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Abstract 

Press Run to Increase Mathematical Expertise (PRIME) investigates the 

implementation of programming in the mathematics classroom in upper secondary 

schools in Norway through the lens of designing mathematical programming tasks. 

Several countries have recently changed their curriculum to include programming 

as a part of mathematics. With this change comes the challenge of how to combine 

programming, as a tool, with mathematics to facilitate mathematical learning. A 

three-year iteration of task design is conducted in which programming is utilised in 

mathematics and subsequently implemented in classrooms. The implementation in 

classrooms is investigated through data collection of audio recordings of the 

students working on the designed task together with a video recording of their 

computer screen. The transcript of the data is analysed with a focus on exploratory 

talk and adversities. Exploratory talk is utilised to investigate how to design tasks 

facilitating exploratory talk as it is closely connected to learning. Adversities, which 

can advance and hinder learning, are investigated to inform changes to the task 

design to promote and limit different types of adversities. Through the investigation, 

PRIME presents a set of recommendations that could guide the task design of 

mathematical programming tasks which facilitate learning. (1) Design tasks in 

which programming is a tool for learning mathematics. (2) Task design should 

facilitate exploratory talk as this is closely connected to learning. (3) It is 

advantageous for students to engage in programming after they have learnt a 

mathematical theme, rather than to use programming to learn a new mathematical 

theme. (4) Tasks should mitigate non-mathematical adversities, that is, adversities 

relating to programming specifically. (5) Tasks should have a low floor and a high 

ceiling so as to facilitate the learning of all students. All of these recommendations 

are discussed in detail. 
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Norsk sammendrag 

Trykk kjør for å øke matematisk kompetanse (PRIME) undersøker implementeringen 

av programmering i matematikklasserommet i videregående opplæring i Norge 

gjennom utforming av matematiske programmeringsoppgaver. Flere land har nylig 

endret læreplanen til å inkludere programmering som en del av matematikk. Med 

denne endringen kommer utfordringen av hvordan kombinere programmering som 

et verktøy i matematikk for å legge til rette for læring i matematikk. En treårig 

iterasjonssyklus der utforming av matematikkoppgaver med programmering og 

etterfølgende utprøving i klasserom ble gjennomført. Datainnsamlingen av 

utprøvingen i klasserom ble gjort gjennom lydopptak av elevene mens de arbeidet 

med oppgavene sammen med videoopptak av skjermen deres. Transkripsjon av 

datainnsamlingen ble kodet og analysert med søkelys på utforskende samtaler og 

hindringer. Utforskende samtaler er brukt da dette har en nær kobling til læring og 

utforming av oppgavene. Hindringer, som både kan legge til rette for og begrense 

læring, er undersøkt for å bidra til revideringen av oppgavene med mål om å 

begrense og promotere ulike former for hindringer. PRIME presenterer til slutt et 

sett med anbefalinger som kan hjelpe i prosessen med å lage matematiske 

programmeringsoppgaver som legger til rette for læring. (1) Designoppgaver der 

programmering er et verktøy for å lære matematikk. (2) Oppgavedesignet burde 

legge til rette for utforskende samtaler siden dette er nært knyttet til læring. (3) Det 

er fordelaktig å anvende programmering etter at elevene har lært en matematisk 

metode, mer enn å bruke programmering til å lære nye matematiske metoder. (4) 

Oppgavene burde minimere antallet ikke-matematiske hindringer, som ofte 

relateres til programmering spesifikt. (5) Oppgavene burde ha en lav terskel og et 

høyt tak for å legge til rette for læring for alle elever. Alle disse anbefalingene er 

diskutert. 
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1 Preface 

I studied physics at University of Oslo (UiO) from 2002 to 2007, attaining a 

master’s degree; during my studies, several of the courses implemented 

programming as a natural part of the class. I found programming to be an enjoyable 

way to visualise and calculate physical phenomena, but its usefulness ended there. I 

did not find that programming helped me understand physics, but that it was mostly 

an entertaining diversion from calculating by hand. Since leaving university in 2007, 

I have primarily taught mathematics, but also natural sciences and physics, at an 

upper secondary school called Oslo Handelsgymnasium (OHG) in Norway. There 

was no need for programming, and therefore I did not use it actively for several 

years. The focus was on teaching the students mathematics and trying my best to 

relate mathematics to real-world examples. Anyone who has taught mathematics 

knows that although this can sometimes be easy, it can more often be very 

challenging.  

After teaching for about eight years, I attended a course at Norwegian 

University of Life Sciences (NMBU) to formalise my teaching qualifications. After 

finishing my course, I was asked to lecture the following year on the subject of 

mathematic didactics, which was an enjoyable and rewarding challenge. After two 

years, a discussion started about whether I would be interested in pursuing a 

doctorate degree, which, at first, I was reluctant to do.  

At that time, I was still teaching at OHG and had recently started teaching a 

new subject called ‘technology and science education’ (Teknologi og 

forskningslære). I enjoyed teaching this course, but it was also very challenging. 

Since the learning goals for the course were somewhat lenient, I decided that I 

would incorporate programming into the course. This fitted nicely with its STEM 

focus (science, technology, engineering, and mathematics), and, from my 

observations, the students thought learning programming and incorporating it into 

the science subjects was entertaining and rewarding. 

The combination of a possible doctoral degree and the lack of research on 

programming implemented in mathematics coalesced in my mind into the idea of 

investigating this area in more detail. I started to investigate how programming 

could assist students in learning different types of mathematical concepts and 
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pathways and found an ever-increasing range of possibilities, some of which worked 

and some of which required a redesign, as explained in greater detail in this thesis. 

The work presented in this thesis is a guide through the rather unknown 

landscape of implementing programming in the mathematics classroom in upper 

secondary school. It is called Press Run to Increase Mathematical Expertise, or 

PRIME for short.   

 

“My life is a chip in your pile, ante up”- Setzer Gabbiani (FFVI) 
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2 Introduction 

Press Run to Increase Mathematical Expertise (PRIME), the title of this thesis, 

is used when referring to this work. The wording of the title is derived from the 

desire to use programming (‘press run’) to facilitate students’ learning of 

mathematics (‘increase mathematical expertise’).  

The world is developing very fast, and while it is challenging for teachers to 

keep up with rapid technological change, they persevere in doing so. To put this 

change into context, the first handheld calculator was introduced into the world by 

Canon, Inc. in collaboration with Texas Instruments in 1970 (Demana & Waits, 

2000). In 1986, the first graphical calculator was produced by Casio of Japan, and in 

1996, Texas Instruments released their first calculator with a computer algebra 

system (CAS), called TI-92. Increases in processing power and utility have 

continuously improved calculators and expanded the possibilities of what they can 

do. Today, calculators and smartphones can perform a variety of different 

calculations spanning the mathematical curriculum from primary to upper 

secondary school, such as graphing functions and solving integrals, often displaying 

the entire solving process. The same development is happening in all aspects of our 

lives, both professionally and personally. As a result, there is a need for schools to 

increase the amount and width of information taught to students.  

Global technological change drove a political decision in Norway and several 

other countries (Bocconi et al., 2018) to include programming as an integrated 

subject in mathematics throughout the school system, from Grade 1 to Grade 13. 

This integration presents an enormous challenge not only for teachers, but also for 

the authors of student textbooks and universities’ and colleges’ teacher training 

educators. All these actors need to evaluate and consider how to implement 

programming in mathematics, and, as such, there is a need for research into this 

area.  

With several countries integrating programming with mathematics, one might 

expect multiple studies to have explored this combination at all levels of the 

educational system. As of writing (spring 2022), however, little research exists on 

the implementation of programming into the mathematics classroom in upper 

secondary school. Such research as exists has mostly been conducted in primary 
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schools, with a few studies investigating lower secondary and university level. A 

review article dated 2017 found that, of 139 published studies of technology 

interventions in mathematics education, none had explored programming in upper 

secondary schools (Bray & Tangney, 2017). One article investigated programming in 

upper secondary schools (Psycharis & Kallia, 2017), but its analysis was limited as 

participating students only undertook a pre/post-test.  

More recently, articles have surfaced regarding teachers’ attitude towards 

programming, their expectations of programming in the mathematics classroom, 

and the challenge of educating them to implement programming (Mozelius et al., 

2019; Vinnervik, 2021). Sweden implemented programming in its mathematics 

curriculum two years before Norway and has therefore recently started to produce 

relevant research. The combination of mathematics and programming is very 

specific in both the Norwegian and Swedish systems (Skolverket, 2017; Udir, 2019), 

and several investigations have interviewed teachers. Findings indicate that 

teachers are positive and recognise that programming is relevant in relation to the 

digitalisation of society (Ahmed et al., 2020). One challenge is that neither the 

Swedish nor Norwegian curriculum specifies exactly where and how programming 

is to be used, leaving much up to the individual teacher (Ahmed et al., 2020; Misfeldt 

et al., 2020) . Among the challenges presented in the research is that teachers need 

to learn programming, how to teach it, and how to implement it in their 

mathematics classroom, the third of which is the focus of PRIME. As tasks are the 

main ‘thing to do’ in the mathematics classroom (Watson et al., 2015), PRIME 

investigates how tasks combining mathematics with programming can be designed.  

2.1 Background to programming and mathematics in 

schools 

The logical build of mathematics has a long history, and Euclid’s Elements has, 

for more than two millennia, been the paradigm of rigorous argumentation (Avigad 

et al., 2009). Euclid’s Elements is a collection of 13 books consisting of definitions, 

postulates, and mathematical proofs. Most of the theorems appearing within it were 

not discovered by Euclid, but are, rather, a collection of work from previous 

mathematicians such as Pythagoras, Hippocrates, and Eudoxus. The Elements are 

structured in a systematic way whereby the theorems appear in a logical sequence, 

all deriving from five deceptively simple axioms: 

  

•  Things which are equal to the same thing are also equal to each other. 

•  If equals are added to equals, the wholes are equal. 
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•  If equals be subtracted from equals, the remainders are equal. 

•  Things which coincide with one another are equal to one another. 

•  The whole is greater than the part. 

 

The build of Euclid’s Elements became the foundation of mathematics in the 

following centuries. Modern mathematics requires more rigour but is essentially 

built upon the same ideal of constructing new theorems from existing, proven ones. 

The logical, sequential build of a mathematical solution is very similar to the logical, 

sequential structure of a program. As with a mathematical proof, a good 

mathematical program should be logically built, both structurally and 

mathematically. The overlap between programming and mathematics is an 

important starting point for the implementation of programming into schools. A 

good example of this is the build of a mathematical model which uses both 

mathematical notation and a programming language (Berry, 2013). Similarities 

include the formal language, with the precise definition of both syntax and 

semantics, the idea of a model, the build of the structure, and the process of 

breaking down a problem into smaller pieces, solving each piece, putting the pieces 

together to form a solution, and testing and evaluating the solution.  

Feurzeig (1969) proposed that programming could contribute to mathematics 

in several ways, from problem-solving strategies and thinking about algorithms to 

facilitating experimentation and discussions, and was interested in using 

programming as a foundation for an integrated course in mathematics . 

Implementing programming in schools is by no means a new idea. In 1980, Seymour 

Papert published a book called Mindstorms: Children, computers, and powerful 

ideas, laying out a simple but far-reaching idea of a mathematical microworld, 

‘Mathland’, where children would program a digital or mechanical turtle moving 

around. Simple commands such as ‘forward 100’ and ‘right 30’ enabled children to 

create geometric structures and patterns.  

The programming language LOGO was specifically designed to accommodate 

children and their exploration. LOGO (from the Greek logos) was developed by 

Wally Feurzeig, Seymour Papert, and Cynthia Solomon in 1967. The creation was 

linked to the academic fields of artificial intelligence, mathematical logic, and 

developmental psychology. LOGO has not changed much since its conception, 

although it now exists in many different forms, each with its own flavour. Papert 

(1980) argues  for the implementation of computers and programming in schools 

and how it can facilitate learning mathematics.  
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Following the publication of Mindstorm, there was great enthusiasm that 

LOGO and similar programs would reform mathematical teaching in primary school, 

but this did not occur (see Misfeldt and Ejsing-Duun (2015). LOGO is a language 

created primarily for children, and in this thesis the focus is on more advanced text-

based programming. Today, an increasing number of countries is once again 

implementing programming as part of their national curriculum (Skolverket, 2017; 

Udir, 2019). Arguments for implementing programming include the need to service 

the existing and future work market, given that the combination of mathematical 

knowledge and knowledge of programming is viewed as a valuable skill 

(Gravemeijer et al., 2017) – not necessarily the ability to create complex programs, 

but the knowledge of how a program works and its affordances and constraints. As 

the educational system aims to equip students with knowledge for the future, I 

argue that implementing programming in schools is a natural, but certainly not a 

simple, step forward.  

Previously, the first time many students encountered programming was at 

university level, where they often took a separate course early in their career called 

‘programming’ or something similar. The course was offered because science 

students, in particular, would use programming in their studies later on when 

modelling, running simulations, or performing complicated or multiple calculations 

for which it was generally necessary to use a computer to derive an answer. With 

technological advance  and the use of student laptops at school, it is natural that 

technological skills such as programming will trickle down the school system. The 

science that the students learn during their final two years of school contains 

copious examples ready made for programming. Examples in physics include 

simulations of fall, with air resistance and the gravitational forces in space, while 

examples in biology include big data, with the human genome and protein 

sequences. In mathematics, there are areas that can facilitate mathematical 

understanding when introducing programming.  

A simple example is probability, where programming allows for Monte Carlo 

simulations of simple to advanced probability events. A simple event is learning 

probability and bringing dice into the classroom to visualise that the probability of 

throwing a six is one sixth. Initially, this can be visualised by giving the students ten 

dice each and making them throw ten times and record the number of times they 

receive a six. Thereafter, a table can be created, with the whole class contributing 

their findings – around 1,000 throws of the dice – and a relative probability can be 

calculated. With a computer, however, a very short code sequence can yield around 

one million dice throws per second per student computer. The value of this exercise 
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is limited since it might be thought that everybody knows that the probability, in 

this case, is one sixth; however, if the complexity of the question is increased, the 

value of a computer becomes evident. For example, the question ‘If you throw five 

dice, what is the probability of getting a sum of seventeen?’ is very difficult and 

time-consuming to answer through manual calculation, but relatively simple to 

simulate using programming. Similarly, programming can be applied to algebra, 

functions, the derivative and the integral, differential equations, and numerical 

methods. Numerical methods, in particular, are now possible to implement in 

secondary school, and PRIME does this through the design of tasks.  

The building of a task combining mathematics and programming is challenging 

as the design depends on the mathematical curriculum of a particular grade and 

course. In advanced science mathematics, it is easy to think of mathematical themes 

where programming is beneficial, such as numerical calculations of zero points, the 

derivatives, or the integral. In lower-level courses, this becomes difficult – not 

because it cannot be done, but because there are other tools that are much better 

suited to performing the calculation. With other digital programs such as GeoGebra 

and Excel available, there is little to be gained by using programming to build a 

program that plots a linear or polynomial graph or to set up a personal budget. 

GeoGebra is excellent at visualising and handling graphs (Diković, 2009), and Excel 

is excellent at handling personal economy (Barreto, 2015). Designing such a task 

would be to force programming where it is of no benefit, leaving both teachers and 

students frustrated.  

Why, then, use programming instead of other digital tools, such as a calculator 

and GeoGebra? Several digital tools, perhaps most notably computer algebra 

systems (CAS), hide certain algorithms and methods from the user to simplify the 

interface. In CAS, there is often a button with ‘x=’, which solves the equation but 

does not display the means by which it does so. This is often referred to as a ‘black 

box’ (Buchberger, 1990; Rabardel, 2002). Programming can make this ‘black box’ 

more transparent. The transparency comes from the need to decompose a problem 

and then build a program to solve each individual sub-problem before combining all 

such sub-problems to complete the solution. The design of mathematical tasks 

utilising programming facilitates the students’ understanding of each part of the 

mathematical solution. Through the programming, the students understand the 

principles underlying the mathematical method. From the work presented in Article 

2, the students gained a deeper understanding of the numerical bisectional method 

after building the program, since they built and explored each of the underlying 

structures that make up the method. Students inputting a function in a CAS setting 
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and pressing ‘solve’, in contrast, have little to no understanding of what is 

happening behind the scenes.  

Imagine another example where a student has created a program that solves 

second-degree equations and is now wondering how to expand the program to solve 

a second-degree logarithm equation. 

(ln 𝑥)2 − ln 𝑥 − 6 = 0 

In a graphing tool, the solution could be to plot the function and note the zero 

points. In a CAS setting, the solution could be to type in the equation and press 

‘solve’. In programming, however, an element of exploration and creativity is 

needed to solve the problem. Most digital tools conform to a given procedure or 

sequence of button presses. There might be creativity in selecting the method for 

the solution, but there is little creativity in the execution. In programming, there is a 

combination of the two. Since a program is logical by nature, the user must build a 

way for the computer to yield the result they want and be creative so the program 

does not give false or erroneous solutions. In the example presented, the student 

will need to understand that the program created cannot yield a negative solution 

for 𝑥 and compensate for this in the code. Further, the student needs to build in a 

two-stage process, where the quadratic equation is used to solve ln 𝑥, then expand 

the program to solve 𝑥. This development of a program enables mathematical 

programming tasks to be more ‘translucent’ than in many other digital tools. The 

question remains about the design of the mathematical programming task, which 

leads to the research question for PRIME: 

 

What recommendations could guide the design of tasks in which programming is 

combined with mathematics to facilitate mathematical learning in upper 

secondary school? 

 

Recommendations are a step towards design principles; however, as the 

research is limited to students from two mathematics classrooms, the use of 

principles would carry neither reliability nor validity. The research question leaves 

many aspects for consideration. To create a foundation upon which to build 

answers, it is therefore divided into a set of sub-questions. The first is how could 

programming be utilised when implemented in a mathematical task? The aim of this 

sub-question is to investigate different ways to implement programming and 

examine how the different utilisations affect student learning. The latter part gives 

the next question: how do students interact when working on mathematical tasks 

using programming as a tool? Interactions between students are a significant 
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indicator for learning, and in PRIME, video is recorded of students working on the 

tasks to investigate such interaction.  

Many factors affect such interactions, leading to the following question: how 

can the design facilitate exploration and discussion? With the implementation of 

tasks, PRIME investigates how the task can be designed to facilitate student 

interaction. There will inevitably be elements preventing or limiting the learning, 

which leads to the final two questions: what adversities do students encounter 

when working on mathematical tasks using programming as a tool? and how can 

such adversities be mitigated? Adversities directly influence the interaction and the 

next iteration of the task design. 

Three articles are presented as part of this thesis. Article 1 researches the 

design of tasks in which programming is used to facilitate mathematical exploration, 

discussion, and learning, and Articles 2 and 3 investigate the implementation of such 

tasks in a mathematics classroom. In more detail, Article 2 focuses on how the tasks 

facilitate exploratory talk, while Article 3 explores different types of adversities 

experienced by students as they work on the tasks. By developing a set of 

recommendations, PRIME aims to contribute to the overriding need for research 

into implementing programming in the mathematics classroom and how it can be 

designed to contribute to mathematical learning.   

2.2 Structure of PRIME 

To build a foundation to investigate the research question, PRIME presents the 

following structure:  

 

The theory chapter presents theory on mathematical learning and the learning 

of programming, of which exploratory talk (Mercer, 2005) and adidactical situations 

(Brousseau, 1997) are central aspects. With student interaction and task design, 

theory investigating the adversities encountered by students is presented. Finally, 

as task design is part of the research question, previous research in this field is 

discussed.  

The method chapter presents the research design, in which design-based 

research (DBR) is used. Thereafter, a large section is devoted to the design of the 

mathematical programming problems (MPPs) created in PRIME. The 

implementation is then addressed, covering context, participants, and data 

collection, after which the collected data are analysed. Finally, different ethical 

considerations influencing PRIME are presented. 
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The summary chapter presents the three articles written during the PRIME 

project, building the foundation for the subsequent discussion.  

The discussion chapter explores the research question with reference to both 

the work described in the articles and PRIME. The presentation takes the form of a 

set of recommendations, followed by the arguments on which they are based.  

The conclusion sums up the discussion and gives a broader view of both 

programming in schools and possible future work. 
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3 Theory 

Figure 1 shows how the theory is built. As mathematical learning is part of the 

research question, the view on, and elements of, mathematical learning in PRIME 

are presented. Programming is used as a tool to promote mathematical learning, 

and so an overview of the knowledge gained from computational learning is given. 

Both mathematical learning and learning programming are then merged with 

theory regarding adversity, which is an oft-discussed theme in both areas of 

research. Finally, theory of task design is presented together with research linking 

the previous three sections to such theory.   

 

Figure 1: Overview of how the theory is connected to the task design. 

 

3.1 Mathematical learning  

Learning in mathematics can be seen as ‘the construction of a web of 

connection – between classes of problems, mathematical objects and relationships, 

real entities and personal situation-specific experiences’ (Noss & Hoyles, 1996, p. 

105). This observation is aligned with many other studies using different terms, 

such as relational understanding (Skemp, 1976), conceptual understanding 

(Hiebert, 2013), and proception (Gray & Tall, 1994). What these notions all have in 

common is that they recognise that, ideally, a student forms a network of 

mathematical concepts so they can draw upon different ones to solve a problem. In 
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this work, the students gain mathematical understanding through mathematical 

learning. Mathematical learning is a process, and mathematical understanding is the 

mental connections between facts, procedures, and ideas (Hiebert & Grouws, 2007). 

These relationships are reformed when new information is difficult to assimilate or 

when previous relationships are inadequate to explain a new problem (Piaget, 1964; 

Skemp, 1976). 

When students work on a mathematical task, they will meet resistance and 

hopefully ‘struggle’, which is defined by Hiebert and Grouws (2007) as ‘expend(ing) 

effort to make sense of mathematics, to figure something out that is not immediately 

apparent’ (Hiebert & Grouws, 2007, p. 387). The learning takes place when the 

students are given appropriate tasks or problems. Tasks near the boundaries of a 

student’s zone of proximal development (ZPD) are within reach but offer enough 

challenge to discover something new (Hiebert & Grouws, 2007; Vygotsky, 1980). 

This new element can be an increased network or a new concept. The struggle 

created by the task can be interpreted as productive through Vygotsky’s ZPD 

(Hiebert & Grouws, 2007). 

One of the ways to facilitate ‘the construction of a web of connection’ (Noss & 

Hoyles, 1996, p. 105) is mathematical interaction with peers (Francisco & Maher, 

2005). Research on social interplay, from both constructivist and sociocultural 

perspectives (Boaler, 1999; Lampert et al., 1996; Lehrer & Schauble, 2005; Resnick 

et al., 1992; Yackel & Cobb, 1996), and learning though the orchestration of 

discussion (Michaels et al., 2008) indicates that both facilitate a deep understanding 

of mathematical concepts of varying difficulty. Explaining reasoning, justifying 

arguments, and recognising themselves as contributors are part of the exploratory 

talk between students (Choi & Walters, 2018; Mercer, 2005). Exploratory talk is 

when ‘partners engage critically but constructively with each other’s ideas. 

Statements and suggestions are offered for joint consideration. These may be 

challenged and counter-challenged, but challenges are justified, and alternative 

hypotheses are offered. Partners all actively participate, and opinions are sought 

and considered before decisions are jointly made’ (Mercer, 2005, p. 9). The 

exploratory talk, in turn, increases the students’ conceptual understanding, 

academic vocabulary, and ability to reason in mathematical problem solving 

(Lampert et al., 1996; Lehrer & Schauble, 2005; Michaels et al., 2008; Resnick et al., 

1992; Yackel & Cobb, 1996). The role of mathematics talk and discussion in the 

effective teaching of mathematics is cemented in research (e.g. Cobb et al., 1997; 

Kazemi & Stipek, 2009; Nathan & Knuth, 2003; Resnick et al., 2017; Sfard, 2000).  
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According to such research, one foundation on which PRIME should be based 

is that exploratory talk promotes mathematical learning. The mathematical tasks 

using programming facilitate exploratory talk through their design. Other types of 

talks also occur between students in the classroom, such as talk not relating to 

mathematics (Ryve, 2011) and disputational and cumulative talk (Mercer, 2005). 

Talk not relating to mathematics is important for the social setting in the classroom 

and, by extension, the learning environment. Disputational talk is characterised by 

disagreement and individual decision making with few attempts to present 

constructive criticism and suggestions. Cumulative talk occurs when the group 

constructs common knowledge without criticism, often characterised by repetition 

and confirmation. While all these types of talk were noted in the data gathered for 

the present study to varying degree s, the focus for PRIME was facilitating 

exploratory talk, as this promotes learning.  

Mathematical learning and understanding need to be interconnected with 

programming in the new curriculum. To facilitate exploratory talk through task 

design, PRIME applies adidactical situations from the theory of didactical situations 

(TDS) (Brousseau, 1997). Adidactical situations occur when students, working on 

tasks in small groups, take responsibility for their learning. 

According to Brousseau (1997), valuable mathematical learning will more 

likely take place when the students are committed to a problem situation. In TDS, 

knowledge is a property of a system consisting of a subject and a milieu, or 

environment. The problem, programming language, and students of a particular 

group create the milieu with which the latter interact. The interaction can be 

conceptualised as the conversation within and feedback from the milieu (Brousseau, 

1997). 

The didactical contract is a core concept in TDS and exists between the 

educator and the students of the milieu. The contract implies a set of expectations 

regarding the transference of mathematical knowledge and the responsibilities of 

both the teaching and the learning process. The students expect that, through 

solving the set of problems provided by the educator, they will learn the required 

mathematics, and the educator expects the students to complete the problems 

through the given guidelines.  

As the students work with the tasks, they are interacting with the milieu, which 

can be both collaborative and antagonistic. This period of interaction is the 

adidactical situation, where the students take the initiative and have the 

responsibility for the outcome of the learning process. An adidactical situation is the 

period ‘between the moment the student accepts the problem as if it were her own 
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and the moment when she produces her answer, [a time when] the teacher refrains 

from interfering and suggesting the knowledge that she wants to see appear’ 

(Brousseau, 1997, p. 30). The adidactical situation persists for a time because the 

students know, through the didactical contract, that they would not have been set a 

problem they were unable to solve or learn from. 

Preceding an adidactical situation is often a didactical situation, in which the 

educator or the task itself offers a problem to be solved. Succeeding the adidactical 

situation is another didactical situation, in which the educator or the task links the 

knowledge gained to the aim of the problem. Both the preceding and succeeding 

didactical situations do not depend solely on the educator, but can be parts of the 

designed task, here the mathematical programming tasks. Linking the knowledge 

gained to the aim of the problem is especially true of the succeeding didactical 

situation, in which the problem design can facilitate students’ discussion of the 

implications of the solution of the task in a broader context. The educator’s ability to 

recognise the students’ actions and translate them into a system of what they ought 

to learn is important and is called the institutionalisation of the acquired knowledge 

(Brousseau, 2008). It is possible for the task to contain and facilitate 

institutionalisation through explanatory text or visuals connecting the actions to a 

system of learning. The task design should facilitate a situation whereby solving the 

task enables the students to gain the desired target knowledge.  

Problem solving is a large part of mathematical thinking and learning and has 

long been a focus of mathematical research. According to Polya (1957), problem 

solving is an activity in which the subject or subjects goes or go through four phases, 

repeating phases when necessary. The four phases are orienting themselves in the 

problem, the creation of a plan, the execution of the plan, and the verification or 

checking phase (Polya, 1957). These phases can be repeated; if the execution or 

verification phase fails to reach a satisfactory solution, there will often be a return to 

the planning phase or even the orientation phase, as shown in figure 2.  
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Figure 2: The four-step process for problem solving by Polya, altered slightly to fit the 

programming theme. 

 

Polya’s (1957) method of problem solving created the foundation for research 

into this field in mathematics education. Following Polya, A Schoenfeld (1985) gave 

a revised and broader sense of problem solving in mathematics, indicating that 

understanding and teaching in mathematics should be approached as a problem-

solving domain. In Schoenfeld’s (1985) work, four categories were required to 

achieve success in mathematics: resources, heuristics, control, and beliefs. 

Resources are the existing procedural knowledge in the student undertaking the 

task. Heuristics are strategies and techniques for working on mathematical 

problems, such as working backwards, drawing figures, and sorting information. 

Control is the decision making regarding which strategies to apply and when. 

Finally, beliefs are an overview of mathematics and will determine how a person 

approaches a problem.  

During problem solving, students experience several different challenges, such 

as recalling previous knowledge, connecting previous knowledge to a current task, 

applying knowledge as execution, and verifying answers. Each part of the problem 

solving is accommodated to help with the building of the program. The ability to 

understand the problem, decompose it into smaller pieces, and solve each piece 

before reassembling them into a solution are particularly important parts of 

algorithmic thinking.  

Knuth (1985, p. 170) defines algorithms as ‘encompassing the whole range of 

concepts dealing with well-defined processes, including the structure of data that is 

being acted upon as well as the structure of the sequence of operations being 

performed ’. Algorithmic thinking, meanwhile, is a type of mathematical reasoning 

(Stephens & Kadijevich, 2020) that can take a variety of forms, including, but not 

limited to, algebraic, geometric, and numerical. According to Stephens and 

Kadijevich (2020), algorithmic thinking is based on three cornerstones: 

decomposition, abstraction, and algorithmisation. Decomposition is about breaking 

the problem into smaller pieces to be solved individually and is a problem-solving 

strategy (Polya, 1957; A Schoenfeld, 1985). Abstraction refers to the process 

whereby learners attempt, succeed, or fail to reach an understanding of 

mathematical concepts, strategies, and procedures (Dreyfus, 2020) and is defined by 

Skemp (1986) as an activity by which we become aware of similarities. 

Algorithmisation reflects the process of converting a process into an algorithm.  
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The origin of algorithmic thinking links back to Seymore Papert’s book 

Mindstorm: Children, computers, and powerful ideas (1980), in which the term 

‘computational thinking’ was used to describe the thinking of children as they 

worked with LOGO programming to learn mathematics. The term computational 

thinking has not secured a footing in mathematics education and currently resides 

primarily within computational science, while retaining similarities to algorithmic 

thinking. Lockwood et al. (2016) link algorithmic thinking to the development of 

deep procedural knowledge, defined by Star (2005, p. 408) as ‘knowledge of 

procedures that is associated with comprehension, flexibility, and critical judgement 

’, while Abramovich (2015) links it to the development of conceptual knowledge. 

Through the use of programming as a tool in the mathematics classroom, 

algorithmic thinking can be advantageous for mathematical learning, because 

decomposition, abstraction, and algorithmisation are also key ingredients applicable 

to many problems of mathematical content. Stephens (2018) points out that more 

‘attention to algorithmic thinking in schools could help students expand their 

problem-solving techniques and to explain and justify their mathematical reasoning’ 

(pp. 489-490). The first hurdle to be overcome when applying programming in the 

mathematics classroom is that the students must learn to program. 

3.2 Learning programming 

How to learn programming is a large field (see e.g. Medeiros et al., 2018; 

Piteira & Costa, 2013). Much of the literature is focused on the introduction of 

programming at university level. Several studies show that many difficulties are 

encountered when introducing students to programming. PRIME focuses on the 

learning of programming syntax and sequences of variables, loops, and conditions 

as these are both the most applicable to a school setting and present a significant 

challenge to learners (Bosse & Gerosa, 2017).  

The majority of school students are novice programmers and are limited to 

surface knowledge of programs, typically using the ‘line by line’ approach instead of 

meaningful programming building (Lahtinen et al., 2005). When learning 

programming at university, students often have knowledge of both the syntax and 

the semantics of programming, but they lack the ability to combine them into valid 

and efficient programs (Winslow, 1996). Although several attempts have been made 

to design strategies to support novice programming (such as collaborative 

teamwork, peer tutors, workshops, forums, etc.), multiple adversities still occur 

when students are introduced to algorithmic thinking (Stephens & Kadijevich, 

2020), logic, and problem solving. Algorithmic thinking combined with the 
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exhausting labour of learning syntax generally leads to frustration, rejection, and 

poor visions of what programming is  (Buitrago Flórez et al., 2017).  

3.3 Adversities 

Adversity is a term used in both Articles 2 and 3 and in PRIME. It is defined as 

any time students display uncertainty regarding how to proceed with the MPP on 

which they are working. It can take the form of questions to, or discussions with, the 

group through frustration, halting work for a period, to essentially giving up on the 

task. Adversity can be related to mathematics and/or programming. Barriers 

describe when the students encounter challenges in programming, while obstacles 

describe when they encounter challenges in mathematics.  

