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Abstract

Human emotion recognition (HER) is ever-evolving and has become an important research field.
In autonomous driving, HER can be vital in developing autonomous vehicles. Introducing au-
tonomous vehicles is expected to increase safety, having the potential to prevent accidents.
Recognizing the passengers’ emotional reactions while driving can help machine learning al-
gorithms learn human behavior in traffic. In this thesis, the focus has been on HER using
electrocardiogram (ECG) data. The effect of Autoencoders and Sparse Autoencoders in HER
using ECG data has been explored and compared to the state-of-the-art. Additionally, the
extent of ECG data as a single modality for HER has been discussed. Three pipelines were con-
structed to explore how Autoencoders and Sparse Autoencoders affect HER. All pipelines were
denoised and resampled using the Pan-Tompkins algorithm. Additionally, the pipelines were all
trained, validated, and tested using the Support Vector Classifier (SVC). The first pipeline uses
the Pan-Tompkins processed signals as input to the SVC. In the second pipeline, the input to
the SVC is features extracted from the signals using an Autoencoder. The last pipeline uses the
latent space of a Sparse Autoencoder as input to the SVC. The target emotions for the classifi-
cation task were based on the two-dimensional emotion model of valence and arousal, resulting
in four classes. The pipeline including an Autoencoder for feature extraction outperformed the
pipeline without feature extraction in addition to reducing the bias the models showed towards
one class. Using a Sparse Autoencoder, the overall results were lower, but it was able to reduce
the bias toward one class further. These results show that the Autoencoder has potential in
ECG-based HER and could contribute to the field.
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Chapter 1
Introduction

1.1 Motivation

Human emotion recognition (HER) is an important research field that can be vital in different
areas like Autonomous driving and Active and assisted living. In Autonomous driving, HER
can contribute to the making of autonomous vehicles. Autonomous vehicles are expected to be
safer than manual vehicles driven by humans today [1]. They are expected to be safer both
when it comes to vehicle-to-vehicle and vehicle-to-infrastructure. Additionally, they will be able
to help reduce the traffic in highly trafficked areas like in the cities. HER can be implemented to
predict the passengers’ emotions, which will be used to enhance safety. To make Autonomous
driving a realistic concept, there are multiple challenges.

One big challenge is social acceptance, making people trust the idea. Another big challenge is
creating a system to identify the correct emotional state accurately. A common way of making
such a system is combining preprocessing with an appropriate machine learning model. The
classical machine learning models often require extensive preprocessing, which can be time-
consuming and challenging to implement. An alternative to the classical machine learning
models is deep learning models. The deep learning models hold the advantage of learning from
raw data, needing little or no preprocessing to recognize the emotions. In HER there are also
different modalities to use as input for the machine learning models. One popular approach
is using physiological signals like Electrocardiogram (ECG), electroencephalogram (EEG), and
Galvanic skin response (GSR). The modality used in this study is ECG which has the advantage
of being easy and cheap to measure [2].

1.2 Objectives

This thesis will focus on HER using the physiological signal, ECG by utilizing generative mod-
els and a classical machine learning model. The main objective is to construct an emotion
recognition system that can utilize the latent space of generative models to enhance the accu-
racy of ECG-based emotion recognition. The experiments will be conducted on two benchmark
datasets, namely the ASCERTAIN and MAHNOB datasets. The two generative models chosen
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for this thesis are the Autoencoder and the Sparse Autoencoder. Their influence on the perfor-
mance of a classical machine learning model and its ability to explain the variability in ECG
data will be reviewed. The Support Vector Classifier (SVC) was chosen to be the classifier in
this study based on a review of different methods by M. Hasnul et al. in 2021 [2]. They stated
that the SVC is a frequently used classifier in emotion recognition which displays the overall
best performance for emotion recognition systems based on their study. A secondary objective
for this thesis is to compare the performance of the generative models to the state-of-the-art
and explore if ECG data can be an effective modality for single-modal HER. By comparing the
results to state-of-the-art, the goal is to highlight the relevance of this study.

To summarize the objectives of this thesis, two research questions have been formulated as
follows:

• RQ1: To what extent can the latent space captured by an Autoencoder and a Sparse
Autoencoder explain the variability in ECG data?

• RQ2: What is the overall performance of the proposed pipelines compared to state-of-
the-art, and how far can ECG be used as a single modality for HER?

1.3 Related Work

This section will review state-of-the-art methods for HER using ECG signals. Only studies
after 2017 will be considered to ensure only the most relevant and up-to-date studies are in-
cluded. Tables 1.1 and 1.2 summarize the different approaches reviewed in this section and
their classification accuracies.

In 2019 D. Nikolova et al. published a paper on emotion recognition with ECG signals using an
Artificial Neural Network (ANN) and Logistic Regression (LR) to discriminate human emotional
states across various subjects [3]. With the ANN providing a 35% classification accuracy and
the LR providing 40% accuracy, they concluded that ECG has a potential in affective computing
if combined with other modalities. Furthermore, in [4], SVC, K-Nearest Neighbors (KNN), and
Random Forest (RF) are compared using a finite impulse filter for denoising and the Discrete
Cosine Transform to extract features. They concluded with SVC providing the highest average
accuracy of 91%. L. Santamaria-Granados et al. used the Pan-Tompkins (PT) algorithm
to transform the signals before using it as input for a Deep Convolutional Neural Network
(DCNN) [5]. Their proposed method achieved 76% and 75% accuracy for arousal and valence,
respectively. In [6], S. Ismail et al. compared ECG and Photoplethysmogram signals with four
machine learning models: SVC, Näıve Bayes (NB), KNN, and Decision Tree (DT). For both
arousal and valence, the best accuracies with ECG signals were achieved using an SVC, with
an accuracy of 69% for arousal and 59% for valence. With two-dimensional target emotions
combining arousal and valence, the highest accuracy was 32% using KNN.
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Table 1.1: Summary of related work and their respective classification accuracies. In this table,
the focus is on the related work using similar methods as in this research.

Ref Dataset Emotion label Signals Processing Classifier Accuracy

[3] Self-made
dataset

Fear, Disgust,
Neutral

Statistical features: two
based on R peak ampli-
tude and six based on
length of the RR inter-
vals

ANN and LR ANN: 35%, LR:
40%

[4] Self-made
dataset

Happy, Exciting,
Calm, Tense

Finite impulse filter and
Discrete Cosine Trans-
form

KNN, RF and
SVC

KNN: 83%, RF:
82%, SVC: 91%

[5] AMIGOS Arousal and Va-
lence

PT algorithm DCNN Arousal: 76%,
Valence: 75%

[6] Self-made
dataset

Arousal, Va-
lence and Two-
dimensional

PT algorithm SVC, NB, KNN,
DT

Arousal SVC:
69%, Valence
SVC: 59%, Two-
dimensional
KNN: 32%

In Table 1.2, research including ECG signals from either ASCERTAIN or MAHNOB is pre-
sented. In [7] M.Wiem and Z. Lachiri extracted 169 features from the peripheral physiological
signals in MAHNOB and used them as input for an SVC. Their results concluded that ECG
and respiration volume were the two most relevant signals for HER. The ECG signals achieved
accuracies of 66% for arousal and 65% for valence. In [8] F. Panahi et al. used both ECG and
GSR signals to study the effectiveness of the Fractional Fourier Transform to improve the ac-
curacy of HER using physiological signals. They used an SVC to classify the extracted features
and concluded that the phase information from the Fractional Fourier Transform using ECG
signals achieved the highest accuracy of 77% for arousal and 78% for valence.

Table 1.2: Summary of related work and their respective classification accuracies. In this table,
the focus is on related work using ASCERTAIN and MAHNOB as benchmark datasets. Only
papers including ECG signals for emotion recognition will be considered.

Ref Dataset Emotion label Signals Processing Classifier Accuracy

[7] MAHNOB Arousal and Va-
lence

Butterworth filter and
Statistical features

SVC Arousal: 66%,
Valence: 65%

[9] MAHNOB Arousal and Va-
lence

Neighborhood Compo-
nent Analysis Dimen-
sionality reduction

KNN Arousal: 66%,
Valence: 65%

[10] ASCERTAIN Arousal and Va-
lence

None DCNN with Con-
volutional Block
Attention Module

Arousal: 79%,
Valence: 76%

[8] ASCERTAIN Arousal and Va-
lence

Phase information
of Fractional Fourier
Transform

SVC Arousal: 77%,
Valence: 78%
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In this thesis, the target emotions were chosen to be arousal and valence, but in contrast to most
related works presented in this section, arousal and valence were combined. Instead of having
separate predictions for arousal and valence with a two-part binary classification task, they
were combined for a two-dimensional emotion model. The four target emotions were set to be:
LALV, LAHV, HALV, and HAHV, which will be further explained in Chapter 3. Furthermore,
this study explores the effect of generative models like the Autoencoder and Sparse Autoencoder
for feature extraction. Both of the mentioned Autoencoders have been used with EEG signals,
but this study aims to explore their effect on ECG-based emotion recognition [11, 12].

1.4 Contributions

In this thesis, the goal is to contribute to the field of HER by exploring the ability of Au-
toencoders and Sparse Autoencoders to capture the variability in ECG data from benchmark
datasets like ASCERTAIN and MAHNOB. Three pipelines are constructed, with the first
pipeline being PT-SVC, acting as a baseline feeding the preprocessed signals to an SVC. The
second pipeline is PT-AE-SVC utilizing an Autoencoder for feature extraction before train-
ing an SVC. Lastly, the third pipeline is PT-SAE-SVC, where the signals are encoded using a
Sparse Autoencoder and feeding the sparse latent space to an SVC. As different variations of
Autoencoders have shown potential for feature extraction using EEG signals, this paper looks
to study their ability to provide better results for ECG data [11, 12]. The results discovered in
this study will be compared with state-of-the-art approaches to see if Autoencoders and Sparse
Autoencoders can contribute to the field of HER using ECG signals.

The pipelines proposed in this thesis are all preprocessed the same way. The signals are over-
sampled using the random oversampling technique to get the same number of samples for each
class. Next, the PT QRS-detection algorithm is applied to the signals both to reduce the noise
and to resample the signals to be the same length. In PT-SVC, the signals are standardized be-
fore training the classifier, while in PT-AE-SVC and PT-SAE-SVC, the signals are normalized
before training the encoders. All pipelines are also trained and tested using the same machine
learning model, namely SVC. The SVCs are tuned separately finding the optimal hyperpa-
rameters of each classifier. The target emotions chosen for the experiments are based on the
two-dimensional emotion model of valence and arousal with four target emotions. The ambition
of using this emotion model is to contribute to predicting the level of both valence and arousal
combined.

