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THE W -METHOD IN STABILITY ANALYSIS
OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS

RAMAZAN I. KADIEV AND ARCADY PONOSOV

Abstract. The W -method was introduced and developed by N.V. Azbelev and his

students. The main idea of it is to transform a given functional differential equation

to an integral equation, which is easier to handle. Using this transformation, one can

study boundary value problems and asymptotic behaviour of solutions. The present re-

view article describes a stochastic version of this method, which can be used in stability

analysis of stochastic functional differential equations. The classical setting of the W -

method, developed primarily for linear equations and based on estimation of the norm of

an associated integral operator, is considered first. An alternative version of the method,

which, in addition, includes the theory of positive invertible matrices, is described after

that. In the latter approach, all equations of the system are transformed in different

ways, depending on specific properties of the equations, and the norm of each integral

operator component is estimated separately. In the classical framework, all equations

are also transformed separately, but the norm of the operator is estimated without tak-

ing into account the specific behaviour of each equation. The alternative approach to

the W -method can be also applied to nonlinear stochastic functional differential equa-

tions. Several verifiable stability conditions are given demonstrating the efficiency of the

method.

Keywords: Integral transforms, Lyapunov stability, stochastic functional differential

equations.

AMS Subject Classification: 93E15, 60H30, 34K50, 34D20.

1. Introduction.
sec-Intro

This review paper is aimed at describing a general framework for analysis of the Lya-

punov stability of stochastic hereditary equations driven by semimartingales. The core
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idea of the method is an alternative description of the Lyapunov stability in terms of sta-

bility with respect to (w.r.t.) the inputs of the associated stochastic functional differential

equation (SFDE). The latter can be studied by transforming SFDE to a suitable integral

equation by using a reference equation, and this is the very kernel of the W -method.

The name the W-method is due to N.V.Azbelev who used it in connection with boundary

value problems. Later on, this method was applied to stability analysis of deterministic

functional differential equations [7] and developed further in the series of publications [2],

[4], [8], [9], see also the monographs [4], [6] for more references. In [18], the method was for

the first time applied to linear stochastic functional differential equations and developed

further in a number of publications, the complete list of which published before 2017 can

be found in the review article [19]. An essential feature of the W -method in the above

publications is the estimation of the norm of integral operators. This idea proved to

be efficient in the stability analysis of deterministic and stochastic functional differential

equations. For instance, in the stochastic case we managed to treat equations, for which

the techniques based on the Lyapunov-Razumikhin-type functionals [28], [29] may be

difficult to apply, e.g. equations with random delays and coefficients, unbounded delays

etc.

As an alternative to the classical framework of the W -method, A. Domoshnitsky and

his colleagues has developed a method utilising the idea of positivity of solutions. The

first attempt in this direction was made in [11]. Later on, this technique was successfully

applied to linear deterministic problems [12]-[14]. In [15], a overview of many important

results obtained by this method is offered.

In some cases the conditions for positivity of solutions can be formulated in terms of

positive invertible matrices. For instance, the property of absolute stability was studied

in this way in the monograph [26]. Recently, this technique was applied to stability of

neural networks in [10], while in [1] and [16] it was used to study stability of high-order

deterministic and stochastic differential equations with delay.

The aim of the present review article is to offer a concise presentation of the modification

of the stochastic W–method which is based on the theory of positive invertible matrices.

The main source of examples will be the area of stochastic functional differential equations.

The particular stability conditions obtained by the method and cited in the paper without

the proofs can be found in the publications [20]-[25].

The paper is organized as follows.
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4 RAMAZAN I. KADIEV AND ARCADY PONOSOV

Section 2 contains a description of general SDFE to be studied and an overview of the

normed spaces to be used in the study. In Section 3 we describe connections between two

types of stochastic stability that are crucial for the W -method: the stochastic Lyapunov

stability and the input-output stability. Section 4 provides a short description of the

stochastic W -method. We start with the classical approach, which is based on estimation

of the norm of some linear operator, and then discuss an alternative approach which,

in addition, utilizes the theory of positive invertible matrices. Section 5 contains three

examples and concludes the article.

2. Main equations and spaces
sec1

Throughout the paper we use an arbitrary yet fixed norm |.| in Rn and the associated

matrix norm ∥.∥. By In we mean the identity matrix of the size n × n, while en stands

for the n-dimensional vector whose components are equal to 1.