Ko et al. (2004) present six learning barriers in end-user programming 

systems, of which the three that share properties with mathematics (selection, 

understanding, and information) are used in the current study. The remaining three 

(design, coordination, and use) are not used as they pertain to barriers only vaguely 

related to mathematics. The first of the barriers applied to this research, selection 

barriers, relates to the programming interface and knowledge of what tools and 

commands to use to build for a result. The second, understanding barriers, consists 

of knowledge of how to handle errors and unexpected behaviour of the program. 

Error handling is a recognised challenge within programming education (Lahtinen 

et al., 2005). The third, information barriers, refers to the program not confirming 

the result or behaving in accordance with the hypotheses, which often results in the 

inability to evaluate what went wrong. All three of these barriers are related to the 

evaluation of the program rather than its execution.  

Ko et al. (2004) further divide the barriers into subgroups of surmountable 

and insurmountable barriers. Surmountable barriers are those students are able to 

overcome; when the complexity or number of barriers becomes too large, students 

are unable to continue and face an insurmountable barrier. The aim of the current 

research is for students to encounter surmountable barriers through design and 

exploratory talk, essentially enabling them to experience what TDS refers to as an 

epistemological obstacle. Similarly, insurmountable barriers are akin to what TDS 

calls ontogenic and didactical obstacles. 

Making the students adapt strategies to reach the desired knowledge is 

challenging, and Brousseau (1997) suggests that they will not succeed unless the 

task forces them to do so. If the students encounter and overcome obstacles as they 

are working through the given tasks, adaptation may take place. Brousseau (1997) 

defines an epistemological obstacle as a form of knowledge that has been relevant 
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and successful in particular contexts, often including school contexts, but that at 

some moments becomes false or insufficient . Obstacles can also be of a different 

nature: ontogenic obstacles relate to limitations of the students and lack of required 

prior learning, and didactical obstacles relate to the presentation of the subject, or 

‘the result of narrow or faulty instruction’ (Harel & Sowder, 2005, p. 34). Both 

ontogenic and didactical obstacles inhibit learning and should be avoided 

(Brousseau, 1997; Harel & Sowder, 2005), while epistemological obstacles should 

not be avoided, but considered to be an important part of a good task design. An 

epistemological obstacle is explained by Balacheff (1990, p. 264) as follows:  

 

Any content has to be supported by the pupils’ previous knowledge. But this 

old knowledge can turn into an obstacle to the constitution of new 

conceptions, even though it is a necessary foundation. But more often than not, 

to overcome this obstacle is part of the construction of the meaning of the new 

piece. (p. 264) 

 

This explanation indicates that task design needs to build on previous 

knowledge to both create new conceptions and an adidactical situation in the design 

process to facilitate the construction of new meaning, which links back to how ‘the 

construction of a web of connection’ (Noss & Hoyles, 1996, p. 105) facilitates 

mathematical learning. When students are working on tasks, they will experience 

periods when they know how to perform the required actions and periods when 

they encounter obstacles. These adidactical situations will allow the students to 

reconsider their strategies, develop new pathways, discuss with their peers, 

conjecture, and experiment, all of which are related to the intended learning process 

(Leung & Baccaglini-Frank, 2016). Thus, adidactical situations have the potential to 

stimulate mathematical thinking and reasoning and to develop conceptual 

knowledge (Hiebert, 2013; Skemp, 1976), leading to the acquisition of deep learning 

of the required mathematical content (Noss & Hoyles, 1996). Obstacles are closely 

related to the struggle defined by Hiebert and(Hiebert & Grouws, 2007), in which 

making sense of mathematics takes centre stage.  

It is important to separate what constitutes a positive adversity from what 

constitutes a negative or undesirable one. Epistemological obstacles and 

surmountable barriers are adversities which allow students, through exploratory 

talk, to solve the problem. The solution results in combining elements of existing 

knowledge to form previously unknown knowledge. This is a positive adversity. 

Ontogenic and didactical obstacles and insurmountable barriers are adversities 
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which leave students displaying frustration and a general sense of negative 

premonition (a ‘this is not going to work’ mentality), often leading to their giving up 

on the task, thus being a negative adversity.  

3.4 Task design 

In PRIME, tasks are defined as information that prompts student work, 

presented to them as questions and instructions that are both a starting point and 

context for their learning (Watson & Sullivan, 2008). As tasks are the main 

component of the ‘things to do’ in the mathematical classroom (Watson et al., 2015), 

combining mathematics and programming in a design task is a valuable endeavour. 

Moreover, I argue that engaging the students in tasks where they both think about 

mathematics themselves and participate in a mathematical discussion with their 

peers is the main stimulus for learning (Anthony & Walshaw, 2009; Sullivan et al., 

2012). This section presents task design in mathematics combined with 

programming, before describing the elements of didactical engineering (DE) used in 

the design of this work. 

The design of mathematical tasks can be divided into several categories, 

ranging from open- versus close-ended tasks through contextualised versus non-

contextualised tasks to routine-based versus cognitively demanding tasks (Berisha 

& Bytyqi, 2020; Stein et al., 1996). Stein et al. (1996, p. 426) state that ‘tasks used in 

mathematics classrooms highly influence the kinds of thinking processes in which 

students engage, which, in turn, influences student learning outcome’ (p. 426). 

Designing tasks that use digital technologies is complex and difficult (Joubert, 2007; 

Laborde & Sträßer, 2010), partly because of the computer’s ability to perform 

hidden or unknown mathematical procedures (referred to as ‘black box’ by 

Buchberger (1990). In comparison, a ‘white’ (or transparent) box is characterised 

by making the students conscious of the mathematics they ask the tool to perform. 

Rabardel (2002) also uses the concepts of ’black box‘ and ‘glass box’ to refer to the 

dimension of the operative transparency of the technological tool being used.  

A review of research into computer education strongly indicates that learning 

to program is difficult as ‘students exhibit various misconceptions and other 

difficulties in syntactic knowledge, conceptual knowledge, and strategic knowledge’ 

(Qian & Lehman, 2017, p. 17). Syntactic knowledge is the understanding of the 

building of the code, such as the use of parentheses, equals signs, and semicolons. 

Conceptual knowledge is the students’ model of code executions, such as variables, 

if statements, and the sequential execution of the code. Strategic knowledge is the 

process of planning, writing, and debugging programs. Moreover, text-based 
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programming creates additional challenges for students, such as focusing on syntax 

rather than the mathematical meaning of the code (Lewis, 2010; Resnick et al., 

2009). 

Ideally, when tasks are being worked on, the milieu should ‘provide feedback 

that moves the learner forward’ (Wiliam & Thompson, 2008, p. 15). Feedback can 

come from the task, the group conversations, or the program. The tasks facilitate 

learning by generating elements and accompanying actions that the students 

undertake together with the feedback provided by the milieu. Feedback should 

enable the students to evaluate meaningful strategies, which attest to the building of 

new knowledge (Artigue et al., 2014). In task design, including technological tools, 

feedback can be particularly important (Bokhove and Drijvers (2010). The feedback 

helps the students to construct knowledge as they become engaged in the solving of 

the problem and refine their concepts and strategies (Brousseau, 1997). Such 

cognitive development, in the TDS framework, is part of the adidactical situation.  

A property of technological tools is, to varying degrees, the provision of 

valuable feedback to the user. Feedback from a computer is ‘quick and essentially 

unlimited… at “no cost”’ (Hillel, 1992, p. 209), allowing task designers to facilitate a 

greater range of experimentation with and verification of ideas. The ability to use 

technology to produce results, immediate feedback, and novel ways of looking at 

mathematical objects could support a change in the nature of communication in 

mathematical problem solving (Drijvers et al., 2016). The change creates a challenge 

for designers, as tasks ideally allow for experimentation, exploration, and 

discussion. Several studies present guidelines, criteria, and/or principles for 

designing good mathematical problems (e.g. Johnson et al., 2017; Kieran, 2019; 

Lithner, 2017; Sullivan et al., 2012; Wiliam & Thompson, 2008), advocating a focus 

on conceptual, open-ended tasks, linking technical and theoretical activity, 

integrating questions calling upon pattern seeking, and applying technological tools 

for generating and testing conjectures. 

One of the goals of the design of mathematical tasks utilising programming is 

to enable the students to make new connections between concepts and create new 

concepts. This mathematical learning will then cause an increase in mathematical 

understanding. Conceptual blending describes how new connections can occur 

when two representations or concepts are brought together in a ‘blended’ concept 

(Fauconnier & Turner, 2008). This mixing can be thought of as a combination of two 

or more concepts into a third, newly formed, mental space (Whiteley & Mamolo, 

2013). In order to form this new concept, the task has to offer the opportunity to do 

so; that is, it must give meaning to the newly formed concepts (De Lange, 1987). The 
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newly formed concept or network between concepts has created a conceptual 

change in the students (Vosniadou, 1994, 2003). This change is often characterised 

as difficult for students as it conflicts, in varying degrees of strength, with their 

previous knowledge. As an example, the conceptual change from rational numbers 

to irrational numbers is less demanding than a change from real numbers to 

imaginary numbers (Lehtinen et al., 1997).  

Both conceptual ‘blending’ and conceptual change are applied in the creation 

of the tasks as the students investigate numerical methods in mathematics by 

weaving together their previous mathematical knowledge. When the students’ 

experiences conflict, whether through weaving together previous concepts to a new 

concept or building connections between concepts, they will experience an obstacle. 

This period is important for the design of the tasks and results in a suggestion being 

made by a single student or in collaboration with the rest of the group. The task is 

then to facilitate an adidactical situation in which the students are building new 

knowledge. The task could facilitate mathematical learning and understanding, 

using elements of problem solving and positive adversities to initiate group 

discussion. At the same time, it could mitigate negative adversities. The process of 

the design of tasks is explained and exemplified in the section addressing MPPs in 

the methods chapter. 
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4 Methods 

The methods chapter departs from the goal of designing problems in which 

programming is combined with mathematics to facilitate mathematical learning. 

The chapter initially presents the DBR of PRIME together with an argument for this 

choice of methodology. It was decided to present DBR before describing the design 

of the MPPs as it illustrates the background to the design process. The next section 

presents, in detail, the process of designing the MPPs together with the iterative 

process involved in the design process. Thereafter, the context, elements of data 

collection, and framework used for the different analyses in PRIME are presented. 

The range of ethical considerations influencing PRIME is wide, and the final section 

in this chapter presents the different challenges encountered throughout this work. 

A schematic presentation of the methods chapter is presented in figure 3. The 

MPPs are the centre piece of PRIME and therefore affect every other element of the 

method. The MPPs are explained in detail in 4.3. The bottom row of figure 3 builds 

towards the research question, presenting the broad structure of the research 

before narrowing down to data collection and analysis. Finally, ethical 

considerations are discussed.   

 

Figure 3: Schematic overview of the method chapter.  
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4.1 Research design 

The overarching design of PRIME is the implementation of MPPs in a 

classroom. Figure 4 shows how it was implemented throughout the first three years.   

 

DBR in mathematics education is explained by Swan (2013) as ‘a formative 

approach to research, in which a product or process (or “tool”) is envisaged, 

designed, developed, and refined through cycles of enactment, observation, analysis 

and redesign, with systematic feedback from end-users’ (p. 192). A variety of tools is 

used, from innovative teaching methods through didactic materials, teacher 

training, and assessments. Thereafter, ‘educational theory is used to inform the 

design and refinement of the tools and is itself refined during the research process’ 

in order to ‘create innovative tools for others to use, to describe and explain how 

these tools function’ (p. 192). Furthermore, theory can explain why a given range of 

implementations occurs and ‘develop principles and theories that may guide future 

designs’ (p. 192). The goal is transformative, seeking to create new teaching and 

learning possibilities and study their impact on students. 

This description indicates several similarities between DBR and DE (Artigue, 

2015). The current research uses Anderson and Shattuck (2012) definition of DBR 

as it is largely applicable to PRIME. First, the research took place in a real 

educational context and was conducted by a teacher/researcher. The 

implementation of PRIME occurred in a classroom, and the implementation was 

Figure 1: The implementation of programming in mathematics classrooms. R1 and 

R2 are elective science classes in Norway. 
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conducted by the writer, as a teacher–researcher. Second, the focus was on the 

design and testing of a significant intervention (i.e., the implementation of 

programming). However, the current research deviates from the third point in DBR 

as defined by Anderson and Shattuck (2012), that mixed methods are used, as it is 

much more closely related to qualitative than quantitative methods. Although it uses 

elements of quantitative methods, considering the small number of participants (N = 

58), PRIME does not qualify as mixed-methods research.  

The fourth element in Anderson and Shattuck’s (2012) definition is that DBR 

involves multiple iterations. As described in section 4.2, there are several iterations 

to both the design and the implementation of the mathematical programming tasks. 

As regards the fifth point, it involved a collaborative partnership between 

researchers and practitioners: in both the design and implementation, there were 

discussions with both researchers and teachers from which the design benefitted. 

Finally, as regards the sixth point in the chosen definition, that DBR should involve 

the evolution of design principles, although PRIME does not provide such principles, 

it does provide design recommendations. Since programming in the mathematics 

classroom in upper secondary school is still in its infancy, it would be problematic to 

use the word ‘principles’ until more research has been conducted. The 

recommendations do, however, present a starting point for the work towards design 

principles. 

The first three years of PRIME can be viewed as research undertaken by a 

practitioner in order to improve or develop their practice (Brydon-Miller et al., 

2003; Corey, 1954). After the combined task design and implementation process, 

the last part of PRIME started the process of developing principles for designing 

MPPs in the classroom, whereby PRIME evolved from a local initiative into an 

intervention for a more general classroom (Brown, 1992). DBR contains a ‘meta’ 

paradigm, pragmatism, where the truth lies in the utility (Cole et al., 2005). In the 

current case, the utility is contained within the design recommendations. DBR aims 

to ‘not only meet local needs, but to advance a theoretical agenda, to uncover, 

explore, and confirm theoretical relationships’ (Barab & Squire, 2004, p. 5).  

Additionally, DBR may involve more than simply describing the design and the 

conditions under which it changed. Cobb et al. (2003, p. 10) suggest that ‘design 

experiments are conducted to develop theories, not merely to empirically tune 

“what works”’. As an example, Barab et al. (2000) conducted DBR in a university 

classroom context, iteratively refining course materials each semester so as to 

advance a participatory learning framework that was conceptually rich and 

theoretically grounded. The continued development through an iterative process is 
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positive in that there is always room for improvement and negative in that it is 

difficult to decide when the project is finished (Anderson & Shattuck, 2012).  

The aim of the research question is to provide recommendations guiding the 

design of tasks in which programming is combined with mathematics to facilitate 

mathematical learning. These recommendations will reflect the environment in 

which they are developed (Anderson & Shattuck, 2012), and through several 

iterations the environment will incorporate several mathematics students. This aim 

was achieved though the three years of data collection. Further, as (Barab & Squire, 

2004, pp. 5-6) state:  

 

Although providing credible evidence for local gains as a result of a particular 

design may be necessary, it is not sufficient. Design-based research requires 

more than simply showing a particular design works but demands that the 

researcher (moves beyond a particular design exemplar to) generate evidence-

based claims about learning that address contemporary theoretical issues and 

further the theoretical knowledge of the field. (pp. 5-6) 

 

DBR is sometimes characterised as a form of DE (Artigue, 2015; Godino et al., 

2013), where something must be made with whatever theories and resources are 

available. The products of DBR are judged on innovativeness and usefulness, not just 

on the rigor of the research process, which is more prominent in evaluating true 

experiments (Plomp, 2013). 

DE is one approach to creating and evaluating the design of tasks and its 

obstacles in a controlled way (Brousseau, 2008). DE consists of several phases 

(Artigue, 2015): (1) a preliminary analysis of the mathematical content, possible 

constraints, and existing research. Where the implementation of the mathematical 

content in schools is concerned, a review of previous research into task design and 

mathematical learning and the evaluation of possible outcomes scenarios are 

central; (2) a design and an a priori analysis, which determine and evaluate the 

didactic variables influencing the interaction between the mathematical content and 

the milieu, consisting of the student, the task, and the programming language; (3) 

the realisation, observation, and collection of data which enable an understanding of 

students’ interaction with the milieu, how the task design facilitates their 

mathematical learning, and what adversities they encounter; (4) an a posteriori 

analysis and validation, which is a review process concerning all the previous 

phases, contrasting with the a priori analysis. Evaluation of the dynamics within the 
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milieu and performing alterations to the initial design are part of the a posteriori 

analysis and was performed several times during the design iterations.  

The methodology of DE aims at creating situations in which the acquired 

mathematical knowledge provides a successful solution to the given problem, 

reached by the students through interaction with the milieu. The role of the 

educator is to facilitate devolution, in which the students accept the mathematical 

responsibility of solving the problem and thereby develop an adidactic interaction 

with the milieu. A full preliminary analysis was not performed, as the initial design 

was based on the personal experiences of the teacher–researcher. Article 1 

investigates the design, an a priori analysis, and the realisation of the design. 

Articles 2 and 3 investigate the realisation in the form of implementation and the 

accompanying observation, as well as data collection and analysis.  

The design is analysed through evaluating the didactic variables influencing 

the interaction between the mathematical content and the milieu. The didactic 

variables consist of linking programming as a tool to learning mathematics, 

considering the added difficulty that programming brings to mathematics, enabling 

students to discuss mathematics and facilitating mathematical learning. As Artigue 

(2015) observes, ‘these variables condition the milieu, thus the interactions 

between students and knowledge, the interactions between students and between 

students and teachers, thus the exact opportunities that students have to learn, how 

and what they can learn’ (Artigue, 2015, p. 5).  

Iteration is characteristic of DBR and creates the foundation for the task design 

process. The iteration process of the tasks consists of several steps. It starts with an 

idea of a possible coalescence of programming and mathematics and, after a 

creation period, ends up with a sequence of MPPs for a lesson. As is not uncommon 

in DBR, the initial build was a result of researchers taking their best bets (Lehrer, 

2001), meaning that some aspects of the design had to be changed at a later date. At 

the same time, in order to optimise the learning environment, many researchers, 

including myself, are involved with teaching (McClain & Cobb, 2001; Smit & Van 

Eerde, 2011). A description of the creation process is presented in figure 3.2, with a 

more detailed description in Article 1.  

As PRIME explored relatively new territory, the choice for data collection was 

broad at the start. Initially, video recordings, group interviews, student and teacher 

logs, and anonymous surveys were used to gather information about the task design 

and implementation. It quickly became apparent that only some of these methods 

for collecting data were of value at this stage. The chosen method was video 

recording the students’ computer screen together with voice recordings. Given this 
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form of data collection, PRIME stands firmly in the field of qualitative research. As it 

is argued that some quantification from qualitative research can uncover the 

generality of phenomena being described (Silverman, 1985), Articles 2 and 3 

include elements of quantitative research. The inclusion of quantitative data also 

eliminated the use of terms such as ‘many’ , ‘some’, and ‘often’ (Bryman, 2016) in 

favour of precise numbers. However, since the data were primarily collected 

through transcription and both Articles 2 and 3 present the frequency of the 

different codes in the coding scheme, this does not make it a quantitative procedure 

(Gerbic & Stacey, 2005). 

4.2 The design of mathematical programming problems  

With the ambition of facilitating mathematical learning (Noss & Hoyles, 1996) 

through algorithmic thinking (Stephens & Kadijevich, 2020), the MPPs in PRIME 

were designed based on the belief that the adidactical situation (consisting of the 

milieu, feedback from the milieu, and the didactical contract between students and 

educator (Brousseau, 1997)) constitutes the most important part of the learning 

process.  

Several factors were considered in the decision about which programming 

language to use. The programming language had to have a low floor and a high 

ceiling, where a low floor means that the language is easy to learn and use, and a 

high ceiling means that the language can be used for a wide range of problems and 

situations. The programming language and at least one of its editors had to be freely 

available so that the students could install and run the programs on both their 

school computers and home computers. The editor also had to have a simple 

interface to prevent the students from encountering obstacles outside mathematics 

and programming. Finally, the languages used in previous research and both school 

and university courses were reviewed. Many excellent programming languages, 

such as Matlab, while fulfilling many of these criteria, are not free of charge and 

therefore not eligible for use in a school setting. From the above criteria, two 

languages were considered, namely Scratch and Python.  

Scratch, developed by MIT Media Labs in 2005, is aimed at pupils, is both easy 

to learn and visually interactive, and has been used in mathematics education in 

several studies (Han et al., 2016; Lee, 2011; Sáez-López et al., 2016). Scratch is a 

block-based programming language in which the user builds a program by 

assembling block. Each block constitutes one action; for instance blocks of ‘move 

100 steps’ and ‘turn left 90 degrees’ can be assembled to create a square like LOGO.  
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Much prior research used a block-based programming language such as 

Scratch, but this is partly due to the fact that programming in lower school has 

primarily been the object of investigation. Scratch was a consideration, but after 

initial trials the students were observed to find it ‘too childish’ and did not view it as 

a ‘proper’ programming language. The research also indicates some concern that 

learning block-based programming creates possible challenges when students later 

learn a text-based language (Moors et al., 2018; Weintrop et al., 2017). In upper 

secondary school, the text-based programming language Python was considered a 

better fit. This selection also conformed to the trends in both the curriculum and 

textbooks in Norway, whereby block-based programming languages are 

implemented in primary school, and the shift to text-based programming is 

undertaken in secondary school.  

Python is considered by many to be a good language with which to start 

learning programming (Pajankar, 2017; Payne, 2017; Wainer & Xavier, 2018). The 

choice of Python as the text-based programming language in PRIME was 

multifaceted. It is easy to start learning to code with Python; for instance, there is no 

need to define variables prior to using them, as in some other programming 

languages. This characteristic is often referred to as a low floor (Papert, 1980), 

indicating a low threshold for learning. The syntax structure of Python is also like 

the English language, making it easy to read code. Python is a widely used 

programming language amongst both universities (Mason et al., 2018) and large 

corporations, such as Google and NASA, which demonstrates the wide selection of 

applications possible within it. This characteristic is often referred to as a high 

ceiling (Papert, 1980). Python is also open source, which, in a school setting, is 

important so there is no extra cost to the institution of implementing Python into 

Figure 5: Constructing a square in Scratch. 
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their system and the students can install it on their home computers free of charge. 

As of writing (spring of 2022), Python is the language used in upper secondary 

schools in Norway.  

During PRIME, the students have used three different editors, as they 

developed new features over time1.  The iterative design process was applied 

throughout the work in PRIME and was called ‘revisions’. Figure 6 shows the three 

types of revisions that took place during PRIME. Immediate revisions were those 

that happened within a year and within a class, affecting future MPPs for the same 

class later in the same year. Progressive revisions were those made for the following 

year with the same group. These were made because each group is different, and the 

changes made to each separate group needed their own revisions. They were not 

significant changes, but could depend on factors such as special interests within the 

group. As an example, the first progressive revision changed because the students 

became interested in fractals, and building a program visualising different fractal 

patterns was implemented in their final year. Annual revisions were the largest 

change, whereby all the data collected, logs, and experiences from the previous year 

were fed into the next iteration of the MPPs. 

 

 

 

 
1 The first editor was PyCharm, followed by Spyder, which was used for most of the 

research period. At the end of the third year, the research migrated to Jupyter Notebook, 

which allowed for a more user-friendly interface for the students and made sharing with 

other teachers easier. The usage of Jupyter could have its own section, but since it was 

implemented at a very late stage, it was not part of the research. 
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A pilot set of MPPs was designed through the teacher knowledge possessed by 

the researcher. As no research within the field of mathematics presented how to 

implement programming in upper secondary school mathematics, the idea of the 

pilot was to explore properties of mathematics with the use of programming. With 

this mindset, a few MPPs were designed covering relatively simple methods, such as 

solving quadratic equations and a set of linear equations. These MPPs were very 

simple and consisted primarily of a short description of what the program should 

do. An example is ‘create a program that solves a second-degree equation and prints 

the possible solutions to screen’. The students were given this task early in the first 

year but after they had learned some basic programming commands and structures, 

such as if statements and plot commands. As the students worked on the pilot MPP, 

several groups were filmed. These films, together with the researcher’s notes from 

the lesson, were used to revise and build the next iteration of the MPPs. 

The initial MPP had too little information regarding how to program, and the 

students encountered barriers and asked questions regarding programming code 

instead of mathematics. The first major revision redesigned the MPP to include 

more assistance with programming as the students worked through the task to 

alleviate some of the barriers. As an example, more skeletal code was used as this 

enabled the students to focus on mathematics rather than programming. Figure 7 

presents a typical example of a skeletal code in which the structure of an if 

Figure 6: Structure of the iterative cycle for revisions throughout the 

implementation. 
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statement is written, but several of the conditions, calculations, and outputs are 

missing. 

 

After viewing the recordings and comparing the students’ actions and 

interactions with the researcher’s logs from the initial run of the MPP, the next 

iteration of the design was built. The revised design consisted of four parts: 

I. The MPP started with the students recollecting previous concepts and 

combinations related to the mathematical program they were about to 

build. The process of recollection facilitated the presence of the 

necessary mathematical concepts in the students’ minds and the design 

of a set of initial tasks that all the students could answer. The aim was 

for this recollection to build motivation and, possibly, stamina for the 

remainder of the MPP. 

II. The MPP then asked the students to explore the limits and boundaries of 

the program they were about to create, including asking questions such 

as ‘When does this procedure not work?’ and ‘What special cases do we 

need to consider when solving?’. A simple example is quadratic 

equations, for which the students needed to discuss and differentiate 

between cases with two solutions, one solution, and no solutions.  

III. The next part addressed how to resolve the limits and boundaries 

uncovered in the second part, where the MPP moved closer towards 

programming. This section aimed to build a strategy for solving for all 

possible outcomes (Polya, 1957; A Schoenfeld, 1985). As an example, 

the following question was posed: how can you check for no solutions 

of a quadratic equation before using the quadratic formula? In addition 

to learning how to check for boundary issues, the students learned 

algorithmic thinking, which refers to the sequence in which operations 

Figure 7: Skeletal code given to the students. The programming structure is given, but 

the mathematics must be implemented. 
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are needed. The sequence of algorithms in the example presented is to 

first calculate the value of the discriminator and, if the discriminator is 

equal to or greater than zero, to then apply the quadratic equation.  

IV. Finally, the MPP introduced programming and assisted the students to 

structure a program by solving or visualising the mathematical 

procedure or concept of the previous parts. The MPP strove throughout 

to facilitate the students’ engagement in mathematical discussions and 

challenges. The engagement was through task design and could vary in 

difficulty, but the more difficult tasks were always presented towards 

the end of an MPP so as not to hamper the students in their progress 

towards building the program. As mentioned previously, a skeletal code 

(figure 7) was often given to the students, as the subject was 

mathematics, and programming was viewed as a tool for understanding 

mathematics.  

These four points did not always occur in sequence; the last point, in particular, 

could be intermingled with the previous three if needed. After the second iteration, 

the MPP was again implemented in a mathematics classroom, and data were 

collected through video recordings, interviews, and logs from the lessons. The data 

were viewed and analysed to build the next iteration of the MPP.  

The final design structure consisted of two parts. The first part consisted of 

non-programming tasks asking the students to recall previously known 

mathematical concepts. There are two main reasons for this. First, it ensured that all 

students had the opportunity to recall the same information, which was applicable 

and beneficial (Stillman, 2004) throughout the problem. Second, it had a low 

threshold for completion and facilitated the students’ ability to complete the initial 

part of the task. This characteristic upholds the part of the didactical contract 

between students and educators whereby the students expect to be able to resolve 

the problem with their knowledge. Later, when the complexity increased, the 

recollected knowledge facilitated the students in solving the problem. The problems 

continuously built upon the recalled knowledge to facilitate mathematical learning 

and attain the intended knowledge. The MPP can be viewed as a process in which 

each new problem facilitated an adidactical situation, aiding the students in their 

progression towards the desired knowledge (Brousseau, 1997).  

Problems can also directly or indirectly reveal inadequacies or challenges 

within mathematics that can, to a lesser or greater extent, be solved through 

programming. The programming part started in a similar way, recalling a set of 

previously known programming procedures necessary to build the required 
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program. As the students worked through the different problems of the MPP, they 

were continuously changing and developing the program. Each section of code that 

it was possible to execute represents a verifiable step towards the desired 

knowledge. Verification can be carried out by inspecting graphs, output data, or 

some other form of visual or readable response. The various sections of the problem 

design facilitated an increased transparency of the problem, in which the students 

became conscious of and engaged in the mathematical knowledge that they applied 

through the programming process. Thus, a balance was created between the 

additional complexity programming brings to the mathematics classroom and the 

overall design of the problem. The complexity, in terms of the lower versus higher 

level of demands of the problem (Stein & Smith, 1998), together with the students’ 

previous knowledge and self-efficacy, determined whether they would succeed or 

not in solving the given problem (Hoffman & Spatariu, 2008). The maintenance of 

high-level (cognitive) demands is dependent on several factors, including thinking 

and reasoning, self-monitoring, building on previous knowledge (Stein & Smith, 

1998), and the link between the problem and the aim throughout the MPP. Soloway 

(1993) argues that during the programming process, the learner uses powerful 

problem- solving and thinking strategies. Students first need to solve a problem 

mathematically, then reflect on how to express the solution through computer 

programming (Papert, 1980; Szlávi & Zsakó, 2006). 

A representation of the design structure (as presented in Article 1), 

emphasising the adidactical situations in the MPP, is presented in figure 8.  

 

Figure 8: A representation of the design ideas of the MPP. 

 

 

 

 

To exemplify the design structure, an excerpt of an MPP as presented in Article 

1 is given below. 
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1. Recalling relevant mathematical knowledge 

Enabling the students to recall the mathematical knowledge required to 

initiate the progress through the MPP and their search for the target 

knowledge. This can limit the amount of ontogenic obstacles. 

In figure 9, this consists of the calculation and discussion of the 

properties of zero point for different functions, which allowed the students 

to recollect the properties of the zero point and method for finding zero 

points, which was the base for the target knowledge.  

 

 

2. Presenting an inadequacy or challenge in the mathematical method. 

The start of a problem presented the students with one or more examples 

of when a mathematical method becomes false or inadequate. This forced 

the students to search for new strategies, as they, through the didactical 

contract, were confident that a solution and learning opportunity existed. 

In figure 10, this consists of the search to find zero points for a general 

and unknown continuous function covering a range of both negative and 

positive function values. This problem allowed the students to use and 

Figure 9: Problem from phase 1 of the MPP concerning the bisectional method. 
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apply their knowledge of zero points to a new type of problem. The 

strategy they started to develop here was used later in the same MPP.  

 

Figure 10: Problem from phase 2 of the MPP concerning the bisectional method. 

 

3. Creating a mathematical strategy to apply programming to the 

inadequacy or challenge 

Selected problems initiate a process of combining existing mathematical 

knowledge with new strategies or concepts. This further builds towards 

the target knowledge where the students, through the adidactical 

situation, can develop new pathways through interaction with the milieu. 

Phase 3 was designed to facilitate exploration, discussion, and evaluation, 

allowing the students to assemble their existing knowledge into a new 

strategy or method. 

The problem in figure 11 consists of developing strategies to numerically 

approximate the zero points through interacting with the milieu. The 

problem facilitated the students discussing and testing different strategies, 

building towards the target knowledge. 

 

 

Figure 11: Problem from phase 3 of the MPP concerning the bisectional method. 
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4. Recalling programming commands and structures 

Enabling the students to recall the programming knowledge required to 

initiate the progress through the MPP and their search for the target 

knowledge can limit the number of ontogenic obstacles. 

In the presented MPP, this consists of plotting, implementing elementary 

calculations, the use of functions, and the structure of while loops. Figure 

12 is a typical code written by the students to recall how to plot (lines 10–

17) and how to build (lines 3–5) and call (line 8) a function. The result 

after running the code is shown in figure 13. 

Figure 12: Code snippet from phase 4 of the MPP concerning the bisectional method. 

Figure 13: Result from running the code in figure 12. 
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5. Decomposing the mathematical strategy into programmable 

segments  

Using programming as a tool, the students implemented mathematical 

strategies to create a basic program facilitating explorative search and 

analysis. Programming facilitated algorithmic thinking to decompose the 

mathematical strategy into smaller programming sections and implement 

it in the program. 