1.5 Thesis Overview

The thesis structure for the remaining chapters will be: Chapter 2, discussing the theory of
emotions and how emotions are measured, the preprocessing techniques used on the signals,
and machine learning models. Chapter 3 will cover the methods used for preprocessing and the
three pipelines used for emotion recognition and how they were implemented. Furthermore,
in Chapter 4 the benchmark datasets used for the experiments and the results for the three
pipelines are presented. Chapter 5 will discuss the results in the context of the research questions
and their relevance in addition to the remaining challenges in HER. Finally, Chapter 6 will
provide a conclusion of this thesis.
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Chapter 2
Theory

2.1 Emotions

The scientific research on emotions began in the late 1800s when the Danish physiologist C.
Lange and the American psychologist W. James started their research for the book “The Emo-
tions” [13]. Since James and Lange started their research on emotions, there have been conflicts
about the definition of emotions. However, there is a consensus that emotions resemble mod-
ulatory systems which have interactions with both “higher-order” and “lower-order” systems
to affect the physical behavior [14]. These interactions follow events that people experience;
different people experiencing the same event might have different emotions. In addition to the
disagreement on defining emotions, there are different ways of characterizing them.

2.1.1 Basic Emotions

In [15], P. Ekman and W. Friesen proposed happiness, sadness, anger, fear, surprise, disgust,
and interest to be the seven universal emotions, or as they called them, the primary effects.
Ekman and Friesen followed up on their proposal of the seven universal emotions in [16] by
comparing the facial expressions of emotion of different cultures. Their goal for the study
was to show that preliterate cultures with no to little contact with the literate culture would
show similar facial behavior to members of the literate culture. The study was set in New
Guinea, where they selected subjects that were highly unlikely to have been affected by facial
behavior from literate culture. To study their facial behavior, the experiments involved telling
stories, showing pictures, and a combination of the two, all designed to be relevant to only one
emotion. While these seven emotions were proposed to be universal by Ekman and Friesen in
1969, Ekman later rejected some of their research and suggested happiness, sadness, anger, fear,
disgust, and surprise to be the six basic emotions [17]. The basic emotions are considered to
be biological and easier to separate and recognize than other emotions. There have also been
challenges to the claim of basic emotions [18, 19]. In [18], A. Wierzbicka argues that the claim
of basic emotions is biased based on the native language of the researchers.
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2.1.2 Complex Emotions

Describing an emotion experienced by a subject can be a complex task due to the complexity
of the human brain and emotions. In contrast to basic emotions, complex emotions can be
described as intricate and challenging to describe and recognize. Complex emotions are of-
ten a combination of multiple basic emotions, and the experience can differ depending on the
individual. Envy, guilt, and shame are typical examples of complex emotions. In [20], philoso-
pher R. Wollheim described emotions as an extended mental episode occurring from something
that either satisfies or frustrates a pre-existing desire. This definition differs from the formerly
discussed basic emotions, relating more to the philosophical aspect of emotions, like moral psy-
chology. In moral psychology, extending the view of emotions beyond the six basic emotions is
important. The way people think and their choices are often related to complex emotions, like
guilt or shame after making a mistake. In [21] P. Griffiths describes emotions as “Machiavel-
lian” emotions. He argues that emotions are used strategically, meaning that they are expressed
and possibly produced when it is advantageous in the context of social events. This proposed
description of emotions further shows the complexity that lies within human emotions.

2.1.3 Arousal and Valence

Instead of describing emotions with a set of basic emotions and extending from them, a popular
approach to characterize the emotions is Lang’s proposed method of measuring the level of
valence and arousal [22]. In Lang’s characterization, valence is either pleasant (positive) or
unpleasant (negative), and arousal ranks from high to low. As seen in Figure 2.1, valence and
arousal can be explained as two dimensions orthogonal to each other, where valence is the
emotional direction of either pleasant or unpleasant, and arousal is the intensity of the emotion.
The figure also shows the seven universal emotions proposed by Ekman and Friesen mapped
in context to the two-dimensional emotion space proposed by Lang. A person with positive
valence and high arousal can then be assumed to be happy.

2.2 Measuring Emotions

Making an accurate measurement of the emotion that is experienced by a subject given a type of
stimulus is, as mentioned earlier, not an easy task. In [23], they divide the measuring methods
into self-reporting and machine assessment techniques. The self-reporting techniques are usually
some kind of questionnaire for the subject to fill out about the subjective experience of the
emotions. Machine assessment techniques are different methods for measuring the physiological
signals sent from the human body. These machine assessment techniques can yet again be
divided into two categories: non-invasive and invasive measuring methods. The non-invasive
measuring methods do not include any devices connected to the subject’s body where the
subject might feel “intruded”. An example of a non-invasive machine assessment technique is an
endosomatic methodology for measuring GSR, which is not using any external current to obtain
the signals [24]. In contrast to the non-invasive techniques, the invasive machine assessment
techniques use tools that will be directly connected to the subject’s body. An example of an
invasive measuring technique is a wearable Shimmer3 ECG sensor strapped around the waist
and connected to several places on the upper body.
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Figure 2.1: Showing the seven universal emotions proposed by Ekman and Friesen mapped in
the two-dimensional space of valence and arousal. The green boxes contain the target emotions
used for classification in this thesis. The target emotions are defined as: HALV: High Arosual
Low Valence, HAHV: High Arousal High Valence, LALV: Low Arousal Low Valence, LAHV:
Low Arousal High Valence.

2.2.1 Visual Sensors

Using visual sensors for emotion recognition is a common approach due to its low cost and that
it is an effective way to collect data. The main types of visual sensors are cameras used for facial
emotion recognition and photoplethysmography technology for heart rate detection [25]. Facial
emotion recognition is an important and commonly used type of emotion recognition where
facial expressions are recorded using visual sensors. Observing the facial behavior during some
form of stimulus can provide a lot of information on the subject’s emotions. For instance, a
smile often refers to a positive emotion like happiness. A downside to using visual sensors is that
it depends on the lighting. Having lousy lighting will provide a worse performance for emotion
recognition. To overcome this challenge, there are different types of visual sensors like NIR
cameras, thermal cameras, and Kinect sensors. NIR camera is a type of camera capturing near-
infrared bands which goes beyond the visible spectrum. They are especially good for detecting
changes in skin color and textures [26]. The thermal cameras are similar to NIR cameras, but
they capture the changes in skin temperature [27]. The Kinect sensors are a combination of
multiple sensors, such as RGB cameras and depth sensors. This enables it to capture changes
in facial expression and track the movement of facial muscles [28].

2.2.2 Audio Sensors

Another common approach to emotion recognition is using audio sensors for speech emotion
recognition [29]. Audio sensors can be handy because they capture speech, providing valuable
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information for recognizing emotions. After audio data is collected, feature extraction is crucial
to obtaining the relevant information. The most apparent audio sensor is the microphone
capturing recordings from people speaking [30]. Furthermore, the voice stress analyzer is a type
of microphone capturing the change of stress in speech. This microphone is especially utilized for
speech emotion recognition in lie detection [31]. Like visual sensors, audio sensors are considered
a cheap and effective way to collect data, but they also have limitations. In speech, there is
a lot of variability between subjects. There is no objective truth to how emotions in speech
are either expressed or perceived [32]. This affects the quality of feature labeling and feature
extraction. In addition, it is not always given that a sentence only contains one single emotion
making it difficult for a machine to capture these emotions.

2.2.3 Physiological Signals

Physiological signals can be measured using both invasive and non-invasive machine-measuring
methods. The most common physiological signals used for emotion recognition are EEG, GSR,
and ECG [23]. EEG measures electrical signals from the brain and is usually measured using
an electroencephalogram. The electroencephalogram consists of metal plate electrodes that are
connected to the head. GSR, also known as skin conductance or electrodermal activity measures
electrical signals from the skin. When a person is subjected to a stimulus affecting the emotional
state, the skin responds with a sweat reaction. The change in sweat is then captured by sensors
placed on the fingertips, the surface of the hands, the soles of the feet, or a combination of the
three [33].

ECG signals are, as mentioned, usually measured using invasive machine assessment techniques
like the wearable Shimmer3 ECG sensor. The sensor is supposed to capture the heart’s electrical
signals while the subject is exposed to some stimulus. The ECG signals can be depicted in a
graph where each cardiac cycle generates a series of waves and deflections. In Figure 2.2, a
single deflection is shown to demonstrate the directions of the signal. The waves have a baseline
where the deflection is neutral. When the deflection is above the baseline, it is a positive
deflection, and likewise, it is negative when the deflection is below the baseline. In addition
to the direction of the deflection, the magnitude is also significant when interpreting it. The
magnitude of a deflection is measured in millimeters of voltage and can be understood as how far
the deflection is from the baseline. When the deflection is far from the baseline, it is considered
a high magnitude, and when it is close to the baseline, it is considered a low magnitude [34].

2.3 Preprocessing

In emotion recognition using physiological signals, preprocessing is a crucial step to increase the
performance of a machine learning model. There are many techniques to process physiological
signals, like denoising the signals using different types of filters or various feature extraction
methods. Some common feature extraction methods used for physiological signals are the
discrete wavelet transform, Fourier transform, and Pan and Tompkins’ QRS-detection [35–37].
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Figure 2.2: Showing the direction of a deflection from an ECG signal. When the line is above
the baseline, the deflection is positive, and when it is below the baseline, it is negative.

2.3.1 Filtering

In signal preprocessing for emotion recognition, filtering refers to filtering out the noise from
the raw signals. This is especially important for ECG signals due to the noise level that occurs
when measuring the heart rate. The ECG signals can be disturbed by several factors, including
interference from the power line, muscle movements, baseline wanders, motion artifacts, and
external electrical system interference [2]. Depending on the type of noise, there are different
types of filters to apply to the signals. The low-pass filter is a commonly used filter to denoise
the signals with a cutoff value, which limits the maximum frequency [38]. Another popular
type of filter is the high-pass filter. In contrast to the low-pass filter, the high-pass filter sets a
cutoff value to limit the minimum frequency of the signal. The filter removes all noise that is
either near the desired minimum frequency or below [39]. A bandpass filter is a combination of
low-pass and high-pass filters. The signals are passed within a given range of frequencies [40].

