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Abstract

Machine learning is a hot topic in today’s society. Data sets of varying sizes show
up in a number of contexts, and learning from data sets is important for answer-
ing many questions. There is a plethora of methods that can be used to extract
information from data, and in this thesis we consider primarily the Tikhonov Reg-
ularization (TR) framework for regularized linear least squares modeling. TR is a
very flexible modeling framework, in the sense that it is easy to adjust the type of
regularization used as well as including a priori information about the regression
coefficients.

The main topic of this thesis is efficient model selection in the TR framework.
When using TR regularization for modeling it is necessary to specify one or more
model parameters, often called regularization parameters. The regularization pa-
rameter can have a significant effect on the quality of the final model, and choosing
an appropriate regularization parameter is therefore an important part of the model-
ing. For large data sets model selection can be time consuming, and it is therefore of
interest to obtain efficient methods for selecting between different models. In Paper
I it is shown how generalized cross validation can be used for efficient model selec-
tion in the TR framework. This discussion continues in Paper IIT where it is shown
how leave-one-out cross validation can be done efficiently in the TR framework. Pa-
per IIT also suggests a heuristic that can be used for efficient model selection when
dealing with data sets with repeated measurements of the same physical sample.

Raw data often needs to pre-processed before useful models can be created. Pa-
pers I and IT deal with pre-processing and modeling of vibrational spectroscopic
data in the extended multiplicative signal correction (EMSC) framework. In the
EMSC framework unwanted effects in the data are modeled as multiplicative and
additive effects. In Paper I it is shown how the correction of additive effects can be
done while creating a regression model in the TR framework and why this can in
some cases be advantageous. The multiplicative correction in EMSC is based on a
single reference spectrum, but for data sets with very different spectra a single refer-
ence spectrum might not be sufficient to accurately correct for multiplicative effects
in the measured spectra. Paper II discusses how to extend the EMSC framework
to include multiple reference spectra as well as how appropriate reference spectra
can be obtained automatically.

Paper TV considers classification using regularized linear discriminant analysis
(RLDA). The link between RLDA and regularized regression is used to argue that
the efficient validation criteria discussed in papers I and III also can be used for
model validation in RLDA. This is tested empirically and the results indicate that
good choices of the regularization parameter can be obtained efficiently using a
regression-based criterion.
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Sammendrag

Maskinlaering er et populeert tema i dagens samfunn. Datasett med varierende
stgrrelse dukker opp i mange ulike sammenhenger, og det er av interesse a hente
ut informasjon fra datasett. Det er utviklet et bredt utvalg med metoder som kan
brukes til & laere fra data, og i denne avhandlingen sa fokuserer vi pa Tikhonov
regulariseringsrammeverket (TR) for regularisert linezer minste kvadraters model-
lering. TR-rammeverket er veldig fleksibelt i den forstand at det er enkelt a endre
typen regularisering, og det er ogsad mulig & inkludere a priori informasjon om re-
gresjonskoeffisientene.

Det gjennomgaende temaet i denne avhandlingen er effektiv modelseleksjon i
TR-rammeverket. Nar man bruker TR-rammeverket sd ma man spesifisere et eller
flere modellparametere, som i denne sammenhengen ofte kalles for regulariseringspa-
rametere. Modellparameteret har betydelig pavirkning pa kvaliteten til den endelige
modellen, og det er mange ulike metoder som kan brukes for & estimere en god pa-
rameterverdi. For store datasett sa kan dette vaere veldig tidskrevende, og det er
derfor av interesse & undersgke effektive metoder for & velge blant ulike modeller. I
artikkel I s vises det hvordan generalisert kryssvalidering (GCV) kan gjores effek-
tivt i TR-rammeverket. Denne diskusjonen fortsetter i artikkel III, der det blir vist
hvordan ogsa leave-one-out kryssvalidering kan gjores effektivt i TR-rammeverket.
I artikkel IIT sa foreslas det ogsa en heuristikk som kan brukes til effektiv model-
lutvelgelse for datasett med gjentatte malinger av den samme fysiske prgven.

Radata ma ofte bearbeides og preprosesseres fgr modellbygging. Artikkel I og
artikkel IT tar for seg preprosessering av spektroskopiske data i ’extended multiplica-
tive scatter correction’ (EMSC) rammeverket. I EMSC-rammeverket s& modelleres
ugnskede effekter i dataene som en kombinasjon av additive og multiplikative ef-
fekter. I artikkel I sa vises det hvordan korrigering av additiv stgy kan gjores i
TR-rammeverket i modelleringsstadiet, og det drgftes nar dette kan veere hensik-
tsmessig. Skaleringen i EMSC rammeverket er basert pa ett enkelt referansespekter.
I datasett der det er stor variasjon mellom de ulike spektrene sa er ikke ett refer-
ansespekter alltid nok. I artikkel IT s& diskuteres det hvordan EMSC-rammeverket
kan utvides slik at flere referansespektre kan brukes, og det diskuteres ogsa hvordan
man kan finne slike referansespektre.

Temaet i artikkel IV er klassifikasjonsproblemer. I artikkelen sa brukes sam-
menhengen mellom regularisert lineager diskriminantanalyse (RLDA) og regularisert
regresjon for a argumentere for at modelseleksjonskriteriene fra artikkel T og ITT ogsa
kan brukes til modelseleksjon i RLDA. Dette testes empirisk, og resultatene tyder
pa at man kan fa et godt parametervalg i RLDA ved a bruke et regresjonsbasert
kriterie.
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1 Introduction

1.1 Background and overview

Technological advancements allow us to more easily generate large data sets at
low costs in many fields of science. Data types such as RNA sequencing data,
spectroscopic data, and data arising from nuclear magnetic resonance spectroscopy
can consist of thousands (or even tens of thousands) of variables[14, 1, 34]. Large
data sets not only arise from methods in the natural sciences. Automatic recogni-
tion of handwritten digits is an important problem for automatic sorting of post.
More recent problems include spam detection in e-mail and object recognition in
images. These problems can naturally be divided into regression problems (where
the objective is to predict some numerical quantity from a sample, for example the
percentage of fat in a sample from a NIR spectrum) and classification problems
(where the objective is to determine class membership for a sample, for example
which digit a handwritten digit is). For data sets where the number of features
exceed the number of samples it is often not possible to use methods from classical
statistics[14]. This is often referred to as the 'p > n problem’, and there is a need
for more methods for analyzing such data[14, 31]. One method for dealing with this
problem is to use some form of regularization.

In this thesis we consider modeling primarily using the Tikhonov Regularization
(TR) framework for linear least squares modeling. The TR framework is very
flexible in the sense that it is straightforward to incorporate additional information
and restrictions on the regression coefficients. This makes it possible to include
domain knowledge in the model building. Depending on the regression problem
considered it is necessary to select a value for one or more regularization parameters.
Many methods for choosing a regularization parameter exists (see e.g. [14, 31, 16,
24]), and the computational cost varies between the different methods. For large
data sets the computational cost associated with selecting models can limit the
number of models one realistically can choose between.

We will show how model selection can be done highly efficiently in the TR
framework, allowing for efficient experimentation with a wide variety of models.
The flexibility of the TR framework is illustrated mostly on vibrational spectro-
scopic data in this thesis. Although the TR framework is a regression framework,
the results may also be helpful in classification problems when using regularized dis-
criminant analysis. It is well-known that there is a close relationship between linear
discriminant analysis and linear regression, and that a similar relationship holds
for regularized linear regression and regularized linear discriminant analysis[19, 18].
Because of this relationship it is worth asking whether the efficient model selection
methods for the TR framework can also be used for efficient model selection in
regularized linear discriminant analysis, and we will argue that this is indeed the
case.

1.2 Vibrational spectroscopic data

As most of the data sets considered in this thesis comes from spectroscopy a short
discussion of spectroscopic data is included. Spectroscopy deals with the interac-
tion of electromagnetic radiation and matter[6]. Different types of spectroscopy are



classified according to which part of the electromagnetic spectrum is used as well
as the underlying physical effect that give rise to the spectra. The data sets used in
this thesis are mainly Raman spectroscopic data, but also near infrared (NIR) spec-
troscopic data is used. Both types of spectroscopy study the vibration of molecules
but the underlying physical effects are different.

For NIR spectroscopy a light beam is sent towards a sample and the transmitted
or reflected light is measured. By varying the wavelength of the light the transmitted
or reflected light for different frequencies can be measured, which results in a NIR
spectrum. A vibration in a molecule is said to be infrared active if it causes a
dipole change in the molecule[6]. Raman spectroscopy relies on a scattering effect.
In Raman spectroscopy monochromatic light is beamed towards a sample. When
light hits the sample some of the light will scatter. Most of the scattered light will
scatter at the same frequency as the incident light and this is referred to as Rayleigh
scattering. A small amount of the scattered light will change frequency and this
is referred to as Raman scattering. The Raman scattering is further divided into
Stokes scattering and anti-Stokes scattering. A decrease in energy in the scattered
photon is referred to as Stokes scattering, and an increase in energy of the scattered
photon is called anti-Stokes scattering. As most molecules will be in a ground state
the Stokes scattering is more intense than the anti Stokes scattering. See Figure 1 for
an illustration of the involved energy transitions. The photons scattered at different
wavelengths are counted, and the result is a Raman spectrum. The criterion for a
vibration to be Raman active is that it changes the polarizability of the molecule[6].

Energy level

Virtual states

Excited state

G d stat
round state Rayleigh Stokes Anti-stokes

Figure 1: Tllustration of the energy changes involved with different types of light
scattering in Raman spectroscopy. For Rayleigh scattering the molecule returns
to its original state and the scattered light has the same frequency as the incident
light. For Stokes scattering the molecule returns to an excited state, decreasing the
energy (and therefore frequency) of the scattered photon. For anti-stokes scattering
the molecule is initially in an excited state and returns to the ground state, resulting
in the energy (and therefore frequency) of the scattered photon increasing.



The basic idea for the applications we consider is that different molecular bonds
vibrate at different frequencies, and so the NIR and /or Raman spectrum of a sample
gives information about the chemical contents of the sample. By measuring individ-
ual spectra for a collection of samples and computing a quantity of interest using,
for example, methods from wet chemistry, one can then use multivariate analysis to
construct models that can estimate the same quantity from only a spectrum. This is
useful because acquiring a spectrum can often be done cheaper, faster, non-invasive,
and often with little to none sample preparation compared with other more direct
methods[2]. Tt is often assumed that the quantity of interest depends linearly on
the intensity of the spectrum so that linear modeling can be used. For NIR this
can be justified using the Beer-Lambert Law][1], which states that the absorption of
light in a sample will be proportional to the product of the concentration of what
is absorbing the light and the path length of light through the sample.

In practice spectroscopic data also contains unwanted effects that make it dif-
ficult to analyze raw data[29, 1, 32]. This could be as simple as random noise or
different signals due to inhomogeneous samples, but there are several physical ef-
fects that can make modeling challenging. For NIR-spectroscopy it follows from the
Beer-Lambert law that variations in path length of light through a sample as well
as sample thickness will change the measured transmittance. These effects affect
the absorbance multiplicatively and make it difficult to interpret if the apparent
difference in absorption between different spectra are due to chemical differences
between the samples[1]. Light scattering can also affect spectra[32]. There could
also be variations in the fraction of transmitted light collected by the detector[27].
In Raman spectroscopy fluorescence can cause a large baseline in the spectra making
it hard to determine what part of the signal comes from Raman scattering[29, 1].
Raman spectra can also be affected by cosmic spikes[11] resulting in large spikes
in the spectra, and instrument detector shifts[29] which results in a small ’jump’
in the spectra. Considerable research has been conducted to find pre-processing
methods that remove these unwanted effects without removing useful information
from the data (see e.g. [33, 15, 7, 30, 1]). Mathematically we can model unwanted
effects as a combination of additive and multiplicative effects. Multiplicative effects
are corrected for by some sort of scaling procedure, and for additive effects many
methods essentially fit a low-degree polynomial to each spectrum and subtract this
polynomial. In this thesis we pre-process data primarily using the extended multi-
plicative signal correction (EMSC) framework[30, 1]. Let X denote a n x p matrix
of spectra consisting of n samples with measurements at p wavenumbers. In the
basic EMSC model[1] each spectrum x is decomposed as a sum of the form

r=a-14+b-Tyef+c1-v1+co-v2+ e,

where .y is a reference spectrum, the vectors 1,v;,v2 are a basis of the linear
space of polynomials of degree 2 and e is the residual. The scalars a, b, c1, co are ob-
tained using ordinary linear least squares (OLS) regression. The corrected spectrum
is given by

r—a-1—cy- v —cCo- Vs +1
=Ty, —e.
b %

From the formula for the correction we see that the projection onto the reference



spectrum is used to scale the data, and that the polynomials model additive noise.
As the reference spectrum will be common to all corrected spectra the chemical
information of interest for prediction will be contained in the residual vector e[1].
By changing the vectors we project the spectra onto we can adjust the pre-processing
from data set to data set. For Raman spectra it can be useful to include higher
degree polynomials in the model[1]. If a data set contains interferents this can also
be included and corrected for in the model[29]. The EMSC framework has also
been extended to correct for Mie scattering[28] as well as replicate correction[26].
In Paper II we discuss the EMSC framework in more detail, and suggest how it can
be extended to account for multiple reference spectra.

1.3 Regression modeling

When the data set of interest has been preprocessed (if necessary) methods from
multivariate statistics can be used to obtain regression models. Let X be a centred
data matrix and y be the associated centred response vector. We consider linear
models of the form y = X3+ €, where X is an n X p matrix consisting of n samples
and p features, y is the response vector, 3 is the vector of regression coefficients,
and € is the residual. Problems with multiple responses can be solved by considering
them as a collection of single-response problems. In ordinary least squares regression
we solve the problem ,érel}l& | X B — y||?, which geometrically corresponds to finding

the projection of the response vector onto the column space of the data matrix. See
Figure 2 for an illustration. In the discussion below we assume that p > n, that is
that the number of features exceeds the number of samples.

0

Figure 2: In the ordinary linear least squares problem the vector y of responses is
projected onto the column space of the data matrix.

For data sets where the number of features is larger than the number of samples
the OLS approach cannot be used directly. Even if OLS could be applied directly



this is not always desirable. By using a more flexible model family it is often
possible to obtain a model with better predictive performance than the OLS model.
An example of a situation where the application of OLS is not desirable (even if it
would be possible) can be seen in spectroscopic data which is often high-dimensional,
but the chemical information of interest normally lies in a low-dimensional subspace.
Some form of dimension reduction is therefore often an important part of modeling.
A common method for reducing the dimension of a data set is principal component
analysis (PCA)[14]. Principal component regression (PCR) can then be used for
model building. In PCR one reduces the dimension of the data to obtain a regression
model by finding directions in the data set explaining the most variance. The
subspace spanned by the directions explaining the most variance is used for creating
the regression model while the remaining directions are discarded. This can be
implemented using the singular value decomposition (SVD). To make this more
precise let the SVD of the data matrix be given by X = USV’. The data can
be reduced to a lower dimension by truncating the SVD to only include some of
the components. The regression coefficients can then be found by projecting the
response vector onto the selected subspace. Mathematically the formula for the
regression coefficients are given by the following expression|[14]:

k /
_ u;y
Br = s, Vi,
i=1

where k is the number of dimensions/components included in the model. In PCR
one chooses basis vectors maximizing the explained variance in the data set without
considering the response vector. In regression problems we are interested in pre-
dicting some quantity, and it makes sense to instead find directions explaining most
of the covariance between the data matrix and the response, rather than directions
explaining only the variance in the data matrix. This is the idea behind partial least
squares (PLS) regression. Mathematically PLS can be viewed as a Krylov subspace
method[9, 17, 12]. We use the notation ICx (A, b) for the Krylov subspace spanned
by the vectors {b, Ab, A2b,..., A*=1b}. PLS solves the following problem|9]:

Bmei]% | X Br — yl|* subject to By € Ki(X'X, X'y), k=1,2,...,
k p

where again k refers to the number of components included in the model. There
are several algorithms that can be used to solve the PLS optimization problem[5]
(notably including Householder bidiagonalization as well as Golub-Kahan-Lanczos
bidiagonalization[9]), but not all the algorithms in the literature have good numer-
ical properties[10].

This thesis primarily considers regression modeling in the Tikhonov Regular-
ization (TR) framework[17, 24]. There are many different least squares problem
that can be formulated in this framework[24], but a fairly general version of the
optimization problem is finding the least squares solution of the following system
of linear equations:



This is an augmented version of the standard linear least squares problem X3 =1y
and the least squares solution minimizes the expression

in | X8 —yl|®+ M|L3|?,
toin [ X8 — yl" + AILS|

where the matrix L above is some regularization operator, and the scalar A > 0
is the regularization parameter. Note that the regularization parameter controls
the trade-off between the two terms in the optimization criterion. Choosing L = I
results in Lo-regularization which is also referred to as Ridge Regression[20]. For
L =T it is straightforward[14, 17] to show using the SVD of X that the regression
coefficients are given by

2 /
Si wy

. i
57+ A2 s

7

n
B=
i=1
From the formula we see that this can be viewed as the regression coefficients
from PCR where each term in the sum is multiplied by a scalar less than 1. Per
Christian Hansen[17] refers to these scalars as ‘filter factors’. This multiplication
has a regularizing effect, and for TR dimension reduction is essentially obtained
by increasing the regularization parameter. With TR we therefore do not directly
project the data onto a lower dimensional space, and as all directions in the sample
space contribute to the regression coefficients the dimension reduction can be said
to be more ’soft’ compared to PCR[17]. The regression problem given above can be
modified by adding new rows to the data matrix. This can be used to add additional
types of regularization, but also other restrictions to the regression coefficients|24].

1.4 Classification with regularized linear discriminant anal-
ysis

In classification problems the goal is to assign a sample to one of several given
classes rather than predicting some numerical quantity. If a sample is given by
a vector in R? and the classes are numbered 1,2,..., g the classification problem
can be formulated mathematically as finding a function f:RP — {1,2,..., g} that
takes a sample as input and returns the correct class label as output. One well-
studied classification method is linear discriminant analysis[14], where the original
formulation is due to Fisher[13]. LDA can be motivated both geometrically and
statistically. The geometrical idea is to project the data onto a subspace that is
good for classification and use a distance based classifier in this subspace. In Fisher’s
description of LDA this subspace is defined as a subspace where samples of the same
class are mapped close to each other but samples of different classes are mapped
far apart. To make this mathematically precise, let X denote the mean-centered
data matrix, and let X, denote the group centred data matrix. We can then define
the total, within group, and between group scatter matrices as Sr = 1/n - X/ X,
Sw =1/n-X; Xy, and Sp =1/n-3 7 _, ni(pr — o) (e — ), where p is the global
mean, p is the mean of class k, and njy is the number of samples belonging to
class k. It can be shown that Sp = Sy — Sy[18]. We then seek a subspace that
maximizes the Rayleigh quotient associated with the between group scatter relative
to the within group scatter:
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This problem can be recast in multiple equivalent ways[22]. The optimization
criterion amounts to solving the generalized eigenvalue problem Spv = ASywv
which, if the within group scatter matrix is invertible, becomes the ordinary eigen-
value problem nglst = M. Alternatively, we can maximize v’Spgv subject to
the condition that the v-vectors have unit norm in the metric induced by the within
group scatter matrix[18]. Because Sp = St — Sy we can replace Sy by St in
the above eigenvalue problem. As Sp and Sy, are symmetric the solution will be
a series of at most g — 1 orthogonal eigenvectors. Sorting the eigenvectors by the
size of the eigenvalues we essentially get a list of directions sorted by how good they
are for discrimination (as measured by the Fisher criterion). Classification can then
be done by projecting onto all the eigenvectors, or a dimension reduction can be
obtained by projecting onto the space spanned by a selection of the eigenvectors|18].

The alternative probabilistic approach to LDA is to assume that when condition-
ing on class membership, samples from all classes follow a normal distribution where
the mean is different for each class, but the covariance is the same for all classes[14].
Classification here amounts to classifying a sample to the nearest class mean in the
metric induced by the within class covariance matrix (normally called the Maha-
lanobis metric). It can be shown that LDA gives linear decision boundaries[14].