In the presented MPP, this consists of decomposing the strategy into 

smaller, programmable mathematical segments. As an example, the 

students needed to input two starting x-values (xl and xr) where the 

function values (yl and yr) had different signs for the program test for the 

middle value and initiate the numerical procedure (figure 14 and figure 

15). 

 

After calculating the middle value (xm) between the two x values and the 

corresponding function value (ym), another part of the decomposed 

strategy was to build a segment that checked the sign of the function value 

(figure 16 and 17).  

 

 

Figure 14: Code-snippet from phase 5 of the MPP concerning the bisectional method. 

Figure 15: Result from running the code in figure 14, 

where the inputs are 60 and 80. 

Figure 16: Problem from phase 5 of the MPP concerning the bisectional method. 
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6. Composing the program through assembling the decomposed 

segments. 

The students built the program by applying algorithmic thinking to the 

decomposed segments of the mathematical strategy, resulting in both 

abstraction and algorithmisation. The composing of the program 

implemented the mathematical strategy to resolve the inadequacy or 

challenge. 

In figure 18, this consists of combining all programming segments into a 

completed code. The part of this completed code shown below illustrates a 

while loop numerically calculating the zero point. This code is built upon 

the code in figure 17. 

 

 

7. Exploring limitations and affordances of the program through a 

mathematical lens. 

Figure 17: Code snippet and example of a skeletal code solution to problem in 

figure 16. 

Figure 18: Code snippet from phase 6, where several elements (from figure 12 and 

figure 14 (lines 43 and 47), figure 17 (lines 40 and 44)) are combined into a code 

segment. 
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After the creation of a program, there is a need for evaluation. Revising 

and discussing the affordances of the program allowed for consolidation of 

the knowledge throughout the MPP. Investigating the limitations of the 

program facilitated open-ended mathematical exploration and discussion.  

In figure 19, this consists of discussing the limitations of what functions 

the numerical bisectional method applies to. 

 

For a complete view of the entire MPP as given to the students in Norwegian, see 

appendix. Since I have now presented and defined that a task in which programming 

is combined with mathematics is an MPP, the research question is: 

 

What recommendations should guide the design of MPPs to facilitate 

mathematical learning in upper secondary school? 

4.3 Context, participants, and data collection 

The participating students had all elected science mathematics in the second 

year of upper secondary school in Norway and specifically chosen to be a part of 

PRIME. Prior to selecting their elective subjects, they were given information 

regarding this class and PRIME and had the option to participate or not. There were 

several science mathematics classes at the school, so they did not have to join if they 

did not want to. This situation creates two validation issues for this work. Science 

students are often more motivated than non-science students (Andersen & Cross, 

2014) and have greater stamina and tolerance for a higher workload. Additionally, 

the students elected to be a part of PRIME specifically, so the class was not a 

representative group of a general mathematics classroom. Initially, there was a 

concern that this would reduce the validity of the research due to a reduced number 

of participants and that only either high-achieving students or students with prior 

knowledge of programming would participate. Reviewing the students’ mathematics 

grades from the previous year together with an anonymous survey asking the 

students for their knowledge of programming revealed that neither of those 

concerns were present. 

Two classes were selected for PRIME and investigated over two years. The first 

class, of second-year science mathematics students (‘R1’) started in the autumn of 

Figure 19: Problem from phase 7 of the MPP concerning the bisectional method. 
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2017. This group of 27 students was part of the initial pilot study, and the data 

collection started after only a few weeks of term. The following year, the same 

group, now in its final year of science mathematics (‘R2’), was the subject of PRIME. 

At the same time, PRIME started with a new class in the year below and similarly 

followed this class for two years, as illustrated in figure 6. The students worked on 

the MPPs in groups of two to four to facilitate the adidactical situation and 

encourage exploratory talk. Each group worked together to solve an MPP, but each 

student created their own program. 

The students discussed the MPPs through the process of problem solving, 

whether it was building concepts, building networks, specific commands, order of 

operations, possible solutions, and so forth. The group discussions and their coding 

were analysed for this thesis and all the articles presented. The students had not 

previously experienced discussion as a method of learning mathematics, so one 

lesson was spent going through the process of how to discuss problems and use 

problem solving (Polya, 1957; A. Schoenfeld, 1985). Discussing problems is thought 

to support learning by helping students learn mathematical discourse practices 

(Stein et al., 2008). The class, divided into smaller groups, was presented with a 

problem which had to fulfil the following conditions. It had to be hard enough that 

the students did not arrive at the solution immediately; the explanation of the 

problem had to be simple to understand, but also contain subtle nuances that 

needed to be discussed; and it had to support a feeling of progression throughout. 

The problem chosen was as follows: 

 

You are standing in front of a 100-storey building. There is a staircase 

running all the way to the top, and at each floor you have access to an open 

window. You have two identical bowling balls that will both shatter when 

dropped from a given floor and all the floors above it. Your task is to find the 

lowest floor that will cause the bowling balls to break. The bowling balls can 

break at floor one, at floor one hundred, or any in between. Your method of 

finding the floor is evaluated according to the lowest number of tests you need 

to conduct in the worst-case scenario to find the lowest floor. 

Example: 

If you chose to drop the ball at every floor starting with the first floor, you 

will find the floor, but in the worst-case scenario you will have to test for all 

one hundred floors. If you drop the first ball at floor fifty and it breaks (worst 

case), you must then use the other bowling ball to test for the remaining 49 

floors below starting at floor one. The worst case here is 50 tests (lowest floor 
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is either 49 or 50), already quite an improvement. How much better can you 

do? 

 

The problem is easy to visualise, but the solution is not easy to unravel. From 

experience, the problem also quickly generates questions such as ‘can I move up two 

or more flight of stairs between each drop?’ and ‘can I go down a floor if needed?’. 

Additionally, many students do not consider the worst-case scenario when 

presenting a solution, which, alongside these questions, illustrates the need to 

understand a problem before you can start to plan (Polya, 1957). The planning often 

started with trial and error, then possible answers being suggested to the group. 

The students had to argue for their solutions or ideas to the rest of the group so they 

would agree to present a possible solution to the teacher (Stein et al., 2008). The 

students argued for a decreasing number of tests as time went on. The progression 

towards the optimal solution to the problem could be seen, as the initial starting 

value of 100 tests quickly dropped to 50, 34, 27, or 24 and often ended at 19. The 

benefit is that there is very often a more efficient way to divide the problem, and the 

students started to see the method develop as they worked on it. The solution to this 

problem is in the appendix.  

After this exercise, the researcher and class together set up the characteristics 

for a mathematical discussion on the board, including words such as suggestion, 

listening, verification, exploration, arguing, trial and error, and explanation. When 

the students were given the MPP, they were reminded of these traits to ensure a 

good discussion. The discussion between students followed the signs of a 

mathematical discussion to varying degrees. The periods of discussion that did not 

follow the signs were often of a non-mathematical nature. 

Of a total of nine lessons in which MPPs were used, six were recoded and 

transcribed. The recording of the remaining three lessons failed due to technical 

difficulties. The six lessons that were recorded covered the following themes: 

 

• Solving the quadratic equation 

• Investigating probability (introductory lesson to loops) 

• Plotting a graph (introductory lesson for plotting functions) 

• Solving zero points of functions using the bisectional method 

• Calculating and plotting the derivative of a function numerically 

• Solving zero points of functions using Newton’s method 

The three lessons with technical difficulties were: 

• Simulating a coin toss/dice throw through a Monte Carlo simulation 
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• Calculating and simulating Bayes theorem in probability 

• Plotting the numerical solution to first order linear differential equations 

 

Several types of data collection methods were used during PRIME. When 

implementing the pilot (autumn of 2017) video recordings, anonymous logs kept by 

the students, group interviews with the students, and researcher logs from the 

lessons were used. Analysis of this data provided the basis for the design of the 

second iteration. When the second iteration was implemented (spring of 2018), the 

data collection consisted of video and audio recordings of the students in the 

classroom as they worked on the task in addition to researcher logs from each 

lesson. The data were then analysed for the third revision (presented in Article 1). 

After the second redesign of the MPPs, the final round of implementation (autumn of 

2018 until spring of 2020) was conducted. 

The pilot and second implementation were recoded using physical cameras 

and microphones set up in the classroom, with selected cameras recording selected 

groups of students. After the lesson, the recordings were reviewed for quality. It 

became apparent that the students’ screens were difficult to see properly. The 

reflection from various lights in the classroom, as well as the fact that the student’s 

editor had a black background, made it almost impossible to investigate anything 

but the students’ discussion. For the third iteration, a different approach was used. 

The difficulty of viewing the students’ actions on screen was overcome by using 

screencast programs. The recoding was performed using the program FlashBack, 

which recorded the student’s voice and computer screen, enabling the combination 

of voice and programming to be contextualised. The students were also in charge of 

the recording, so they could turn it off during breaks and if they were carrying out 

unrelated activity on their screen, such as checking Facebook or reading emails. 

For each of the four classes, the students were asked to participate in the 

research. They were all given an outline of what the research entailed together with 

detailed information regarding the data collection. All the students recorded were 

informed and gave their written consent according to the Norwegian Centre for 

Research Data (NSD) rules for data collection, and PRIME has received approval 

from the NSD.  

The aim was to record two to three groups from each class for data collection. 

This upper limit was chosen due to the technical limits of cameras, wires, 

microphones, and so on. The time it took to set up the equipment for each lesson 

was also a limitation, as there was only a 15-minute break between lessons. The 

criteria for the selection of the groups were as follows. 
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- All members of the group had to agree both to being recorded and to the 

use of their communications in the research project. Most, but not all, of 

the students in both classes agreed to being recorded. Since the entire 

group had to agree, quite a few groups were eliminated due to this 

criterion alone. 

- The group needed to discuss their ideas through conversation throughout 

the lesson. If a group did not vocalise members’ thinking, it was difficult 

to follow their train of thought and the recordings were discarded.  

From those students remaining after the initial restrictions, two groups of two 

to four students were formed from each of the two years. The number within each 

group recorded varied due to absences.  

4.4 Analysis procedure 

Each member of the group recorded a data file with their voice and screen 

capture. All the students recorded wore a lavalier microphone that recorded their 

voice. Due to some technical difficulties, not all the recordings were usable, but since 

each student created their own files, no recorded lesson was omitted. The 

microphone also recorded the voices of the other students in the group, enabling 

each microphone to contribute to the transcription of the entire group. If one of the 

voices was unclear at any point, there were usually two to three other recordings to 

verify what was being said. To avoid having to look at four different data files for 

transcription, all the individual recordings from a group were assembled into one 

recording by using Camtasia. The voice from all four lavalier microphones were 

stacked, making each voice very clear, and each screen capture was as seen in figure 

21. 

 

Figure 21: Result after combining four videos into one. 
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After the data files were combined into a single video file, all the audio from each 

group was transcribed in two steps. The first was an overview, in which the 

discussion within the group was dissected into smaller sections with a theme and a 

timestamp. An example is ‘from 5:30 till 8:26, discussion regarding invalid solutions 

to quadratic equation’. Thereafter, the entire audio was transcribed with 

timestamps at regular intervals to ensure that the length of each part of the 

discussion was tracked. The importance of this is shown in Articles 2 and 3. The 

transcript was then sorted into the frameworks created for this work. The two 

frameworks in this thesis were created abductively by building on theory within the 

field of mathematical education as programming in the mathematics classroom is 

relatively new. There is one framework for the interactions between students when 

working on the MPP, as presented in Article 2, and another for the adversities 

encountered by the students when working with programming, as presented in 

Article 3.  

The framework process started with open coding following axial coding 

(Strauss & Corbin, 1990). The advantages of this procedure are that it starts by 

being open-ended, allowing new concepts to reveal themselves. In Article 2, which 

focusses on exploratory talk and adversity, these two themes were categories within 

the framework before the open coding started. Through the coding, it became 

apparent that there were many sub-categories, and through an axial coding, both 

exploratory talk and adversities were divided into sub-categories, allowing new 

connections and new themes between concepts and categories to reveal themselves 

(Ryan & Bernard, 2003). This step was especially important in PRIME, as little 

previous research has been carried out on the topic. The framework for Article 2 is 

presented in table 1, where the two main categories are exploratory talk and 

adversity. Exploratory talk consists of several sub-categories, with exploration and 

explanation the two most common. Through the open coding, these were aligned 

with existing mathematical theory to build the abductive framework.  
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Table 1: The framework for article 2. 

Code for interaction Description 

Exploratory talk 

 

Engagement within the group consisting 

of ideas, suggestions, challenges, and 

justifications  

 Initiation Start of a segment 

 Explanation 

 

Explain and argue for solution 

Present criticism and suggestions 

Validate solution 

 Exploration Testing code 

Running program 

 Agreement Reaching common ground 

Adversity The group displays uncertainty over how 

to proceed 

 Positive Leading to or facilitating exploratory talk 

(epistemological obstacles) 

 Negative Leading to frustration and a ‘this is not 

going to work’ mentality (didactical 

and/or ontogenic obstacles) 

 

In Article 3, the same procedure for building a framework was used. The focus 

was adversity, but here the open coding allowed for the different categories to 

reveal themselves. After the categories had been defined, axial coding was used to 

relate the different types of adversity. Article 3 investigates adversities encountered 

by students when working on programming in the mathematics classroom, where 

the framework is a combination of four elements. The four elements were built 

through open-coding and further specified through both axial coding and theory. 

The theory uses the barriers mentioned by Ko et al. (2004) and obstacles described 

by (Brousseau, 1997); see table 2. 

 

 

 

 

 

 



 

53 

Table 2: The framework for Article 3. 

Type of adversity Description 

Concept Unknown command 
Unable to recall command 
Unable to recall function of a command 

Syntax 

 

Placement of structure within a program 

Defining variables 

Structure of if statements 

Misunderstanding the sequential reading of code 

Output 

 

No output 

Understanding errors 

Not understanding errors 

Unexpected answer 

Coding Converting known mathematics into code 

Expanding program 

 

For a more in-depth review of the two analytical frameworks, see Articles 2 

and 3. This thesis draws on these frameworks in the discussion as they influence the 

recommendations for the design of MPPs in different ways.  

Transcript analysis is an exploratory, qualitative methodology (Garrison et al., 

2006). The two frameworks presented and their accompanying coding scheme 

(tables 1 and 2) were used in the analysis. The coding schemes were designed to be 

both meaningful and explicit in order to have reliability (Garrison et al., 2006). 

Meaningfulness comes from the open coding, as the coding scheme is a result of the 

observed interactions between students. Reliability comes from the structure and 

categories of the schemes, as each category was both broad enough to account for 

any interaction and narrow enough to be assigned to a given section of transcript. 

As coding is a time-consuming and challenging task, effort was made to keep the 

coding scheme parsimonious. As ‘qualitative analysis needs to be well documented 

as a process’ (Miles & Huberman, 1994, p. 12), the following section presents and 

exemplifies the process. Although Articles 2 and 3 use a different framework, they 

were both analysed in the same way and, using Article 3 as an example, the analysis 

was performed as follows.  

Initially, the entire transcript was read with the overarching theme of the 

article in mind. As Article 3 investigated adversities, the entire transcript was read 

and each time a possible adversity presented itself, it was added to a list with a short 

description. At this time, the categories were not finalised so the descriptions were 
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very detailed. After the entire transcript of all the lessons was read, the descriptions 

were sorted into similar adversities, such as command adversities. Through this 

inductive process, and in combination with frameworks from the literature, a pilot 

version of the framework was created.  

At this early stage, the framework contained many categories in an effort to 

ensure that every adversity was categorised. As the process continued, categories 

were revised several times, with revisions prioritising the simplification and 

reduction of categories. As an example, the command adversity category initially 

consisted of one category for forgetting a command and one for forgetting the 

function of a command. These were later merged to form one category.  

With the revised framework, an analysis was performed, initially focusing on a 

quantitative distribution of the different categories, which allowed for a new lens in 

evaluating the framework. As an example, the first analysis in Article 3 contained a 

separate category for the editor of the program as it was both thought to contribute 

to adversity and had been observed. After the initial analysis, this was revealed to 

make a minimal contribution compared to the other categories, only appearing two 

times, neither of which was directly related to either the design of the task nor the 

orchestration of the lesson. To avoid diluting the adversity term over too many 

categories, editor adversity was removed from the framework. This is not to say that 

it should not be investigated but, rather, that it was not within the scope of this 

work.  

After this second revision of the framework, the final version for the article 

was created. As this is a relatively new field within mathematics didactics, it is 

important to view the frameworks for what they are, namely a first attempt at 

investigating their respective fields. The analysis of both Articles 2 and 3 consisted 

of an initial frequency analysis followed by a qualitative analysis of the 

transcription; thus, they veer towards a mixed-method style of research. 

Considering the low number of participants, the thesis is primarily a qualitative 

study, with small elements of a quantitative study. The primary reason for the 

quantitative method is to illustrate the internal distribution of, for instance, 

adversity, and not the actual number of adversities observed. Both articles present 

the quantitative analysis first as doing so offers a good overview of the result before 

a more in-depth qualitative analysis is performed. The qualitative analysis of the 

two empirical articles uses segments of transcript frequently as this allows the 

reader an insight into the background. The qualitative analysis is detailed and refers 

to both the transcript and the observations made by the researcher to convey an 

accurate representation of the situation presented.  
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4.5 Ethical considerations, reliability, and validity 

Several ethical issues are important to address in this work. The first is the 

duality of inhabiting the role of both teacher and researcher, which is both 

rewarding and challenging. The second refers to the more formal and well 

documented structures in qualitative studies which concern anonymity, influence 

on the subjects, data collection, and bias. Finally, the origin and financial support for 

PRIME is discussed.  

As a teacher, I am performing insider research and have a preunderstanding of 

the school. Preunderstanding consists of knowledge, insights, and experience within 

the school (Brannick & Coghlan, 2007). This experience is not explicitly shown, but 

it permeates the research. Three examples are presented here to illustrate the 

advantages of performing inside research. First, knowledge of and access to the 

students allowed for more frequent changes to the task design. As the MPPs were 

introduced in the classroom, the students began to discuss programming outside the 

designated lessons. This allowed the teacher to participate in a discussion regarding 

the structure and difficulty of the MPPs outside the transcript, and several smaller 

changes to both the lessons and the MPPs themselves were made because of these 

discussions.  

Second, knowledge of the individual students allowed for greater accuracy in 

the transcripts. With an in-depth knowledge of each student’s mathematics 

proficiency and method of communication, transcription accuracy increased when 

the students referred to previous lessons or procedures, particularly when research 

addressed the adversities students encountered. Students have different ways of 

communicating frustration, and knowledge of their personality helped in the 

understanding of their recorded reactions.  

Third, knowledge of the curriculum and the structure of all lessons taught 

throughout the year made the references the students used easy to understand. 

Additionally, MPPs were easier to implement since the structure of the entire year 

was up to the teacher, which allowed for the curriculum to be moved around to 

better fit with programming. All three types of knowledge, together with the fact 

that every aspect of the implementation was directly controlled and influenced by 

the researcher, made the research possible.  

One of the main challenges is expressed perfectly in (Feldman, 1994), who 

presents a science teacher’s dilemma regarding research in their own classroom, 

namely that they wish to collect precise and sufficient data to draw a conclusion, but 

the data collection is never precise nor sufficient to warrant validity. There will 
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always be too many variables unaccounted for that influence the educational 

situation. Some of the variables that could influence the research in PRIME are 

- The teacher as the grade setter 

- The teacher as responsible for the lesson and its orchestration 

- The students displaying motivation due to recordings 

- The researcher’s bias in the data collection and analysis of the material 

- The researcher’s knowledge of the students affecting the interpretation of 

the transcript 

Additionally, there was a plethora of small effects, such as classroom 

interaction, knowledge of the school, previous experience as a teacher, and so forth. 

To maintain the validity and accuracy of the research, the method and analysis are 

presented with an in-depth explanation of the procedures used. This should make 

the method and its implementation, and the analysis and frameworks used in the 

analytical process, clear and repeatable in other settings. Below, many of these 

variables are explicitly discussed. 

According to the guidelines for research ethics in the social sciences, 

humanities, law, and theology, the individual has interests and integrity which 

cannot be set aside in research in order to achieve greater understanding or benefit 

society in other ways (NESH, 2016). This sentence should be interpreted as widely 

as possible. When introducing programming into the mathematics classroom, the 

pupils have a right to receive the same education as those who are not part of 

PRIME. According to the subject curriculum for science mathematics in Norway, the 

students have a right to receive 140 hours of mathematics (Udir, 2006). In the 

strictest sense, this prohibits the introduction of programming into the classroom, 

because it will reduce the number of lessons the students receive in mathematics2. 

To uphold their right in this regard, the students received additional lessons to 

maintain the correct number of hours for mathematics. This, however, created its 

own challenge. With an increased number of lessons, the students experienced an 

increased workload, which could have affected their schoolwork in other subjects. 

The design of PRIME, regarding the teaching of programming, needed to be 

organised in a way that minimised student workload. Designing PRIME so that the 

 

 

 

 
2 At the time of implementation for this thesis, the curriculum did not contain any 

requirement for programming. 
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students received ten extra lessons in programming during their normal school year 

allowed for a minimal influence on their schoolwork. Throughout the year, the 

students received programming tasks to both maintain and advance their skills. 

These tasks had to be voluntary and, at the same time, meaningful and beneficial, so 

that the students saw the value of completing them. The voluntary aspect is covered 

in the ethical guidelines, which stipulate that is has to be free, which means without 

external pressure or constraints on individual freedom (NESH, 2016). Many factors 

affected the students’ motivation to undertake these tasks. Since the researcher was 

teaching the class and therefore responsible for the students’ final grade, there was 

a danger that the students felt obligated to do these tasks in order not to receive an 

unfair evaluation. This eventuality is, again, covered by the ethical guidelines, which 

state that the researcher has a special responsibility for protecting the integrity of 

the individual (NESH, 2016). The neutrality of the researcher was maintained 

through the co-creation of tests and co-grading with fellow teachers at the school.  

Data were collected through voice and screen recordings of the student’s 

laptop screen when they were working on MPPs in lessons. When a student or 

group of students is recorded, their responses will be an entanglement of facts and 

values (Putnam, 1992). I will not go into the arguments related to such 

entanglement, but it is important to remember the effect this can have on the 

responses given. As the data collection was performed by a software program 

installed on the students’ school laptops, the students could control when the 

recording started and stopped. The recorded students were all asked to initialise the 

recording at the start of the lesson but shown how to pause it if they wanted to 

access sensitive information on their laptop. The students often forgot that the 

recording was on, but thankfully no sensitive information was recorded.  

Bias can be defined as a deviation of a measurement from the true value, and 

many research projects are in danger of bias (Kirch, 2008). Bias can originate from 

many different sources, but it is always a result of human choices. Interpretation 

bias refers to the data analysis being compromised so the result may not be valid. 

The researcher occupied two roles, teacher and researcher, possibly affecting the 

analysis of the data collected. To maintain the validity of the research, the 

frameworks used have been presented in detail, with several examples of how the 

coding was undertaken. When interpreting transcripts, in particular, excepts are 

presented to visualise the coding process in detail.  

Selection bias refers to the selection of individuals for analysis being such that 

proper randomisation is not achieved and the population it is intended to analyse is 

therefore not represented. This work is affected by selection bias in two ways. 
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Firstly, since the number of participants is low, general conclusions are difficult to 

draw. In Articles 2 and 3, this is accounted for by explicitly pointing out that further 

research with a larger number of participants is required to confirm the findings. 

Secondly, the students do not reflect the average student in upper secondary school 

as they elected both science mathematics and to be a part of PRIME. The class, while 

having a good grade average, received every grade along the spectrum. Additionally, 

only two students had any prior experience with programming, and those students 

elected not to be a part of PRIME.  

The detailed description of the method used in PRIME aims to increase both 

the validity and the reliability of the research performed. Validity is the degree to 

which the method measures what it purports to measure (Oluwatayo, 2012). 

Internal validity relates to causality, which concerns whether the result of the 

research performed is convincing (Bryman, 2016). The method chapter has 

described the process from the setting and selection of participants, data collection 

and transcription through analysis to ensure maximum transparency. One issue 

which might undermine internal validity is the availability of the data: not all data 

could be collected because doing so would violate the anonymity of the participants.  

External validity concerns whether the results are generalisable beyond the 

context of PRIME. The important variable here is the type and number of students in 

PRIME. As noted, the students selected the class and therefore had an inherent 

motivation to commit to the MPPs given. I would argue that, with the iterative 

process of design and the fact that the students experienced both adversities and 

successes, the research is applicable to other mathematics classrooms.  

Reliability is concerned with whether the same result would be obtained when 

the research was performed in a different setting (Bryman, 2016). Reliability is 

interesting, as there is a duality to consider. No two classrooms are alike, but there 

are nonetheless similarities among them. The classes in PRIME are not 

representative classes, as all the students elected science mathematics, indicating an 

interest in – or, at least, not a dislike of – mathematics. I would still argue that the 

results from PRIME are applicable to almost every mathematics classroom as 

students experience joy, frustration, and adversities and can participate in 

discussions with their peers in all classrooms. The results of PRIME are quite 

general, so the individual designer (or teacher) can apply the recommendations to 

their own classroom. Not every recommendation will be applicable to every class, 

but that was not the intention of the project.  

The researcher in this PhD project is employed by the educational 

administration in Oslo (UDA), and UDA is sponsoring the entirety of the doctorate 
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degree. The funding received from UDA raises the ethical issue of the independence 

and transparency of this research. It is clear that UDA expects results to come from 

their funding, but it remains important that dependence does not undermine 

researchers’ impartiality and the scientific quality of the research (NESH, 2016). 

UDA has not received any results prior to publishing, and there has been no 

pressure to present a given result, nor the expectation of one. This position is in 

agreement with the ethical guidelines, which state that ‘the researcher is protected 

against undue pressure from the commissioner to draw particular conclusions, and 

is free to discuss alternative interpretations of their findings, or to point out 

scientific uncertainty’ (NESH, 2016, p. 36). The only expectation on the part of UDA 

has been to receive an occasional presentation of progress and findings so far and 

the sharing of the accumulated knowledge with other teachers. 
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5 Summary of articles 

The three articles form a network which feeds into the research question 

addressing what recommendations should guide the design of MPPs to facilitate 

mathematical learning in upper secondary school? from different angles. Each 

article builds towards a greater understanding of how a possible design for the 

implementation of programming in the mathematics classroom can be performed. 

Article 1 consists of the development of a structure for designing MPPs. Article 2 

investigates the implementation of MPPs in the classroom, with a focus on what 

facilitates and hinders exploratory talk. From the work presented in Article 2, it 

became apparent that the adversities encountered by the students when working on 

MPPs needed to be investigated, and Article 3 presents this investigation. Both 

Articles 2 and 3 influenced the iterative development of the MPPs. Figure 22 

illustrates the research process, whereby Article 1 investigated the design of the 

MPPs, Article 2 investigated the implementation of the MPP from Article 1 in a 

mathematics classroom, and Article 3 focused on one of the issues presented in 

Article 2, namely adversities occurring when working on MPPs. All the articles 

influenced the iterative process of developing recommendations for the 

implementation of programming into the mathematics classroom. 

 

 

 

 

 

 

 

 

 

 

 

 



62 

5.1 Summary of Article 1 

The first article presents and discusses design ideas for problems 

implementing text-based programming as a tool for learning mathematics by 

incorporating both adidactical situations and problem-solving strategies. The design 

of MPPs uses the combination of problem-solving and adidactical situations as 

structures for design. The article presents an in-depth example to illustrate the 

seven-part design structure of the MPPs shown in figure 8. The first part enables the 

students to recall the previous mathematical knowledge required to engage with the 

problem, building the basis of the adidactical situation. The second part presents a 

limitation or challenge with a known mathematical concept. The article uses the vast 

number of mathematical methods of finding the zero point for different functions as 

an example and asks the students to reflect on the possibility of finding a single 

method for all zero points. The adidactical situation is achieved through a problem 

which, albeit time-consuming, the students can solve. The third part asks the 

Figure 22: Illustration of how the three articles are connected and how they affect 

PRIME. 
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students to reflect and build a mathematical argument for the solution to the 

problem in part two.  

Parts two and three build an adidactical situation, often with the inclusion of 

an epistemological obstacle, as students use their previous mathematical knowledge 

to build a new argument. Part four, like part one, enables the students to recall 

previous programming knowledge. This is the part of the MPP where the students 

start to program. Part five makes the students use the mathematical procedure or 

strategy they developed in parts two and three in a programming environment. This 

does not necessarily mean coding, but rather algorithmic thinking, such as breaking 

down the problem into steps the program can perform. The sixth part is the building 

of the program, using the mathematical strategy together with the algorithmic 

thinking from part five. This part is often time-consuming since the students are 

programming novices. At the end of part six, they have a working program that runs 

and yields an answer. The seventh part requires them to explore the limitations and 

affordances of the program through a mathematical lens. The article builds and 

argues for a structure for designing MPPs that facilitates adidactical situations in the 

mathematical classroom. The structure, together with the example, illustrates how 

mathematical learning can be blended with programming in upper secondary school 

mathematics.  

5.2 Summary of Article 2 

The second article investigates exploratory talk amongst students when 

working on MPPs. The article investigates elements contributing to and hindering 

exploratory talk. In six lessons, the audio and computer screens of several students 

were recorded as they worked on MPPs. The recordings were then transcribed and 

coded using the abductively created framework described in section 4.4. The first 

coding category was whether the communication was related to mathematics, 

programming, or a combination of the two. The second coding category was 

whether the transcript included adversity and/or exploratory talk. Both adversity 

and the separation between positive and negative adversities are presented as 

explained in section 3.3.  

Exploratory talk, which can occur directly or because students encounter an 

adversity, is taken to lead to learning and presented in section 3.1. Together with 

several excerpts of transcriptions to illustrate the different category combinations, 

the results are presented as a chart for each lesson indicating the frequency of each 

category. In the lessons during which the mathematical theme to be programmed 

was familiar to the students, a significantly higher number of exploratory talks 
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versus adversity was observed. The exploratory talks taking place were also 

focusing on mathematics. In the lessons in which the mathematical theme to be 

programmed was unfamiliar (or new), adversity increased and more time was spent 

discussing programming code than mathematics. 

The article discusses possible causes and implications of adversity and 

exploratory talk in the lessons and ends with three main findings. (1) Implementing 

programming in the mathematics classroom can facilitate mathematical exploratory 

talk, which facilitates learning. (2) Programming is best implemented to facilitate in-

depth learning of already known mathematical concepts, as this initiates 

exploratory talk. More care is needed when utilising programming to teach new 

mathematical concepts, as this can result in an insurmountable adversity for the 

students. (3) Adversity is both important and challenging when programming is 

implemented in the mathematics classroom: important in that it can facilitate 

mathematical epistemological obstacles and challenging in that it adds another layer 

of complexity. This latter adversity is possible to overcome through task design and 

evaluation of the mathematical method to implement. 

5.3 Summary of Article 3 

Article 3 investigates which types of adversities are encountered by upper 

secondary school students when working with MPPs in the mathematics classroom 

and how the adversities are related to the learning of mathematics. The transcripts 

from lessons were reviewed and divided into segments where the students 

encountered an adversity which they either solved or failed to solve. Each segment 

was then coded according to an abductively created framework (see section 4.4) 

consisting of four categories: 

1) Concept adversity is any obstacle related to the use and knowledge of 

different commands and types in the programming language. 

2) Syntax adversity includes the structure of conditions and loops and the 

logical build of a program. 

3) Output adversity occurs when pressing ‘run the program’ button presents 

an obstacle. This can take many forms, from syntax errors and 

unexpected answers to no output at all. 

4) Coding adversity occurs when the students are attempting to convert a 

mathematical procedure to programming code. 

The framework is built upon a combination of known and observed programming 

barriers and mathematical obstacles, as explained in section 3.3. 
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Concept adversities are frequent, but since each incident is quickly resolved 

through either discussion within each student group or through a short question to 

the educator, they do not affect the students’ work in a significantly negative way. 

Such adversities can be reduced by giving the students skeleton code or ensuring a 

repetition of previously used code, but the research also indicated that this problem 

diminishes as the students become more comfortable and experienced with the 

programming language. A possible alleviation of this type of adversity is to give the 

students a glossary of codes, with a short explanation of each command. These 

adversities were not viewed as a major problem in the lessons conducted.  