2.3.2 Pan-Tompkins Algorithm

In 1985 J. Pan and W. Tompkins proposed a real-time QRS-detection algorithm for detecting
the QRS complexes of ECG signals [41]. Because of all the noise produced when measuring
ECG signals, QRS-detection can be challenging. In the PT QRS-detection algorithm, they
reduce the influence of the different sources of noise using digital filters. They use cascaded
low-pass and high-pass filters, which construct an integer-coefficient bandpass filter. Next, they
have a filter that calculates the derivative of the signal to get information on the slope of the
QRS complex. Furthermore, they square the differentiated signal point by point. This makes
all the data points positive and emphasizes the higher frequencies because of the nonlinear
amplification of the output. Lastly, they pass the signal through a moving-window integration.
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The moving-window integration is supposed to acquire information on the R-wave slope and
the waveform feature.

2.4 Machine Learning Theory

Machine learning is a subfield of Artificial Intelligence (AI) that revolves around structured and
unstructured data. In simple terms, machine learning can be understood as algorithms built to
use the knowledge that lies in data to learn from itself and make predictions. The introduction
of machine learning is groundbreaking when it comes to utilizing the data available efficiently.
Instead of having humans manually analyze the data and make rules, we can now rely on
self-learning machines to make the decisions for us [42].

2.4.1 Classical Machine Learning

The possibility of using machines to learn from themselves was introduced in 1950 when A.
Turing asked the question: “Can machines think?” [43]. In the years following Turing’s test
paper, studies on machine learning were starting to take form. In 1959 A. Samuel published a
paper on using the game of checkers to explore two machine learning procedures [44]. With his
study on machine learning, he could conclude that it is possible to program a machine to play
the game of checkers better than the creator of the program.

As machine learning is a subfield of AI, we can further divide machine learning into three cate-
gories of supervised learning, unsupervised learning, and reinforcement learning. In supervised
learning, the objective is to make an algorithm that can use historical and labeled data to make
predictions about future data or data unknown to the algorithm. A supervised learning algo-
rithm can either be made to predict categories, known as classification, or to predict continuous
outcomes, known as regression analysis. In both cases, the algorithm is given a set of historical
data with labels that are used to train it to make predictions on new data. In contrast to
supervised learning, unsupervised learning uses unlabeled data or data where the structure is
unknown. Unsupervised learning is used to find data patterns and gain new knowledge based
solely on the data fed into the algorithm. Lastly, reinforcement learning is based on a self-
learning system that improves from feedback. While this sounds a lot like supervised learning,
the agent does not learn from known labels but from a reward function that measures its per-
formance. Simplified, reinforcement learning can be explained as a trial-and-error approach
[42].

The Perceptron

The first Machine learning algorithm was proposed by Rosenblatt in 1958 [45] called The Per-
ceptron. The Perceptron is designed to replicate the neurons in the brain where they either fire
or not. The algorithm uses weights, wj , initially set to zero or very small values close to zero.
The output is then calculated, and the weights are updated based on whether the calculated
output is correct or not. The weights are calculated as follows:

wj := wj +∆wj (2.1)
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Furthermore, the ∆wj , used to update the weights, is calculated as in Equation 2.2. In the
equation, η is the weights’ learning rate, yi denotes the true labels for the classes, ŷi is the
predicted class labels, and xij the sample values of feature j in vector i. The weights are updated
until the Perceptron converges. If the classes are not linearly separable, a maximum number of
iterations or accepted misclassifications can be given to stop the algorithm from updating the
weights.

∆wj = η(yi − ŷi)xij (2.2)

Support Vector Machine

Support Vector Machine (SVM) is a machine learning algorithm inspired by the Perceptron
algorithm. As discussed, the Perceptron tries to minimize the number of misclassified samples.
In an SVM, the goal of the objective function is to find the best decision boundaries or hyper-
planes that maximize the margin between the classes. Calculating the separating hyperplane is
an optimization problem which can be defined as [46]:

min
1

2
∥w∥2 subject to ti(w

Txi + w0) ≥ +1,∀i (2.3)

In Equation 2.3 w denotes the weight vector of the coefficients for the hyperplane, xi represents
every data point, and ti is the label of each data point. The optimization problem defined in
Equation 2.3 can be solved by utilizing the Lagrange multipliers. The new optimization problem
can now be defined as:

Ld = −1

2

∑
i

∑
k

αiαktitk(xi)
T (xk) +

∑
i

αi (2.4)

α in Equation 2.4 denotes the Lagrange multipliers added to the optimization problem.

To maximize the distance between the two classes, the margin consisting of two additional
hyperplanes, one positive and one negative, is calculated. The positive and negative hyperplanes
are calculated as shown in Equations 2.5 and 2.6, respectively, where wT is the transposed
weight vector and x is the sample vector. However, in most real cases, achieving a perfectly
separated margin while maintaining robustness is impossible. This is where the slack variable
and regularization penalty come into play.

In 1995, V. Vapnik and C. Cortes introduced the slack variable to deal with non-linearly sepa-
rable classes, resulting in the soft-margin classification in SVM [47]. The slack variable permits
a certain amount of misclassification. To regulate the penalization, a constant C is used. This
parameter penalizes samples that are misclassified. The regularization penalty establishes the
order of importance between maximizing the margin and accurately classifying the samples.

Obtaining as many correctly classified samples as possible is essential. However, a smaller
margin may lead to overfitting and a less robust model, whereas a larger margin may compromise
classification precision. To achieve the desired trade-off between margin size and classification
accuracy, choosing an appropriate penalization parameter is crucial.
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w0 +wTxpos = 1 (2.5)

w0 +wTxneg = −1 (2.6)

An alternative to the linear SVM allowing a certain number of misclassifications, the kernel
trick can be implemented to handle linearly inseparable data. The kernel trick is a way to map
the feature space to a multidimensional feature space, separate the classes and map it back to
the original feature space. The kernel trick uses the mapping function, often referred to as Φ,
to project the data onto the new feature space for it to be linearly separable. The kernel trick
can be implemented using different variations of this mapping function, like the Polynomial
and the Radial Basis Function (RBF). Choosing a kernel is an important issue when training
an SVM, but there is no easy way to know which one to use for any specific problem. In [48],
G. Prajapati and A. Patle compared the performance of a Polynomial kernel and the RBF
kernel and concluded that the RBF seemed better suited for larger datasets. The only other
conclusion they could make after their analysis was that the choice of kernel directly impacts
the accuracy of classification. In more recent studies, there is also a lack of consensus on which
kernel to choose. The reports show different kernels providing the best performance in different
classification and regression problems [49–51].

2.4.2 Deep Learning

Just like machine learning is a subfield of AI, deep learning is a subfield of machine learning.
The theory behind deep learning can be dated back to the 1940s when Warren McCulloch
and Walter Pitts proposed an explanation of how the neurons in the brain might function
[52]. The field is built around the concept of imitating the learning process of the biological
brain. The idea is that imitating the neurological activity in the brain could help solve complex
problems. This idea was for the first time applied in Rosenblatt’s perceptron in 1960 [53]. The
perceptron algorithm was made to use the visual stimuli in the theoretical model, also called
the perceptron, to stimulate perceptual learning, recognition, and spontaneous classification. As
this was only a single-layer machine learning model, the first true multilayered neural network
was not proposed until D. E Rumelhart et al. implemented the backpropagation in 1986 [54].
The idea behind adding multiple layers to the neural networks is that it can help solve the more
complex problems like with image and voice recognition. Furthermore, there is also a downside
to adding layers to the model. With an increased number of layers, the complexity of the model
itself also increases. A highly complex deep learning model will be more costly to train and
could, in some cases, overcomplicate the problem at hand.

Neural networks come in different variations and complexities. With the different problems,
there are different types and levels of layers that can optimize the network. The different types
of problems can also provide different types of input data and require different variations of
outputs. However, all multilayered neural networks consist of an input layer, one or more
hidden layers, and an output layer. A simple example of a multilayered neural network is
the multilayered perceptron depicted in Figure 2.3. This network is a typical example of a
feedforward network, which means that each layer receives the output of the preceding layer as
its input. In this particular example, there is one input layer consisting of three input units,
two hidden layers consisting of three hidden units, and an output layer with two output units.
The layers are all connected through weighted coefficients, which link the units together and
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form a fully connected neural network. The input data is passed through the input layer, where
the units calculate a weighted sum. This step is repeated, in this case only two times, until the
data reaches the output layer where the output is calculated using an activation function [42].

Figure 2.3: Showing the architecture of a fully connected feedforward ANN consisting of an
input layer with three units, two hidden layers with three units, and an output with two units.

Most neural networks used for machine learning today are trained with the backpropagation
algorithm [42]. The backpropagation algorithm is an efficient method for computing the partial
derivatives of a chosen cost function in multilayered neural networks. The derivatives are calcu-
lated for the algorithm to learn the weight coefficients for parameterizing the neural networks.
Because neural networks can grow very complex, containing several layers and several neurons
in these layers, the computations can consequently also become very complex. To deal with the
complexity, the backpropagation starts from the output by multiplying the output vector with
the last weight vector resulting in a new vector to multiply with the following weight matrix.
This process is repeated for all layers in the neural network. These vector-matrix multiplications
are much less computationally expensive than the matrix-matrix multiplications of the weight
matrices with the same process starting with the input.

Autoencoder

The Autoencoder was formally introduced in 1987 by McClelland et al. [55] and was originally
intended as an unsupervised learning algorithm. Autoencoders are neural networks constructed
to encode the input data to a compressed representation and then decode it to be as similar to the
input data as possible. The Autoencoder network is trying to learn the function hW,b(x) ≈ x,
which can be understood as an approximation to the identity function. The goal is to find
structures in the data by having constraints like limiting the number of hidden units in the
hidden layers. Figure 2.4 shows an example of a simple Autoencoder architecture. The network
has six input units which are encoded into a compressed representation of three hidden units.
The second layer is called the bottleneck layer containing the latent space of the encoded inputs.
By extracting the latent space of the bottleneck layer, the Autoencoder can be used as a feature
extraction technique in supervised learning. Next, it decodes the data, trying to reconstruct
the original data using only the information from the hidden units’ activation vectors. In the
process of decoding the data, the algorithm looks for correlations between the features to help
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it reconstruct the input data.