In addition, we assume given a stochastic basis (Ω,F, (F)t≥0, P ), where Ω is a set of ele-

mentary probability events, F is a σ-algebra of all events on Ω, (F)t≥0 is a right continuous

family of σ-subalgebras of F, P is a probability measure on F; all the above σ-algebras

are assumed to be complete with respect to (w.r.t. in what follows) the measure P , i.e.

containing all subsets of zero measure; the symbol E stands below for the expectation

related to the probability measure P .

Let Z(t) := (z1(t), ..., zm(t))
T , t ≥ 0, be an m-dimensional semimartingale defined on

this stochastic basis (see e.g. [27]). A simimartingale is a stochastic process, not necessar-

ily continuous, with respect to which one can define a stochastic integral satisfying natural

properties. An example of a continuous semimartingale is given by (t,B2(t), ..., Bm(t))
T ,

where Bi are independent standard Brownian motions (Wiener processes).

The following spaces of stochastic processes will be used in the sequel:

• The space kn consists of all n-dimensional, F0-measurable random variables, and

k = k1 is a commutative ring of all scalar F0-measurable random variables.

• The space

kn
p = {α : α ∈ kn, E|α|p < ∞} (p ≥ 1)

is a linear subspace of kn.

• Ln consists of all predictable n×m-matrix stochastic processes on [0,∞), the rows

of which are locally integrable w.r.t. the semimartingale Z (see e.g. [27] for the

details).
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• Dn consists of all n-dimensional stochastic processes on [0,∞), which can be rep-

resented as

x(t) = x(0) +

t∫
0

H(s)dZ(s),

where x(0) ∈ kn, H ∈ Ln.

• For any positive continuous function γ(t), t ≥ 0, we put

Mγ
p = {x : x ∈ Dn, sup

t≥0
E|γ(t)x(t)|p < ∞}, M1

p ≡ Mp.

For any p ≥ 1 the linear spaces kn
p and Mγ

p are normed spaces with the norms ∥α∥knp =

(E|α|p)1/p and ∥x∥Mγ
p
= sup

t≥0
(E|γ(t) x(t)|p)1/p, respectively. In the sequel, kn and kn

p will

serve as ”the spaces of initial values”, while Dn and Mγ
p will be interpreted as ”the spaces

of solutions”.

In what follows, we consider k-linear Volterra operators in the spaces of stochastic

processes. Let A and B be two k-linear spaces of stochastic processes defined on some

interval I. Recall that V : A → B is

• k-linear if V (α1x1 + α2x2) = α1V x1 + α2V x2 for all x1, x2 ∈ A and α1, α2 ∈ k;

• Volterra if for any stopping time τ : Ω → I a.s. and for any stochastic processes

x, y ∈ A the equality x(t) = y(t) (t ∈ [0, τ) a.s.) implies the equality (V x)(t) =

(V y)(t) (t ∈ [0, τ ] a.s.). Note the asymmetry in this definition: it is needed at the

discontinuity points of the stochastic processes involved.

We are dealing with the following linear stochastic functional differential equation w.r.t.

a semimartingale Z in this paper (abbr. SFDE):

eqno_2eqno_2 (1) dx(t) = [(V x)(t) + f(t)]dZ(t) (t > 0),

where f ∈ Ln and V : Dn → Ln is a k-linear Volterra operator.

The initial condition for SFDE (1) reads as

eqno_2aeqno_2a (2) x(0) = x0, where x0 ∈ kn.

By a solution of the problem (1)-(2) we understand a stochastic process x ∈ Dn satis-

fying the equation

x(t) = x0 + (Fx)(t) (t ≥ 0),

where (Fx)(t) =
t∫
0

[(V x)(s) + f(s)]dZ(s) is a Volterra operator in the space Dn, and the

integral is understood as a stochastic one w.r.t. the semimartingale Z [27]. Under natural

Page 5 of 16

https://mc04.manuscriptcentral.com/aup-fde

Functional Differential Equations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

6 RAMAZAN I. KADIEV AND ARCADY PONOSOV

assumptions the initial value problem (1)-(2) has a unique (up to the natural equivalence

of stochastic processes) solution, see e. g. [17].