Sequencing adversities were the least frequently seen type and, when resolved, 

were observed to facilitate an internal construction of the programming code and 

understanding of each element of it. Additionally, students were observed to discuss 

and argue for the logical procedure of the program. In one of the MPPs, where the 

students were familiar with the mathematics before applying programming, 

resolved sequencing adversities were prominent. In the second MPP, where the 

students were required to apply a previously unknown mathematical method and 

programming, they were not able to resolve the adversity. This outcome indicated 

that when implementing programming in the mathematics classroom, it is better to 

apply programming as a tool for deep learning when the mathematics has already 

been taught, rather than as a means to introduce a new topic.  

Output adversities were as prominent as command adversities but initiated a 

discussion over a longer time span and were observed to contain more 

mathematics, often combined with programming. When output adversities were not 

resolved within a reasonable timeframe, the students gave up and deleted the code 

causing the adversity. This made them disengage from the adidactical situation 

(Brousseau, 1997). Output adversities are difficult to mitigate since they are hard to 

predict, and students have limited knowledge of how to interpret feedback from the 

editor; however, teaching the students basic knowledge of how to handle errors was 

particularly advantageous.  

Translation adversities were, for the mathematically inclined, perhaps the 

most interesting, as they make visible the combination and advantage of 

mathematics and programming. The two main features of translation were to (1) 

use mathematics to make the program understand a simple mathematical 

relationship; and (2) use mathematics to solve a complex problem through building 

a short program. Preventing translation from becoming an ontogenic obstacle 

depended on the students’ building of a mathematical model into a programming 

model in which the elements and their relation were essential for the solution (Ko et 
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al., 2004). Facilitating this building, the task needs to scaffold the intended problem 

by using and recalling the previous mathematical knowledge required and guiding 

the students in their exploration to assemble a new mathematical and/or 

programming model (Kirschner et al., 2006; Reiser, 2004). 
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6 Discussion 

The following chapters use the articles and the connections between them to 

answer the research question concerning which recommendations should guide the 

design of MPPs to facilitate mathematical learning in upper secondary school. 

The aim of this thesis is to present a set of recommendations for the design of 

mathematical tasks in which programming is an integrated part. Several factors 

influencing these recommendations are derived from both previous research and 

the research undertaken for this thesis. Last time programming was implemented 

into the school setting, it did not succeed, partly due to the students not being able 

to connect the programming they performed with the intended mathematical ideas 

(Misfeldt & Ejsing-Duun, 2015; Papert, 1980). To prevent a similar result this time, 

the connection between the programming the students undertake needed to be 

explicitly linked to mathematics. PRIME has, since its conception, been explicit that 

programming is a tool for learning mathematics and that it is only used when it 

facilitates mathematical learning. When building a program plotting, solving, and 

calculating properties of quadratic equations (Articles 1, 2, and 3), the building 

facilitates the students’ learning  

• challenges with negative roots and invalid solutions 

• the link between the graphical representation and the above challenges 

• the generalisation of finding properties of quadratic equations, such as 

extreme values, the derivative, and zero points. 

Additionally, the logical and structural build of a program is closely related to 

the structure of mathematics. I argue that the students, by applying a program 

directly to a mathematical concept, experienced a direct link between the 

programming and mathematics (Article 2). In PRIME, this link was accomplished 

through the design of the task. As previously stated, tasks are the main ‘thing to do’ 

in the mathematics classroom (Watson et al., 2015, p. 3), and task design is 

therefore central in facilitating the implementation of programming into that 

classroom. For a task to be successful in PRIME, I defined several criteria from the 

work in the three articles, which consider the structure, discussion among students, 

and adversities encountered by students, respectively. The combination culminates 

in what distribution of these criteria is beneficial to learning mathematics. From the 
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work conducted in PRIME, a set of recommendations was developed, each of which 

comes with its own argument. 

 

Design tasks where programming is a tool for learning mathematics.  

When programming is implemented within mathematics rather than taught as 

a separate subject, the focus should remain on the students’ learning of 

mathematics. It is easy to design a task in which the students use programming to 

build a small game or give instructions to a movable object, such as a car, with the 

connection to mathematics being obscure. In fact, programming is excellent at 

engaging the students in such tasks (Forsström & Kaufmann, 2018; Kjällander et al., 

2021). The challenge becomes how to facilitate the link between programming and 

mathematics to avoid a similar fate to that seen last time programming was 

implemented (Misfeldt & Ejsing-Duun, 2015).  

For programming to be a valuable artifact for both students and teachers, its 

use must be clear and obvious. The MPPs presented in PRIME exemplify this need 

for clarity by making the mathematical challenge clear very early in the task (Article 

1), seasoning the code building with mathematical tasks (Article 1), facilitating the 

students’ mathematical exploratory talk (Articles 1 and 2), and using the program to 

explore limitations and evaluating mathematically why such limitations occur 

(Articles 1 and 2).  

Articles 2 and 3 indicate that there needs to be a concrete and obvious link 

between the activities in which students are engaging and the subject (in this case, 

mathematics). Building a program which requires mathematics is likely to build and 

consolidate the link between programming and mathematics. The connection 

between mathematics and programming does not always have to be explicit; 

however, in upper secondary school in particular, it is important that the task design 

always includes the link to mathematics when programming is engaged in. The 

MPPs should, as presented in Articles 1, 2, and 3, focus on learning and exploration 

(Knight et al., 2017), which gives rise to the next recommendation. 

 

Ensure MPPs facilitate exploratory talk.  

As mentioned in Article 2, multiple studies indicate that facilitating 

mathematical discussion in a classroom is closely linked to mathematical learning 

(e.g. Cobb et al., 1997; Kazemi & Stipek, 2009; Nathan & Knuth, 2003; Resnick et al., 

2017; Sfard, 2000). Article 2 not only presents the challenges that programming 

brings to students’ work, but indicates that students participate in exploratory talk 

when engaging with MPPs. When exploring together, the students have a larger 
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network of abilities from which to draw knowledge when faced with an obstacle, as 

seen in Articles 2 and 3. In this situation, it is hoped that they will build an 

epistemological obstacle, and the number of ontogenic and didactical obstacles 

encountered will be limited (Brousseau, 1997). When they engage in exploratory 

talk, the students show greater stamina (Articles 2 and 3), are more prone to build 

on each other’s ideas and suggestions (Article 2), and present adversities to the 

group for help or discussion before seeking outside help (Articles 2 and 3). When 

the MPPs contain tasks facilitating discussions, students are more likely to 

effectively engage with their peers (Darabi et al., 2013). The tasks that explicitly 

stated ‘discuss with your neighbours’ were also designed to incorporate problem 

solving (Polya, 1957; A. Schoenfeld, 1985), as discussed in section 3.3.  

Closely linked to problem solving is algorithmic thinking, in which students 

decompose a problem into smaller tasks, solve the tasks individually, and finally 

assemble the parts to solve the problem (Abramovich, 2015; Lockwood et al., 2016; 

Stephens, 2018; Stephens & Kadijevich, 2020). Engagement with peers was 

recognised as the iterations of the MPPs developed: the first version contained little 

to no discussion about tasks or problem solving, whereas the version presented in 

Article 1 included several tasks in which both discussion and problem-solving were 

present.  

 

It is advantageous to engage in programming after having learnt a 

mathematical theme, rather than using programming to learn a new 

mathematical theme.  

Article 3 addresses the double barrier students can experience if they are 

tasked with building a program using an unknown mathematical method, or, in 

other words, they are asked to learn a new mathematical theme using programming. 

As discussed in Article 3, two similar MPPs were presented, one of which relied on 

known mathematical concepts such as zero points, function value, and halving an 

interval (bisectional method). While the bisectional element of the MPP did create 

its own adversities, it did not make the students deviate from discussion or from 

working to understand the mathematical method the task was designed for them to 

uncover.  

The second MPP used many of the same concepts but also included a formula 

in which the derivative of a function was used. This increase in complexity made the 

students deviate from the mathematics and focus on the programming, essentially 

relying on copying and pasting code segments. As complexity has been argued to be 

additive (Sweller, 2006), designing an MPP consisting of two adversities was not 
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successful. Rather than learning mathematics, the students engaged with the MPP to 

instrumentally build the code, and without understanding the underlying 

mathematics, they were unable to critically evaluate the output from the program. 

This argument gives rise to the following recommendation. 

 

MPPs should mitigate non-mathematical adversities.  

The design of the MPPs should implement adversities which students are able 

to overcome. As discussed in the previous paragraph, students encounter several 

different types of adversities when working with programming (see Article 3). The 

distinction between a mathematical and a non-mathematical adversity can be 

challenging as, for instance, adversities relating to the output of a program can be 

either. If the output is a syntax error, the adversity can be non-mathematical if 

caused by a wrong indent or mathematical if a calculation could not be performed 

due to a missing or misplaced parenthesis, as described in more detail in Article 3.  

While it is helpful and advantageous to remove many adversities, it would be 

disadvantageous or impossible to remove all. As adversity, and particularly its 

resolution, is beneficial to learning (Hiebert & Grouws, 2007), I argue that one 

should strive to design adversities which students are able to overcome, thereby 

facilitating the adversity becoming an epistemological obstacle (Brousseau, 1997). 

Command adversities, for instance, are difficult to remove, but since they are 

resolved quickly (Article 3), they are not a major concern. It is more important to 

avoid designing problems in which the combination of code and mathematics 

becomes too complex.  

 

MPPs should have a low floor and a high ceiling.  

A ‘low floor’ is now a commonly used term to identify whether a programming 

language is easy to learn and the time taken from learning a few commands to 

building programs is short. In PRIME, low floor, in the context of task design, 

indicates whether a student will be able to initialise their work on the task (Papert, 

1980; Sullivan et al., 2012). I argue that programming is the most complex digital 

tool introduced into the upper secondary school mathematics classroom, and to 

reduce students’ (and teachers’) frustration, it is essential that tasks have a low 

floor.  

In all the MPPs, the initial tasks utilised the students’ previous knowledge of 

mathematics as a gateway to the subsequent tasks (Articles 1, 2, and 3). The idea of 

a low floor is conceptualised as being that every student should be able to build an 

initial coding sequence that runs without encountering errors. This is, 
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unfortunately, almost impossible, since inevitably some students accidently enter a 

key into a code that should not be there, typically resulting in a syntax error. From 

Article 3, I argue that this type or error is quickly resolved, although it does often 

require assistance from the teacher. If the number of errors remains low, students 

will continue working on the MPP and not give up.  

A ‘high ceiling’ is a commonly used term to describe a programming language 

that has a wide range of possible uses. In PRIME, high ceiling, in the context of task 

design, indicates whether a student has the possibility to expand the program 

throughout the problem (Papert, 1980; Sullivan et al., 2012). In Article 1, the high 

ceiling was only implemented towards the end of the MPP, but the analysis 

performed throughout Articles 2 and 3 showed the students discussing their own 

mathematical ideas and inquiring how to alter the program to facilitate these ideas. 

For instance, when working on the bisectional MPP in which the program found one 

zero point for each run, the students asked how to change it to locate every zero 

point for each run. A high ceiling is very similar to an open task, which has been 

shown to promote students’ mathematical creative thinking and facilitate their 

realisation of their own intentions (Sullivan et al., 2015). Whether students 

experience a task as open or with a high ceiling has been argued to be a 

consequence of their previous educational history, the expectations of the teacher, 

and students’ understanding of these (Brousseau, 1986). I argue that tasks with a 

high ceiling provide two additional benefits. When MPPs are implemented in a 

classroom, a high ceiling will allow high-achieving students to expand their program 

further with more complex procedures. For instance, when working on the MPP 

solving the quadratic equation, the last task encouraged them to expand the 

program to include the derivative and extremal values, to name a few. This 

possibility allowed them to use their mathematical knowledge and combine it with 

programming to expand the program.  

The second benefit is that a high ceiling allows the students to gain ownership 

of their work, which has been shown to play a part in learning (Carpenter & Lehrer, 

1999; Conley & French, 2014). In all the articles, ownership continues to be 

apparent, with the students altering the program according to their own preference. 

A very endearing, but still important, occurrence was the students’ choice to colour 

their graphs when plotting them, which continued to elicit a positive reaction from 

the students (see Articles 1 and 2).  

 

As every teacher knows, it is rare that a classroom activity unfolds in the same 

way in two classrooms. The same can be said of MPPs, since they are quite extensive 
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and complex in nature. I argue that a simple problem statement, such as solving an 

equation or plotting a graph, will, in most classrooms, be undertaken by students in 

similar ways. When the complexity increases, either because the problem requires 

several steps or one of the steps is difficult, there is a higher chance of dissimilar 

performance. The recommendations above attempt to combine mathematics and 

programming, both of which are subjects that many students find difficult (Campbell 

& Epp, 2005; Grover & Pea, 2013; Jenkins, 2002; Ko et al., 2004; Merenluoto & 

Lehtinen, 2004; Nelson & Powell, 2018; Piteira & Costa, 2013). The 

recommendations do not resolve all challenges related to the implementation of 

programming in the upper secondary school mathematics classroom but aim to be a 

starting point from which future research can proceed. They are intended as a step 

on the way to creating a set of design principles for task design when implementing 

programming in mathematics. 
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7 Concluding thoughts and future 

work 

7.1 A happy marriage between mathematics and 

programming? 

Through the work undertaken in this thesis, I hope to have shown that 

programming can be utilised to teach mathematics in an upper secondary school 

setting. This does not mean that there are not challenges, but rather that the 

potential for using programming as a tool for learning mathematics and the increase 

in possibilities it offers outweigh the adversity it brings. As we are currently in the 

infancy of the second round of introducing programming into schools, it is vital to 

bear in mind the need to progress slowly. Currently, students have little to no 

knowledge of programming when they enter upper secondary school, and it takes a 

significant amount of time to both teach them programming and use programming 

in lessons. As the years go by and students arrive at upper secondary school with 

more and more knowledge of programming, it will become simpler to arrive at the 

point where programming can be used in lessons rather than taught. In the years 

before that point is reached, however, it is important to limit the complexity of 

MPPs, as argued for in the articles. In the coming years, wider-scale research 

involving a much larger number of students should be undertaken to investigate the 

different aspects of the implementation of programming.  

When combining elements from the presented task design, exploratory talk, 

adidactical situations, and minimising adversities through the same elements, 

programming can be utilised to facilitate mathematical learning in the classroom. 

The caveat is that there are many hurdles for the teacher to overcome to achieve 

this outcome. Task design is very time-consuming and presents many difficulties, 

such as what mathematical concept to apply programming to, how to utilise 

programming efficiently, how to facilitate mathematical learning, and, finally, how to 

avoid unnecessary complexity. Exploratory talk needs to be explicitly facilitated as 

few students can participate in a mathematical discussion without any form of 

guidance or training. Adversities influence and set the stage for both task design and 

exploratory talk in that the students through their work with the MPPs and the 

didactical contract with their teacher should overcome these adversities. The 
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restructuring of known concepts and introduction of new ones contribute to an 

increased network of mathematical knowledge and promote mathematical learning. 

By combining MPPs and classroom orchestration, it is possible to design lessons 

that facilitate mathematical learning using programming as a tool. 

Although the work presented is well founded within research into mathematic 

didactics, I have no doubt that the recommendations in PRIME can be applied when 

implementing programming in other sciences.  

 

7.2 Limitations 

The students involved in this research all received a ten-hour crash course in 

programming at the start of the year to ensure that they had a basic knowledge of 

programming before starting work on the MPPs. While the MPPs also facilitated the 

students’ learning of programming code, I argue that the initial knowledge they 

received enabled the students to shift their focus towards mathematics rather than 

allowing programming to become a dominating challenge. With the implementation 

of programming in the mathematics classroom, there is a need to teach the students 

programming in addition to mathematics.  

While this work has only looked at how to implement programming in 

mathematics, it simultaneously strongly suggests that the implementation of 

programming will negatively affect the amount of time the students spend on 

learning mathematics. As argued previously, programming can, in several instances, 

contribute to the learning of mathematics, but there are two important caveats to 

this statement. Firstly, the students in this research all chose to participate, and it is 

thus not an unreasonable assumption that they were, at least to some extent, 

motivated to learn programming. Secondly, the students received an additional ten 

hours’ tuition in basic programming. Even with these two advantages, the students 

still encountered challenges with programming, and there is a real concern that 

implementing programming in mathematics will take away precious time. A 

solution could be either to increase the number of lessons in mathematics to allow 

for the teaching of programming, or, and perhaps in preference, to implement a new 

course that focuses only on programming and related subjects, such as technology 

and logical thinking, as suggested by several other reports (Ludvigsen, 2015; Sevik, 

2016). T 



 

75 

7.3 The entire school setting and future work 

What about the rest of the school system? How can programming contribute to 

learning mathematics from primary school onwards? In this section, I present a 

sequence of examples to show how programming can contribute to learning 

mathematics and be a bridge between the mathematics curriculum in primary 

school, secondary school, and at university level. These examples are based on 

experiences of PRIME and my own experiences as a teacher.  

In primary school, students learn simple programming routines using a simple 

language. They can, for instance, program a moving object (a car, a ball, or similar) 

to drive from one point in the classroom to another. Let us say, for the sake of 

simplicity, that this program only accepts inputs for movement in the form of 

forward, backward, turn left (90 degrees), and turn right (90 degrees). To drive, a 

sequence of code can be: 

forward(10) 

turn right 

forward(10) 

As more code sequences are used, the relationship between the code and the 

movement becomes increasingly apparent for the student, for example that the car 

drives ten steps forward and ten steps to the right. By applying similar code 

sequences, it is possible to reach any positive point.  

The next step could be to mark the floor of the classroom with two tapes 

indicating forward and right, with steps along each tape. The tapes meet at the point 

where the car starts, namely the origin with coordinates (0,0). One could then say 

that the origin of the car is named with the coordinates (0,0), and the endpoint of 

the drive is named with the coordinates (steps forward, steps to the right), 

introducing the concept of coordinates. The next step is to program the car to travel 

between several points, for instance from origin to (10, 10) to (15, 5). This task 

initiates simple calculations to correctly program the route of the car. Depending on 

the grade of the students, the points can be only additive or include subtraction.  

The students can also be introduced to the concepts of coordinate system, axis, 

and so forth. Furthermore, one could give the students the task of investigating how 

to move the car twice as far or half as far, thereby introducing the elements of 

multiplication and division. As the students program the movable object, initially 

along points along a straight line, they could be introduced to the concept of linear 

functions. A later variant could allow the students to program a course that 

traverses a set of points, but in a more fluent way, following a curved path rather 

than moving from point to point, foreshadowing the use of non-linear functions. 
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When the students later learn about coordinate systems, they can refer to the 

exercise they performed in the lower grades and make the connection of 

forward/backwards to positive/negative y-axis and right/left to positive/negative 

x-axis. The curved route is a polynomial, rational, or exponential function.  

The addition of travel from point to point is an introduction to vectors, where 

the students can visualise that adding the distance from the origin to (10, 10) and 

from (10, 10) to (15, 5) is the same as travelling to (15, 5) directly, foretelling the 

addition of vectors, which are taught at secondary school. This is one small example 

of possible benefits of using programming throughout the school spectrum – to be 

able to foretell future mathematical concepts very early. There are many similar 

examples, and more will be uncovered as programming becomes more prominent 

throughout the school system. This, in my opinion, would be a truly valuable use of 

programming, where one strives to design lessons that both facilitate mathematical 

learning and foreshadow future mathematical concepts. 

For those countries already implementing programming in the mathematics 

classroom, there is a need for research into how this effects and affects learning. The 

work carried out here is small-scale, and while it provides several interesting 

observations, several large-scale investigations need to be conducted. Possible 

research questions include: 

- How has the implementation of programming in the mathematics 

classroom changed the orchestration of lessons? 

- How does the use of programming affect the students’ learning of 

mathematics on a large scale? 

- How does programming affect the students’ difficulties in mathematics? 

- How does programming affect the students’ motivation in mathematics? 

Many other research questions will undoubtedly emerge. I am curious to see 

what future research into the implementation of programming in mathematics (and 

physics, biology, chemistry, and earth sciences) will bring. 
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9 Appendices 

A Solution to problem in 3.3 

Important – this is not a mathematical proof, merely an explanation of the idea 

behind the solution. 

The idea is to create a sequence of drops, with the maximum number of drops 

not changing no matter which floor is the solution. The first drop can, as a starting 

point, be anywhere. The second drop must then consider that we have used one 

drop already, and therefore needs to be selected such that the maximum number of 

drops does not change. To accomplish this, if the first floor chosen was at 𝑛, then the 

following floor needs to be (𝑛 − 1) floors up from the first floor. If unlucky, you need 

a maximum of 𝑛 drops: a maximum of 𝑛 if the first ball breaks on the first throw and 

a maximum of (𝑛 − 1) + 1 = 𝑛 if the first ball breaks on the second floor chosen.  

For the third floor chosen, we need to choose floor number 𝑛 + (𝑛 − 1) + (𝑛 − 2) to 

keep the number of maximum drops constant. We will then have used (𝑛 − 2) + 2 =

𝑛 drops 

 

Since there is a maximum of 100 floors, we can build the following sequence and 

inequality (for 𝑛 ∈ ℕ): 

𝑛 + (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 3) + ⋯ + 1 ≤ 100 

 

Solving this for the greatest value gives 𝑛 = 14.  
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The sequence of floors should therefore be: 

 

Floor you drop from Most unlucky floor Maximum number of 

drops 

14 1 0+14 

27 15 1+13 

39 28 2+12 

50 40 3+11 

60 51 4+10 

69 61 5+9 

77 70 6+8 

84 76 7+7 

90 85 8+6 

95 91 9+5 

99 94 10+4 

100 100 11 

 

The maximum number of drops you need is 14 no matter how unlucky you are. 
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B MPP covering the bisectional method (in Norwegian) 

 

Funksjoner 2 - Nullpunkter 
Vi skal fortsette på programmet i Funksjoner 1 - Plot for å finne nullpunkter til en 

funksjon. Vi må først tenke gjennom hvordan vi skal gjøre dette. Vi vet stort sett 

hvordan vi skal finne nullpunkter hvis vi ser funksjonen, men vi bruker ikke alltid 

samme metode. 

 

 

Oppgave 1 

Diskuter med sidemannen hvordan (og om) man kan finne nullpunktet for alle 

funksjoner av typene under. 

a) Alle andregradslikninger, for eksempel  

 

𝑓(𝑥) = 2𝑥2 + 3𝑥 − 2 

 

 

b) Alle tredjegradslikninger, for eksempel  

 

𝑔(𝑥) = 𝑥3 + 3𝑥 − 4 

 

 

c) Alle rasjonale funksjoner, for eksempel  

 

ℎ(𝑥) =
2𝑥 + 3

3 − 𝑥
 

 

 

d) Alle eksponentielle funksjoner, for eksempel  

 

𝑖(𝑥) = 𝑒2𝑥+1 − 1 
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Det er flere eksempler, men metodene vi bruker varierer ganske mye fra funksjon til 

funksjon. Drømmen er å finne én metode som kan anvendes på alle funksjoner vi 

skriver inn. Vi skal se hvor langt på vei vi kan komme.  

 

Starter med å se på funksjoner der funksjonsverdien skifter fortegn i nullpunktet, se 

eksempel under. 

 

Figuren under viser en graf som er negativ til venstre for nullpunktet, og positiv til 

høyre for nullpunktet. Dette er det vi mener med at funksjonsverdien skifter fortegn 

i nullpunktet. 

 

 

 

Vi må nå prøve å lage en metode for å finne nullpunktet. Så hvordan skal vi klare 

det? 
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Oppgave 2 

a) Diskuter følgende spørsmål med sidemannen: 

• Hva er felles for alle nullpunkter? 

• Er det noen forskjeller på nullpunkter? 

 

b) Tenk dere en maskin som kun kan gi deg funksjonsverdien når du oppgir 

en 𝑥-verdi. Alle andre spørsmål vil gi en feilmelding. Hvordan kan du 

systematisk gå frem for å finne nullpunktet til funksjonen under ved hjelp 

av denne maskinen? Maskinen kan regne så nøyaktig som du ønsker på 

funksjonsverdiene. Diskuter fremgangsmåter sammen med sidemannen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

c) En i gruppen får utdelt en del ark med grafer på. Kun én person i gruppen 

ser på arkene (og spiller maskinen). Resten av gruppen stiller spørsmål for 

å finne hvor grafen har nullpunktet sitt. Bruk metoden dere avtalte i forrige 

deloppgave. Sjekk om den fungerer på alle grafene dere fikk utdelt.  
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Halveringsmetoden: 
Metoden avhenger av at vi vet i hvilket intervall vi skal lete. For å løse dette lar vi 

først programmet plotte grafen, for deretter å legge inn intervallet vi skal lete i.  

La oss se på en funksjon fra en tidligere eksamen (H2017) som er vanskelig å finne 

nullpunktene til 

𝑓(𝑥) = 2 ln(𝑥4 + 4) −
1

2
𝑥  

Oppgave 3 

Prøv å finn nullpunktene ved regning. Klarer dere det? Hvor nærme kommer dere? 

 

I oppgaven over fant dere at vi ikke kjenner til noen metoder for å løse denne typen 

oppgaver. Her må vi bruke det som kalles en numerisk fremgangsmåte (se side 12 

for forklaring av numeriske metoder).  

 

Fremgangsmåten for programmeringen presenteres i steg, der hvert steg forklarer 

en del av koden. Dere kan gjerne prøve selv først, men sørg for å likevel lese 

gjennom stegene slik at dere ser hva dere må ha med. 

 

Steg 1 – Tegne grafen og lokalisere nullpunktene 
Starter med å bruke programmet fra forrige time til å plotte grafen for å se hvordan 

den ser ut. Merk at i Python er log() kommandoen for den naturlige logaritmen. 

Etter å ha lekt litt med koden får man et plot som viser funksjonen.  Vi ser også i 

hvilket område nullpunktet befinner seg. Grafen kan for eksempel se slik ut (dette er 

avhengig av hva du har valgt som xlim og ylim). 
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Fra denne grafen ser vi at funksjonen har ett nullpunkt i intervallet [60, 80]. Vi kan 

gjette på et mindre eller større intervall, men det har liten betydning for 

programmet. Intervallet [60, 80] er greit nok for at programmet skal vite hvor det 

skal lete.  

Koden som gir grafen over er: 

 

from pylab import * 

x = linspace(-5, 80, 1000) # Verdier for x 

 

def funksjonsverdi(x):  # Funksjon som regner ut y-verdiene 

 y = 2*log(x**4 + 4) – 0.5*x 

 return y 

y = funksjonsverdi(x)  # Kaller på funksjonen over 

 

plot(x, y, 'g')    # Plotter x og y 

grid()      # Tegner rutenett 

ylim(-5, 15)     # Intervallet langs y-aksen 

xlabel('x')     # Navn x-akse 

ylabel('f(x)')    # Navn y-akse 

axhline(y=0, color='k')  # Tegner x-akse 

axvline(x=0, color='k')  # Tegner y-akse 

show()      # Viser grafen 
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Steg 2 – Sette et intervall 
Vi må først la programmet vite hvor det skal begynne å lete. Vi starter derfor med å 

spørre brukeren om hvor vi skal lete, se eksempel under Steg 3. Bruker her input() 

kommandoen. Siden intervallet alltid er et tall legger vi på kommandoen float() 

slik at programmet skjønner at det er et tall vi oppgir. 

 

xv = float(input("x-verdi til venstre for nullpunkt: "))  

xh = float(input("x-verdi til høyre for nullpunkt: "))  

 

 

Steg 3 – Regne ut funksjonsverdiene 
Vi regner ut funksjonsverdien til xv og xh. Hvis vi har oppgitt et korrekt intervall 

bør de ha forskjellig fortegn. 

yv = funksjonsverdi(xv)  # y-verdien, venstre side 

yh = funksjonsverdi(xh)  # y-verdien, høyre side 

 

print("Venstre side: f(", xv, ") =", yv) 

print("Høyre side: f(", xh, ") =", yh) 

 

Eksempel: 

Kjører programmet og setter xv = 60 og xh = 80. 

 

 

Ser at funksjonsverdiene har forskjellig fortegn. 
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Oppgave 4 

Prøv programmet på funksjonene under. Bestem intervaller selv og sjekk at 

programmet gir forskjellig fortegn på hver side av nullpunktet. 

a) 𝑓(𝑥) = 5 − 2𝑥 

 

b) 𝑔(𝑥) = 𝑥2 − 3𝑥 + 2 

 

c) ℎ(𝑥) = 𝑒2𝑥 − 4 

Hint:  Et godt tips for å teste uten å slette det man allerede har skrevet er å 

sette en # foran. Da vil ikke programmet lese den delen av koden. 

Når man vil tilbake kan man bare ta vekk # igjen. Man kan også 

markere teksten man vil skal kommenteres og venstre-klikke og 

velge Comment/Uncomment (Ctrl + 1) 

 

 

Steg 4 – Finne midtpunktet (halveringslinjen) 

Etter å ha sjekket at 𝑓(xv) og 𝑓(xh) faktisk har forskjellig fortegn, sjekker vi 

funksjonsverdien til x-verdien i midten av intervallet, 𝑓(xm). 

 

xm = (xv + xh) / 2   # Regner ut midtverdien til x 

ym = funksjonsverdi(xm)  # y-verdien, midtpunkt 

 

print("Midtpunkt: f(", xm, ") =", ym) 

 

Fra eksempelet over så vi at 𝑓(xv) var negativ og 𝑓(xh) var positiv. Vi kjører 

programmet og får skjermbildet under. 
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Vi må nå tolke svarene vi har fått. Under er to påstander om svarene. 

• Hvis 𝑓(xm) er negativ, vet vi at nullpunktet befinner seg mellom xv og xm 

• Hvis 𝑓(xm) er positiv, vet vi at nullpunktet befinner seg mellom xm og xh 

 

Oppgave 5  

Diskuter med sidemannen hvorfor de to påstandene over må være korrekte. 

 

 

Steg 5 – Sjekke fortegn og if-setning 
Vi har sjekket fortegnet til yv, ym, og yh, og vi må nå avklare om nullpunktet ligger i 

intervallet [xv, xm] eller [xm, xh].  

 

Figuren under viser linjene 𝑥 = 60, 𝑥 = 80, og linjen midt imellom (markert med 

rødt) 𝑥 = 70. Vi ser at fortegnet til 𝑓(80) er likt fortegnet til 𝑓(70), og dermed vet vi 

at nullpunktet ligger i intervallet [60 , 70]. 

 

 

Vi må utvide konsekvensene av fortegnene til å gjelde generelt.  
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Oppgave 6  

Bruk figuren over til å diskutere med sidemannen følgende påstander. 

• Hvis yv og ym har samme fortegn, så vil nullpunktet ligge i intervallet 

[xm, xh] 

• Hvis yv og ym har ulikt fortegn, så vil nullpunktet ligge i intervallet 

[xv, xm] 

 

Vi ser at dette er en «hvis – så» prosedyre, og vi har lært om if-setninger, så dette 

virker lovende. Vi må oversette punktene over til en if-setning.  

 

Oppgave 7 

Hva er en rask måte å sjekke om to tall har samme eller motsatt fortegn ved 

hjelp av en if-setning? Diskuter med sidemannen. Etter å ha diskutert kan 

dere se en mulig løsning neste side. 

 

 

 

En mulig løsning på oppgave 7: 

if yv*ym < 0: 

 # Mulighet 1: Her ligger nullpunktet mellom xv og xm  

elif yv*ym > 0: 

 # Mulighet 2: Her ligger nullpunktet mellom xm og xh 

 

Vi må fortsatt finne ut hva vi skal gjøre for hver av de to mulighetene i kodebiten 

over. 
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Steg 6 – Metode og grafisk forklaring av 

halveringsmetoden 
Metoden vi har kommet frem til er: 

 

i) Finne midtpunkt i intervallet 

 

ii) Sjekke funksjonsverdien for midtpunktet 

 

iii) Kjøre if-setningen for å sjekke i hvilket av de to intervallene nullpunktet 

befinner seg 

 

iv) Sette et nytt intervall 

 

v) Starte på i) igjen 

 

Metoden kan vi kjøre om igjen helt til vi er fornøyd med svaret vårt.  