As with OLS there are situations where the application of LDA as described
above is not desirable, or not even possible. When the number of features exceeds
the number of samples the within group scatter matrix will not be invertible and
so LDA cannot be applied directly[22]. There are several possible solutions to this
problem. One can first use PCA as a dimension reduction tool and then apply
LDA to the projected data[8]. In this thesis we consider regularization by adding
a regularization matrix to the within group scatter matrix|[18]. That is, we replace
the within group scatter matrix with a matrix of the form Sy + AL where L is some
regularization matrix (typically the identity matrix). We refer to this modification
as regularized LDA (RLDA). This can be done for both the Fisher formulation of
LDA and the Mahalanobis formulation, and Hastie et al[19, 18] proved that the
two approaches are equivalent for classification (by modifying the Fisher version to
account for prior probabilities if applicable). Hastie et al[18] also proved that an
equivalent classification can be done based on solving a regression problem similar
to Ridge regression. More precisely, they define a penalized optimal scoring problem
as minimizing

1
—-(IY® - XB|* + A|LB|?),

subject to L[|Y'0||2 = 1. Here Y is the n x g matrix with 0— 1 dummy-coded group
membership, and the © is a matrix of scores. The ® matrix can be found by solving
an eigenvalue problem. This can be viewed as a dummy-regression problem where
we right-multiply the dummy-coded responses by a post-processor matrix &. The
regression coefficients will be right-multiplied by the same post-processor, and so we
can view this as a change of basis. The equivalence of these different approaches to



linear discriminant analysis shows that there is a close relationship between RLDA
and regularized regression.

1.5 Validation

PCR, TR, and PLS all require the selection of a model parameter to obtain a
model. For PCR and PLS this parameter is the dimension of the subspace we
project onto, and for TR it is the regularization parameter. Choosing an appropriate
model parameter is crucial to obtaining an appropriate model[17, 14], and it is
therefore necessary to have some method for selecting the model parameter. For
large data sets it may be computationally expensive to validate models for a large
number of candidate parameter values, and it is therefore of interest to develop
computationally efficient methods for model selection. In this thesis we primarily
use cross validation (and variations of cross validation) for model selection. In k-fold
cross validation the data set is first divided into k folds. A model is then created
using (k — 1)-folds of data while excluding one fold from the modeling. The model
is then validated by calculating the mean squared error (MSE) on the fold that was
held out during modeling. This is repeated k times so that all folds are held out
exactly once. The sum of all these mean squared errors provide a measure of model
quality. We can then repeat this process for a selection of model parameters (the
number of dimensions for PCR and PLS or the regularization parameter for TR)
and select the model parameter that gives the smallest MSE under cross validation
(or select the simplest model among the models that have low MSE under cross
validation). Let ;) be the estimate obtained by a regression model for the ith
sample y; when it is held out during model training. The mean squared error under
cross-validation can then be written as

The case where k = n (the number of folds equal the number of samples) is referred
to as leave-one-out cross validation (LooCV) and in this case the model statistic is
Allens PRESS-statistic[3, 4]. Another criterion that can be used for model selection
is the generalized cross-validation (GCV)[16]. The GCV is meant to be ’a rotation
invariant version of Allen’s PRESS’[16], and it can be motivated using statistical
arguments.

Papers I and III discuss efficient model selection in the TR framework. In Papers
I and IIT it is shown how calculating a single SVD of the centred data matrix allows
for very efficient computation of the GCV (Papers I and IIT) and PRESS-statistic
(Paper IIT) for any choice of regularization parameter value. Slightly more precise,
when the SVD has been calculated the cost of calculating the PRESS-statistic (or
GCV) for an additional regularization parameter value is roughly two matrix-vector
multiplications. This allows us to efficiently compare models for a large number of
regularization parameter values. To illustrate this, we consider an example from
Paper III. The data set used is NIR spectra of gasoline and consists of n = 60
samples and p = 401 features[23]. The response variable is the octane number of the
sample. We used 40 samples for model training, and considered TR-models with



Lo, first derivative, and second derivative regularization (see the paper for more
details). In Figure 3 the data is plotted together with the regression coefficients
minimizing the PRESS-statistic for each type of regularization.
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Figure 3: Top: NIR spectra of the gasoline. Bottom: Regression-coefficients min-
imizing the PRESS-statistic for Lo, first derivative and second derivative regular-
ization.

Computing the GCV and PRESS-statistic for 10000 values of the regularization
parameter for the three types of regularization considered took a total of about 0.4
seconds on a home computer. This means that a wide variety of model types can
be tested without worrying about the time needed for model selection, and we can
get very high-resolution PRESS- and GCV-curves. The PRESS- and GCV-curves
for this example are shown in Figure 4. We see from Figure 4 that the PRESS-
and GCV-curves are very flat for this example. This indicates that it is possible to
choose a simpler model (larger regularization parameter) without sacrificing much
predictive power in the model. In paper IIT we consider two methods for choosing
a simpler model than the one minimizing the GCV or the PRESS-statistic, and the
resulting regularization parameter is also shown in Figure 4. The two methods are
the ’1 standard error rule’[14] (select the simplest model with a PRESS-statistic
within one standard error of the minimum) and the x2-rule [21] (select the simplest
model that is not statistically significant from the minimum with respect to the
chosen significance level).

For data sets where there are multiple measurements of the same sample, the
modeling selection strategies discussed above cannot be applied directly due to data
leakage. In Paper IIT a heuristic is suggested to deal with this problem. The idea
is to collect all measurements of a single physical sample in one matrix. The rows
are then made orthogonal by finding the SVD of this matrix and left-multiplying
by the transpose of the matrix of the left singular vectors. When this is done for
all the repeated measurements we can apply the above modeling strategies to this
transformed data set. Empirical results indicate that the regularization parameter
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Figure 4: Plot of the PRESS-statistic and GCV divided by the number of sam-
ples for the octane data for Lo regularization (top), first derivative regularization
(middle), and second derivative regularization (bottom). Different possible choices
of the regularization parameter value is also shown. 1 S.E. refers to the regular-
ization parameter chosen by the '1 standard error rule’, and ’y2-rule’ refers to the
regularization parameter chosen by the x2-test.

minimizing the PRESS-statistic of the modified data set is approximately the same
as the value of the regularization parameter minimizing the cross validation error
when applying a segmented cross-validation approach.

Due to the relationship between RLDA and regularized regression it is worth
investigating whether the efficient model selection criteria for regression can also
be applied to find an appropriate regularization parameter value for LDA. Paper
IV is an experimental paper were we tried this, and it appears that choosing a
regularization parameter for RLDA using the PRESS-statistic on a 0 — 1 coded
dummy regression gives a similar regularization parameter as LooCV on classifica-
tion performance based on the Mahalanobis metric. As the PRESS-statistic can

be calculated extremely efficiently this means that a regularization parameter for
RLDA can be chosen efficiently.
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2 Summaries of papers

2.1 Paper I - Baseline and interferent correction by the
Tikhonov regularization framework for linear least
squares modeling

Spectroscopic data should generally be pre-processed prior to modeling due to un-
wanted physical effects and noise in the data. Paper I focuses on the multiplica-
tive signal correction and the extended multiplicative signal correction framework
for pre-processing. The paper includes a theoretical discussion of the two pre-
processing methods in terms of linear algebra. Further, the paper discusses how
parts of the pre-processing can be implemented in the model-building stage when
using Tikhonov Regularization and compares the two approaches to pre-processing
when using different types of regularization. The effects of derivative regularization
on the regression coefficients is discussed, and it is illustrated that requiring global
derivative regularization for the regression coefficients can negatively affect model
quality. It is also shown how model validation can be done very efficiently using
Generalized Cross-Validation once a single SVD of a (possibly modified) centred
data matrix has been calculated.

2.2 Paper II - Preprocessing of spectral data in the extended
multiplicative signal correction framework using multiple
reference spectra

When collecting spectroscopic data the different spectra frequently have very differ-
ent scales. This can be due to several physical factors, such as path length through
a sample or fluorescence (depending on the type of spectroscopy and the measure-
ment). When applying linear modeling for obtaining estimates for some quantity we
typically assume that the response is proportional to the intensity of the signal at
relevant wavenumbers. Differences in scaling between different spectra that are not
due to sample differences can therefore have a big effect on model quality, and an
appropriate scaling of the spectra is therefore an important part of pre-processing.
In the extended multiplicative signal correction (EMSC) framework this is done by
selecting a reference spectrum (typically the mean spectrum) and by normalizing all
spectra with respect to the chosen reference spectrum. When there is big variation
within the spectra a single reference spectrum may not be appropriate for normal-
ization of all spectra. Paper II shows how the EMSC framework can be extended
to include multiple reference spectra by normalizing each spectrum in the subspace
spanned by the selected reference spectra. The paper also suggests how the SVD
can be used to automatically obtain multiple reference spectra, and discuss when
the use of multiple reference spectra is required.
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2.3 Paper I1I - Model selection by Fast virtual Cross Valida-
tion in Ridge Regression and the Tikhonov Regulariza-
tion framework

The underlying topic of Paper III is efficient model selection in the Tikhonov Regu-
larization framework. It is shown that by computing the SVD of the (centred) data
matrix once it is possible to perform LooCV for a regularization parameter at the
computational cost, of approximately two matrix-vector multiplications. This allows
for very efficient model selection when considering a large selection of regularization
parameters. The paper introduces a heuristic called virtual cross validation for data
data sets with repeated measurements of the same physical sample. When dealing
with data sets with repeated measurements a LooCV approach cannot be applied
directly. This is because holding out one measurement is essentially not reducing
the information in the data set due to the other measurements of the same (physical)
sample. This results in overfitting to the training data. The problem can be solved
by a segmented cross validation approach where each block of repeated measure-
ments is held out in cross validation, but this can be computationally expensive. In
Paper III virtual cross validation is presented as a computationally efficient method
for model selection with these types of data sets. The idea is to consider each set of
repeated measurements as a block of data. The samples within each block is then
made orthogonal by finding a (reduced) SVD for each data block and left multiply-
ing by the transpose of the left-singular vectors. This makes the rows within each
block orthogonal, and thus for the transformed data set a segmented cross validation
approach is equivalent to LooCV. We refer to this method as ’virtual cross valida-
tion’. It is shown that in the case where all samples within a block are equal the
virtual cross validation is equivalent to segmented cross validation. In general the
two methods are not equivalent, but empirically the two methods of model selection
appear to produce similar results, while the virtual segmented cross validation is
much more computationally efficient. The reason for the computational efficiency
of the virtual cross validation compared to the segmented cross validation is that it
replaces the computation of the SVDs of a small number of large matrices with the
computation of the SVDs of a large number of small matrices.

2.4 Paper IV - Fast identification of good Regularization
Parameter Values for Regularized Linear Discriminant
Analysis by Cross-validated Ridge Regression

The topic of Paper IV is the application of the fast model selection for regression
problems in the TR framework to finding a good value of the regularization parame-
ter for regularized linear discriminant analysis. It is well-known that there is a close
link between regularized regression and regularized linear discriminant analysis. It
might therefore be possible to use the fast LooCV for regression to compute an
appropriate regularization parameter value for RLDA. The paper investigates this
idea, and empirical results indicate that a regression based criterion can provide a
good choice of regularization parameter. Due to the efficiency of the model selec-
tion criterion used for the regression problem this means that a good regularization
parameter value for regularized discriminant analysis can be obtained quickly.
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3 Discussion

3.1 Contribution

The aim of the thesis was to investigate the use of the TR framework for linear
least squares modeling focusing on efficient model selection. This included an in-
vestigation of pre-processing methods for spectroscopic data, as well as considering
the application of the efficient model selection criteria to classification problems.
For spectroscopic data a pre-processing step is often necessary prior to modeling.
Paper T discusses the MSC and EMSC pre-processing methods. In terms of linear
algebra these methods can be explained as projections onto the subspace spanned
by the reference spectra and the polynomial trends and interferents (if any) that
are included in the model. Due to the flexibility of the TR framework the removal
of unwanted additive effects in the data can be done as a part of the modeling
rather than in a pre-processing stage. In Paper I it is illustrated that this can be
advantageous when applying derivative regularization in the modeling. Scaling of
the spectra cannot be incorporated into the TR framework and must be done prior
to modeling. Paper II extends the EMSC framework by showing how multiple refer-
ence spectra can be handled. The scaling in EMSC is done by projecting all samples
onto a selected subspace and normalizing all samples within a one-dimensional sub-
space. When dealing with data sets containing outlier spectra or large variation
within spectra it may not be sufficient to normalize the data set by projecting each
spectrum onto a single reference spectrum. In Paper II we suggest to solve this
problem by projecting onto a subspace spanned by a set of reference spectra and
normalizing all spectra within this subspace. The reference spectra may be chosen
manually, but using the first few right singular vectors of the SVD of the matrix of
spectra appears to work well. This is also a reasonable choice of reference spectra
as the first few right singular spectra normally will explain most of the variation
in spectroscopic data. In the case where almost all the variation in the spectra is
explained by the first right singular vector (which will typically be almost equal
to the mean spectrum) the addition of multiple reference spectra will have little
effect on the pre-processing as the projection onto the other reference spectra will
be negligible.

When modeling in the TR framework it is necessary to have some procedure for
validating and selecting models. Many methods for validating and selecting regular-
ization parameters are available. Papers I and III discuss how model selection can
be done highly efficiently based on a computationally fast version of the LooCV.
Paper I shows how this can be done for the GCV criterion, and in Paper III it is
shown how this can also be done for the LooCV. The formulae derived in Papers
I and IIT allows for very efficient model selection for a large number of candidate
regularization parameter values. This can be done either by sampling a large num-
ber of regularization parameter values on a log scale, or by applying a numerical
optimizer. The fast model selection formulae can be used for Lo regularization as
well as other types of regularization. This allows for efficient experimentation with
a wide variety of regression models.

In classification problems the aim is to classify a sample as belonging to one of
several given classes. Paper IV considers the use of regularized discriminant analysis
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for classification. In classification problems a commonly used criterion for model
selection is the number of samples correctly classified using cross validation. It is
known that there is a link between RLDA and regularized regression. As Papers
I and IIT discuss efficient methods for model validation for regularized regression
it is interesting to investigate whether these efficient parameter selection methods
also can be applied to RLDA and classification problems. The empirical results
obtained in the Paper suggests that a regression based criterion can be used to
obtain a suitable regularization parameter for RLDA.

3.2 Future perspectives

The Tikhonov regularization framework can be extended further, and we have sev-
eral works in progress which will briefly be discussed here. When modeling data
it may be necessary to update models regularly due to, for example, the collec-
tion of new samples, change in physical conditions, or new samples with different
properties[25]. In this scenario the original model may be useful, but in need of
some adjustment. This can be achieved by a modification of the optimization cri-
terion used in the TR framework[25]. With standard Lo-regularized regression the
optimization criterion is the weighted sum of the squared errors for the prediction
and the Ly norm of the regression coefficients where the weight is given by the
regularization parameter. Instead of requiring the Ly norm of the regression coef-
ficients to be small, we can require the Lo norm of the difference between the new
and the old regression coefficients to be small. The new regression coefficients will
then be regression coefficients that predict the new data well, while at the same
time not being to different from the original model. By using arguments similar to
the ones used in Paper III, one can develop formulae for fast LooCV of this modi-
fied regression problem. This allows for efficiently updating a regression model and
finding an appropriate trade-off between keeping the old model while at the same
time accounting for new data.

The work in Paper IV discusses how the fast LooCV for regression can be used
to obtain a good regularization parameter value for RLDA. The work provides
empirical results that an appropriate regularization parameter for RLDA can be
obtained from fast LooCV for an associated regression problem. Further study is
warranted to establish a more rigorous justification for when this approach appears
to parameter selection works, and to establish cases where the regression approach
will not yield a good regularization parameter value.

The LooCV discussed in Paper III allows for efficient selection of regression
models for different choices of the regularization parameter after computing the
(reduced) SVD of the data matrix. The calculation of the SVD can be a compu-
tational bottleneck, and this is especially the case for very large data sets. It can
be shown that the PRESS-statistic can be computed efficiently from a single bidi-
agonalization of the data matrix. More precisely, there exists recursion formulae
that allows for efficient calculation of the bidiagonalization of the augmented data
matrix for any choice of regularization parameter. These recursion formulae can be
used to obtain formulae for efficiently computing the PRESS-statistic. Empirical
testing indicate that these recursion formulae are sufficiently numerically stable for
practical applications. The model update discussed above can also be done using
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only the bidiagonalization of a data matrix. This will therefore allow for efficient
model selection for TR models when considering data sets that are too large for even
a single SVD to be computationally feasible. Further, it is well known that PLS
can be implemented using the Golub-Kahan-Lanczos bidiagonalization algorithm,
and the projection can be obtained by truncating a bidiagonalization of a matrix.
This makes the fast LooCV for bidiagonalization interesting not only in terms of
the computational savings compared to the SVD, but also because of the additional
models we can obtain by combining a truncation of the bidiagonalization with Lo
regularization. The resulting models will be a mix of PLSR and TR models, where
we have the full projection onto subspaces provided by PLSR together with the
"soft-tresholding’ obtained by TR. Per Christian Hansen[17] refers to this combina-
tion as 'the best of both worlds’. These type of models will have two regularization
parameters (the parameter from TR and the dimension of the subspace we project
onto), and so it will be necessary to investigate efficient parameter selection methods
in this case.
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generalized cross-validation error estimates) associated with a large number of
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1 | INTRODUCTION

Spectroscopic data are often contaminated by various sources of noise and disturbances making analysis and/or interpre-
tations challenging. Preprocessing of spectroscopic data before building models may therefore be essential for obtaining
both accurate predictions and useful interpretations.”> The noise in spectroscopic data is typically caused by various phys-
ical effects, depending on the type of technology being used. Baseline shifts and various types of scatter effects are quite
common in spectroscopic data. Mathematically, we often model the noise as multiplicative and additive effects, where
we assume that the noisy part of each spectrum is unique.

The purpose of the present paper is to discuss how to eliminate the influence of additive effects in linear regression
model building by using the Tikhonov regularization (TR) framework. The elimination part is attained by adding an
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extra criterion to the linear regression problem, forcing the regression coefficients to be orthogonal to the directions in
the sample space spanned by the additive effects. By varying a tuning parameter, the directions corresponding to additive
effects can be completely removed or allowed to contribute to the model in a restricted fashion if this contributes to
improving predictive performance. The suggested method can be applied directly to the raw data, or subsequent to any
data preprocessing step. See also Andries and Kalivas® for a theoretical discussion of this idea.

The focus of our work is on how to remove the influence of polynomial trends efficiently as an integrated part of the
model building. We will also compare this approach with some existing preprocessing methods that correct for polynomial
trends. This idea has been mentioned in papers by Kalivas* and Stout and Kalivas® in the context of TR and discussed in
Vogt et al® in the context of principal component regression. The proposed method solves a penalized linear least squares
problem by including additional penalty terms within the TR framework. The solution to this least squares problem will
be orthogonal to unwanted polynomial trends in the data.

Using raw spectra as input to this TR problem will often produce subpar results. The reason for this is that spectral data
often contain scattering effects that affect the spectra multiplicatively. These effects should be corrected in a preprocess-
ing step prior to model building. Here, we discuss using extended multiplicative signal correction (EMSC) and standard
normal variate (SNV) to preprocess data prior to model building. In the examples, we will use EMSC to preprocess
the spectra.

For regularization in the TR problem, we will discuss 3 different types of regularizations: (1) L, regularization, (2)
discrete first derivative regularization, and (3) discrete second derivative regularization. For L, regularization without
any wavelength selection, we will show that polynomial trends can be corrected for when preprocessing the data. We
will also show that when using a type of derivative regularization or L, regularization with wavelength selection, an
extra polynomial criterion in the TR problem is necessary for obtaining orthogonality between the unwanted polynomial
trends and the regression coefficients. By using one of the above types of regularizations together with EMSC preprocessed
spectra, we obtain regression models comparable to Partial Least Squares (PLS) models with EMSC preprocessed spectra.

In the following sections, we give a short review of some common preprocessing methods for spectroscopic data, and of
the TR-framework. Thereafter, we introduce the baseline correcting approach as the main topic of this paper. The baseline
correcting method is then compared to EMSC, and some similarities and differences between the two approaches are
discussed. Finally, we show the results of applying the TR method on 2 different data sets of Raman spectra.

