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Iterative re-weighted covariates selection for robust feature
selection modelling in the presence of outliers (irCovSel)
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1 | INTRODUCTION

Multicollinear data are frequently encountered in different areas of science.' In chemistry, such data are widely gener-
ated by laboratory or handheld analytical instruments such as optical spectrometers. Often, the challenges with multi-
collinear data generated in analytical experiments are twofold; first, data are multicollinear, and predictive modelling
based on ordinary least squares (OLS) can have redundant feature information, which is detrimental for model general-
isation. Second, the usually lower number of samples available than the variables causes an ill-posed problem for
matrix inversion during estimation of OLS models. The common approach to deal with both the challenges is to per-
form some form of dimensionality reduction using approaches such as variance or covariance maximisation. For exam-
ple, popular chemometric techniques such as principal component analysis (PCA)* and partial least squares (PLS)"?
are used to reduce the dimensions of data and to acquire orthonormal score vectors carrying the most useful informa-
tion. These score vectors are then used in an OLS to make predictive models. Note that for predictive cases, PLS is the
most preferred approach as it is based on the maximisation of covariance between the predictor and the response.
Apart from multicollinearity and lower number of samples than variables, one other key challenge commonly
encountered with data generated in the domain of analytical chemistry is outlying samples.*> Outlying samples can
occur due to instrumental errors or because of human errors in the sample handling and reference analysis. The
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outliers can be both in the predictor (X) and response (Y) matrix. The outlying samples have a major influence in
modelling approaches such as PLS. This is because the outlying samples by default contribute equally to the estimation
of covariance (X'DY), which is the first step of the PLS algorithm. The matrix D is a diagonal matrix carrying equal
weight for each sample, i.e., D=1 (di—j =1,d; 2 j = 0). A solution to handling outliers is to either do a prior outlier detec-
tion and setting the sample weights (diagonal of D) to 0 and 1 for the outlying and in-lying samples, respectively. The
other more practical approach is to integrate the outlying sample detection directly as an iterative step in the PLS
modelling. In such an approach, the outlying samples are down-weighted while the in-lying samples retain higher
weights to have the covariance estimation rely more on in-lying samples. This was also the foundation of the method
called iterative re-weighted PLS (irPLS),’ where the Y residuals were used in combination with a weighting function to
update the sample weights during the estimation of the latent variables. The irPLS relied on the sample weight estima-
tion solely on the residuals; hence, it was only capable of handling vertical outliers, that is, poorly predictive samples.
To also be able to detect high leverage samples, that is, samples far from the model centre, the irPLS idea was extended
through a method called partial robust-M (PRM) regression,” where the sample weights were defined as the product of
the weights estimated using both the residuals and score vectors. Weight estimation using residuals allows down-
weighting outliers in Y, while weight estimation using score vectors allows down-weighting high leverage samples, that
is, outliers in X. Recently, the idea of irPLS and PRM was further extended to include handling of multiple responses
under the method name RoBoost PLS® and PLS2.° The key idea behind the RoBoost PLS2’ approach was to estimate
sample weights for multiple responses as a product of weights estimated for individual responses similar to the idea of
PRM’ of combining weights from different sources as a product.

Although major attention has been paid to the development of robust PLS methods*™® and a wide range of feature
selection methods are available,'®'® there is currently limited literature on selection of features in the presence of out-
liers, that is, robust feature selection. Typically, such methods use some sort of subsampling to estimate feature stability
from an ensemble of models,"* "7 that is, quite computationally intensive. In the chemometric domain, a key approach
to selecting features is using the squared covariance between predictors and responses. For example, the method
covariates selection (CovSel)'® performs stepwise feature selection by repeated steps of squared covariance
maximisation and Gram-Scmidt (GS) orthogonalisation,'® similar to the NIPALS PLS modelling. The major difference
between CovSel and NIPALS PLS is that in the case of CovSel the associated weight vector is chosen as a (sparse) stan-
dard basis vector in the direction of the feature of maximum squared covariance with the response(s). Subsequently,
just like the NIPALS algorithm, the data matrices are deflated, and the process continues extracting the desired number
of features. Note that the first step of CovSel, that is, estimation of covariance (X'DY), is the same as the PLS. Hence,
just like PLS, for CovSel the sample weights (D) are equal for all the samples (d;—; = 1), indicating equal contribution of
samples. Considering equal sample weights can be sub-optimal in the same way as it can be for PLS approaches as out-
lying samples can influence the estimation of covariance and the selection of features using the estimated squared
covariance. Hence, a natural solution to allow a robust feature selection with CovSel is to allow a robust estimation of
the squared covariance. The robust estimation of the squared covariance can be performed in the same way as proposed
in the irPLS, PRM, and RoBoost PLS by using an iterative re-weighting approach. By doing such a re-weighting, it is
expected that the outlying samples will have minimal influence on the squared covariance estimation, hence also mini-
mal influence on the feature selection. The underlying assumption is that the outlying samples are deviations from the
expected distribution of samples, that is, that they contain some kind of error that will be harmful to predictive model-
ling if included fully.