 

Oppgave 8 

Når er vi fornøyd med svaret vårt? Diskuter med sidemannen 

 

 

Viser fremgangsmåten med et par figurer på neste side. 
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På figuren øverst har vi valgt 𝑥-

verdiene 60 og 80. Deretter har vi 

funnet verdien midt imellom, her 

70. Vi sjekker mellom hvilke 

verdier nullpunktet ligger, og 

finner at det ligger mellom 

punktet til venstre og 

midtpunktet.  

 

På neste figur tegner vi inn de nye 

avgrensende intervallet med to 

linjer (sort) og det nye 

midtpunktet (rødt). Vi sjekker 

igjen mellom hvilke verdier 

nullpunktet ligger, og finner at det 

ligger til høyre for midtpunktet. 

 

 

 

Vi setter det nye intervallet vårt 

til linjene til høyre, og gjør 

prosessen om igjen. 

  

 

 

 

 

 

Hvis vi fortsetter med dette vil vi 

komme til et punkt som er veldig 

nærme nullpunktet. Vi kan selv 

bestemme nøyaktigheten, men vi 

kan begrense nøyaktigheten til 

innenfor 2 desimaler for 

eksempel. Kan øke denne senere 

hvis man ønsker. 
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Steg 7 – Repetisjon om bruken av while-løkke (hopp 

over hvis dere husker) 
Fra metoden over ser vi at vi må bruke en kommando som lar oss gjennomføre en 

prosedyre flere ganger inntil vi når den nøyaktigheten vi ønsker. En while-løkke 

egner seg godt her.  

En while-løkke kjører en prosess inntil en betingelse er oppfylt. En kort while-løkke 

er som følger: 

 

i = 1     # Setter i til verdien 1 

while i < 10:   # Mens i er mindre enn 10 

    print("While-løkken har nå kjørt", i, "ganger.") 

    i = i + 1   # Øker i med en hver gang 

print("Der fikk i verdien", i, ", så løkken er slutt") 

 

Skriver ut til skjerm: 

  

 

 

 

 

 

 

 

 

Oppgave 9 

a) Hva skjer når du skriver i + 2 istedenfor i + 1? 

  

b) Hva skjer når du endrer i < 10 til i < 15? 

 

c) Hva skjer når du endrer i = 1 til i = 20? 

 

d) Kan du endre while-løkken slik at den skriver ut de ti første negative 

tallene? 
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Steg 8 – Programmere if-setningen ferdig 
Starter med å se på if-setningene våre og utvikler dem videre. 

if yv*ym < 0: 

 # Mulighet 1: Her ligger nullpunktet mellom xv og xm  

elif yv*ym > 0: 

 # Mulighet 2: Her ligger nullpunktet mellom xm og xh 

 

Vi starter med at første mulighet er sann. Da er det nye intervallet [xv, xm]. Vi setter 

da at den nye høyre-verdien (xh) er lik xm. Siden xv ikke har endret seg gjør vi ingen 

endring på den.  

 

if yv*ym < 0: 

 # Mulighet 1: Her ligger nullpunktet mellom xv og xm 

 xh = xm 

 

For å vite mer nøyaktig hvor nullpunktet er trenger vi det nye midtpunktet til 

intervallet. Vi må regne ut den nye verdien til xm. 

 

if yv*ym < 0: 

 # Mulighet 1: Her ligger nullpunktet mellom xv og xm 

 xh = xm 

 xm = (xv + xh) / 2 

 

Det siste vi må gjøre er å regne ut de nye funksjonsverdiene til disse tre punktene 

som avgrenser det nye intervallet. Vi kan hoppe over yv siden den er ikke endret. 

 

if yv*ym < 0: 

 # Mulighet 1: Her ligger nullpunktet mellom xv og xm 

 xh = xm      # Setter ny høyre x-verdi 

 xm = (xv + xh) / 2   # Regner ut ny midtverdi 

ym = funksjonsverdi(xm) # Regner ut ny funksjonsverdi 

yh = funksjonsverdi(xh) # Regner ut ny funksjonsverdi 

 

Da er vi ferdige med den ene halvdelen av if-setningen.  



102 

Oppgave 10  

Den andre delen av if-setningen er rimelig lik, se om du og sidemannen kan 

lage den før dere ser på en mulig løsning på neste side. 

 

 

 

 

 

 

 

if yv*ym < 0: 

 # Mulighet 1: Her ligger nullpunktet mellom xv og xm 

 xh = xm      # Setter ny høyre x-verdi 

 xm = (xv + xh) / 2   # Regner ut ny midtverdi 

ym = funksjonsverdi(xm) # Regner ut ny funksjonsverdi 

yh = funksjonsverdi(xh) # Regner ut ny funksjonsverdi 

elif yv*ym > 0: 

 # Mulighet 2: Her ligger nullpunktet mellom xm og xh 

 xv = xm      # Setter ny venstre x-verdi 

 xm = (xv + xh) / 2   # Regner ut ny midtverdi 

ym = funksjonsverdi(xm) # Regner ut ny funksjonsverdi 

yv = funksjonsverdi(xv) # Regner ut ny funksjonsverdi 
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Steg 9 – Programmere inn while-løkken 
Siste steg i programkoden er heldigvis rimelig greit. Det eneste vi nå må bestemme 

er hvor nøyaktig vi ønsker at svaret vårt skal være. La oss starte med at vi ønsker å 

ha svaret med en nøyaktighet på to desimaler. Vi kan da si at hvis avstanden mellom 

xv og xh er mindre enn 0,001 så er vi fornøyd. Siden vi setter nøyaktigheten til 

andre desimal, runder vi av svaret til to desimaler med kommandoen round(tall, 

antall_desimaler) 

 

while xh – xv > 0.001: # Løkken kjører så lenge dette er     

# oppfylt 

if yv*ym < 0: 

  # Mulighet 1: Nullpunktet mellom xv og xm 

  xh = xm     # Setter ny høyre x-verdi 

  xm = (xv + xh) / 2  # Regner ut ny midtverdi 

   ym = funksjonsverdi(xm) # Ny funksjonsverdi 

   yh = funksjonsverdi(xh) # Ny funksjonsverdi 

elif yv*ym > 0: 

  # Mulighet 2: Nullpunktet mellom xm og xh 

  xv = xm     # Setter ny venstre x-verdi 

  xm = (xv + xh) / 2  # Regner ut ny midtverdi 

   ym = funksjonsverdi(xm) # Ny funksjonsverdi 

   yv = funksjonsverdi(xv) # Ny funksjonsverdi 

print("Nullpunktet er ved x =", round(xm, 2)) 

 

 

Oppgave 11 

Hvorfor velger vi 0,001 som nøyaktighet når vi skal vise svaret med kun to 

desimaler? Kunne vi ikke valgt en nøyaktighet på 0,01? Eller burde vi 

kanskje valgt 0,0001? Diskuter med sidemannen. 
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Steg 10 – Kjøre programmet 
Da kan vi prøve å kjøre programmet og se hva som skjer.  

 

   

 

Dette ser rimelig ut, ut ifra grafen.  

 

Oppgave 12  

a) Sett inn og sjekk at denne 𝑥-verdien faktisk er et nullpunkt for funksjonen 

vi startet med.  

  

b) Prøv å endre nøyaktigheten til nullpunktet. Når er du fornøyd? Når burde 

man være fornøyd? Er det noen ganger det er viktig å ikke være for presis 

med svaret? Diskuter med sidemannen 

 

Steg 11 – Numeriske metoder 
Numeriske metoder er en fremgangsmåte der man bruker en algoritme (prosedyre) 

for å beregne eller løse matematiske problemer. Denne algoritmen er numerisk som 

betyr at for hver gang vi kjører algoritmen så kommer vi (ideelt sett) til et svar som 

er bedre/mer nøyaktig enn det forrige. Merk at dette er kun i et idealisert tilfelle. 

Det eksisterer begrensninger i programmering når for eksempel antallet desimaler 

vokser. Motsetningen til numeriske metoder er symbolske (og analytiske) metoder.  

Eksempelvis kan man løse likningen 𝑥2 = 3 analytisk og få svaret ±√3. Ved 

numerisk beregning vil svaret være et avrundet desimaltall for eksempel 

±1,732051 (ved seks desimalers nøyaktighet).  

Nøyaktigheten kan vi ofte bestemme, men ofte vil 3-4 desimaler være godt nok. Per 

2017 var den numeriske nøyaktigheten av 𝜋 beregnet til mer enn 1013 desimaler.  
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Steg 12 – Kommentar til slutt 
Helt til slutt er det viktig med en kort kommentar angående programmet vi nå har 

laget. Programmet vil ikke klare å finne nullpunkter der funksjonen har et topp- 

eller bunnpunkt i nullpunktet. Grunnen til dette er at funksjonsverdien ikke skifter 

fortegn når funksjonen krysser nullpunktet. Det er likevel metoder for å løse dette, 

se oppgave 13.  

 

Oppgave 13  

Kan dere diskutere med sidemannen hvordan vi kan gå frem for å lage en 

metode som inkluderer å finne nullpunktene beskrevet over?  
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Designing mathematical programming 

problems 

Abstract 
The growing use of programming in mathematics classrooms presents a challenge linked to implementation in 

general, and task design in particular. This article presents design ideas for mathematical problems incorporating 

programming in which the focus remains mainly on learning mathematics and less on learning programming. The 

article starts by reviewing the theoretical background for technology implementation and design then presents the 

methodology for the design before exploring and discussing the design ideas with an in-depth example.  Building 

on the idea of adidactical situations from the theory of didactical situations, the design illustrates a possible way 

of implementing programming in the mathematics classroom to facilitate mathematical learning. 

Keywords: task design, mathematical learning, text-based programming, algorithmic thinking, adidactical 

situations 
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1 Introduction 
The increase in access to computer technology in mathematics classrooms over the last decades has been 

significant (Ran et al., 2020), allowing students to, through technology, engage in mathematical activities 

involving modelling (Greefrath and Siller, 2017), geometry (Sinclair et al., 2016), problem solving (Psycharis and 

Kallia, 2017), and more (Bray and Tangney, 2017; Drijvers, 2015). Reviews of the effect of technology on 

mathematical learning are mixed. While the 2015 OECD-study argues that there is little evidence that more use 

of computers leads to positive effects in mathematical achievement (OECD, 2015) several studies before and after 

this study suggest that technology-enhanced mathematical instruction is an effective means to support 

mathematics achievement (Cheung and Slavin, 2013; Li and Ma, 2010; Rakes et al., 2010; Young, 2017). The 

technological evolution and corresponding experiences developed by students, teachers and researchers, will 

continuously influence mathematics classrooms. “Educational technology is not a homogeneous “intervention” 

but a broad variety of modalities, tools, and strategies for learning. Its effectiveness, therefore, depends on how 

well it helps teachers and students achieve the desired instructional goals” (Ross, 2010, p. 19). We need more 

research on how the various forms of technology can promote the different aspects of mathematical learning. 

Several countries have implemented programming as a part of their national curriculum, and programming is often 

combined with mathematics (Balanskat and Engelhardt, 2015; Bocconi et al., 2018). The implementation of 

programming in mathematics is not a new idea. In the 1980s, Papert (1980) argued for the use of programming to 

facilitate student learning. The implementation did not succeed, partly due to an inability to apply programming 

in mathematics as a learning resource (Misfeldt and Ejsing-Duun, 2015). There is now a resurgence of research 

investigating the implementation of programming in the mathematics classrooms in schools with many aspects of 

this change currently being investigated (e.g. Benton et al., 2017; Psycharis and Kallia, 2017). One aspect of the 

implementation of programming in the mathematics classroom is task design, which is the focus for this article. 

The research and discussion of the relationship between task design and mathematics learning has a long tradition 

(Arbaugh and Brown, 2005; Krainer, 1993; Watson et al., 2015), and is a core research area in mathematics 

education (Sierpinska, 2004). Task design was, however, not a focus for research until the mid-1970s (Wittmann, 

1995), and while “didactical design has always played an important role in the field of mathematics education, 

[…] it has not always been a major theme of theoretical interest in the community” (Artigue, 2009, p. 7). Task 
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design is now increasingly more prominent in the mathematics education research community (Watson et al., 

2015, p. 27). Leung and Bolite-Frant (2015, p. 4) define mathematics task design as designing activities situated 

in pedagogical environments that provide boundaries within which students engage in doing mathematics, leading 

to the construction of mathematical knowledge. Additionally, the advent of technology in the mathematics 

classroom has caused research to delve into the use of technology in task design and learning. With the extensive 

research into both task design and, in particular, technology task design, where programming would reside, one 

might expect investigation into the combination of programming and mathematics at the upper secondary school 

level. In reality, however, the existing research on this combination is sparse, but growing (Benton et al., 2018; 

Bråting et al., 2020; Forsström and Kaufmann, 2018; Heintz et al., 2017; Psycharis and Kallia, 2017). The current 

research indicates that programming can contribute to problem-solving and mathematical learning (Psycharis and 

Kallia, 2017), but as it is still in its infancy more research is needed.  

As tasks are the main component of the “things to do” in the mathematical classroom (Watson et al., 2015) and 

with the advent of programming in the mathematics classroom, there is a need for research into how to design 

tasks that combine programming and mathematics. The present article aims to present and discuss design ideas 

for problems implementing programming as a tool for learning mathematics. First, we present a theoretical 

background on the implementation of programming in relation to mathematical thinking and learning, secondly 

on task design in mathematics education linked to technology. Thereafter, we propose and discuss the design ideas 

and how they were developed together with an example of such a design and a short observation of student 

responses. Finally, we discuss the design and the choices surrounding the design.  

2 Programming and mathematical learning 
Algorithmic thinking is a highly relevant concept studying programming as a tool for learning mathematics. 

According to Stephens and Kadijevich (2020), algorithmic thinking is based on three cornerstones: decomposition, 

abstraction and algorithmisation. Decomposition is about breaking the problem apart into smaller pieces to be 

solved individually. Abstraction refers to the process where learners identify the most relevant information needed 

to solve the problem and eliminate extraneous details (Dreyfus, 2020) and is defined by Skemp (1986) as an 

activity by which we become aware of similarities. Algorithmisation reflects the development of converting a 

process or a set of processes into an algorithm. Lockwood et al. (2016) links algorithmic thinking to the 

development of deep procedural knowledge defined by Star (2005) as ’knowledge of procedures that is associated 

with comprehension, flexibility, and critical judgement‘, while Abramovich (2015) links it to the development of 

conceptual knowledge.  

Learning in mathematics can be seen as ’the construction of a web of connections – between classes of problems, 

mathematical objects and relationships, real entities and personal situation-specific experiences‘ (Noss and 

Hoyles, 1996), which is closely related to the process of abstraction (Mitchelmore and White, 2007). This follows 

along the lines of other studies using terms such as relational understanding (Skemp, 1976) and conceptual 

knowledge (Hiebert, 2013). A relational understanding means that the learner knows both what to do and why – 

that is, there is conscious reasoning behind the mathematical actions taken. Conceptual knowledge is rich in 

relationships, and the connected web of units of knowledge is achieved by constructing relationships between the 

available pieces of information. The combining factor is that they all recognise that a student gains understanding 

through the development of a network interlinking mathematical concepts, where he or she can draw upon several 

concepts and connections between concepts to undertake a problem. Mathematical learning is an evolving process 

and mathematical understanding is the mental connections between facts, procedures and ideas (Hiebert, 2013). 

These relationships are revised when new information is difficult to assimilate or when previous relationships are 

inadequate to explain a new problem (Piaget, 1964; Skemp, 1976). Thus, mathematical thinking and reasoning is 

a highly integrated part of learning mathematics with an in-depth understanding (Kilpatrick et al., 2001; Lithner, 

2017). Reasoning comprises the capacity to think logically about the relationships among concepts and situations 

through reflection, explanation and justification (Kilpatrick et al., 2001). This view of mathematical learning 

influences the kind of tasks one believes will contribute to such learning. Problem solving is important to stimulate 

mathematical thinking and has been a focus for research for a long time (Polya, 1957; Schoenfeld, 1985, 2013). 

To a much larger degree than the more commonly used routine-based exercises (e.g. solving numerous equations 

based on given examples), genuine problems comprise the idea that the students must figure out a method rather 

than being given a method to achieve the unknown solution. Problem solving therefore has rich potential for 

stimulating deeper learning skills, as described above, and is closely connected to algorithmic thinking.  
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Through the use of programming as a tool in the mathematics classroom, algorithmic thinking can be 

advantageous for mathematical learning, because decomposition, abstraction and algorithmisation are key 

ingredients applicable to many problems of mathematical content, such as problem solving (Polya, 1957; 

Schoenfeld, 2013) and mathematical reasoning (Kilpatrick et al., 2001; Lithner, 2017). Stephens (2018) points 

out that more ’attention to algorithmic thinking in schools could help students expand their problem-solving 

techniques and to explain and justify their mathematical reasoning‘ (pp. 489-490). 

3 Technology-based task design in mathematics 
The design of mathematical tasks can be divided into several categories, ranging from open- versus close-ended 

tasks, to contextualised versus non-contextualised tasks, to routine-based versus cognitively demanding tasks 

(Berisha and Bytyqi, 2020; Stein et al., 1996). Stein et al. (1996, p. 426) state that ’tasks used in mathematics 

classrooms highly influence the kinds of thinking processes in which students engage, which, in turn, influences 

student learning outcome‘. This, in turn, influences the design of tasks, including those using programming as a 

tool.  

Designing tasks that use digital technologies is complex and difficult (Joubert, 2007; Laborde and Sträßer, 2010) 

partly because of the ability of the computer to perform hidden or unknown mathematical procedures referred to 

as ’black box‘ by Buchberger (1990). In comparison, a ’white (or transparent) box‘ is characterised by the students 

being conscious of the mathematics they ask the tool to perform. Rabardel (2002) also uses the concepts of ’black 

box‘ and ’glass box‘ to refer to the dimension of the operative transparency of the technological tool being used.  

A review of research in computer education strongly indicates that learning to program is difficult as “students 

exhibit various misconceptions and other difficulties in syntactic knowledge, conceptual knowledge, and strategic 

knowledge” (Qian and Lehman, 2017, p. 17). Syntactic knowledge is the understanding of the building of the 

code, such as the use of parenthesis, equals signs, and semicolons. Conceptual knowledge is the students’ model 

of code executions, such as variables, if-statements, and the sequential execution of the code. Strategic knowledge 

is the process of planning, writing, and debugging programs. Text-based programming also creates additional 

challenges for students, such as focusing on syntax rather than the mathematical meaning of the code (Lewis, 

2010; Resnick et al., 2009). 

According to Brousseau (1997), valuable mathematical learning will more likely take place when the students are 

committed to a problem situation. In the theory of didactical situations (TDS), knowledge is a property of a system 

consisting of a subject and a milieu. The problem, together with the programming language and the students of a 

particular group, creates the milieu, or the environment, with which they interact. The interaction can be 

conceptualised as the conversation within and the feedback from the milieu (Brousseau, 1997). 

A core concept in TDS is the didactical contract that exists between the educator and the students of the milieu. 

The contract implies a set of expectations regarding mathematical knowledge and the responsibilities of both the 

teaching and the learning process. The students expect that working through the set of problems provided by the 

educator, they will learn the required mathematics, and the educator expects the students to complete the problems 

through the given guidelines. As the students are working with the problems, they are interacting with the milieu, 

which can be both collaborative and antagonistic. This period of interaction is the adidactical situation, where the 

students have the initiative and the responsibility for the outcome of the learning process. The adidactical situation 

persists for a time because the students know through the didactical contract that they would not receive a problem 

they were unable to solve or learn from. Preceding an adidactical situation is often a didactical situation, in which 

the educator or the task itself offers a problem to be solved. Succeeding the adidactical situation is another 

didactical situation where the educator or the task links the knowledge gained to the aim of the problem. We argue 

that both the preceding and succeeding didactical situation do not depend solely on the educator but can be parts 

of the designed task. This is especially true of the succeeding didactical situation, in which the problem design 

can facilitate students discussing the implications of the solution of the task in a broader context. The educator’s 

ability to recognise and interpret the students’ actions into a system of what they ought to learn is important and 

is called the institutionalisation of the acquired knowledge (Brousseau, 2008). It is possible for the task to contain 

and facilitate institutionalisation through explanatory text or visuals connecting the actions to a system of learning. 

The aim of TDS is to design situations that facilitate the construction of knowledge by the student, in which the 

student takes responsibility as a participant in the problem-solving process. The task design should facilitate a 

situation whereby by solving the task the students gain the desired targeted knowledge.  
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Allowing the students to adapt strategies to reach the desired target knowledge is challenging, and Brousseau 

(1997)suggests that they will not succeed unless facilitated by the task. If the students encounter and overcome 

‘obstacles’ as they are working through the given tasks, an adaptation may take place. Brousseau (1997, p. 83) 

defines an epistemological obstacle a form of knowledge that has been relevant and successful in particular 

contexts, often including school contexts, but that at some moments becomes false or insufficient. Obstacles 

can also be of a different nature: ontogenic obstacles, for instance, relate to the limitation of the students and 

lack of required prior learning, and didactical obstacles relate to the presentation of the subject, ‘the result of 

narrow or faulty instruction’ (Harel and Sowder, 2005, p. 34). Both ontogenic and didactical obstacles inhibit 

learning and should be avoided (Brousseau, 1997; Harel and Sowder, 2005), while epistemological obstacles can 

promote learning. An epistemological obstacle is explained by Balacheff (1990, p. 264) as follows ’Any content 

has to be supported by the pupils' previous knowledge. But this old knowledge can turn into an obstacle to the 

constitution of new conceptions, even though it is a necessary foundation. But more often than not, to overcome 

this obstacle is part of the construction of the meaning of the new piece.’ This explanation indicates that task 

design needs to build on previous knowledge to create new conceptions and facilitate the construction of new 

meaning by designing for adidactical situations. When students are working on tasks, they will experience periods 

when they know how to perform the required actions, and periods when they encounter obstacles. The adidactical 

situations will allow the students to reconsider their strategies, develop new pathways, discuss with their peers, 

conjecture and experiment, which are all related to the intended learning process (Leung and Baccaglini-Frank, 

2016). Thus, adidactical situations stimulate mathematical thinking and reasoning, and develop conceptual 

knowledge (Hiebert, 2013; Skemp, 1976) and hence lead to the acquisition of deep learning of the required 

mathematical content (Noss and Hoyles, 1996).  

Ideally, the milieu should ’provide feedback that moves the learner forward‘ (Wiliam and Thompson, 2008, p. 

15). Feedback can come from the task, the group conversations, or the program. The task facilitates learning by 

generating elements and accompanying actions that the students undertake together with the feedback provided 

by the milieu. Feedback should enable the students to evaluate meaningful strategies, which attest to the building 

of new knowledge (Artigue et al., 2014). In task design, including technological tools, feedback can be particularly 

important; see Bokhove and Drijvers (2010). The feedback helps the students to construct knowledge by becoming 

engaged in the solving of the problem and by refining their concepts and strategies (Brousseau, 1997). Such 

cognitive development, in the TDS framework, is part of the adidactical situation. A property of technological 

tools is, to a varying degree, the provision of valuable feedback to the user. Feedback from a computer is ’quick 

and essentially unlimited…at “no cost”‘ (Hillel, 1992, p. 209). This allows task designers to facilitate a greater 

range of experimentation and verification of ideas. Three things – the ability to use technology to produce results, 

immediate feedback, and novel ways of looking at mathematical objects – could support a change in the nature of 

communication in mathematical problem solving (Drijvers et al., 2016). The change creates a challenge for 

designers, as tasks ideally allow for experimentation, exploration, and discussions. Several studies present 

guidelines, criteria and/or principles for designing good mathematical problems (e.g. Johnson et al., 2017; Kieran, 

2019; Sullivan et al., 2012; Wiliam and Thompson, 2008), advocating focus on conceptual, open-ended tasks, 

linking technical and theoretical activity, integrating questions calling upon pattern seeking, and applying 

technological tools for generating and testing conjectures.  

4 The design 
With the ambition of facilitating in-depth learning (Kilpatrick et al., 2001; Lithner, 2017; Skemp, 1976) through 

algorithmic thinking (Stephens and Kadijevich, 2020), the problems in this project were designed based on the 

belief that the adidactical situation consisting of the milieu, feedback from the milieu, and the didactical contract 

between students and educator (Brousseau, 1997) constitutes the most important part of the learning process. 

Here, we will describe and discuss the design ideas for tasks using programming as a tool for learning 

mathematics. Emphasising the importance of problems and problem solving for in-depth learning (as described 

in Section 2), ’problem design‘ is preferred instead of the more common ’task design‘.  
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In the following section we present and discuss the design ideas for the problem type of this article, emphasising 

the idea of obstacles and with a focus on implementing text-based programming1 as a tool for learning 

mathematics before elaborating on the design process. 

4.1 Mathematical programming problems 
Our problem design incorporates text-based programming as a tool for learning mathematics and therefore needs 

to satisfy several criteria. The problem design should be appropriate with respect to the content of the mathematics 

curriculum, including a clear visualisation of the mathematics underlying the programming. It should also 

facilitate student interaction with the milieu by creating adidactical situations. To create an adidactical situation, 

we present students with a problem they are initially incapable of solving satisfactorily with their current 

knowledge. In their search for alternative strategies, the intended new knowledge can be acquired by overcoming 

the problem. The design of the problem facilitates the search for alternative strategies. Each problem the students 

encounter contains a discussion task, forcing them to receive feedback from the milieu through conversation with 

the group. The specification of the problem should initially illuminate the inadequacy of the existing methods 

available to the students before enabling them to develop a more general or powerful solution (Ruthven et al., 

2009). Applying these ideas, mathematical programming problems were designed. 

The mathematical programming problems (MPP) consists of a series of problems designed to facilitate the 

students discovering a new concept or a new connection through adidactical situations. The structure of an MPP 

is to start by recalling previous mathematical knowledge before exposing a limitation of this knowledge through 

an example. The students are then given the responsibility to investigate and discuss how to resolve the limitation 

through a set of problems. Each problem allows for the progression towards the target knowledge of the MPP, 

which is a successful solution method built on understanding important mathematical concepts. MPPs consist of 

two parts: the first is without programming, and the second with programming. 

The first part consists of non-programming tasks asking the students to recall previously known mathematical 

concepts needed to progress through the MPP. There are two main reasons for this. First, it ensures that all students 

have the opportunity to recall the same information, which is applicable and beneficial (Stillman, 2004) 

throughout the problem, especially later in the MPP when complexity increases. Second, since the first task is a 

recollection of previously known concepts, it has a low threshold for completion and facilitates students’ ability 

to complete the initial part of the task. This upholds the part of the didactical contract between students and 

educators, where the students expect to be able to resolve the problem with their knowledge. Later, when the 

complexity increases, the recollected knowledge facilitates the students in solving the problem. The problems 

continuously build upon the recalled knowledge to facilitate mathematical learning and attaining the intended 

knowledge. The MPP can be viewed as a process in which each new problem facilitates an adidactical situation 

aiding the students in their progression towards the desired knowledge. Problems can also directly or indirectly 

reveal inadequacies or challenges within mathematics that can, to a lesser or greater extent, be solved through 

programming.  

The programming part starts in a similar way, recalling a set of previously known programming procedures 

necessary to start building the required program. As the students work through the different problems of the MPP, 

they are continuously changing and developing the program further. Each section of code that is possible to 

execute represents a verifiable step towards the desired knowledge. Verification can be done by inspecting graphs, 

output data, or some other form of visual or readable response. The various sections of the problem design should 

facilitate an increased transparency of the problem, in which the students become conscious and engaged in the 

mathematical knowledge that they apply through the programming process. The programming part of the problem 

design should be based on the need to balance the additional complexity programming brings to the mathematics 

classroom with the overall design of the problem. The complexity in terms of the lower versus higher level of 

demands of the problem (Stein and Smith, 1998), together with the students’ previous knowledge and self-

efficacy, determine whether they will succeed or not in solving the given problem (Hoffman and Spatariu, 2008). 

The maintenance of high-level (cognitive) demands is dependent on several factors, including thinking and 

reasoning, self-monitoring, building on previous knowledge (Stein and Smith, 1998), and the link between the 

problem and the aim throughout the MPP. Soloway (1993) argues that during the programming process, the 

learner uses powerful problem solving and thinking strategies. Students first need to solve a problem 

 
1 Text-based programs are typed using a keyboard, follows a set of rules for the specific programming language 
and are stored as text files (See Figure 9 for an example). 
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mathematically, followed by reflecting on how to express the solution through computer programming (Papert, 

1980; Szlávi and Zsakó, 2006). 

The aim of an MPP is to facilitate the students discovering one or more sets of target knowledge by applying 

mathematical knowledge and solving a set of problems. The path through a particular problem can be quick, as in 

solving a simple equation or performing a calculation, or time-consuming when several sequential procedures 

must be handled.  

An obstacle can vary in complexity with the intention to create an antagonistic milieu, which the students struggle 

to resolve. Whether an obstacle will initiate a successful problem-solving process is dependent on the knowledge 

of the students, which is linked to the milieu. An example is the question ’What is the area between the x-axis and 

the graph of a given quadratic function on a particular domain?’, which, unless the student has learned integration, 

is a challenging problem. The problem design can also include changes in the students’ understanding of a known 

concept by introducing new information, where there may be difficulties in incorporating the associated new 

concepts. An example is the development of their understanding of the numbers starting from the set of integers, 

the expansion to the set of rational numbers, the further expansion to the set of real numbers, and the final 

expansion to the set of complex numbers. The tool (here, the programming language) the students are using can 

also cause difficulties in MPP, contributing to additional complexity (Ko et al., 2004). This spans over a wide 

range, from writing code and reviewing errors to misunderstanding the output generated by the program. An 

example of an epistemological obstacle is initially failing to understand the right answer may be ’no solutions‘ 

when searching for the real roots of a polynomial of even degree by a calculator or a computer algebra system 

(CAS). Programming in itself can create an additional ontogenic obstacle for the students, as they are not 

experienced with the stringent rules of programming. The students are used to the need for accurate inputs in 

CAS, but the type of input that they know often consists of one line, not the typically large number of lines often 

required in a program. The MPP aims to limit this ontogenic or didactical obstacle through giving the students 

skeletal code (Figure 9) and several means, as will be discussed later. Problem design should facilitate obstacles 

to an extent that the students need to struggle (Hiebert, 1984; NCTM, 2014) but do not lose faith in the didactical 

contract, generating an adidactical situation. If the struggle continues for an extended period, the students might 

lose this faith and end up giving up without completing the MPP.  

The result of the students taking the initiative and responsibility for the outcome of a designed mathematical task, 

should be an increased network between concepts or the creation of a new concept, which coincides with the 

target knowledge of the MPP. Asking for the possible solutions to quadratic equations is contributing towards the 

resolution and facilitates later asking the students to create a program that both solves and plots a quadratic 

equation that has no real solution by visualising the connection between the crossings of the x-axis and the number 

of solutions. This insight increases the network of mathematical concepts and facilitates learning. The adidactical 

situations contribute to the students’ progress in the intended learning trajectory. This is not necessarily a leap in 

understanding but a stepping-stone for consolidating an existing concept or introducing a new concept based on 

existing knowledge, which later builds the foundation for another target knowledge. The build of the MPP is 

summarized into seven phases below, where each phase is exemplified with concrete problems from the MPP 

concerning the bisectional method, followed by a discussion of each phase of the design in section 5.  

 

1. Recalling relevant mathematical knowledge 

Enabling the students to recall the mathematical knowledge required to initiate the progress 

through the MPP and their search for the target knowledge. This can limit the amount of 

ontogenic obstacles. 

 

In Figure 1 this consist of the calculation and discussion of properties of zero-point for different 

functions. This allows the students to recollect properties of the zero-point and method for 

finding zero-points, which will be the base for the target knowledge.  
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Figure 1: Problem from phase 1 of the MPP concerning he bisectional method. 

 

2. Presenting an inadequacy or challenge in the mathematical method. 

The start of a problem, where presenting the students with one or more examples of when a 

mathematical method becomes false or inadequate. This forces the students to search for new 

strategies, as they, through the didactical contract, are confident that a solution and learning 

opportunity exists. 

In Figure 2 this consist of the search to find zero-points for a general and unknown continuous 

function covering a range of both negative and positive function values. This problem allows 

the students to use and apply their knowledge of zero-points to a new type of problem. The 

strategy they start to develop here will be used later in the same MPP. 

