted baseline detection probability surfaces from the five models fitted to non-invasive genetic monitoring data of female brown bears (Ursus arctos)
from central Sweden, April - November 2020. (a-e): Predicted maps of baseline detection probability (𝑝0) surfaces from the five models (a) SCR, (b) RE, (c) SARE, (d) FM, and (e)
FE fitted to the bear data. For models RE, SARE, and FM, the estimates are obtained after aggregating the random effects to 20 km resolution.

We demonstrated the modelling approaches in a real-life SCR study,
non-invasive genetic sampling of brown bear in central Sweden.
Therein, members of the public (i.e., hunters) opportunistically col-
lect most of the bear genetic samples with no measure of sampling
effort (Bischof et al., 2020a). More than half (56%) of detectors on
the east side of the study area had no bear detections compared to
74% on the west along the Swedish–Norwegian border (Fig. 2). This
apparent disparity was picked-up by the SCR-GLMMs which suggested
a moderately high spatial autocorrelation in detection probability over
the study area. This was highlighted in the estimated baseline detection
probability surface from the SARE, RE, and FM models which had
Moran’s I values, a measure of spatial autocorrelation (Lichstein et al.,
2002), greater than 0.7.

One major difference between these models was that the estimated
baseline detection probability 𝑝0 at one group of aggregated detectors
(Figs. 6, black shaded pixel in subplot (b) and dark red shaded pixel in
subplot (c), near the eastern boundary) was significantly higher (> 0.1)

than the remaining surface with models SARE and RE but not with mod-
els SCR, FM, or FE. This is most likely due to one of the female bears
that was detected 23 times at this group of detectors, which represents
the highest detection rate of any individual at any detector group. This
localized apparent hotspot in sampling effort and corresponding large
difference in detection probability could neither be accounted for by
the SCR model that assumed homogeneous detectability, nor explained
by the spatial covariates used in the FE model.

Furthermore, the size of the female brown bear population was
estimated to be (a) at least 22% lower with the SCR model and (b)
at least 18% lower with the FM model compared to the SARE and
RE models. This pattern was consistent with our findings from the
simulation study (Scenarios 2 and 8, Figure S2, Tables S1 and S4) and
previous results from the literature (Moqanaki et al., 2021; Stevenson
et al., 2021) that showed an underestimation of abundance when not
accounting for spatially heterogeneous detection probability. Finally,
with larger WAIC values, the basic SCR model, FM, and FE seemed
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to have poorer predictive ability than the SARE and RE. These results
should be interpreted with caution as the models presented here all
assume homogeneous density, i.e., uniform placement of individual
ACs. When population density varies over space, the number of samples
collected in a given location will reflect both the variation in density
and sampling effort. For example, if sampling effort is positively corre-
lated with population density, any of the SCR-GLMM models presented
here would likely overestimate the heterogeneity in detection and pre-
sumably return biased estimates of abundance. Further research is thus
needed on the potential confounding effects of simultaneous spatial
heterogeneity in density and sampling effort (Clark, 2019; Paterson
et al., 2019), and the ability of SCR-GLMMs to account for and quantify
such variation.

In large-scale monitoring programmes, like our bear example, data
often hail from both structured and unstructured or opportunistic sam-
pling (Altwegg and Nichols, 2019; Bischof et al., 2020a; Isaac et al.,
2020). In certain extreme cases (e.g., citizen science data), large por-
tions of the study area may be left unsampled, unbeknownst to the
investigator (Bird et al., 2014; Johnston et al., 2022). The three SCR-
GLMMs tested here (SARE, RE, and FM) allow modelling and quantify-
ing unknown spatial variation in detection probability in the absence of
known fixed effects. Spatially-explicit estimates of detection probability
obtained with SCR-GLMMs can be useful in planning and adjusting
large-scale surveys, as they help investigators identify regions with high
and low detection probability, including apparent holes in sampling. On
the flip side, Bayesian SCR-GLMMs involve a large number of unknown
parameters, making these models challenging to fit, manifested in slow
computation speeds and convergence issues under certain conditions
(e.g., SCR data with low number of detections per detector, fitting of
GLMM models without aggregating the random effects). For choosing
a model, practitioners will need to weigh the benefits of accounting
for spatial heterogeneity in detection probability against the costs
associated with model complexity.

High dimensional random effects models can easily overfit typical
SCR data with few or no detections at the majority of detectors.
Dimension reduction of the random effects is a typical strategy to
avoid overfitting and to control the number of random effects in a
model (Section 3.2) (Hefley et al., 2017; Gelman et al., 2014a). Pooling
information allows reliable inference from model fitting that would
otherwise be computationally unstable as shown by the improved
convergence rates of all SCR-GLMM models when random effects were
aggregated (Table 2). The choice of aggregation level implies a trade-
off between sample size per detector (high aggregation to achieve
dimension reduction) and the resolution of spatially explicit estimates
of detectability (low aggregation for more spatial detail). To balance
the need for spatial detail and computation, we recommend increasing
the aggregation level until the MCMC convergence criteria are met for
the key parameters of interest. In empirical analyses, random effects
can also be aggregated based on natural groups of detectors, such as
administrative units, sub-regions that differ in varying sampling effort,
or some other categorical factors.

For the SARE model, we advise caution in choosing an upper bound
for the aggregation scale as the spatial autocorrelation is specifically
modelled as a decreasing function of inter-detectors distance. It may
become computationally intractable to estimate model parameters with
low number of random effects since the fitted coarse surface would
over-dilute the true scale of variation in the autocorrelated surface.
Further, one might introduce negative bias in the estimate of popu-
lation size under highly autocorrelated scenarios, similar to what we
experienced when fitting the basic SCR model to our simulated data
with heterogeneous and spatially autocorrelated detection probability.

When the number of detections per detector in SCR data sets is low,
multicollinearity can occur between the detector- or cluster-specific
random effects and other parameters in the half-normal detection
function. For instance, such multicollinearity arises in situations where
the SARE model is fitted to SCR data sets that are not sufficiently

informative to reveal underlying autocorrelation amongst detectors.
Based on SSE values and WAIC in our study, we recommend fitting
the SARE model primarily to data from extreme sampling situations,
where both detection probability and spatial autocorrelation are high.
In all other situations, SARE is expected to give a poorer fit (and poor
MCMC convergence), whereas basic SCR can cope with moderate levels
of variation present among the detectors even under low detectability
(as indicated by SSE and WAIC; Figure S3, Supp. material). Overall,
we found WAIC to be useful in selecting the best model in scenarios
with different levels of autocorrelation, which holds promise for WAIC
application in empirical analyses.

In this study, we focused on three extensions of the SCR model
that can account for latent heterogeneous detection probability. Other
potential modelling solutions for dealing with this situation include:
(i) Bayesian non-parametric models allowing for the possibility of
infinite number of subgroups for the detection probability (Turek
et al., 2021), (ii) conditionally autoregressive random effects model
(CAR) that specifically models spatial autocorrelation between detec-
tors (Nicolau et al., 2020), and (iii) basis function models which use
a basis expansion from factorization of a pre-specified correlation ma-
trix (Hefley et al., 2017). Recently, Stevenson et al. (2021) developed
a SCR model that models spatially autocorrelated detections based on
Gaussian random fields. While the modelling approach can be advan-
tageous in situations where variation in detection probability occurs
regularly within individual home ranges, the use of Gaussian random
fields requires integrating out the spatially autocorrelated random ef-
fects as well as the AC locations, resulting in a significant computational
burden. Each of these different classes of models is computationally
extensive, overparameterized, and likely to overfit the sparse SCR data
sets that are common in ecological studies (Gerber and Parmenter,
2015; Tourani, 2022). Nonetheless, we anticipate future advancements
can overcome these computational and modelling barriers to facilitate
successful application of these techniques to model heterogeneity in
detection probability.

6.1. Conclusions

Accounting for spatial autocorrelation in detection probability can
mitigate bias in population size estimates. Dimension reduction of the
random effects can help avoid overfitting of such complex models, but
caution should be applied when choosing the aggregation scale given
the trade-offs between MCMC efficiency and spatial detail. Investigators
specifically interested in predicting detection probability surfaces or
in identifying sampling holes in their study area, should choose the
SARE model in situations where spatial autocorrelation is high and the
average number of detections per detector is above one. In situations
where either detectability or autocorrelation is low to moderate, we
recommend the FM model instead.
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Data availability

R code for generating simulated data and data analysis are provided
in the Supplementary material and also can be found on Github (https:
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study can also be accessed from the above Github repository.
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S1 Simulations Study: Tables of posterior estimates

and effective sample size (ESS) of different models

Table S1: SCR: Relative bias (RB, median and 2.5% and 97.5% quantiles), coefficient of variation (CV,
median and 2.5% and 97.5% quantiles), and coverage probability of 95% CI of the population size (N)
and the spatial scale parameter of the half-normal detection function (σ) across each scenario.

Scenario η ϕ RB CV Coverage
prob.

Median 2.5% 97.5% Median 2.5% 97.5%
Quantile Quantile Quantile Quantile

N

Continuous

1 0.100 1 −0.027 −0.105 0.086 0.054 0.047 0.060 0.96
2 0.100 0.050 −0.095 −0.275 0.048 0.054 0.033 0.143 0.65
3 0.300 1 0.005 −0.060 0.070 0.033 0.031 0.034 0.94
4 0.300 0.050 −0.025 −0.116 0.044 0.033 0.027 0.046 0.79
5 0.600 1 0.006 −0.037 0.055 0.028 0.027 0.029 0.97
6 0.600 0.050 −0.006 −0.061 0.051 0.028 0.026 0.031 0.97

Categorical

7 0.100 1 −0.032 −0.185 0.271 0.137 0.111 0.166 0.99
8 0.100 0.050 −0.295 −0.438 −0.040 0.113 0.092 0.138 0.20
9 0.300 1 −0.022 −0.125 0.087 0.049 0.045 0.053 0.91
10 0.300 0.050 −0.290 −0.409 −0.142 0.047 0.043 0.051 0

σ

Continuous

1 0.100 1 −0.022 −0.094 0.049 0.037 0.033 0.042 0.90
2 0.100 0.050 −0.012 −0.098 0.068 0.037 0.019 0.086 0.94
3 0.300 1 −0.007 −0.042 0.032 0.019 0.017 0.020 0.92
4 0.300 0.050 −0.004 −0.046 0.030 0.019 0.012 0.031 0.93
5 0.600 1 −0.001 −0.031 0.026 0.013 0.012 0.014 0.90
6 0.600 0.050 −0.001 −0.024 0.023 0.013 0.010 0.016 0.95

Categorical

7 0.100 1 −0.026 −0.195 0.170 0.085 0.073 0.103 0.88
8 0.100 0.050 −0.032 −0.185 0.144 0.073 0.062 0.085 0.82
9 0.300 1 −0.020 −0.103 0.041 0.034 0.031 0.037 0.81
10 0.300 0.050 −0.038 −0.100 0.022 0.031 0.028 0.034 0.72
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Table S2: RE (4×4): Relative bias (RB, median and 2.5% and 97.5% quantiles), coefficient of variation
(CV, median and 2.5% and 97.5% quantiles), and coverage probability of 95% CI of the population size
(N) and the spatial scale parameter of the half-normal detection function (σ) across each scenario. Here
‘4× 4’ refers to the level to aggregation in the random effects (Section 3.2, main text).

Scenario η ϕ RB CV Coverage
prob.

Median 2.5% 97.5% Median 2.5% 97.5%
Quantile Quantile Quantile Quantile

N

Continuous

1 0.100 1 0.032 −0.056 0.133 0.058 0.051 0.065 0.96
2 0.100 0.050 −0.017 −0.141 0.152 0.062 0.035 0.149 0.94
3 0.300 1 0.015 −0.048 0.077 0.034 0.032 0.036 0.92
4 0.300 0.050 −0.003 −0.082 0.065 0.036 0.028 0.052 0.94
5 0.600 1 0.010 −0.035 0.065 0.029 0.028 0.030 0.95
6 0.600 0.050 0.002 −0.049 0.053 0.029 0.026 0.033 0.99

Categorical

7 0.100 1 0.047 −0.118 0.349 0.139 0.115 0.162 0.94
8 0.100 0.050 −0.065 −0.296 0.168 0.133 0.117 0.153 0.90
9 0.300 1 0.037 −0.082 0.131 0.054 0.049 0.057 0.94
10 0.300 0.050 −0.166 −0.291 −0.016 0.063 0.055 0.071 0.29

σ

Continuous

1 0.100 1 −0.010 −0.094 0.059 0.038 0.034 0.043 0.93
2 0.100 0.050 −0.008 −0.083 0.080 0.038 0.019 0.090 0.94
3 0.300 1 −0.008 −0.040 0.030 0.019 0.018 0.021 0.93
4 0.300 0.050 −0.003 −0.040 0.035 0.019 0.012 0.033 0.92
5 0.600 1 −0.007 −0.039 0.022 0.013 0.012 0.014 0.86
6 0.600 0.050 −0.005 −0.028 0.019 0.013 0.009 0.016 0.94

Categorical

7 0.100 1 −0.012 −0.196 0.212 0.087 0.076 0.104 0.89
8 0.100 0.050 −0.007 −0.160 0.186 0.077 0.066 0.091 0.86
9 0.300 1 −0.008 −0.092 0.047 0.035 0.031 0.038 0.89
10 0.300 0.050 −0.015 −0.075 0.044 0.032 0.029 0.036 0.92

3



Table S3: SARE (4 × 4): Relative bias (RB, median and 2.5% and 97.5% quantiles), coefficient
of variation (CV, median and 2.5% and 97.5% quantiles), and coverage probability of 95% CI of the
population size (N) and the spatial scale parameter of the half-normal detection function (σ) across each
scenario. Here ‘4× 4’ refers to the level to aggregation in the random effects (Section 3.2, main text).

Scenario η ϕ RB CV Coverage
prob.

Median 2.5% 97.5% Median 2.5% 97.5%
Quantile Quantile Quantile Quantile

N

Continuous

1 0.100 1 −0.014 −0.077 0.096 0.055 0.049 0.064 1
2 0.100 0.050 −0.004 −0.130 0.189 0.055 0.035 0.138 0.94
3 0.300 1 0.020 −0.061 0.079 0.034 0.031 0.035 0.90
4 0.300 0.050 0.001 −0.082 0.071 0.036 0.028 0.051 0.93
5 0.600 1 0.016 −0.024 0.051 0.028 0.028 0.029 0.97
6 0.600 0.050 0.0002 −0.051 0.049 0.029 0.026 0.033 0.99

Categorical

7 0.100 1 0.064 −0.017 0.242 0.132 0.123 0.142 1
8 0.100 0.050 0.002 −0.235 0.229 0.131 0.117 0.146 0.91
9 0.300 1 0.032 −0.074 0.101 0.053 0.048 0.057 0.97
10 0.300 0.050 −0.091 −0.219 0.035 0.066 0.057 0.074 0.77

σ

Continuous

1 0.100 1 −0.006 −0.080 0.049 0.035 0.030 0.039 0.89
2 0.100 0.050 0.001 −0.077 0.074 0.031 0.018 0.078 0.94
3 0.300 1 0.003 −0.037 0.034 0.019 0.017 0.020 0.95
4 0.300 0.050 0.001 −0.038 0.041 0.019 0.012 0.031 0.94
5 0.600 1 −0.001 −0.032 0.020 0.013 0.012 0.013 0.90
6 0.600 0.050 0.001 −0.027 0.022 0.013 0.010 0.016 0.94

Categorical

7 0.100 1 −0.024 −0.204 0.052 0.076 0.067 0.088 0.60
8 0.100 0.050 −0.013 −0.160 0.189 0.074 0.062 0.089 0.85
9 0.300 1 −0.010 −0.104 0.052 0.033 0.031 0.038 0.87
10 0.300 0.050 −0.011 −0.075 0.046 0.032 0.028 0.036 0.92
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Table S4: FM (4×4): Relative bias (RB, median and 2.5% and 97.5% quantiles), coefficient of variation
(CV, median and 2.5% and 97.5% quantiles), and coverage probability of 95% CI of the population size
(N) and the spatial scale parameter of the half-normal detection function (σ) across each scenario. Here
‘4× 4’ refers to the level to aggregation in the random effects (Section 3.2, main text).

Scenario η ϕ RB CV Coverage
prob.

Median 2.5% 97.5% Median 2.5% 97.5%
Quantile Quantile Quantile Quantile

N

Continuous

1 0.100 1 −0.009 −0.083 0.084 0.056 0.050 0.064 0.98
2 0.100 0.050 −0.057 −0.202 0.067 0.056 0.034 0.150 0.82
3 0.300 1 0.008 −0.051 0.071 0.033 0.031 0.035 0.95
4 0.300 0.050 −0.011 −0.092 0.060 0.034 0.028 0.051 0.93
5 0.600 1 0.008 −0.037 0.057 0.028 0.027 0.029 0.96
6 0.600 0.050 −0.0001 −0.053 0.050 0.028 0.026 0.032 0.99

Categorical

7 0.100 1 −0.021 −0.184 0.299 0.137 0.115 0.169 0.97
8 0.100 0.050 −0.112 −0.352 0.125 0.137 0.120 0.161 0.84
9 0.300 1 0.004 −0.109 0.076 0.051 0.047 0.057 0.95
10 0.300 0.050 −0.115 −0.248 0.020 0.064 0.052 0.078 0.51

σ

Continuous

1 0.100 1 −0.013 −0.093 0.052 0.037 0.033 0.042 0.929
2 0.100 0.050 −0.005 −0.096 0.059 0.034 0.019 0.086 0.942
3 0.300 1 −0.005 −0.040 0.035 0.019 0.017 0.021 0.928
4 0.300 0.050 −0.001 −0.038 0.036 0.019 0.012 0.032 0.939
5 0.600 1 −0.001 −0.030 0.025 0.013 0.012 0.014 0.896
6 0.600 0.050 0.001 −0.024 0.022 0.013 0.010 0.016 0.960

Categorical

7 0.100 1 −0.044 −0.196 0.162 0.085 0.073 0.101 0.864
8 0.100 0.050 −0.024 −0.172 0.185 0.075 0.063 0.088 0.837
9 0.300 1 −0.017 −0.096 0.042 0.034 0.031 0.037 0.850
10 0.300 0.050 −0.018 −0.079 0.039 0.032 0.028 0.036 0.909
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Table S5: FE: Relative bias (RB, median and 2.5% and 97.5% quantiles), coefficient of variation (CV,
median and 2.5% and 97.5% quantiles), and coverage probability of 95% CI of the population size (N)
and the spatial scale parameter of the half-normal detection function (σ) across each scenario.

Scenario η ϕ RB CV Coverage
prob.

Median 2.5% 97.5% Median 2.5% 97.5%
Quantile Quantile Quantile Quantile

N

Continuous

1 0.100 1 0.017 −0.070 0.101 0.054 0.049 0.059 0.980
2 0.100 0.050 0.007 −0.103 0.152 0.057 0.035 0.123 0.950
3 0.300 1 0.010 −0.055 0.070 0.033 0.031 0.035 0.960
4 0.300 0.050 0.008 −0.067 0.083 0.035 0.028 0.050 0.920
5 0.600 1 0.007 −0.037 0.060 0.028 0.027 0.029 0.960
6 0.600 0.050 0.007 −0.047 0.047 0.028 0.026 0.033 0.980

Categorical

7 0.100 1 0.033 −0.150 0.292 0.121 0.104 0.138 0.950
8 0.100 0.050 0.057 −0.129 0.323 0.113 0.100 0.127 0.950
9 0.300 1 0.020 −0.079 0.117 0.050 0.047 0.054 0.940
10 0.300 0.050 0.015 −0.085 0.128 0.062 0.055 0.067 0.930

σ

Continuous

1 0.100 1 0.0003 −0.067 0.045 0.026 0.023 0.030 0.940
2 0.100 0.050 0.001 −0.073 0.070 0.026 0.014 0.063 0.960
3 0.300 1 0.002 −0.021 0.027 0.014 0.012 0.015 0.960
4 0.300 0.050 0.001 −0.029 0.030 0.014 0.009 0.023 0.960
5 0.600 1 0.003 −0.021 0.021 0.010 0.009 0.010 0.910
6 0.600 0.050 −0.0005 −0.016 0.018 0.010 0.008 0.012 0.970

Categorical

7 0.100 1 −0.008 −0.102 0.120 0.061 0.053 0.069 0.940
8 0.100 0.050 0.002 −0.090 0.122 0.055 0.048 0.063 0.950
9 0.300 1 0.003 −0.051 0.045 0.024 0.022 0.026 0.950
10 0.300 0.050 0.006 −0.037 0.042 0.023 0.021 0.027 0.990
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Table S6: SCR and FE: Effective sample size (ESS) after burn-in, MCMC efficiency (=ESS/MCMC run
time) and full MCMC run time of a single chain (in minutes). For comparison purposes, we report mean
ESS and mean MCMC efficiency (=ESS/MCMC run time) averaged over each top-level parameters in
the model and over each of the converged replicates. For both SCR and FE models, we ran three MCMC
chains of 30,000 iterations (burn-in period 12,000).