The aim of this study was to develop a new chemometric tool for feature selection in the presence of outliers. The
method is a combination of irPLS and the CovSel approach. The method is termed iterative re-weighted covariates
selection (irCovSel). The method relies on iterative down-weighting of outlying samples prior to estimating the squared
covariance for covariates selection. The algorithm description and test of the method on simulated and real data are
presented.

2 | MATERIAL AND METHOD

At first, the algorithm description is presented. Later, the analysis performed with the irCovSel is explained. In the fol-
lowing description of the algorithm, all matrices are denoted with bold uppercase typeface such as X. All vectors are
denoted with bold lowercase typeface such as w. All scalars are denoted with italic typeface such as a. Note that
irCovSel is a novel combination of irPLS and CovSel feature selection. The key algorithm behind both irPLS and CovSel
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is the NIPALS algorithm for PLS. In NIPALS, the first step is the estimation of the covariance (or weight vector), which
is used to estimate the scores, that is, the projection of data in the direction of maximum covariance. The scores are
used to fit OLS on the response and later the already explained information is removed from both the X and Y matrices,
and the steps continues in a loop until the desired number of latent variables are extracted. In the case of irPLS, the
residuals from the OLS step in PLS are used for sample weighting using the bisquare function and later a new NIPLAS
step is performed but using sample weights. irPLS also continues until the desired number of latent variables are
extracted. CovSel is slightly different than irPLS and NIPALS, due to the fact that as a first step it estimates the squared
covariance. The squared covariance allows estimating the associated weight vector as a (sparse) standard basis vector in
the direction of the variable of maximum covariance with the response(s). Later, just like in the NIPALS PLS, the data
matrices are deflated, and the process continues for extracting the desired number of variables according to
minimisation of the (residual) covariance with the response(s). The irCovSel takes advantage of the irPLS reweighing
strategy to estimate sample weights and the squared covariance for selection of the next feature. The algorithm of the
irCovSel is further detailed in Section 2.1.

2.1 | Algorithm

Define Y (n x k) as the response matrix, X as the predictor data matrix, and let A be the desired number of features to
be extracted. Let D be the initial sample weight matrix. Note that D is the diagonal matrix having 1/n as the weight for
all samples. Both the predictors and the responses are assumed to be median centred (less influence of outliers than
mean centred). Let @ be the tuning parameter defining the aggressiveness in weighting down outliers, and let C be the
number of responses. The iterative reweighing is performed in a continuous loop until the sum of absolute differences
of weights of two consecutive iterations is smaller than a user defined limit. In case of a hypothetical case of non-con-
vergence, a maximum number of iterations (J) can be set; however, our experience is that convergence is typically
achieved in less than 10 iterations for practical cases.

2.2 | Comments on the algorithm

The proposed irCovSel approach is a direct combination of the two chemometric methods irPLS and CovSel. In particu-
lar, the key idea of sample weight estimation was used from irPLS and the step-wise selection of features was taken
from the CovSel approach. In the presented algorithm, the sample weights are updated using the bisquare function
(1- uz)z; however, the user is free to chose one of many weighting functions as described in the earlier work.® An illus-
tration of the effect of the bisquare function given various values of « applied to residuals ranging from —3 to 43 is seen
in Figure 1. In the presented algorithm, the Y residuals (single and multiresponse) were only used for sample re-
weighting. However, as discussed in the PRM and the RoBoost PLS methods, the scores and X residuals can also be
used to update the sample weights. Furthermore, multiple criteria can also be used to compute global weights; for
example, Y residuals can be used to down-weight vertical outliers, while the scores can be used to down-weight high
leverage samples, that is, samples far from the model centre. One of the ideas behind using multiple criteria to update
sample weights is to simply compute their product. However, in some recent works,*” it is mentioned that the user can
also try summation or averaging.