 

Figure 2: Problem from phase 2 of the MPP concerning the bisectional method. 
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3. Creating a mathematical strategy for applying programming to the inadequacy or challenge 

Selected problems initiate a process of combining existing mathematical knowledge with new 

strategies or concepts. This further builds towards the target knowledge where the students 

through the adidactical situation can develop new pathways through interaction with the milieu. 

Phase 3 should facilitate exploration, discussion, and evaluation allowing the students to 

assemble their existing knowledge into a new strategy or method. 

 

The problem in Figure 3 consists of developing strategies to numerically approximate the zero-

points through interacting with the milieu. The problem facilitates the students discussing and 

testing different strategies building towards the target knowledge. 

 

Figure 3: Problem from phase 3 of the MPP concerning the bisectional method. 

 

4. Recalling programming commands and structures 

Enabling the students to recall the programming knowledge required to initiate the progress 

through the MPP and their search for the target knowledge. This can limit the amount of 

ontogenic obstacles. 

In the presented MPP this consist of plotting, implementing elementary calculations, the use of 

functions, and the structure of while-loops. Figure 4 is a typical code the students wrote to recall 

how to plot (line 10-17) and how to build (line 3-5) and call (line 8) a function. The result after 

running the code is shown in Figure 5. 

   

Figure 4: Code-snippet from phase 4 of the MPP concerning the bisectional method. 
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Figure 5: Result from running the code in Figure 4 

 

5. Decomposing the mathematical strategy into programmable segments  

Using programming as a tool, the students now implement mathematical strategies to create a 

basic program facilitating explorative search and analysis. Programming facilitates algorithmic 

thinking to decompose the mathematical strategy into smaller programming sections and 

implement it in the program. 

 

In the presented MPP this consist of decomposing the strategy into smaller, programmable 

mathematical segments. As an example, the students’ need to input two starting x-values (xl and 

xr) where the function values (yl and yr) have different signs for the program test for the middle 

value and initiate the numerical procedure (Figure 6 and Figure 7). 

 

  

Figure 6: Code-snippet from phase 5 of the MPP concerning the bisectional method. 

 

Figure 7: Result from running the code in Figure 6, where the inputs are 60 and 80.  

After calculating the middle-value (xm) between the two x-values and the corresponding 

function-value (ym), another part of the decomposed strategy is to build a segment that check 

the sign of the function-value.  
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Figure 8: Problem from phase 5 of the MPP concerning the bisectional method. 

 

Figure 9: Code snippet and example of skeletal code as a solution to problem in Figure 7 

 
6. Composing the program through assembling the decomposed segments. 

The students build the program by applying algorithmic thinking to the decomposed segments 

of the mathematical strategy resulting in both abstraction and algorithmization. The composing 

of the program implements the mathematical strategy to resolve the inadequacy or challenge. 

 

In Figure 10 this consist of combining all programming segment into a completed code. Part of 

this completed code below illustrates a while-loop numerically calculating the zero-point. This 

code is built upon the code in Figure 9. 

 

Figure 10: Code snippet from phase 6, where several elements (from Figure 4 and Figure 6 (line 43 and 47), Figure 
9 (line 40 and 44)) are combined into a code segment. 

 
7. Exploring limitations and affordances of the program through a mathematical lens. 

After the creation of a program, there is a need for evaluation. Revising and discussing the 

affordances of the program allows for consolidation of the knowledge throughout the MPP. 

Investigating the limitations of the program facilitates open-ended mathematical exploration and 

discussion.  

 

In Figure 11 this consist of discussing the limitations of what functions the numerical bisectional 

method applies to. 

 

Figure 11: Problem from phase 7 of the MPP concerning the bisectional method. 

 

A visual representation of the design ideas, emphasising the adidactical situations in the MPP, is presented in 

Figure 12. 
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Figure 12: A visual representation of the design ideas of the MPP 

 

4.2 Developing the design ideas 
 

The development of the problems uses elements from didactical engineering (DE) as a basis for implementing 

the design ideas (Brousseau, 2008). DE is a valuable approach for creating and evaluating the design of problems 

and consists of several phases, elements of which we adopt in this study: a preliminary analysis, conception and 

a priori analysis, realisation, observation and data collection and, finally, an a posteriori analysis and validation. 

The methodology of DE aims at creating situations in which the target mathematical knowledge provides a 

successful solution to the given problem and the students reach this solution through interaction with the milieu. 

The role of the educator is to facilitate devolution, in which the students accept the mathematical responsibility of 

solving the problem and thereby develop an adidactic interaction with the milieu. An a priori analysis was not 

performed, however an iterative analysis over several implementations were performed, where the initial design 

was based on personal experiences from both teacher and researcher. The latter three elements of DE are used, 

where realisation is presented at the beginning of section 4, and observation and an a posteriori analysis are 

presented in section 5. The design and its conception originate from evaluating the didactic variables influencing 

the interaction between the mathematical content and the milieu. The didactic variables consist of linking 

programming as a tool to learning mathematics, considering the added difficulty that programming brings to 

mathematics, enabling students to discuss mathematics and facilitating mathematical learning. “These variables 

condition the milieu, thus the interactions between students and knowledge, the interactions between students and 

between students and teachers, thus the exact opportunities that students have to learn, how and what they can 

learn” (Artigue, 2015, p. 5).  

The first MPP was implemented in a mathematics classroom for students in the second to last year of secondary 

school (age 17) with some basic knowledge of programming acquired from a 10-hour crash course in Python-

programming. An initial design concerning quadratic equations was generated and implemented, together with an 

observation regime. The MPP was given to the students, and they worked on the problem for one lesson (90 

minutes). Both the responses from the students in the form of video recordings and logs and the logs from the 

researcher initiated a revision of the development of the MPPs. The first iteration only had a short description of 

what the students were to program, such as “build a program that solves the quadratic equation” and “evaluate the 

number of solutions to the quadratic equation using the program you have created”. During the implementation, 

the students spent most of their time struggling with the programming and not discussing or applying mathematical 

knowledge, and therefore several students failed to acquire the intended target knowledge. The first iteration was 

still valuable as it revealed several changes that could be made to the design. Following the analysis, an iterative 

revision process, in which the design of the MPP was modified to better fit with the design ideas, were undertaken. 

The MPP was changed to include more skeletal code and facilitating students’ exploration, discussion, and 

discovery of the mathematical target knowledge. When the interaction with the milieu comprised mathematical 

discussions, both the students and the researchers reported it to be valuable, especially when the discussion 

explicitly connected programming issues to mathematics. The final design explored the quadratic equation and 

the number and types of possible solutions, focusing on the benefits of utilising programming. The students were 

to create a program that took the coefficients of a quadratic equation as the input and produced as output a message 
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stating the corresponding number of roots and the values of these roots if they existed. The aim of the design was 

to apply programming to a mathematical context that was familiar to the students, preventing ontogenic or 

didactical obstacles, and enable them to create a program initiating discussions between the students (creating 

feedback from the milieu). The discussions focused on the number of solutions and on how to prevent the program 

from performing invalid calculations. Communication and collaboration are essential aspects in order to deepen 

the students’ conceptual and procedural knowledge, in which negotiating, providing arguments and considering 

various perspectives are crucial interactions for learning (Woo and Reeves, 2006; Yackel, 2002). Learning occurs 

in a classroom situation where the students’ meet tasks that promote discussing mathematics, questioning results, 

applying known mathematical insight to unfamiliar situations and reasoning in the exploration and solving of 

challenging mathematical ideas and problems (Drijvers et al., 2016). The experiences from this first iteration went 

into the design of a series of new MPPs, one of which is presented above.   

5 Discussing the design ideas 
This section will present one MPP that aims to introduce students to numerical methods in mathematics by 

applying the numerical bisectional method to find zero-points of continuous functions. The MPP consists of the 

problems shown in section 4 in addition to several others described here. The students have previously learned an 

intuitive explanation of the intermediate value theorem, forming the mathematical basis for this MPP. Numerical 

mathematics is suited for the implementation of programming, as it utilises one of the greatest advantages of 

programming, namely repeatedly performing a particular calculation many times. The students have never used 

or encountered numerical methods previously in the curriculum.  

The reason for choosing this method was to expose the widespread misunderstanding that all mathematical 

questions have both a distinct method for solving and an exact solution. This erroneous perception permeates 

classical school mathematics but is challenged by counter examples requiring numerical methods to approximate 

the zero-value. Additionally, this function is a gateway into justifying the use of programming to extract properties 

of functions not solvable by classical school mathematics. 

The overarching design idea of the MPP is creating adidactical situations facilitating mathematical learning 

opportunities for the students. These adidactical situations will be discussed in the following sub-sections, which 

are organised according to the seven steps (Figure 12) – the design ideas. The discussion will highlight how the 

design of the MPP can promote mathematical learning and how the students responded.  

5.1 Recalling relevant mathematical knowledge 
The first problem (Figure 1) asks the students to discuss how to find the zero-point for a selection of given 

continuous functions (quadratic, cubic, exponential, and rational), followed by discussing the properties of zero-

points in general. The aim of the first part of the task is for the students to recall previous knowledge regarding 

zero-points of functions, including methods for solving and the number of solutions. The second part of the task 

builds on this with a discussion of different types of zero-points. The aim is for the students to propose different 

properties of zero-points. The task is open ended, and the students answered everything from a simple statement 

that all zero-points touch the x-axis to more complex properties, such as whether the method is useful for finding 

extremal- or turning points.  

The recollection of previous mathematical knowledge enabling the student to build a scaffold for the rest of the 

MPP, which is an important prerequisite for constructing relationships between the required pieces of the target 

knowledge (Hiebert, 2013; Noss and Hoyles, 1996; Skemp, 1976). Even though the problem formulation is 

identical, namely ’solve for the zero-point(s)’, the method for each function varies greatly. More function-types 

could be added, but for the purpose of this problem, four different types were chosen. Giving the students chosen 

examples of functions allows for a discussion of mathematical concepts, such as valid solutions for the rational 

function and the existence of zero-points for variations of exponential functions, building conceptual knowledge 

(Hiebert, 2013; Noss and Hoyles, 1996). Asking the students to ’solve for some zero-point‘ facilitates problem-

initiated feedback, applying the general solution to a specific example. The feedback is intended to come from the 

milieu, and primarily from the discussion within the group.  

As the students had previously worked with properties of different functions, this problem created few challenges 

for the students. The latter two functions (c and d, Figure 1) particularity created a discussion involving valid 

solutions (c) and dependencies for the function to have a zero-point (d).  
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5.2 Presenting an inadequacy or challenge in the mathematical method. 
The problem (Figure 2) does not involve programming or the use of the word bisectional method but introduces 

the mathematical concept by a simplified example in the form of a game. Formulating the question as a strategic 

game will engage the students (McGonigal, 2011; Zichermann and Linder, 2010). It also promotes their 

conceptual knowledge (Hiebert, 2013; Noss and Hoyles, 1996) and algorithmic thinking (Stephens and 

Kadijevich, 2020). This is due to the need for both the strategic development and the corresponding repeated 

checking and verification of the evolving strategy. Presenting the problem as open, the students themselves can 

propose ideas and strategize to find what they consider the best approach. The group discussion provides feedback, 

which can be checked against the given graph. The aim is for the students to apply their knowledge in a new and 

not previously experienced way, as an initial guess at a strategy.  

The students discussed several different strategies here, from a chaotic trial and error of different x-values to a 

much more systematic guessing of x-values. As the graph in the problem (Figure 2) displayed a linear function, 

many students proposed that finding two values was enough, arguing that two points allowed the function to be 

calculated and thereby finding the zero-point. The question “What if the function is non-linear?” was added to 

avoid the discussion to strand there. This small change made the students continue their discussion. 

5.3 Creating a mathematical strategy for applying programming to the inadequacy or 

challenge 
The problem (Figure 3) allows for further development of the strategy by electing one student from each group to 

simulate the machine. This is important in the abstraction-, and algorithmisation-parts of algorithmic thinking 

(Stephens and Kadijevich, 2020). The goal of the problem is for the students to verify and/or modify the zero-

finding strategy, arriving at an effective method for approximating the zero-point(s). Such reflections and 

evaluations are important aspects of algorithmic thinking (Stephens and Kadijevich, 2020) and thus important for 

the development of conceptual knowledge (Abramovich, 2015). The choice to display the function graph with the 

zero-point was to focus on the strategy on an unknown expression were calculating the zero-point is impossible. 

The number of decimal places of the zero-points was to avoid the students finding the zero-points instantly. With 

six decimal places the students may continuously guess bringing them closer and closer to the ’correct‘ value, 

including a discussion of what the correct value may be. The machine-simulating student provides feedback to 

the group and may participate in their search for a strategy. Students controlling the structure of the task reduces 

possible obstacles and builds an adidactical situation While the machine-simulating student is an obstacle blocking 

the solution, he is also a resource for the group in recognising the possibilities and limitations of the method they 

are working on. Two of the function graphs included in the game have more than one zero-point, which facilitates 

interesting questions such as ‘How do we know that we have found all the zero-points?’, which scaffold a later 

discussion of limitations of the program (phase 7, section 5.7). The trial-and-error aspect of the problem has 

characteristics like a computer game in which different inputs elicit different responses and the ’game‘ is to 

discover an effective strategy. This makes the task more attractive to students (McGonigal, 2011; Zichermann and 

Linder, 2010), engaging them in completing the problem. 

The students were very active in this part of the MPP, where suggestions and discussions were represented in 

every group. The average time the students spent on this problem was about 20-25 minutes, consisting of both the 

game and the following discussion. The choice to elect a “machine”-student was successful, allowing the 

discussion to move forward even when they encountered obstacles, as the "machine”-student could assist in their 

search for both the zero-point and an effective strategy. Discussions included locations of the zero-point after a 

couple of x-values had been suggested, the kind of function it could be (given that only the “machine”-student 

saw the graph), and some groups even discussed if there were any way to know if there were more than one zero-

point besides guessing over a wide range of x-values. This all contributes to what Brousseau (1997) calls valuable 

mathematical learning since the students are committed to the problem situation. Asking the students how closely 

they can approximate a zero-point leads to the idea of estimation and numerical evaluation instead of finding an 

exact solution. The aim is to get the students to evaluate different starting values for testing, spurring reasoning 

and algorithmic thinking (Kilpatrick et al., 2001; Stephens and Kadijevich, 2020).  

5.4 Recalling previous programming knowledge 
The programming part of the MPP (Figure 6) assists the students in preparation for building a computer program 

that will eventually estimate the zero-point to an accuracy defined by the students themselves. This step facilitates 

programming as a tool for learning mathematics through emphasising all three cornerstones of algorithmic 
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thinking (Stephens and Kadijevich, 2020), elaborated throughout the remaining sections. The students build a 

code that plots the graph of a function and explore it for several functions. The function in figure 4 (line 4, 𝑓(𝑥) =

ln(𝑥4 + 4) −  𝑥) was chosen as while a solution exists, it is not possible to express it exactly. The function was 

used throughout the rest of the MPP as a test function for the students.  

If they struggle, a skeleton code (like a template) was given, as some lines of code (i.e. the plot code in Figure 4 

(line 13-17)) are not critical to understanding mathematics and could become an obstacle. This idea also follows 

the design emphasising that mathematics is the primary focus and that the programming is a tool to facilitate 

mathematical learning. The students are given freedom to alter the program, which contributes to their sense of 

ownership of both the code and the resulting mathematical calculations. The problem encourages the students to 

try for themselves first, as this builds their ownership of both the resulting computer program and their learning 

(Chan et al., 2014). 

Previous versions of this problem did not contain any skeleton-code, which caused many students to seek help 

from the teacher as the adidactical situation did not come to fruition. With the skeleton code in place, most students 

completed the problem without any outside assistance since the milieu consisting of the group discussion and the 

problem itself was enough to maintain the adidactical situation (Brousseau, 1997). Some students completed the 

problem without help, while others relied on reviewing previously created code or asking the teacher or group for 

help. 

5.5 Decomposing the mathematical strategy into programmable segments  
Here the students need to decompose (Stephens and Kadijevich, 2020) the strategy they have developed so far 

into smaller segments that are possible to transform into programming code. There are a lot of smaller pieces 

needed to complete the code, where the first (Figure 3) is to initialise the strategy the students reached when they 

located the zero-point in the game-like problem (phase 3). The decomposition and transformation into code 

segments is a central aspect in the algorithmic thinking (Stephens and Kadijevich, 2020) when solving an MPP. 

The decomposition consists of several separate segments such as inputting a starting value to the left and right of 

the zero-point, finding the middle value between two values, checking the sign of the function value to decide the 

interval in which the zero-point is located, and finally create a loop that continues this process until a zero-point 

with the desired accuracy is reached. While certain problems directly relates to the decomposition (figure 6), other 

are left to the students, such as the code segment calculating the middle value. The problem is open as the group 

discusses how to decompose their strategy and build the necessary code pieces.  

Initially, the students had problems decomposing their strategy and needed assistance in proceeding, but after 

being shown an example of a decomposed piece (figure 6); they were able to proceed discussing the decomposition 

of their strategy. This part of the MPP facilitated a lot of discussion regarding both the decomposition and the 

mathematical aspects behind the decomposition. The students spent time discussing how to check for opposite 

signs, since this was partly in conflict with their normal way of doing mathematics. If done by hand, they would 

not need to create an algorithm as it would be obvious from looking at the numerical value, but how would they 

create an algorithm such that a program would decide.  

5.6 Composing the program through assembling the decomposed segments. 
Here the students combine their deconstructed pieces of mathematical programming code to a finished program. 

They are in essence reconstructing their strategy with the individual pieces from phase 6.  

To do so, they need to understand the mathematical concepts as well as how to use programming to solve a 

mathematical challenge. The relationship between programming and mathematics emerges in this phase of the 

problem-solving process. Through the previous problems, the students, having built the strategy and created the 

individual decomposed programming pieces now must complete the computer program. The loop-constructions 

in programming (for- and while-loops) can be linked to the systematic algorithmic processes in mathematics for 

calculating a sequence of improved approximations for the zero-point. The students can adjust smaller code 

segments and test them out instantly, allowing for exploration and the initial testing of the code.  

The students did display a few difficulties assembling the code, where the most common obstacle was sequencing 

the code segments from phase 5. The obstacle was resolved quickly as the students were able to copy and paste 

code segments around quickly resolving the issue. The students were quickly moving on to the initial testing of 

the code, making sure that it worked for the presented examples (figure 10), essentially moving to phase 7. As the 

students had worked through the previous problems, they were not displaying frustration during this phase, rather 
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they were showing signs of eagerness to complete the program and start testing it out. Several students tried 

running the program several times before they had finished the entire code but were not discouraged when they 

received errors during this phase of the MPP. 

5.7 Exploring limitations and affordances of the program through a mathematical lens 
The problem facilitates a discussion regarding the accuracy of approximate solutions, which is lacking in upper 

secondary school mathematics, in which almost every mathematical task has an answer given in either exact form 

or rounded to a few decimal places. The students are rarely, if ever, asked about the exactness of a solution for a 

given case; this is often left to the other sciences, such as physics and chemistry. When the students have decided 

on the required accuracy of the zero-point, they implemented the requirement into the code using a while-loop 

(Figure 10). The final problem (Figure 11) is to verify the program for several other functions and starting guesses 

and reveal the limitations of the program. This is, for mathematical learning, a highly important phase of the 

problem-solving process (Polya, 1957; Schoenfeld, 1985). Additionally, ‘When does the program fail to 

approximate the zero-point of a function?’. Does it depend on the guesses, the nature of the function, or something 

else? The final question of MPPs should preferably include such an open-ended question and could be followed 

by an additional fruitful question: ‘Can we avoid the program failing to approximate the zero-point of a function 

and if so, how?’ The purpose of the last question is to encourage exploration and evaluation, which is important 

for in-depth learning (Kilpatrick et al., 2001; Lithner, 2017). The last question also brings algorithmic thinking 

and mathematical learning intimately together by allowing the students to discuss their programming solution, 

including its inherent algorithm. They need to understand and explain why some values (or functions) work and 

others do not, what causes the program to fail to find some zero-point and, finally, how to apply both mathematics 

and programming to resolve the required problem. The MPP ends with an explanation of the bisectional method, 

linking the target knowledge to the  MPP. To ensure that everyone grasps the link, the educator can also conduct 

this towards the end of the lesson.  

The students were very eager to test out their program. When asked why they were so eager they responded that 

they wanted to make sure that the program they had created worked for the function types they knew and the 

challenge to find functions or starting values that did not work. Every student discovered that they had to make 

sure to input correct starting values, but few students thought to explore function where the zero-point and 

extremes overlap. This specific case was presented by the teacher at the end of the lesson as an example of when 

the program does work. 

The structure of the MPP, from the initial recollections of previous knowledge regarding the zero-point of known 

simple functions, through the challenge of finding the zero-point for more advanced functions, to the numerical 

mathematical solution and the implementation of the numerical method into a programming environment, has 

facilitated the conceptual knowledge of numerical methods for approximating the solutions of mathematical 

problems. 

 

6 Concluding thoughts and implications 
This article has presented design ideas for what we have called mathematical programming problems, a series of 

problems that resides within TDS and didactical engineering. The aim is to promote in-depth mathematical 

learning (Hiebert, 2013; Noss and Hoyles, 1996; Skemp, 1976) through using programming as a tool in the 

learning process. The design of the MPPs consists of seven phases facilitating the students’ interaction with the 

milieu. From the recollection of knowledge to the development of new strategies, the MPPs facilitate the target 

knowledge using programming as a tool. When students are working on the MPP, they will experience periods 

when they know what to do and periods when they encounter obstacles facilitating mathematical learning 

opportunities. The obstacles, when becoming an epistemological obstacle, allows the students to rethink their 

strategy, develop new pathways, discuss with their peers, conjecture, and experiment, which are all related to the 

intended learning (Leung and Baccaglini-Frank, 2016). Thus, the MPP has the potential to spur mathematical 

thinking and reasoning and to develop conceptual knowledge (Hiebert, 2013; Skemp, 1976), and hence deep 

learning of the mathematical content (Noss and Hoyles, 1996).  

We have explored these design ideas through a numerical mathematics example, in which challenging the students 

to apply their existing knowledge of zero-points to new and unfamiliar functions, allowing them to re-evaluate 
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their strategies, was central. The epistemological obstacle occurs when the relevant knowledge of zero-points 

that have previously been successful, but now is simply inadequate and they need to apply their knowledge in 

a new way. The feedback and interaction with the milieu creating the adidactical situation allows for 

overcoming the obstacle, which Balacheff (1990) links to the construction of meaning. In the presented MPP, 

the students encountered functions in which they were unable to find the zero-point by using known methods. , 

Through a series of problems, they found alternative strategies for locating the zero-point aided by the milieu 

consisting of the problem, and feedback from running the programming code and their peers. All through the 

creation of the program, the students engaged in the adidactical situation, allowing them to apply their existing 

knowledge in a new way. The result is where the students hopefully have reached the target knowledge and learned 

new mathematical concepts. 

The balance in designing an MPP is delicate for several reasons. The problems need to have their roots deeply in 

the mathematics curriculum while taking advantage of the possibilities that programming brings. One challenge 

is the choice of where and how to implement programming in the mathematics classroom. There is a real risk of 

going overboard and applying programming to areas where other tools are more strategic, undermining the value 

of programming as a mathematical tool. There are examples where coding is less beneficial for enhancing learning 

(Hayes and Stewart, 2016; Kalelioglu and Gülbahar, 2014), and as (Popat and Starkey, 2019) writes, ’if the 

academic aim is for students to learn mathematical problem solving, teaching these skills directly is more effective 

than learning these through coding.’ Programming does have advantages that other technologies, such as 

GeoGebra and Computer Algebra Systems (CAS), does not have. Transparency, where the students have to input 

the code and therefore every calculation is visible unlike CAS where it is often a “black box”. Simulating complex 

problems, for instance Monty Carlo simulations within probability. Numerical calculations (as shown here), where 

both the transparency of the method and the capacity to numerically calculate the zero-point to a great accuracy 

is present. Finally, building one’s own tool creates ownership and understanding of both the program and the 

mathematical method. This last statement needs to be investigated further, but from the small sample presented, 

there are indications to support the statement. 

The design presented investigates the complexity of, and progress through, a mathematical programming problem 

to learn mathematics using programming. The balance between obstacles can yield an MPP that can facilitate 

mathematical learning and algorithmic thinking with the use of programming as a tool. Further empirical research 

investigating the implementation of MPPs will build towards creating a set of design principles for the use of 

programming as a valuable tool in mathematics education.  
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Facilitating exploratory talk through 
mathematical programming problems 
Abstract 
With several Nordic countries implementing programming into their curricula, there is a need for 

research into the combination of mathematical learning and programming. With tasks being the 

main “thing to do” in the mathematics classroom and exploratory talk being closely linked to 

learning this article investigates what contributes to and what hinders exploratory talk when 

working on mathematical programming problems. The data collection comprises video and audio 

recordings of students working on tasks in a mathematics classroom in Norway. The findings include 

a set of recommendations for implementation and design of mathematical programming tasks into 

the mathematics classroom.  

1 Introduction  
In the last few years, programming has received focus primarily due to its implementation into the 

national mathematics curricula of several countries (Sentance & Csizmadia, 2015). The combination 

of countries including programming in their mathematics curricula (Bocconi et al., 2018) and the lack 

of research into how to facilitate the implementation of such programming (Weintrop et al., 2016) is 

a challenge. Previous research has shown that programming improves students’ logical thinking 

(Park et al., 2015) and their understanding of mathematical processes (Calao et al., 2015), which can 

lead to more joyful learning processes (Djurdjevic-Pahl et al., 2016) and strengthen students’ self-

confidence (Shim et al., 2016). Combining student interaction with task design, where students rely 

on each other to generate, challenge, refine and pursue new ideas, has been shown to be beneficial 

(Francisco & Maher, 2005). Learning occur when small groups of students work on mathematical 

problems as such tasks facilitate the students’ interactions and help them construct new ideas and 

discover new ways of thinking when applying mathematical understanding (Martin et al., 2006). 

Small group collaborative learning in school mathematics, if conducted appropriately, can bring 

about more equal academic success amongst all students compared to traditional methods of 

teaching (Davidson & Kroll, 1991; DePree, 1998; Slavin, 1990; Urion & Davidson, 1992). Exploratory 

talk, where students engage critically but constructively with each other in small groups (Mercer, 

2005; Mercer & Littleton, 2007), is used here as it has been shown to stimulate subject learning and 

reasoning skills (Knight & Mercer, 2015; Mercer et al., 2004; Mercer & Sams, 2006).  

A mathematical programming problem (MPP) is a series of tasks designed for students to combine 

mathematics with programming to resolve a problem (Munthe, 2022, submitted). The article 

presents the design of MPPs and their focus on facilitating exploratory talk, before explaining the 

design of the MPPs used here. Through an analysis of the interaction between students working in 

groups on mathematical programming problems, the article investigates elements contributing to 

and hindering exploratory talk.  

2 The design of MPPs 
A review of research into computer education indicates that learning to program is difficult as 

“students exhibit various misconceptions and other difficulties in syntactic knowledge, conceptual 

knowledge, and strategic knowledge” (Qian & Lehman, 2017, p. 17). Ko et al. (2004) use the term 

barriers to differentiate between six different types of adversities students encounter when learning 
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to build a program. These barriers are a combination of syntax errors, structural errors, logical 

challenges, error handling issues and problems related to the number of commands available (Ko et 

al., 2004). When combined with the difficulty of creating tasks using digital technologies (Joubert, 

2007; Laborde & Sträßer, 2010), programming is a complex tool to be introduced and implemented 

into mathematics classrooms.  

Mathematical learning is more likely to take place when students are committed to a solving a 

problem, and Brousseau (1997, p. 83) defines, in the theory of didactical situations (TDS), knowledge 

as a property of a system consisting of a subject and a milieu. Designing problems that facilitate 

students adapting their strategies to obtain the desired knowledge is challenging, and MPPs 

accomplish this through the design of problems that students can overcome while avoiding many 

adversities. As students work on the problems, they interact with the milieu, which can be both 

collaborative and antagonistic. This period of interaction is the adidactical situation, where students 

show initiative and responsibility for the outcome of the learning process. In the TDS, an 

epistemological obstacle constitutes a form of knowledge that has been relevant and successful in 

particular contexts, often school contexts, but that becomes false or insufficient at a particular 

moment in time. If students overcome such an obstacle through the adaptation of their strategies, 

the desired knowledge can be obtained, thereby generating an epistemological obstacle. Ontogenic 

obstacles relate to the limitations of students and a lack of required prior learning, and didactical 

obstacles relate to the presentation of the subject, “the result of narrow or faulty instruction” (Harel 

& Sowder, 2005, p. 34). If students encounter and overcome obstacles as they are working through 

the given problems, adaptation may take place. Similarly, Stein et al. (1996, p. 426) state that “tasks 

used in mathematics classrooms highly influence the kinds of thinking processes in which students 

engage, which, in turn, influences student learning outcomes.” The design of MPPs is focused on 

creating adidactical situations (Brousseau, 1997), facilitating exploratory talk during which students 

reconsider their strategies, develop new pathways, discuss with their peers, conjecture and 

experiment, all related to the intended learning process (Leung & Baccaglini-Frank, 2016). To 

facilitate adidactical situations (Brousseau, 1997), an MPP is structured using seven steps, presented 

in Figure 1. 

 

Figure 1: The seven steps for designing MPPs.  

The structure of the design is the product of a three-year iterative process of implementing MPPs in 

an upper-secondary school mathematics class (Munthe, 2022, submitted). As an example, I will use 

the building of a program to calculate the zero-point of a function using the bisectional method1. 

 
1 The bisectional method is a root-finding method applicable to any continuous function for which two values 
with opposite signs are known. The method consists of repeatedly bisecting the interval defined by the two 
values and then selecting the subinterval in which the function changes sign and that therefore contains the 
root (intermediate value theorem). 
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Step 1 consists of asking the students to find the zero-points for several different types of functions, 

illustrating the different methods required for each type. Step 2 problematizes finding the zero-point 

if the given function, such as 𝑓(𝑥) = ln(𝑥 + 2) − 𝑥, does not conform to any set method. In step 3, 

one student takes the role of a “program” and is given a set of graphs where the function is 

unknown, but the zero-points are provided. The rest of the group is tasked with finding the zero-

points by giving the “program” x-coordinates, and the “program” can only respond with the 

accompanying function values. This allows several strategies for finding the zero-point to be tested 

and evaluated. In step 4, tasks allowing students to recollect necessary programming structures and 

commands are given. Step 5 consists of transforming the method discovered in step 3 into a coding 

structure, and step 6 consists of building the program. Both steps 5 and 6 contain tasks to assist with 

aspects of code building. The final step asks the students to evaluate the program, investigate 

whether it works for all functions and provide explanations of why it does not work for some 

functions if that is the case.  

3 Theory 
Learning in mathematics can be seen as “the construction of a web of connections – between classes 

of problems, mathematical objects and relationships, real entities and personal situation-specific 

experiences” (Noss & Hoyles, 1996, p. 105). The linking of concepts is also well established in the 

adidactical situations of Brousseau (1997). Facilitating students in explaining their reasoning and 

providing warrants for their arguments while recognizing them as contributors are part of the 

exploratory talk that takes place between the students (Choi & Walters, 2018; Mercer, 2005). 

Exploratory talk is when “partners engage critically but constructively with each other’s ideas. 

Statements and suggestions are offered for joint consideration. These may be challenged and 

counter-challenged, but challenges are justified, and alternative hypotheses are offered. Partners all 

actively participate, and opinions are sought and considered before decisions are jointly made” 

(Mercer, 2005, p. 9). Such exploratory talk increases students’ conceptual understanding their ability 

to reason in terms of mathematical problem-solving (Lampert et al., 1996; Lehrer & Schauble, 2005; 

Michaels et al., 2008; Resnick et al., 1992; Yackel & Cobb, 1996). The role of mathematical talk and 

discussion in the effective teaching of mathematics is cemented in research (e.g. Cobb et al., 1997; 

Kazemi & Stipek, 2009; Nathan & Knuth, 2003; Resnick et al., 2017; Sfard, 2000), and the foundation 

for this article is that exploratory talk promotes mathematical learning.  