Scenario η ϕ SCR FE

ESS MCMC
efficiency

MCMC
run time

ESS MCMC
efficiency

MCMC
run time

Continuous

1 0.100 1 2277 1.224 17.260 10032 1.067 65.210
2 0.100 0.050 2369 1.312 16.520 9909 1.065 65.070
3 0.300 1 3608 1.853 18.050 12562 1.323 65.770
4 0.300 0.050 3691 1.922 17.790 12333 1.311 65.620
5 0.600 1 4133 2.096 18.280 13398 1.413 65.820
6 0.600 0.050 4215 2.145 18.210 13354 1.418 65.680

Categorical

7 0.100 1 698 0.412 15.870 6160 0.876 48.910
8 0.100 0.050 1274 0.839 14.220 6362 0.901 49.140
9 0.300 1 2521 1.392 16.830 8453 1.176 50
10 0.300 0.050 3697 2.312 14.890 8187 1.153 49.410

Table S7: RE: Effective sample size (ESS) after burn-in, MCMC efficiency (=ESS/MCMC run time)
and full MCMC run time of a single chain (in minutes). For comparison purposes, we report mean
ESS and mean MCMC efficiency (=ESS/MCMC run time) averaged over each top-level parameters in
the model and over each of the converged replicates. We ran three MCMC chains of 100,000 iterations
(burn-in period 20,000, with or without aggregation). Scenarios without any converged replicates are
indicated by ‘-’. Here ‘1× 1’ indicates that the model is fitted without aggregation and ‘4× 4’ refers to
the level to aggregation in the random effects (Section 3.2, main text).

Scenario η ϕ RE (1× 1) RE (4× 4)

ESS MCMC
efficiency

MCMC
run time

ESS MCMC
efficiency

MCMC
run time

Continuous

1 0.100 1 8976 0.557 112.140 5872 0.543 75.380
2 0.100 0.050 7525 0.486 108.690 5509 0.520 73.340
3 0.300 1 13420 0.813 115.280 9581 0.867 76.830
4 0.300 0.050 13671 0.847 112.710 9112 0.832 76.050
5 0.600 1 14221 0.855 115.110 11152 1.004 77.260
6 0.600 0.050 14775 0.901 114.360 11133 1.004 77.060

Categorical

7 0.100 1 2897 0.185 109.560 2338 0.229 71.930
8 0.100 0.050 5166 0.360 100.490 2935 0.311 66.490
9 0.300 1 9875 0.610 112.260 6292 0.591 74.320
10 0.300 0.050 14092 0.961 102.290 4996 0.524 66.280
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Table S8: SARE: Effective sample size (ESS) after burn-in, MCMC efficiency (=ESS/MCMC run
time) and full MCMC run time of a single chain (in minutes). For comparison purposes, we report mean
ESS and mean MCMC efficiency (=ESS/MCMC run time) averaged over each top-level parameters in
the model and over each of the converged replicates. We ran three MCMC chains of 100,000 iterations
(burn-in period 20,000, with or without aggregation). Scenarios without any converged replicates are
indicated by ‘-’. Here ‘1× 1’ indicates that the model is fitted without aggregation and ‘4× 4’ refers to
the level to aggregation in the random effects (Section 3.2, main text).

Scenario η ϕ SARE (1× 1) SARE (4× 4)

ESS MCMC
efficiency

MCMC
run time

ESS MCMC
efficiency

MCMC
run time

Continuous

1 0.100 1 - - 224.950 8803 1.028 60
2 0.100 0.050 - - 221.370 6967 0.809 58.870
3 0.300 1 - - 228.440 12234 1.361 62
4 0.300 0.050 - - 229.610 10924 1.262 60.180
5 0.600 1 - - 230.220 13749 1.564 62.060
6 0.600 0.050 - - 231.900 12342 1.406 61.200

Categorical

7 0.100 1 - - 217.490 6634 0.774 57.070
8 0.100 0.050 - - 214.990 2214 0.274 56.070
9 0.300 1 - - 226.890 6108 0.699 60.540
10 0.300 0.050 - - 221.840 4495 0.544 57.470

Table S9: FM: Effective sample size (ESS) after burn-in, MCMC efficiency (=ESS/MCMC run time)
and full MCMC run time of a single chain (in minutes). For comparison purposes, we report mean ESS
and mean MCMC efficiency (=ESS/MCMC run time) averaged over each top-level parameters in the
model and over each of the converged replicates. We ran the MCMC for a. 60,000 iterations (burn-in
period 12,000) when fitted without aggregation, b. 20,000 iterations (burn-in period 4,000) when fitted
with aggregating random effects. Scenarios without any converged replicates are indicated by ‘-’. Here
‘1×1’ and ‘4×4’ refer to the level to aggregation in the random effects - ‘1×1’ indicating that the model
is fitted without aggregation and ‘4× 4’ indicating that we aggregated the random effects at 4× 4 scale
(Section 3.2, main text).

Scenario η ϕ FM (1× 1) FM (4× 4)

ESS MCMC
efficiency

MCMC
run time

ESS MCMC
efficiency

MCMC
run time

Continuous

1 0.100 1 2865 0.072 283.140 1104 0.037 207.470
2 0.100 0.050 3258 0.086 260.920 1387 0.049 197.580
3 0.300 1 4111 0.095 292.790 1758 0.058 212.690
4 0.300 0.050 4312 0.106 281.680 2189 0.073 208.760
5 0.600 1 4822 0.114 294.450 1929 0.062 214.630
6 0.600 0.050 4820 0.119 289.410 2294 0.075 212.550

Categorical

7 0.100 1 - - 283.850 432 0.015 210.310
8 0.100 0.050 1561 0.059 223.690 967 0.036 188.820
9 0.300 1 3106 0.076 288.380 1269 0.042 210.900
10 0.300 0.050 4386 0.134 224.860 2585 0.095 189.170
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S2 Simulations Study: Additional figures
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Figure S1: Illustration of baseline detection probability surfaces for simulation scenarios under average
baseline detection probability η = 0.1. In rows: simulated baseline detection probability surface (‘REF
1 × 1’), baseline detection probability surface after averaging the simulated values for each cluster of
detectors at 4× 4 scale (‘REF 4× 4’), predicted baseline detection probability surface from four models:
SCR, RE (aggregation 4 × 4), SARE (aggregation 4 × 4), FM (aggregation 4 × 4). Labels on the x-
axis refer to scenarios with continuous (“CON”) and categorical (“CAT”) detector-specific variation in
detection probability. Second and fourth columns represent high autocorrelation among detectors (i.e.,
under ϕ = 0.05), whereas first and the third column represent intermediate autocorrelation (i.e., under
ϕ = 1). Colors correspond to different values of baseline detection probability.
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S3 Empirical example: Table of posterior estimates

and effective sample size (ESS) of different models

fitted to brown bear monitoring data

Table S10: Posterior estimates of the scale parameter σ under the five fitted models fitted
to female brown bear (Ursus arctos) data from central Sweden. Mean, coefficient of variation
(CV), 2.5%, 50% and 97.5% quantiles, R̂, effective sample size (ESS), MCMC efficiency (=ESS/MCMC
run time) and full MCMC run time of a single chain (in hours) of the spatial scale parameter of the half-
normal detection function (σ; km) from each of the five models: SCR, FE, RE, SARE and FM, fitted
to non-invasive genetic monitoring data of female brown bears from central Sweden, April - November
2020. The full MCMC run time of a single chain (in hours) and ∆WAIC values for each of the five models
are shown in the last two columns.

Models Mean CV 2.5% 50% 97.5% R̂ ESS MCMC MCMC ∆WAIC
efficiency run time

SCR 5.66 0.014 5.52 5.66 5.82 1.000 7039 0.0552 10.05 896.02
RE 5.74 0.014 5.60 5.74 5.90 1.004 1297 0.0009 155.89 203.37
SARE 5.74 0.014 5.58 5.74 5.84 1.002 2035 0.0046 65.17 0.00
FM 5.70 0.014 5.56 5.90 5.86 1.003 7616 0.0055 66.57 505.56
FE 5.76 0.014 5.60 5.76 5.92 1.001 2833 0.0142 19.39 371.49

S4 Bear Empirical Example: Additional Figures

Figure S5: Maps of the three spatial covariates used to explain spatial heterogeneity in detection prob-
ability used in the FE model fitted to female brown bear (Ursus arctos) data from central Sweden: (a)
Map of distance to the nearest road, (b) a proxy of opportunistic searching effort, i.e. presence/absence
of at least one carnivore record other than the bear genetic detections and (c) a map of the two Sweden
counties under study, Jämtland and Västernorrland.
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Figure S6: Posterior density of population size N from the five models fitted to female
brown bear (Ursus arctos) data in central Sweden April - November 2020. The illustration
shows the violin plot of posterior density of population size N from each of the five models: SCR, RE,
SARE, FM and FE. For the models RE, SARE, and FM, the estimates are obtained after aggregating
the random effects to 20 km resolution.

Figure S7: Posterior density of the scale parameter σ from the five models fitted to female
brown bear (Ursus arctos) data in central Sweden April - November 2020. Violin plot of
posterior density of the spatial scale parameter (σ; km) of the half-normal detection function from each
of the five models: SCR, RE, SARE, FM. For the models RE, SARE, and FM, the estimates are
obtained after aggregating the random effects to 20 km resolution.
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Abstract12

After centuries of intense persecution, several large carnivore species in Europe and North13

America have experienced a rebound. Today’s spatial configuration of large carnivore populations14

has likely arisen from the interplay between their ecological traits and current environmental15

conditions, but also from their history of persecution and protection. Yet, due to the challenge16

of studying population-level phenomena, we are rarely able to disentangle and quantify the17

influence of past and present factors driving the spatial distribution and density of these18

controversial species. Using spatial capture-recapture models and a data set of 742 genetically19

identified wolverines Gulo gulo collected over 1/2 million km2 across their entire range in Norway20

and Sweden, we identify landscape-level factors explaining the current population density of21

wolverines in the Scandinavian Peninsula. Distance from the relict range along the Swedish-22

Norwegian border, where the wolverine population survived a long history of persecution, remains23

a key determinant of wolverine density today. However, regional differences in management and24

1



environmental conditions also played an important role in shaping spatial patterns in present-day25

wolverine density. Specifically, we found evidence of slower recolonization in areas that had26

set lower wolverine population goals in terms of the desired number of annual reproductions.27

Management of transboundary large carnivore populations at biologically relevant scales may be28

inhibited by administrative fragmentation. Yet, as our study shows, population-level monitoring29

is an achievable prerequisite for a comprehensive understanding of the distribution and density30

of large carnivores across an increasingly anthropogenic landscape.31

Keywords: Abundance, Density, Distribution, Large carnivores, Noninvasive monitoring,32

Spatial capture-recapture, Transboundary wildlife, Gulo gulo33
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1 Introduction34

Species distributions we observe today are the result of not only ecological traits and current35

local environmental conditions, but also land-use history, human activity, and management36

strategies (Donohue et al. 2000, Foster et al. 2003, Di Marco and Santini 2015). Emerging37

disturbance regimes, such as altered frequency and intensity of extreme weather and climate38

events (Ummenhofer and Meehl 2017), further impact species distributions. Identifying and39

disentangling the factors that lead to the distribution and dynamics of species is one of the40

most profound and long-standing research areas in ecology, with both fundamental and applied41

implications (Guisan and Zimmermann 2000, Elith and Leathwick 2009, Jetz et al. 2019).42

Humans are the main transformers of Earth’s ecosystems (Ellis 2011, Pereira et al. 2012,43

Waters et al. 2016), with a growing list of documented effects on wildlife (Yackulic et al. 2011,44

Tucker et al. 2018). Despite a broad overall consistency in wildlife responses to anthropogenic45

disturbances, there is considerable variability in scale, magnitude, and pattern of human impacts46

(Tablado and Jenni 2017, Gaynor et al. 2018, Tucker et al. 2018). A popular example is the case47

of large carnivore species that have undergone substantial range contractions due to intensive48

persecution by humans. While many species continue to struggle, some have in recent decades49

successfully recolonized part of their historic range, particularly in Western Europe and North50

America (Linnell et al. 2001, Zedrosser et al. 2011, Chapron et al. 2014, Ripple et al. 2014,51

Ingeman et al. 2022). Limited understanding of factors shaping the spatial configuration of52

carnivore populations poses a challenge to science and management, and the current knowledge53

gaps may hinder predictions of future responses in the face of increasing human pressure.54

The fall and rise of wolverines Gulo gulo in Scandinavia is a prime example of recovery of55

an iconic large carnivore following intense persecution and range contraction. The wolverine56

was historically distributed throughout most of the Scandinavian Peninsula (Landa et al. 2000,57

Flagstad et al. 2004). During the nineteenth and twentieth centuries, intensive persecution of58

the wolverine reduced its range and population size drastically. By 1970, the population was59

functionally extinct in many areas with the exception of a narrow strip in the alpine region60

along the border between Sweden and Norway (Landa et al. 2000, Flagstad et al. 2004; Fig. 1).61

The situation was similarly grim in neighboring Finland, where wolverine observations were62
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rare beyond the borderland with Russia (Lansink et al. 2020; Fig. 1). The wolverine finally63

received legal protection in both Norway and Sweden by 1973, and later followed by Finland,64

and gradually recolonized many parts of its historical range in Fennoscandia (Flagstad et al.65

2004, Aronsson and Persson 2017, Lansink et al. 2020). Today, the wolverine population is66

established across Norway and Sweden beyond the alpine refuge areas (Chapron et al. 2014,67

Gervasi et al. 2019, Bischof et al. 2020). The return of the wolverine has rekindled conflict68

with the sheep-farming industry and semidomesticated reindeer Rangifer tarandus husbandry69

(Flagstad et al. 2004, Hobbs et al. 2012, Persson et al. 2015, Aronsson and Persson 2017). The70

wolverine is listed on Appendix S2 of the Bern Convention for both countries and is therefore71

formally “strictly protected”. However, because Norway is not a member of the European Union,72

it is not bound by the same set of regulations. Wolverines are therefore subject to persistent73

lethal control in Norway, while they are strictly protected in Sweden under the European Union’s74

Habitats Directive 92/43 (annex IV; Habitats Directive 1992), and only recently were small75

hunting quotas (≈ 15) allowed for damage control purposes.76

In a human-dominated world, understanding population-level drivers of species spatial77

distribution and particularly density is important to understand and predict the potential for78

species-environment interactions in a management context. What we know about landscape and79

environmental factors influencing wolverine distribution and density has been cobbled together80

from a small patchwork of studies, often with limited spatial extent in various parts of the81

global distribution range of the species (Fisher et al. 2022). In Scandinavia, population and82

landscape-level determinants of wolverine distribution and density are poorly known. Historical83

(Landa et al. 2000) and current (Chapron et al. 2014) range maps suggest that recolonization in84

this anthropogenic landscape has been facilitated by favorable legislation and improved cultural85

acceptance (Linnell et al. 2001, Flagstad et al. 2004, Aronsson and Persson 2017). However,86

there is evidence that biophysical constraints, such as climate, habitat, and terrain, have played87

a greater role in shaping the current spatial distribution of the wolverine at the continental scale88

(Cretois et al. 2021). Current management decisions use information that is largely based on89

data from the high-conflict alpine areas (Brøseth et al. 2010, Aronsson and Persson 2017), but90

would benefit from a better knowledge of the determinants of wolverine’s spatial variation in91

density across its entire Scandinavian range. Until recently, this was out of reach, because of the92
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Figure 1: Approximate wolverine Gulo gulo distribution in the Scandinavian Peninsula (red polygon
on the left) and Finland (red polygon on the right) in the 1970s, when the population range was at its
lowest in modern times following intense human persecution (i.e., the relict range; Landa et al. 2000,
Flagstad et al. 2004). Thick blue lines separate zones containing administrative units with shared
population goals for the wolverine (i.e., large carnivore management regions in Norway and counties in
Sweden; see Table 1). We merged the zones below the dark blue line into one southern zone in each
country. Photo credit: Karel Bartik/www.shutterstock.com
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rarity and elusive behavior of the species, the vast geographic expanse of the population, and93

spatially incomplete surveys (Flagstad et al. 2004, Gervasi et al. 2016, Aronsson and Persson94

2017).95

Here, we set out to quantify the extent to which current wolverine population density across96

the Scandinavian Peninsula is affected by past and present conditions. Importantly, we do so97

for the entire 1/2 million km2 range of the species across Norway and Sweden. Three major98

challenges plague monitoring of elusive species, such as the wolverine, at ecologically relevant99

scales: (1) the collection of sufficiently detailed individual data from an entire population, (2)100

imperfect detection (i.e., not all individuals in the population are detected), and (3) a paucity101

of computationally efficient analytical tools to disentangle the effects of ecological drivers from102

both stochastic process noise and observation errors (Isaac et al. 2020, Cretois et al. 2021, van de103

Schoot et al. 2021). In this study, we tackled these challenges for the Scandinavian wolverine104

by analyzing a comprehensive capture-recapture data set of genetically identified wolverine105

individuals across the entire population in Norway and Sweden using recently developed efficient106

spatial capture-recapture (SCR) models (Bischof et al. 2020, Turek et al. 2021).107

2 Methods108

2.1 Noninvasive genetic sampling109

We used wolverine noninvasive genetic sampling (NGS) data from the Scandinavian large110

carnivore monitoring database (Rovbase 3.0; www.rovbase.no and www.rovbase.se). This is111

one of the largest, long-term capture-recapture data of terrestrial wildlife globally (Smith et al.112

2017, Tourani 2022). Wildlife authorities and volunteers conduct both structured searches and113

opportunistic sampling of putative wolverine scats and hair on snow between December and June114

each year throughout the species’ range in Norway and Sweden. The structured search tracks115

and locations of noninvasive samples are GPS recorded (see Supporting Information). Further116

details on wolverine NGS is provided elsewhere (e.g., Brøseth et al. 2010, Gervasi et al. 2016,117

Bischof et al. 2020). Samples were processed and analyzed by two dedicated DNA labs using118

a number of control measures to minimize genotyping errors, as described elsewhere (Ekblom119

et al. 2018, Flagstad et al. 2019, Lansink et al. 2022). First, samples were analyzed with a Single120
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Nucleotide Polymorphism (SNP)-chip with 96 markers and, second, all individuals were analyzed121

with 19 microsatellite markers to determine species and identity of wolverine individuals, as122

well as their sex. We used NGS data collected between 1 December 2018 and 30 June 2019,123

which consisted of individual identity, sex, collection date, and coordinates associated with each124

wolverine sample. This sampling period represents the latest, most complete, semi-systematic125

wolverine NGS effort across the entire range of the wolverine population in Scandinavia to date126