In the irPLS method, the Y residuals were directly used for weight estimation; hence, it was only capable of dealing
with vertical outliers. This is also the reason behind the proposal of the PRM method where the product of the weights
obtained with Y residuals and scores were used to deal with both the vertical outliers as well as high leverage samples.
In the present study, we used adjusted residuals as estimated by Equation (1).

Fi
1-h;

: (1)

Fadj =

where r; is the OLS residuals and A; is the least-squares fit leverage values (estimated by squared score values t7). Lever-
ages adjust the residuals by reducing the weight of high-leverage data points, which have a large effect on the least-
squares fit. Adjusted residuals were later standardised as Equation (2).
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Algorithm for Iterative Re-weighted Covariates Selection (irCovSel)

fora=1: A - loop over A features to be selected
while crit > 107° & iter < J - loop for sample re-weighting

V= Xj(XtDYc)2 - weighted sum of squared covariances

(m,s) = argmazx(V) - maximum squared covariance value and its position

X . .
t= m - estimate normalised score vector
S
Q; =Y'Dt - temporary regression coefficients
R=Y -tQ! - estimate residuals
forc=1:C - loop for multiple responses

R. = R./\/1-diag(ttt) - compute adjusted residuals

R, x 0.6745
" ax MADR,)

fori=1:n

if | Re| > 1

R. <=0
else

R. < (1 - R2)?

end
end
end

C
r= HRC
c=1

- standardise the adjusted residuals

- loop over samples
- limit large residuals
(implemented as element-wise replacement)

- bisquare function based weight estimation

- product of weights for multiple responses

crit = r| — |dia - updating criterion for loo
it = _(|r| — |diag(D)|) - updating criterion for loop

D«<I, r
end

V=> (X'DY.)’

(m,s) = argmax(V)

X
T, =
[1Xs |
W, = {0}7Ws,a =1
P, = X'DT,
Qa = YtDTa

Y <Y -T,Q
X «X-T,P!

end
R=WP'WwW)!
B = cumsum(RQ")
B,=Y-XB

- updating weights

- weighted sum of squared covariances

- maximum squared covariance value and its position
- scores

- loading weights (zero vector with 1 at selected index)
- X loadings
- 'Y loadings
- 'Y deflation
- X deflation

- projections for score prediction
- regression coefficients

- median compensation
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bisquare transformation

standardized residual

FIGURE 1 Effect of bisquare transformation on residuals ranging from —3 to +3, given chosen values of a from 1 (highly truncated
weights) to 20 (almost flat weights)

u="00___ I (2)

as _(XS\/l—h.i’

where « is a tuning constant and s is an estimate of the standard deviation of the error term given by s=MAD/0.6745.
MAD is the median absolute deviation of the adjusted residuals from their median. The constant 0.6745 makes the esti-
mate unbiased for the normal distribution. The tuning constant « is a user defined input which defines the aggressive-
ness toward down-weighting outliers. Also note that when a —, then irCovSel becomes the standard CovSel as all
samples will be given equal weights. Furthermore, as « — 0, the method will become highly aggressive and will end up
down-weighting inliers as well. Hence, it is important to tune the a parameter, which can be performed using
approaches such as cross-validation or using a separate validation set as performed in earlier studies.” The sample
weights are updated as u; < (1— uiz)2 for |u;] = <1 and |u;| < 0 for |u;| > 1.

The algorithm allows robust feature selection for multiresponse scenarios as well. This was missing in the irPLS,
PRM and RoBoost PLS method but was recently proposed in the RoBoost PLS2 method. The irCovSel uses a similar
strategy as RoBoost PLS2, where the key idea behind estimating the sample weights in the multi-response scenario is to
first estimate the sample weights for each response individually and later multiplying the weights for each response to
have a single weight per sample. Estimating the weights individually for each response was noted as more robust when
the responses have different variances.’