Figure 2.4: Showing the architecture of a simple Autoencoder consisting of one input layer with
six input units, a hidden layer with three units, and an output layer with six output units.

Sparse Autoencoders

Giving the network the constraint of fewer units in the hidden layer than in the input layer is
the most common way to avoid having it learn the identity function. Another way to restrain
the model from learning the identity function is by making the activations of the hidden units
sparse. Adding the sparsity constraints will mean that most nodes will be zero. Having more
or the same number of hidden units as input units require a regularization term. The sparsity
regularization is similar to normal regularization, but instead of applying it to the weights, it
is applied to the activations. Adding the regularization term to the Autoencoder makes the
overall cost function for the Sparse Autoencoder expressed as following [56]:

Jsparse(W, b) = J(W, b) + β

S2∑
j=1

KL(ρ||ρ̂j) (2.7)

In equation 2.7 β is a parameter that regulates the weight of the penalty that is added to
neurons where ρ̂j and ρ are significantly different. KL is the Kullback-Leibler divergence of two
Bernoulli random variables with means ρ and ρ̂j and measures the similarity between the two
distributions. S2 is the number of units in the hidden layer.
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Chapter 3
Method

In this chapter, the methods used for the emotion recognition task will be presented. First, the
process of defining target classes will be explained. Furthermore, the preprocessing techniques
are described. Lastly, the pipelines constructed to explore the research questions are reviewed
in detail.

3.1 General Settings

The experiments for this paper were all implemented on Google’s collaborative notebooks,
known as Google Colab notebooks. The Google Colab notebook is a Jupyter notebook hosted
on the browser, which provides graphics processing units for computationally expensive machine
learning tasks. Specifically, the Colab Pro package was used to perform the experiments effi-
ciently. In the experimental process of creating, training, and testing the models, the following
packages were used:

• Scikit-learn (Sklearn): 1.2.2 [57]

• TensorFlow: 2.12.0 [58]

3.2 Preprocessing

3.2.1 Redefining Classes

The choice of emotional labels is essential to train a good classification model for emotion
recognition. As discussed in Section 2.1.3, emotions are often measured in valence and arousal.
In the ASCERTAIN dataset valence ranges from 0 to 6, and arousal ranges from -3 to 3. The
emotional states were chosen to be defined as either high or low for both valence and arousal.
For valence, 0 to 4 was mapped to low, and 5 and 6 were considered high. The same was done
for arousal, where the range -3 to 0 was mapped as low, and 1 to 3 was considered high. This
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was also done for the MAHNOB dataset. Both valence and arousal is ranging from 1 to 9,
where 1 to 4 was mapped to low and 5 to 9 considered high. The redefining of the emotional
states resulted in the following four labels, which were then used for the classification task:

• Class 1: Low Arousal and Low Valence (LALV), including emotions like depression and
sad.

• Class 2: Low Arousal and High Valence (LAHV), including emotions like relaxed and
calm.

• Class 3: High Arousal and Low Valence (HALV), including emotions like anger and fear.

• Class 4: High Arousal and High Valence (HAHV), including emotions like happy and
excited.

In Table 3.1, the distribution of the four classes is shown for ASCERTAIN and MAHNOB.
The ASCERTAIN dataset was imbalanced with only 77 samples of the class “HALV” and
the majority class being “LAHV” with 735 samples. In the MAHNOB dataset, the “HAHV”
class had 203 samples, while the “LALV” class only had 67 samples. For the models to learn
how to classify all classes correctly, the data was oversampled using the Random oversampling
technique. After the data were oversampled, the ASCERTAIN dataset contained 735 samples
for all classes, and the MAHNOB dataset contained 203 samples for all classes.

Table 3.1: Distribution of samples in their respective classes for the ASCERTAIN and MAHNOB
datasets.

Dataset LALV LAHV HALV HAHV

ASCERTAIN 571 736 77 571

MAHNOB 67 135 122 203

In the table, the following abbreviations are used: LALV: Low Arousal Low Valence, LAHV: Low
Arousal High Valence, HALV: High Arousal Low Valence, HAHV: High Arousal High Valence.

3.2.2 Pan-Tompkins

When measuring physiological signals, the length of the signals represents time in milliseconds.
As the length of stimulation varies for each video clip and person, the length of the signals
is not equal for all experiments. When feeding signals into a machine learning algorithm, all
signals need to be a fixed length. The PT QRS-detection algorithm was applied to the signals
to deal with this issue. The PT algorithm is a denoising method detecting the QRS complexes
of the ECG signals, as discussed in Section 2.3.2. In this study, the algorithm is also used for
resampling the signals to get all the signals to the same length. When the signals are resampled
with the PT algorithm, the length of the signals represents the frequency in hertz (Hz). For
both the ASCERTAIN and MAHNOB datasets, frequencies 256 Hz and 512 Hz were explored to
see how the frequencies affect emotion recognition. Figure 3.1 shows two subplots that display
the raw signals in the subfigure above and the signals from the same example after the PT
algorithm was applied in the subfigure below. In the first subplot, the raw signals are very
noisy and range from 0 to 22923 milliseconds. In the second subplot, the signals are processed
using the PT algorithm. The processed signals are less noisy and are downsampled to a signal
length of 256.
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Figure 3.1: Two subplots showing examples of raw signals (above) and processed signals (below),
from the ASCERTAIN dataset. The processed signals have been denoised and resampled to
256 Hz using the PT QRS-detection algorithm.

3.2.3 Splitting the Data

Choosing the size of training, validation, and test sets is an assessment that is based on the
problem at hand and the number of samples available. The validation and test sets are often
in the range of 10% to 40% of the dataset. When the dataset contains fewer samples, it is
common to split the data where the validation and test sets are closer to 35% to ensure that
the models are evaluated properly [42]. When leaving this many samples out of the training
process, the models might have difficulty learning the patterns in the data. For the problem of
limited training data, a common solution is splitting the data into train and test sets and using
a grid search with cross-validation to identify the optimal hyperparameters for the classifier.

The ASCERTAIN and MAHNOB datasets have 2940 and 812 samples, respectively, after over-
sampling to get balanced class distributions. The test set was chosen to be a subset consisting
of 25% of the samples. The data were then further split into the validation and training sets,
where the validation set was chosen to be 35% of the remaining samples after the first split.
The data were shuffled to ensure a randomized split. Additionally, the data were evenly dis-
tributed by class in the training, validation, and test sets using a stratification parameter. The
training set was used to train the model, and the validation set was used to validate the model’s
performance. The test set was not used until the training of the model was completed to keep
it fully unknown to the model.
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3.3 Pipelines

In this section, three different pipelines will be presented. Figure 3.2 illustrates the steps of the
three pipelines in a flowchart. As previously discussed, all pipelines have been preprocessed by
applying the PT algorithm, and the datasets have been split the same way in all cases. The
pipelines are also all tested with the two datasets discussed in 4.1. The three pipelines have
been given a name to easier refer to them throughout this thesis. PT-SVC is the first pipeline
consisting of the processed signals standardized and classified using an SVC. PT-AE-SVC is the
second pipeline that has been normalized and fed to an Autoencoder network before classifying
using an SVC. The last pipeline, named PT-SAE-SVC, contains the same steps as the second
pipeline but with a Sparse Autoencoder network for feature extraction. All pipelines are used
for both the ASCERTAIN and MAHNOB datasets with resampled frequencies of 256 Hz and
512 Hz.

Figure 3.2: The steps of the three pipelines presented in this section from raw data to classi-
fication. The first pipeline is the PT-SVC pipeline which uses the scaled signals as input for
the SVC. The second pipeline is the PT-AE-SVC, encoding the scaled signals using an Autoen-
coder followed by an SVC. The third pipeline is the PT-SAE-SVC using an SVC to classify the
encoded data from a Sparse Autoencoder.

3.3.1 PT-SVC

In the PT-SVC pipeline, the processed signals are standardized using a standard scaler. The
standard scaler scales the data independently on each feature to ensure a mutual scale for
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all features. Standardizing the data helps minimize any bias occurring from features having
an extensive range of values. The standardization is calculated using the statistical Z-score
normalization shown in equation 3.1. In the equation, Z represents the standard score of sample
x, µ is the mean, and σ is the standard deviation of each sample. This calculation provides a
mean of zero and a unit variance for all features. This step is especially important when using
an SVC to classify the data. The classifier assumes that the data are centered around 0 and
have the same variance for all features.

Z =
x− µ

σ
(3.1)

The standardized data is fed into an SVC. The SVC is trained using a grid search with cross-
validation. The purpose of the grid search is to find the optimal parameters by cross-validating
a parameter grid containing various hyperparameters. With cross-validation, the data is split
into five subsets where one of the subsets is withheld in training to be used as validation. This
process is repeated for all subsets to be used as validation. Furthermore, the cross-validation
process is repeated for each combination of hyperparameter values in the parameter grid. The
hyperparameters included in the grid search were the regularization parameter C, the parameter
for stopping criterion tolerance, and the kernel coefficient gamma. As discussed in Section 2.4.1,
there are several different kernel functions that can be implemented to handle nonlinearity in
the data. The linear, polynomial, sigmoid, and RBF kernels were all tested and cross-validated
in the grid search.

As previously mentioned, the pipeline is used on two different datasets, namely ASCERTAIN
and MAHNOB. In Table 3.2, the minimum and maximum values for the chosen SVC hyperpa-
rameters are listed for the two datasets and the two frequencies of the signals. Table 3.3 shows
the optimal combinations of hyperparameters for the four SVCs. The optimal choices of kernels
are not listed as the RBF kernel was the best choice for all classifiers. The best combination
for the ASCERTAIN signals resampled to 256 Hz was a C value of 0.01, a stopping criterion
tolerance of 2, and a gamma of 48. With a frequency of 512 Hz, the best combination for the
ASCERTAIN signals was a C value of 0.5, a stopping criterion tolerance of 2, and a gamma
value of 34. With the MAHNOB data, the signals with a 256 Hz frequency showed the best
performance with a C value of 2, a stopping criterion tolerance of 2, and a gamma value of 103.
Lastly, the optimal combination for the MAHNOB signals resampled to 512 Hz was a C value
of 0.001, a stopping criterion tolerance of 2, and a gamma value of 7.