2 | PREPROCESSING OF SPECTRAL DATA

2.1 | Preprocessing

Preprocessing of spectral data is widely considered as necessary prior to regression model building."”* There are different
ways to describe noise and artifacts in spectroscopic data. One can, for example, distinguish between baseline, scatter,
noise, and misalignments.” In Raman spectroscopy, fluorescence may cause large baseline effects,** which can result in
a vertical shift of the spectra. Many baseline correcting procedures rely on a baseline estimation and correction by fitting
and subtracting low degree polynomials from the spectra. See, for example, Liland et al,® for a review of several baseline
estimation algorithms, or Liland et al' for a discussion of how to choose an appropriate baseline correction.

In NIR spectroscopy, there may be variations in the spectra due to variable path lengths that light travels inside the
samples, and/or scatter effects due to the particle size distribution.’**> Ambient light and light intensity of the radiation
source can also affect the spectra.”® Scatter effects can be caused by the particle size in a sample being similar in size to
the wavelength of the light used, and it is often modeled by individual scaling factors adjusting each spectrum.” The most
common scatter correction methods are multiplicative scatter correction (MSC) and standard normal variate (SNV),”'* as
well as baseline correcting procedures.

The method suggested in this paper does not include the correction of multiplicative scatter effects, so such effects
must be handled prior to solving the regression problem. A review of the two methods most commonly used to correct
for multiplicative scatter effects is given in the next section.

2.2 | Scatter correction by SNV and EMSC

The SNV was introduced in Barnes et al,!* where it is claimed that the main variation in near-infrared diffuse reflectance
spectra are due to (1) scatter, (2) path length, and (3) chemical composition. The variations due to scatter and path
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length may corrupt the spectra by both an unwanted vertical shift and an unwanted multiplicative effect (due to scatter
rather than chemical information). The SNV is simply an autoscaling procedure correcting each spectrum individually
as follows': Suppose we have n spectra represented by the vectors x(), ... .X(n). Then for i = 1, ... ,n, we define the
SNV-corrected spectra as follows:

X@i) — X

, 1
sd(x(,»)) ( )

Xeor(i) =

where X(; and sd(x(;)) denote the mean and standard deviation of the spectrum x;;), respectively.

In Barnes et al."’ the authors also suggest a baseline correcting procedure referred to as detrending. The detrending is
obtained by regressing the spectra onto a polynomial evaluated at the measured wavelengths and returning the residual
vectors from these regressions.

The MSC was introduced in Geladi et al'? to separate absorption in samples due to chemical content from the various
sources of scatter. The idea behind the MSC is that scatter and light absorption due to chemical effects have different
dependencies on electromagnetic wavelengths and that this fact should enable the possibility of separating the scatter
phenomena from the signal of interest. By using the MSC, we model each spectrum as follows:

xp=a-1+ b- Xref + €mi, )

where X, is a fixed reference spectrum and 1 is a vector of corresponding length. The scalars a,b are obtained by
least-squares regression, and ey,; is the associated residual vector (where the subscript m is used to indicate MSC prepro-
cessing). In the original description of the MSC, it is argued that one should be using an “ideal” sample as the reference
spectrum X, and correct the other spectra “so that all samples appear to have the same scatter level as the ‘ideal™."?, p. 495
Choosing the reference spectrum to be the sample mean of the considered spectra is often considered a useful choice.*"?
In the end, the MSC-corrected spectrum is given by the formula

Xi —a- 1

1
X = ——p— = ¥ref + pem 3)

Itis asimple task to extend the MSC by including additional terms in the representation of the spectrum x, and the result-
ing correction method is usually referred to as the EMSC.'* The most basic version of the EMSC has the representation

Xpy=a-1+b-Xpr+c-vVi+c-v2+ey, 4)

where the vectors v; and v, represent the measured wavelength numbers and the square of these numbers, respectively.
The subscript e in the residual e,; is conventionally used to denote that EMSC preprocessing is taking place. The scalars
a,b, cy, ¢, are obtained by linear least squares fitting of x to the vectors 1, X, v and v,. The corrected spectra are given by
(where the subscript e is used to indicate EMSC preprocessing):

x(i)—a-l—cl~v1—cz-v2
b

1
= Xyef + Beei- (5)

Xe(i) =

The basic EMSC modeling described above can also be extended to include polynomials of an arbitrary degree.” Note
that the scalars a, b to be estimated in both the MSC and EMSC formulas will in general not be identical because the
vectors v; and v, are not required to be orthogonal to the vectors 1 and X,

In practice, this means that the estimated multiplicative effect (b) of a spectrum depends on whether the MSC or the
EMSC is chosen for the preprocessing. This is also pointed out in Rinnan et al,’* and more details will be given below.

By using the EMSC preprocessing, we are eliminating the components of the spectra associated with the subspace
spanned by the vectors v; and v,. Note that the projection of a corrected spectrum x,(; onto this subspace is identical to
the projection of the reference spectrum X, for all samples (1 < i < n) and that this projection in general will be nonzero.
Therefore, the v, v,-directions will not influence the later models obtained by methods such as PLS as the (corrected)
data matrices are always centred prior to model building. As we will discuss later, these directions may or may not affect
the regression coefficients in TR depending on the type of regularization used.
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The MSC and SNV are often considered as similar for most applications when a representative spectrum is used as the
reference spectrum,'* as they both include a centering as well as a scaling part. However, the two methods may in some
cases produce very different results as their centerings and scalings are calculated according to different strategies."”

It is worthwhile to note that the SNV operates on each spectrum completely individually, whereas the EMSC uses a
reference spectrum based on all the available spectra to be included in the individual correction models. This issue is
relevant, for example, when using cross-validation strategies for model selection. If the EMSC preprocessing is used and
the reference spectrum is taken as the mean spectrum of the training set, then strictly speaking a new EMSC model should
be recalculated for each choice of training set, whereas this challenge does not occur when the SNV method is used.

There are also other preprocessing methods that can be used to estimate and correct for scatter effects. One example
is the optical path-length estimation and correction,” which allows for estimating scatter when the concentration of the
components in a sample is known. When using optical path-length estimation and correction, there is also a polynomial
correction by projection.

3 | TIKHONOV REGULARIZATION

3.1 | A brief overview of TR for linear least squares modeling

In this section, we briefly review the TR framework for linear least squares modeling. We assume that we have a data
matrix X € R™P associated with n samples and p predictor variables, and a corresponding response vectory € R".
We also assume that we have a matrix L € RP*?, and a tuning parameter A > 0. The TR problem is specified by the
linear system

[Eubo-Bl

The corresponding least squares problem to be minimized with respect to f is as follows:
X6 —yII* + AILBII, @)

where the regularization parameter A is considered as fixed. The purpose of the regularization matrix L in (6) and (7) is
to impose additional constraints on the regression coefficients and to overcome problems with multicollinearity present
in the ordinary least squares formulation. The most common choice for L is the identity matrix (I). Various discrete
differential operators and diagonal matrices representing wavelength selections are other popular choices.** Note that the
choice L = I corresponds to the ordinary Ridge regression problem'® without variable standardization. As shown later in
the examples, the choice of regularization may have a considerable impact on the resulting regression coefficients.

3.2 | Regression coefficients

In the following, we will assume that the regularization matrix L in (6) is invertible. If L # I (the identity matrix), one
can then transform the problem into standard form by considering XL in the place of the original X (see, eg, Stout and
Kalivas® for a more thorough explanation). Without loss of generality, we will therefore assume L = I in the following. If
L is not invertible the standardization process is a bit more involved. See, eg, Hansen' for details about this case.

The least squares solution of (6) can be obtained by solving the corresponding normal equations

X'X+ D =Xy. (8)

By considering the reduced SVD of X = USV’ (here, S is the diagonal matrix of nonzero singular values, U and V
represent the corresponding left and right singular vectors), the solution g to (8) simplifies to

B =V(S'S+ A ISUy. 9)

A derivation of this expression can be found in Hastie et al.** The following properties of Equation 9 should be noted:
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1. The formula for the regression coefficients in (9) are only depending on 4 in the inversion of a diagonal matrix. This

implies that from the reduced SVD of a data matrix, the computation of the regression coefficients corresponding to

any choice of the regularization parameter A only requires multiplication of matrices and the inversion of a diagonal

matrix. Thus, having calculated the reduced SVD of the data matrix, we can generate regression coefficients for any
value of 1 at a very low computational cost.

2. From Equation 9, it is clear that the matrix V(S’S+ AI)~!SU’ linearly transforms (by left multiplication) any response

vectory € R" to be associated with the data matrix X into a corresponding vector g € RP? of regression coefficients.

The above remarks imply that once we have calculated the reduced SVD of the data matrix X, the desired model for
any value of A and any choice of response vector y can be obtained directly by ordinary matrix multiplications. The
only restriction with this approach is its reliance upon the SVD of X. If X is large and calculating its reduced SVD
is not computationally feasible one can solve the least squares problem (6) using alternative techniques, such as QR
factorization.

3.3 | Model selection

When using a regularized approach to linear modeling such as TR, choosing an appropriate value of the regularization
parameter(s) can make or break the modeling process.* Thus, having a good procedure for choosing the value(s) of the
parameter(s) is essential.

Choosing an appropriate value of the regularization parameter is a trade-off between model fit and model complexity.?
There is no known approach to this problem that always provides an objectively optimal solution."” Some alternatives
include consideration of L-curves!®?! or more statistically motivated techniques like cross-validation. In this paper, we
advocate for using the generalized cross-validation (GCV) proposed by Golub et al** for the selection of an appropriate
regularization parameter value. The reason for this is that, as explained below, this can be implemented very efficiently
using the singular value decomposition of the data matrix X. In the examples, we will compare the TR models to PLS
models. To make the comparison fair, we can of course use leave-one-out cross-validation (LOOCYV) for both TR and PLS.
In our experience, minimization of the LOOCV and GCV statistics results in comparable values of the regularization
parameter, and it matters little which one is used. We indicate this in the examples by giving prediction results for TR
solutions obtained from both LOOCV and GCV.

The primary motivation for preferring the GCV is that this method avoids some problems with LOOCV) as the GCV is
a rotation-invariant version of the LOOCV.

The GCV statistic is defined as (our projection matrix differs from the one in Golub et al*? by a factor of n in the term
with A) follows:

I — AW

Gevi) = .
|21 - a)

(10)

where A(1) = X(X'X + AD7IX'.

‘We now show how the GCV statistic can be calculated using matrix addition and multiplication only when the SVD of X
is known. Note that the numerator in (10) is simply the squared norm of the residual. As discussed in the previous section,
the regression coefficients (and hence the corresponding residuals) can be calculated using only matrix multiplications.
Using the reduced SVD of X the matrix A can be expressed as follows:

A(A) =US(S'S + AD7IS'U’ = U[S*(S* + A U'. (11)

The matrix inside the brackets in (11) is diagonal and can be calculated directly by simple scalar operations for any
choice of A.

Itis therefore computationally “inexpensive” to compute the GCV statistic once the SVD of the data matrix X is available.
Thus, one way of finding a good value of the regularization parameter A using GCV is to consider it as a function of 4,
and plot the GCV(4)-function for a “large” but finite set of well-spread A values. Finally, we choose the particular A value
associated with the smallest GCV value. For a more genuine minimization of GCV(4), the minimizer obtained from the
discrete procedure proposed above can be taken as a starting point for running a numerical optimization routine.

A MATLAB implementation of this approach using the £minbnd-function from MATLABs Optimization Toolbox is
given in Appendix A. The code in Appendix A also include code for calculating the GCV statistic for a selected sample
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of values of the regularization parameter. In our experience, this approach works equally well to using fminbnd to find
the optimal value of the regularization parameter, assuming a sufficiently sized sample of values of the regularization
parameter is selected in an appropriate range.

We note that the use of GCV here is primarily aimed at selecting an appropriate value of the regularization parameter
A rather than providing an accurate error estimate of the model. Once a good value for the regularization parameter has
been found, the associated model may be validated with respect to its predictive performance using some appropriate
cross-validation strategy or a separate test set.

3.4 | Adding additional criteria to the model calibration

The basic formulation of the TR problem given in (6) is easily extended by including additional rows in the equation.
Such inclusions correspond to imposing additional constraints on the desired regression coefficients.

The focus of this this paper is to eliminate the influence of additive effects in spectra by integrating additional constraints
in the TR problem formulation. This can be done by inserting extra rows into the matrix on the left-hand side in Equation 6
and corresponding zeros on the right-hand side. The extra rows should be chosen as set of basis vectors spanning the
subspace of additive effects that are not supposed to influence our final model. In what follows, we discuss primarily
polynomial trends. For a more general theoretical discussion, see, eg, Andries and Kalivas.?

Additive effects are often modeled as lower-order polynomials. An orthogonal basis for such polynomial spaces can be
obtained by considering the Legendre polynomials up to some desired degree.”® More precisely, we create a matrix with
the polynomial trends evaluated evenly in the interval [-1, 1] as columns. We then find a QR-decomposition of this matrix
and use the resulting orthogonal vectors as rows in the matrix P (see the MATLAB-function Plegendre in Appendix A
implementing the details). By multiplying P with a huge constant \/_ , and inserting zeros in the corresponding rows of
the response vector on the right-hand side of (6), the updated equation becomes

X y
Vu-P ﬂ=H. 12)
\/}.L 0

The least squares solution of (12) corresponds to finding the minimizer with respect to g of the expression
IXB = yII* + ullPBI* + AILBII, 3)

where A and u are considered as fixed quantities. By selecting y sufficiently large, we can force the regression coefficients
solving the least squares problem (12) to be numerically as close to orthogonal to the chosen P-directions in the measured
samples as we like. The resulting model will therefore ignore such polynomial trends directly, instead of deflating them
off the spectra in a preprocessing step.

We note that this method is also applicable in correcting for arbitrary known interferents (not only polynomial trends)
by specifying an appropriate set of basis vectors for the actual interferent-subspace.

In the limiting case when u grows large, the suggested method corresponds to projecting the spectra onto subspaces
orthogonal to the polynomial trends, but as we will show later, in the context of TR with L # I, the two approaches are
not equivalent.

In the discussion above and what follows, we suggest using a “hard-coded” large value for u. In the code for the exam-
ples, the value u = 10?* is used. This value was chosen to be large enough to make the regression coefficients obtained
orthogonal to the polynomial trends to machine precision. If the scale of the measurements is significantly different than
for the examples used in the present work, then a different value of 4 may be chosen. The result of this choice is to com-
pletely remove the influence of the directions spanned by the rows in P on the regression coefficients. We note that it is
also possible to treat u as an ordinary regularization parameter that may be chosen by some model selection criterion. If
this is done and the regularization parameter is not chosen too large, then the rows in P are allowed to contribute partially
in the resulting regression coefficients.

In the practical calculations, we first centre X and y with respect to their column means before appending \/FP toXand
calculating the singular value decomposition for the augmented matrix. When computing the GCV statistic as described
in the previous section, it is therefore important to truncate the GCV calculations to only account for the upper n rows of
the augmented X as it does not make sense to consider the rows in P for model selection. See the code in Appendix ?? for
the required details.
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4 | COMPARISON WITH EMSC

4.1 | MSC and EMSC explained by linear algebra

The EMSC preprocessing is used for both eliminating polynomial trends and correcting for scatter effects in spectro-
scopic data. By using the EMSC preprocessing with second-order polynomial correction, the spectra are projected onto a
4-dimensional subspace (where 3 of the basis vectors are associated with the second-degree polynomial subspace). In the
present work, we suggest including the correction of polynomial trends as an integrated part of the TR approach by con-
sidering the required equations enforcing the desired orthogonality properties. Because the EMSC as well as the proposed
TR approach are aiming at the same purpose, it is of interest to compare and contrast the two methods. Before comparing
the two methods, we will briefly review the linear algebra required for describing the MSC and the EMSC preprocessing.

Recall that the rows of the matrix X € R"™P and the vector y € R" represent our spectra and associated response
measurements. We also assume the reference spectrum x,.,; € R? to be known. For MSC and EMSC, the two subspaces
required for filtering the samples are given by the subspace bases Wysc = {1, Xy} C RP and Weysc = {1, Xper, V1, 12} C
RP, respectively. According to Section 2.2, the formulae for MSC and EMSC preprocessing are given by Equations 3 and 5.

For both types of preprocessing, the scaled residuals = 5 eiare considered to be representative for the interesting chemical
information of the associated samples x.;. To make a direct comparison of X, and x,(;), one needs to express these
vectors with respect to a common basis. An appropriate basis can be obtained by extending Wpysc into a complete basis
for RP. Such a basis can be found by introducing a set of basis vectors W, = {ry, ... ,¥p_4} C RP that spans the orthogonal
complement of span(Wgysc), ie, span(W;) = span(Weysc)* and RP = span(Wgysc) @ span(Wy).

With respect to the basis Wgpysc U Wi, the preprocessed spectra given in (3) and (5) can be represented as follows:

Aei — Apmi b Cio
Xy = L=l g4 DAy S v+—v+— ajr; 14
m(i) bmi bml ref b i 1 b 2 Z irj ( )
and
p—4
Xy =0-1+1-Xpep 0V, +0- v2+— Za,r, (15)
Cl

for MSC and EMSC, respectively. The first of these equations is obtained by applying the MSC preprocessing to the sample
X(;) with the basis WepyscUW,. The differences between the scatter correction scalars (the b,,; and b,; in the above equations)
will typically be small for MSC and EMSC. However, in some cases, they may be noticeably different and the differences
may affect the predictive power of the model (as is shown for the fish oil data in Section 5). Aside from the different
estimates of the scatter correction scalars b,,; and b,;, the differences between the MSC and EMSC preprocessed spectra
are clearly located in the subspace spanned by the vectors {1,v1, V2, Xyf}.

4.2 | MSC with trend correction versus EMSC

We will now compare the removal of polynomial trends by EMSC to the removal of such trends by including the required
polynomial orthogonality as an additional constraint in the TR problem. Although we will limit investigation to consider-
ing polynomials of degree 2 or less, the given argument readily generalizes to the correction of polynomial trends of any
degree. Consider the following two regression problems:

[5)o- B
and

Xusc y

Vi-P|p= H an

Vi-L 0

where P is a matrix with 3 rows representing the space of polynomials of degree 2. First, we consider the case when L = I
(this corresponds to putting restrictions on the L,-norm of the solution vector ) and the corresponding solution of (16).

Denote the reduced SVD of Xgysc by Xemsc = USV'. From (9), we see that the solution g to (16) is a linear combination
of the columns in V. From Equation 15, we see that after centering Xpysc, the rows in Xpysc will be orthogonal to the
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vectors in Wgysce. By considering the the full SVD of Xpysc, all the vectors in Weyse can be expressed as linear
combinations of the right-singular vectors associated with the singular value zero.

As the right singular vectors are orthogonal, it follows that the columns of V are orthogonal to Wgysc. Therefore, the
solution of (16) will be orthogonal to the vectors in Wgysc. Because we assume L = I together with EMSC preprocessed
spectra, the solution vector will be orthogonal to the trends being corrected for in the EMSC preprocessing. Thus, in this
case, adding an extra polynomial correction criterion to (16) will not affect the regression coefficients.

Now, consider the solution of (17). From (3) and (14), we see that after centering, the rows in Xsc will be orthogonal
to the vectors in Wysc. Without the inclusion of the additional polynomial criterion (represented by the matrix P) the
solution vector of (17) would in general only be orthogonal to the vectors x,. and 1. However, the additional polynomial
criterion forces the solution B of (17) to also be as close to orthogonal to the vectors v; and v, as we like by choosing
\/ﬁ to be sufficiently large. The difference in the solutions of (16) and (17) is therefore explained by the difference in
the estimated scatter coefficients. Such estimates will often be fairly similar, but as demonstrated in the fish oil example
below, their differences may affect the predictive power of the model.