(Flagstad et al. 2019, Bischof et al. 2020, Milleret et al. 2022). We minimized the probability127

of including juvenile (≤ 10 months old) individuals in the analysis by using only NGS data128

collected from wolverine tracks on snow, before emergence of cubs of the year from natal dens129

(Gervasi et al. 2016). Nonetheless, our data could still include subadult wolverines (less than two130

years old) that may use space differently than adults. Especially subadult males are more likely131

to initiate long-distance movements (Vangen et al. 2001), which may introduce an unknown and132

unmodeled source of individual heterogeneity in our study (Gimenez et al. 2018). We detected133

a few individuals (n = 3 females and 21 males) that made long-distance movements of more134

than 40 km during the 2018/19 monitoring season, and those detections (3 female and 29 male135

detections) were removed from the analysis, as they likely constitute dispersal events instead of136

movement within the home range.137

2.2 Analysis138

SCR models offer a flexible framework to account for imperfect detection of individuals and139

provide spatially explicit estimates of abundance (i.e., density) and other population parameters140

(Efford 2004, Borchers and Efford 2008, Royle et al. 2014). The SCR modeling framework141

can support flexible sampling configurations and incorporate both individual- and detector-142

level covariates to account for sources of heterogeneity in detectability, and spatial covariates143

to account for variation in density (Royle et al. 2014). Although building spatially indexed144

hierarchical models, such as SCR, can be computationally challenging or even prohibitive for145

large spatial extents, recent developments have resulted in dramatic improvements (e.g., Milleret146

et al. 2019, Turek et al. 2021, Zhang et al. 2023). Here, we build on these recent developments147

to study the landscape-scale determinants of the Scandinavian wolverine density.148
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2.2.1 Spatial capture-recapture model149

We built a single-season (i.e., demographically closed) SCR model in a Bayesian framework by150

expanding on our previous work (Bischof et al. 2020). Our SCR model contains two hierarchical151

levels: (1) The observation submodel accounts for imperfect and variable wolverine detectability152

during NGS; and (2) The ecological submodel describes wolverine density as the main ecological153

process of interest in this study. Our SCR model estimates the following parameters: (1) the154

baseline detection probability p0: detection probability at a trap or hypothetical detector located155

at an animal’s activity center si – a latent variable representing the expected location about156

which an individual uses space during the sampling period; (2) the spatial scale parameter of157

the detection function σ; (3) the number N of wolverine activity centers within the available158

habitat S (i.e., the detector grid and a buffer around it), which can be used to derive density D159

(see below); and (4) the effects (regression coefficients β) of spatial and individual covariates on160

the detection probability and density.161

(1) The observation submodel: We used the conventional half-normal detection function162

(Borchers and Efford 2008, Royle et al. 2014) to model the probability p of detecting individual i163

at detector j as a decreasing function of the distance d between the detector and the individual’s164

center of activity si: pij = p0ij
exp(−d2

ij/2σ2). The detection function is assumed to reflect165

individual space use and is therefore directly linked with the home range concept (Royle et al.166

2014). Because we used a data-augmentation approach (Royle et al. 2007), the detection of167

an individual has to be made conditional on the individual’s state zi (zi = 1 when individual168

i is member of the population N), which is governed by the inclusion probability ψ: zi ∼169

Bernoulli(ψ). The population size can be then derived by summing the zi’s: N = ∑M
i=1 zi,170

where M is the chosen size of the data-augmented population (Royle et al. 2007) and represents171

the maximum number of wolverines in the habitat S (see Ecological submodel).172

In our study, detectors are the centers of 5 572 10 × 10 km grid cells, covering a land area173

extending 100 km beyond the outermost wolverine NGS detections collected during the sampling174

period (Supporting Information). We used a partially aggregated binomial observation model175

(Milleret et al. 2018) to retain more information from the wolverine NGS data by dividing each176

main detector cell into 25 subdetector cells of 2 × 2 km. By retrieving the number of subdetector177
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cells with at least one noninvasive sample for each wolverine detected at each main detector178

cell, we generated individual spatial detection histories (Royle et al. 2014). Finally, we placed a179

40-km buffer around the detector grid to define the habitat S. This value was chosen based on180

the average home-range radius of adult Scandinavian wolverines (Persson et al. 2010, Mattisson181

et al. 2011, Aronsson et al. 2022), so that the buffer is larger than three times the estimated182

σ of 10.3 km (95% Bayesian credible interval [CI] = 10.1 − 10.5 km) for male wolverines, as183

reported by Bischof et al. (2020). This buffer area allows detection of individuals even if their184

activity centers are located outside the detector grid (Efford 2004, 2011). The detector grid185

covered most of the contiguous Scandinavian Peninsula over Norway and Sweden (58◦ 08′ - 70◦186

42′ N, 5◦ 56′ - 32◦ 46′ E; Supporting Information), while parts of the buffer (41.6%) fell inside187

Finland and Russia. Thus, the available habitat was 633 200 km2, after removing large lakes188

and other noncontiguous land areas, of which 88% (557 200 km2) were in Norway and Sweden189

(Supporting Information).190

Wolverine NGS was conducted by hundreds of field staff and volunteers across different191

jurisdictions in Norway and Sweden. We therefore expected spatial variability in detection192

probability of wolverine individuals (Efford et al. 2013, Moqanaki et al. 2021). Following Bischof193

et al. (2020), we considered a different baseline detection probability for each jurisdiction194

p0County
(County = 1, 2, . . . , 8) to account for possible regional differences in monitoring regimes.195

Jurisdictions were defined based on carnivore management regions in Norway and counties in196

Sweden after Bischof et al. (2020), with slight modifications to match with our habitat extent197

(Supporting Information). We merged neighboring jurisdictions to ensure sufficient wolverine198

detections for estimating baseline detection probability in each unit (Bischof et al. 2020). In199

addition, we modeled the effect of three detector- and one individual-level covariates that may200

influence the probability of wolverine detection (Supporting Information):201

logit(p0ij
) = p0Countyj

+ βEEffortj + βRRoadj + βSSnowj + βPPreviousi (1)

Effortj is the length (m) of GPS search tracks within each detector grid cell j recorded202

during the structured NGS, Roadj is the logarithm of the average geographic distance (km)203

from each detector to the nearest road of any type, and Snowj is the average percentage of204

snow-covered land in each detector grid cell during the sampling months (December 2018 - June205
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2019; Supporting Information). We also modeled individual variation linked with detection206

in the previous monitoring season Previousi; a binary covariate which takes the value 1 if207

individual i was detected in the previous monitoring season and 0 otherwise. During NGS,208

investigators are believed to have the tendency to prioritize searching in locations where their209

searches were previously successful, which could positively influence the detection probability210

of those previously-detected wolverine individuals during the focal monitoring season (Gervasi211

et al. 2014, Milleret et al. 2022). Availability of the monitoring data from the previous year212

made it possible to account for this potential source of heterogeneity in wolverine detectability.213

This individual binary covariate Previousi is latent for augmented individuals and was modeled214

following a Bernoulli distribution: Previousi ∼ Bernoulli(π), where π is the probability that215

an arbitrary individual from the population was detected in the previous year. All continuous216

spatial covariates were scaled before SCR model fitting. Further details on detection covariates,217

the rationale to include them, and their original source and spatial depiction are provided in218

the Supporting Information.219

(2) The Ecological submodel describes the number and distribution of all wolverines220

present in the population (i.e., detected and nondetected). We used a data augmentation221

approach (Royle et al. 2007) to account for those wolverine individuals that were not detected222

during NGS, where the super-population size M (i.e., detected and augmented individuals)223

is chosen to be considerably larger than N . Following Bischof et al. (2020), and given the224

relatively high detectability of the target population during NGS (Milleret et al. 2022), we chose225

an augmentation factor of 0.8 to facilitate the analysis by Markov chain Monte Carlo (MCMC).226

Thus, M was large enough, such that the probability that M individuals were alive in S during227

NGS was negligible.228

SCR estimates of abundance are spatially explicit, meaning that they are derived from the229

estimated location of all individual activity centers si with zi = 1 across the available habitat S230

(Efford 2004, Borchers and Efford 2008, Royle et al. 2014). The collection of activity centers can231

be seen as the realization of a statistical point process (Illian et al. 2008). To study how wolverine232

density varies in Scandinavia in response to a number of environmental and history-related233

covariates (Table 1, Supporting Information), we used an inhomogeneous binomial point process234

10



to model spatial variation in the distribution of individual activity centers with intensity function235

(Zhang et al. 2023): λ(s) = eβX(s), where X(s) is a vector of spatial covariate values evaluated236

at location s, and β is a vector of associated regression coefficients. The intensity function λ237

conditions the placement of activity centers within each of the 20 × 20 km habitat grid cells s238

used in this analysis (Supporting Information). In this formulation, no intercept is needed as239

the number of activity centers is conditioned by data augmentation; thus, regression coefficients240

represent the relative effects of the different covariates on wolverine density (Zhang et al. 2023).241

To disentangle the determinants of wolverine density within Scandinavia, we measured habitat242

characteristics at the scale of the home range of a wolverine (i.e., the second-order of habitat243

selection; Johnson 1980). We selected biotic and abiotic covariates following previous studies on244

wolverine distribution and habitat use and preferences (Fisher et al. 2022 and references therein;245

Table 1). Specifically, we selected covariates that may explain spatial variation in wolverine246

density in Scandinavia at broad scale (Table 1, Supporting Information): (1) Distance from the247

relict range (Landa et al. 2000, Flagstad et al. 2004; Fig. 1) to describe recolonization history;248

(2) Terrain Ruggedness Index (TRI), explaining general topographic complexity; (3) Average249

percentage of year-round snow-covered land as a measure of climate suitability (which was250

different from the snow covariate used as a detector-level covariate; Supporting Information);251

(4) Percentage of forest cover, representing land use and habitat productivity; (5) Moose Alces252

alces harvest density as a proxy of wild prey biomass availability, (6) Percentage of human253

settlement areas as a measure of human density and associated disturbances, and (7) Zonal254

management to account for regional differences in wolverine management plans and other255

large-scale environmental conditions.256

The impact of current management was specifically included because of unique management257

goals for wolverines in different areas of Norway and Sweden (Ministry of the Environment258

2003, Naturvårdsverket Ärendenr 2020). Briefly, we divided our habitat layer into northern and259

southern zones in each country (i.e., four zones; Table 1, Supporting Information) by aggregating260

jurisdictions with similar management goals for the number of wolverine annual reproduction261

and other environmental conditions (e.g., climate, prey availability and abundance, and human262

influence). We simplified the spatial variation in wolverine management by merging several263

counties or carnivore management regions, and partially included jurisdictions in the southern264
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part of each country without management goals (Table 1; Fig. 1), because these southern265

counties contained no NGS and wolverine detections in our data set (Supporting Information).266

Likewise, we merged the buffer area in neighboring Finland and Russia with the northern zones267

(Supporting Information). We then calculated the proportion overlap between each habitat cell268

and the resulting four zones to define four spatial covariates (Supporting Information). Because269

the four proportions sum to one, we did not use the first zone covariate to avoid identifiability270

issues (i.e., the northern zone in Sweden, zone 1.a in Table 1, was an implicit intercept). AC271

placement reflects environmental configuration throughout the home range, not just at one272

location. Thus, discrete changes in conditions (e.g., management) from one side of a border273

to another can lead to artificial behavior in the model when using cell-based covariate values.274

To achieve a more realistic scale of home range placement in the model, we averaged covariate275

values of the four management zones using a moving window (Table 1). This created gradual276

transitions between regions (Supporting Information). Because management goals and other277

zone-specific characteristics of the biotic and abiotic environment may also have affected the278

wolverine’s ability to recolonize away from the relict range, we included an interaction term279

between the distance from the relict range and each of the four zones:280

eλ(s) =
4∑

r=2

{
βRrRr(s) + βRrX1X1(s)Rr(s)

}
+

6∑

c=1
βXcXc(s) (2)

The spatial covariates X are the distance from the relict range X1, Terrain Ruggedness Index281

X2, the average percentage of year-round snow cover X3, the percentage of forest cover X4, the282

percentage of human settlement areas X5, and the moose harvest density X6. R2, R3, and R4283

are the three zone covariates representing southern Sweden and northern and southern Norway284

(Table 1). In total, we estimated 12 regression coefficients β (Supporting Information).285

We transformed all covariate raster layers from the original projection to the Universal286

Transverse Mercator (UTM zone 33N) and locally interpolated the raster values using the287

“bilinear” method of the resample function of the R package raster (Hijmans 2021) to match288

the 20 × 20 km habitat grid used in this analysis (Supporting Information). All continuous289

covariates were then standardized prior to their inclusion in the model to have a mean of zero290

and one unit standard deviation. Correlation among the covariates was generally low (Pearson’s291

correlation coefficient r ≤ 0.62). Further details regarding the rationale for including each292
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covariate, their sources, and their expected effects are provided in Table 1, and the Supporting293

Information provides their spatial depiction and mean and standard deviation of the values.294

2.2.2 Implementation295

We fitted SCR models with NIMBLE (version 0.12.2; de Valpine et al. 2022) in R (version 4.2.1;296

R Core Team 2022) for female and male wolverines separately, using the recent developments297

by Turek et al. (2021) and custom functions made available through the R package nimbleSCR298

(Bischof et al. 2021). We ran four MCMC chains, each with 200 000 iterations, discarded the299

initial 10 000 samples as burn-in, and thinned by a factor of 10 for creating the density maps.300

We assessed mixing of chains by inspecting traceplots, and we considered models as converged301

when the potential scale reduction value R̂ was ≤ 1.10 for all parameters (Brooks and Gelman302

1998). Data and R code for fitting the SCR model and the list of priors are provided in the303

Supporting Information.304

To explore the relative importance of each covariate on density, we incorporated a Bayesian305

variable selection approach in NIMBLE using reversible jump MCMC with indicator variables306

(Green 1995, O’Hara and Sillanpää 2009). We incorporated an indicator variable w associated307

with each regression coefficient β (n = 12; Supporting Information). Thus, we modified equation308

(2) to include (w = 1) or exclude (w = 0) the effect of each coefficient in the presence of other309

covariate effects in a given posterior draw: λ(s) = eβ1w1X1(s) + ... + βpwpXp(s). We constrained310

inclusion of the interaction coefficients to when the corresponding main effects were also included.311

For inference on the different coefficients, we discarded MCMC draws where w = 0.312

We calculated the median and the 95% CI limits of the posterior distribution for all313

parameters, except for abundance, where we reported mean and 95% CI. To obtain total314

wolverine abundance, we combined N estimates of male and female wolverines by merging315

posterior MCMC samples from the sex-specific SCR models. In both total and sex-specific316

models, we summed the total number of predicted activity center locations of alive individuals317

(zi = 1) within each habitat cell for each iteration of the MCMC chains; thus, we generated a318

cell-based posterior distribution of abundance that can be viewed also as density. Using this319

approach, we extracted abundance and density estimates and the associated uncertainty for320

different spatial units relevant for wolverine management at the country level, besides the total321
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Table 1: Description, rationale for inclusion, expected effects, and source and native spatial resolution of
covariates of density used to model the density distribution of the wolverine Gulo gulo across Norway and Sweden
between December 2018 and June 2019

Covariate Description and Rationale Effects Resolution and Source
Relict (X1) Distance (m) from the relict range represents

the founding population and colonization his-
tory. The relict range describes roughly the
area occupied by the Fennoscandian wolver-
ine population at its lowest point in modern
times (Landa et al. 2000, Flagstad et al. 2004,
Chapron et al. 2014, Lansink et al. 2020).

– Calculated using the wolverine’s geographic distribution
range in the 1970s as reported by Landa et al. (2000). All
20 × 20 km-habitat cells falling within the relict range
area were assigned a value of 0. We then computed the
Euclidean distance for all habitat cells to the nearest cell
with a value of 0 using the distance function of the R
package raster (Hijmans 2021).

Ruggedness
(X2)

Terrain Ruggedness Index (TRI) is the mean
of the absolute elevation differences between
the value of a habitat cell and the value of its
eight surrounding cells (Wilson et al. 2007).
TRI represents topographic complexity, refuge
availability, and level of human disturbances
(May et al. 2008, 2012, Rauset et al. 2013,
Poley et al. 2018)

+ Obtained through the terrain function of the R pack-
age terra (Hijmans et al. 2022) using an elevation layer
(AWS Terrain Tiles and OT global datasets API) at
about 256 × 256 m obtained via the get_elev_raster
function of the R package elevatr (Hollister et al. 2021)

Snow (X3) The average percentage of year-round snow
cover across years 2008-2019, representing cli-
mate severity, denning suitability, and prey
availability and vulnerability to predation
(Copeland et al. 2010, May et al. 2012, Aron-
sson and Persson 2017, Lukacs et al. 2020,
Mowat et al. 2020, Barrueto et al. 2022)

+ Calculated using monthly maps of the percentage of
snow-covered land based on the MODIS/Terra Snow
Cover Daily L3 Global 500m Grid data set (www.neo.sci.
gsfc.nasa.gov)

Forest (X4) Percentage of forest cover was a measure of
land use, habitat productivity, greater wild
prey availability, and cover (May et al. 2006,
2008, Inman et al. 2012, Scrafford et al. 2017,
Cimatti et al. 2021)

+ Obtained using the ESA-CCI Land Cover project
(categories 50, 60, 61, 62, 70, 71, 72, 80; www.
esa-landcover-cci.org) at about 176 × 176 m

Moose (X5) An index of moose Alces alces density us-
ing hunting bags, representing habitat pro-
ductivity and a proxy for wild prey biomass
(Van Dijk et al. 2008, Mattisson et al. 2016,
van der Veen et al. 2020)

+ Calculated at 2 × 2 km resolution using the number of
moose harvested/km2 at the level of municipalities and
hunting management units in Norway and Sweden, re-
spectively (statistisk sentralbyrå 2021, Älgdata 2021a,
and Älgdata 2021b). We used data from the previous
hunting season (Sep-Oct 2017), as suggested by Ueno
et al. (2014). Because of a lack of data from the buffer
area in Finland and Russia, we replaced missing values
with mean values of the 48 neighborhood cells using the
focal function of the R package raster (Hijmans 2021)

Settlements
(X6)

The percentage of ground surface covered by
human settlements was a proxy for human
population density and associated distur-
bances (May et al. 2006, Lukacs et al. 2020,
Cretois et al. 2021, Barrueto et al. 2022)

– Downloaded at about 57-m resolution from the World
Settlement Footprint data set (WSF2015; Marconcini
et al. 2020) and log transformed after adding a value of 1
to deal with 0 values

Zonal man-
agement
(R1, . . . ,R4)

An aggregation of administrative units (i.e.,
large carnivore management regions in Norway
and counties in Sweden) with shared popula-
tion goals for the wolverine (Ministry of the
Environment 2003, Naturvårdsverket Ärendenr
2020), representing regional variation in man-
agement strategies and other region-specific
environmental conditions (Persson et al. 2009,
Hobbs et al. 2012, Morehouse and Boyce 2016,
Aronsson and Persson 2017, Kortello et al.
2019, Barrueto et al. 2020)

+/– Counties in Sweden and carnivore management regions in
Norway within (1) Northern zones with the management
goal of 10 or more annual wolverine reproductions: (1.a)
Norrbotten, Västerbotten, and Jämtland (Sweden), plus
a small fraction of the buffer, and (1.b) Management
region 8 (Finnmark and Troms), region 7 (Nordland) and
region 6 (Trøndelag and Møre og Romsdal) in Norway;
(2) Southern zones with the management goal of less than
10 annual wolverine reproductions: (2.a) Västernorrland,
Dalarna, Gävleborg, and Värmland, plus a small part
of the neighboring counties with no management goals:
Västmanland, Västra Götaland, and Örebro (Sweden),
and (2.b) Management region 5 (Hedmark) and region 3
(Oppland), plus a small part of the neighboring counties
with no management goals: Sogn og Fjordane, Hordaland,
Rogaland, Vest-Agder, Aust-Agder, Telemark, Buskerud,
and Vestfold (Norway)
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estimates for the entire population in Norway and Sweden.322