Table 3.2: The tested ranges of parameter values for the SVCs trained with the signals prepro-
cessed using the PT algorithm and a standard scaler.

Parameter Minimum Maximum

C 0.001 100

Tolerance 0.01 100

Gamma 0.001 100

3.3.2 PT-AE-SVC

The PT-AE-SVC pipeline normalizes the processed signals using a min-max scaler before using
an Autoencoder for feature extraction and, lastly, an SVC to classify the signals. The min-max
scaler scales the data to a range from zero to one. Like the standardizer used in the PT-SVC
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Table 3.3: The optimal parameter values in the SVCs trained with the signals preprocessed
using the PT algorithm and a standard scaler.

Parameter ASC 256 ASC 512 MAH 256 MAH 512

C 0.01 0.5 2 0.001

Tolerance 2 2 2 2

Gamma 48 34 103 7

In the table the following abbreviations are used: ASC 256: ASCERTAIN dataset with a frequency
of 256 Hz, ASC 512: ASCERTAIN dataset with a frequency of 512 Hz, MAH 256: MAHNOB dataset
with a frequency of 256 Hz, MAH 512: MAHNOB dataset with a frequency of 512 Hz.

pipeline, the goal is to scale all the features to the same range of values. This can be essential
for the Autoencoder to converge during training and improve its generalization. Equation 3.2
shows the equation used to calculate the normalized output. In the equation, X represents the
sample, Xmin is the minimum sample value across the given feature, and Xmax is the maximum
sample value.

Xnorm =
X −Xmin

Xmax −Xmin
(3.2)

The normalized data is used as input for the Autoencoder. As discussed in Section 2.4.2, Au-
toencoder is an unsupervised machine learning algorithm. As it is used to recognize patterns
in the data by mapping the data to a new feature space, it can be used as a feature extraction
method for supervised learning. To build the architecture for the Autoencoder, there are dif-
ferent layers to add where adding new layers increase the complexity of the model. Because of
the difference in frequency in the two datasets, two separate Autoencoders were trained. Both
models were constructed with an input layer, two hidden layers, one bottleneck layer, and an
output layer. The full architecture for the Autoencoders is shown in Figure 3.3. The output
from the bottleneck layer is encoded data used for feature extraction. The rest of the network
is constructed to validate the model’s performance while building the architecture and tuning
the hyperparameters.

Figure 3.3: The architecture of the Autoencoders used for feature extraction.
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The first layer is the input layer, where the input data is processed. The second layer is the
first hidden layer using neurons to learn from the input layer. The first hidden layer is the
encoder producing an encoded lower dimensional representation of the input data. The third
layer, called the bottleneck layer, compresses the data into a smaller feature space containing
the most relevant information of the input data. After the bottleneck layer, there is another
hidden layer, which is the decoding part of the network. As discussed in 2.4.2, the decoder uses
the information from the bottleneck layer to reproduce the input data. The data is mapped
back to the initial feature space in the output layer. While the architecture for the two datasets
was chosen to be the same, they do not necessarily have the same optimal values for the
hyperparameters or number of neurons. Different combinations of neurons were tested to find
the optimal number of neurons in the hidden layers and the bottleneck layer. In Table 3.4, the
ranges of values for the number of neurons and the parameters are listed.

Table 3.4: The tested ranges of the number of neurons and parameter values for the Autoencoder
network.

Parameter Minimum Maximum

Hidden Neurons 8 128

Bottleneck Neurons 8 64

Learning Rate 0.00001 0.1

Batch Size 2 16

Number of Epochs 30 200

The different datasets and frequencies were tuned separately to find the optimal combinations
of neurons and parameter values. The optimal values for the respective datasets and frequencies
are shown in Table 3.5. Both Autoencoders for the ASCERTAIN signals performed best with 64
hidden neurons and 32 bottleneck neurons. For the signals with 256 Hz frequency, the optimal
combination of parameter values was a learning rate of 0.0005, batch size of 2 and 100 epochs.
With a frequency of 512 Hz, the optimal combination was a learning rate of 0.0007, a batch size
of 3, and 80 epochs. The MAHNOB dataset also performed better with 64 hidden neurons and
32 bottleneck neurons for both signal frequencies. However, with a 256 Hz frequency, the best
combination of parameter values was a learning rate of 0.0005, batch size of 2, and 90 epochs.
With a frequency of 512 Hz, the learning rate was also 0.0005, batch size was 3, and 100 epochs.

Table 3.5: The optimal number of neurons and parameter values in the Autoencoder network.

Parameter ASC 256 ASC 512 MAH 256 MAH 512

Hidden Neurons 64 64 64 64

Bottleneck Neurons 32 32 32 32

Learning Rate 0.0005 0.0007 0.0005 0.0005

Batch Size 2 3 2 3

Number of Epochs 100 80 90 100

In the table the following abbreviations are used: ASC 256: ASCERTAIN dataset with a frequency
of 256 Hz, ASC 512: ASCERTAIN dataset with a frequency of 512 Hz, MAH 256: MAHNOB dataset
with a frequency of 256 Hz, MAH 512: MAHNOB dataset with a frequency of 512 Hz.

The features extracted from the Autoencoder were used to train an SVC to predict the respective
emotions. Four different classifiers were trained, one for each set of features extracted with the
Autoencoder models. Like in the PT-SVC pipeline, the SVC was trained using a grid search
with cross-validation to find the optimal hyperparameter values. The hyperparameters chosen
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to include in the parameter grid were C, stopping criterion tolerance, and gamma, as shown in
Table 3.6. In the table, the range of values that were tested in the grid search is listed.

Table 3.6: The tested ranges of parameter values for the SVCs trained with the features ex-
tracted using the Autoencoder.

Parameter Minimum Maximum

C 0.001 100

Tolerance 0.01 100

Gamma 0.001 100

The optimal combinations of parameter values for the four classifiers are presented in Table
3.7. For the first classifier for the ASCERTAIN signals with a frequency of 256 Hz, the optimal
combination of hyperparameter values was a C value of 1, a stopping criterion tolerance of 1,
and a gamma value of 130. Next, the optimal combination for the signals with a frequency
of 512 Hz was a C value of 5, a stopping criterion tolerance of 1, and a gamma value of 112.
For the MAHNOB signals with a frequency of 256 Hz, the best SVC hyperparameter value
combination was a C value of 1, a stopping criterion tolerance of 1, and a gamma value of 11.
Lastly, for the signals with a frequency of 512 Hz, the best combination was a C value of 1, a
stopping criterion tolerance of 2, and a gamma value of 7.

Table 3.7: The optimal parameter values in the SVCs trained with the features extracted using
the Autoencoder.

Parameter ASC 256 ASC 512 MAH 256 MAH 512

C 1 5 1 1

Tolerance 1 1 1 2

Gamma 130 112 11 7

In the table the following abbreviations are used: ASC 256: ASCERTAIN dataset with a frequency
of 256 Hz, ASC 512: ASCERTAIN dataset with a frequency of 512 Hz, MAH 256: MAHNOB dataset
with a frequency of 256 Hz, MAH 512: MAHNOB dataset with a frequency of 512 Hz.

3.3.3 PT-SAE-SVC

The last pipeline, namely PT-SAE-SVC, feeds the processed signals to a Sparse Autoencoder
encoding the signals as discussed in 2.4.2. The Sparse Autoencoder works the same way as the
Autoencoder by encoding the signals and trying to reproduce the original signals by decoding
them. The output from the encoder is used for feature extraction, and the decoder output is used
to evaluate the model. The difference between the Autoencoder and the Sparse Autoencoder is
the sparsity added to the Sparse Autoencoder. Instead of compressing the data into a smaller
feature space, it contains more or the same number of neurons in the hidden layers and the
bottleneck layer as input units. The bottleneck layer includes a regularization term to counter
the potential drawbacks of high sparsity. The regularization term is an L1-regularization applied
to the neurons in the bottleneck layer. Figure 3.4 shows the architecture used to train the
Sparse Autoencoder. The architecture is constructed with an input layer that passes the data
to a hidden layer. The output from the hidden layer is then passed to the bottleneck layer,
where the sparse representation of the input data is penalized by the L1-regularization. Next,
the data is reproduced with a hidden layer which passes the data to the output layer.

Table 3.8 lists the ranges for the different parameter values tested for the Sparse Autoencoder.
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Figure 3.4: The architecture of the Sparse Autoencoders used for feature extraction. The
number of neurons in each layer depends on the signals’ frequencies.

With the Sparse Autoencoder networks, the number of hidden neurons and bottleneck neurons
was chosen to be the same as the frequencies of the signals. The optimal parameter values
for the four Sparse Autoencoders are presented in Table 3.9. The optimal combination for the
ASCERTAIN dataset with a frequency of 256 Hz was a learning rate of 0.0008, batch size of 2,
and 80 epochs. Having a frequency of 512 Hz, the optimal combination was a learning rate of
0.0005, batch size of 2 and 100 epochs. For the MAHNOB dataset, the 256 Hz frequency signals
had a learning rate of 0.0004, batch size of 3, and 100 epochs as the optimal combination. With
a frequency of 512 Hz, the optimal combination was a learning rate of 0.0006, batch size of 2,
and 120 epochs.

Table 3.8: The tested ranges of the number of neurons and parameter values for the Sparse
Autoencoder network.

Parameter Minimum Maximum

Learning Rate 0.00001 0.1

Batch Size 2 16

Number of Epochs 30 200

Table 3.9: The optimal number of neurons and parameter values in the Autoencoder network.