Particular cases of SFDE (1) are: deterministic functional differential equations, lin-

ear ordinary and delayed stochastic differential equations, integro-differential equations

driven by an arbitrary semimartingale, some classes of stochastic neutral equations,

stochastic difference equations, differential equations driven by random Borel measures

and other classes of hereditary and non-hereditary stochastic equations [18]. If Z(t) =

(t,B2(t), ...,Bm(t))
T , then we obtain a linear functional differential Itô equation, which

is, of course, a particular case of SFDE (1).

Below we describe an algorithm explaining how a general stochastic hereditary equation

can be represented as SFDE (1). This algorithm is an adaptation of the deterministic

scheme, presented in the monograph [5], to the stochastic case.

Consider the equation

eqno_1eqno_1 (3) dx(t) = (Γx)(t)dZ(t) (t > 0)

coupled with the prehistory condition

eqno_1aeqno_1a (4) x(s) = φ(s) (s < 0),

where φ belongs to some k-linear space Nn of n-dimensional F0-measurable stochastic

processes defined on (−∞, 0). For s = 0 one also needs an initial condition for (3)-(4),

which simply coincides with (2). The operator Γ in (3) is a k-linear Volterra operator

defined on a k-linear space of stochastic processes on (−∞,∞), the restrictions of which to

the subsets (−∞, 0) and [0,∞) belong to the spaces Nn and Dn, respectively. The values

of this operator belong to the space Ln. Eq. (3) coupled with (4) will be addressed as

a stochastic hereditary equation. Sometimes by stochastic functional differential equation

one means Eq. (3), but we follow the approach and the terminology from the monograph

[5], according to which functional differential equations are defined by (1), and in order

to represent Eq. (3) as Eq. (1), the aforementioned equation should be coupled with the

prehistory condition (4).

A solution of (3)-(4) is a stochastic process x(t) coinciding with φ(t) if t < 0 and

obeying the integral equation x(t) = x(0) +
t∫
0

(Γx)(s)dZ(s) if t ≥ 0. The existence and

uniqueness of the solutions of this problem will follow from the representation of (3)-(4)

as SFDE (1), see below. This representation will also justify the following terminology:

the hereditary equation (3)-(4) is homogeneous if φ = 0.
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Remark 1. In most applications, the space Nn consists of all n-dimensional F0-measurable

stochastic processes defined on (−h, 0), where 0 ≤ h ≤ ∞, and satisfied the condition

ess sup
s<0

E|φ(s)|p < ∞. In this case, Nn becomes a normed space with the natural norm.

To represent (3)-(4) as SFDE (1) we need some additional notation. Given stochastic

processes x(t) (t ≥ 0) and φ(t) (t < 0) we put

x+(t) =

{
x(t) (t ≥ 0)

0 (t < 0)
and φ−(t) =

{
0 (t ≥ 0)

φ(t) (t < 0)

and define (V x)(t) ≡ (Γx+)(t) and f(t) := (Γφ−)(t) for t > 0 (i.e. we restrict the processes

in both formulas from (−∞,∞) to (0,∞)). It is then easy to see that x+(t) + φ−(t),

defined for t ∈ (−∞,∞) will be a solution of (3)-(4) if x(t) (t ∈ [0,∞)) satisfies SFDE

(1). Indeed, by linearity Γ(x+ + φ−) = Γ(x+) + Γ(φ−) = V x + f , which gives (1) with

V and f just defined. Note that f is uniquely defined by the prehistory function φ and

that φ(s) = 0 (s < 0) implies f(t) = 0 (t ≥ 0), so that homogeneity of (3)-(4) is simply a

consequence of homogeneity of (1).

For instance, a linear stochastic differential equation with distributed delay

dx(t) = (∆x)(t)dZ(t) (t > 0),

where

(∆x)(t) =

(∫
(−∞,t)

dsR1(t, s)x(s), ...,

∫
(−∞,t)

dsRm(t, s)x(s)

)
,

Ri are vector functions defined on {(t, s) : t ∈ [0,∞), −∞ < s ≤ t} for i = 1, ...,m,

coupled with the prehistory condition

x(s) = φ(s) (s < 0),

can be, under natural assumptions on Ri and φ (see e.g. [18]), rewritten as SFDE (1),

where

(V x)(t) = (
∫
[0,t)

dsR1(t, s)x(s), ...,
∫
[0,t)

dsRm(t, s)x(s)),

f(t) = (
∫
(−∞,0)

dsR1(t, s)φ(s), ...,
∫
(−∞,0)

dsRm(t, s)φ(s)).