In the more general case with L # I, one can solve (16) and (17) by first transforming the data as indicated in Section 3.2.
Such transformations will in general affect the right singular vectors of the data matrix. Therefore, the above argument
based on L = I to show that the solution to (16) is orthogonal to the vectors in Wgysc is no longer valid. So when
using a regularization matrix L # I, the resulting regression coefficients will not in general be orthogonal to the trends
corrected for in the preprocessing. In this case, adding the extra polynomial block \/ﬁP to (16) corresponding to the
polynomial trends removed in the preprocessing may affect the resulting regression coefficients (this point is illustrated
in the examples presented below). In the examples, we will also in some cases add an extra criterion to the TR problem
consisting of a diagonal matrix with large entries for wavelengths that are irrelevant for prediction. In this case, for the
same reason as discussed above, it will be necessary to add an extra orthogonality condition to the TR problem to ensure
orthogonality between the regression coefficients and the unwanted polynomial trends. We note that if SNV is used for
preprocessing the data, the detrending described in Barnes et al* will correspond to the polynomial trend correction
proposed here if L, regularization is used together with a large “hard-coded” value of the y parameter. We also note that
if the y parameter is chosen by validation instead of using a hard-coded value, then the method of removing polynomial
trends discussed here will not be equivalent to other methods that removes the projection onto subspaces spanned by
polynomials, such as, eg, EMSC and SNV with trend correction.

The regression coefficients (ie, the model parameters) obtained when using EMSC preprocessing may sometimes rep-
resent information considered to be useful for interpretations.>* When using both MSC preprocessing and correction of
polynomial trends by the method suggested in this paper, we do not derive these coefficients explicitly, as we obtain regres-
sion coefficients that are orthogonal to the subspaces of interest without explicitly calculating the sample projections onto
these subspaces (for prediction purposes these parameters are clearly irrelevant). The EMSC model parameters are the
regression coefficients obtained by solving multiple OLS problems, so these parameters can always be calculated at the
computational cost of solving the regression problem AB = X’, where A is a matrix with columns being the vectors in
the basis Weumsc.

5 | EXAMPLES

Here, we will study the practical side of the theoretical considerations discussed in this paper by applications to two data
sets of Raman spectra. We will primarily use EMSC to preprocess the spectra. When using EMSC to correct Raman spectra,
it is common to use polynomials up to degree 6 or 7. This choice of polynomial degree can be justified as the chemical
information in Raman spectra is generally contained in very steep peaks.’ In both examples, unless otherwise stated, we
use EMSC to preprocess the spectra and correct for polynomial trends up to and including degree 6, and we refer to this
as EMSC(6) preprocessing.

In addition to TR models, we also provide PLS models for comparisons. Selection of the PLS models are based on
LOOCYV. The regularization parameter values for the TR models shown in the tables are primarily obtained by LOOCV.
The regularization parameter values for the associated models obtained by GCV are in most cases very similar to the
LOOCYV results. The tables in the examples below also include prediction results from TR models obtained using GCV.
This is included to illustrate that LOOCV and GCV typically performs very similarly for selecting the value of the regular-
ization parameter in TR. As we have shown earlier, the GCV statistic can be calculated very efficiently. We can therefore
safely recommend using GCV for estimating an appropriate value of the regularization parameter.
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The fminbnd function from the MATLAB Optimisation Toolbox was used to determine the value of the regularization
parameter giving the minimal GCV or RMSECV statistic. The £minbnd-function requires a lower and upper bound on
the value of the regularization parameter. In the process of optimizing the nonnegative regularization parameter, we used
a relatively wide interval ranging from 0 to 10% (the upper limit of this interval corresponds to choosing a model that
essentially predicts the average response value). For some models we experienced that the minimization process could
fail by proposing the right end point value. In this case, a lower maximum value of the regularization parameter was set,
and the model calculation redone. This was repeated, lowering the maximum value each time, until a reasonable model
was found. An alternative to using the fminbnd function which from our experience works equally well is to simply
sample a range of values for the A-parameter and calculate the GCV statistic or the RMSECYV associated with these values.
One can then simply choose the 4 corresponding to the minimum GCV or RMSECV statistic. The code for this approach
using GCV is integrated into the MATLAB function given in Appendix A.

Note that by following the above steps, we are, strictly speaking, not calculating the LOOCYV estimates and GCV statistic
correctly, as we are not generating new EMSC models for each spectrum we remove from the model (which we should
clearly do for LOOCYV, and for GCV as GCV is LOOCV in a particular coordinate system). This should not have any
significant impact as the only information we use from all the spectra in the training set is the mean of the spectra, but
our estimates will have a small bias.

The optimal model in a model family is defined as the model with the value of the regularization parameter with the
minimum RMSECV (or GCV) value.

5.1 | Raman spectra of fish oil

First, we look at a data set of Raman spectra of oil samples from salmon.'*? The response variable is the iodine value,
which is used as a measure of unsaturation in the fat. This data set was also analyzed in Liland et al,'* using various
baseline correction algorithms with PLSR. For comparison purposes, we use the same training/test set split and the same
wavelength truncations as in Liland et al.’ The data set consists of 45 spectra (30 samples used for training, 15 for testing)
with 2263 wavelengths between 790 and 3050cm™! (after truncation).

There are unwanted additive and multiplicative noise effects affecting the spectra, as well as an instrument detector shift
at about 1800cm™!. Following the analysis in Afseth and Kohler,” we use EMSC including corrections for polynomials
up to degree 6 to preprocess the spectra. The raw spectra and the EMSC(6) preprocessed spectra are shown in Figure 1.
There is still a clear baseline in the spectra, as can be seen in the corrected spectra in Figure 1, but most of the unwanted
variation between the spectra has been removed. As we are centering the data prior to modeling, this baseline will not
affect the predictions. The test spectra were corrected using the reference spectrum obtained from the training spectra,
ie, the mean of the training spectra.

«10* Plot of raw Raman spectra
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& wx10* Plot of EMSC (degree 6) corrected Raman spectra
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FIGURE 1 Top: raw Raman spectra of salmon oil. Notice in particular the nonlinearities in the baseline. Bottom: EMSC(6) preprocessed
Raman spectra of salmon oil. EMSC, extended multiplicative signal correction
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Following the steps given at the beginning of Section 5, we generated models for EMSC preprocessed spectra with L, reg-
ularization, discrete first derivative and second derivative regularization (hereafter referred to as D, and D, regularization,
respectively).

For comparison, PLS models were created with up to 20 components, using EMSC(6) preprocessed data for the results
in Table 1, and using MSC preprocessing for the results in Table 2. For each PLS model, the RMSECV was calculated using
LOOCV. The optimal PLS model was selected as the model with the minimum RMSECV. This resulted in a PLS model
with 2 components for the EMSC(6) preprocessed spectra, and a model with 3 components for the MSC preprocessed
spectra.

TABLE 1 Fish oil data with EMSC(6) preprocessing
Orthogonalization Reg. Optimal 1 (LOOCV) Min. RMSECV (LOOCYV) RMSEP (LOOCV) RMSEP (GCV)

TR (No orth.) L, 1.45-107 3.02 2.03 2.00
TR (Degree 6) I, 1.45-107 3.02 2.03 2.00
TR (No orth.) D, 9.56 - 10° 3.12 215 1.99
TR (Degree 6) D, 1.35-10° 3.17 1.97 1.83
TR (No orth.) D, 1.55-10'2 3.13 2.35 2.15
TR (Degree 6) D, 2.74-1013 3.36 1.74 1.83
PLS (2 components) NA NA 3.07 1.83 NA

Comparison of properties of the regression coefficients. The orthogonality column refers to which polynomials (if any) are added as an additional crite-
rion to the Tikhonov regularization (TR) problem. EMSC, extended multiplicative signal correction; GCV, generalized cross-validation; LOOCYV, leave-one-out
cross-validation.

TABLE 2 Fish oil data with MSC preprocessing
Orthogonalization Reg. Optimal 4 (LOOCV) Min. RMSECV (LOOCYV) RMSEP (LOOCV) RMSEP (GCV)

TR (No orth.) L, 453107 3.72 2.39 2.70
TR (Degree 6) L, 1.56 - 107 3.38 231 2.30
TR (No orth.) D, 5.92-10° 3.85 2.98 2.91
TR (Degree 6) Dy 3.52-10% 3.70 2.21 213
TR (No orth.) D, 6.81- 1013 3.90 3.04 2.97
TR (Degree 6) D, 1.67 - 1012 3.97 2.03 1.95
PLS (3 components) NA NA 3.71 2.21 NA

Comparison of properties of the regression coefficients. The orthogonality column refers to which polynomials (if any) are added as an additional criterion to the
TR problem. GCV, generalized cross-validation; LOOCYV, leave-one-out cross-validation; MSC, multiplicative signal correction; TR, Tikhonov regularization.

Plot of polynomial trends for degree 6 correction
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FIGURE 2 Plot of the rows in the matrix P appended to the Tikhonov regularization problem. There are 7 curves as we are correcting for
polynomial trends up to and including degree 6
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The results are summarized in Tables 1 and 2.

The GCV statistic reported in the tables is the square root of the GCV statistic as defined earlier in the paper. This is
done for easier comparison with the RMSEP values.

The rows of the matrix P with the polynomial trends used in this example are plotted in Figure 2.

Notice from Table 1 that the performance increase on the test set by adding degree 6 orthogonalization to the TR problem
using LOOCYV for model selection is roughly 26%. This should be considered an extreme case, but it illustrates how adding
an additional orthogonalization criterion to the TR problem can impact prediction even if “the same correction” has been
made in the preprocessing of the spectra. From Figure 3, we see that the model family generated by adding a degree
6 correction to the TR problem has better prediction in the region containing the A-values that are likely to be chosen
based on the RMSECV statistic. From the same figure, we also see that the curves for the training set do not give an
indication that the model created with a degree 6 orthogonalization will be significantly better than the model with only
D,-regularization. We note that the corresponding curves for GCV look very similar to the LOOCV curves. This shows
that using LOOCV and GCV for model validation can be problematic.

The optimal regression coefficients for the models with an additional orthogonalization criterion are plotted in Figure 4.
As can be seen from Table 1, the regression coefficients obtained using derivative regularization and extra orthogonaliza-
tion perform better on the test set than the regression coefficients obtained from L, regularization. This will clearly not
be the case in general, but often the loss in prediction will be relatively small. For smaller data sets such as the one dis-
cussed here, the computation of the regression coefficients for the PLS models and the 3 regularization types considered
does not take more than a minute on a personal computer. A possible strategy for modeling is thus to generate models
from all families and select the final model based on the performance on, eg, a validation set. If this is done, then clearly
a split into training, validation, and test set is preferable if an estimate of predictive power is also wanted.

One problem with the regression coefficients obtained using derivative regularization is that the extra criterion can force
structure on the regression coefficients that is not supported by the data. From Figure 1, we can, for example, see that we do
not expect nonzero regression coefficients in the area corresponding to roughly 1800 to 2600cm ™. Comparing this to the
coefficients in Figure 4, we see that the coefficients with derivative regularization have nonzero coefficients in this area.
There are several ways to remedy this problem if one wants smooth regression coefficients, and the easiest way is perhaps
to use some form of wavelength selection.* One possibility is to add an additional criterion to the TR problem in the form
of a diagonal matrix with large entries in the columns corresponding to the wavelengths that we want to exclude. This
results in regression coefficients with local norm smoothing in this area. The regression coefficients are shown in Figure 5.
We see that this results in regression coefficients that are zero for wavenumbers 1800 to 2600cm™~! and continuous on
the border of this region. On the test set, the RMSEP of the model with a diagonal matrix added to the TR problem
with second derivative regularization is 1.73. For comparison, PLS coefficients with the same wavelength selection were
also calculated. The calculation for PLS was done by excluding the columns of the data matrix corresponding to the
wavenumbers that we want to exclude from the regression problem, and afterwards, inserting an appropriately sized zero

LOOCYV plots for D2 regularization
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FIGURE 3 Fish oil data with EMSC(6) preprocessing. LOOCV and RMSEP plots for models with D, regularization. EMSC, extended
multiplicative signal correction; LOOCYV, leave-one-out cross-validation
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FIGURE 4 Fish oil data with EMSC(6) preprocessing. LOOCV-optimal regression coefficients for different regularizations and an
additional orthogonalization criterion in the TR problem (constant term omitted). See Table 1. EMSC, extended multiplicative signal
correction; LOOCYV, leave-one-out cross-validation; TR, Tikhonov regularization

«10% Smoothed regression coefficients with mean spectra 104
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FIGURE 5 Fish oil data with EMSC(6) preprocessing. Plot of mean EMSC(6) preprocessed spectra and regression coefficients with second
derivative smoothing (with an extra orthogonalization criterion in the TR problem) with and without wavelength selection (constant term
omitted). We can make the regression coefficients zero in a region where we do not expect any chemical information by appending an extra
criterion to the TR problem. EMSC, extended multiplicative signal correction; TR, Tikhonov regularization

vector into the obtained regression coefficients. For this data set, the RMSECV curve is very flat so that choosing the PLS
model from the model with minimum RMSECYV value results in a suboptimal model with 4 components (with an RMSEP
of 2.55). Manual inspection of the RMSECV curve shows that a model with 2 components is much more reasonable (the
resulting model has an RMSEP of 1.32). In Figures 4 and 5, we see that we can generate regression coefficients that have
very different profiles but also have similar predictive power, showing that one should be very careful when interpreting
regression coefficients. The problem of interpreting regression coefficients and how very different regression coefficients
can have similar predictive power is a well-known problem.”

Finally, we consider using MSC to preprocess the spectra and create models as before with L, regularization. The results
are summarized in Table 2. We can see that including a degree 6 orthogonalization improves the prediction, but the
prediction is still different from the prediction from using EMSC preprocessing.

The difference can mostly be explained by the different estimates of the multiplicative scalars. If we use MSC to pre-
process the spectra and do TR with L, regularization, but replace the estimates of the multiplicative scalars with the ones
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5 Plot of raw Raman spectra
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Plot of EMSC (degree 6) corrected Raman spectra
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FIGURE 6 Top: raw Raman spectra of adipose tissue. Bottom: EMSC(6) processed Raman spectra of adipose tissue

obtained from the EMSC preprocessed spectra the RMSEP of the models obtained using GCV falls from 2.70 to 2.01,
which is reasonably close to the estimate obtained using EMSC pre-processing. This example shows that the polynomials
chosen in the EMSC preprocessing not only affect the regression coefficients by what is subtracted from the spectra but
can also impact the prediction by affecting the estimates of the mulitplicative effects.

5.2 | Adipose data

We will now investigate a data set of Raman spectra of fat from pork adipose tissue.? This data set was also analyzed in
Liland et al.* The data set consists of 77 samples, with 50 samples being used for training. From the data we made 500
random partitions into training and test sets. We will perform a similar analysis as for the previous data set, but we will
primarily report the mean results from these 500 different partitions. There are 4967 wavenumbers evenly distributed in
the range 120 to 3099.6cm~" after trimming. The response variables are monounsaturated fatty acids (MUFA), polyun-
saturated fatty acids (PUFA), iodine values, and saturated fatty acids (SFA). Here, we only look at the responses MUFA
and iodine value as the results for PUFA and SFA are similar to the results for MUFA and iodine value. As with the
fish oil data, we use EMSC with a degree 6 polynomial correction to preprocess the data. The raw spectra and the cor-
rected spectra for one partition of the data set are plotted in Figure 6. After preprocessing the data, much of the variation
between the spectra is removed. We note, however, that there is still large variation in the spectra in particular in the
region 1310 to 1420cm™!. This variation could be removed from the spectra by adding a term representing this interferent
to the EMSC preprocessing (this is done in Liland et al**), or from only the model by adding an interferent term to the
TR problem.

Aswith the previous data set, we see that there is a large region (again corresponding roughly to the wavenumbers 1800
to 2600 cm™!) in Figure 6 where we do not expect nonzero regression coefficients, but we will have nonzero regression
coefficients for D; and D, regularization as a consequence of the smooth derivative criterion. We will therefore also create
regression models where we have excluded these wavelengths. We note that these are roughly the same wavelengths that
are excluded in Olsen et al.*

We will perform the same analysis as on the previous data set: We create TR models using L,, D;, and D, regularization
and also create a PLS model for comparison (using EMSC(6) preprocessing for all methods). The number of components
in the PLS model was chosen using LOOCV. We begin by considering the MUFA response. The mean results from the
500 train/test set splits are summarized in Tables 3 and 4, and LOOCV optimal regression coefficients for one particular
train/test set split are plotted in Figures 7 and 8.
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TABLE 3 Predicting MUFA from Adipose data with EMSC(6) preprocessing

Orthogonalization  Reg. Optimal 4 (LOOCV) Min. RMSECV (LOOCV) RMSEP (LOOCV) RMSEP (GCV)

TR (No orth.) L, 7.87 -10° 0.98 1.04 1.07
TR (Degree 6) L, 7.87 - 10° 0.98 1.04 1.07
§; TR (No orth.) D, 3.14-10% 1.38 1.42 1.21
g TR (Degree 6) D, 1.45-10% 1.23 1.26 1.19
g TR (No orth.) D, 1.02-10' 1.78 1.85 1.68
2 TR (Degree 6) D, 6.96 - 10'7 1.62 1.70 1.45
PLS NA NA 0.97 1.06 NA
TR (No orth.) L, 8.19 - 10° 0.97 1.03 1.05
= TR (Degree 6) L, 8.00 - 10° 0.97 1.02 1.04
G TR (No orth.) D, 3.50-10"3 1.38 1.40 1.14
z TR (Degree 6) D, 6.18 - 10 1.00 1.03 1.02
E TR (No orth.) D, 1.12-10% 1.18 1.26 1.24
'§ TR (Degree 6) D, 6.83 - 1012 1.09 1.14 1.13
PLS NA NA 0.97 1.05 NA

Above thick line: without wavelength selection. Below thick line: with wavelength selection. All numbers are mean values for 500 randomized splits of the data
into training and test sets.

TABLE 4 Predicting iodine value from Adipose data with EMSC(6) preprocessing
Orthogonalization  Reg.  Optimal A (LOOCV)  Min. RMSECV (LOOCV) RMSEP (LOOCV)  RMSEP (GCV)

TR (No orth.) L, 8.42-107 1.01 1.01 1.00
TR (Degree 6) L, 8.42-107 1.01 1.01 1.00
TV); TR (No orth.) D, 2.10- 10" 1.02 1.04 1.04
g TR (Degree 6) D, 2.25-101 1.02 1.04 1.04
g TR (No orth.) D, 6.85-10 1.06 1.10 1.12
S TR (Degree 6) D, 1.10- 10" 1.07 1.13 1.14
PLS NA NA 1.02 1.04 NA
TR (No orth.) L, 7.18 - 107 1.00 1.00 0.99
= TR (Degree 6) L, 7.08 - 107 1.00 0.99 0.98
S TR (No orth.) D, 1.71 - 10" 1.02 1.03 1.02
3 TR (Degree 6) D, 1.50 - 10™ 1.01 1.01 1.00
E TR (No orth.) D, 3.26-10 1.86 1.52 1.66
'§ TR (Degree 6) D, 3.71-10™ 2.04 1.40 1.62
PLS NA NA 1.02 1.05 NA

Above thick line: without wavelength selection. Below thick line: with wavelength selection. All numbers are mean values for 500 randomized splits of the data
into training and test sets.

For PLS, the mode number of components is 8 both with and without wavelength selection. From Table 3, we see
that the inclusion of an extra orthogonalization criterion in the TR problem generally improves prediction. Includ-
ing wavelength selection also improves prediction for all models. The effects of the extra orthogonalization criterion
in the TR problem and wavelength selection is most apparent for 2nd derivative regularization. Including both the
extra orthogonality criterion and wavelength selection for second derivative regularization results in a more than
30% improvement on RMSEP, making the models created using second derivative regularization comparable to the
other models.