We constructed two types of sex-specific density maps: (1) a realized density map based323

on the posterior location of activity centers as described above, and (2) an expected density324

map based on the estimated intensity of the density point process per habitat cell of 20 × 20325

km and the estimate of population size: Dexp(s) = Nλ(s)/∑S
s=1 λ(s). “Realized” density maps326

show density based on the average model-estimated activity center locations of individuals, as327

opposed to “expected” density maps, which show predicted density based on the regression328

model underlying the intensity surface. To present uncertainty, we calculated and mapped the329

standard deviation of the per cell posterior of density (Miller et al. 2013). We used all MCMC330

samples to construct the density maps, regardless of the indicator variable values.331

3 Results332

3.1 Noninvasive genetic sampling333

During the sampling period between 1 December 2018 and 30 June 2019, 283 282 km of334

GPS search tracks were recorded within our designated detector grid (Supporting Information)335

across Norway (34%) and Sweden (66%). The final NGS data set consisted of 2 444 (1 350336

male and 1 094 female) detections from 742 (335 males and 407 females) genetically identified337

wolverine individuals across the entire population on the Scandinavian Peninsula (Supporting338

Information). The number of detections (i.e., recaptures) per identified individual ranged from339

1 to 13 for both sexes (mean = 3.0 males and 2.1 females).340

3.2 Density predictors341

The variation in wolverine density across Scandinavia was explained by distance from the342

relict range in different zones, human settlement areas, moose density proxy, year-round snow,343

terrain ruggedness, and forest cover (Fig. 2). The magnitude of the effects and uncertainty344

around them varied moderately between the sexes (Fig. 2). For both females and males, the345

effects of being in southern Norway, distance from the relict range in northern Sweden, and346

percentage of human settlements received the most support based on the inclusion probability347

(≥ 0.99; Fig. 2). In addition, for female wolverines, the effects of being in northern Norway and348
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distance from the relict range in southern Norway, and, for males, the effect of moose density349

proxy received inclusion probabilities of ≥ 0.99 (Fig. 2). The most supported SCR models for350

each sex are reported in the Supporting Information.351

Among the covariates considered, percentage of human settlement areas had the largest352

negative effects on both female and male wolverine densities (median and 95% CI βX5 = –1.61,353

–2.66 to –0.79 [female] and –2.27, –3.41 to –1.33 [male]; Fig. 2). Likewise, distance from the354

relict range negatively affected the density of both sexes, with significantly stronger effects355

in southern Norway (βR4X1 = –1.35, –1.99 to –0.70 [female] and –1.07, –1.87 to –0.26 [male]),356

compared to the effect of distance from the relict range in northern Sweden (Fig. 3). Based on357

our results, we predicted that areas located 30 km away from the relict range, as-the-crow-flies,358

would have on average about two-third lower expected wolverine densities in the southern zones359

of Norway and Sweden compared to the northern zones (Fig. 3). Moose density was positively360

associated with both female and male wolverine densities (βX6 = 0.19, 0.02 to 0.35 [female] and361

0.46, 0.31 to 0.63 [male]; Fig. 2). The effects of forest cover (βX4 = 0.32, 0.12 to 0.52) and362

terrain ruggedness on density was significantly positive for female wolverines only (βX2 = 0.42,363

0.25 to 0.59), while the effect of year-round snow cover was positive for males only (βX3 = 0.35,364

0.11 to 0.56; Fig. 2).365

3.3 Detection predictors366

The effects of detection covariates varied slightly between male and female wolverines367

(Supporting Information). Baseline detection probability p0 was comparable between sexes368

(median and 95% CI p0 = 0.02, 0.01 to 0.02 for both males and females), but varied moderately369

among the eight carnivore management regions and counties in Norway and Sweden, respectively370

(Supporting Information). Both female and male wolverine detection probabilities increased with371

search effort (βE = 0.62, 0.53 to 0.71 [female] and 0.51, 0.44 to 0.59 [male]). Further, for female372

wolverines, searching farther away from the nearest road increased their detectability (βR = 0.19,373

0.07 to 0.31). Higher percentage of snow cover during the sampling months decreased detectability374

of males (βS = –0.22, –0.37 to –0.08). The individual-level covariate representing wolverine375

detection in the previous sampling year positively influenced male wolverine detectability only376

(βP = 0.61, 0.44 to 0.77), suggesting sex-specific detection bias during NGS. The spatial scale377
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parameter was greater for males (σm = 8 km, 7.6 - 8.2) than for females (σf = 6 km, 5.6 - 6.4).378

More details are provided in the Supporting Information.379

3.4 Sex-specific and total estimates of abundance and density380

We estimated the abundance of the Scandinavian wolverine population within our detector381

grid (Supporting Information) during the 2018/19 monitoring season at 408 (95% CI = 397 -382

420) males and 667 (95% CI = 640 - 697) females. The wolverine population in Sweden was383

estimated to be between 640 and 692 individuals, while in Norway we estimated between 397384

and 425 wolverines (Fig S5). Overall, we predicted higher wolverine densities for both males and385

females closer to the relict range, but the pattern was more pronounced for females (Fig. 4).386

Figure 2: The effect of environmental covariates on density of female (left) and male (right) wolverines
Gulo gulo in the Scandinavian Peninsula between December 2018 and June 2019. The covariates of
density are (from top to bottom): Distance from the relict range in (a) northern Sweden, (b) southern
Sweden, (c) northern Norway, and (d) southern Norway; (e) Terrain Ruggedness Index; (f) Human
settlement index; (g) Year-round snow cover; (h) Forest cover; and (i) Moose Alces alces harvest
density (see Table 1). All continuous covariates were standardized prior to their inclusion in the models.
Zone-specific intercepts are not shown (see Supporting Information). The violins show median (white
dots) and 95% Bayesian credible interval limits of regression coefficients β estimates, where effect sizes
are on exponential scale. Line widths represent the magnitude of the median effect (i.e., the thicker,
the larger the strength of the covariate effects). Line and violin colors show direction of the effects
(blue = positive and red = negative effects), and the opacity level indicates the inclusion probability (0
[transparent] to 1 [opaque]; Supporting Information). For the four zone-specific effects of distance from
the relict range (a-d), inclusion probabilities are based on the inclusion probability of the distance
effect in northern Sweden (a).
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Figure 3: Expected intensity of the density point process for female (blue) and male (green) wolverines
Gulo gulo in Norway and Sweden as a function of environmental covariates included in this study.
Mean response and 95% Bayesian credible interval limits are represented by thick lines and transparent
polygons, respectively. Predictions in plots a-d are for the range of values of distance from the
relict range (km) that was available in the given zone: a. northern Sweden; b. southern Sweden; c.
northern Norway; and d. southern Norway. The red polygons on the small maps a-d indicate the
relict range (Fig. 1), and the dark gray polygons are different zones with contrasting management
goals and environmental conditions for the wolverine across the available habitat (see the Supporting
Information). The intensity of the point process reflects the relative distribution of individual activity
centers. For example, twice as many individuals are expected to have their activity centers located in
a cell with an intensity of 2 compared to 1.

4 Discussion387

The present spatial configuration of wolverine density across the Scandinavian Peninsula388

reflects the species’ recovery from past range-contraction and population decline, modulated by389

current management and environmental conditions. The importance of the relict range along390
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the Swedish-Norwegian border highlights the need for coordinated monitoring and management391

of this transboundary population of wolverines. Monitoring is already coordinated to some392

extent (Gervasi et al. 2016, 2019, Bischof et al. 2020), but fully coordinated management is made393

difficult by existing differences in national and regional population goals and legal obligations,394

which are also tied to differences in the intensity of conflict.395

Figure 4: Expected density surfaces of female (left) and male (right) wolverines Gulo gulo in Norway
and Sweden as a function of environmental covariates included in spatial capture-recapture analysis
(Table 1). The main maps show the average expected density surfaces for each sex (individuals per 100
km2) and smaller inset maps show the cell-based standard deviation of predictions.

19



The ghosts of the past396

A key driver of current wolverine density distribution for both sexes in Norway and Sweden397

appears to be distance from the relict range (Fig. 1 and Supporting Information), where398

Scandinavian wolverines survived human persecution before their legal protection in the 1970s399

(Landa et al. 2000, Flagstad et al. 2004). We also found that zonal management is one of400

the main drivers of wolverine density in Scandinavia (Fig. 3). The density of both male and401

female wolverines declines with increasing distance from the relict range, and the rate of decline402

further varies among zones with contrasting management goals regarding wolverine annual403

reproduction (Figs. 2-3). Regional differences in the effect of distance from the relict range is404

likely a sign that the current recolonization of wolverines is both a function of past and current405

management practices and environmental conditions. Together, these factors explained much of406

the spatial variation in current density of wolverines in the Scandinavian Peninsula (Fig. 4).407

Whether the relict range represents a highly suitable habitat for the Scandinavian wolverine408

(i.e., historical and current core) or the species was pushed into the alpine refuge areas during409

the peak of the persecution is not fully understood (Flagstad et al. 2004, Kerley et al. 2012,410

Zigouris et al. 2013). Nonetheless, wolverine recolonization in Scandinavia matches the general411

pattern of return of other large carnivore species in Western Europe and North America (Linnell412

et al. 2001, Chapron et al. 2014). Successful recovery of these species is partially attributed413

to changing public attitudes towards large carnivores and effective law enforcement, which, in414

turn have lowered the risk of direct killing by humans (Zedrosser et al. 2011, Ingeman et al.415

2022). Likewise, increasing tolerance towards wolverines by Scandinavian farmers and herders416

has in part been achieved through intensive zonal management of wolverines and compensation417

schemes (Persson et al. 2015, Aronsson and Persson 2017, Strand et al. 2019). Balancing the418

landscape-level requirements of a viable wolverine (meta-)population and human interests will419

therefore remain crucial for successful management.420

The ability of wolverines to travel long distances has probably contributed to their successful421

recolonization in part of their historical range in Scandinavia. Male wolverines are more likely422

to disperse, whereas females usually stay close to their natal range and show high home-range423

fidelity (Inman et al. 2012, Packila et al. 2017, Aronsson and Persson 2018). We found that424

spatial covariates tested in our study had qualitatively similar effects on the density of female425
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and male wolverines (Fig. 2). We note that male and female Scandinavian wolverines have426

a comparable level of human-induced mortality (Bischof et al. 2020, Milleret et al. 2022).427

Additionally, long-distance dispersal events that lead to successful colonization of unoccupied428

habitat are not common (Flagstad et al. 2004, Packila et al. 2017). Even if male wolverines on429

average disperse farther, they may not always successfully establish significantly farther than430

females. Nonetheless, we observed pockets of higher expected male wolverine density farther431

from the relict range compared to the expected female density, which remained the highest in432

and near the relict range (Fig. 4). This pattern was reflected in the sex-specific estimates of the433

effect of distance from the relict range in the southern zones of Sweden and Norway (Fig. 2).434

We estimated, on average, substantially lower wolverine densities in the southern zones of435

Norway and Sweden compared to the northern zones (Fig. 3). The southern zones generally do436

not cover semidomesticated reindeer husbandry areas and calving grounds, but the southern437

zone in Norway includes areas with free-ranging domestic sheep. The current management438

strategy in both countries allows more wolverine annual reproduction in the northern zones439

(Ministry of the Environment 2003, Naturvårdsverket Ärendenr 2020), and the legal removal of440

wolverines is proportionally more intense in the south, especially in southwestern Norway to441

protect the free-ranging sheep (Strand et al. 2019). Consequently, no wolverines are currently442

tolerated in southwestern Norway. There are also mismatches between the management goals,443

their implementation, and regional tolerance of the wolverine in Scandinavia (Aronsson and444

Persson 2017, Gervasi et al. 2019) that are not entirely reflected by the four zones we considered.445

Thus, it is likely that the combined effect of the higher cost of dispersal from the relict range and446

the current management plans regarding wolverine recolonization, together with region-specific447

environmental characteristics, have resulted in slower wolverine expansion and lower densities in448

the southern parts of the Scandinavian Peninsula.449

Population-level drivers of variation in density450

Wildlife distributions and densities are continuously being shaped by multiple factors at451

different spatio-temporal scales. Abiotic factors, such as temperature and precipitation, play a452

key role in shaping species distributions at broad scales (Benton 2009). There is also increasing453

evidence that biotic factors are important determinants of species distributions at both local454
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and large spatial extents, particularly when accounting for interacting drivers (Van der Putten455

et al. 2010, Wisz et al. 2013). We found that current environmental features that describe456

landscape heterogeneity and productivity can explain variation in the Scandinavian wolverine457

density at the landscape level. Although the relative importance of some of these covariates458

varied between sexes (Fig. 2), anthropogenic factors had a consistently negative impact on both459

male and female wolverine density. Studies from the Nearctic range of the wolverine have also460

shown that drivers associated with anthropogenic disturbances can be more important than461

the traditionally held drivers of wolverine density, such as topographic ruggedness and snow462

cover (Fisher et al. 2013, Heim et al. 2017, Chow-Fraser et al. 2022). Besides quantifying the463

driving factors of density for the entire population of the Scandinavian wolverines, our study464

advances the previous findings (Fisher et al. 2022 and references in Table 1) by highlighting465

the role of past persecution history and current management practices in modulating natural466

recolonization across a human-dominated landscape.467

Human-caused mortality and anthropogenic fragmentation of habitat are limiting wolverine468

distribution and density globally (May et al. 2006, Persson et al. 2009, Fisher et al. 2013,469

Mowat et al. 2020, Lukacs et al. 2020, Lansink et al. 2022, Barrueto et al. 2022). Within470

the Scandinavian large carnivore guild, wolverines are believed to be the most sensitive to471

habitat fragmentation (May et al. 2008). We included the percentage of human settlement472

areas as a measure of human pressure on the natural environment (Marconcini et al. 2020),473

which represents human population density and the associated disturbances. The negative474

impact of human settlements on wolverine density appeared to be substantial (Fig. 2), and475

we observed drastic declines in the expected density of both male and female wolverines with476

increasing human settlements (Fig. 3). In Norway and Sweden, the majority of large towns with477

the highest concentration of permanent human settlements and high traffic-volume roads are478

located in the southern parts. Likewise, the farthest distance from the relict range and zones479

with lower annual wolverine reproduction goals are also in the south (Figs. 3 and Supporting480

Information). Thus, the combined effect of all these anthropogenic factors, as well as the zero481

tolerance towards wolverines in southwestern Norway, have probably limited the wolverine482

density distribution in the southern parts of the Scandinavian Peninsula. Nonetheless, the south483

represents the wolverine population’s expansion front and the observed latitudinal pattern may484
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be also explained with the observation that wildlife population dynamics can differ considerably485

from the core areas (Swenson et al. 1998, Burton et al. 2010, Angert et al. 2020). With increasing486

human-made barriers to wolverine movement and dispersal (Aronsson and Persson 2018, Sawaya487

et al. 2019, Lansink et al. 2022), we expect the resulting population fragmentation will also play488

a major role in shaping the spatial distribution and dynamics of the Scandinavian wolverine489

population in the future.490

As a measure of wild prey biomass availability, we included moose harvest density in our491

models (Table 1, Supporting Information). We estimated significantly higher wolverine densities492

in areas with higher moose harvest density, and this positive effect was more pronounced493

for males (Fig. 3). Wolverines are generally facultative scavengers and in many areas of494

Fennoscandia, they depend on slaughter remains from hunting and carcasses of prey killed by495

other top predators, including the Eurasian lynx Lynx lynx, wolf Canis lupus, and brown bear496

Ursus arctos, as well as animals dead from natural causes and roadkills (Van Dijk et al. 2008,497

Mattisson et al. 2011, Koskela et al. 2013, Aronsson et al. 2022). Moose occurs throughout the498

wolverine range in Scandinavia and moose carrion is an important food source for wolverines in499

many areas (Van Dijk et al. 2008, Mattisson et al. 2016, Aronsson et al. 2022), especially for500

breeding females (Koskela et al. 2013) and during winter (October - April) that overlaps with501

our study period. There is, however, considerable spatial and temporal variation in wolverine502

diet in Scandinavia, with reindeer as the most important prey for wolverines in some areas503

(Mattisson et al. 2016). Unfortunately, we were unable to find comprehensive and reliable data504

on the density of wild or semidomesticated reindeer across the entire Scandinavian Peninsula to505

be considered for our study.506

The positive effects of terrain ruggedness and the percentage of forest cover on wolverine507

density were significant for females only, whereas the average percentage of year-round snow508

appeared to only impact male density (Fig. 2). Until recently, Scandinavian wolverines were509

not considered to be a forest-dwelling species, as they appeared to select open and rugged510

terrain at higher elevations with snow, away from human activity (May et al. 2008, 2012,511

Rauset et al. 2013). Spring snow cover in particular is believed to be important for reproducing512

females, because it determines denning suitability and offspring survival (Copeland et al. 2010,513

Mowat et al. 2020, Barrueto et al. 2022). However, in recent years, the Scandinavian wolverine514
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population has expanded considerably into the boreal forest and has now colonized areas without515

persistent spring snow cover (Aronsson and Persson 2017). We chose the average year-round516

snow cover during the past decade not to specifically account for denning suitability for the517

wolverine, but as a measure of climatic niche suitability that may have shaped the wolverine’s518

density distribution today (Table 1). Terrain ruggedness and forest cover probably correlate519

with the degree of past persecution due to accessibility and history of land protection (Joppa520

and Pfaff 2009, Kerley et al. 2012) and the significance of these covariates for female wolverines521

may then reflect their affinity for high-quality habitat compared to males (May et al. 2008, 2012,522

Rauset et al. 2013, Aronsson and Persson 2018).523

Wolverines in the past, present, and future524

Scandinavian wolverines have recovered from the brink of extinction and are now occupying a525

considerable portion of their historic range (Flagstad et al. 2004, Chapron et al. 2014, Aronsson526

and Persson 2017, Gervasi et al. 2019, Bischof et al. 2020). The effects of past impacts are,527

nonetheless, still clearly visible today, modulated, but not masked, by current environmental528

conditions and management regimes. The wolverine density in Scandinavia is shaped by human529

interests, while interacting with the history of local extinction. Wolverines are also impacted530

by other environmental covariates, several of which are directly or indirectly influenced by531

humans (e.g., prey base, land-use, and climate conditions). In an increasingly human-dominated532

landscape, the impact of humans on wolverines is likely to be even greater in the coming decades,533

further defining the state of the Scandinavian wolverine population. Despite the expansion of534

wolverines (Chapron et al. 2014, Gervasi et al. 2019), an increasing human impact, if neglected,535

may therefore eventually again limit wolverines to the relict range that served as a refuge in the536

past.537
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Figure S1: Distribution of confirmed wolverine Gulo gulo noninvasive DNA samples (males: light
blue circles, females: dark blue) collected along GPS search tracks (brown lines) and opportunistically
by management authorities and volunteers across Norway and Sweden between 1 December 2018 and
30 June 2019. The colored polygons show the spatial extent included in the analysis (light yellow) and
the 40-km buffer around the detector grid (dark yellow). The upper inset map shows the location of
the Scandinavian Peninsula (thick black lines) in relation to the global distribution of the wolverine
(purple polygon), after Abramov (2016). The lower inset map indicates areas of permanent (dark blue)
and sporadic wolverine occurrences (light blue), redrawn from Chapron et al. (2014).
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Figure S2: Baseline detection probability p0 of the Scandinavian wolverine Gulo gulo during the
noninvasive DNA sampling between 1 December 2018 and 30 June 2019, estimated by the sex-specific
single-season spatial capture-recapture models used in this study. Violins represent median (white dots)
and 95% Bayesian credible interval limits for females (blue) and males (green). Results are separated
into panels based on five carnivore management regions in Norway and three group of counties in
Sweden (red polygons) following Bischof et al. (2020), with slight modifications to match the habitat
extent. Note that p0 is a theoretical value of detection probability, where a detector coincides with
the location of an individual’s activity center and it is not to be confused with detectability – i.e, the
overall probability of detecting an individual.
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Figure S3: Spatial covariates used to explain spatial variation in wolverine Gulo gulo detection
probability in the Scandinavian Peninsula. From left to right: (a) Number of track points per 500 m
of GPS search tracks as a measure of sampling effort; (b) Average distance (km) to the nearest road
on logarithmic scale, representing site accessibility during the sampling; and (c) Average percentage
of snow-covered land during the sampling months, December 2018 - June 2019, as a measure of
snow-tracking conditions. All covariates were resampled to detector resolution at 10 × 10 km and
standardized prior to analysis. See Table S1 for details.
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Figure S4: Spatial covariates used to explain spatial variation in wolverine Gulo gulo density in the
Scandinavian Peninsula during the 2018/19 monitoring season. From top, left to right: (a) Distance
from the relic range; (b) Terrain Ruggedness Index, TRI; (c) Percentage of year-round snow-covered
land; (d) Percentage of forest cover; (e) Percentage of human settlement areas on logarithmic scale; and
(f) Moose Alces alces harvest density. All covariates were resampled to habitat resolution at 20 × 20
km and standardized prior to analysis. See Table 1 in the main text for details.
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Figure S4: (continued) Spatial covariates used to explain spatial variation in wolverine Gulo gulo
density in the Scandinavian Peninsula during the 2018/19 monitoring season. We described two zones
in each country, representing the variation in wolverine annual reproduction goals in the country’s
management plans and other region-specific environmental conditions: Northern zones in (g) Sweden
and (i) Norway, where jurisdictions have management goal of 10 or more annual wolverine reproductions;
Southern zones in (h) Sweden and (j) Norway, where jurisdictions have management goal of less than
10 annual wolverine reproductions, including parts of jurisdictions without management goals. The
buffer area in neighboring Finland and Russia were also merged into the corresponding northern zones.
See Table 1 and Figure 1 in the main text for details.
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Figure S5: Realized density surfaces of male (left) and female (right) wolverines Gulo gulo in the
Scandinavian Peninsula between December 2018 and June 2019, as estimated by sex-specific spatial
capture-recapture models used in this study. The main maps show the average realized density surfaces
for each sex (individuals per 100 km2) based on the posterior location of individual activity centers
in each 10 × 10-km habitat cell and inclusion parameter. Smaller inset maps show the associated
cell-based standard deviation. See the main text for details.
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Table S1: Description, rationale for inclusion, expected effects, and source and native spatial resolution of
covariates of baseline detection probability p0 used to model the density distribution of the wolverine Gulo gulo
across Norway and Sweden between December 2018 and June 2019.