The irCovSel like the irPLS, PRM and RoBoost PLS approaches is a step-wise approach. This means that irCovSel
selects one feature at a time, which gives it full freedom to have a wide range of extensions such as for selecting features
in multiblock and multiway data. The extension will be similar to the already existing extensions of CovSel to multi-
block***' and multiway®* scenarios, but the main difference will be that the CovSel step will be replaced by the
irCovSel to deal with outlying samples. Furthermore, the irCovSel can also be adapted to local irCovSel by defining the
weights using the dissimilarity of the samples just as usually performed in locally weighted PLS approaches.*>** The
extension of methods are not discussed here as they involve different types of weight estimation, but they directly fit in
the algorithm of irCovSel. irCovSel computes regression coefficients, B, and projections, R, for score predictions as a
final part of the algorithm. This means that the user has direct access to predictions using anywhere from 1 to A
selected variables without any remodelling of the selected features using OLS or PLS. The user can also easily predict
scores of new samples, for example, for finding out which training samples these are most similar to or for assessing the
degree of outlyingness based on T (T-squared).

2.3 | Analysis

The capability of the irCovSel to select features in the presence of outliers will be demonstrated. For demonstration pur-
poses, we used a potential outlier free data set and simulated the desired type of outlier in the data. The data contain
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NIR spectra and reference measurements of total solids and fats performed on 296 milk samples and were already used
for developing calibrations in an earlier study.*® The spectral sensor used for the measurement was the NIRONE 1.4
(1,100 to 1,400 nm) from Spectral Engines (Helsinki, Finland). All measurements were performed in transmission
mode. More information on the data set and reference total solids and fats analysis protocol can be obtained in the ear-
lier study.?® The data set can be considered as outlier free as potential outliers were removed manually before the data
set was made public.>® To confirm it, a PCA on the spectral data was performed, and histograms for responses are pres-
ented in Figure 2. In Figure 2A, some sample points on the right side appear strange; however, double checking the ref-
erence values for those samples, it was noted that those samples having lower values of reference measurements as
well, hence, cannot be considered as outliers.

Using the milk data set, different outlier scenarios were simulated. In the first case of single response modelling,
11 fat content values for some samples were set to zero. Second, for the multiresponse case, a different set of 11 fat and
total solids content values were set to zero. However, before any simulation, one out of three samples was selected as
test set for model evaluation. From the remaining 2/3 part of the data, 48 samples were selected as validation set to tune
the model hyperparameters («) and total number of features to select. Finally, there were 149, 48 and 99 samples avail-
able in the calibration, validation and test set. Note that in the presented analysis, outliers were only simulated in the
response matrix Y; hence, the analysis only included using the residuals for weighting of the samples. However, if
needed, one can also simulate outliers in the predictor matrix X. Since the current algorithm uses adjusted residuals, it
should be able to capture high leverage samples, but it will require adjustment if separate handling of the score vector
and residuals of the predictor matrix is wanted for sample re-weighting. The only challenges then will be the optimisa-
tion of extra hyperparameters as any new criterion for weight estimation will carry a hyperparameter on its own, which
may limit practicality of the method. Also, these days measurements with analytical sensors have become highly
sophisticated, and there are minimal chances of having outliers in the spectral data matrix. All data analyses were car-
ried out in MATLAB® >

3 | RESULTS AND DISCUSSION
3.1 | irCovSel vs CovSel

The irCovSel method requires two main parameters to be optimised: the total number of optimal features to be selected
and the a parameter for aggressiveness of down-weighting outliers. The validation analysis to select the optimal param-
eters for single- and multi-response scenarios involved exploring their combination in the interval of [1-20]. The root
mean squared error of validation (RMSEV) for model tuning are shown in Figure 3. For the single response scenario
(Figure 3A), the minimum RMSEV was found at 18 features and the a parameter as 9. For the multiresponse scenario
(Figure 3B), the minimum RMSEV was again found at 17 features but with an « parameter at 11.

For the single response modelling case (Figure 4), the irCovSel model based on optimal parameters identified in
Figure 3A, achieved an RMSEP = 0.30 %. The (unweighted) CovSel analysis with the same number of variables
achieved a higher RMSEP = 0.72 %. Similarly, for the multiresponse modelling case (Figure 5), the RMSEP for the
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FIGURE 2 Plots related to data set. (A) PC2 vs PC1 for spectral data, (B) distribution of fat content, and (C) distribution of soluble solids
content
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FIGURE 4 The performance of CovSel (A) and irCovSel (B) variable selection models for predicting fat content in milk

irCovSel based model was lower than the CovSel based model for both the responses. The improvements with the
irCovSel model were larger for the total solids content as the RMSEP was almost 70 % lower than the RMSEP achieved
with the CovSel selected variables. The improved predictive performance indicates that CovSel was heavily influenced
by the presence of outliers in the data while irCovSel was less influenced by the presence of outliers and was able to
select features carrying better predictive power than the CovSel selected features.