Consider next the iodine response and the results given in Table 4. In this case, the mode number of PLS components is
5 without wavelength selection and 4 components with wavelength selection. For this response, the extra orthogonality
criterion has very little effect on both RMSECV and RMSEP. For the iodine response, we also see that wavelength selection
has a large negative effect on the models using second derivative regularization. The bad results here are partly explained
by roughly 5 of the training/test splits giving a very large RMSEP, but even removing these splits, the second derivative
models still perform worse than the other models. This shows that incorporating wavelength selection can also worsen
model performance. We also note that although the RMSECV is reasonably close to the RMSEP for most models, this only
holds because we are calculating average values over many different splits of the data set. On a single split of the data set,
the RMSECV is not necessarily a good indicator of model performance.
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FIGURE 7 Adipose data with EMSC(6) pre-processing. LOOCV-optimal regression coefficients for MUFA prediction with different
regularizations (constant term omitted). See Table 3
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FIGURE 8 Plot of mean EMSC(6) preprocessed spectra and regression coefficients with 1st derivative smoothing with and without
wavelength selection (constant term omitted) for predicting MUFA. See Table 3

6 | CONCLUSIONS

Using the SVD TR with GCV for model selection can be implemented very efficiently. The examples considered here
demonstrates that the GCV performs very similar to using LOOCYV for selecting the regularization parameter in TR. As
the GCV statistic can be calculated very efficiently, we recommend using GCV for selecting the regularization parameter
in TR. For data where multiplicative effects are present, these effects should be corrected prior to model building as the
TR framework cannot correct for them directly. This can be done for example using EMSC or SNV. With TR, we can
also easily impose extra criteria on our regression coefficients. Here, domain knowledge is important, as, for example,
knowing which wavenumbers of spectra contain useful chemical information can be incorporated into the model to give
better predictions. Smooth regression coefficients can be obtained by using derivative regularization and can in some cases
improve the predictive power of the models. We have shown that using derivative regularization can impose structure on
the regression coefficients that are not supported by the data, so that some form of wavelength selection can be useful for
derivative regularization. The addition of polynomial corrections as an extra criterion to the TR problem is not necessary
for L, regularization if the correction is made for the training set, but for derivative regularization, a polynomial criterion
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in the TR problem is in general necessary to obtain regression coefficients orthogonal to unwanted polynomial trends.
For the examples included in this paper, the models created using TR were comparable to the models created using PLS.
As the model generation in TR is done quickly, one can quickly generate optimal models from several model families and
afterwards make a decision about which model to use.
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APPENDIX A: PROTOTYPE MATLAB CODE

1 n [b, lambda, gev, beoefs, U, s, V] = TregGCV(X,y,lambdas, dtype, otype, fminbndMax)
2 be — Degree of derivz > regularization, d ation

3 polynomial trend t rre for i R

4

5 if nargin< 6

6 fminbndMax = 1e20;

7 en

8

9 n gev = gevValue (lambda)

10 sxfun (@plus, s2, lanbda) ;

11 « bsxfun(Grdivide, (U'«[y;zeros(otype+l,1)]).+s, D);

12 H = (U."2) » bsxfun(@rdivide, s2, D) + 1/n; H = H(lin,:);

13 gev = sum(bsxfun(@rdivide,bsxfun (éminus, y, X(1:n,:)«b), (I—repmat (mean(H,1),n,1)))."2)";

14 en

15

16 [n,p) = size(X); mX = mean(X); my = mean(y);

17 X = X—ones(n,1)+mX; y = y—my;

18  mu = le2d;

19

20 if otype >= 0, P = Plegendre(otype, p); X = [X; sqrt (mu)«p']

21  if dtype > 0, L = diff([speye(p);sparse(dtype,p)], dtype); X = X/L; end % Standardizing if using derivative regularization
22

23 (U, S, V] = svd(X,'econ'); s = diag(s); s2 = 5.°2;

24 D = bsxfun(@plus,s2,lambdas); % F r in the bcoefs & H calculations below

25 bcoefs = Vsbsxfun(@rdivide, (U'+[y;zeros (otype+1,1)]).+s,D);

26 H = (U."2)+bsxfun(@rdivide,s2,D)+1/n; H = H(lin,:); % Matrix of ley e)
27 % The following three lines calculates the GCV statisti r lambda values given as input and find the lambda with minimum GCV statistic
28 gev = sum(bsxfun(@rdivide,bsxfun(éminus, y, X(l: , (1—repmat (mean (H,1),n,1)))."2) ';

29 [~ id] = min(gev);

30 lambda = lambdas (id);

31 % The line below uses fminbnd to numerically find an optimal lambda value

32 (lambda, gev] = fminbnd (@ (x) gevValue(x),O0, fminbndMax) ;

33

34 if dtype > 0, bcoefs = L\bcoefs; end % Transform regression coeffs to match original X—data.

35 if dtype> 0, b = L\b; end

36

37 b = [my-mX«b; bl; % Regression coeffs with tant term of minimum GC
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46 P = ones(l,d+1);

47 x
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50 end

51 [Q/R] = qr(p,0);

53  end

38  bcoefs = [my—mX«bcoefs;
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40  end

41

42 function [Q, R] = Plegendre(d, 1)

'd' 'l'—dimensional orthon

45 % Legendre—polynomials up to degree
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1 | INTRODUCTION

| Kristian Hovde Liland

| Ulf Geir Indahl

Abstract

Extended multiplicative signal correction (EMSC) is a widely used framework
for preprocessing spectral data. In the EMSC framework, spectra are scaled
according to a given reference spectrum. Spectra that are far from collinear with
the selected reference spectrum may not be scaled appropriately. An extension
of the EMSC framework that allows for the incorporation of multiple reference
spectra in the EMSC model is proposed to remedy this issue. Useful candidate
reference spectra can be obtained from the dominant right singular vectors asso-
ciated with the matrix of spectra, but any desired reference spectra can be used.
As a part of this extension, we propose to change the basis used in the EMSC
preprocessing to an orthonormal basis. Using an orthonormal basis will remove
confounding issues between the basis vectors and make the obtained EMSC
model simpler to interpret. We discuss the proposed modification theoretically
and demonstrate its use with two data sets of Raman spectra and modelling with
partial least quares regression and Tikhonov regularization. The data sets used
are Raman spectra of oil samples from salmon with iodine value as the response
and Raman spectra of an emulsion of water, whey protein, and different oils with
polyunsaturated fatty acids as response (both as percentage of total fat content
and total weight).

KEYWORDS

extended multiplicative signal correction (EMSC), modelling, preprocessing, Raman spectroscopy

In the present work, we consider the extended mul-
tiplicative signal correction (EMSC),B! which is a

Because raw spectral data often contain unwanted arte-
facts and noise that make modelling and interpretation
difficult, some kind of preprocessing is often required./'*!
The goal of preprocessing spectral data is to transform the
raw data into a form that is more suitable for modelling
or interpretation. A vast amount of preprocessing meth-
ods for spectral data are available. The most widely used
preprocessing methods include the standard normal vari-
ate (SNV),I5! the Savitzky-Golay filter,!! various baseline
correction algorithms,”) and other methods.!®!

model-based preprocessing framework that corrects for
both unwanted additive and multiplicative effects in
data.ll The EMSC is flexible in the sense that it is pos-
sible to include a priori knowledge about chemical and
non-chemical patterns in the preprocessing model to
improve the data quality.[®)

The additive corrections are obtained by orthogonaliz-
ing the spectra with respect to the directions representing
irrelevant additive trends in the data. The multiplicative
corrections are based on a chosen reference spectrum, and

J Raman Spectrosc. 2019;50:407-417.
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each original spectrum is appropriately scaled so that it
can be expressed as a sum of the reference spectrum and
a residual part representing the spectral information of
actual interest.!'l Such scaling usually works quite well for
most of the spectra in a data set, but particular spectra that
are far from collinear with the reference spectrum may not
be scaled appropriately.['°]

In the present work, we propose an extension of the
EMSC framework that allows for the inclusion of multi-
ple reference spectra to estimate scaling coefficients for the
spectra to be corrected. The proposed extension is particu-
larly useful when dealing with data sets containing one or
several outlier spectra. By including additional reference
spectra that better accounts for the chemical profiles of the
outlier spectra, the preprocessing step may obtain more
useful estimates of the EMSC scaling coefficients.

The structure of the present work is as follows: First,
we review the traditional EMSC framework for preprocess-
ing of spectral data. Then, we motivate and discuss how
multiple reference spectra can be incorporated in a useful
extension of the EMSC framework. Finally, we demon-
strate the suggested extension for two applications with
data sets of Raman spectra.

2 | REVIEW OF EMSC
PREPROCESSING

When modelling by the traditional EMSC preprocessing
framework, the spectra are scaled according to a pre-
specified reference spectrum, and irrelevant polynomial
trends are subtracted from the data.l!! In the following, we
assume that X is an n X p data matrix with n samples
and p predictor variables, r is the chosen reference spec-
trum (typically the mean spectrum™?!) and d is the degree
of the polynomial trends to be corrected for. The vectors
spanning the subspace of the adverse polynomial trends
are denoted by vy, v1, Vs, ... ,v4. In the traditional EMSC
framework, a spectrum x is projected onto the subspace
spanned by the vectors in the basis

Bgymse = {1, vo, V1,2, ...,V }. (€))

Note that the exact choice of basis vectors in Equation (1) is
unfortunately not specified when the EMSC framework is
described; and in practice, it has been most common to use
abasis thatis not orthogonal (the choice of basis will be dis-
cussed in more detail later). The associated representation
of a spectrum x in Bgysc is as follows:

d
x=br+ Z(civi) +e, ©)

i=0
where the scalars are obtained by least squares regression
and e is the residual spectrum orthogonal to the subspace

spanned by Bgysc. The notation e will be used regardless
of which EMSC model is applied later in this article. The
EMSC corrected spectrum is defined as:

x = X o(civy) 1

—p =T + Be. 3)
The purpose of the polynomial trends in Bgysc is to model
and subtract the expected effects of additive noise, whereas
the b-coefficient is used to obtain an appropriate scaling
of the residual e to obtain the corrected spectrum x,,,. The
EMSC model can be justified from the Beer-Lambert law,
exploiting that chemical spectra are basically non-negative
linear combinations of pure component spectra (includ-
ing interferents) for vibrational spectroscopy techniques.!!!
The special case when the polynomial degree is zero, so
that only constant trends are corrected, is referred to as the
multiplicative scatter correction (MSC).I''l The EMSC is
thus a direct extension of the MSC.

Several extensions of the traditional EMSC model have
been proposed in the literature. If any known interferents
are also present, these can be included to extend the basis
Bgumse and handled in the same way as the polynomial
trends.["?! In applications including replicated measure-
ments of the spectra, it is sometimes useful to include
additional terms representing inter-replicate variance.['?!
The EMSC model has also been extended to correct for the
so-called Mie-scattering effects.!

Suppose we have n;, interferents, and let w; denote
the i-th interferent. To incorporate the interferents in the
model, we extend the basis given in Equation (1) to include
the vectors representing the interferents. This results in the
following extended set of basis vectors:

Xeor =

Bemsc U {wi,wa, .. wy, ). 4

The correction of a spectrum x is obtained by subtracting
its projection onto the subspace spanned by the interfer-
ents in Equation (4) and the following scaling:

d n
x = Yiolew) — X (diwy)
Zi ) Lo G _ e )

Xcor =

In the following, we will use Equations (4) and (5) as our
starting point. Because the spectra corrected with EMSC
are written as deviations from the reference spectrum, the
corrected spectra will typically be quite similar to the ref-
erence spectrum. This means that any unwanted artefact
in the reference spectrum might also be present in the
corrected spectra. Some examples of such effects could be
fluorescence in Raman spectroscopy,!! and Mie scattering
in Fourier-transform infrared spectroscopy.”) These types
of artefacts are usually not a problem for the predictive
modelling because the corrected spectra will not vary in
the direction spanned by the reference spectrum.
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3 | EMSC PREPROCESSING WITH
MULTIPLE REFERENCE SPECTRA

The purpose of the reference spectrum in the EMSC pre-
processing is to facilitate the estimation of multiplicative
effects for transforming the measured spectra to a common
scale. It is known that the MSC can accentuate outliers
when the outliers and the selected reference spectrum
are poorly correlated.'%) Because the EMSC employs the
same scaling strategy as the MSC, it can be expected that
the EMSC can also accentuate outliers. The most extreme
case would be a spectrum that is orthogonal to the ref-
erence spectrum, in which case, the reference spectrum
would give no indication of how to scale the spectrum. This
scaling problem can be alleviated by introducing multiple
reference spectra for estimating the scaling coefficients.

The practical use of this idea requires (a) a strategy for
deriving more than one reference spectrum, and (b) a gen-
eralization of the EMSC-correction given in Equation (5)
to allow for multiple reference spectra. To obtain multiple
reference spectra, we propose considering the most dom-
inant right singular vectors from the (reduced) singular
value decomposition (SVD) of the matrix of the measured
spectra. The right singular vectors can be viewed as an
ordered list of orthogonal directions in the sample space
sorted by the magnitude of joint signal strength in each
direction. The ordering emphasizes the first few domi-
nant right singular vectors as natural candidate reference
spectra because they represent the part of the information
that is most common across the entire collection of mea-
sured spectra. If these vectors describe signals in the data
having a chemical origin, it can be expected that the mea-
sured spectra will appear similar in the subspace spanned
by these vectors. As the right singular vectors are only
uniquely defined up to sign, it may be required to change
the signs for visualization purposes. A practical method
for checking this is to calculate the correlation between
the mean spectrum and the first right singular vector and
change signs if the correlation is negative. Note that the
first right singular vector is often highly correlated to the
mean spectrum for spectral data. Therefore, using the first
right singular vector as a reference spectrum, will often
give a preprocessing result that is quite similar to the result
obtained by using the mean spectrum as the reference.

In the traditional EMSC preprocessing, a nonorthogo-
nal basis is typically used, and the correction of additive
trends in the scaling is done implicitly when projecting
a spectrum onto the subspace spanned by the basis in
Equation (4). This basis is not appropriate when employ-
ing multiple reference spectra because of the interac-
tions between the reference spectra and the polynomial
trends (and possibly the other interferents). However, the
problem is easily dealt with by employing an orthonormal

WILEY-$5¢iRoscopy
basis eliminating any ambiguities in the regression coef-
ficients (and the associated EMSC model interpretations)
resulting from some particular choice of nonorthogonal
basis.

A good and practical procedure for obtaining an
orthonormal basis is to collect the EMSC basis vectors as
columns in a matrix and calculate its QR-factorization.
We recommend the columns in this matrix to be ordered
as follows: Start with the polynomial trends followed by
the interferents (if any), and finally include the reference
spectra. The reason for suggesting this ordering is that it
makes more sense to first eliminate the irrelevant effects
of the polynomial trends and the interferents from the ref-
erence spectra, rather than the other way around, which
would result in using reference spectra being contami-
nated by both additive (polynomial) effects and the other
interferents that one wants to avoid. To obtain the ith poly-
nomial vector representing a polynomial trend of degree
i — 1, we sample the function x¥~! uniformly over p
points (the number of features) in the interval (— 1, 1). The
QR-factorization used to obtain an orthonormal basis will
then produce the associated Legendre polynomials.!'3 To
distinguish between the traditional nonorthogonal EMSC
basis and the orthonormal basis introduced here, the
superscript ° is used to denote spectra that are part of
an orthonormal basis that has been obtained using a
QR-factorization as described above. Let ny, be the total
number of reference spectra (identified by the SVD or some
other insights), and denote the ith reference spectrum by
r;. For the orthonormal basis of the suggested modified
EMSC-framework, we use the notation:

0
LWy

0 2.0
mr/’rl’rZ’ o

0 () () () () () ()
BEMSC = {vo,vl,vz, CS Vg, WL WY,

r‘,’,m } .
(6)

Because the basis is constructed to be orthonormal, the
coefficients (the a;'s, the §;'s, and the y;'s) for the projec-
tion of a particular spectrum onto the subspace spanned by
B} isc can be calculated directly by taking the inner prod-
ucts between each of the basis vectors and the spectrum,
that is, o; = (v;’)‘x, 6; = (w;?)‘x and yx = (rZ)‘x. Express-
ing a spectrum x with respect to this basis therefore yields
as follows:

d i Myey
xX= Zaivf + Zéjw;? + ZV’JZ +e, 7
i=0 j=1 k=1
where e is the resulting residual not accounted for by
0
Biasc:

The corrected version of x is obtained by subtracting its
projection onto the subspace spanned by the polynomial
trends (the v's) and the interferents (the w;?'s), and scaling
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by the inverse of the norm of its projection onto the sub-
space spanned by the reference spectra (the rz's), that is

Riney
St - Shows
Jj=1

Xcor =

[ rer 2 <
klyl

ref
= <Zmr + e> . ®
oy Zk
1
=rx+—-e
My 2
k=1"i

where the reference combination ry = =
oy
k=1 ‘i

depends on the original spectrum x. Note that in the spe-
cial case with n,; = 1 (one reference spectrum r°), the

above correction simplifies to

/—1 : 2 mlf }’1

Xeor = 1° + L -e, )
[rl
where the reference r° is common for all the spectra sub-
ject to correction. The residual term in Equation (9) will be
similar but not identical to the residual obtained from stan-
dard EMSC preprocessing, as the reference spectrum in
Equation (9) is initially corrected for the polynomial trends
and interferents.
Note that for the traditional EMSC preprocessing with
a single reference spectrum, there is no variation across
the samples in the subspace spanned by the reference
spectrum. The regression coefficients derived in the the
subsequent regression modelling can therefore be chosen
orthogonal to r°. When including multiple reference spec-
tra, Equation 8 implies that this is no longer the case,
and one should expect the regression coefficients to be
nonorthogonal to the ry's. More specifically, suppose we
have some regression coefficients f (obtained by partial
least squares regression!'#l regression or otherwise). The
prediction based on the corrected spectrum X, is then
given by

e ,B:rxﬁ+;-eﬁ.

1 .
Neep 2 Mrey 2
V Lik=17i V Lik=17i
(10)

The vectors ry can therefore be viewed as correctives
term for the spectra.

It should be noted that if a spectrum has a very high
correlation with one of the reference spectra provided in
B} s then it must necessarily be nearly orthogonal to the
others. Thus, the projection of the spectrum onto (1, — 1)
of the reference spectra will be close to zero, and just one
reference spectrum will have a noticeable impact on the

Xeorp =|rx+

preprocessing. This property makes the use of multiple
reference spectra particularly attractive for data sets con-
taining alow number of spectra that are very different from
the primary desired reference spectrum, as only these spec-
tra will be noticeably affected by the inclusion of additional
reference spectra.

Any choice of multiple reference spectra requires certain
knowledge about their representation of particular chemi-
cal information in the data. If some unwanted artefact, not
picked up by the polynomial trends, is present in a can-
didate reference spectrum, it should either be included as
an interferent in By, .. or ignored completely. The prac-
tical estimation of interferents can be handled in several
ways. One possibility is to use a strategy based on differ-
ence spectra.l2l Alternatively, if there are no difference
spectra that appropriately model the unwanted trends,
then the interferent can be modelled from the data. This
can for example be done using the approach proposed by
Beattie, ') which is mentioned below.

Preprocessing approaches based on the SVD are well
known from the literature. Beattie has used a particular
SVD loading for collagen and heme was used for scaling
spectra.l's] This approach is similar to our scaling using
a single reference spectrum obtained from the SVD. Beat-
tie also suggested using selected SVD loadings to estimate
non-Raman background effects.!51¢l This was done by
utilizing the fact that Raman peaks typically are quite nar-
row so that high bandwidth features in the right singular
vectors indicate non-Raman phenomena. The non-Raman
phenomena can then be estimated from the right singular
vectors.!'3] To correct the spectra, these estimates can be
scaled and subtracted from the spectra, or the approxima-
tions can be added as interferents to an EMSC model. This
approach is general and can be very useful for obtaining
estimates of unwanted additive trends in candidate refer-
ence spectra not accounted for by the polynomial trends.

Because of the choice of an orthonormal basis in
Equation (6), the spectra preprocessed according to
Equation (8) are not directly suitable for visualization,
peak quantification, or peak ratio calculations without
some modifications. This is because an ideal reference
spectrum will not be orthogonal to all polynomial trends.
But for preprocessing, it is computationally advantageous
to use an orthogonal basis. For plotting, one should there-
fore consider adding back the projection of the first ref-
erence spectrum onto the polynomial trends, which will
have no effect on modelling.

From a mathematical point of view, the polynomial
terms in the EMSC basis will eliminate any baseline effect
for modelling purposes, but if a baseline is present in the
first reference spectrum, then it will, in general, also be
present in the corrected spectra. Such a baseline can be
removed by, for example, finding a baseline correction for
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the first reference spectrum and subtracting this baseline
from all the spectra.

Prototype MATLAB code implementing the suggested
modification of the EMSC preprocessing is included in the
Appendix.