Covariate Description and Rationale Effects Resolution and Source
Effort Length (m) of GPS search tracks

recorded by investigators within
each detector grid cell during the
monitoring period, representing
the sampling effort

+ Search tracks were recorded by
wildlife authorities during the struc-
tured sampling effort. We simplified
the tracks by retaining one point per
500 m of tracks using the gSimplify
function of the R package rgeos
(Bivand et al. 2019). We then calcu-
lated the total number of points at
10 × 10-km detector cells.

Road The average distance (km) from
each detector to the nearest road
as a measure of site accessibility

– 5 × 5 arcminute resolution (≈ 8 × 8 km
at the equator) from the global road
data set (GRIP) provided by Meijer
et al. (2018), converted in km and
log-transformed after adding a value
of 1 to deal with 0 values

Snow The average percentage of snow
cover during sampling months
between December 2018 and
June 2019 in each detector grid
cell, representing snow-tracking
conditions

+ Calculated using monthly maps of the
percentage of snow-covered land based
on the MODIS/Terra Snow Cover
Daily L3 Global 500 m Grid data set
(www.neo.sci.gsfc.nasa.gov)

Jurisdiction Carnivore management regions
in Norway and aggregation of
counties in Sweden (n = 8) as an
index of variation in monitoring
regimes and effort across the
study landscape

+/– Bischof et al. (2020)

Previous Individual covariate indicating
whether the focal individual
was previously detected or not,
representing a potential source
of detection bias

+ Wolverine detection data from the pre-
vious monitoring season between De-
cember 2017 and June 2018 (Milleret
et al. 2022)
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Table S2: Mean and standard deviation (SD) of the spatial covariates of wolverine Gulo gulo density and
detection probability used in this study prior to their standardization. Covariates of density and detection
probability were prepared at 20 × 20 and 10 × 10 km spatial resolutions, respectively. Note that the snow
covariate of density was different from the one used to model detection probability. See Figs. S3, S4a, and S4b
for spatial depiction of the covariates, and Tables 1 and S1 for details.

Covariate Unit Mean SD
Density
Relict Meters 135 274.3 119 377
Ruggedness Percentage 16.8 14.1
Snow Percentage 50.6 8.6
Forest Percentage 50.3 27.5
Moose Individuals/km2 0.1 0.1
Settlements Percentage (log-transformed) 0.2 0.3

Detection
Effort Number of track points per 500 meters of

search tracks
253.2 345.3

Road Kilometers (log-transformed) 1.5 0.9
Snow Percentage 84.6 12.1
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Table S3: Description and prior distribution for the focal parameters estimated by the spatial capture-recapture
model for the Scandinavian wolverine Gulo gulo used in this study

Parameter Description Prior
Detection process σ Scale parameter of the half-normal detection

function
Uniform(0,4)

p0c Baseline detection probability at each jurisdiction Uniform(0,1)
βE Effect of sampling effort on detection probability Uniform(-5,5)
βR Effect of distance to the nearest road on detec-

tion probability
Uniform(-5,5)

βS Effect of the average snow cover during the
sampling months on detection probability

Uniform(-5,5)

βP Effect of previous detection as an individual-level
covariate on detection probability

Uniform(-5,5)

Spatial process βR2 Effect of management region 2 (southern Sweden)
on activity center locations

Uniform(-5,5)

βR3 Effect of management region 3 (northern Nor-
way) on activity center locations

Uniform(-5,5)

βR4 Effect of management region 4 (southern Nor-
way) on activity center locations

Uniform(-5,5)

βX1 Effect of distance from the relic range in north-
ern Sweden on activity center locations

Uniform(-5,5)

βR2X1 The difference between the effect of distance
from the relic range in southern Sweden and
northern Sweden on activity center locations

Uniform(-5,5)

βR3X1 The difference between the effect of distance
from the relic range in northern Norway and
northern Sweden on activity center locations

Uniform(-5,5)

βR4X1 The difference between the effect of distance
from the relic range in southern Norway and
northern Sweden on activity center locations

Uniform(-5,5)

βX2 Effect of Terrain Ruggedness Index on activity
center locations

Uniform(-5,5)

βX3 Effect of the average year-round snow cover on
activity center locations

Uniform(-5,5)

βX4 Effect of the percentage of forest cover on activ-
ity center locations

Uniform(-5,5)

βX5 Effect of the percentage of human settlement
areas on activity center locations

Uniform(-5,5)

βX6 Effect of moose harvest density on activity center
locations

Uniform(-5,5)

Demographic process ψ Inclusion probability Uniform(0,1)
π Probability of being detected in the previous

sampling year
Uniform(0,1)

Variable selection ω Inclusion probability of regression coefficients β Beta(2,8)
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Table S4: Alternative description of the relationship between the density of female and male wolverines Gulo
gulo and determinants thereof. Shown are covariate combinations with the highest (top 5) probabilities of joint
inclusion in any given Markov chain Monte Carlo (MCMC) iteration. Inclusion probability (reported here as
percentages, %) was determined using an indicator variable approach with reversible jump MCMC method. ‘×’
implies the interaction term between distance from the relic range and a given zone (i.e., Sweden North, Sweden
South, Norway North, and Norway South). See Table 1 in the main text for the description of the covariates.

Rank Model %
Female

1 Norway North + Sweden North × Relict + Sweden South × Relict + Norway
North × Relict + Snow + Forest + Settlements 30.2

2 Norway North + Sweden North × Relict + Sweden South × Relict + Norway
North × Relict + TRI + Snow + Forest + Settlements + Moose 14.0

3 Norway North + Sweden North × Relict + Sweden South × Relict + Norway
North × Relict + Norway South × Relict + Snow + Forest + Settlements 11.6

4 Sweden North × Relict + Sweden South × Relict + Norway North × Relict +
Snow + Forest + Settlements 10.9

5 Sweden North × Relict + Sweden South × Relict + Norway North × Relict +
TRI + Snow + Forest + Settlements + Moose 5.3

Male

1 Sweden South + Norway South + Sweden North × Relict + Norway North ×
Relict + Snow + Forest + Moose 31.9

2 Sweden South + Sweden North × Relict + Snow + Forest + Moose 26.0

3 Sweden South + Sweden North × Relict + Norway North × Relict + Snow +
Forest + Moose 8.7

4 Sweden South + Norway South + Sweden North × Relict + Norway North ×
Relict + TRI + Snow + Forest + Moose 7.7

5 Sweden South + Norway South + Sweden North × Relict + Snow + Forest +
Moose 4.8
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Table S5: The effects (median and 95% Bayesian credible interval limits, CI) of spatial and individual-level
covariates of female and male wolverine Gulo gulo density and detection probability in the Scandinavian Peninsula
between December 2018 and June 2019. To quantify the relative importance of the covariates of density, we used
an indicator variable approach and report the probability of inclusion. For reporting the effects of the covariates
of density, regression coefficients β, we discarded Markov chain Monte Carlo (MCMC) draws, out of a total
of 760 000 MCMC samples, where indicator variable was estimated to be zero – i.e., when the covariate was
proposed to be excluded from the sex-specific model. We constrained inclusion of the interaction coefficients
(shown by ‘×’) to when the corresponding zone-specific effects were also included – i.e., their inclusion probability
cannot exceed that of the additive effect of the given zone. Coefficients with a ‘*’ are relative to the intercept
effect of distance from the relict range (“Relict” in the zone Sweden North). Significant effects (i.e., where 95%
CI does not overlap zero) are shown in bold. See Table 1 in the main text and Table S1 for the description of
the covariates.

Covariate Female Inclusion Prob. Male Inclusion Prob.
Density Sweden South 0.08 (–0.52 - 0.63) 0.34 1.24 (0.68 - 1.79) 1

Norway North –0.73 (–1.16 - 0.07) 0.99 –0.25 (–0.69 - 0.33) 0.09
Norway South 0.18 (–0.37 - 0.71) 0.99 0.94 (0.38 - 1.49) 1
Relict –0.61 (–1.05 - –0.21) 1 –0.78 (–1.23 - –0.28) 1
Relict × Sweden South* –1.23 (–2.08 - –0.40) 0.30 –0.53 (–1.27 - 0.24) 0.14
Relict × Norway North* 0.51 (–0.12 - 1.09) 0.21 0.30 (–0.65 - 1.10) 0.01
Relict × Norway South* –1.35 (–1.99 - –0.70) 0.99 –1.07 (–1.87 - –0.26) 0.62
Ruggedness 0.42 (0.25 - 0.59) 1 0.18 (–0.06 - 0.38) 0.07
Snow 0.03 (–0.27 - 0.27) 0.03 0.35 (0.11 - 0.56) 0.53
Forest 0.32 (0.12 - 0.52) 0.72 0.14 (–0.08 - 0.35) 0.04
Moose 0.19 (0.02 - 0.35) 0.17 0.46 (0.31 - 0.63) 1
Settlements –1.61 (–2.66 - –0.79) 1 –2.27 (–3.41 - –1.33) 1

Detection Effort 0.62 (0.53 - 0.71) 0.51 (0.44 - 0.59)
Road 0.19 (0.07 - 0.31) 0.05 (–0.05 - 0.15)
Snow –0.12 (–0.29 - 0.05) –0.22 (–0.37 - –0.08)
Previous 0.12 (–0.06 - 0.30) 0.61 (0.44 - 0.77)
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1 Sources of heterogeneity in detectability
Increasing search effort for wolverine DNA (Table S1) increased the probability of detecting

both female and male wolverines (Table S5). Contrary to our expectations (Table S5), the

effect of distance from roads, a measure of site accessibility during noninvasive genetic sampling

(NGS), was positive for females, while increasing snow-covered land during the sampling months

reduced the probability of detecting males (Table S5). During NGS, many search tracks have to

be surveyed using snowmobiles or by skiing away from the road network. There is also evidence

that females avoid linear infrastructure more than males (May et al. 2006, 2012, Rauset et al.

2013), which may explain in part the need to search for their DNA farther away from roads.

Likewise, while higher snow cover decreased male wolverine detectability, a detection in the

previous year appeared to increase their chance to be detected in the following year (Table

S5), suggesting a source of sampling bias during NGS (Gervasi et al. 2014, Bischof et al. 2020).

Good conditions for snow tracking are determined locally in the field, and other factors, such

as terrain ruggedness and availability and capacity of volunteers, may have also affected the

performance of NGS, whereas the spatial covariates of baseline detection probability we included

in the analysis explain the spatial variability in detection at the detector level (10 × 10 km).

Also, it seems that the addition of data from the Norrbotten County in northern Sweden has

a considerable influence on the estimated effect of the spatial covariates on baseline detection

probability (Milleret et al. 2022). Thus, although we accounted for the main known spatial and

individual-level factors affecting wolverine detectability, additional unexplained heterogeneity in

detectability likely remains (Moqanaki et al. 2021, Dey et al. 2023).
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Abstract18

The spatial distribution of wildlife populations is not static. Intrinsic and extrinsic factors19

lead to spatiotemporal variation in population density and range. Yet, spatial dynamics in20

density and their drivers are rarely documented, due in part to the inherent difficulty of21

studying long-term population-level phenomena in situ at ecologically meaningful scales. We22

studied the spatiotemporal dynamics in population density of a recolonizing large carnivore,23

the wolverine Gulo gulo, across the Scandinavian Peninsula over nine years (2014 - 2022). We24

fitted open-population spatial capture-recapture models to noninvasively collected genetic data25

across the entire ≈600 000-km2 range of the wolverine in Norway and Sweden to construct26

annual density surfaces. This approach allowed us to model changes in wolverine density and its27

sex-specific responses to landscape-level environmental determinants over time as the population28

continues to expand. The Scandinavian wolverine population is still in flux, as it recovers from29

centuries of persecution and severe range contraction. Our results revealed that as wolverines30

successfully recolonized many parts of their historical range in Scandinavia, the relationship31

between density and its spatial determinants, such as distance to the relict range, forest cover,32

and prey availability, has changed over time. We also found that temporal dynamics in the33

environmental effects (distance to the relict range, proportion of reindeer Rangifer tarandus34

areas, and free-ranging sheep Ovis aries numbers) differ between male and female wolverines.35

Our findings show that wildlife density surfaces and their determinants can be both vary across36

time.37

Keywords: Density, Distribution, Large carnivores, Noninvasive monitoring, Population38

dynamics, Spatial capture-recapture, Transboundary wildlife populations, Wolverine39
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1 Introduction40

Many wildlife populations have historically been persecuted by humans. Despite the41

widespread loss of wilderness, effective management and conservation measures have reversed42

the extinction trajectory for several wild species (Hoffmann et al. 2015, Bolam et al. 2021).43

Such successes have even been achieved in altered ecosystems, where natural habitats have44

transformed to a new state to meet human interests (Balmford 2012, Chapron et al. 2014).45

However, this means that recovering wildlife populations need to cope with new, drastically46

altered environments within their historical ranges. In the Anthropocene, land-use history47

and management interests are dominant forces that are transforming ecosystems and altering48

fundamental patterns of landscape heterogeneity (Yackulic et al. 2011, Newbold et al. 2016).49

Understanding how environmental factors determine the distribution and density of wildlife50

is a primary goal of ecology, and crucial to the adaptive management of recovering wildlife51

populations on today’s human-dominated landscapes.52

Recovery is often poorly defined for many wildlife populations. This is in part because of a53

long history of human-induced changes to populations and their habitats, as well as shifting54

baselines of population status (Lotze et al. 2011, Roman et al. 2015). In addition, different55

methodologies are used to reconstruct historical reference points for species persisting on human-56

altered landscapes. The uncertainty in wildlife population trajectory makes comparisons and57

impact assessments difficult and inhibits reliable inferences of population status. For some58

species, recovery starts from a relict range, where the species survived persecution, because59

either the relict range represented a core habitat of high suitability for the species or the last60

remnant population was pushed into a sub-optimal habitat with lower human pressure (i.e.,61

habitat refuge; Kerley et al. 2012, Monsarrat et al. 2019). Recovery can also follow successful62

restoration attempts, where a small, but viable, population is established after reintroduction63

in suitable habitats (Seddon et al. 2014, Resende et al. 2020). Different factors contribute to64

the successful recovery and expansion of wildlife into currently unoccupied habitats. Biotic65

and abiotic environmental characteristics vary spatially and temporally and this variability66

influences species and ecological processes. Thus, each case of recovery has its own attributes67

and different lessons can be learned from studying them.68
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Population density estimation offers a significant advance in our ability to quantify and69

study species’ spatial distribution and, thus, range limits (Royle et al. 2018). Reliable estimates70

of current population density and its determinants can also help in establishing baselines for71

forecasting the population status in the future under different scenarios. However, estimates of72

density are often of limited use for informing management, because (i) these estimates are usually73

derived from a portion of the population only and may not represent the status of the entire74

population and its responses to different environmental factors; (ii) they are often limited to a75

short temporal snapshot of the population, ignoring the fact that habitat-density relationships76

may change over time; and (iii) such estimates are rarely linked to fitness or demography (e.g.,77

reproduction, sex ratio), limiting the understanding of the response to environmental factors or78

management actions. The current distribution and density of a wildlife population are the result79

of both historical and present-day factors that are constantly shaping that population (Sibly and80

Hone 2002, Monsarrat et al. 2019). Considering the temporal variation in drivers of population81

density can give us a more complete picture and improve our ability to forecast population82

responses to future changes in the environment and human intervention. This, in turn, requires83

long-term monitoring data at the population level and a spatially-explicit analytical framework84

that can handle the associated large computation demands (Chandler and Clark 2014, Hughes85

et al. 2017, Royle et al. 2018).86

The Scandinavian wolverine Gulo gulo population has recolonized many parts of its historical87

range in Norway and Sweden after a long period of intense persecution (Landa et al. 2000,88

Flagstad et al. 2004, Chapron et al. 2014, Aronsson and Persson 2017). Once almost functionally89

extinct, a combination of protective measures, higher tolerance of wolverines by humans, and a90

surviving relict population along the alpine border with Norway and Sweden has contributed to91

the recovery of the wolverine in Scandinavia (Flagstad et al. 2004, Persson et al. 2015, Gervasi92

et al. 2019, Moqanaki et al. 2022). Like other members of the Scandinavian large carnivore93

guild, the wolverine is still intensely managed in many areas, especially in Norway, to control94

population size and expansion, and mitigate conflicts (Bischof et al. 2012, 2020, Hobbs et al.95

2012, Aronsson and Persson 2017, Gervasi et al. 2019). Despite the transboundary nature96

of the wolverine population, management goals, laws, and regulations vary not only between97

Norway and Sweden, but also at the regional level within each country, partly as a result of98
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differences in the level of conflict (Gervasi et al. 2016, Aronsson and Persson 2017, Strand99

et al. 2019). On a national level, both countries aim for viable wolverine populations, but100

management differs substantially due to different livestock husbandry practices, conflict levels,101

and regulatory contexts. In Norway, increasing conflicts with sheep Ovis aries-farming industry102

and semidomesticated reindeer Rangifer tarandus husbandry have resulted in the abolishment103

of core conservation areas and introducing large annual hunting quota (Flagstad et al. 2004,104

Bischof et al. 2012, Hobbs et al. 2012, Tveraa et al. 2014, Strand et al. 2019). In contrast,105