def2 Definition 1. SFDE (1) obtained from the stochastic hereditary equation (3)-(4) in the

way described above will be addressed as the canonical representation of (3)-(4).
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8 RAMAZAN I. KADIEV AND ARCADY PONOSOV

3. Two types of stability
sec2

The key idea of the W -method is a parallelism between the Lyapunov stability and

the input-output stability. Below we look at the stochastic versions of these concepts. In

the next definition it is tacitly assumed that the initial value problem for the hereditary

equation (3)-(4), (2) has a unique solution x(t, x0, φ) for all x0 ∈ kn and φ ∈ Nn. Then

the stochastic Lyapunov stability may be defined as follows:

def1 Definition 2. Given p ≥ 1 we call the zero solution of the homogeneous hereditary equa-

tion (3)-(4) (⇔ φ(s) = 0, s < 0)

• p-stable (w.r.t. the initial data, i.e. w.r.t. x0 and the prehistory function φ) if

for any ϵ > 0 there is δ(ϵ) > 0 such that E|x0|p+ ess sup
s<0

E|φ(s)|p < δ implies

E|x(t, x0, φ)|p ≤ ϵ for all t ≥ 0 and all (admissible) φ, x0.

• Asymptotically p-stable (w.r.t. the initial data) if it is p-stable and, in addition,

any φ, x0 such that E|x0|p+ ess sup
s<0

E|φ(s)|p < δ satisfies lim
t→∞

E|x(t, x0, φ|p = 0;

• Exponentially p-stable (w.r.t. the initial data) if there exist positive constants c̄,

β such that the inequality E|x(t, x0, φ)|p ≤ c̄(E|x0|p+ ess sup
s<0

E|φ(s)|p) exp{−βs}

holds true for all t ≥ 0 and all φ, x0.

For SFDE (1) we define input-output stability w.r.t. the input data x0 ∈ kn
p and f

belonging to a certain linear space Bγ, which can be described as follows: given a linear

subspace B of the space Ln equipped with some norm ∥.∥B and a positive and continuous

function γ(t) (t ∈ [0,∞)) we define Bγ = {f : f ∈ B, γf ∈ B}. This is a normed space

as well with the norm ∥f∥Bγ ≡ ∥γf∥B. In the next definition we assume again that

the initial value problem (1)-(2) has a unique solution xf (·, x0) if f ∈ Ln. Then we can

introduce

Def4 Definition 3. Let p ≥ 1. We say that SFDE (1) is (Mγ
p , k

n
p ×Bγ)-stable if

(1) xf (·, x0) ∈ Mγ
p for any x0 ∈ kn

p , f ∈ Bγ and

(2) there exists c̄ > 0 such that

||xf (·, x0)||Mγ
p
≤ c̄(||x0||knp + ||f ||Bγ ).

This definition says that the solutions belong to Mγ
p whenever f ∈ Bγ and x0 ∈ kn

p and

that they continuously depend on f and x0 in the appropriate topologies.

Remark 2. In the deterministic case the space Bγ is usually Banach, so that the second

condition on Definition 3 follows from the first one due to the Banach theorem on inverse
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linear operators. In the stochastic case, the space Bγ may not be Banach, so that we do

need both conditions.

The parallelism between Definitions 2 and 3 is described in the main result of this

section, which is Theorem 1 proved in [18]. The theorem explains how to choose Bγ to

get different kinds of stochastic Lyapunov stability.

Th1 Theorem 1. Let γ(t) (t ≥ 0) be a positive continuous function and p ≥ 1. Assume

that the canonical representation (1) of the hereditary equation (3)-(4) has the property

f(·) ≡ (Γφ−)(·) ∈ Bγ for all φ satisfying

ess sup
s<0

E|φ(s)|p < ∞ and ∥f∥Bγ ≤ K ess sup
s<0

E|φ(s)|p

, where K > 0 is some constant. Then

• if γ(t) = 1 (t ≥ 0) and SFDE (1) is (Mγ
p , k

n
p × Bγ)-stable, then the zero solution

of the homogeneous hereditary equation (3)-(4) is p-stable;

• if lim
t→∞

γ(t) = ∞, γ(t) ≥ δ > 0, t ∈ [0,∞) (t ≥ 0) for some δ, and SFDE

(1) is (Mγ
p , k

n
p × Bγ)-stable, then the zero solution of the homogeneous hereditary

equation (3)-(4) is asymptotically p-stable;

• if γ(t) = exp{βt} (t ≥ 0) for some β > 0 and SFDE (1) is (Mγ
p , k

n
p × Bγ)-

stable, then the zero solution of the homogeneous hereditary equation (3)-(4) is

exponentially p-stable.