4 | EXAMPLES

In this section, we will compare using the traditional
EMSC preprocessing method using the mean spectrum as
reference to the proposed modification of the EMSC frame-
work using the first 1 — 3 right singular vectors as reference
spectra. Correction of polynomial trends up to the sixth
degree is included for all the preprocessing alternatives.
No interferents will be added to the preprocessing models.
The traditional EMSC framework using the mean spec-
trum as the reference spectrum will be referred to as simply
(standard) EMSC preprocessing. For the modified EMSC
framework, we will use parentheses to denote the num-
ber of right singular vectors used as reference spectra, so
that, for example, EMSC(3) refers to the modified EMSC
framework using the first three right singular vectors as
reference spectra. We consider modelling with partial least
squares (PLS) regression'* and Tikhonov regularization
(TR)!7, The following two data sets will be considered:

1. Fishoil data.!'8! Thisis a data set consisting of Raman
spectra measured on oil samples from salmon. There
are n = 45 measured samples, and the spectra are
truncated to the range 790cm™! — 3052cm™!. This
truncation has been used before when the data set
has been analyzed.!”! After truncation, there are p =
2263 wave numbers. The response is the associated

WILEY-$5¢iRoscopy
measured iodine values. The raw spectra are shown
in Figure 1.

2. Emulsion data."¥! This data set consists of Raman
spectra measured on an emulsion of water, whey
protein, and different oils. The oil types used were
refined olive oil, refined coconut oil, soy oil, cod oil
with omega 3 fatty acids, and salmon oil. A mix-
ture design was used to create the samples.'”) The
responses are polyunsaturated fatty acids (PUFAs)
quantified as percentage of total weight, and PUFA as
percentage of total fat content. The spectra are trun-
cated to the wave numbers 675cm=! — 1770cm=". This
truncation has been used before when the data set
has been analyzed.['>2] There are a total of n = 69
measured samples in the data set, and after trunca-
tion there are p = 1096 wave numbers. The raw
truncated spectra are shown in Figure 2.

For modelling, the following procedure was used: A
nested cross-validation strategy was employed to separate
preprocessing and parameter optimization from model
validation. The outer validation loop was a repeated
two-fold (50:50) shuffle-split, whereas the inner optimiza-
tion loop was a leave-one-out cross-validation (LooCV).
For each outer split, the first half of the samples were
used to create preprocessing models and subsequently esti-
mate model parameters (using LooCV) for TR and PLS
on the preprocessed data. The second half of the outer
split was preprocessed correspondingly and its response
values predicted using optimal parameter values from the
first half. For PLS, up to 15 components were considered,
and the number of components minimising the root mean
squared error of cross-validation (RMSECV) was selected.
For TR L, regularization as well as discrete first and second

n @
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FIGURE1 Fish oil data: Raw Raman spectra [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Emulsion data: Raw Raman spectra. The spectra have been truncated to the range 675cm™! — 1770cm™! [Colour figure can be

viewed at wileyonlinelibrary.com|

TABLE 1 Fish oil data: Average RMSEP over 500 random data splits

Preprocessing
Model

TR (L,) 3.63
TR (D,) 434
TR (D») 4.55
PLS 391

Raw spectra EMSC

EMSC(1) EMSC(2) EMSC(3)
288 287 2.87 2.87
320 3.20 321 321
341 341 3.40 3.40
295 295 2.95 2.95

Note. EMSC: extended multiplicative signal correction; PLS: partial least squares; RMSEP: root mean squared errors

of prediction; TR: Tikhonov regularization.

TABLE 2 Emulasion data: Average RMSEP over 500 random data splits for the response fatty

acids as % of total weight

Preprocessing
Model

TR (L,) 0.84
TR (D,) 1.03
TR (D,) 1.30
PLS 0.86

Raw spectra EMSC

EMSC(1) EMSC(2) EMSC(3)
1.07  1.07 1.06 1.09
1.09  1.09 1.10 1.13
1.26 1.15 1.20 1.22
112 112 1.10 113

Note. EMSC: extended multiplicative signal correction; PLS: partial least squares; RMSEP: root mean squared

errors of prediction; TR: Tikhonov regularization.

derivative regularization were used.!?! 1,000 values of the
regularization parameter were selected uniformly on a log
scale, and the parameter value minimizing the RMSECV
was selected. Note that there is some data leakage for the
LooCV in the inner loop as the data was preprocessed
based on all the training samples. This may have caused a
small bias in the model selection, but not in the prediction
as an independent test set was used for model evalua-
tion. An outer shuffle-split was repeated 500 times, and in
every iteration, a new random split of the data was cre-
ated. The average root mean squared errors of prediction

(RMSEP) over these 500 iterations are reported in Table 1
for the fish oil data, and Table 2 and Table 3 for the
emulsion data.

From Figure 1, we see that most samples of the the fish
oil data appear to be very similar. Although the intensity
of the fluorescence background varies between samples,
the relative sizes of the different peaks appear similar for
all samples. The fluorescence background will be removed
when the spectra are corrected for polynomial trends, so
for this data set, we can expect one reference spectrum to
be sufficient to obtain an appropriate scaling. Inspecting
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TABLE 3 Emulsion data: Average RMSEP over 500 random data splits for the response PUFA as

% of total fat content

Preprocessing
Model Raw spectra EMSC

TR (L,) 8.33
TR (D;) 8.83
TR (D,) 11.3
PLS 8.59

EMSC(1) EMSC(2) EMSC(3)
3.42 3.38 3.10 2.56
3.08 3.04 2.95 2.59
3.39 3.20 3.14 2.82
3.45 3.42 3.14 2.59

Note. EMSC: extended multiplicative signal correction; PLS: partial least squares; PUFA: polyunsaturated fatty
acid; RMSEP: root mean squared errors of prediction; TR: Tikhonov regularization.
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FIGURE 3 Fish oil data: The first three right singular vectors [Colour figure can be viewed at wileyonlinelibrary.com|

the first three right singular vectors of the fish oil data plot-
ted in Figure 3, we see that the differences between the
right singular vectors can be attributed mostly to the base-
line in the data. After removing the projection onto the
polynomial trends from the data and the first right singular
vector, it can be verified that the maximum angle between
a sample and the first right singular vector is 1.6° (alter-
natively, the lowest correlation between a sample and the
first right singular vector is 0.9996). If the first right singu-
lar vector is used as a reference spectrum, then the spectra
will necessarily be nearly orthogonal to any other refer-
ence spectrum. Thus, for the fish oil data, it is sufficient
to use a single reference spectrum. This is also supported
by Table 1, from which it is clear that all the different pre-
processing alternatives give roughly the same prediction
errors for the subsequent regression modelling.

For the emulsion data, the situation is different. In this
dataset, there is much more variation between the spec-
tra, and not all the spectra are that highly correlated with
the first right singular vector if we compare with the fish
oil data. After correcting for polynomial trends, the angle

between the first right singular vector and more than 50%
of the samples are larger than 10° (corresponding to a cor-
relation lower than 0.9848). For six of the samples, the
angle between the sample and the first right singular vec-
tor is between 20° — 35° (corresponding to correlations in
the range 0.8192 — 0.9393). In Figure 4, the first three right
singular vectors of the emulsion data are plotted. Unlike
the fish oil data, the differences between the right singular
vectors cannot be attributed to any baseline or unwanted
additive effect. The reference spectra do not appear to
contain any unwanted effect that is not accounted for by
the polynomial trends, making them appropriate reference
spectra candidates.

The preprocessed emulsion spectra are plotted in
Figure 5 and Figure S2 (Supporting Information). In
Figure 5, there is no apparent visual difference between
the two preprocessing alternatives, except for the scale
difference between the standard EMSC preprocessed spec-
tra and the modified EMSC preprocessed spectra. The
similarities between the standard EMSC and EMSC(1) is
supported by Figure S1 (Supporting Information), from
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FIGURE 4 Emulsion data: The first three right singular vectors [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Emulsion data: Preprocessed Raman spectra using different preprocessing methods. Top: standard EMSC. Bottom: EMSC(1)

[Colour figure can be viewed at wileyonlinelibrary.com]

which it is clear that the mean spectrum and the first right
singular vector are very similar. Because the two spectra
are that similar, we expect the standard EMSC and
EMSC(1) preprocessed spectra to be highly similar as well.
The scale difference is irrelevant for the subsequent regres-
sion modelling as it will be accounted for by the regression
coefficients. When including 2 and 3 reference spectra, we
can see from Figure S2 (Supporting Information) that this
does not result in a huge visual impact on the spectra, with
the notable exception of one spectrum (see in particular
the peak at about 1445cm™").

From Table 2, it follows that for the response of fatty
acids measured as the % of total weight, modelling based
on the raw data gives the best prediction results, and the

differences between the other preprocessing alternatives
are relatively small. In Table 3, the situation is changed,
and regression models based on the raw data are the
poorest by a huge margin. From both Tables, the RMSEP
obtained using standard EMSC preprocessing is approxi-
mately the same as the RMSEP obtained from the EMSC(1)
preprocessed data. In Table 3, the RMSEP decreases when
the number of reference spectra is increased. The best
prediction results are obtained when using the first three
right singular vectors as reference spectra. In Figure 6 and
Figure 7, we plot RMSECV and RMSEP as a function of
the model selection parameter for TR and PLS for the
response considered in Table 3 and one particular split of
the data into a training set and a test set. The RMSECV and
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FIGURE 6 Emulsion data: TR modelling (L, regularization) for the response PUFA as % of total fat content for a particular split of the
data. Top: RMSECYV. Bottom: RMSEP. In the top plot we see that the RMSECV curves for the modified EMSC preprocessing are overlapping.
In the bottom plot we see that the RMSEP curves for the modified EMSC using 1 and 2 reference spectra are overlapping [Colour figure can

be viewed at wileyonlinelibrary.com]

RMSECV

)
=Raw data

—Standard EMSC

---EMSC(2)
- -EMSC(3) i

Number of components

RMSEP

=Raw data

—Standard EMSC
EMSC(1) -
—---EMSC(2)
- -EMSC(3)

Number of components

FIGURE 7 Emulsion data: PLS modelling for the response PUFA as % of total fat content for a particular split of the data. Top: RMSECV.
Bottom: RMSEP. In the top plot the RMSECV curves for all preprocessing alternatives are overlapping. In the bottom plot the RMSEP curves
are overlapping for all preprocessing alternatives except for EMSC(3) preprocessing [Colour figure can be viewed at wileyonlinelibrary.com]

RMSEP curves are very similar, and we see that increasing
the number of reference spectra seems to increase the pre-
diction performance independent of the choice of the TR
model parameter or number of PLS components.

The prediction errors for the response PUFA as per-
cent of total fatty acids were inspected for every sample
to study the differences in prediction between the differ-
ent pre-processing methods in more detail. Most samples
obtain a lower prediction error when using three reference
spectra compared with using one reference spectrum, but

just a few of the samples are responsible for the larger part
of the difference in prediction. The three samples most
poorly predicted when using only one reference spectrum
are plotted in Figure 8 together with the mean spectrum.
We observe that there are obvious differences between at
least two of these spectra and the mean spectrum, con-
firming that the mean spectrum does not work as a useful
reference spectrum for all the samples. By including addi-
tional reference spectra in the preprocessing, much better
scaling estimates are obtained for these spectra.
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FIGURE 8 Emulsion data: Mean spectrum together with the three spectra with worst cross-validated prediction errors when using
standard EMSC preprocessing [Colour figure can be viewed at wileyonlinelibrary.com]

5 | CONCLUSIONS

The traditional EMSC framework is very flexible, and it
is simple to extend the basic correction model to account
for additional unwanted additive effects in the data. In
the present work, we have proposed how the framework
can be extended further when it is appropriate to uti-
lize multiple reference spectra to obtain proper scaling
coefficients. When using multiple reference spectra, it is
necessary to use an orthogonal basis (consisting of poly-
nomials, interferent spectra, and reference spectra) in the
preprocessing because of the interactions between the dif-
ferent basis vectors. The use of an orthogonal basis is also
advantageous because it eliminates any possible confound-
ing between the different basis vectors. For the fish oil data,
only one reference spectrum was required to obtain a sat-
isfactory preprocessing, but we observed that the inclusion
of additional reference spectra did not cause the subse-
quent regression models to be poorer. For the emulsion
data, there were some spectra that were very different from
the first (traditional) reference spectrum, and preprocess-
ing the data with multiple reference spectra caused the
subsequent regression model to predict considerably better
for one of the responses. Considering the first right singu-
lar vectors of the uncorrected spectra as candidate refer-
ence spectra is often a sensible alternative as these vectors
describe the most dominant directions in the data. The
candidate reference spectra should be inspected visually
to make sure they describe relevant chemical variation,
rather than interferents or physical phenomena. Candi-
dates with contaminations should be discarded, whereas
more or less pure interferent spectra should be exploited
as such in the EMSC.
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APPENDIX A: PROTOTYPE MATLAB CODE

[XCor, basis, coefs] = EMSCmod (X, polDeg, nRef, intF)
fied EM g multiple reference spectra
>lynomial trends to correct for
rence spectra to use
15 if nargin < 2; polDeg
16 if nargin < 3; nRef =
17 i g
18
19 % Findi
20 I~ V]
21  refspec = V
22
23 [n,pl = size(X);
24  nintF = size(intF,1);
25 tot = polDeg + 1 + nintF;
26
27 P = zeros(polDeg+l,p);
28  for i=0:polDeg; P(i+1,:) = linspace(—1,1,p)."i; end
29
30 (basis, R] = qr([P' intF' refSpec'],0); % Finding orthonormal basis
31
32  coefs = X « basis; % Projections onto basis
33 mult sqrt (sum (coefs ( +1:end)."2,2));
34  XCor = X — coefs(:,l:tot) = basis(:,l:tot)';
35 XCor = bsxfun(@rdivide,XCor,mult);
36
37 % Adding back po al better visualisation when plotting:
38 refpol = R(tot+l t) = basis(:,l:tot)' / R(tot+l,tot+l);
39  XCor = bsxfun(@plus,XCor,refPol);
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Abstract

Ridge regression (RR) is an important special case in the Tikhonov regularization (TR) frame-
work for biased linear regression modelling. The shrinking properties of RR and TR models
often yield more attractive linear regression models than those obtained by the ordinary least
squares (OLS), in particular for situations with highly correlated predictors and when the num-
ber of predictors exceeds the number of observed data points. The model selection task (i.e.
the problem of choosing an appropriate value of the regularization parameter) in such cases
is traditionally approached by either considering the so-called ridge traces of the regression
coefficients, or by some choice of cross validation strategy.

The purpose of this paper is to draw attention to a computationally efficient model se-
lection strategy for the TR framework. The proposed strategy is derived by considering the
orthogonal projections and the associated singular values obtained by the compact singu-
lar value decomposition (SVD). The resulting formulas provide highly efficient calculations
for the exact leave-one-out cross validation and associated predicted residual error sum of
squares (PRESS) statistic for a continuous range of non-negative regularization parameter
values. The closely related generalized cross—validation (GCV) measures and model degrees
of freedom (df) are obtained simultaneously at insignificant additional computational costs.

By proposing an approach based on orthogonal transformations for situations with re-
peated or highly dependent measurements in the observations, we advocate a computation-
ally fast method that approximates the PRESS statistic for the associated segmented cross
validation approach.

The capability of our theoretical findings and heuristic arguments are demonstrated to
provide computationally efficient model selection tools for RR/TR in several practical appli-
cations. In particular, the proposed approach for approximating the PRESS—values obtained
from the segmented cross validation is demonstrated to provide precision levels that are similar

to the PRESS-approximations by GCV of exact leave-one-out cross—validation PRESS—values.

Keywords: Cross—validation, SVD, Tikhonov regularization, Ridge regression, GCV, PRESS

statistic.



1 Introduction

Model- /parameter selection in statistical modelling is frequently justified from the maximum
likelihood (ML) principle in combination with some measure of model quality (such as the
AIC, BIC, Mallows C}, the PRESS statistic etc.) that estimates the expected predictive
performance for some candidate model(s), see Friedman et al. (2009).

According to Hjorth (1993) the application of cross validation measures as a methodology
for model-/parameter selection in statistical applications was introduced by Stone (1974).
Stones ideas motivated the invention of the generalized cross—validation (GCV) method by
Golub et al. (1979). The GCV is a computationally efficient method for choosing a good ridge
parameter in ridge regression (RR) modelling.

The RR method was introduced to the statistics community by Hoerl and Kennard (1970),
and it is considered to be the most important special case in the Tikhonov (1963) regularization
(TR) framework of linear regression methods. Originally, the TR framework was introduced
to the community of numerical mathematics for solving linear discrete ill-posed problems in
the context of inverse modelling. A good elementary introduction to the field can be found in
Hansen (2010).

The GCV is not only a computationally efficient approximation to the leave-one-out cross
validation (LooCV) method. Tt is also invariant under orthogonal transformations of the data
set. The Predicted Residual Sum of Squares (PRESS) statistic associated with LooCV was
shown by Allen (1971, 1974) to be available for the ordinary least squares (OLS) regression
by direct calculations avoiding the explicit and tedious remodelling usually associated with
cross validation schemes. From the Sherman Morrison Woodbury updating formula for cal-
culating matrix inverses, see Householder (1965), it is possible to derive the individual scaling
factors for the fitted model residuals to obtain the exact PRESS statistic associated with the
LooCV method without explicit re-modelling. The required scaling factors for adjusting the
residuals correctly are derived directly from the diagonal elements of the projection matrix
associated with the regression problem. These diagonal elements (often referred to as the

leverage values, see Best and Wolf (2014)) can easily be calculated from any orthogonal basis



for the subspace spanned by the columns of the data matrix.

The purpose of the present paper is to present a prediction based framework for computation-

ally efficient model selection in the TR framework for biased linear regression modelling. This

is obtained as follows:

i)

ii)

First we derive the simple and fast LooCV calculations utilizing the compact singular
value decomposition (SVD) of our data matrix to quickly obtain PRESS values associ-
ated with any choice of the regularization parameter for a TR—problem. In particular
this enables fast graphing of the PRESS—values as a function of the regularization pa-

rameter at any desired level of detail.

Then we propose an approximation of the segmented (K fold) cross validation strat-
egy by invoking the computationally inexpensive LooCV strategy after conducting an
appropriate orthogonal transformation of the data matrix. The particular orthogonal
transformation is constructed from the left singular vectors of the K local SVDs asso-
ciated with the K distinct data segments. In situations where repeated re-modelling
by leaving out one segment at a time is the most appropriate alternative to obtain a
realistic PRESS—estimate, the suggested strategy provides a useful approximation of the
PRESS statistic at substantial computational savings in particular for large data sets
containing many segments (large K) of either identical, or highly related measurement

values.

2 Linear regression preliminaries

2.1

Model estimation in ordinary least squares and ridge regression

In ordinary least squares (OLS) regression (Friedman et al. (2009)) one minimizes the residual

sum of squares

RSS(b) = | Xb —y]?, (1)



to identify the least squares solution(s) of (1) with respect to the regression coefficients b. A
least squares solution borg of (1) corresponds to an exact solution of the associated normal
equations

X'Xb = X'y, (2)

where borg is unique when X’X is non-singular. If otherwise not stated we assume that X
is a centered (n x p) data matrix (X’ denotes the transpose of X) and that the corresponding
(n x 1) vector y of responses is also centered.

For later predictions of uncentered data, the associated vector of fitted values is given by

y = Xbors + bo, (3)

where the constant term (intercept) by = § — Xbors. Here, § and x denotes the (column)
averages of y and X before centering, respectively.

For various reasons (X’X may be singular or poorly conditioned, the solution of (2) is not
unique or inappropriate etc.) a minimizer bors of RSS(b) in equation (1) is not always the
most attractive choice from a predictive point of view, see Friedman et al. (2009); Hansen
(2010); Kalivas (2012). An alternative and quite useful solution was independently recognized
by Tikhonov (1963), Phillips (1962) and Hoerl and Kennard (1970). Instead of directly mini-
mizing the RSS(b), their alternative proposal was to minimize the weighted bi—objective least

squares problem

RSS)(b) = [ Xb —y|* + A[[Tb — 0]* = || Xb — y|* + A|[b]*, (4)

where the scalar A\ > 0 represents a fixed reqularization parameter value (of appropriate mag-
nitude), the matrix I is the (p x p) identity matrix and 0 is a (p x 1) vector of zeros. This
formulation explicitly represents a penalization with respect to the Euclidean (Lg) norm ||bl|
of the regression coefficients, and for each fixed A-value the unique minimizer of (4) is given
by by of equation (7) below. The rightmost part of equation (4) is often referred to as a

TR-problem in standard form, see Hansen (2010).