EU member Sweden (Habitats Directive 1992), strictly protects wolverines throughout the106

country, and lethal control has until very recently only been permitted in areas with high levels107

of predation on semidomesticated reindeer (Persson et al. 2015, Aronsson and Persson 2017).108

Successful management of this conflict-prone large carnivore requires up-to-date information on109

the spatiotemporal impact of the factors shaping the spatial configuration of the population110

and its trajectory.111

To identify the landscape-level effects of environmental conditions and changes in wolver-112

ine population density, we used a comprehensive data set of genetically identified wolverine113

individuals collected across their entire range in Norway and Sweden over nine years. We114

fitted open-population spatial capture-recapture (OPSCR) models (Gardner et al. 2010, Ergon115

and Gardner 2014, Bischof et al. 2016a, 2020) to quantify changes in the drivers of wolverine116

density, while controlling for imperfect and spatially and temporally variable sampling effort.117

We hypothesized that the relative contributions of wolverine density determinants have changed118

over the years, as the wolverine population continues to reclaim parts of its former range. There119

is evidence that today’s wolverine density reflects in part the location of the relict range along120

the Norwegian-Swedish border, where the population survived human persecution by the 1970s121

and presumably started to recolonize its historical range (Flagstad et al. 2004, Gervasi et al.122

2019, Moqanaki et al. 2022). Therefore, we hypothesized that a combination of historical and123

present-day environmental covariates has driven the wolverine density in Scandinavia over the124

past decade, and that the effects of these covariates have changed through time. Specifically,125

(i) the effect of distance from the relict range would be stronger in the first years, and, as the126

wolverine population expanded, the negative impact of distance from the relict range would127

become weaker. (ii) Traditionally, the wolverine is not considered a forest-dwelling species in128
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Scandinavia. Recently, however, the species has expanded into the boreal forest (i.e., taiga) and129

is now occupying areas that were not considered prime habitat during the last century (May130

et al. 2006, 2008b, Rauset et al. 2013, Aronsson and Persson 2017). We hypothesized that by131

successfully establishing themselves in the boreal forest, the positive effect of the forest on the132

wolverine density would become stronger over time.133

2 Methods134

2.1 Noninvasive genetic monitoring135

We used noninvasive genetic sampling (NGS) data of the wolverine in Norway and Sweden136

collected between 2013/14 and 2021/22 from the Scandinavian large carnivore monitoring137

database (Rovbase 3.0; www.rovbase.no and www.rovbase.se). This is a comprehensive138

multinational database containing mostly structured annual sampling, but also opportunistically139

collected records of large carnivores by different means (e.g., noninvasive DNA samples, dead140

recoveries, public observations, livestock predation) over the past two decades (Brøseth et al.141

2010, Gervasi et al. 2016). We used wolverine NGS data with coordinates, detection date, and142

individual and sex identification (i.e., genotypes) to construct spatially referenced individual143

detection histories for nine consecutive monitoring seasons (Royle et al. 2014).144

Field staff of management authorities in Norway (The Norwegian Nature Inspectorate, SNO)145

and Sweden (County Administrative Boards) conduct extensive searches for carnivore signs146

and DNA across both countries at the level of carnivore management regions in Norway and147

counties in Sweden annually. In this study, we used the data collected between December 1 and148

June 30 as the sampling period in each year to retain most of the data (i.e., December 2013 –149

June 2014 to December 2021 – June 2022). We did not include samples that were suspected150

to be from wolverine cubs in spring (i.e., individuals born during the sampling season), based151

on the information collected from active natal dens (Landa et al. 1998b, Gervasi et al. 2016).152

Therefore, all individuals in our data set were at least 10 months old (i.e., born in February and153

detected the earliest in December). Collection of noninvasive DNA samples and protocols to154

process the samples in DNA labs are described in detail elsewhere (e.g., Flagstad et al. 2004,155

2021, Brøseth et al. 2010, Gervasi et al. 2016, Ekblom et al. 2018).156
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Investigators searched for putative wolverine DNA material (e.g., scat, hair, secretion) mostly157

on snow and recorded their search effort by handheld GPS. These data contained detailed records158

of the spatial configuration and intensity of effort during the structured NGS. In addition to these159

structured searches, authorities and volunteers (e.g., hunters) also provided opportunistically160

collected DNA samples for analysis, but no direct measure of their search effort existed. Samples161

were then processed for DNA extraction and genotyping to identify species, individuals, and sex162

using a suite of nuclear DNA markers. The protocol has evolved through the sampling years,163

but the process ensures high-quality DNA data by using as many wolverine-specific markers as164

possible and controlling for genotyping errors using standard procedures (Ekblom et al. 2018,165

Flagstad et al. 2021). The genotypes from each sample were then used to identify wolverine166

individuals and their sex, which can be regarded as a genetic detection of that individual.167

We defined the surveyed area as the entire contiguous land area in Norway and Sweden168

extending 100 km beyond the outermost wolverine DNA detections in our data set – i.e.,169

noninvasive DNA samples and dead recoveries obtained during the nine-year sampling period170

for both sexes combined (58◦ 23′ - 71◦ 10′ N, 4◦ 45′ - 31◦ 03′ E; Fig. B1). To allow detection171

of individuals with activity centers located outside the detector grid (Efford 2004, 2011; see172

below), we placed a 60-km buffer around the designated 605 717-km2 surveyed area to define173

the habitat (Fig. B1). We chose this buffer based on the average home-range radius of adult174

Scandinavian wolverines (Persson et al. 2010, Mattisson et al. 2011). This amounts to a buffer175

that is more than five times larger than the average estimated spatial scale parameter (σ,176

which accommodates individual variation in detection; see below) for male wolverines from this177

population (Bischof et al. 2020).178

2.2 Open-population spatial capture-recapture analysis179

Spatial capture-recapture (SCR) is an extension of capture-recapture models (Efford 2004,180

Borchers and Efford 2008, Royle et al. 2014, 2018). Conventional capture-recapture models181

use the information contained in a detection history of individuals from the target population182

(i.e., detections and nondetections) to estimate abundance and other ecological parameters,183

while accounting for imperfect detection – i.e., the fact that not all individuals from the target184

population are detected during sampling (Pollock et al. 1990, Royle et al. 2014). SCR models185
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include an additional spatial component, which exploits the spatial information contained in the186

detections. From the pattern of multiple individual detections and nondetections, SCR models187

estimate the relationship between individual detection probability and the distance from the188

center of their home range (Borchers and Efford 2008, Royle et al. 2014). SCR models estimate189

the latent activity centers of all individuals potentially available for detection, including those190

alive individuals that were never detected during sampling. Thus, SCR provides a spatially191

explicit estimate of abundance (i.e., density) in the study area.192

A conventional SCR model can be used to estimate density, the effect of spatial and individual193

covariates on detection probability, and the effect of spatial covariates on density for a given194

point in time, with the assumption that the target population is demographically closed during195

sampling (i.e., no births, mortality, immigration or emigration). When data are collected over196

multiple years and the interest lies in understanding population changes, OPSCR models can be197

used to simultaneously estimate density and vital rates (e.g., recruitment and survival; Gardner198

et al. 2010, Ergon and Gardner 2014, Bischof et al. 2016a, Chandler et al. 2018). Thus, OPSCR199

models provide not only estimates of annual density and its determinants, but also estimates of200

the demographic parameters needed to predict changes in population dynamics and forecast201

the impact of management actions (Bischof et al. 2020). OPSCR models can also quantify202

temporal changes in the effect of spatial determinants of density, although such models are not203

widely used yet (Tourani 2022). In this study, we developed an OPSCR model for estimating204

temporal patterns in large-scale determinants of wolverine density in Scandinavia. We fitted205

separate OPSCR models in the Bayesian framework to the nine-year wolverine data time series206

for each sex, because of female-male differences in morphology, physiology, behavior, and ecology207

(Pasitschniak-Arts and Larivière 1995, Fisher et al. 2022). Our OPSCR model was composed of208

three sub-models for (1) density, (2) demography, and (3) detection.209

2.2.1 Density submodel210

This component of the OPSCR model describes the distribution of individual activity centers211

during each sampling year t. We used an inhomogeneous binomial point process with spatial212

intensity: λ(st) = eβtXt(st) (Zhang et al. 2023), where st is a vector of spatial coordinates of213

activity centers, Xt is a vector of spatial covariate values evaluated at location st, and βt is a214
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vector of associated regression coefficients for the monitoring season t. The intensity function λ215

conditions the placement of activity centers within each of the 20 × 20 km habitat grid cells216

st used in this analysis (1 809 cells in total) as a function of the covariates included. In this217

formulation, the number of activity centers is conditioned by data augmentation (Royle et al.218

2007; see below), and the regression coefficients βt represent the relative effects of the different219

covariates on wolverine density during the monitoring season t (Zhang et al. 2023). Thus, each220

spatial covariate is associated with a regression coefficient βt that describes the relationship221

between wolverine density and the given covariate for each year of the sampling. To explore222

the temporal trends in the relative effects of the covariates on wolverine density (i.e., changes223

in regression coefficients), we modeled βt as a linear function of time: βt = β0 + β1 × Timet,224

where β0 and β1 are the intercept and slope, respectively, and Timet is a vector representing225

the monitoring period from the first monitoring season t = 0 to the last year t = 8. Thus, in226

this formulation, β0 corresponds to the first monitoring season in December 2013 - June 2014.227

Our OPSCR model did not include a movement model between years (Efford and Schofield228

2022), because we were specifically interested in potential changes in the association between the229

environmental covariates and the overall distribution of wolverines in Scandinavia. This can be230

compared to the second-order of habitat selection (i.e., placement of home range; Johnson 1980).231

Although the selection of habitat by the wolverines could be restricted by their activity centers232

in the previous year, modeling interannual movement makes specific assumptions (Ergon and233

Gardner 2014, Efford and Schofield 2022) that may affect the interpretation of habitat-density234

relationships, given our study objectives. We, therefore, chose to model the location of individual235

activity centers independently from their locations in the previous years.236

Considering the body of literature about the determinants of wolverine distribution, habitat237

selection, and density in Scandinavia and globally (Fisher et al. 2022 and references therein;238

Table C1), we selected eight spatial covariates that may have influenced population-level density239

of wolverine in Scandinavia (Table C1 and Fig. C1): (i) Distance from the relict range as a240

measure of recolonization history; (ii) Forest cover to describe land use, habitat productivity,241

prey availability, and shelter; (iii) Moose Alces alces harvest density as a proxy of moose242

density and carrion availability to describe food availability; (iv) Reindeer areas as a proxy of243

prey availability and risk of human-caused mortality; (v) Number of free-ranging sheep and244
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lambs as an alternative prey source for the wolverine and the risk of human-caused mortality;245

(vi) Terrain ruggedness as a measure of topographic heterogeneity, human disturbances, and246

refuge availability; (vii) Year-round snow cover to describe climate suitability and a proxy of247

vulnerability of prey to predation; and (viii) Human settlements index that describes human248

population density and associated disturbances.249

Details on how the spatial covariates were obtained and prepared for the OPSCR analysis are250

provided in Table C1. We transformed all covariate raster layers from their original projections251

to the Universal Transverse Mercator (UTM zone 33N) and locally interpolated the raster values252

using the “bilinear” method of the resample function of the R package raster (Hijmans 2021)253

to match the 20 × 20 km habitat grid used in the OPSCR analysis (Fig. C1). We standardized254

all continuous covariates prior to their inclusion in the analysis to have a mean of zero and one255

unit standard deviation. Correlation among the covariates of wolverine density was generally256

low (Pearson’s correlation coefficient r < 0.7; Fig. C2).257

2.2.2 Demographic submodel258

To model individual state transitions between years, we used a multistate formulation259

(Lebreton and Pradel 2002), where each individual life history is represented by a succession of260

up to three discrete states zit: (a) “unborn”: if the individual i has not been recruited in the261

population in a given year t; (b) “alive” if the individual is alive; and (c) “dead”: if the individual262

has died. In this formulation, individuals can only be designated as either “unborn” (zi,1 = 1) or263

“alive” (zi,1 = 2) during the first year t = 1: zi,1 ∼ Categorical(1 − γ1, γ1, 0, 0), where γ1 is the264

probability of being “alive” in the first year. During subsequent years, t ≥ 2, zi,t is conditional265

on the state of individual i at t − 1. In our OPSCR model, (a) if zi,t−1 = 1, the “unborn”266

individual i can either transition to state 2 to be “alive” with probability γt (i.e., recruitment),267

or remain “unborn” with probability 1 − γt, so that zi,1 ∼ Categorical(1 − γ1, γt, 0, 0); (b) if268

zi,t−1 = 2, individual i can survive and remain “alive” with probability ϕ (i.e., survival), so it269

remains as zi,t = 2. If the individual does not survive and dies, regardless of the cause of the270

death, it transitions to zi,t−1 = 3, with probability 1 − ϕ, so that zi,t ∼ Categorical(0, ϕ, 1 − ϕ).271

All individuals with zi,t−1 = 3 remain in the state 3, the absorbing state, with probability 1.272

To account for those alive individuals that were not detected during NGS, but were available273
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for inclusion in the population at a given year, we used a data augmentation approach (Royle274

et al. 2007). In this approach, the super-population size M consists of both detected and275

augmented individuals and is, therefore, chosen to be considerably larger than the total number276

of individuals ever alive in the population over the study period. Previous analyses of this277

population have shown relatively high detectability of wolverine individuals during NGS (Bischof278

et al. 2020, Milleret et al. 2022). Therefore, we set M to be large enough, while still facilitating279

the analysis by Markov chain Monte Carlo (MCMC) sampling. We then defined year-specific280

abundance by summing up the indicator variable for alive individuals: Nt = ∑M
i=1 I(zi,t = 2).281

2.2.3 Observation submodel282

In Scandinavia, noninvasive DNA material from alive wolverines is collected following283

two main processes. First, management authorities collect genetic samples and record the284

corresponding search effort during official searches (“structured sampling”). Second, DNA285

material can be voluntarily collected by the public (e.g., hunters), or by the authorities in an286

opportunistic manner, which means that search effort is not directly available (“unstructured287

sampling”). However, the available data do not allow for an unambiguous distinction of samples288

collected in a structured manner from those collected during unstructured monitoring. Following289

Milleret et al. (2022), we assigned samples to the structured sampling, if (i) the associated290

metadata confirmed it was collected by authorities in Norway or Sweden, and (ii) it was located291

within 500 m from a GPS search track that was recorded on the same day the sample was292

collected. We assigned all remaining wolverine DNA samples to the unstructured sampling.293

We assumed a double-observation process to model structured and unstructured sampling294

separately. We used the conventional half-normal function to model detection probability (Royle295

et al. 2014), where the probability p of detecting individual i at detector j and time t decreases296

with distance dijt between the detector and the activity center sit: p1ijt
= p01ijt

exp(−d2
ijt/2σ2

t )297

for structured sampling and p2ijt
= p02ijt

exp(−d2
ijt/2σ2

t ) for unstructured sampling. Here, σ is298

the spatial scale parameter of the detection function, and p01 and p02 are the baseline detection299

probabilities for structured and unstructured sampling, respectively. We assumed that detections300

of wolverines as part of structured and unstructured searches could occur throughout most of301

the Scandinavian Peninsula (Fig. B1). We defined the search area as a grid of 10 × 10 km302
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cells extending 100 km beyond the outermost wolverine genetic detections collected during the303

nine-year period (Fig. B1). Multiple detections of the same individual were partially aggregated304

into 2 × 2 km sub-grids, allowing for up to 25 independent genetic encounters within one of305

the main detectors (Milleret et al. 2018). Encounter frequency Y of an individual at each main306

detector was assumed to follow a binomial distribution with a maximum sample size K of 100307

for both the structured Y1ijt
∼ Binomial(Kj, p1ijt

× I(zit = 2)) and the unstructured sampling308

processes Y2ijt
∼ Binomial(Kj, p2ijt

× I(zit = 2)). Here, I(zit = 2) is an indicator function used309

to condition detection on the individual being alive. One exception was Norrbotten County in310

northern Sweden, which was comprehensively searched for wolverine DNA only during 2016/17,311

2017/18, and 2018/19 monitoring seasons (Figs. B1 and B2). Therefore, we discarded the312

small number of opportunistic DNA samples collected in the remaining years and set baseline313

detection probability to zero (p01ijt
= 0 and p02ijt

= 0) for all j detectors located in Norrbotten314

County in the remaining six years.315

Spatial and temporal variations in the probability to detect a wolverine sample during316

structured and unstructured sampling were assumed to be driven by different processes. For the317

structured sampling, we considered a different baseline detection probability for each jurisdiction318

p01County
(County = 1, 2, . . . , 8) to account for possible regional differences in monitoring regimes319

(i.e., five carnivore management areas in Norway and three aggregated counties in Sweden;320

Bischof et al. 2020). Counties with very few wolverine DNA samples were merged with321

neighboring counties to ensure sufficient wolverine detections for estimating jurisdiction-specific322

baseline detection probability. In addition, we modeled the effects of two detector-level and one323

individual-level covariate that may influence the probability of wolverine detection (Bischof et al.324

2020, Milleret et al. 2022). The detection-specific spatio-temporal covariates were: (i) Length of325

GPS search tracks in each sampling year to describe variation in search effort; and (ii) Snow326

cover during NGS months in each year to describe snow-tracking conditions. The snow-related327

detector-level covariate was different from that of the density covariate; the detection-related328

covariate was a spatio-temporal covariate describing the snow conditions during the sampling329

each year (Fig. C3), contrary to the density-related covariate that was a spatial covariate330

representing the average percentage of land covered with snow between 2008 and 2021 (Table331

C1). Further, we included one individual and temporal level covariate of detection to quantify332
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the effect of probability of being detected on subsequent occasions for alive wolverine individuals333

(Milleret et al. 2022). There is evidence that investigators may prefer to sample or search more334

intensively areas with a positive wolverine detection in the previous year (Gervasi et al. 2014).335

Thus, detection in the previous monitoring season may influence the probability of being detected336

during the focal sampling year (Bischof et al. 2020). This binary covariate indicates whether337

each detected wolverine individual was also genetically detected in the previous sampling year.338

To model varying effort during unstructured sampling, we considered the following detector-339

and individual-specific covariates: (i) a binary spatio-temporal covariate describing the avail-340

ability of a detector to be searched for wolverine DNA (see below); (ii) Snow cover during the341

sampling months in each year; (iii) Distance from the nearest road of any type as a measure of342

site accessibility for investigators; (iv) variation between Norway and Sweden as country-specific343

baseline detection probabilities; and (v) individual and temporal variation in detection linked344

with a previous detection. To create the binary spatio-temporal covariate as a proxy of oppor-345

tunistic search effort, we used all observation records available from the Skandobs database346

(www.skandobs.se and www.skandobs.no) – a web application that allows the public to anony-347

mously register their observations of wildlife (e.g., sightings, tracks, scats) in Scandinavia. We348

restricted this information to the wolverine NGS period in each year, excluding the wolverine349

NGS data used in the analysis (extraction date: 2022-06-09; Fig. C4). Although most of the350

Skandobs observations are not verified, they offer the best available proxy for spatio-temporal351

variation in the opportunistic search efforts for the wolverine DNA (Milleret et al. 2022). We352

assumed that an area that was opportunistically searched for any given carnivore species could353

have been potentially searched for wolverine DNA as well. We transformed all covariate layers354

to UTM zone 33N and locally interpolated the raster values to match the 10 × 10 km detector355

grid. We standardized all continuous covariates to have a mean of zero and one unit standard356

deviation prior to their inclusion in the analysis.357

2.3 Model fitting358

We fitted separate OPSCR models for male and female wolverines using MCMC with359

NIMBLE version 0.13.0 (de Valpine et al. 2017, 2022) and nimbleSCR version 0.2.1 (Bischof360

et al. 2022, Turek et al. 2021) in R 4.2.2 (R Core Team 2022). We ran three chains of 150 000361
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MCMC iterations for each model, including a 50 000-iterations burn-in period (i.e., 300 000362