Learning mathematics in small groups may also be beneficial when working with computers (Berry & 

Sahlberg, 2006), and Lou et al. (2001, p. 449) state that when combining learning with technology 

and exploration, “small group learning had significantly more positive effects than individual learning 

on student individual achievement.” The exploratory talk students undertake in groups consists of 

several steps. Starting with an initializer which can be a claim, a suggestion, or simply the reading of 

the problem. A claim is defined by Toulmin (1969) as an assertion to be taken seriously, separating it 

from more hypothetical and frivolous statements. A suggestion can be in the form of stating a 

hypothesis (Pedaste et al., 2015) and will have different claims to attention. A claim and a suggestion 

are similar in that they are both put forward, but they differ in the confidence of their statements. 

When the students are faced with a problem, it often requires them to recall previous knowledge to 

initiate the talk, either by inspiring others to utilize it or by expressing a perspective through a “what 

if?” type of question (Alrö & Skovsmose, 2004). This collective reflection (Tabach & Schwarz, 2018; 

Yackel & Cobb, 1996) creates the foundation for both solving the problem and the creation of new 

knowledge. This is not limited to the initial part of the discussion and can move the dialogue in 

another direction (Alrö & Skovsmose, 2004). Gellert (2014) states that the use of initiation is where 
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one or more perspectives of the problem are developed and built together with a need for 

clarification.  

The usage of short exercises promoting curiosity and eliciting prior knowledge is essential to 

facilitate engagement, and the exploration that follows is the result of a combination of promoting 

curiosity and accessing previous knowledge to ensure that the students are prepared for the 

learning outcomes of the current problem (Bybee et al., 2006). Curiosity, when integrated with 

presenting a challenge, can facilitate the process of engagement (Pedaste et al., 2015). Exploration is 

a sequence of activities initiated by the problem and undertaken by the students, using prior 

knowledge to generate new ideas, explore a range of possibilities within the problem and undertake 

an investigation (Bybee et al., 2006). Both engagement and exploration are observable through the 

exploratory talk the students use to engage critically, but constructively, with each other’s ideas 

(Mercer, 2005).  

Explanation involves the students demonstrating their conceptual understanding of the engagement 

and exploration undertaken (Bybee et al., 2006). Students’ progression towards the learning 

objectives of a task is facilitated by them explaining their understanding of a concept or result to 

each other (Bybee et al., 2006). Exploratory talk also consists of explanation and evaluation, where 

making meaning out of the collected data to synthesize new knowledge (Pedaste et al., 2015) and 

challenging or counterchallenging a proposal are central. This also includes making the reasoning of 

the group visible (Mercer, 2005), which involves each individual stating what they think to the group 

and being open to examination from others (Alrö & Skovsmose, 2004). The process of engaging in 

these reflective activities facilitates learning (Pedaste et al., 2015). The result of the explanation and 

evaluation parts of exploratory talk can move mathematical talk in a new direction (Alrö & 

Skovsmose, 2004; Gellert, 2014). Explanation and evaluation can result in a joint decision (Mercer, 

2005) or agreement regarding the clarification of a given problem or a specific result. Such 

agreement needs to be justified, and a deeper explanation is required, including a detailed account 

of how the group reached its conclusion (Drageset, 2014). Agreement is like closing (Gellert, 2014), 

which is ending the current discussion about a given problem. The validity of the agreement 

depends on what Toulmin (1969) refers to as the modal qualifier, in which the degree of confidence 

in the conclusion qualifies it as a solution.  

Tasks that facilitate mathematical learning using programming also need to avoid overloading 

students with complexity and programming syntax (Ko et al., 2004). Research has shown that 

complex problem-solving without sufficient support structures can result in an unproductive 

cognitive process (Kirschner et al., 2006; Reiser, 2004). In task design, insufficient support structures 

often result in either didactical or ontogenic obstacles (Brousseau, 1997). Based on this research, 

this article collectively refers to adversity when the students encounter an obstacle, whether it be 

epistemological, ontogenic or didactical.  

4 Method 
The MPPs investigated were implemented in a classroom as part of an advanced mathematics 

course for students (N = 28) aged 17 in the second to last year of secondary school. Three groups 

were chosen based on a combination of different genders and grades, and most importantly, on the 

individual students’ ability to sufficiently convey their ideas vocally during a lesson. One of the 

groups consisted of four males, the second one was composed of two females and the third one was 

made up of one male and one female, all of whom had collaborated well throughout the year. The 

students were told to discuss the problems within their groups, allowing them to work on and 

discuss any adversities before receiving help from the teacher.  
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The data collection consisted of recording each student’s computer screen together with their voice 

while working on the problems. The screen and voice recordings for each member of the group were 

digitally combined to form one video file with two to four screens and an audio where all of the 

students’ voice recordings were combined. This resulted in several advantages with regard to the 

transcription. First, viewing all the screens together provided a clear indication of where each 

student was in the process of building the program. Second, the combination of voice recordings 

made each student’s contribution clear, allowing for an accurate transcription.  

The analytical framework used consists of three layers of coding. The segment category divides the 

lesson into smaller sections, in which the students talk about one problem or challenge 

encountered. A segment is defined as one problem or one part of a problem, initialized by a problem 

separate from the previous one, and ending with either an agreement regarding the given problem 

or the change to a new problem.  

The subject category refers to the topic of the interaction. The first type is mathematical, in which 

the students talk about a mathematical object, such as the derivative or the number of solutions. 

The second is programming, in which the students specifically talk about programming, for instance, 

how different commands work, the structure of a code segment or what caused a programming 

error. The final group is a combination of the two, including talks about how to combine 

programming language to complete a mathematical objective, for instance, “How do we avoid the 

program dividing by zero?” or “I want the program to do <a mathematical procedure>. How do I 

accomplish that?”  

The interaction category consists of exploratory talk and adversity. Exploratory talk consists of 

initiation, explanation, exploration and agreement. Initiation is a claim, a suggestion, a recalling of 

previous knowledge or simply the reading of the problem. Initiation allows for the 

compartmentalization of the transcript into segments, where each segment starts with one or more 

of the above statements. Explanation and evaluation are part of the exploratory talk between 

students, where they explain and argue for their solutions, present criticisms of a solution or 

suggestion and perform checks to validate their solutions (Mercer, 2005). Evaluation is a natural part 

of mathematical programming since when the students encounter errors, they need to understand 

how to resolve them through conversations with their group members (Benton et al., 2017). 

Mathematical evaluation is valuable as it combines the workings of the program with students’ 

mathematical know-how to build their knowledge networks (Noss & Hoyles, 1996), allowing the 

students to experience an adidactical situation (Brousseau, 1997). Explanation and evaluation also 

contain the recollection of previous knowledge as this is required to explain mathematical and 

combination challenges (Pirie & Martin, 2000). The design facilitates the students’ recollection of 

previous knowledge, which facilitates the building of the program (Pirie & Martin, 2000). Exploration 

involves the students applying mathematics and/or programming to investigate and explore 

different approaches to a problem or program (Benton et al., 2017). Such exploration can involve 

testing for different code snippets and the simple colouring of graphs to the more complex insertion 

of if-statements, preventing the program from calculating the square root of negative values. The 

testing can also be mathematical, in which the students explore the program’s ability to display the 

derivative of a complex function, followed by an evaluation of the result. Through exploration, the 

students investigate the limits and possibilities of the program, leading to mathematical questions, 

such as “why is the derivative of log⁡(𝑥) not showing for negative values?” and the mathematical 

evaluation of the results, such as “why is the result of the calculation not as expected?” Exploration 

can cause a change in knowledge when the results deviate from the expected, and an evaluation of 

the mathematics involved is required, essentially creating an epistemological obstacle. Exploration, 
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together with the adidactical situation, is therefore closely linked to explanation. Agreement is the 

students collectively reaching a common ground whether it is regarding a specific answer or a code 

snippet. If a statement is disputed, it is not recognized as an agreement. An agreement can be purely 

mathematical, code related or a combination of the two. Agreement can mark the end of a problem 

or can initiate a new proposal, evaluation or exploration. Not every segment reaches an agreement 

immediately as sometimes explanation and exploration drive the students towards other initiations. 

If the students are unable to reach an agreement through their own interaction, they usually result 

to asking the teacher, who, through discussion with the students, assists them in reaching an 

agreement. 

Adversity is defined here as situations where the students display uncertainty regarding how to 

proceed with the MPP they are working on. From a mathematical perspective, these are the 

instances where the students encounter obstacles (Brousseau, 1997), and from a programming 

viewpoint, barriers (Ko et al., 2004). These can be observed as frustration, and commonly occur 

when executing the program and receiving an error message, but also appear in terms of difficulties 

distinguishing between commands, sequencing challenges, uncertainty regarding how to proceed 

and a general sense of a negative premonition as in “this is not going to work.” This feedback can 

lead to discouraging self-relevant interpretations (Fyfe & Brown, 2020), which make the students 

give up and link their frustrations to mathematics. Adversity by itself does not distinguish between 

different “types” of obstacles. Only when viewing adversities in relation to exploratory talk does the 

difference between an epistemological and another type of obstacle become clear. The expectation 

is that a “good” MPP displays more instances of exploratory talk, whereas a “less good” MPP 

displays more instances of adversity. 

Within each segment, the transcription was coded for both subject and interaction, enabling an 

analysis of the relationship between exploratory talk and adversity and their relation to 

mathematics, programming or a combination of the two. As an example, when a student engages in 

a mathematical explanation, they use their mathematical knowledge and vocabulary to present their 

reasoning. In a combination explanation, they include either the code itself or the output from the 

program to assist their reasoning, and in a programming explanation, they use the different 

commands and programming structure for their reasoning and do not apply mathematical 

vocabulary.  

Table 1: Coding scheme for the analysis of the transcripts. 

Code for interaction Description 

Exploratory talk 
 

Engagement within the group consisting of ideas, 
suggestions, challenges and justifications  

 Initiation 
 

Start of a segment 

 Explanation 
 

Explaining and arguing for a solution 
Presenting criticism and suggestions 
Validating a solution 

 Exploration 
 

Testing a code 
Running the program 

 Agreement Reaching common ground 

Adversity The group displays uncertainty regarding how to 
proceed 

 Positive Leading to or facilitating exploratory talk 
(epistemological obstacles) 

 Negative Leading to frustration and a “this is not going to 
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work”-mentality (didactical and/or ontogenic 
obstacles) 

The first MPP concerns the bisectional method (see the example described above in the design of 

the MPP). To illustrate a problem containing an adversity that intends to facilitate exploratory talk 

from the MPP concerning the bisectional method, see Figure 2.  

 

Figure 2: One problem from the first MPP covering the bisectional method. 

The second MPP asks the students to build a program implementing Newton’s method for 

approximating the zero-point2. The MPP starts with a recollection of the derivative and its 

application within function analysis. The MPP facilitates the students in building visual and 

algorithmic proof for the method, followed by implementing the method into a program. When the 

students have built the mathematical argument for Newton’s method, they are asked to evaluate it 

(see Figures 2 and 3).  

  

When the students have finished building their programs, they are asked to complete another 

similar problem (see Figure 3).  

 

 
2 Also known as the Newton-Raphson method. It is a root-finding method with an initial guess (𝑥𝑛) followed by 
the finding of the tangent line of the function at this point. The next estimate is where the tangent line crosses 

the x-axis. Algebraically, the estimate calculated can be expressed as 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥0)

𝑓′(𝑥0)
. 

Figure 2: One problem from the second MPP covering Newton’s method. 
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Results 

4.1 Bisectional method 
Prior to this lesson, the students completed programming tasks involving building programs covering 

graph plotting, calculating areas and circumferences of geometric shapes, and solving linear and 

quadratic equations. This MPP consisted of the students building a program to find the zero-point 

for a function that crosses the x-axis using the bisectional method. The students were familiar with 

different methods for finding the zero-point of functions, but had not previously used a numerical 

method to find the zero-point. 

The following extract illustrates the development of a strategy by asking one student from each 

group to simulate the machine (see step 3 of the example described above in the design of the 

MPP). The machine-simulation student is A and the zero-searching students are B and C.  

Table 2: Transcript of students working on the MPP covering the bisectional method. 

 Student Transcript Code 

101 A What am I supposed to do now? Combination – Adversity 

102 B You are now python [the programming language] 

Combination – Explanation 103 C You are going to say … 

104 B For example, what is y when x is …? 

<short pause while A looks at the graphs given> 

105 B What is y when x equals zero? 

Combination – Exploration 
106 A Then it [the y-value] is minus one 

107 B But then we take x equals one, right? 

108 A x equals one … that is ehm … yes, that is 
approximately, approximately zero point eight 

109 B ahh, but then we have at least got a zero-point in 
between there 

Mathematics – Explanation  

110 A and C that is so true Mathematics – Agreement  

111 C We can actually make it even more accurate and 
say that since we know there is a zero-point 
between these numbers … 

Combination – Explanation  

 

The group have read the problem, and A has just agreed to simulate the machine. The transcript 

starts with student A expressing initial uncertainty about what to do (101). This is quickly resolved by 

the other members of the group through explanation and an example (102–104). After a short 

pause, where student A studies the graphs, the students start enquiring about the function values 

Figure 3: One problem from the second MPP covering Newton’s method. 
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for a couple of x-values (105–108). Drawing on the information gathered, a mathematical evaluation 

and suggestion is made (109) and swiftly agreed upon by the rest of the group (110). This agreement 

also encompasses verification since the machine-simulating student confirms the suggestion. Finally, 

student C develops the idea further with both a suggestion and an explanation for the proposal. As 

indicated by the code column, the segment contains combination adversity and combination and 

mathematics exploratory talk. 

The MPP elicited both success and frustration: success in terms of progress towards building a better 

method for guessing, and frustration in that the function could have more than one zero-point, both 

contributing to an adidactical situation. There were some adversities in the implementation of the 

method they uncovered in the first part, but they were mostly able to build the program. There were 

several instances where the students explored the program by inputting different types of functions. 

The interaction between the students consisted of discussing the code and the mathematical 

verification of the result based on the output of the program. The overall impression obtained from 

the lesson was that the students understood the bisectional method.  

 

Figure 4: Graph showing instances of the categories in the transcript. 

The students’ previous knowledge of the derivative and finding zero-points is visualized in the 

exploratory talk portion of the graph, with almost every single transcript segment relating to 

mathematics. Since the program did not demand any overly complicated code, the students were 

observed as having fewer problems with the coding part of the MPP, hence the low incidents of 

programming dialogue. Additionally, since the MPP was focused on revisiting previous knowledge 

and games at the start, there were few instances of adversity. Each exploratory talk, especially 

regarding mathematics and combination, involved several steps and outnumbered the incidents of 

adversities in the lesson. A typical occurrence to check the validity of the program involved finding a 

suitable function and solving it mathematically by hand, followed by inputting the function and an 

initial guess into the program. When the program produced a result, they compared the output to 

the exact answer and evaluated whether the numerical method was close enough. The few 

instances of adversity consisted of designed tasks within the MPP, such as, “what is a quick way to 

check whether numbers have the same or different signs?”; this effectively created adversity in the 

design to be solved through exploratory talk.  
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4.2 Newton’s method 
In between the two classes, the students completed a lesson covering the numerical derivative. The 

second MPP introduced the students to the combination of both learning a new formula (Newton’s 

method) and implementing the formula into a program. Additionally, the students had never seen a 

formula that included both a function and its derivative. Combining all these elements is difficult, but 

the students had now used programming throughout the school year and were expected to be more 

confident as a result. The MPP started by explaining the origin of Newton’s method and why it, in 

most cases, will yield a good x-value for the zero-point after only a few iterations.   

In this transcript, the students are working on a code that calls on a function and have just executed 

the program and received an error.  

Table 3: Transcript of students facing an adversity when working on an MPP. 

 Student Transcript Code 

201 L but yes, I have something wrong here 

Programming – Adversity 
202 M return d y <reading the code> 

203 L I do not understand what is wrong, but there is 
something wrong. It says invalid syntax 

204 M Oh, then you have a wrong parenthesis 

Programming – Explanation 205 L … in this one? 

206 M In that one <points to the code on the screen> 

207 L Oh yes, it is missing a bracket here … there 
<moves the cursor to point at it and inserts a 
bracket> 

Combination – Explanation  

<runs the program> 

208 L Now it works 
Combination – Agreement  

209 M Yeah 

 

After receiving a syntax error, L expresses frustration and cannot initially recognize why the program 

is at fault (201–203). M recognizes that a syntax error often occurs from a misuse of parentheses 

(204) before they together locate the line of code containing the error (205–206). By applying an 

evaluation of both the code and the mathematics, a correction is then made (207) before they run 

the program again. After the program executes and displays the graph, they agree on the correction 

made (208–209). The extract contains programming adversity and programming and combination 

exploratory talk. 

The students’ conversations were dominated by adversity relating to how to construct the program 

rather than exploratory talk of how the formula worked. At the end of the lesson, the impression 

was that the students had constructed a program but had limited knowledge of how the 

mathematics behind the code worked.  
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Figure 5: Graph showing instances of the categories in the transcript. 

The graph illustrates the prominence of both adversity and exploratory talk concerning programming 

and the combination of programming and mathematics. It is important to highlight that the 

combination dialogue, where there is mathematical talk, consisted primarily of the implementation 

of the formula into the code rather than actual discussion of Newton’s formula. The MPP contained 

exploratory problems, which in the previous lesson had aided the students in discussing the 

mathematical formula applied, but in this lesson, the students ended the discussion quickly to 

instrumentally program Newton’s formula. As a result, the adversities started out as combination 

adversity and deteriorated into that related to programming. Most of the programming adversities 

resulted from the occurrence of an error, which was followed by the students trying to locate the 

error, often through combination knowledge, before them either succeeding or failing at correcting 

the error. There were instances where the students completed several iterations of receiving an 

error, making a correction, running the program and receiving a new or identical error. Every single 

segment contained programming in one form or another, and the mathematics, although present in 

the combination dialogue, was lacking.  

5 Discussion 
Exploratory talk is consistently represented related to either mathematics or the combination of 

programming and mathematics, indicating that it is possible to implement programming into 

mathematics classrooms and facilitate exploratory talk. In both of the lessons presented, exploratory 

talk is present in almost every communication between students, and each lesson reveals a 

significant number of interactions between the students, which are closely related to learning 

(Bybee et al., 2006; Mercer, 2005). 

The amount of exploratory talk versus adversity is different in the two lessons. The bisectional 

method lesson contains several instances of adversity, but with the significant amount of 

exploratory talk that takes place, the adversities are resolved and become an epistemological 

obstacle {Brousseau, 1997 #177}. The low representation of programming issues is likely due to 

previous experience with programming, familiarity with the mathematical foundation of the 

program and the low complexity of the programming required. This lesson indicates how it is 
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possible to introduce a new subject using programming when students have a strong foundation. 

When students are learning to apply programming in mathematics, it is beneficial that they are 

familiar with the mathematical concepts involved so that they are not met with two complexities at 

the same time (Ko et al., 2004). Applying programming to a well-known mathematical method 

alleviates one part of this two-sided challenge. In the Newton’s method lesson, adversity features 

more prominently. The expectation was that there would be some discussion regarding the 

mathematical properties of Newton’s formula and its implementation into the program, but only the 

latter occurred. The lack of mathematical exploratory talk suggests that the MPP did not manage to 

create a link between these students’ previous knowledge of the derivative, the tangent of the 

derivative and the zero-point of the function. This lesson indicates that when using programming to 

introduce a new method in mathematics, care must be taken that the programming does not 

overshadow the mathematical content of the lesson. The difference is that every mathematical step 

of the bisectional method was already known to the students. In Newton’s method, while they had 

been taught the derivative and application of the tangent, using the derivative to find a zero-point 

was new. This created an increased amount of adversity for the students, leading to less 

mathematical exploratory talk.  

The bisectional method lesson facilitated exploratory talk indicating that implementing 

programming into mathematical classrooms can contribute to mathematical learning (Alrö & 

Skovsmose, 2004; Bybee et al., 2006; Mercer, 2005; Pedaste et al., 2015). Students are better 

prepared to learn from building a program when there is less adversity and when more support 

structures are in place (Drijvers, 2015; Kirschner et al., 2018; Reiser, 2004). This is not to say that 

situations do not exist where both learning a mathematical concept and build a program can occur, 

but accomplishing both during one lesson is challenging. Designing problems that apply known 

mathematical concepts together with programming yields opportunities to facilitate a deeper 

understanding of the underlying mathematics for the learner.  

The design idea was that programming can be a tool for learning mathematics. In the bisectional 

method MPP, the tasks facilitated the students in uncovering the bisectional method themselves 

before having to create a program using this method, generating a good support system (Drijvers, 

2015), contributing to building an adidactical situation (Brousseau, 1997) and facilitating exploratory 

talk (Mercer, 2005). The lesson contained numerous mathematical exploratory talks, probably due 

to the introduction and application of well-known methods, together with the fact that the program 

did not contain any procedures that the students were unfamiliar with. This allowed the students to 

focus on understanding the mathematics behind the method instead of meandering through 

programming code, in which didactical and ontological obstacles (Brousseau, 1997) are more likely 

to present themselves. In the Newton’s method MPP, the balance was skewed towards 

programming, and the exploration suffered because the students focused extensively on getting the 

program to work, rather than understanding the mathematical principles behind the method. The 

investigation shows that the creation of a program together with a relatively new mathematical 

method created ontogenic and didactical obstacles for the students, resulting in them focusing more 

on the instrumental creation of the program.  

The primary adversity hindering exploratory talk that students encounter when working with 

programming is the building of the program through writing code segments. The hindrance is 

twofold, where the first obstacle is the coding itself. The implementation of digital tools in the 

classroom has been researched previously (Drijvers, 2015), but most digital tools used in schools are 

designed to assist the students using them. They often make use of methods, such as graphical 

interfaces with buttons that perform certain procedures which are hidden from the user, creating a 
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“black box” (Buchberger, 1990). Text-based programming is much less lenient and requires the 

builder to consider both the structure and the commands used to build a functioning program. It is 

more difficult to build a program that solves a quadratic equation than use a solve command in 

another digital tool. The combination of understanding the different commands, what they do and 

how they interact together with understanding the structure of a program is demanding. The second 

hindrance is the translation of mathematics into a programming code. The mathematical knowledge 

students possess of how to find the zero-point(s) of a polynomial function is often methodical and 

different from applying numerical methods. This translation from mathematics to the building of a 

program requires careful design, where the transition between the two are clear. The two lessons 

are examples of a “good” and “less good” implementation of programming into a mathematical 

classroom. A “good” implementation is recognized as containing more mathematical exploratory 

talk compared to adversity. A successful MPP design uses pre-existing knowledge extensively and 

then slowly builds on that to facilitate the students’ building of the program. Unsuccessful 

implementation comprises more adversity and less mathematical exploratory talk. Adversities are 

often related to the syntax and structure of programming, which creates complexity and can hinder 

mathematical learning (Kirschner et al., 2018; Reiser, 2004). When the program requires 

mathematics that the students are less familiar with, the complexity entails both programming and 

mathematics and can potentially create a double hurdle for the students to overcome (Ko et al., 

2004).  

6 Concluding thoughts 
From the discussion above, three main findings can be identified affecting the relevance of MPPs (1), 

the structure of the design (2, 3) and the choice of the mathematical area represented (2, 3). 

1) When implementing programming into mathematics classrooms, it can facilitate 

mathematical exploratory talk. 

2) Programming is best implemented to facilitate the in-depth learning of already-known 

mathematical concepts as this initiates exploratory talk; however, care is needed when 

utilizing programming to learn new mathematical concepts. 

3) Adversity is both important and challenging when implementing programming into 

mathematics classrooms. It is important in that it can facilitate mathematical adidactical 

situations but challenging in that programming adds another layer of complexity.  

The data show that programming can facilitate mathematical learning (Kazemi & Stipek, 2009; 

Lampert et al., 1996; Lehrer & Schauble, 2005; Michaels et al., 2008; Nathan & Knuth, 2003; Resnick 

et al., 1992; Sfard, 2000; Yackel & Cobb, 1996). An important caveat here is that this article only 

scratches the surface of adversities. This work was carried out on a small scale, and research with a 

larger number of students is needed. Further studies focusing more explicitly on the mathematical 

learning gains from applying programming and how teachers can utilize programming to facilitate 

learning are necessary.  
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Programming in the mathematics 
classroom – The types of adversities 
students encounter 
 

Keywords: mathematical learning, programming, adversity 

Abstract 
This article investigates the implementation of mathematical programming problems among 

upper secondary school students and the types of adversity they experience when working on 

such problems. The adversities are classified and analysed within a framework of four 

categories. Concept adversity refers to the use and knowledge of different commands and 

types in the programming language. Syntax adversity concerns the structure of conditions and 

loops and the logical build of a program. Output adversity occurs after pressing the ‘run the 

program’ button and receiving, for instance, syntax errors, unexpected answers, or no output, 

and coding adversity is encountered when converting a mathematical procedure to 

programming code. Alongside several excerpts from transcripts, each adversity is discussed in 

relation to both mathematical learning and how to mitigate undesirable adversities. Concept 

adversity was observed to have no relation to mathematical learning, while at the same time 

not impeding such learning significantly. Syntax and output adversity were observed to 

contribute to mathematical learning when students started exploring the problems but did not 

contribute to learning when they were unable to resolve the problem. Coding adversity, when 

resolved, was observed to facilitate exploration and learning.  

Introduction 
Programming is currently making its entrance into the mathematics classroom in Nordic 

countries (Bocconi et al., 2018). With the coupling of mathematics and programming comes a 

range of possibilities and challenges for learning. Possibilities can take the form of numerical 

methods and simulations in addition to new ways to teach, learn, and investigate mathematics. 

Adversity, the focus of this article, can take the form of increased difficulty and complexity, 

leading to frustration and loss of motivation. In this work, adversity is a combination of two 

terms used in the theory: obstacles, from the theory of didactical situations (TDS) in 

mathematics (Brousseau, 1997) and barriers, from the programming community (Ko et al., 

2004). When referencing an obstacle, it is mathematical; when referencing a barrier, it is 

related to programming.  

Barriers from the programming community are a combination of syntax errors, structural 

errors, logical challenges, error handling, and the number of commands available (Ko et al., 

2004). Obstacles from the mathematics community are extensive and span a wide selection of 

areas, from learning the number line in primary school to learning to differentiate and 

integrate at secondary school (Campbell & Epp, 2005; Merenluoto & Lehtinen, 2004; Nelson 

& Powell, 2018). Obstacles are important in the process of learning (Lodge et al., 2018), and 

knowing which obstacles lead to confusion and frustration can facilitate learning (D’Mello et 
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al., 2014). Obstacles leading to confusion are closely connected to learning in that confusion 

can have beneficial effects, most importantly when it is resolved (D’Mello & Graesser, 2014). 

A challenge for educational researchers is to determine which adversities exist and which lead 

to learning processes and outcomes (Lodge et al., 2018). As Niss (1999) stated, if we know 

the obstacles that block the paths of students learning mathematics, we will gain a better 

understanding of how mathematical knowledge and ability are generated and activated, 

leading to better learning. 

Research has addressed the barriers encountered when learning programming (e.g., Grover & 

Pea, 2013; Jenkins, 2002; Ko et al., 2004; Piteira & Costa, 2013) and the types of adversities 

students encounter when learning programming as part of mathematics (Benton et al., 2017; 

Benton et al., 2018). The barriers within programming and the obstacles within mathematics 

are significant, and this article uses an abductive framework to categorise the adversities met 

by secondary school students utilising programming in mathematics. In this study, 

mathematical obstacles experienced by students were continuously investigated and, to 

explore the mathematical programming adversities they encountered, a framework from word 

problems (Verschaffel et al., 2020a) was used. An adversity is defined as a situation in which 

the students display uncertainty regarding how to proceed with the mathematical 

programming problem (MPP) on which they are working.  

This article investigates the types of adversities students encounter when using programming 

as a tool in mathematics. As well as suggesting how to avoid adversities which do not 

facilitate learning, this work will aid in both teachers’ orchestration of mathematics classes 

using programming and the design of MPPs. The two research questions are ‘What types of 

adversities do upper secondary school students encounter when working with MPPs in the 

mathematics classroom?’ and ‘How are the adversities related to the learning of 

mathematics?’ The aim is to increase our knowledge of the types of adversities that block the 

paths of students learning mathematics, thus facilitating learning. Following the investigation, 

suggestions are made on how to mitigate undesirable adversities through both task design and 

classroom orchestration to facilitate learning.  

Mathematical programming problems 
MPPs consist of a series of tasks in which students work on building a program to solve a 

mathematical problem. To facilitate adidactical situations (Brousseau, 1997), the MPP is 

structured using the seven steps presented in Figure 1.  

 

Figure 1: The seven steps for designing MPPs.  



147 
 

The structure of the design is the product of a three-year iterative process implementing MPPs 

among Norwegian upper secondary school mathematical students. The iterative process 

consisted of moving from a simple ‘build a program that …’ to decomposing the MPP into 

several smaller problems, with questions and activities facilitating discussion and exploration 

by the students. As a brief example, I use the building of a program calculating the zero point 

of a function using the bisectional method1. Step 1 consists of asking the students to find the 

zero point of several different types of functions, illustrating the different methods required 

for each type. Step 2 asks them to find the zero point if the function does not conform to any 

set method, such as 𝑓(𝑥) = ln(𝑥 + 2) − 𝑥. In step 3, one student takes the role of a ‘program’ 

and is given a set of graphs where the function is unknown but the zero points are given. The 

other members of the group are tasked with finding the zero points by giving the ‘program’ x-

coordinates, and the ‘program’ can only respond with the corresponding function value. This 

allows exploration of several strategies for finding the zero  point to be evaluated and tested. 

Step 4 allocates tasks requiring students to recollect necessary programming structures and 

commands, such as plot commands and while loops. Step 5 consists of transforming the 

method discovered in step 3 into a coding structure, and step 6 consists of building the 

program. Both steps 5 and 6 contain tasks to assist in aspects of the building of code, such as 

the conditions for the while loop. The final step asks the students to evaluate the program, 

investigate whether it works for all functions, and, if there are functions for which it does not 

work, determine why. For a more in-depth explanation of the design and examples, see 

(reference coming, in process). Themes for the MPPs included in this study are the quadratic 

equation, using the binomial method of finding the zero point, deriving a function 

numerically, and using Newton’s method of finding the zero points2.  

Theory 
To discuss the adversities students encounter when working on MPPs, adidactical situations 

from TDS were applied. An adidactical situation occurs when the students interact with the 

milieu, consisting of their peers, the tools, and the design of the problems, and take the 

initiative and have the responsibility for the outcome. In TDS, the obstacles the students 

encounter are separated into three types (epistemological, didactical, and ontogenic) 

(Brousseau, 1997), which are used in the discussion of this article. Epistemological obstacles 

are beneficial and sought after since they force the students to reorganise their knowledge to 

fit a new situation. Typically, the students are presented with a problem for which their 

previous knowledge is insufficient or wrong, and this forces them to apply their existing 

knowledge in a new way. An epistemological obstacle is the desired type of obstacle, 

facilitating learning as the students overcome the obstacle. Ontogenic obstacles originate from 

the lack of the knowledge required to make the connection necessary to solve the designed 

task. Didactical obstacles are caused by erroneous or flawed task design which leaves the 

students unable to complete the task. Whereas ontogenic obstacles lie more with the students 

 
1 The bisectional method is a root-finding method applicable to any continuous function for which two values 
with opposite signs are known. The method consists of repeatedly bisecting the interval defined by the two 
values and then selecting the subinterval in which the function changes sign, therefore containing the root 
(intermediate value theorem). 
2 Also known as the Newton–Raphson method, this is a root-finding method in which an initial guess (𝑥𝑛) is 
followed by finding the tangent line of the function at this point. The next estimate is where the tangent line 

crosses the x-axis. Algebraically, the estimate calculated can be expressed as 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥0)

𝑓′(𝑥0)
. 
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and teacher, didactical obstacles belong firmly to the designer of the task. Obstacles can 

facilitate learning, such as epistemological obstacles, or hinder or limit it, such as ontogenic 

and didactical obstacles (Brousseau, 1997). The observed obstacles therefore influence the 

design, since both ontogenic and didactical obstacles can be mitigated through a design 

process.  