The minimization of equation (4) with respect to the vector b is equivalent to solving the

OLS problem associated with the augmented data matrix and response vector:

X y
X\ = , Yo= . (5)
VAL 0

Note that linear independence of the X columns trivially follows from linear independence

of the included I-columns. The matrix product XX, in the associated normal equations
X4 X b = X4yo (6)
is therefore non—singular, and the corresponding least squares solution
by = (X4X)) " Xiyo (7)

of the augmented problem associated with (5) becomes unique. Trivial algebraic simplifications

of (6) result in the the familiar normal equations associated with the RR problem
(X'X + AI)b = X'y, (8)
and the solution in (7) simplifies to
by = (X'X 4+ AI)"X'y. (9)

For subsequent applications of the A regularized model to uncentered X data, the appropriate

constant term in the resulting regression model is
bo =y — Xby, (10)
and the associated vector of fitted values y, is given by

¥a = Xby + bo . (11)



2.2 The Tikhonov L,-regularization framework

Tikhonov (1963) noted that it is straight forward to generalize the above Ly regularization of
b to more specialized solution alternatives through a corresponding regularization matrix L.
These cases are expressed in terms of identifying the minimizing solution of the bi—objective

least squares problem
RSSpa(b) = [Xb —y|* + A|Lb — 0]* = || Xb — y|* + A|Lb|*, (12)

for some fixed A > 0. The minimization of equation (12) with respect to b can be obtained by

X y
considering the augmented data Xy, y = and yg = , and solving the normal

VAL 0

equations

X’L’)\XL)\b = X’LAyO = (X’X + A\L'L)b =Xy (13)

associated with the OLS problem Xy, zb = yo.

To avoid technical distractions we will in the following restrict our attention to the cases
of square and non-singular regularization matrices L (even for situations where a non—square
regularization matrix is the immediate choice to obtain solutions with particular characteris-
tics, a non-singular (p x p)—alternative that serves the same purpose is often available). By

defining X = XL~!, the solution of the OLS problem in (13) is equivalent to finding the unique

- - X
OLS solution By of the transformed problem X,3 = yq, where X, = XL,,\L_1 =
VAI
and B = Lb. The associated expression minimized by 3, is
X8 - y[I* + AllBI1%, (14)

i.e. in the standard form (4), and the minimizing solution by of the original problem (12) is
obtained by
by = L7!8,. (15)

Among all the possible choices for the regularization matrix L we describe a few that are



particularly useful:

1. diagonal scaling (e.g. the standardization of variables often advised for RR applica-

tions):

Op

where &; is an estimate of the standard deviation of the i-th variable (1 < i < p).

2. a (full) rank p discrete 1. derivative approximation:
1 -1

1 -1

L \/g(il \/Ecl \/2()1 ﬁ()l ]

3. a (full) rank p discrete 2. derivative approximation:

[ 1 -2 1 ]
1 -2 1
Lo =
1 —2 1
Veer Veey s Ve Veer Veer
I —Veeap/2 —yfecalp—1)/2 ... ... ecalp—1)/2 fecap/2 ]

The alternatives Ly and Ly are appropriate for problems where the X data are associated with
discretized (uniform) sampling of continuous signals, so that some smoothness in the solution
candidates by is a reasonable expectation. The two last rows in Ly (and the last row in L)

above are scaled versions of the discretized and normalized Legendre polynomials (Kreyszig



(1978)) of order 0 and 1, respectively (¢; and cg represent the normalization constants, and
e > 0 is a scaling factor to be commented on below). It should be noted that these rows
(considered as vectors) are orthogonal to the above rows in the discrete derivative matrices
where they appear. The main purpose of the included Legendre vectors is to ensure full rank of
the regularization matrices that is required to obtain the attractive computational advantages
described below.

Appropriate regularization of the solutions by may be obtained by choosing the fixed

scaling factor € > 0 to be

e cither sufficiently large to make by practically orthogonal to the subspace of polynomial

trends spanned by the included Legendre vectors, or

e sufficiently small to inhibit any notable penalization effect with respect to the same

polynomial trends.

The choice of € in the last case can therefore not be made arbitrary small in practice, but
must be chosen large enough to avoid numerical difficulties in the computations of X and
b,. Additional (non—invertible) differentiation matrix candidates taking various boundary

condition requirements into account are discussed in Hansen (2010).

2.3 Calculating the by—solutions effectively from the SVD

The full SVD of X = USV’ yields VV’ =1, and X'X = VS'SV’. The right singular vectors

V of X are obviously eigenvectors for both X’X and
XiX) = (X'X +AL,) = V(S'S + AL, V/, (16)

and their corresponding eigenvalues are given by the diagonals of 8’S and S’S + AL,, respec-
tively. The inverse matrix (X'X + AL,)~! = V(S’S+AL,)~'V’, and the expression (9) for the
TR-regression coefficients of a problem on standard form therefore simplifies (Friedman et al.
(2009)) to

by = V(S'S + A\L,)"'V'VSU'y = V(S'S + AI,) " 'SU"y. (17)



In the following we assume that X has full rank, i.e. r = rank(X) = min(n,p). Then there
will be exactly r non-zero rows in the S-factor of by, and the zero rows of S cancel both the
associated columns in V(S’S + AI,)~! and rows in U’. By considering the compact SVD of
X = U,S, V! (the vanishing dimensions associated with the singular value 0 are omitted from

the factorization), the expression (17) for the regression coefficients by simplifies to
by = V(82 + AL,) IS, Uly = V,(S, + \S; 1)Uy = V,c), (18)

where the coordinate vectors ¢y = (S, + AS; 1)ULy = [ex1 ... cx,] € R” has entries

!

u)y
ok = —k  for 1<k <7 19
Aok Sk 4+ A/sk - - (19)

Compared to the relatively large computational costs associated with calculating the (com-
pact) SVD of X, calculation of the regression coefficient candidates (even for a large number of
candidate A-values) just requires computing the vectors ¢y according to (19) and the matrix-
vector multiplications by = V,.cy as derived in equation (18).

For the regularized multivariate regression with several (¢) responses Y € R™*4, the asso-

ciated matrix of regression coefficients is
b ... bgal = Vi(S, + XS 1) 71U Y = V,C,, (20)

where Cy = (S, + AS; 1)71U’Y is the obvious multivariate generalization of the vector cy

described above.

3 The computationally fast leave—one—out cross—validation for

TR—problems

3.1 The OLS case

With linearly independent columns in the data matrix X, the associated OLS—solution borg

of the normal equations (2) is unique and a computationally fast version of the LooCV can

10



be derived from the Sherman—Morrison-Woodbury formula for updating matrix inverses, see
Householder (1965).
Let g —1 denote the prediction of the k-th sample after deleting it from the regression

problem in (1). Then the PRESS statistic proposed by Allen (1971, 1974), is given by

n n 2
PRESS = (y — ik,-1) Z (1 7ka 7yk1/n> 2

k=1 —1
In (21) gy is the k—th entry in the fitted values y = Xborg + bg, and hy is the k—th diagonal
element of the projection matrix H defined in (22) below. The denominator (1 — hy — 1/n)
scaling the k—th model residual (y; — 9x) yields precisely the corresponding LooCV prediction
residual (yx — Jr,—1)- The term 1/n in this denominator accounts for the centering of the
X—columns and the inclusion of a constant term (bg) in the regression model (3). Note that

the projection matrix can be expressed as follows

HYX(X'X)"'X' =TT, (22)
where T may be any orthogonal (n x r)—matrix spanning the column space of the centered
X-data. The diagonal element Ay is often referred to as the leverage value associated with
the k—th sample (row) in X.

From the last identity of equation (22) it is clear that the entries of the n—vector
= [hq hg ... hy] representing the diagonal elements of H is identical to the vector containing

the squared norms of the T-rows, i.e.
h=(T®T)]I, (23)

where T ® T denotes the Hadamard (element-wise) product of T with itself and 1 € R"
is the constant vector with 1’s in all entries. Appropriate choices of the matrix T can be
obtained by various strategies including both the SVD, the QR-factorization or some alter-
native Gram—Schmidt process based on the columns of X. One should note that calculating

the matrix inverse (X’X)~! in the process for finding the diagonal h of H in (22) is neither

11



required nor recommended in practice. In general, the explicit calculation of matrix inverses
(for non-diagonal matrices) should be avoided whenever possible due to various unfavourable

computational aspects, see (Bjorck, 2016, Section 1.2.6).

3.1.1 The generalized cross—validation

The GCV was proposed by Golub et al. (1979) as a fast method for choosing good regular-
ization parameter values in RR. The GCV is explained as a rotation invariant alternative to
the LooCV that provides an approximation of the PRESS—statistic when considering it as a
function of the regularization parameter \. Here, we prefer using the particular definition

n ~ 2
def Yk — Ynk —(1_ ) 2lv — 2
chu)—;(l_ ) (= /) 2y - Xy, (24)

where (yi — ¥ ) is the k-th entry of the residual vector ry =y —y», hy & % Sore skfﬁ and

the effective degrees of freedom df (\) def nhy + 1. This definition of GC'V()) is proportional
(by the sample size n) to the definition given in (Golub et al., 1979, page 216).

From the elementary matrix—vector multiplication formula (18) for computing the regres-
sion coefficients by, it is clear that GCV(\) can be calculated very effectively for a large
number of different A—values once the non-zero singular values of X are available.

In their justification of GC'V(A) as the preferable choice over the exact LooCV-based
PRESS()), Golub and co workers stressed the unsatisfactory properties of the PRESS
function in situations where the rows of X are orthogonal or nearly orthogonal. In such
situations the estimated regression coefficient bg\k) (obtained by excluding the k-th row xy
of X) must be correspondingly orthogonal (or nearly orthogonal) to the excluded sample
xi. Consequently, the associated leave one out prediction g, _1(= xkbf\k)) becomes a poor
estimate of the corresponding k-th response value yy.

In situations such as the one just described, it hardly makes any sense to think of the
X—data as a collection of independent random samples, and the statistical motivation for

considering the LooCV idea becomes correspondingly inferior. The claim in Golub et al. (1979)

that any parameter selection procedure should be invariant under orthogonal transformations

12



of the (X, y)—data will be discussed below (our scepticism to this requirement as an inexpedient
restriction, relates to the context of approximating the PRESS-statistic for situations where
a segmented /folded cross—validation approach is appropriate).

From the matrix and vector augmentation (5) in the above preliminaries and equation
(21), it is immediately clear that the computationally fast version of the LooCV and the asso-
ciated PRESS-statistic is also valid for TR-problems when the regularization parameter \ is
treated as a fixed quantity. Below we will derive an equation assuring fast calculations of the
regularized leverage vectors hy. These calculations are surprisingly similar to a computation-
ally efficient alternative for obtaining the fitted values y) and closely related to corresponding
regularized regression coefficients by in (18). Both hy, y, (and b)) can be calculated effi-
ciently by utilizing the SVD of the centered data matrix X. This makes the computations of
the exact LooCV-based PRESS(A)—function defined in (28) below about as efficient as the

approximation obtained by the GC'V () in (24).

3.2 The exact LooCV-based PRESS(\)—function for TR—problems

We assume that the centered X has full rank r and that X = U,S, V! is the associated
compact SVD. By defining Sy ;. to be the diagonal 7 X r matrix with non-zero diagonal entries
1/82 + A, k=1,...,r, the r most dominant singular values of the augmented matrix X, in
(5) are given by the diagonal elements of Sy ,. From equation (16) in Section 2.3, the right
singular vectors V,. of X are also the right singular vectors of the augmented matrix Xy, and
the associated r left singular vectors are

XV,S; ! U,S,S; ) U,

Ty, = X,V,S ! = Tl = = ’ , (25)
' VALV, S} VAV, St VAV, Syt

where the matrix Uy, &of UTS,.Sgi denoting the upper n rows of T, is the part of actual
interest (the additional left singular vectors not included in (25) are all zeros in the upper

n entries). Because STS;}, is (r x r) diagonal, Uy, is obtained by scaling the k-th column

(1 <k <r)of U, with the factor v/si/(si + A/sk).

From the above definition of U) ., calculation of the PRESS residuals associated with the

13



n original (X,y) data points in the augmented least squares problem X,b = y( is straight
forward. According to (23), the leverage values hy = [hy1 ... hy,) corresponding to the n

samples in the regularized version of our data set are given by the matrix-vector multiplication
h), = (U)\J‘ © U)\,'r)l = (Ur © Ur)dN (26)

where the coefficient vector dy = [dq x ... dy 2] = (STS;i 21 € R” has the entries

2
’ st+A st M sk

yfor 1<k <. (27)

For each choice of the regularization parameter X\ > 0, the fitted values are y = Xby 4 b ».
Hence, the PRESS—values
PRESS()) 2L i (M)Z (28)
= \1—hyp—1/n '
where y, — 9k is the k—th entry of the residual vector ry =y — y and the leverage h) y is
the corresponding k-th entry of hy. Note that k) in the denominator of equation (24) defining
GOV () is identical to the mean value of the hy entries, i.e. hy = (1/n) > 7_; hag, due to
the fact that U, is an orthogonal matrix.

Based on the compact SVD of X, the expression for the regression coefficients in (18) and

the identity S,c) = Uly ® d) we obtain the fitted values as
y)r = Xby =U,S,c) = UT(U'Ty ® d>\). (29)

Consequently, the evaluation of the PRESS(\)—function defined in (28) is essentially available
at the additional computational cost of two matrix—vector multiplications (equations 26 and
29) for each choice of A. The associated coefficient vectors dy and Uly ® d) are obtained
by elementary arithmetic operations where everything except for the regularization parameter
A is fixed. A note on the number of floating point operations (flops) required for the fast

calculation of the LooCV-based PRESS(X)—function is included in Appendix C. An efficient

14



prototype MATLAB-routine for computing the PRESS—statistic and regression coefficients is
available in Appendix A. A corresponding implementation in R code will be made available

upon publication at https://cran.r-project.org/web/packages/TR.

3.3 The segmented virtual cross—validation

There are obviously situations where a direct application of the LooCV approach may be
inappropriate for both model validation and selection. Most typical are the situations where
some repeated or closely related measurements (based on an experimental design or some
other type of rigorous framework) leads to subsets of highly similar rows in the data matrix
X. A leave—one—out cross—validation strategy is then usually not reliable but rather likely to
produce overoptimistic PRESS—values.

In such situations it is more appropriate to handle a data set according to the present
sample segment structure, and to calculate the PRESS statistic according to a segmented
cross—validation (SCV) strategy of repeated remodelling by successively holding out the entire
sample segments. However, for large data sets (containing either a large number of samples
and /or variables), the SCV strategy may be computationally slow or at the worst practically
infeasible. We therefore propose a considerably faster alternative that approximates the SCV
approach for the type of situations just described. In the following we assume (without loss

of generality) that the uncentered data matrix

X1 yi
X ) yo

X = together with the uncentered response vector y = (K >2) (30)
Xk YK

is composed by K distinct sample segments. For 1 < k < K, we assume that US; V), = X,
denotes the compact SVD of segment number k, and that ny is the number of rows in segment
X} so that the total number of samples included in X is n = Zszl .

From the above SVD for the k—th segment, the identity U} Xy = S;V} immediately

follows. Consequently, the orthogonal transformation performed by left multiplication with
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the (ny, x ng) matrix U), transforms the segment X}, into a matrix of strictly orthogonal rows.

Now we can define the two block diagonal matrices

U,
U, T 0

Ug

with the properties T'T = TT =T and T'T = TT’ =1, i.e. both T and T are orthogonal.
The formulation of TR-modelling for uncentered X and explicit inclusion of the constant

term corresponds to finding the least squares solution of the linear system

1 X b
A= (32
0 VAL b
and left multiplication of (32) by the orthogonal matrix T yields the system
T1 T'X b T
A7 =Y. (33)
0 VAL b 0

Note that the associated normal equations of the systems in (32) and (33) are identical. Hence,

their least squares solutions are also identical.

3.3.1 Definition of the segmented virtual cross—validation

The segmented virtual cross—validation (SvCV) strategy is defined as the process of applying
the LooCV strategy to the transformed system in equation (33). As is noted above, multipli-
cation by T’ has the effect of orthogonalizing the rows within each of the K segments in the
X matrix.

The heuristic argument for justifying the SvCV approach as an approximation of a SCV
approach is that the rows within each transformed data segment are unsupportive of each
other under the LooCV strategy (due to the internal "decoupling" of each segment into a

set of mutually orthogonal row vectors). However, because the complete dataset is used to
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derive the transformation T, it can be observed that in practical situations the accuracy of
this approximation depends on the level of similarity between the original samples within each
segment of data points.

Note that contrary to the LooCV, the GCV is not useful in combination with the SvCV
strategy. The obvious reason for this is that the singular values of X are invariant under or-
thogonal transformations. From equation (24) and the definition of hy it follows that GCV())
is also invariant under orthogonal transformations, i.e. the systems in (32) and (33) lead to

the exact same GC'V (\)—function.

3.3.2 Segment decomposition in three different situations

In the following we will discuss the proposed SvCV strategy more closely for three different

situations:
a) Segments of identical rows.
b) Segments of collinear rows.
¢) The general case (segments with no particular structure in the rows).

Identical rows:

Let us assume that all the rows of a segment X;, (1 <7 < K) are identical. In this particular
case the PRESS—function associated with the SvCV is identical to the PRESS—function
obtained by the SCV.

The alleged identity can be derived by noting that the left-multiplication of the left- and
right hand sides of a linear system by an orthogonal matrix affects neither the least squares
solution nor the norm of the associated residual vector. Consequently, the SCV strategy
applied to the two systems (32) and (33) will result in identical PRESS-functions. With
all rows within each segment X € R™*? heing identical to its first row (denoted x ) of

the segment, it is straight forward to verify that X has only one non-zero singular value
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Sk = \/Xk,1X), yn and the corresponding left and right singular vectors are

1
ukl:L ! GR”kandvklzéx' e RP (34)
1

By the orthogonality requirements of the SVD, any other left singular vector u must satisfy

u'uy; = 0. Consequently

VIEXE 1 AT

U 0 !/ 0
Uka = and Ukl = s (35)

0 0

meaning that there will be only one non-zero row in each segment on the left hand side of
the T-transformed system (33). It is therefore sufficient to demonstrate that the PRESS

functions obtained from applying the SCV and the LooCV to the system in (33) are equal:
Clearly, for any row containing just zeros in the left hand side of (33) the prediction based
on it is trivially identical to 0 (zero) for either of the cross—validation strategies (regardless of
the regression coefficients). Because such zero rows do not contribute in the calculation of the
regression coefficients, we are forced to conclude that the regression coefficients obtained by
holding out the (only) non zero row of a segment must be equal to the regression coefficients
obtained from holding out the entire segment. Thus the predicted values for the non-zero
row in each segment must also be identical for both cross—validation strategies, and we can
conclude that the PRESS functions obtained by the SCV— and the SvCV strategies must be

identical.

Collinear (proportional) rows:
One might suspect the same result to hold when the rows within a segment are proportional.

This is however not the case with the modelling strategy described above. The reason for this
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is that the inclusion of a constant term will make each of the K segments become a rank 2 —
rather than a rank 1 submatrix. With more than one non-zero row on the left hand side in each
segment the argument of the previous situation fails, and doing LooCV on the transformed
data is no longer equivalent to doing SCV on the original data. However, if omitting the
constant term from the modelling, each of the K segments has rank 1, and the SCV and
SvCV approaches will result in identical PRESS(X\)—functions. The rigorous explanation is

similar to the argument given for the above situation with identical rows.

The general case:

In general, the goodness of the approximation provided by the SvCV of the exact SCV is
related to the similarity of the rows within each segment. With the SvCV we are clearly
cross—validating on the orthogonal phenomena caused by the samples within each segment.
As all the samples in a segment contribute to identifying these directions, the SvCV cannot be
expected to provide exactly the same results as the SCV. One may, however, expect that when
the different segments are carefully arranged to contain highly similar samples only (which
is a reasonable assumption to make for most organized studies with such data segments),
then the SvCV provides a useful approximation to the SCV. This will be demonstrated in the

applications described below.