Parameter ASC 256 ASC 512 MAH 256 MAH 512

Hidden Neurons 256 512 256 512

Bottleneck Neurons 256 512 256 512

Learning Rate 0.0008 0.0005 0.0004 0.0006

Batch Size 2 2 3 2

Number of Epochs 80 100 100 120

In the table the following abbreviations are used in the table: ASC 256: ASCERTAIN dataset with
a frequency of 256 Hz, ASC 512: ASCERTAIN dataset with a frequency of 512 Hz, MAH 256:
MAHNOB dataset with a frequency of 256 Hz, MAH 512: MAHNOB dataset with a frequency of
512 Hz.
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The outputs of the Sparse Autoencoders are used to train four different SVCs, one for each set
of output. Like the previously discussed SVCs, the classifiers are trained using a grid search and
cross-validation. They are also finetuned using the same hyperparameters chosen for the other
SVCs, namely C, stopping criterion tolerance, and gamma. In Table 3.10, the ranges of values
that were evaluated in the grid searches are listed. The optimal values for the hyperparameters
of each SVC are listed in Table 3.11. For the ASCERTAIN signals with a frequency of 256 Hz,
the optimal parameter combination was a C value of 76, a stopping criterion tolerance of 2, and
a gamma value of 86. With a frequency of 512 Hz, the optimal combination was a C value of
96, a stopping criterion tolerance of 2, and a gamma value of 94. The best combination for the
MAHNOB signals with a frequency of 256 Hz was a C value of 66, a stopping criterion tolerance
of 1, and a gamma of 7. Lastly, with a frequency of 512 Hz, the best combination was a C value
of 70, a stopping criterion tolerance of 1, and a gamma value of 9.

Table 3.10: The tested ranges of parameter values for the SVCs trained with the features
extracted using the Sparse Autoencoder.

Parameter Minimum Maximum

C 0.001 100

Tolerance 0.01 100

Gamma 0.001 100

Table 3.11: The optimal parameter values in the SVCs trained with the features extracted using
the Sparse Autoencoder.

Parameter ASC 256 ASC 512 MAH 256 MAH 512

C 76 96 66 70

Tolerance 2 2 1 1

Gamma 86 94 7 9

In the table the following abbreviations are used in the table: ASC 256: ASCERTAIN dataset with
a frequency of 256 Hz, ASC 512: ASCERTAIN dataset with a frequency of 512 Hz, MAH 256:
MAHNOB dataset with a frequency of 256 Hz, MAH 512: MAHNOB dataset with a frequency of
512 Hz.
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Chapter 4
Results

This chapter presents the results of the experiments conducted in this study. Furthermore,
the two benchmark datasets, namely ASCERTAIN and MAHNOB, will be introduced. The
results include the performance of SVCs with PT-processed signals and features extracted with
Autoencoders and Sparse Autoencoders as input. Using the pipelines, the goal is to answer the
two research questions stated in Chapter 1, namely:

• RQ1: To what extent can the latent space captured by an Autoencoder and a Sparse
Autoencoder explain the variability in ECG data?

• RQ2: What is the overall performance of the proposed pipelines compared to state-of-
the-art, and how far can ECG be used as a single modality for HER?

4.1 Datasets

In this thesis, two public multimodal datasets (ASCERTAIN and MAHNOB) containing physi-
ological signals will be used to compare different systems for HER. Both datasets contain ECG
signals, which will be the physiological signals used to predict the subjects’ emotional states.

4.1.1 ASCERTAIN

ASCERTAIN is a multimodal database for implicit personality and affect recognition using com-
mercial physiological signals and was collected by R. Subramanian et al. [59]. The database
contains ECG, EEG, GSR, and facial activity data of 58 subjects, in addition to big-five per-
sonality scales and emotional self-ratings. The subjects were all university students, where 21
were females, and 37 were males. They watched 36 affective movie clips while wearing off-the-
shelf sensors to record the physiological signals and facial activity data. For self-rating, the
participant ranked each video’s level of arousal and valence, engagement, liking, and familiarity.
For emotion recognition, only the arousal and valence self-reports are used, where they ranked
their arousal and valence from -3 to 3 and 0 to 6, respectively. While there are several different
signals, the ECG signals will be the focus of this study. The sampling frequency for the ECG
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signals was 256 Hz, measured on both the right and the left arm. For this study, only the signals
from the left arm are used to recognize the subjects’ emotional states.

4.1.2 MAHNOB

MAHNOB is, like ASCERTAIN, a multimodal database, and it was collected by M. Soleymani
et al. [60]. The experiments were conducted on 30 young and healthy adults, where 17 were
females, and 13 were males. The subjects watched 20 emotional video clips while their physio-
logical signals were measured using the Biosemi Active 2 system. The emotions were evaluated
using self-assessment manikins (SAM) questionnaires, where they selected their own perception
on the level of valence and arousal [61]. SAM is a questionnaire visualizing the valence and
arousal dimensions through manikins, as illustrated in Figure 4.1. Both valence and arousal
range from 1 to 9, representing negative to positive and low to high, respectively. As in the AS-
CERTAIN database, there are several types of signals, but only the ECG signals are extracted
for this study. They were recorded with three electrodes strapped to the chest’s upper right
and left corners and one below the last rib on the abdomen. Only the signals from the upper
left part of the chest are considered in this paper. The signals were collected with a sampling
rate of 1024 Hz but later downsampled to 256 Hz.

Figure 4.1: Illustration of SAM where the subjects selects their level of valence (above) and
level of arousal (below) [61].

4.2 Evaluation Metrics

To evaluate the models properly, four scoring metrics were used: accuracy, precision, recall,
and F1-score. Accuracy is a measure calculating the percentage of samples classified correctly,
and it is calculated as shown in Equation 4.1. The calculation in Equation 4.2 determines the
model’s precision, which measures the number of true positives predicted correctly. Recall, also
known as true positive rate, measures the model’s ability to identify the positive samples in
the dataset correctly. The calculation for recall is defined in Equation 4.3. Lastly, F1-score
is a combination of precision and recall where the weighted averages of the two measures are
calculated. The F1-score is calculated as illustrated in Equation 4.4.
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The number of true positives, true negatives, false positives, and false negatives are used to
calculate the evaluation metrics. True positives are the number of positives accurately predicted
to be positive. True negatives are the number of negatives accurately predicted to be negative.
False positives are negatives predicted falsely to be positives. False negatives are positives
predicted falsely to be negatives.

Accuracy =
TP + TN

TP+ TN+ FN+ FP
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F1 =
2× precision× recall

precision + recall
(4.4)

4.3 Presenting the Results

To answer the first research question, the results from the three pipelines will be compared.
The PT-SVC pipeline acts as a baseline to observe how the results change when Autoencoders
and Sparse Autoencoders are used to extract features. Tables 4.1 and 4.2 show the perfor-
mance scores from the two first pipelines, PT-SVC and PT-AE-SVC, respectively. PT-AE-SVC
with the Autoencoder provides generally higher accuracy, recall, and F1-score, except for the
MAHNOB signals with a frequency of 512 Hz.

Table 4.1: Training and test accuracy, precision, recall, and F1-score from the PT-SVC pipeline
with PT processed signals and an SVC.

Dataset Training Accuracy Test Accuracy Precision Recall F1-Score

ASCERTAIN 256 Hz 56% 57% 73% 57% 51%

ASCERTAIN 512 Hz 56% 56% 68% 56% 51%

MAHNOB 256 Hz 60% 62% 85% 62% 62%

MAHNOB 512 Hz 63% 62% 62% 62% 61%

Table 4.2: Training and test accuracy, precision, recall, and F1-score from the PT-AE-SVC
pipeline with PT, Autoencoder and SVC.

Dataset Training Accuracy Test Accuracy Precision Recall F1-Score

ASCERTAIN 256 Hz 56% 59% 62% 59% 57%

ASCERTAIN 512 Hz 56% 59% 63% 59% 58%

MAHNOB 256 Hz 62% 64% 79% 64% 64%

MAHNOB 512 Hz 63% 58% 58% 58% 58%
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Table 4.3: Training and test accuracy, precision, recall, and F1-score from the PT-SAE-SVC
pipeline with PT, Sparse Autoencoder and SVC.

Dataset Training Accuracy Test Accuracy Precision Recall F1-Score

ASCERTAIN 256 Hz 50% 50% 48% 50% 49%

ASCERTAIN 512 Hz 50% 46% 45% 46% 45%

MAHNOB 256 Hz 61% 60% 59% 60% 59%

MAHNOB 512 Hz 58% 51% 51% 51% 50%

Figure 4.2: Confusion matrices of the classification results from SVC with signals processed
with the PT algorithm. The signals are from the ASCERTAIN dataset with frequencies of 256
Hz (left) and 512 Hz (right). The labels 0, 1, 2 and 3 represent the classes HAHV, HALV,
LAHV, and LALV, respectively.

In Figures 4.2 - 4.5, the confusion matrices for the two pipelines are presented, showing the
explained variability for each class for the given datasets and signal frequencies. The main
difference is the added generalization from the Autoencoder. For the PT-SVC pipeline, the
confusion matrices show a clear bias towards one class with both frequency levels for ASCER-
TAIN and a frequency of 256 Hz for MAHNOB. The matrices for the ASCERTAIN dataset
show a bias towards the ”LAHV” class, and the matrix for MAHNOB dataset with 256 Hz
frequency shows a bias towards the ”LALV” class. In PT-AE-SVC, the mentioned biases are
still apparent but less significant. Next, the results from the PT-SAE-SVC pipeline, listed in
Table 4.3, show lower scores than the two other pipelines for all metrics. The confusion matrices
for the PT-SAE-SVC pipeline are shown in Figures 4.6 and 4.7. The figures show that adding
the sparsity to the feature extraction further reduces the bias towards one class, as in the PT-
SVC and PT-AE-SVC pipelines. In the confusion matrices with the ASCERTAIN dataset, the
“HALV” class has almost all samples correctly predicted. The remaining samples are evenly
spread with only a slight bias towards the “HAHV” class.

In Section 1.3, the state-of-the-art for HER using ECG signals was presented. When comparing
the results, there are several aspects to consider. One important aspect is the dataset used for
the emotion recognition task. Table 1.2 lists studies using ECG signals from ASCERTAIN and
MAHNOB. Another important consideration is the target emotions used to explain the subjects’
emotional state. All related work from the table predicted arousal and valence separately,
while this study combined the two emotional states. The highest accuracies reported for the
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Figure 4.3: Confusion matrices of the classification results from SVC with signals processed
with the PT algorithm. The signals are from the MAHNOB dataset with frequencies of 256 Hz
(left) and 512 Hz (right). The labels 0, 1, 2 and 3 represent the classes HAHV, HALV, LAHV,
and LALV, respectively.

Figure 4.4: Confusion matrices of the classification results from SVC with features extracted
using an Autoencoder. The signals are from the ASCERTAIN dataset with frequencies of 256
Hz (left) and 512 Hz (right). The labels 0, 1, 2 and 3 represent the classes HAHV, HALV,
LAHV, and LALV, respectively.