Using the a parameters at 9 and 11 for the single and multiresponse cases (Figure 3), the irCovSel models were
trained and tested for the feature range of 1-30 (Figure 6). The analysis was carried out as a posterior analysis to under-
stand the general trend of the predictive power of irCovSel and CovSel selected variables. As can be noted in Figure 6,
the irCovSel selected variables in general led to lower RMSEP compared to the CovSel selected variables. This trend
continued even after selecting more than the optimal number of features.

The main difference between CovSel and irCovSel is the change in the weights given to the samples during the esti-
mation of the covariance according to X'DY. In CovSel, all samples carried equal weights; hence, the outliers contrib-
uted equally to the estimation of covariance, which possibly hindered the selection of informative features. In the case
of irCovSel, the weights given to the outlying samples were lowered during the iterative process (Figure 4), hence,
allowed selecting informative features which in general led to lower RMSEP as shown in Figure 6. Note that features
selected by CovSel and irCovSel were different. In Figure 7A-C, we see how the weights of the outlying samples were
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FIGURE 5 The performance of CovSel (top row) and irCovSel (bottom row) variable selection models for predicting fat (A, C) and total
solids content in milk (B, D)

lowered compared to the inliers using irCovSel. In Figure 7, only sample weights corresponding to the first three
extracted features are shown as the subsequent features followed the same trend of having lower weights for outlying
samples and higher weights for inliers. The irCovSel method is a fast method for robust feature selection. A run on the
milk data set to select up to 100 features only required less than 1 s on a computer with the following processor:
2.3 GHz 8-Core Intel Core i9 and memory: 16 GB 2667 MHz DDR4 RAM, as the iterative part of the procedure is light-
weight.

3.2 | Effect of a parameter on outliers

The a parameter of the irCovSel method, or in general iterative re-weighted methods such as irPLS, PRM and RoBoost
PLS, is the most important parameter that has a direct impact on sample weights. In the current version of irCovSel,
the bisquare function was used, which is tuned by the @ parameter. As highlighted also in earlier sections, for a
bisquare weighting function with a —, the irCovSel becomes the standard CovSel as all samples will be given equal
weight. As the @ — 0, the method will become highly aggressive and will end up down-weighting inliers as well. This
trend was also noted in the analysis of the milk data set. For example, the sample weights for the decreasing a parame-
ter are shown in Figure 8. As can be noted in Figure 8A, with a relatively high @ = 16, the outlying samples were given
weights in the range of 0.4-0.8. As the a parameter decreased to 4, all the outlying samples were given 0 weights, while
at the same time, more inliers were given lower weights as well. Furthermore, when the o = 1, then all the outlying
samples were given 0 weights, while several of the inliers were also given 0 weights, indicating a highly aggressive
down-weighting that is also detrimental for modelling. Hence, in the irCovSel method unlike CovSel, it is essential to
tune the a parameter to achieve optimal performance.
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FIGURE 6 Exploring the behaviour of number of selected features on the RMSEP. (A) Single response case to predict fat in milk.
Multiresponse case to predict fat (B) and total solids (C) in milk
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FIGURE 7 Sample weights obtained during the run of irCovSel for selecting the first three features in the milk data

3.3 | irPLS vs irCovSel

irCovSel can be considered as a special case of irPLS where the associated weight vector is chosen as a (sparse) standard
basis vector in the direction of the variable of maximum weighted covariance (less affected by outliers) with the
response(s). The key advantage of irCovSel over irPLS is to identify the key variables of interest without compromising
too much in the predictive performance of the model. As a demonstration, the irPLS and irCovSel analysis was per-
formed on the milk data set to predict fat content (Figure 9). The analysis was accompanied with the PLS and CovSel
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FIGURE 9 Performance of CovSel, PLS, irCOvSel and irPLS to predict fat content in milk including artificial outliers

analysis to also understand the predictive potential of irPLS compared to PLS and CovSel in the presence of outliers. In
general, the predictive performance of irPLS was better than PLS and CovSel. The performance of irCovSel was better
than irPLS. Note that the irCovSel model (10 features) was only based on 10 variables, while the irPLS model was based
on 126 variables (10 latent variables). irCovSel reduced the total number of used variables by a factor of 13. The perfor-
mance of PLS and CovSel was similar, but poorer than irCovSel.
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3.4 | Teston areal data set