The proof is close to that for the deterministic case [6].

4. Two versions of the stochastic W -method
sec3

The input-output stability of SFDE (1), implying by Theorem 1 the Lyapunov stability

of the stochastic hereditary equation (3)-(4), can be studied using the W -method, i.e. by

transforming SFDE (1) to an integral equation. A key step in this transformation is a

choice of an auxiliary equation

eqno_4eqno_4 (5) dx(t) = [(Qx)(t) + g(t)]dZ(t) (t > 0),

where Q : Dn → Ln is a k-linear Volterra operator, and g ∈ Ln. Assuming the existence

and uniqueness property for this equation for any initial condition x(0) = x0 ∈ kn and

using the k-linearity of the operator Q we get the following representation of the solutions

of the auxiliary equation (5):
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eqno_4aeqno_4a (6) x(t) = U(t)x(0) + (Wg)(t) (t ≥ 0)

where U(t) is the fundamental matrix of the associated homogeneous equation, which is

an n × n-matrix whose columns satisfy this homogeneous equation and U(0) = In, and

W : Ln → Dn is the Cauchy operator, for which (Wf)(0) = 0 and Wf is a solution of

the equation (5) for any g ∈ Ln.

Using the auxiliary equation let us rewrite SFDE (1) as

dx(t) = [(Qx)(t) + ((V −Q)x)(t) + f(t)]dZ(t) (t > 0),

or, using the representation (6), as

x(t) = U(t)x(0) + (W (V −Q)x)(t) + (Wf)(t) (t ≥ 0).

Thus, we obtain the operator equation

OperatorEquationLeftOperatorEquationLeft (7) x(t) = (Θx)(t) + U(t)x(0) + (Wf)(t) (t ≥ 0), where Θ = W (V −Q).

th5 Theorem 2. Let γ(t) (t ≥ 0) be a positive continuous function and p ≥ 1 and assume

that

(1) V , Q are continuous operators from Mγ
p to Bγ;

(2) the auxiliary equation (5) is (Mγ
p , k

n
p ×Bγ)-stable;

(3) the operator I − Θ : Mγ
p → Mγ

p , defined in (7), has a bounded inverse in this

space.

Then SFDE (1) is (Mγ
p , k

n
p ×Bγ)-stable as well.

The proof follows the lines of the deterministic proof presented in [6] and can be found

in [19].

Theorem 2 makes it possible to prove input-output stability of SFDE (1) using the same

stability property of the auxiliary equation (5), which in practice is chosen to be simpler.

Applying after that Theorem 1 gives the Lyapunov stability of the associated hereditary

equation (3). This short description uncovers the very essence of the W -method.

Estimating the norms in (7) we obtain

∥x∥Mγ
p
≤ ∥Θ∥Mγ

p
∥x∥Mγ

p
+ c̄∥x0∥knp + ĉ∥f∥Bγ .

Thus, if ∥Θ∥Mγ
p
< 1, then SFDE (1) becomes (Mγ

p , k
n
p ×Bγ)-stable. This simple observa-

tion has been applied to various classes of stochastic hereditary equations and produced
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verifiable stability tests in terms of the parameters of the equations. The list of the rele-

vant publications before 2016 can be found in the review article [19]. In the remaining part

of the section we will concentrate therefore on the recent developments of the stochastic

W -method, which adopts the idea of positivity. To this end, we need

def_M-matrix Definition 4. An invertible matrix B = (bij)
m
i,j=1 is called positive invertible if all entries

of the matrix B−1 are positive.

According to [3, p. 830], B is positive invertible if bij ≤ 0 (i, j = 1, ...,m, i ̸= j), and

one of the following conditions is satisfied:

(1) the leading principal minors of the matrix B are positive;

(2) there exist numbers ξi > 0, i = 1, ...,m such that ξibii >
m∑

j=1,i̸=j

ξj|bij|, i = 1, ...,m;

(3) there exist numbers ξi > 0, i = 1, ...,m such that ξjbjj >
m∑

i=1,i̸=j

ξi|bij|, j = 1, ...,m.