MCMC samples in total). We considered MCMC chains from each model run as converged363

when the Gelman-Rubin diagnostics (R̂, Brooks and Gelman 1998) was less than or equal to 1.1364

for all parameters and by visually inspecting the mixing of MCMC chains using trace plots.365

We used the mean and associated 95% Bayesian credible interval limits (CI) to summarize366

posterior distributions of abundance for each sex. For the rest of the parameters, we report367

median and 95% CI. We obtained combined (female and male) parameter estimates by merging368

posterior samples from the sex-specific models. To obtain an estimate of abundance for a given369

habitat cell, we summed the number of predicted individual activity center locations of live370

individuals that fell within that cell for each iteration of the MCMC chains and generated a371

posterior distribution of abundance for that cell (i.e., “realized” density). In this fashion, we372

could also extract abundance estimates and the associated uncertainty around it for any spatial373

units of interest.374

We constructed two types of annual sex-specific density maps: (i) a map of “expected”375

density based on the estimated intensity of the density point process and the estimated wolverine376

abundance, and (ii) a map of “realized” density based on the estimated locations of activity377

centers. The “expected” density in habitat cell s and time t was calculated as Ntλst/
∑S

s=1 λst for378

each iteration of the MCMC. We then derived the mean and standard deviation of the expected379

density surface across iterations in each cell. The “realized” density maps were constructed380

by summing the number of individuals with their activity center in each habitat cell for each381

iteration of the MCMC, before calculating the mean and standard deviation across iterations in382

each cell.383

3 Results384

3.1 Noninvasive genetic monitoring385

Within our designated study area across Norway and Sweden, management authorities386

annually conducted between 197 673 and 316 839 km of structured searches for wolverine DNA387

during the primary monitoring period (Fig. B2). Structured and unstructured sampling efforts388

and genetic analyses led to a total of 8 418 and 10 327 successfully genotyped female and male389
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wolverine samples, respectively, belonging to 1 360 female (median = 481, range = 337 - 529390

individuals annually) and 1 190 male wolverines (median = 425, range = 274 - 471 individuals391

annually) over nine monitoring seasons. The annual number of detections (i.e., recaptures)392

per identified individual ranged from 1 to 11 for females and 1 to 12 for males (Fig. B1). On393

average, 58.9% (range = 54 - 65.3%) and 56.3% (range = 51.1 - 62.3%) of female and male394

wolverine individuals were detected during the structured sampling, respectively, and the rest395

by unstructured sampling.396

3.2 Density determinants397

A key driver of the wolverine density dynamics for both sexes in Scandinavia appeared to be398

the distance from the relict range along the alpine border between Norway and Sweden (Fig.399

1). Over the nine years of the study, wolverine density consistently declined with increasing400

distance from the relict range for both sexes (median and 95% CI βrelict2014 = −1.06, −1.28 -401

−0.92 to βrelict2022 = −0.81, −0.95 - −0.67 [females], and from βrelict2014 = −0.9, −1.1 - −0.7 to402

βrelict2022 = −0.86, −1.05 - −0.68 [males]), but this effect was diminishing over time for females403

only (median and 95% CI β1relict
= 0.03, 0.002 - 0.07 [female] and 0.01, −0.04 - 0.04 [male];404

Figs. 1 and 2). At the same time, forest cover had an increasingly positive impact on wolverine405

densities for both sexes (median and 95% CI β1forest
= 0.03, 0.001 - 0.05 [female] and 0.02, 0.001406

- 0.06 [male]), changing from 0.11 (95% CI βforest2014 = 0 - 0.27) to 0.37 (95% CI βforest2022= 0.26407

- 0.48) for females, and from 0.19 (95% CI βforest2014 = 0.05 - 0.33) to 0.39 (95% CI βforest2022 =408

0.26 - 0.54) for males (Figs. 1 and 2).409

Among the prey-related covariates, the impact of the moose density proxy was increasingly410

positive across the monitoring years for both sexes (median and 95% CI β1moose = 0.04, 0.02 -411

0.07 [female] and 0.02, 0.001 - 0.04 [male]; Figs. 1 and 2), from 0.07 (95% CI βmoose2014 = −0.04412

- 0.19) [female] and 0.33 (95% CI βmoose2014 = 0.23 - 0.44) [male] up to 0.43 (95% CI βmoose2022 =413

0.34 - 0.52) [female] and 0.51 (95% CI βmoose2022 = 0.41 - 0.6) [male]. In contrast, reindeer areas414

had an increasingly negative impact on male wolverines only (median and 95% CI β1reindeer
=415

0, −0.02 - 0.03 [female], −0.03, −0.06 - −0.003; Figs. 1 and 2), changing from −0.01 (95%416

βreindeer2014 = −0.2 - 0.11) [female] and −0.09 (95% βreindeer2014 = −0.25 - 0.07) [male] to −0.02417

(95% βreindeer2022 = −0.13 - 0.09) [female] and −0.33 (95% βreindeer2022 = −0.44 - −0.21) [male].418
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The impact of numbers of free-ranging sheep and lambs on male and female wolverine densities419

changed from positive to negative (median and 95% CI βsheep2014 = 0.09, 0 - 0.19 to βsheep2022420

= −0.07, −0.16 - 0.02 [females], and from βsheep2014 = 0.05, −0.04 - 0.15 to βsheep2022 = −0.01,421

−0.12 - 0.08 [males]), but the negative trend was only significant for females (median and 95%422

CI β1sheep
= −0.02, −0.04 - −0.002 [female], −0.01, −0.03 - 0.01 [male]; Figs. 1 and 2).423

Terrain ruggedness had an overall positive impact for female density only (median and 95%424

CI βT RI2014 = 0.1, −0.03 - 0.21 to βT RI2022 = 0.11, −0.01 - 0.22 [females], and from βT RI2014 =425

−0.05, −0.2 - 0.09 to βT RI2022 = 0.06, −0.1 - 0.19 [males]), but with no significant trend for426

either sex over the years (median and 95% CI β1T RI
= 0.001, −0.02 - 0.03 [female] and 0.01,427

−0.02 - 0.04 [male]; Figs. 1 and 2). The average year-round snow cover had an overall positive428

impact on the density of both sexes (median and 95% CI βsnow2014 = 0.25, 0.08 - 0.45 to βsnow2022429

= 0.34, 0.2 - 0.49 [females], and from βsnow2014 = 0.53, 0.33 - 0.73 to βsnow2022 = 0.3, 0.15 - 0.52430

[males]), but we observed no significant trend in its impact for either sex (median and 95% CI431

β1snow = 0.01, −0.03 - 0.05 [female] and −0.03, −0.07 - 0.02 [male]; Figs. 1 and 2).432

The human settlements index had a substantial negative impact on both sexes, which433

remained significant over the monitoring years (median and 95% CI βsettlements2014 = −2.53,434

−3.63 - −1.52 to βsettlements2022 = −2.14, −2.88 - −1.53 [females], and from βsettlements2014 =435

−3.24, −4.27 - −1.97 to βsettlements2022 = −2.66, −3.46 - −1.95 [males]), with no apparent436

temporal trends (median and 95% CI β1settlements
= 0.06, −0.15 - 0.23 [female] and 0.08, −0.16 -437

0.25 [male]; Figs. 1 and 2).438
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Figure 1: The effects of spatial covariates on female (blue) and male (green) wolverine Gulo gulo
densities across their entire range in the Scandinavian Peninsula between 2013/14 and 2021/22 (i.e.,
nine monitoring seasons). The violin plots show median (white dots) and 95% Bayesian credible
interval limits CI of regression coefficient β estimates to describe (i) annual regression coefficients (large
boxes); and (ii) Slope: temporal changes in regression coefficients β (small boxes). The effect sizes
are on exponential scale, and violins in which the 90% CI of the posteriors overlapped zero (i.e., no
significant effects) are shown in transparent colors.
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Figure 2: Intensity of the density point process for female and male wolverines Gulo gulo in the
Scandinavia Peninsula between 2013/14 and 2021/22 (i.e., nine monitoring seasons), as a function of
environmental covariates (Table C1): (a) Distance from the relic range; (b) Forest cover; (c) Moose Alces
alces density proxy; (d) Proportion of reindeer Rangifer tarandus areas; (e) Numbers of free-ranging
sheep Ovis aries and lambs; (f) Terrain Ruggedness Index, TRI; (g) Year-round snow cover; and
(h) Human settlements index. Median predicted responses in each sampling year are represented by
colored lines, where darker colors show more recent years. Gray background boxes mark predictions in
which open-population spatial capture-recapture models estimated significant temporal changes in the
effect of the covariates of wolverine density (see Fig. 1). The intensity of the point process reflects the
relative distribution of individual activity centers, so that, for example, twice as many individuals are
expected to have their activity center located in a place with an intensity of 0.8 compared to 0.4.
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3.3 Detection determinants439

The estimated annual baseline detection probabilities of male and female wolverines were440

qualitatively comparable during the nine-year sampling period, regardless of the two different441

sampling designs (i.e., structured and unstructured; Fig. D1). Median estimates across the eight442

management regions during the structured sampling was 0.01 (95% CI p01 = 0 − 0.02) for both443

sexes (Fig. D1). The overall estimated baseline detection probabilities during the unstructured444

sampling appeared to be slightly higher for both sexes in Norway than Sweden (median and445

95% CI p02 = 0.006, 0.003 − 0.009 [Norway] and 0.004, 0.002 − 0.007 [Sweden] for both female446

and males; Fig D1), which might be influenced by the exclusion of six years of wolverine data447

from the Norrbotten County in Sweden.448

For the structured sampling, sampling effort, measured by the length of recorded search449

tracks, had an overall strong positive effect on the detection probability of both wolverine sexes450

(median and 95% CI βeffortstructured
= 0.46, 0.35 − 0.63 [female] and 0.45, 0.37 − 0.55 [male]; Fig.451

D2). The impact of snow cover during the sampling months on the structured sampling varied452

between years for each sex, but overall we did not detect a significant association between this453

covariate and wolverine detectability (median and 95% CI βsnowstructured
= 0.05, −0.23 − 0.39454

[female] and 0.07, −0.29 − 0.41 [male]; Fig. D2). The pattern was qualitatively similar for the455

effect of snow cover during the unstructured sampling (median and 95% CI βsnowunstructured
=456

0.16, −0.2 − 0.67 [female] and 0.12, −0.21 − 0.52 [male]; Fig. D2). Likewise, we did not observe457

a consistent pattern in the impact of distance from the nearest road on wolverine detectability458

during the unstructured sampling (median and 95% CI βroadunstructured
= −0.01, −0.3 - 0.22459

[female] and −0.004, −0.25 - 0.18 [male]; Fig. D2). The binary covariate representing a proxy460

of opportunistic search effort had an overall significant positive impact on the detectability of461

both sexes over years (median and 95% CI βsearchunstructured
= 0.76, 0.24 - 1.31 [female] and 0.65,462

0.25 - 1.03 [male]; Fig. D2).463

The detection-level covariate explaining individual variation in wolverine detectability over464

the duration of the study (i.e., detection during the previous season) had a positive impact on465

both female and male wolverine detectability over most of the years during both structured and466

unstructured sampling, although the effect for males appeared to be slightly stronger (Fig. D2).467
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3.4 Abundance estimates and density surfaces468

Our estimates of male and female wolverine abundance suggested an increasing trend over469

the nine-year monitoring period (Fig. D3), changing from 625 (95% CI N2014 = 565 - 689)470

females and 413 (95% CI N2014 = 368 - 465) males in the first year to 769 (95% CI N2022 = 704471

- 824) females and 466 (95% CI N2022 = 433 - 501) males during the last monitoring season.472

The wolverine population was also estimated to be highly skewed towards females (F: M = 1.5473

to 1.7 during the nine years; Fig. D3).474

3.5 Other parameters475

We estimated the median spatial scale parameter of the half-normal detection function σ476

during the monitoring period as 6.3 km (95% CI = 5.6 - 6.9) for female wolverines and 8.2 km477

(95% CI = 7.7 - 8.8) for males (Fig. D2). Recruitment probability was comparable between478

the sexes over the years (median and 95% CI = 0.1, 0.004 - 0.16 for females and males), but479

survival probability was higher for females (median and 95% CI = 0.80, 0.67 - 0.97 [female] and480

0.68, 0.59 - 0.8 [male]; Fig. D4).481

4 Discussion482

A population in flux483

Our study revealed evidence that the spatial configuration of the Scandinavian wolverine484

population, as well as the effect of some spatial determinants, has changed during the nine-year485

study period (Figs. 1 and 2). We found support for our main hypotheses that the wolverine486

population has expanded from the relict range towards the boreal forest. We also discovered that487

areas with more human settlements were consistently and negatively associated with wolverine488

density over the monitoring period (Fig. 1). To our knowledge, population-level determinants489

of density and temporal changes in their effects have rarely been quantified at such a large490

spatial extent (Tourani 2022). Given the comparatively short monitoring period for tracking491

dynamics of a large carnivore population (Smith et al. 2017, Fisher et al. 2022), our findings492

are particularly important as they reflect rapid changes in the spatial configuration of the493
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Scandinavian wolverine population. We specifically showed that although the shrinkage of494

the Scandinavian wolverine population possibly ended about half a century ago (Landa et al.495

2000, Flagstad et al. 2004), the population is still in flux and a combination of natural and496

anthropogenic factors keep shaping population density. We also found support for sex-specific497

responses of the Scandinavian wolverine to the environmental determinants of density and498

differences in the temporal dynamics of their effects (Figs. 2 and 3).499

Recovery from the relict range500

The Scandinavian wolverine population probably started expanding from the relict range501

next to the Norwegian-Swedish border, after the management was changed from legal persecution502

to protection in 1968 and 1973, respectively (Landa et al. 2000, Flagstad et al. 2004). Currently,503

wolverines have successfully recolonized many areas across their historical range, pushing the504

expansion frontline significantly farther away from the relict range (Chapron et al. 2014, Gervasi505

et al. 2019, Bischof et al. 2020, Moqanaki et al. 2022). The fact that distance from the relict range506

still plays an important, but diminishing, role in driving the density of the wolverine for females507

(Figs. 1 and D1) reflects this ongoing population expansion. Wolverines are still managed in508

many areas by legal removal to control their population size and expansion (Aronsson and509

Persson 2017, Gervasi et al. 2019). Particularly in the southwest of Norway, no wolverines are510

currently tolerated (Strand et al. 2019), which together with the removal in southern reindeer511

areas, has probably limited recolonization in southern Sweden as well. Without such active512

interventions, we would expect the wolverine to have recolonized almost its entire historical513

range in the Scandinavian Peninsula by now. As long as the wolverine is not tolerated in some514

areas, proximity to the relict range – as the long-term core area of reproduction – will likely515

play an important role in shaping the population density and dynamics also in the future.516

Moving into the forest517

The Scandinavian wolverine was not considered a forest-dwelling species for a long time518

(May et al. 2006, 2008b), although wolverines inhabit the taiga further east in Russia and in519

North America (Glass et al. 2022). However, the Scandinavian population has successfully520

expanded into the boreal forest in recent decades (Aronsson and Persson 2017, Gervasi et al.521
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Figure 3: Expected density (individuals per 100 km2) of female (left) and male (right) wolverine
Gulo gulo in the Scandinavian Peninsula between December 2013 - June 2014 and December 2021 -
June 2022 (i.e., nine monitoring seasons), as a function of environmental covariates included in this
study. No comprehensive noninvasive genetic sampling was conducted in Norrbotten County in Sweden
(polygons outlined in black) from 2013/14 to 2015/16 and from 2019/20 to 2021/22, which means that
the results are solely based on the model prediction. The white area in each map represents areas that
were not included in the analysis.

2019). Our results suggest that the positive influence of forest cover on the wolverine population522

is increasing over years (Fig. 2). The relationship of the wolverine with forest landscapes is523

studied in different areas in Scandinavia (e.g., May et al. 2008b, Rauset et al. 2013), but so far524

this has been done through telemetry of a few instrumented individuals from the population and525

with a bias towards northern alpine areas (Aronsson and Persson 2017, Aronsson et al. 2022).526
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The historical range maps of the wolverine distribution in Scandinavia suggest that the species527

was once present in both the alpine areas above the treeline and in the boreal forest, before the528

peak of their persecution in the mid-nineteenth and early twentieth centuries (Landa et al. 2000,529

Flagstad et al. 2004). The relict range along the Norwegian-Swedish border constitutes mostly530

rugged alpine areas with comparatively lower human density, but often with the boreal forest531

nearby (Haglund 1966, May et al. 2006, 2008b). Our understanding of the wolverine’s habitat532

selection and preference is subsequently influenced by the relict range being the starting point533

of their modern expansion. This might also be the case for the current belief in the importance534

of spring snow for the wolverine (Brodie and Post 2010, Copeland et al. 2010, May et al. 2012),535

although the relevance of different measurements may vary spatially and temporally (Reinking536

et al. 2022). It is unclear whether Scandinavian wolverines prefer the rugged alpine areas to the537

low-elevation boreal forests. We revealed a positive effect of the proportion of forest, terrain538

ruggedness, and year-round snow cover on wolverine density but the magnitude of their impact539

differed slightly between sexes and varied over the course of the nine-year monitoring period (Fig.540

2). Although GPS tracking provides a wealth of knowledge about fine-scale habitat selection of541

the tagged individuals, our study allowed us to reveal population-level determinants of wolverine542

density using noninvasive monitoring methods.543

Large-scale impact of prey and management544

We observed contrasting responses of wolverine densities to large-scale prey covariates (Fig.545

2). Although higher male and female wolverine densities were associated with higher values546

of the moose density proxy and this association was becoming stronger over the past decade,547

the effects of the reindeer and free-ranging sheep proxies were either becoming negative or were548

insignificant (Figs. 2 and D1). These covariates probably interact with other environmental549

covariates, including the current zonal management plan that aims at controlling wolverine550

density in high conflict areas and restricting the expansion in southern Norway, to address the551

conflict with reindeer husbandry and sheep farming (Flagstad et al. 2004, May et al. 2008a,552

Aronsson and Persson 2017, Strand et al. 2019, Moqanaki et al. 2022).553

Moose carrion, either carcasses left by other large carnivores (e.g., wolves Canis lupus and, to554

a lesser extent, bears Ursus arctos) or from natural and human-induced mortality (e.g., roadkill,555
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hunting baits, and slaughter remains), is an important food source for the wolverine in many556

areas, especially during winter (Van Dijk et al. 2008, Mattisson et al. 2011, 2016, Gomo et al.557

2020, Aronsson et al. 2022). In addition, this covariate roughly reflects the forest productivity558

in Scandinavia. Thus, we expected the moose-related covariate to be important for wolverine559

density at the landscape scale. Free-ranging sheep and lambs are also only available to the560

wolverine in summer in Norway, with higher numbers in the southern areas (Fig. C1). This area561

is also where intense removal of wolverines occurs as a response to sheep predation (Flagstad562

et al. 2004, May et al. 2008a, Strand et al. 2019). Thus, this covariate not only represents563

seasonal sheep availability, but also a higher risk of human-induced mortality (Persson et al.564

2009, 2015, Bischof et al. 2012, Hobbs et al. 2012, Rauset et al. 2016).565

The semidomesticated reindeer is the most important food for the Scandinavian wolverine566

within reindeer grazing areas, which cover the majority of our study landscape (Landa et al. 1997,567

Hobbs et al. 2012, Tveraa et al. 2014, Mattisson et al. 2016; Fig. C1). Thus, we were expecting568

the reindeer proxy to be positively associated with wolverine density. However, we were not able569

to retain a reliable Scandinavian-wide data set for reindeer numbers with comparable resolution570

between Norway and Sweden. Instead, we used areas the semidomesticated reindeer are allowed571

to graze, plus the geographic range of the wild reindeer, as a proxy of reindeer presence (Table572