The method was also tested on a well know NIR spectroscopy data set related to the compositional analysis of bis-
cuits.”” The data set is particularly interesting as it has been used widely to test robust chemometric methods. The data
set includes spectral (1,100-2,498 nm) and chemical compositional information on biscuit dough just before baking of
the biscuits. The data set is multiresponse, and the four chemical constituents measured were fat, sucrose, dry flour and
water. There are 40 samples in the calibration and 32 samples in the test set. Furthermore, sample number 23 is already
know as the key outlying sample, and the authors have suggested to remove that sample prior to data modelling.*” To
have a comparison with already existing robust analysis of the biscuit data set, the data were preprocessed in the same
way as in earlier studies.”*® Note that in earlier studies, the authors only modelled three responses and removed the fat
content from the analysis as fat content was not correlated to the other response variables. In this study, we modelled
all four responses. The results of the irCovSel analysis (¢ = 11) for joint modelling of all four responses are shown in
Figure 10. For comparison, the CovSel analysis is also presented in the same plot. The models were calibrated on the
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FIGURE 10 irCovSel analysis for joint prediction of four chemical constituents in biscuits. (A) Fat, (B) sucrose, (C) dry flour and
(D) water
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FIGURE 11 Sample weights for the first six (A-F) selected features. The outlying samples are highlighted with sample number
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calibration set, and the results in Figure 10 are the predictions for the test set. In three out of four responses (sucrose,
dry flour and water), the minimum RMSEPs were achieved with the irCovSel method, while for the fat content, the
lowest RMSEP was the same for both CovSel and irCovSel, but irCovSel achieved it with a lower number of features.
The key interesting aspect to note is that outlying samples 7, 21, 22, 23, 24 and 33 were given lower weight during the
execution of the irCovSel (Figure 11). These are the same outlying samples, which have been identified in earlier stud-
ies using robust analysis.>®

4 | CONCLUSIONS

An iterative re-weighted feature selection approach to select features in the presence of outlying observations was pres-
ented. The key strategy behind the proposal was the iterative re-weighting of samples, where the outlying samples were
given lower weights, while the inliers were given higher weights. Since outlying samples have lower weights, they also
have lower influence on the estimation of the squared weighted covariance. The squared weighted covariance was used
to select the feature carrying maximum squared weighted covariance, and the data matrices (predictor and response)
were orthogonalised with respect to that feature. The process was repeated until the desired number of features were
selected, similar to the CovSel approach to variable selection. On comparison of the irCovSel and CovSel for selecting
features in data containing outlying observations, it was noted that the features selected by irCovSel achieved in general
better prediction (lower RMSEP) compared to the CovSel selected features. On comparison of the irCovSel with the
irPLS approach, it was noted that irCovSel selected features that maintained predictive performance similar to irPLS,
even though the total number of variables were reduced by up to a factor of 13. The irCovSel method is capable of han-
dling multiple responses as this was achieved by estimating the weights for individual responses and then taking their
product as global sample weights. The weighting strategy demonstrated in the current algorithm was based on the
residuals, but the weighting strategy can also be modified and explored based on the need of the user. Note the irCovSel
can also be easily extended to multiblock and multiway scenarios, just as currently available for CovSel. The multiblock
and multiway extensions will require replacing the CovSel step with the irCovSel step and tuning of extra weighting
parameters such as « either globally or individually for each data block. Extensions of irCovSel will be covered in our
future works. Note that although in this study the algorithm was demonstrated also for multiple responses cases, user
should take precautions when modelling multiple responses as sometimes the optimal number of features may not be
the same for all the responses and selecting features individually for each response could be a better option. Similarly, if
one of the responses has bad reference values, then the sample weights are down-weighted for all responses, as the cur-
rent approach to combine weights from different responses is to take products of weights obtained through individual
responses. Iterative weighting algorithms like irCovSel do not estimate sample weights for the test set. However, stan-
dard diagnostics such as T? (T-squared) can be calculated to estimate degree of outlyingess and thereby how much one
can trust the predictions. Note that the final irCovSel models has the same number of features and model components,
hence, the spectral residuals cannot be calculated to estimate Q statistics. Extending the iterative weighting to also
encompass test set samples is a possible direction for future work.
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