In particular, if ξi = 1, i = 1, ...,m, then we obtain the class of matrices with strict

diagonal dominance and non-positive off-diagonal entries.

Suppose that a componentwise estimation in (7) gave the following matrix inequality:

eqno_7eqno_7 (8) x̄ ≤ Cx̄+ c̄||x0||kn2pen + ĉ∥f∥Bγen,

where C is some n× n-matrix and c̄ > 0, ĉ > 0. Then we have the following

th3 Theorem 3. If In − C is positive invertible, then SFDE (1) is (Mγ
p , k

n
p ×Bγ)-stable.

Proof. Introducing the notation Xi = sup
t≥0

(E|γ(t)xi(t)|p)1/p, X = col(X1, ..., Xn) we can

rewrite the matrix inequality (8) as

X ≤ (In − C)−1(c̄||x0||kn2pen + ĉ∥f∥Bγen),

where the matrix (In − C)−1 has positive entries. Then

eqno_8eqno_8 (9) |X| ≤ K(∥x0∥kn2p + ∥f∥Bγ ),

where K = ||(In − C)−1||max{c̄, ĉ}. Replacing x(t) with xf (t, x0) (see the Definition 3),

using the inequality ∥xf (·, x0)∥Mγ
p
≤ |X| and the estimate (9) yield

x(·, x0) ∈ Mγ
p and ∥x(·, x0)∥Mγ

p
≤ c(∥x0∥knp + ∥f∥Bγ )

for all x0 ∈ kn
p and f ∈ Bγ, where c > 0 is some constant. This implies (Mγ

p , k
n
p × Bγ)-

stability of SFDE (1). □
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In the next section we provide some stability tests obtained by this modification of the

W -method. More examples can be found in [20]-[25].

5. Some examples
sec5

The stability tests below are all formulated in terms of positive invertibility of certain

matrices. The specific conditions ensuring positive invertibility are listed in Section 4.

Example 1. Consider the deterministic hereditary system

eqno_9eqno_9 (10) ẋ(t) = −
m∑
j=1

Ajx(t− hj) (t ≥ 0),

coupled with the prehistory condition

eqno_9aeqno_9a (11) x(s) = φ(s) (s < 0)

and equipped with the initial condition

eqno_9beqno_9b (12) x(0) = x0 ∈ Rn,

where Aj = (ajsl)
n
s,l=1, j = 1, ...,m are real n × n-matrices, hj ≥ 0, j = 1, ...,m are real

numbers, and φ is a Borel measurable and essentially bounded function.

Putting
m∑
j=1

ajss = as > 0, s = 1, ..., n we denote by C the n × n-matrix, the entries of

which are defined as

css = 1− 1

as

m∑
k=1

m∑
j=1

|akss|hk|ajss| (s = 1, ..., n),

csl = − 1

as

[
m∑
k=1

m∑
j=1

|akss|hk|ajsl|+
m∑
j=1

|ajsl

]
(s, l = 1, ..., n, s ̸= l).

If In−C is positive invertible, then the zero solution of the homogeneous hereditary system

(10)-(11) is exponentially stable with respect to the initial data.

Example 2. Consider the system of linear hereditary Itô equations with constant delays

eqno_10eqno_10 (13) dx(t) = −
m1∑
j=1

A1jx(t− h1j)dt+
m∑
i=2

mi∑
j=1

Aijx(t− hij)dBi(t) (t ≥ 0),

coupled with the prehistory

eqno_10aeqno_10a (14) x(s) = φ(s) (s < 0)
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and equipped with the initial condition

eqno_10beqno_10b (15) x(0) = x0 ∈ kn
p ,

where Aij = (aijsl)
n
s,l=1, i = 1, ...,m, j = 1, ...,mi are real n × n-matrices, hij ≥ 0, i =

1, ...,m, j = 1, ...,mi, are real numbers and φ is a F0-measurable stochastic process such

that ess sup
s<0

E|φ(s)|p < ∞.

Putting
m1∑
j=1

a1jss = as > 0, s = 1, ..., n, we denote by C the n × n-matrix, the entries of

which are defined as

css = 1− 1
as

m1∑
k=1

m1∑
j=1

|a1kss |h1k|a1jss|−

cp√
2as

[
m1∑
k=1

m∑
i=2

mi∑
j=1

|a1kss |
√
h1k|aijss|+

m∑
i=2

mi∑
j=1

|aijss|

]
(s = 1, ..., n),

csl = − 1
as

[
m1∑
k=1

m1∑
j=1

|a1kss |h1k|a1jsl |+
m1∑
j=1

|a1jsl |

]
−

cp√
2as

[
m1∑
k=1

m∑
i=2

mi∑
j=1

|a1kss |
√
h1k|aijsl|+

m∑
i=2

mi∑
j=1

|aijsl|

]
(s, l = 1, ..., n, s ̸= l),

where cp is a constant from the inequality 4 on page 65 in the monograph [27].