C1). However, the reindeer covariate did not reflect the spatial variation in reindeer availability573

across the study landscape (Fig. C1). This covariate had also a considerable negative correlation574

with distance from the relict range (Fig. C2), which probably masked some of the effects of the575

recolonization covariate. A further improvement of this study would be to develop and include a576

reliable spatial covariate for reindeer density in Scandinavia in the future, but it requires closer577

collaboration and further trust-building between authorities and Sámi reindeer herders in both578

countries.579

Sex-specific responses to density determinants580

Our findings suggest slightly different associations of, and trends in, male and female581

wolverine densities with the environmental determinants over the monitoring period (Fig. 2).582

Male and female behavioral differences with respect to their environment are documented (e.g.,583

Landa et al. 1998a, May et al. 2006, Aronsson and Persson 2018, Kortello et al. 2019, Barrueto584
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et al. 2022), which may also reflect their responses to landscape-level determinants of density.585

For example, wolverines, like many solitary large carnivores, show intrasexual territoriality and586

males maintain larger home ranges that overlap with several females (Whitman et al. 1986,587

Landa et al. 1998a, Bischof et al. 2016b, Fisher et al. 2022). Long-distance dispersal is also588

more common in males, whereas females show stronger fidelity to their natal range (Vangen589

et al. 2001). Such different space-use strategies can result in variation in the relative importance590

of the environmental covariates of density for each sex. We expect these differences to scale up591

to population-level responses of wolverine sexes to their spatio-temporal determinants of density592

as we observed in this study (Fig. 2).593

Density surface modeling to study population ecology594

We attempted to untangle the changing impacts of historical and present-day environmental595

covariates in explaining trends in population density of the recovering Scandinavian wolverine596

population during the past decade (Fig. 3). We acknowledge that the reality is likely to be more597

complicated, when we consider that both the focal species’ density surface and the environment598

are dynamic, some of the environmental covariates are probably interacting with each other,599

and the response of wolverine density to the change can be nonlinear. Therefore, it is important600

to note that the temporal trends in spatial covariate effects we observed (Fig. 2) can either601

reflect a difference in spatial covariate effects over time due to changes in the wolverine data602

(i.e., variation in population configuration across space), the effect of the covariates on wolverine603

density has changed during the nine-year study period (i.e., our hypotheses), or a combination604

of both. OPSCR analysis with a properly specified movement model (Efford and Schofield605

2022) may help to disentangle some of these confounding factors. Such a model would allow us606

to differentiate between association with covariates to model density as a result of population607

expansion and active selection for a given covariate, depending on what is available within the608

movement range of the individual.609

Implications for monitoring and management610

Insights from our study can contribute to analyses of long-term, large-scale monitoring data611

of wildlife using OPSCR models. For the Scandinavian wolverine population, future research612
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on spatio-temporal determinants of population density should consider intra- and interspecific613

interactions, in addition to the abiotic and biotic covariates we considered. Particularly,614

exploitation competition with co-occurring large carnivores over resources (wolves, lynx Lynx615

lynx, and bears), are known drivers of wolverine resource partitioning and is, therefore, an616

important area of research in the future (Van Dijk et al. 2008, Mattisson et al. 2011, Rauset617

et al. 2013, Khalil et al. 2014, Scrafford et al. 2017). There is also evidence of negative density618

dependence (Sæther et al. 2005, Brøseth et al. 2010) and compensatory immigration (Gervasi619

et al. 2019) in wolverine population dynamics in Scandinavia. Further understanding of how620

vital rates interact with population density to shape the Scandinavian wolverine population is621

a crucial component of informed management. Accounting for spatially variable vital rates in622

the future (Milleret et al. 2023) could allow us to quantify potential density-dependent effects623

on the survival and recruitment of wolverines and further increase our understanding of the624

population-level determinants of density for Scandinavian wolverines and facilitate population625

forecasts.626

5 Conclusions627

The wolverine in Scandinavia has been long associated with pristine wilderness, which is628

juxtaposed with the near absence of impact-free areas in modern-day Scandinavia (May et al.629

2008b, 2012, Watson et al. 2016). The recovery of the Scandinavian wolverine population630

highlights the fact that even such an elusive and quintessential symbol of wilderness can live631

and recover in an increasingly human-altered environment (Linnell et al. 2000, 2001, Chapron632

et al. 2014, Cretois et al. 2021). However, the population expansion poses new challenges633

for society and managers, as wolverines are recolonizing areas with free-ranging sheep and634

reindeer husbandry, where they have been absent for decades. Since wolverine recovery has635

occurred in a heterogeneous landscape shared by two countries with different national and636

regional management goals, legislation, and obligations, a diversity of management strategies637

that involve methods to mitigate conflict with farmers and herders, and increase tolerance638

towards the wolverine is essential for the long-term survival of the population. Our findings639

reiterate the importance of the collection of long-term and coordinated monitoring data and640

adaptive management of recovering wildlife populations on transboundary landscapes (Bischof641
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et al. 2016b, 2020, Gervasi et al. 2016, 2019).642
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1 APPENDIX A10

Data and R scripts of the open-population spatial capture-recapture analysis will be deposited11

upon acceptance at: https://github.com/eMoqanaki12

2



2 APPENDIX B13

Map of the study landscape in the Scandinavian Peninsula, including the sampling grid and a14

60-km habitat buffer around it, where annual noninvasive genetic sampling of the wolverine15

Gulo gulo was conducted at the population level in Norway and Sweden:16

• Figure B1: Number of independent genetic detections of female and male wolverines17

assigned to detectors considered in this study18

• Figure B2: GPS-recorded search effort by management authorities during the structured19

noninvasive genetic sampling of the wolverine between 2013/2014 and 2021/202220

3



Figure B1: Number of genetic detections of female and male wolverines Gulo gulo assigned to each
10 × 10-km detector cell across the entire species range in Norway and Sweden. The colored polygon
shows the detector grid and the white polygon around it is a buffer of 60 km. We used noninvasive
genetic samples of wolverines collected between December 1 and June 30 each year from 2013/14 until
2021/22 (i.e., nine monitoring seasons), with unambiguous individual and sex identity, collection date,
and location. A partial aggregation approach was followed to assign multiple genetic detections of the
same individual to, first, 2 × 2-km subgrids, which then allowed up to 25 independent genetic detections
of each individual within each of 10 × 10-km main detectors. Norrbotten County in northern Sweden
was comprehensively searched for wolverine noninvasive DNA in three monitoring seasons only, and
the county was not included in the remaining six years (blank polygon). See the main text for details.
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Figure B2: Search effort during the structured noninvasive genetic sampling of the wolverines Gulo
gulo in Norway and Sweden collected between December 1 and June 30 each year from 2013/14 until
2021/22 (i.e., nine monitoring seasons). GPS-recorded search tracks within each main detector of
10 × 10 km were simplified to one point per 500 m of tracks and the number of points per detector
cell was used as a measure of varying effort to quantify wolverine detectability. Norrbotten County in
northern Sweden was comprehensively searched for wolverine noninvasive DNA in three monitoring
seasons only, and the county was not included in the remaining six years (blank polygon).
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3 APPENDIX C21

Description and spatial depiction of covariates of density and detection probability used to22

model temporal variation in the determinants of wolverine Gulo gulo density in the Scandinavian23

Peninsula in this study:24

• Figure C1: Spatial covariates of wolverine density25

• Figure C2: Correlation plot of the spatial covariates of density26

• Figure C3: The snow covariate used to model wolverine detectability27

• Figure C4: The covariate used to model wolverine detectability during unstructured28

sampling29

• Table C1: Details about the spatial covariates of wolverine density30
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Figure C1: Spatial covariates used to explain spatiotemporal variation in wolverine Gulo gulo
density in the Scandinavian Peninsula during nine monitoring seasons between 2013/14 and 2021/22:
(a) Distance from the relict range; (b) Forest percentage; (c) Moose Alces alces density proxy; (d)
Proportion of reindeer Rangifer tarandus areas; (e) Number of free-ranging sheep Ovis aries and lambs;
(f) Terrain Ruggedness Index, TRI; (g) Year-round snow cover; and (f) Human settlements index. All
covariates were resampled to the habitat resolution at 20 × 20 km and standardized prior to analysis.
See Table C1 for details.
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Figure C2: Correlation matrix of spatial covariates (n = 8; Fig. C1) used in the sex-specific open-
population spatial capture-recapture models for quantifying variation in density of wolverine Gulo gulo
in the Scandinavian Peninsula during nine monitoring seasons between 2013/14 and 2021/22. Blue
color indicates a positive correlation, whereas red color represents a negative correlation. Darker shades
of blue and red indicate high collinearity among the covariates of wolverine density. The size and
orientation of the convexes denote the extent and direction of the correlation between the covariates,
respectively, with those facing left signifying a negative correlation. Table C1 describes the covariates
of wolverine density across the designated study landscape in Norway and Sweden.
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Figure C3: The average percentage of snow-covered land from December 1 to June 30 each year
between 2013/14 and 2021/22 as a spatial covariate of wolverine Gulo gulo detectability. The covariate
was resampled to the main detector resolution at 10 × 10 km and standardized prior to analysis.
Norrbotten County in northern Sweden was comprehensively searched for wolverine noninvasive DNA
in three monitoring seasons only, and the county was not included in the remaining six years (blank
polygon).
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Figure C4: Covariate used to account for spatiotemporal variation in the unstructured sampling
of the wolverine Gulo gulo in the Scandinavian Peninsula from December 1 to June 30 each year
between 2013/14 and 2021/22. Green 10 × 10-km cells represent areas with at least one carnivore
record from the website Rovbase (rovbase.no or rovbase.se), excluding the wolverine samples used
in this study, or observation records from Skandobs (skandobs.no and skandobs.se) during the
nine-year monitoring seasons. Norrbotten County in northern Sweden was comprehensively searched
for wolverine noninvasive DNA in three monitoring seasons only, and the county was not included in
the remaining six years (blank polygon).
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Table C1: Description, the rationale for inclusion, expected effects, and source and native spatial resolution of
spatial covariates of density used to model trends in the density distribution of the wolverine Gulo gulo in the
Scandinavian Peninsula between 2013/14 and 2021/22 (i.e., nine monitoring seasons)

Covariate Description and Rationale Effects Resolution and Source
Relict Distance (m) from the relict range represents the

founding population and recolonization history.
The relict range describes roughly the area occu-
pied by the Fennoscandian wolverine population at
its lowest point in modern times (Landa et al. 2000,
Flagstad et al. 2004, Chapron et al. 2014, Lansink
et al. 2020, Moqanaki et al. 2022).

– Calculated using the wolverine’s geographic distribution
range in the 1970s as reported by Landa et al. (2000)
and shapefiles by Chapron et al. (2014). All 20 × 20
km habitat cells falling within the relict range area were
assigned a value of 0. We then computed the Euclidean
distance for all habitat cells to the nearest cell with a
value of 0 using the distance function of the R package
raster (Hijmans 2021).

Forest Percentage of forest habitat was a measure of land
use, habitat productivity, greater wild prey avail-
ability, and cover (May et al. 2006, 2008, Inman
et al. 2012, Scrafford et al. 2017, Cimatti et al.
2021)

+ The average forest proportion between 1992 and 2015
was obtained using the ESA-CCI Land Cover project
(categories 50, 60, 61, 62, 70, 71, 72, 80; www.
esa-landcover-cci.org) at about 176 × 176 m

Moose An index of moose Alces alces density using hunting
bags, representing habitat productivity and a proxy
for moose carrion availability (Van Dijk et al. 2008,
Ueno et al. 2014, Mattisson et al. 2016, van der
Veen et al. 2020, Aronsson et al. 2022)

+ Calculated at 2 × 2 km resolution using the averaged
numbers of moose harvested/km2 at the level of mu-
nicipalities and hunting management units in Norway
and Sweden, respectively, from 2012 to 2020 (statistisk
sentralbyrå 2021, Älgdata 2021a,b). Because of a lack
of data from the buffer area in Finland and Russia, we
replaced missing values with mean values of the 48 neigh-
borhood cells using the focal function of the R package
raster (Hijmans 2021)

Reindeer Proportion of the general areas of occurrence for
wild and semidomesticated reindeer Rangifer taran-
dus, representing a proxy of reindeer availabil-
ity and greater risk of human-induced mortality
(Van Dijk et al. 2008, Persson et al. 2009, 2015,
Andrén et al. 2011, Hobbs et al. 2012, Mattisson
et al. 2016, Aronsson and Persson 2017)

+/– Calculated at 20×20 km using polygons of the geographic
range of the wild reindeer in Norway (Miljødirektoratet
2022) and polygons of the districts of the semidomes-
ticated reindeer in both countries (Norway: Kilden -
Reindrift, www.nibio.no; Sweden: Länsstyrelserna 2000
- 2008, www.sweco.se). We created “soft” edges, where
the cell-based covariate values gradually increased from
0 (no reindeer area) to 1 (reindeer area), to account for
the edge effect and for practical reasons (Moqanaki et al.
2022). The reindeer districts do not necessarily represent
the year-round presence of the reindeer, but include the
different seasonal grazing areas in which the reindeer’s
seasonal migration occurs. Missing values in the buffer
area were replaced with mean values of the neighborhood
cells as described above.

Sheep The average number of free-ranging domestic sheep
Ovis aries and lambs in Norway, representing
sheep availability as prey and greater risk of
human-induced mortality (Landa et al. 1997, 1999,
Van Dijk et al. 2008, Mabille et al. 2015, Strand
et al. 2019)

+/– Calculated at 20 × 20 km using polygons of numbers of
sheep and lamb released in unfenced grazing areas in the
Norwegian mountains and forests in 2021 (NIBIO 2022).

Ruggedness Terrain Ruggedness Index (TRI) is the mean of the
absolute elevation differences between the value
of a habitat cell and the value of its eight sur-
rounding cells (Wilson et al. 2007). TRI represents
topographic complexity, availability of cover, and
level of human disturbances (May et al. 2008, 2012,
Rauset et al. 2013, Poley et al. 2018)

+ Obtained through the terrain function of the R package
terra (Hijmans et al. 2022) using an elevation layer
(AWS Terrain Tiles and OT global datasets API) at
about 256 × 256 m obtained via the get_elev_raster
function of the R package elevatr (Hollister et al. 2021)

Snow The average percentage of year-round snow cover
across years 2008 - 2021, representing climate sever-
ity, denning suitability, and prey vulnerability to
predation (Copeland et al. 2010, May et al. 2012,
Aronsson and Persson 2017, Lukacs et al. 2020,
Mowat et al. 2020, Barrueto et al. 2022)

+ Calculated using monthly maps of the percentage of
snow-covered land based on the MODIS/Terra Snow
Cover Daily L3 Global 500m Grid data set (www.neo.
sci.gsfc.nasa.gov)

Settlements The percentage of the ground surface covered by
human settlements was a proxy of human popu-
lation density and associated disturbances (May
et al. 2006, Lukacs et al. 2020, Cretois et al. 2021,
Barrueto et al. 2022)

– Downloaded at about 57-m resolution from the World
Settlement Footprint data set (WSF2015; Marconcini
et al. 2020) and log-transformed after adding a value of
1 to deal with 0 values
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4 APPENDIX D140

Sex-specific estimates by the open-population spatial capture-recapture models used in this141

study:142

• Figure D1: Baseline detection probability of the wolverine across different management143

regions during the annual structured and unstructured sampling efforts144

• Figure D2: Effects of covariates of wolverine detectability during the annual structured145

and unstructured sampling and sex-specific estimates of the spatial scale parameter146

• Figure D3: Female and male annual abundance estimates147

• Figure D4: Annual estimates of recruitment and survival probability148
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Figure D1: Baseline detection probability p0 of the Scandinavian wolverine Gulo gulo during
noninvasive genetic sampling between December 1 and June 30 of each monitoring season (2013/14
- 2021/22), estimated by the sex-specific open-population spatial capture-recapture models used in
this study. Violins represent the median (white dots) and 95% Bayesian credible interval of the
year-specific estimates for females (blue) and males (green). Results are separated into panels based on
(a) Structured sampling effort, where management authorities conducted DNA searches and recorded
their search tracks at five carnivore management regions in Norway and three aggregations of counties
in Sweden (red polygons); and (b) Unstructured sampling effort, where authorities and volunteers
opportunistically collected wolverine DNA samples in each country (red polygons in the bottom row).
p0 is a theoretical value of detection probability, where a detector coincides with the location of an
individual’s activity center and it is not to be confused with detectability – i.e, the overall probability
of detecting an individual. See the main text for details.
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Figure D2: The effects (median and 95% Bayesian credible interval limits, CI) of spatial (top three
rows) and individual (fourth row) covariates on female (blue) and male (green) wolverine Gulo gulo
baseline detection probability p0 during (a) left-column panel: structured and (b) right-column panel:
unstructured sampling. (c) The estimated spatial scale parameter of the half-normal detection function
σ across Scandinavia during nine monitoring seasons, 2013/14 - 2021/22. (a,b) The violin plots show
regression coefficient β estimates to describe the relationship between wolverine baseline detection
probability and the given covariate for each sampling year during (a) structured and (b) unstructured
sampling. The effect sizes are on exponential scale, and the white dots in the violins show median
values. Violins in which the 90% CI of the posteriors overlapped zero (i.e., no significant effects) are
shown in transparent colors. Descriptions of the covariates are given in the main text.
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Figure D3: Annual abundance N estimates of female (blue) and male (green) wolverines Gulo gulo
across their entire range in the Scandinavian Peninsula during nine monitoring seasons from 2013/14
to 2021/22. The violins show median (white dots) and 95% Bayesian credible interval limits. The
designated study landscape from which the estimates were extracted is shown in Figure B1.
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Figure D4: (a) Annual recruitment and (b) survival probability for female (blue) and male (green)
wolverines Gulo gulo across their entire range in the Scandinavian Peninsula during nine monitoring
seasons from 2013/14 - 2021/22. The violins show median (white dots) and 95% Bayesian credible
interval limits of the estimates.
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5 APPENDIX E149

Wolverine Gulo gulo density surfaces (10 × 10 km) between 2013/14 and 2021/22 as estimates150

by the open-population spatial capture-recapture models used in this study:151

• Figure E1: Female and male “realized” density surfaces152

• Figure E2: The cell-based standard deviation of the “realized” density estimates for153

females and males154

• Figure E3: The cell-based standard deviation of “expected” density estimates for females155

and males156
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Figure E1: Annual realized density (individuals per 100 km2) surfaces of female (left) and male (right)
wolverines Gulo gulo in the Scandinavian Peninsula each year between December 2013 - June 2014 and
December 2021 - June 2022 (i.e., nine monitoring seasons), as estimated by sex-specific open-population
spatial capture-recapture models used in this study. The density surfaces are created based on the
average posterior location of “alive” individual activity centers in each 10 × 10-km habitat cell and
inclusion parameter. No comprehensive noninvasive genetic sampling was conducted in Norrbotten
County in Sweden from 2013/14 - 2015/16 and from 2019/20 - 2021/22 (polygons outlined in thick
black), which means that the results are solely based on the model prediction. See the main text for
details.



Figure E2: The cell-based standard deviation of realized density surfaces of female (left) and male
(right) wolverines Gulo gulo in the Scandinavian Peninsula each year between December 2013 - June
2014 and December 2021 - June 2022 (i.e., nine monitoring seasons), as estimated by sex-specific
open-population spatial capture-recapture models. No comprehensive noninvasive genetic sampling
was conducted in Norrbotten County in Sweden from 2013/14 - 2015/16 and from 2019/20 - 2021/22
(polygons outlined in thick black), which means that the results are solely based on the model prediction.
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Figure E3: The cell-based standard deviation of expected density surfaces of female (left) and male
(right) wolverines Gulo gulo in the Scandinavian Peninsula each year between December 2013 - June
2014 and December 2021 - June 2022 (i.e., nine monitoring seasons). No comprehensive noninvasive
genetic sampling was conducted in Norrbotten County in Sweden from 2013/14 - 2015/16 and from
2019/20 - 2021/22 (polygons outlined in thick black), which means that the results are solely based on
the model prediction. See the main text for details.
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