29



Figure 4.5: Confusion matrices of the classification results from SVC with features extracted
using an Autoencoder. The signals are from the MAHNOB dataset with frequencies of 256 Hz
(left) and 512 Hz (right). The labels 0, 1, 2 and 3 represent the classes HAHV, HALV, LAHV,
and LALV, respectively.

Figure 4.6: Confusion matrices of the classification results from SVC with features extracted
using a Sparse Autoencoder. The signals are from the ASCERTAIN dataset with frequencies of
256 Hz (left) and 512 Hz (right). The labels 0, 1, 2 and 3 represent the classes HAHV, HALV,
LAHV, and LALV, respectively.
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Figure 4.7: Confusion matrices of the classification results from SVC with features extracted
using a Sparse Autoencoder. The signals are from the MAHNOB dataset with frequencies of
256 Hz (left) and 512 Hz (right). The labels 0, 1, 2 and 3 represent the classes HAHV, HALV,
LAHV, and LALV, respectively.

ASCERTAIN dataset were 78.7% and 78.3% for arousal and valence, respectively. With the
MAHNOB dataset, the highest accuracies were 66.4% for arousal and 66% for valence. In this
study, the highest accuracies achieved were 59% and 64% for the ASCERTAIN and MAHNOB
datasets, respectively.

4.4 Summarizing the Findings

From the results of the three pipelines, it appears that the PT-SVC pipeline and the PT-AE-
SVC pipeline are getting similar scores. The PT-AE-SVC pipeline had slightly better accuracy,
recall, and F1-score, while the PT-SVC pipeline got better precision, except for the MAHNOB
signals with a frequency of 512 Hz. The confusion matrices show that the pipelines got a
prediction bias towards one class, but the bias was reduced with the Autoencoder. With the
signals from the ASCERTAIN dataset, the bias was towards the ”LAHV” class, and for the
MAHNOB signals with 256 Hz frequency, the bias was towards the ”LALV” class. With the
Sparse Autoencoder, the confusion matrices show no apparent bias towards any of the classes
but an overall worse classification performance. The results from this study are also compared
with state-of-the-art using ECG signals from the same two datasets. This study achieved lower
classification accuracy than state-of-the-art, but the target emotions are defined differently.
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Chapter 5
Discussion

The three pipelines show different results as presented in Chapter 4. The PT-AE-SVC pipeline
generally displays the highest accuracy, recall, and F1-score. The PT-SVC pipeline provides
higher precision, meaning it is better at identifying true positives from predicted ones. The
MAHNOB signals with a frequency of 512 Hz were an exception showing higher accuracy, recall,
and F1-score without feature extraction and higher precision with the Autoencoder. Both the
mentioned pipelines are biased towards one class, namely the ”LAHV” class with ASCERTAIN
data and the ”LALV” class with MAHNOB data. The last pipeline using Sparse Autoencoders
to encode the signals shows all over worse results from the evaluation metrics. However, the
confusion matrices show significantly less bias towards any classes.

5.1 Exploring the Research Questions

In this section, the results will be discussed in context of the research questions:

• RQ1: To what extent can the latent space captured by an Autoencoder and a Sparse
Autoencoder explain the variability in ECG data?

• RQ2: What is the overall performance of the proposed pipelines compared to state-of-
the-art, and how far can ECG be used as a single modality for HER?

Regarding RQ1, The PT-AE-SVC pipeline achieved better accuracy, recall, and F1-score, except
for MAHNOB signals with a frequency of 512 Hz. As the MAHNOB signals with a frequency of
256 Hz showed similar or better scores for all metrics in all three pipelines, it could indicate that
the MAHNOB signals should have a frequency of 256 Hz. Furthermore, the confusion matrices
displayed a decrease in bias towards the ”LAHV” and ”LALV” classes with the Autoencoder,
which could make the model more generalizable and better able to capture the variability in
the data. With the model showing generally better performance in the evaluation metrics while
reducing the bias towards the two classes, it could be a contribution to emotion recognition
using ECG signals. Even though the Sparse Autoencoder had worse classification performance
than both the Autoencoder and not using any feature extraction, it further decreased the bias
towards the ”LAHV” and ”LALV” classes. Using the MAHNOB signals with a frequency of
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256 Hz as input; the model showed relatively good results compared with the other pipelines
while reducing the biases significantly. These results could offer great potential for the Sparse
Autoencoder to help capture the variability in the data. Furthermore, the results could implicate
that Sparse Autoencoders are better suited for generative pseudo-sampling.

Figure 5.1 illustrates the latent space of the MAHNOB signals with a frequency of 256 Hz after
the Autoencoder was applied. The figure shows the samples in a three-dimensional scatterplot
with the latent space mapped to a three-dimensional feature space using Principal Component
Analysis. In the figure, the samples are scattered seemingly without any clear pattern regarding
the target emotions. The lack of separability between the classes in the figure shows the challenge
of predicting the subjects’ emotional states. An essential element to consider is that the data
is illustrated in only three dimensions. For the model to explain the variability in the data, it
might require more than three features from the original 256 features. For the classification,
the data is mapped to a 32-dimensional feature space, providing better results when tuning the
Autoencoder.

Figure 5.1: The latent space of the samples from MAHNOB with signals of a 256 Hz frequency.
The data has been encoded using an Autoencoder. Principal Component Analysis has further
reduced the feature space dimensionality to three principal components. The three axes repre-
sent the principal components.

In the second research question, the performance of the proposed pipelines is compared to the
state-of-the-art. As discussed in Section 4.3, there are several factors to be considered when
comparing the results with other studies. One crucial factor is the datasets used to train and
test the models. Different datasets have different configurations for the experiments, affecting
the models’ ability to predict subjects’ emotional states. Additionally, the subjects involved
will vary, which could significantly impact the ability to predict their emotions. How people
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react to certain events is individual and can be affected by demographic characteristics like age,
gender, or culture. Another essential aspect to consider is the target emotions. As discussed in
Chapter 2, there are different ways of defining emotions. In some studies, the target emotions
are chosen to be specific emotions like the seven universal emotions, while others use arousal
and valence. The different definitions of target emotions make it difficult to compare the results,
as it is often easier to achieve higher scores with fewer targets to predict.

Considering that this study has combined arousal and valence to be four target emotions as
opposed to the studies listed in Table 1.2 where arousal and valence are predicted separately, the
accuracy can be expected to be lower. Looking at the accuracies achieved with the MAHNOB
dataset, this study achieved the highest accuracy of 64% while state-of-the-art achieved 66% and
65% for arousal and valence, respectively. Even though this study used four target emotions,
the accuracy is still close to state-of-the-art. With the ASCERTAIN dataset, state-of-the-art
shows higher accuracy with 78% for both arousal and valence, while this study achieved an
accuracy of 59%. Even though it is not as close as with the MAHNOB dataset, a difference of
19% with two additional target emotions is respectable.

As discussed in Chapter 2, several different modalities can be used for HER. These modalities
are often combined for a multimodal approach to HER and report better performance than
with a single modality [2]. As previously discussed, it can be challenging to compare the
different studies as they use various datasets and emotional models. In [2], M. Hasnul et al.
reviewed ECG-based systems for HER and their applications in healthcare. They compared
studies using ECG for unimodal and multimodal emotion recognition, where it is combined
with other modalities. For both approaches, they found seven reports of achieving over 90%
accuracy. Although it is hard to conclude based on these results due to the variability in
the experiments, it shows that ECG-based emotion recognition has great potential for both
unimodal and multimodal approaches.

5.2 Relevance of Obtained Results

As previously discussed, one big challenge in the field of HER today is the lack of data. To
make reliable and general systems for emotion recognition, it is essential to have large datasets
with enough data to train and test the systems. After oversampling, the ASCERTAIN and
MAHNOB datasets consist of 2940 and 812 samples, respectively. Both datasets are relatively
small, especially the MAHNOB dataset. After splitting the datasets into the train, validation,
and test sets, the models were left with only 395 samples to train the models on from MAHNOB.
The lack of enough data in the training process might have contributed to the pipelines not
reaching their full potential. Grid search with cross-validation is a common way to solve the
problem of few training samples. Cross-validation can be utilized to avoid splitting the data
into three subsets and instead only splitting it into two subsets. Because of the Autoencoders
using a train and test set to fit and evaluate the model, the dataset was split into three subsets
to ensure that data leakage is completely avoided. The Autoencoders then use the training and
evaluation sets to train and evaluate the model. These subsets are further used to train the
classifiers. The third subset is not used until the training and evaluation of the Autoencoders
and the classifiers are fully completed. In this study, the grid search is mainly included to speed
up the process of identifying the optimal hyperparameters.

34



5.3 Remaining Challenges

As previously mentioned, the demographic variability in the dataset is an important aspect to
consider. Most affective datasets contain a group of subjects, all from the same demographical
group, like a university. Both ASCERTAIN and MAHNOB are examples of datasets with
little demographical variations. ASCERTAIN conducted their experiments on 58 university
students, and MAHNOB had 30 volunteers, all from the same college, namely the Imperial
College in London. The cultural background of the subjects can have a significant impact on
their emotional reactions to certain events. A dataset consisting of a wide variety of subjects is
essential in making a system for emotion recognition capturing the variability in the population.
The challenge is to create a database with enough samples from different demographical groups.
The data collection for such a database would be both expensive and time-consuming.

In Chapter 2, the different emotional models were discussed. In HER, there are several ways
of defining the target emotions. Some studies base their target emotions on the seven universal
emotions, while others prefer the two-dimensional model of valence and arousal. Not having a
standard emotional model for all datasets makes using different datasets in one study difficult.
Additionally, it can be challenging to compare the results of various studies adapting to different
emotion models. The problem of accurately measuring emotions was also discussed in Chapter
2. Understanding the emotional reactions to certain events is not always as straightforward
as one might think. In some cases, capturing the full experience requires more than just the
subject’s own perception. For some datasets, questionnaires are used to annotate the data,
which could lead to falsely annotated emotions.