If In − C is positive invertible, then the zero solution of the homogeneous stochastic

hereditary system (13)-(14) is exponetially 2p-stable with respect to initial data.

To demonstrate the power of the W -method we consider a less classical system, which

is known as semidiscrete or hybrid system. The system can be regarded as the one drive

by a discontinuous semimartingale, so that the theory presented in the previous sections

is fully applicable.

Example 3. Let

eqno_11eqno_11 (16)

dx̂(t) = −
m1∑
j=1

A1jx(t− h1j)dt+
m∑
i=2

mi∑
j=1

Aijx(t− hij)dBi(t) (t ≥ 0),

x̃(s+ 1) = x̃(s)− A1

s∑
j=s−d1

x(j)h+

m∑
i=2

Ai

s∑
j=s−di

x(j)(Bi((s+ 1)h)−Bi(sh)) (s = 0, 1, 2, ...)

where x(t) = (x1(t), ..., xl(t), xl+1([t]), ..., xn([t]))
T (t ≥ 0) is an n-dimensional stochastic

process, which contains the l-dimensional continuous component and n − l-dimensional

discrete component ([t] is the integer part of x), Aij = (aijkr)
l,n
k,r=1, i = 1, ...,m, j = 1, ...,mi
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are real l × n-matrices, Ai = (aikr)
n
k=l+1,r=1, i = 1, ...,m are real (n − l) × n-matrices, h

and hij ≥ 0, i = 1, ...,m, j = 1, ...,mi are real numbers.

The hereditary system (16) is equipped with the prehistory

eqno_11aeqno_11a (17) x(ς) = φ(ς) (ς < 0),

and the initial condition

eqno_11beqno_11b (18) x(0) = x0 ∈ kn
p ,

where φ(ς) = col(φ1(ς), ..., φl(ς), φl+1([ς]), ..., φn([ς])) (ς < 0) is a F0-measurable stochas-

tic process such that ess sup
ς<0

E|φ(ς)|p < ∞.

Setting
m1∑
j=1

a1jkk = ak, k = 1, ..., l we define the entries cij of the n× n-matrix C as

ckk =
1
ak

m1∑
j=1

|a1jkk|
(

m1∑
ν=1

|a1νkk|h1j + cp
m∑
i=2

mi∑
ν=1

|aiνkr|
√

h1j

)
+ cp√

2ak

m∑
i=2

mi∑
j=1

|aijkk|, k = 1, ..., l,

ckr =
1
ak

(
m1∑
j=1

|a1jkr|
(

m1∑
ν=1

|a1νkr|h1j + cp
m∑
i=2

mi∑
ν=1

|aiνkr|
√

h1j

)
+

m1∑
j=1

|a1jkr|

)
+

cp√
2ak

m∑
i=2

mi∑
j=1

|aijkr|, k = 1, ..., l, r = 1, ..., n, k ̸= r,

ckk =
cp(di+1)

a1kk
√
h

m∑
i=2

|aikk|, k = 1 + 1, ..., l,

ckr =
(d1+1)|a1kr|

a1kk
+ cp(di+1)

a1kk
√
h

m∑
i=2

|aikr|, k = 1 + 1, ..., l, r = 1, ..., n, k ̸= r.

If the matrix In − C is positive invertible and, in addition, ak > 0, k = 1, ..., l, a1kk >

0, k = l+ 1, ..., n, then the zero solution of the homogeneous stochastic hereditary system

(16)-(17) is exponetially 2p-stable with respect to initial data.

Some particular cases of the above examples are considered in the papers [20] and [25]

in more details.

Remark 3. As it was shown in the papers [10] and [23], the theory of positive invertible

matrices incorporated into the W -method can be used to study global stability of determin-

istic and stochastic systems. A comprehensive nonlinear theory of the W -method suffers,

however, a necessary level of generality, which is achieved in the case of the linear theory,

and remains, therefore, a challenge.
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