Word problems 

The transformation of a mathematical model into a programming code is like the internal 

construction of a model within word problems, after which it is implemented into a 

mathematical model. The building and running of a program are like working through a 

mathematical model to derive a mathematical result. Interpreting and evaluating whether the 

outcome or output is correct and reasonable is equally important. Finally, communicating the 

result of the calculation or providing a descriptive output from the program occurs in both 

instances. Given all these similarities, the implementation of word problem strategies 

(Verschaffel et al., 2020a; Verschaffel et al., 2000) and adversities was an important starting 

point for building the framework and performing the analysis of the obstacles encountered by 

students when solving MPPs. 

A word problem is defined as a verbal description of a problem situation where one or a series 

of questions is posed whose answer can be reached through the use of mathematical 

operations and numerical data contained within the problem statement (Verschaffel et al., 

2000). As with all types of problems, what constitutes a problem for one student may not be a 

problem for another (Muir et al., 2008). Whether a task constitutes a problem depends on 

several factors, such as familiarity with the type of problem, ability to recall required 

knowledge, and the tools available (Verschaffel et al., 2020a; Verschaffel et al., 2020b). The 

pathway through a word problem is complex, but central aspects of the process are contained 

within the six phases outlined below (Verschaffel et al., 2020a), which have similarities to the 

structure (but were not used in the design) of the MPPs (Figure 1). 

1) Internal construction of a model depicting the problem, understanding each element 

and their relation. 

2) Transformation of the model into a mathematical model in which the elements and 

their relation are essential for the solution. 

3) Working through the mathematical model to derive a mathematical result. 

4) Interpreting the outcome of the computational work. 

5) Evaluating whether the outcome is computationally correct and reasonable. 

6) Communicating the result.  

This is not a sequential model, as there is room to move back and forth and skip phases, 

depending on student knowledge. Research into word problems indicates that the main 

obstacles encountered by students are text comprehension, numerical complexity, and the 

connection between the two (Daroczy et al., 2015; Pongsakdi et al., 2020). These obstacles 

share properties with both ontogenic and epistemological obstacles (Brousseau, 1997). Given 

both the known obstacles and the model above, suggestions have been made of how to build a 

word problem encompassing three main characteristics (Verschaffel et al., 2020a). Firstly, the 

use of varied, cognitively challenging, and/or realistic tasks lowers the chance that students 

develop superficial strategies and encourages them to discuss different types of models to 

apply, facilitating adidactical situations (Brousseau, 1997). Secondly, scaffolding the problem 
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and providing the students the ability to experiment with and discuss them hinders ontogenic 

obstacles and builds towards adidactical situations. Thirdly, creating a classroom conducive to 

the discussion of mathematical problem solving, for instance problem-solving strategies such 

as those proposed by Polya (1957), further facilitates adidactical situations. Word problems 

aim to motivate students to study mathematics, facilitate creative thinking, develop their 

problem-solving abilities, and assist in the development of new mathematical concepts and 

skills (Verschaffel et al., 2000).  

Programming barriers 

Challenges in learning programming have been investigated frequently (Medeiros et al., 2018; 

Piteira & Costa, 2013), and this article focuses on the learning of programming syntax and 

sequences of variables, loops, and conditions, as these are both the most applicable to a school 

setting and present a significant challenge to learners (Bosse & Gerosa, 2017). Ko et al. 

(2004) refer to six barriers in the programming process, three of which are closely related to 

programming in a school setting. The first is selection barriers, which relate to the 

programming interface and the knowledge of what tools and commands to use to build for a 

result. The second is understanding barriers, which consist of knowledge of how to handle 

errors and unexpected behaviour of the program. Error handling is a recognised challenge 

within programming education (Lahtinen et al., 2005). The third is information barriers, in 

which the program did not confirm the result or behave in accordance with the hypotheses, 

which often results in the inability to evaluate what went wrong. All three of these barriers are 

related to the evaluation, rather than the execution, of the program. The students’ evaluation 

and discussion of a mathematical problem is central to the adidactical situation. Ko et al. 

(2004) further divided the barriers into subgroups of surmountable and insurmountable 

barriers. Surmountable barriers are those the students are able to overcome; when the 

complexity or number of barriers becomes too large, the students are unable to continue and 

face an insurmountable barrier. Surmountable barriers bear a resemblance to epistemological 

obstacles, and insurmountable barriers bear a resemblance to ontological obstacles 

(Brousseau, 1997). 

Most school students are novice programmers, who are limited to surface knowledge of 

programs, typically using the ‘line by line’ approach instead of meaningful programming 

building (Lahtinen et al., 2005). Students often have knowledge of both the syntax and the 

semantics of programming but lack the ability to combine them into valid and efficient 

programmes (Winslow, 1996). Despite several attempts at designing strategies to support 

novice programming (such as collaborative teamwork, peer tutors, workshops, and forums), 

multiple adversities remain when students are introduced to algorithmic thinking (Stephens & 

Kadijevich, 2020), logic, and problem solving. The difficulty of algorithmic thinking 

combined with the exhausting labour of learning syntax generally leads to frustration, 

rejection, and poor vision (Buitrago Flórez et al., 2017). 

Method 
Implementation and data collection 

MPPs were implemented in a classroom over a period of two years (2018–2020) in an 

advanced mathematics course for students (N=28) in the last two years of secondary school 

(age 17–19). The students received some basic knowledge of programming from a 10-hour 

crash course in Python programming which included variables, input and print, mathematical 
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operators, conditional statements, and loops. The students participated in a total of 10 lessons 

during the school year in which programming was used. For each lesson (90 minutes), two 

groups of two and one group of four students were recorded while working on the task. The 

grade average of the class was 4.3 (on a scale from 1 to 6, where 6 is the top score), and the 

class consisted of students spanning the entire grade spectrum.  

The students were informed of the implementation prior to their subject election so they could 

elect not to be a part of this specific class. Initially, there was a concern that this would reduce 

the validity of the research due to a reduced number of participants and that only either high-

achieving students or those with prior knowledge of programming would participate. A 

review of the students’ mathematics grades from the previous year and an anonymous survey 

asking the students for their knowledge of programming revealed that neither concern was 

borne out. The three groups consisted of four males, two females, and one male and one 

female, respectively, all of whom collaborated well throughout the year. The students were 

told to discuss any adversity within the group before requesting help from the teacher. The 

data collection consisted of a recording of each student’s computer screen together with their 

voice. Each student in each group had a screencast program installed on their school laptops 

and was given a lavalier microphone to ensure the best recording of their voice.  

Data analysis and analytical framework 

The screen and voice recordings for each member of the group were digitally combined to 

form one video file with two to four screens and an audio where all the students’ voice 

recordings were added together. This facilitated transcription, as viewing all the screens 

together allowed transcribers to clearly see where each student was in the process of building 

the program, and the combination of voice recordings made the voice of each student very 

clear, allowing for an accurate transcription. Every part of the group discussion relating to 

mathematics was transcribed. Non-mathematical discussion was noted, as it may be important 

to learning (Ryve, 2011; Wegerif, 2007), but not transcribed. On average, each group had one 

to two minutes of non-mathematical discussion every 20 minutes. The next step was dividing 

the transcript into segments where the students encountered an adversity when working on the 

MPPs. Afterwards, a second reading was performed to categorise what types of adversities 

were present in each segment and whether they were resolved. This process was an abductive 

one whereby each segment was read, and the types of adversities were described in detail and 

then compared with the programming barriers from Ko et al. (2004) and obstacles from TDS 

(Brousseau, 1997). After an initial framework was created, the transcript was re-read to 

investigate similarities between segments and their accompanying categories with the aim of 

uncovering broader categories. As an example, it quickly became apparent that several 

adversities consisted of the students forgetting either the name or the properties of a command 

or type, leading to a category called concept adversities. A similar process led to the 

uncovering of the remaining three categories. After the categories were decided, another 

reading of the segments was performed to ensure that the categories covered all the 

adversities in the transcript and that each segment could be coded by concept, syntax, output, 

or coding.  

Concept adversity is related to the use and knowledge of different commands, methods, and 

types in a programming language and encompasses everything from not recalling a command 

to not understanding what a command does or a type represents. It corresponds to the 

selection barriers of Ko et al. (2004) and the ontogenic obstacles of Brousseau (1997). Syntax 
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is closely related to concepts but is a separate category, being more closely related to the 

logical aspect of programming. Syntax includes the structure of conditions and loops and the 

logical build of a program. A program calculating the square root of a number first needs to 

check if the number is positive or zero before calculating; otherwise, there will be an error. 

Errors in syntax are related to the student’s internal construction of a model depicting the 

problem, understanding each element and the relation between them (Verschaffel et al., 

2020a).  

Output is when the result after pressing the ‘run the program’ button presents an adversity, 

which can take many forms, from syntax errors and unexpected answers to no output at all. 

Some forms are simple, such as errors concerning a missing bracket indicating an 

understanding barrier, and some are complex, such as unexpected or no outputs that are hard 

to evaluate, indicating an information barrier (Ko et al., 2004). Interpreting and evaluating  

the outcome of the computational work and whether it is correct and reasonable (Verschaffel 

et al., 2020a) is expected, and the more difficult an output is to evaluate, the more it hinders 

an adidactical situation. Coding is when the students are converting a mathematical procedure 

to programming code, which is the transformation of the model into a mathematical model 

(Verschaffel et al., 2020a). The process of transposing a mathematical idea or method to a 

working programming structure is of particular interest as it facilitates students exploring 

mathematical methods and concepts with the logical structure of programming to develop an 

in-depth understanding of mathematics. The exploration also facilitates adidactical situations. 

Each adversity in our study had an additional code, which distinguished whether the adversity 

was resolved or not. The framework is presented in Table 1: Framework for investigating the 

adversities encountered by students when working on MPPs., which shows the subcategories and 

gives examples from the transcripts.  

Table 1: Framework for investigating the adversities encountered by students when working on MPPs. 

Type of adversity Description Examples from transcript 

Concept 
 
 

• Unknown command or type 

• Unable to recall command 

• Unable to recall function of 
a command 

“What is float?” 
 
“What does that return mean?” 

Syntax 
 
 

Placement of structure 
within a program 
Defining variables 
Structure of if statements 
Misunderstanding the 
sequential reading of code 

“Where are we going to input this [line of code]?” 
 
“Then we must change the if statement. We need 
two elif’s [else if condition in Python code]. Is that 
allowed?” 

Output 
 
 

No output 
Understanding errors 
Not understanding errors 
Unexpected answer 

“What happened?” 
“Nothing.” 
 
“There is something wrong, there is something 
wrong in line twenty.” 
“Oh yes, should it not be like a … oh, I see what 
is wrong, there should be a colon there.” 
 
“Name x is not defined <reads from screen>. Why 
did that not work?” 
 
“What does ‘expected indented block’ mean?” 
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“Why? … Fifty-six, what do you mean by that. It 
should be three point five … That is … that is very 
strange.” 

Coding 
 
 

Converting known 
mathematics into code 
 
Expanding program 

“We need to create the tangent line for the …” 
“How are we going to write [code for] that?” 
 
“We have managed to find the zero points.” 
“But we want to get them all at the same time.” 

 

The framework allows the investigation of several types of adversities that affect the 

interaction between students and their progress through the task. Adversities that are resolved 

are of special interest since they are closely related to learning (D’Mello et al., 2014), and the 

framework allows us to distinguish both the type of adversity and how often adversities are 

resolved. The transcripts presented in the results include extracts from each of the four 

categories. All the adversities were coded into one or more of the categories. Each excerpt is 

presented to illustrate a type of adversity and followed by an explanatory description. When a 

diversity within a category was observed, two or more excerpts are presented to illustrate the 

similarities and differences between the types of adversities.  

Results 
The design of the MPP facilitated the students’ discussion throughout the lesson, allowing for 

an extensive investigation. The excerpts illustrate the differences between the types of 

adversities observed. Throughout the lessons, segments with adversity occurred 51 times in 

the transcripts. An adversity segment spanned everything from a brief discussion of only a 

couple of interactions to discussions lasting several minutes within the group. In 11 of the 

adversity segments, there were occurrences of multiple categories, which explains the sum of 

occurrences equalling 60.  

Table 2 – Numerical result of analysis of transcript 

Category Description Number of 
occurrences 

Resulted 
in 
resolution 

Concept [C] • Unable to recall command or type 

• Unable to recall the function of a command 

18 14 

Syntax [S] Placement of structure within a program 
Defining variables 
Structure of if statements, for loops, or while loops 
Misunderstanding the sequential reading of code 

10 7 

Output [O] No output 
Understanding errors 
Not understanding errors 
Unexpected answer 

18 15 

Coding [D] Converting known mathematics into code 
Expanding program to mimic mathematics 

14 13 

 

In the transcripts, <> is used to indicate an action or emotion not explicitly referenced, and [] 

is used to explain references and implied words used by the students. Students’ references to 

programming code or feedback from the program are marked with **. Each excerpt is coded 

with a letter to indicate the category, as per Table 2 – Numerical result of analysis of transcript. A 
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few of the transcripts are shown with the accompanying code being discussed by the students 

to illustrate the origin of the discussion. However, most of the code sequences being discussed 

by the students are too long to be displayed properly. 

Concepts were present in 18 of the segments. Within this category, recollection of the 

properties of a command or type occurred 11 times, making it the most prominent occurrence, 

with the return command of a function being the most prominent. The first excerpt reveals the 

student does not recall the function of a command, but the adversity is resolved with help 

from the group. 

C-00 F:  What does that *return* mean? 

C-01 M:  I know that. 

C-02 F:  What does it mean? 

C-03 M:  When you [the program] calculated … it [the return command] gives  

 back the y-value [the return value], if not then it would have calculated it   

 and … only the PC would know it [as in it is not possible to use the result  

 later in the program], but now it has calculated and gives back [to the program]  

 what it [the y-value] is. 

 

Student F was looking at an example applying the use of a function and trying to understand 

and replicate the structure but did not fully understand the return command (C-00). Student M 

contributes with an understanding of the command (C-03). Conversations concerning the 

return command occurred in several lessons and, unlike in the above transcript, did not always 

lead to a resolution. Students unable to recall a specific concept slightly reframe their 

question. When they recall a command, but not its properties, such as with the return 

command, they often ask, “What does <command> mean/do?”, but when they do not recall 

the command itself, they formulate questions in the form of “How do/can I <perform the 

actions of a command?>”, as presented in the excerpt below. 

C-10 M: How can I programme so that it [the program] asks the user to type in the 

  expression? 

 

The student, M, is trying to build a code where the program asks the user to input a 

polynomial function and is unable to recall the input command (C-10). All instances of 

concept adversity were of this type, and they were usually solved (14 out of 18). When 

concept adversity was not resolved, the students continued using the command or type 

without indicating that they had knowledge of its purpose (C-21). 

C-20 F:  What is *float*? 

C-21 L:  I do not remember, but it was written on the other [program from previous 

  lesson]. 

 

Syntax was present in ten segments: defining variables occurred six times, making it the most 

prominent. The first adversity is the program returning an error where a name [variable] is not 

defined, as shown in the excerpt below. 

S-00 M:  *Error name y is not defined*, but y is, darn it, defined here [refers to  

  program]. 
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S-01 L:  No, but that is not … yes, but you need to define y under here [points to  

  another part of code], *y equals function value.* 

 

Student M runs the program and receives an error that y is not defined and displays 

frustration, being sure that y is, in fact, defined (S-00). L then corrects the statement, pointing 

out that while M has defined y, the placement of the definition is wrong within the code (S-

01). Each adversity regarding variables is similar: the students think they have defined a 

variable, but they are either using a wrong variable name or misplacing the definition within 

the code, indicating a misunderstanding of the sequential reading of the code, and displaying 

frustration (S-00). 

Another syntax adversity is the placement of code segments, where the students are uncertain 

of where to put a new code segment. In the transcript below, the students, having plotted the 

graph of a function, are now adding a code asking for two x-values to calculate the zero point 

of the function using the bisectional method. 

S-10 M:  Where are we going to input this [segment of code]? 

S-11 A:  Yes, that’s what I am thinking about. Is it after *y equals the function of x*? 

S-12 M:  No, because you have written *axhline* [command for drawing a horizontal 

  axis]. 

S-13 A:  Is it over the definition of the function? 

S-14 M:  It is all the way at the bottom [of the programming code]. 

S-15 A:  It is at the bottom. 

S-16 M:  Yes, I think so, because we have written *axvline* [command for drawing a 

  vertical axis] and so on at the bottom. 

S-17 A:  That is just the axis. That has nothing to do with what we input. 

S-18 A:  I think we type it after *y equals function value*. 

S-19 H:  Yeah, yeah, I agree. 

 

The group of three students is discussing where to input a code segment (S-10, S-13, S-14, S-

18) and their reasoning behind the placement (S-12, S-16, S-17). The last syntax adversity 

that occurred is the sequential reading of code relating to the structure and function of if 

statements and for and while loops. The excerpt below shows students building a program 

using a while loop to find a good numerical estimate for a zero point.  

S-20 L: Because I have used the *while* loop, so now it keeps … 

S-21 F: … keeps [running] until it finds the zero point. 

S-22 L: Yes, and it looks like it is correct if you look here [refers to correlation  

  between the output and the plot of the graph], but what is kind of stupid is that 

  we have three zero points. 

S-23 F: Oh.  

S-24 L: Let’s try again and see if we can find the other zero points. 

S-25 F: And how do you propose we do that? 

S-26 L: I think that we take like one and then <runs program and types in 1 as a  

  starting guess>. 

S-27 L: Yeah! <surprised voice> 2.16 [the correct x-value for the zero point]. 

S-28 L: We have managed to find the zero points. 
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S-29 F: But we want to get all of them at the same time, but it is not possible …  

  because now we have guessed the three zero points. Is there no way we can 

  guess and then receive all the zero points? 

 

The program runs as it should (S-22, S-27), but the cubic function the group investigates has 

three zero points, and the program is only able to find one zero point at a time (S-29). In the 

final statement of the excerpt (S-29), the student evaluates the program and initiates a group 

discussion of ways to receive all zero points at the same time (not displayed). Syntax 

adversities were solved seven out of 10 times. When syntax adversity was not resolved, the 

students either gave up or deleted the code segment and started over.  

Output adversities consist of adversities occurring due to the feedback from the editor as the 

students execute their program. Students understanding (six instances) or not understanding 

(seven instances) the error they receive represents 13 of the 18 occurrences of output 

adversities. When a student does not understand the error (as seen in O-00), they display 

frustration and openly say that they do not understand what has happened. In the excerpt 

below, the student continues to get an error when running the program. 

O-00 L: Oh <swear word>. 

O-01 L:  It is just exciting to watch me fail again and again. 

O-02 L: I do not understand what is wrong, but there is something wrong. It says  

  *invalid syntax*. 

O-03 M: Oh, then you have a parenthesis wrong. 

 

Student L displays frustration and does not seem to know how to handle a syntax error (O-

02). Student M then offers a possible solution to the problem (O-03), which, after a short 

discussion, resolves the error. On other occasions, students do understand the error, in which 

case they display less frustration and vocalise an idea for resolving the adversity (S-01). In the 

transcript below, the students are building a program to solve a quadratic equation and receive 

an error due to a negative value in the discriminator (O-10). One student quickly suggests the 

implementation of an if statement to investigate the sign of the discriminator prior to using the 

quadratic formula (O-11). This is evident from the following actions taken by the student, 

where the above if statement was coded (not shown in transcript, but in video recording of the 

screen).  

O-10 M:  Oi *x1 equals nan*, *x2 nan*. 

O-11 M:  So therefore, we should perhaps include an *if* [statement]. 

 

There is also the possibility of an unexpected answer, when the program outputs something 

that the students did not anticipate (O-10 and O-22), resulting in a discussion including 

evaluation and exploration. The excerpt below is taken from students solving a quadratic 

equation using the quadratic formula. 

 

<Student A runs a program with values of 𝑎 = 4, 𝑏 = 0, and 𝑐 = −49>. 

O-20 A:  Does that make any sense? That makes no sense.  

O-21 H:  What? 

O-22 A:  Why? 56? What do you mean by that? It should be 3.5   

  which is what it is, but this is … this is very strange.  
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Following this excerpt is a long discussion involving the entire group about what is wrong. 

They eventually resolve the unexpected answer and discover that they have forgotten to put 

the denominator in brackets (as in /2 ⋅ 𝑎 instead of /(2 ⋅ 𝑎)). The final output adversity 

observed is when no output is yielded after running the program. In the transcript below, the 

students are building a program utilising Newton’s method for finding the zero point of a 

function, have just implemented the formula, and are now running the code for the first time.  

O-30 L:  Ok, *input an x-value* [to initialise Newton’s method] ... and then we need to 

  plot the tangent line. 

O-31 F:  Eight. 

O-32 L:  Ok, eight. 

<types eight, runs program, no output> 

O-33 L:  Ok, I think this works, but now we need to plot the tangent line ...  we have 

  forgotten that. 

O-34 F:  But can we not write here [in the function calculating the next guess] ... like 

  … *return*?  

O-35 L:  *Return* <types>. 

O-36 F:  *xn*? 

O-37 L:  *xn* <types> [the result from Newton’s method]. 

<types eight, runs program, no output> 

O-38 F:  If you write like seven [as a starting guess]? 

<types seven, runs program, no output> 

O-39 F:  No. 

 

Students L and F run their program but receive no output. They try to alter the program (O-33 

– O-37) and alter the input value (O-38), but there is still no output (O-39 – O-40). The 

program generates no error, and the students display uncertainty about where the error in the 

program resides. They end up deleting the code snippet and starting over. Output adversities 

were solved in 15 out of 18 instances. When the students received no output, the adversity 

was sometimes not resolved, and the students then deleted code and wrote a new code 

segment. 

Coding adversities consist of adversities converting a mathematical procedure into a 

programming segment, which occurred 14 times. Each segment differs, since each applies to a 

separate mathematical idea to be converted into programming code. In the first excerpt, the 

students have worked through an exercise using Newton’s method to find the zero point by 

drawing tangents of x-values close to the zero point. They have also been given the formula of 

Newton’s method and are now trying to implement the method into programming code.  

D-00 F:  We need to create a tangent line for the … 

D-01 L:  Yes, and then we can write … *plot* … no, ok. 

D-02 F:  or … 

D-03 L:  *def tangent of x* [Python code], like that and … 

D-04 F:  What are we going to write here [in the program function]? 

D-05 L:  … and that is x. 

D-06 F:  *x equals*. 

D-07 L:  *xn* , wait a little. 

D-08 F:  *xn*.  

D-09 L:  *Equals … xn minus one*? I feel this is going to fail. *Minus f of xn*. 
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The students are discussing how to proceed, including using the tangent (T-00) before 

applying Newton’s formula (T-03). At the end of the transcription segment, they foresee that 

their code is going to fail (T-09). The ideas displayed are well founded, but the 

implementation into the programming editor shows uncertainty. The second transcript is taken 

from when the students are building a code determining whether two variables have non-

identical sign values. 

D-10 H:  What is a quick way to check if two numbers have the same or different signs 

  with the help of an *if* statement? … 

D-11 H:  A quick way to check if two numbers have the same or different sign … 

D-12 A:  Perhaps setting the function value equal to *a* [a variable] or something, then 

  *if a* [programming code], the function values, if *a minus b* is positive then 

  something. 

D-13 M:  It becomes ‘if the sign is the same’, but … 

D-14 M:  There is no command [in Python] for sign, that would have been nice. 

D-15 H:  That would have been digg [Norwegian slang for nice]. 

 

Student H is stating the question to the group (T-10), and they are discussing how to make the 

program distinguish between the sign of two values (T-12). The task indicates the use of an if 

statement, but no other help is given, and they know of no command that performs this 

procedure. The short excerpt is the start of a longer discussion over several minutes in which 

several mathematical procedures are brought up and evaluated. The last coding excerpt 

displays the challenge of expanding a working program to generalise it. The students have 

built a program solving the zero points of a quadratic equation using the quadratic formula 

and are now asked what happens when the value of the quadratic coefficient is zero.  

T-20 M:  Ok, test the program for several functions. Does it always work? It always 

 works! What happens if you test for … 

T-21 A:  It always works? 

T-22 M … for 𝑎 equal to zero [the 𝑎 in 𝑎𝑥2 + 𝑏𝑥 + 𝑐]. 

T-23 A:  What did you do...? 

T-24 M:  That does not work! <Emphasis on ‘that’> 

T-25 M:  But then … we must, oh must we do that? Bro. Then we must change the 

  *if* statement. Then we need two *elif*’s [else if statement in Python], is 

  that allowed? 

 

The students are reading the task (T-20, T-22) and then display realisation that the program 

does not work in the situation where 𝑎 equals zero (T-24). The proposed solution is the 

inclusion of another set of if statements, and they question whether this is possible within the 

code (T-25). Coding adversity was solved 13 out of 14 times. The only time a coding was not 

resolved was when a student confused the mathematical definition of a function with the 

computational use of a function.  

Discussion 
The analysis shows how different types of adversity manifest when students work on MPPs 

and the complexity of these adversities. Concept adversities are the least surprising type and 

are an instrumental process that rarely contributes to mathematical learning. Concept 

adversity was present in all lessons and spanned a range of different commands and types, all 
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falling under the selection barriers defined by Ko et al. (2004). The change throughout the 

lessons was that the concept adversity varied as the students became more comfortable with 

certain programming commands and structures. Differentiation between types, typically 

whole number (int) and decimal numbers (float), was present in the initial lessons; in the later 

lessons, however, it disappeared in favour of more complex commands, such as the return 

command. When the students tried to recall a command that performed a certain property, 

they often vocalised why they needed the specific command (C-10). I would argue that the 

recalling of properties of a given command or type (C-00 and C-20) is less advantageous than 

asking how to perform a certain action (C-10). The latter results from the student’s 

exploration and evaluation of the program and what the next step in the logical order is. 

Concept adversities, whether resolved or not, accounted for a small part of the lessons’ overall 

duration and were not observed to interfere with the students’ mathematical progression 

through the task. Designing MPPs to incrementally increase the number of commands needed 

(Verschaffel et al., 2020a) was observed to work well. One could possibly reduce the concept 

adversity further by giving the students a command cheat-sheet as a handout. While concept 

adversity is primarily a programming adversity, syntax adversity is more closely linked to 

mathematics.  

Syntax adversity was the least frequent type seen and consisted of the defining of variables in 

the program (S-00 – S-01), placement of code sequences (S-10 – S19), and the structure of if 

statements and loops and their placement within the code (S-20 – S29). All are closely linked 

to the logical and structural build of mathematical procedures, such as the simple 

multiplication before addition rule. Syntax adversities, when resolved (S-00 – S-01 and S-10 – 

S-19), were observed to facilitate an internal construction of the programming code and the 

understanding of each element and the relations between them (Verschaffel et al., 2020a). 

When the students resolved syntax adversities, they were observed to discuss and argue about 

the logical procedure of the program (S-10 – S-19). This construction and understanding were 

more evident when the sequential structure and knowledge of the mathematical task were 

explicit. In the task concerning the bisectional method, where the program incrementally 

calculated a better and better guess for the zero point, the students voiced arguments about the 

structure of the programming code. In the task concerning Newton’s method for finding the 

zero point, the students were observed to be less confident. The difference between the two 

was that all the steps involved in the bisectional method were known, while those in Newton’s 

method involved new configurations, such as the formula involving both the function and its 

derivative. The combined complexity of both new mathematics and new programming created 

two adversities to overcome, possibly generating an insurmountable barrier (Kirschner et al., 

2006; Reiser, 2004).  

The MPPs in which syntax adversities were minimal included well-known mathematical 

methods together with a design facilitating the transformation of the mathematical model into 

a model where the elements and their relation are essential for the solution (Verschaffel et al., 

2020a). This indicates that when implementing programming in the mathematics classroom, it 

is better to apply it as a tool for deep learning when the mathematics has already been taught, 

rather than using it to introduce a new topic. Syntax adversities could also be alleviated by 

using a wider range of structural tools, such as flow diagrams and block charts, which have 

been shown to be good scaffolding tools for learning Python (Cabo, 2018). 



159 
 

Output adversities were as prominent as concept adversities but initiated a discussion over a 

longer time span and were observed to contain more mathematics, often combined with 

programming (O-10 – O-11 and O-20 – O-22). These types of adversities were resolved and 

therefore desirable (D’Mello & Graesser, 2014). When output adversities were not resolved 

within a reasonable timeframe, the students effectively gave up and deleted the code, causing 

the output adversity (O-30 – O-40), making them disengage from the adidactical situation due 

to experiencing either an ontological or didactical obstacle (Brousseau, 1997) or an 

insurmountable understanding or information barrier (Ko et al., 2004). Like word problems, 

the programming tasks need to ensure scaffolding of the problem to facilitate the students’ 

ability to experiment and discuss the problem (Verschaffel et al., 2020b). As the design of the 

MPPs focused on building tasks allowing the students to explore, the number of unresolved 

output adversities was low (three of 18). Output adversities are difficult to mitigate since they 

are hard to predict, and students have limited knowledge of how to interpret feedback from 

the editor. The output often becomes a problem-solving situation for the student (Polya, 

1957), due to the, for them, irrational behaviour of the program (Ko et al., 2004). To 

circumvent this becoming an ontological obstacle, orchestrating a classroom conducive to the 

exploration of mathematical problem solving aids in maintaining an adidactical situation. This 

work reveals no direct way to prevent all output adversities, as the number of possible errors 

is numerous; however, teaching the students basic knowledge of how to handle errors was 

particularly advantageous.  

Coding adversity is, for the mathematically inclined, perhaps the most interesting, where the 

combination and advantage of mathematics and programming becomes visible. The typical 

sequence in coding adversity consists of the students exploring a mathematical problem or 

method, followed by how to solve the problem or implement the method into the program. 

The exploratory talk consisted of engagement (T-20 – T-21), suggestions for joint 

consideration (T-12, T-25), and justification (T-10 – T-15 and onwards), following the 

definition given by Mercer (2005). This element of exploratory talk is beneficial and 

contributes to learning (Mercer, 2005). The MPPs were built to take advantage of 

programming in mathematics using coding to solve a problem. Prior to their implementation 

in the mathematics classroom, tasks containing coding from mathematics to programming 

were viewed to be the most promising and were continuously added during the iterative 

design process. As seen in excerpt two from the coding adversities (T-10 – T-15), the 

seemingly simple problem of making the program differentiate whether two numbers have the 

same or a different sign became a mathematical discussion lasting several minutes and 

resulting in a short and simple code. The two main features of coding were to (1) use 

mathematics to make the program understand a simple mathematical relationship (as above), 

or (2) use mathematics to solve a complex problem through building a short program 

(bisectional method, Newton’s method). Avoiding coding becoming an ontogenic obstacle, 

depending on the students’ building of a mathematical model into a programming model 

where the elements and their relations are essential for the solution (Ko et al., 2004). 

Facilitating this building, the task needs to scaffold the intended problem using and recalling 

the previous mathematical knowledge required and guide the students in their exploration of 

how to assemble a new mathematical and/or programming model (Kirschner et al., 2006; 

Reiser, 2004).  



160 
 

Concluding thoughts 
Adversities when applying programming in the mathematics classroom are inevitable, as even 

coding experts encounter errors from time to time. The change from requiring a single input 

into a digital tool such as GeoGebra to building a program consisting of several lines of code 

is significant. The challenge for educators to reduce the adversities, in terms of both designing 

MPPs and orchestrating lessons, is substantial and needs further research. The work presented 

indicates several ways of reducing the number of adversities the students encounter and 

reflects on which should remain as part of mathematical learning. By scaffolding the design 

(Kirschner et al., 2006; Reiser, 2004) and orchestrating a classroom encouraging 

mathematical exploration (Mercer, 2005), these adversities can become valuable to learning. 

As regards designing MPPs, I would suggest care is taken to avoid building what could 

possibly become insurmountable barriers. Adversities should be predictable (Stein et al., 

2008), as they are linked to the task design and therefore, to some extent, preventable. Further 

research into the affordances and constraints of implementing programming in the classroom 

is needed, especially studies spanning more than one class. As Niss (1999) stated, if we know 

the adversities that block the paths of students learning mathematics using programming, we 

will gain a better understanding of how mathematical knowledge and ability can be combined 

with programming, leading to better learning. Programming allows for mathematical 

investigation into many previously unavailable themes, such as numerical methods, as well as 

facilitating an in-depth learning of existing school mathematics, such as function analysis. To 

avoid the same fate as that seen the last time programming was implemented (Misfeldt & 

Ejsing-Duun, 2015; Papert, 1980), research into how it can facilitate mathematical learning is 

needed. 
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