5.4 Further Work

For future works, there are several approaches that could improve the results. As previously
discussed, the sizes of the datasets are relatively small, which could affect the models’ perfor-
mances. Making larger datasets can be both costly and time-consuming. Instead of spending
time and resources on collecting new data through experiments, augmentation can be used as
an alternative method to increase the data samples. Augmentation is a way of using the data
to generate new data similar to the original samples. Augmentation uses the training data to
create new data by applying transformations or modifications to the existing data. Augmenting
will provide more samples for the machine learning models to train on and potentially increase
their ability to learn the patterns in the data. Additionally, an increased number of samples
will give more samples to test the models on. In this study, augmentation was not included
because of limited time.

Another approach to increasing the data samples without conducting new experiments for data
collection is windowing. In addition to increasing the number of samples, windowing will ensure
a fixed length for all samples. The signals and their R-waves are divided into a sequence of
windows. The length of the windows can vary, but according to [62], the most common duration
of the physiological variables is one minute. In further works, windowing can be helpful to
improve the accuracy of emotion recognition due to more training data.

In this thesis, both datasets used for the emotion recognition task were imbalanced, having a
significantly imbalanced class distribution. When predicting, the models provided biased results
towards the majority classes. This issue was addressed using the random oversampling technique
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to get an equal distribution of the classes. In future works, different sampling techniques could
potentially show better results. Various sampling techniques could include stratified sampling
and cluster sampling or other techniques for oversampling. An example of another oversampling
method used for ECG-based emotion recognition is SMOTE [63]. For this paper, the random
oversampling techniques were chosen for simplicity, as the focus was on the feature extraction
methods.

As mentioned in 5.1, the latent space of the Sparse Autoencoder showed significantly less bias
towards any classes. The results in PT-SAE-SVC could implicate that Sparse Autoencoders
are better suited for generative pseudo-sampling than feature extraction. In Further works a
suggestion could be using Sparse Autoencoders to oversample the data instead of the random
oversampling technique used in this thesis. This could potentially help improve the performance
of the emotion recognition system as the Sparse Autoencoder will generate the new samples
based on a learned distribution in the data.
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Chapter 6
Conclusion

The main objective of this thesis has been to explore the effect of using the latent space of
an Autoencoder and a Sparse Autoencoder as input to a classical machine learning model for
ECG-based emotion recognition. Secondly, the performance is compared to state-of-the-art,
and the potential for ECG data to be used as a single modality for HER is discussed.

The effects of adding an Autoencoder and a Sparse Autoencoder as feature extraction techniques
have been tested by constructing three pipelines. The PT-SVC pipeline uses an SVC to classify
based on the preprocessed ECG data. The PT-AE-SVC extracts the most significant features
using an Autoencoder, which is then used as input data for an SVC. The last pipeline is the
PT-SAE-SVC, where an SVC takes the latent space of a Sparse Autoencoder as input. All
pipelines are oversampled to ensure balance in the dataset. The PT QRS-detection algorithm
was also applied to minimize the noise in the data and resample all signals to be of the same
length. The signals were resampled to frequencies of 256 Hz and 512 Hz for both datasets.

Two benchmark datasets, namely ASCERTAIN and MAHNOB, were used to train and test the
three pipelines. The subjects ranked their level of valence and arousal, and the target emotions
for classification were chosen to be based on the two-dimensional valence and arousal model.
The target emotions used to describe the subjects’ emotional states were LALV, LAHV, HALV,
and HAHV, where L represents low, H represents high, A is arousal, and V is valence. In state-
of-the-art, most studies choose to predict valence and arousal separately, making it difficult to
draw any conclusions with the results from this thesis compared to their results.

The PT-SVC pipeline was used as a baseline to explore the impact of using an Autoencoder and
a Sparse Autoencoder for feature extraction in ECG-based emotion recognition. Four evaluation
metrics, namely accuracy, precision, recall, and F1-score, in addition to confusion matrices, were
used to evaluate the three pipelines. The evaluation metrics revealed that the Autoencoder
generally increased the performance and could potentially be a contribution to ECG-based
emotion recognition. The confusion matrices displayed a clear bias towards one class, but by
utilizing the Autoencoder for feature extraction, the bias was reduced. Furthermore, using a
Sparse Autoencoder reduced the bias even more, but the general performance was negatively
affected. This might imply that the latent space of Sparse Autoencoders could be used for
generative pseudo-sampling.
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response: Comparison of machine learning algorithms and feature extraction methods”.
In: IU-Journal of Electrical & Electronics Engineering 17.1 (2017), pp. 3147–3156.

[34] Atul Luthra. ECG made easy. Jaypee Brothers Medical Publishers, 2019.

[35] VK Srivastava and Devendra Prasad. “DWT-based feature extraction from ECG signal”.
In: American J. of Eng. Research (AJER) 2.3 (2013), pp. 44–50.

[36] Sukkharak Saechia, Jeerasuda Koseeyaporn, and Paramote Wardkein. “Human identifi-
cation system based ECG signal”. In: TENCON 2005-2005 IEEE Region 10 Conference.
IEEE. 2005, pp. 1–4.

[37] MAZ Fariha et al. “Analysis of Pan-Tompkins algorithm performance with noisy ECG
signals”. In: Journal of Physics: Conference Series. Vol. 1532. 1. IOP Publishing. 2020,
p. 012022.

[38] Somchanok Tivatansakul and Michiko Ohkura. “Emotion recognition using ECG signals
with local pattern description methods”. In: International Journal of Affective Engineer-
ing 15.2 (2016), pp. 51–61.

[39] Arti Rawat and Pawan Kumar Mishra. “Emotion recognition through speech using neural
network”. In: Int. J 5 (2015), pp. 422–428.

[40] Monisha Chakraborty and Shreya Das. “Determination of signal to noise ratio of electro-
cardiograms filtered by band pass and Savitzky-Golay filters”. In: Procedia Technology 4
(2012), pp. 830–833.

[41] Jiapu Pan and Willis J Tompkins. “A real-time QRS detection algorithm”. In: IEEE
transactions on biomedical engineering 3 (1985), pp. 230–236.

[42] Sebastian Raschka and Vahid Mirjalili. Python machine learning: Machine learning and
deep learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd, 2019.

[43] Alan Mathison Turing. “Mind”. In: Mind 59.236 (1950), pp. 433–460.

[44] Arthur L Samuel. “Some studies in machine learning using the game of checkers”. In: IBM
Journal of research and development 3.3 (1959), pp. 210–229.

[45] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and
organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[46] Shirish K Shevade et al. “Improvements to the SMO algorithm for SVM regression”. In:
IEEE transactions on neural networks 11.5 (2000), pp. 1188–1193.

[47] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning
20 (1995), pp. 273–297.

[48] Gend Lal Prajapati and Arti Patle. “On Performing Classification Using SVM with Ra-
dial Basis and Polynomial Kernel Functions”. In: 2010 3rd International Conference on
Emerging Trends in Engineering and Technology. 2010, pp. 512–515.

[49] Andi Nurkholis, Debby Alita, Aris Munandar, et al. “Comparison of Kernel Support
Vector Machine Multi-Class in PPKM Sentiment Analysis on Twitter”. In: Jurnal RESTI
(Rekayasa Sistem Dan Teknologi Informasi) 6.2 (2022), pp. 227–233.

[50] MF Rohmah et al. “Comparison Four Kernels of SVR to Predict Consumer Price Index”.
In: Journal of Physics: Conference Series. Vol. 1737. 1. IOP Publishing. 2021, p. 012018.

[51] Mufni Alida and Metty Mustikasari. “Rupiah Exchange Prediction of US Dollar Using
Linear, Polynomial, and Radial Basis Function Kernel in Support Vector Regression”. In:
Jurnal Online Informatika 5.1 (2020), pp. 53–60.

[52] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5 (1943), pp. 115–133.

40



[53] Frank Rosenblatt. “Perceptron simulation experiments”. In: Proceedings of the IRE 48.3
(1960), pp. 301–309.

[54] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations
by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[55] James L McClelland, David E Rumelhart, PDP Research Group, et al. Parallel Distributed
Processing, Volume 2: Explorations in the Microstructure of Cognition: Psychological and
Biological Models. Vol. 2. MIT press, 1987.

[56] Andrew Ng et al. “Sparse autoencoder”. In: CS294A Lecture notes 72.2011 (2011), pp. 1–
19.

[57] Lars Buitinck et al. “API design for machine learning software: experiences from the
scikit-learn project”. In: arXiv preprint arXiv:1309.0238 (2013).

[58] Martın Abadi et al. “Tensorflow: a system for large-scale machine learning.” In: Osdi.
Vol. 16. 2016. Savannah, GA, USA. 2016, pp. 265–283.

[59] Ramanathan Subramanian et al. “ASCERTAIN: Emotion and personality recognition
using commercial sensors”. In: IEEE Transactions on Affective Computing 9.2 (2016),
pp. 147–160.

[60] JEROEN Lichtenauer and MOHAMMAD Soleymani. Mahnob-hci-tagging database. 2011.

[61] Margaret M Bradley and Peter J Lang. “Measuring emotion: the self-assessment manikin
and the semantic differential”. In: Journal of behavior therapy and experimental psychiatry
25.1 (1994), pp. 49–59.

[62] Sylvia D Kreibig. “Autonomic nervous system activity in emotion: A review”. In: Biolog-
ical psychology 84.3 (2010), pp. 394–421.

[63] Retantyo Wardoyo, I Made Agus Wirawan, and I Gede Angga Pradipta. “Oversam-
pling approach using radius-SMOTE for imbalance electroencephalography datasets”. In:
Emerging Science Journal 6.2 (2022), pp. 382–398.

41



 

 

 


	Introduction
	Motivation
	Objectives
	Related Work
	Contributions
	Thesis Overview

	Theory
	Emotions
	Basic Emotions
	Complex Emotions
	Arousal and Valence

	Measuring Emotions
	Visual Sensors
	Audio Sensors
	Physiological Signals

	Preprocessing
	Filtering
	Pan-Tompkins Algorithm

	Machine Learning Theory
	Classical Machine Learning
	Deep Learning


	Method
	General Settings
	Preprocessing
	Redefining Classes
	Pan-Tompkins
	Splitting the Data

	Pipelines
	PT-SVC
	PT-AE-SVC
	PT-SAE-SVC


	Results
	Datasets
	ASCERTAIN
	MAHNOB

	Evaluation Metrics
	Presenting the Results
	Summarizing the Findings

	Discussion
	Exploring the Research Questions
	Relevance of Obtained Results
	Remaining Challenges
	Further Work

	Conclusion