Computational aspects in the leverage corrections for the SvCV

As is noted in association with (30), the SvCV procedure requires an initial calculation of
the transformation T from the segments of the uncentered X-data. For a successful and
correct implementation of the computational shortcuts similar to those of the LooCV, it is
necessary to mean center the data matrix X prior to applying the T—-transformation and
doing the least squares modelling. In practice, one must therefore mean center the data
prior to the multiplication with T’ (or, equivalently, one can multiply by T’ and subtract
the projection of the transformed data onto the transformed vector T'1 of ones). As T is an
orthogonal transformation the angles and in particular the orthogonality between vectors will
be preserved. For the transformed data, modelling by including a constant term is therefore

associated with the transformed vector T'1 of ones. With X, and y, denoting the centred data
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matrix and the associated centred response vector, respectively, the vector T’1 is orthogonal to
the columns of the transformed centred data T'X, and ||T'1|| = ||1|| = v/n. The justification
for the leverage correction described earlier therefore still holds, but the particular correction
terms (1/n) changes.

With the transformed predictors X = T'X, and responses ¥ = Ty, in (33), the associated

fitted (centred) values as yy = Xby, the PRESS-function for the SvCV is given by

n

n ~ 2 2
PRESSsuov(N) = Y (G — iak-1)" =) (m) : (36)
k=1 k=1 ’

Here the leverages hyj are calculated as in (26) based on the transformed version X of
the centered data, and the enumerator of the correction terms are the entries of the vector
m = T'1 ® T'1 € R". This means that the correction terms 1/n in the denominator of (28)
must be replaced by my/n in (36), where my, denotes the k-th entry of the vector m (to be

consistent with the orthogonal transformation of regularized least squares problem).
A comparison of the number of flops required for the SvCV compared to the SCV is
included in Appendix D. An efficient prototype MATLAB-routine for computing the SvCV
is available in Appendix B. Corresponding R-code will be made available upon publication at

https://cran.r-project.org/web/packages/ TR.

3.4 A short note on model selection heuristics

The key formulas derived above allow for efficient model selection procedures by minimizing
the PRESS(XA)- or the GC'V(A\)—functions with respect to the regularization parameter .
However, the minima of these functions will not necessarily assure the selection of an optimal
model in terms of future predictions. This is particularly the case when the PRESS(A)— and
GCV (N)—-functions are relatively flat for some large interval of A-values containing the mini-
mum value. In such situations it is often useful to invoke the heuristic principles of Occam’s
razor for identifying a simpler model (in terms of the norm of the regression coefficients) at a
small additional cost in terms of the PRESS (or the GCV):

The '1 standard error rule’ described in Friedman et al. (2009) obtains a simpler (more
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regularized) alternative by selecting a model where the PRESS—statistic is within one standard
error of the PRESS-minimal model. More precisely, we first identify the minimum PRESS
value and calculate the standard error of the squared cross—validation errors associated with
this model. Then the largest regularization parameter value where the associated model has
a PRESS statistic within one standard error of the PRESS minimum is selected.

The *x? model selection rule’ to determine the regularization parameter was originally
introduced for model selection with Partial Least Squares regression modelling, see Indahl
(2005). By assuming that the residuals associated with the minimum value PRESS,,;, of
PRESS()) are randomly drawn from a normal distribution, the statistic n - PRESSyin /02,
where o2 is the associated (unknown) variance, follows a 2 distribution (where n is the degrees
of freedom). By fixing a particular significance level «, the selection rule says: "Choose the
largest possible value of A so that n- PRESSymin/PRESS(X) > x2 ,", where X7, is the lower
a—quantile of the x2 distribution and PRESS()) is a substitute for o2.

Based on the efficient formulas for calculating PRESS(X), both these model selection

alternatives can be implemented without significant increases of the total computational costs.

4 Applications

In the following we will present some applications of our fast cross validation approaches for
model selection within the TR framework based on several real world data sets. We will
consider situations where both the LooCV and the SvCV are appropriate. The required
algorithms were implemented and executed in MATLAB, and prototype code is given in the
appendices. We used a computer running Windows 10 and MATLAB R2017, with 16GB
ram, an Intel i7-4790k processor and a NVIDIA GTX-970 graphics card. For the discrete
derivative regularization matrices we use the full rank approximations described in Section 2.2
with the scaling coefficient set to ¢ = 10710 in the appended rows. This is done to alleviate

the numerical impact from these rows in the resulting regression coefficients.
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4.1

4.1.1

The fast leave-one-out cross—validation

Data sets

The following data sets will be considered in the examples presented below:

1.

Octane data, see Kalivas (1997). This data set consists of near infrared (NIR) spectra
of gasoline. There are 60 samples and 401 features (wavelengths in the range 900nm —

1700nm). The response value is the octane number measured for each sample.

. Pork fat data, see Lyndgaard et al. (2012). This data set consists of Raman spectra

measured on pork fat tissue. There are 105 samples, 5567 features (wavenumbers in
the range 200.1cm~! — 1889.9¢m™!), and 19 different responses. For modelling and
prediction we only consider the response consisting of saturated fatty acids as percentage

of total fatty acids, hereafter referred to as SFA.

Prostate gene data, see Singh et al. (2002). The data set is a microarray gene expression
data set. There are 102 samples, and the gene expression of 12600 different genes were
measured. The response is binary (cancer/not cancer), and we consider the "dummy-—
regression" approach to the underlying classification problem. For this data set we
standardize the data prior to modelling. The standardization will introduce a small bias

in the model selection that will be discussed later.

For all datasets we have used approximately 2/3 of the available samples for model building

and

selection. The remaining 1/3 of samples were used for testing the selected models. We

considered the following model selection alternatives identifying good regularization parameter

candidates: (i) PRES S, — the minimum PRESS(X\)-value, (ii) GCVpyip — the minimum

GCV (X\)-value, (iii) the 1 standard error rule for PRESS()), (iv) the x2-rule for PRESS(\)

using

the significance level a = 0.2.

4.1.2 Model selection and prediction

For each data set the modelling was based on 1000 regularization parameter candidate values

spaced uniformly on a log scale. For the octane data the displayed parameter values were
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from the range 10~ to 10°, for the Pork fat data from the range 10? to 10?°, and for the
Prostate data from the range 107! to 103. Different ranges were chosen for each data set to
avoid irrelevant levels of regularization, and to obtain a good display of the PRESS— and GCV
curves including the located minima. In Figures 1 3 the PRESS/n and GCV /n are plotted as
functions of the regularization parameter for the different data sets and the different choices of
the regularization matrix. Such plots are useful for model selection as they allow for a direct
comparison of the model quality for different values of the regularization parameter. Division
of the PRESS— and GCV values by the samples size n makes the model selection statistics
directly comparable to the prediction results as measured by the mean squared error (MSE)
obtained for the test sets. The test set results are shown in the Tables 1 3.

For the prostate data, the percentage correctly classified on the training set using cross—
validation (classifying each sample to the largest of the fitted target values when using 0/1
dummy—coding for the group memberships) is 91.2% for all the parameter selection methods
(it should be noted that this number happens to be identical to the test set result for most of
the parameter selection methods).

It should be noted that that most of the displayed PRESS (and GCV ) curves are rel-
atively flat without a very distinct minimum point. Therefore it may be advantageous to
employ either the 1 S.E. rule or the y?-rule to assure the selection of a simpler model. For
the Prostate data, in particular, we note that the smallest available candidate regularization
parameter value provides the minimum PRESS-value. The effect in terms of prediction when
using the 1 S.E. rule or the x? rule to obtain a simpler model varies between the data sets. For
the Pork fat data the y2-rule gives better prediction than the other parameter selection meth-
ods for the SFA response, while the y>-rule selects a poorer model than the other parameter
selection methods on the Prostate data.

For the most precise identification of the PRESS— and GCV-minima a numerical optimizer
should be used. However, in most practical situations the suggested strategy of considering just
a relatively dense subset of candidate regularization parameter values is usually enough for a
good approximation of the minima before doing the subsequent identification of parsimonious

models (based on the principle of Occam’s razor) that predicts well.
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Regularization type

Lo First derivative | Second derivative
Parameter selection method
Minimum PRESS value 0.057 0.047 0.038
Minimum GCV value 0.057 0.047 0.039
PRESS and 1 standard error rule 0.059 0.045 0.036
PRESS and y?-rule 0.073 0.047 0.039

Table 1: Octane data. MSE (for the test data) using various reqularization types and param-

eter selection methods.

Regularization type

Lo | First derivative | Second derivative
Parameter selection method
Minimum PRESS value 4.46 5.39 5.56
Minimum GCV value 4.36 5.45 5.58
PRESS and 1 standard error rule 4.58 5.56 5.72
PRESS and x?-rule 4.11 4.32 4.20

Table 2: Pork fat data. MSE (for the test data) for the SFA response using various reqular-

ization types and parameter selection methods.

Parameter selection method PCC test set
Minimum PRESS value 91.2
Minimum GCV value 91.2
PRESS and 1 standard error rule 91.2
PRESS and x?-rule 88.2

Table 3: Prostate data. Percentage of correctly classified (PCC) samples using the test set
predictions of the selected 0 — 1 dummy regression model based on Lo regularization.
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Figure 1: Octane data. PRESS/n and GCV/n for a range of reqularization parameter values
and different reqularization matrices. Top: Lo regularization. Middle: 1st derivative reqular-
ization. Bottom: 2nd derivative regularization. The minimum PRESS and GCV wvalues has
been marked, as well as the reqularization parameter value selected by the 1 S.E. rule and the
x2-rule.
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Figure 2: Pork fat data and SFA response. PRESS/n and GCV/n for a range of reqularization
parameter values and different regularization matrices. Top: Lo reqularization. Middle: 1st
derivative reqularization. Bottom: 2nd derivative reqularization. The minimum PRESS and
GCV values has been marked, as well as the reqularization parameter value selected by the 1
S.E. rule and the x>-rule.
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Figure 3: Prostate data. PRESS/n and GCV/n for a range of regularization parameter values
using Lo regularization. The minimum PRESS and GCV wvalues has been marked, as well as
the reqularization parameter value selected by the 1 S.E. rule and the x> -rule.

4.1.3 Regression coefficients

Figure 4 shows the octane data together with the PRESS-minimal regression coefficients
using the Lo—, the first derivative—, and the second derivative regularizations. Note that the
choice of regularization matrix heavily influences the appearance of the regression coefficients
without causing notable differences in the minimum PRESS- or GCV values. Table 1 confirms
that the predictive powers are relatively similar for all these models. Doing consistent model
interpretations solely based on the regression coefficients in figure 4 is clearly a challenging (if

not impossible) task. Similar issues are discussed in Brown and Green (2009).

4.1.4 Computational speed

Table 4 shows the computational times for model selection with the different data sets and dif-
ferent types of regularization when varying the number of regularization parameter candidate
values. The computing times in Table 4 also includes calculation of the regression coefficients
corresponding to the minimal GCV and PRESS values for all responses. The main differences

in computational time between finding the SVD in the case of Ly regularization and in the
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Figure 4: Octane data. Top: Plot of the NIR spectra of octane. Bottom: PRESS-minimal
regression coefficients based on different reqularization matrices.

cases of first- and second derivative regularization is due to the initial calculations of the
transformed data X, see Section 2.2. Similarly, the required transformation of the regression
coefficients (see (15)) explains the increase in computational time from calculating the SVD
only to finding PRESS, GCV and regression coefficients for a single regularization parameter

value for first and second derivative regularization.

Number of A\-values
0 (SVD only) 1 10 100 1000 | 10000
Data (reg. type)

Octane (Ls) 0.0014 0.0014 | 0.0014 | 0.0016 | 0.0024 | 0.013

Octane (1st derivative) 0.0034 0.0046 | 0.0051 | 0.0052 | 0.0055 | 0.017
Octane (2nd derivative) 0.0048 0.0074 | 0.0082 | 0.0082 | 0.0087 | 0.020

Pork fat (Ls) 0.018 0.023 | 0.023 | 0.026 | 0.040 0.26

Pork fat (1st derivative) 0.096 0.22 0.22 0.22 0.24 0.46

Pork fat (2nd derivative) 0.23 0.59 0.60 0.62 0.64 0.85
Prostate (Ls) 0.038 0.072 | 0.077 | 0.078 | 0.078 0.11

Table 4: Computing time (in seconds) for model selection including finding the PRESS and
GCV minimal regression coefficients when varying the number of candidate reqularization pa-
rameter values. The times are the averages of 50 repeated runs rounded to the two most
significant digits.
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4.2 The fast segmented virtual cross—validation
4.2.1 Datasets

In the following we will demonstrate the use of segmented virtual cross-validation with Lo

regularization for two datasets:

1. Raman spectra of fish oil, see Afseth et al. (2006). The data set consists of 42 sample
segments including 3 replicate spectra of each unique sample giving a total of 126 rows

and 2801 wavenumbers in the range 400em ™! to 3200em L.

The response variable
was the iodine value (the response values were identical across each segment), which is
frequently used as an indicator of the degree of unsaturation of fat, see Afseth et al.

(2006). The spectra of this data set are plotted in Figure 5.

2. Raman milk spectra, see Afseth et al. (2010); Randby et al. (2012); Liland et al. (2016).
The data set consists of 232 sample segments including between 6 and 12 replicate
measurements of the associated unique sample giving a total of 2682 rows and 2981
wavenumbers in the range 120em ™! to 3100cm 1. The response variables were the iodine
value and the concentration of conjugated linoleic acid (CLA). Also for this dataset the
response values were identical across each segment. The spectra of this data set are

plotted in Figure 6.

For both datasets we have excluded the endpoint regions of the original spectra due to nosy and
poor quality of the measurements. The wave numbers reported above are those included after
this truncation. Approximately 2/3 of the replicate segments were used for model building
and selection, and the remaining 1/3 of segments were used as a test set.

The following four model selection strategies were considered: (i) PRESS,  the mini-
mum PRESS(M)—value from LooCV (ignoring the presence of sample segments), (ii) GCVinin
— the minimum GCV (\)—-value, (iii) the PRES Sy from the SCV (successively holding out
the entire sample segments), and (iv) the PRES Sy, from the SvCV. We have chosen to
focus only on the parameter selections associated with the minima of the various error curves

in this part of our study (neither the y2-rule nor the 1 S.E. rule turned out to affect the model
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selections much).
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Figure 5: Plot of the fish oil spectra.
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Figure 6: Plot of the milk spectra.

4.2.2 Model selection and prediction with raw data

For the fish oil data, the different error curves for model selection are shown in Figure 7. Note

that:
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1. The less relevant PRESS (and GCV-) curves based on the LooCV show considerably

smaller values than the corresponding PRESS—values based on the SCV and the SvCV.

2. The regularization parameter values minimizing the PRESS (and GCV) are approx-
imately a factor 10 smaller than the regularization parameter values minimizing the

SCV and SvCV.

3. Although the PRESS—values based on the SvCV are clearly smaller than the PRESS-
values based on the SCV, the shapes of the SvCV and SCV curves are quite similar,
and the regularization parameter values defining the minima and selected models are not
very different. Figure 8 shows the corresponding and highly similar PRESS(\)—minimal

regression coefficients based the SCV and the SvCV.
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Figure 7: Fish oil data (no pre-processing). Different model selection strategies for a range of
regqularization parameter values using Lo reqularization.

Figure 9 shows the GCV and PRESS curves for the two available response alternatives (CLA
and Iodine) in the milk data set. In this case all the associated minima indicate high agree-
ment between the methods in the selection regularization parameter value for both responses.
Near their minima the PRESS values based on the SvCV and the SCV are quite similar in

magnitude, and consistently (but not much) larger than the corresponding less relevant GCV—
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Figure 8: Fish oil data (no pre-processing). PRESS(\)-minimal regression coefficients (con-
stant term omitted) for the SCV and the SvCV using Lo regularization.

and PRESS values based on the LooCV.

Selection curves | 1 o | qev | svev | sev
Data set
Fish oil data 20.3 21.5 12.3 9.7
Milk data (CLA) 0.0093 | 0.0093 | 0.0093 | 0.0093
Milk data (iodine) 2.59 2.58 2.58 2.58

Table 5: MSE (from test data) for the data sets without any pre-processing according to the
various model selection criteria.

The associated prediction errors for the test data are shown in Table 5. The fish oil data
indicate that the better models are obtained by considering either the SCV or the SvCV. In
the view of Table 5, Figure 7 indicates that model selections based on the LooCV and the
GCV errors will lead to poorer predictions (the selected regularization parameters seems to
be too small). For the milk data set there are no such clear distinction. Table 5 shows that
the prediction results are almost identical for all the parameter selection alternatives as one

should expect from the various error minima shown in Figure 9.
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Figure 9: Milk data (no pre-processing). Different model selection strategies for a range of
reqularization parameter values using Lo reqularization. Top: CLA. Bottom: Iodine value.

4.2.3 Model selection and —predictions with pre—processed data

Spectroscopic measurements may be corrupted by both additive and multiplicative types of
noise. Pre—processing of such data prior to modelling is therefore usually required. It is there-
fore of particular interest also to investigate how the model selection strategies considered
above compare for pre-processed data. In particular we will consider the Extended Multi-
plicative Signal Correction (EMSC), see Afseth and Kohler (2012), with replicate corrections
as described in Kohler et al. (2009).

The goal of the EMSC pre—processing is to adjust all the measured spectra to a common
scale and to eliminate the eventual effects of additive noise. This includes the estimation of an
individual scaling constant for each spectrum and an orthogonalization step that de—trends the
spectra with respect to some set of lower order polynomial trends (the reader is referred to the
provided references for the technical details). In the present examples with Raman spectra,
the samples were orthogonalized with respect to the subspace including all polynomial trends
up to the 6-th degree.

For datasets including segments of replicated measurements, a replicate correction step

is often considered to alleviate the presence of inter-replicate variance. Such correction can
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be done by an initial EMSC-based pre-processing of the spectra in each sample segment.
Thereafter, the corrected sample segments can be individually mean-centered, and organized
into a full data matrix.

As we expect the dominant right singular vectors of the full matrix to account for the most
dominant inter replicate variance, orthogonalization of the data with respect to one or more of
the associated dimensions contributes to making the replicates more similar, see Kohler et al.
(2009) about the details. Because every sample in the training data set is included in the
pre-processing, some bias affecting the subsequent PRESS—calculations and model selection
must be expected.

Figure 10 shows the model selection for pre processed fish oil data based on the pure EMSC
and for the EMSC where 30% of the inter-replicate variance is removed. It is evident that
the SCV and the SvCV become considerably more similar in the latter case. As one should
expect, the GCV—- and PRESS curves based on the LooCV seems to provide unrealistically
low error values and the selection of lesser regularized models. This phenomenon does not
occur with the SCV where an entire segment of replicates is held out in each cross validation

step. The SvCV seems remarkably robust against the removal of inter replicate variance.
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Figure 10: Fish oil data. Model selection for data pre-processed with the EMSC both with and
without replicate correction. Top: Standard EMSC pre-processing. Bottom: EMSC with 30%
of the inter-replicate variance removed.
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Selection curves LooCV | GCV | svev | scv
Pre proc.

Raw data 20.3 215 12.3 9.7
EMSC 14.4 15.1 6.9 4.5
EMSC + 30% inter-replicate variance removed 14.4 15.9 6.7 6.7

Table 6: Fish oil data. MSE (from test data) for different model selection strategies and
different pre-processing alternatives.

The prediction results for the test set of the fish oil data with the various pre-processing al-
ternatives are presented in Table 6, and shows that the best predictions are obtained with
the ordinary EMSC pre-processing and model selection based on the SCV. By simultaneously
considering Figure 10, it is clear that the more heavily regularized among the selected models
(those based on the largest regularization parameter values) perform better on the test set.
With standard EMSC pre-processing the minima of the SvCV is located at a smaller regu-
larization parameter value than for the SCV, suggesting an explanation of the difference in
predictive performance.

For the milk data, the prediction error estimates obtained after pre—processing the data
are similar for all the parameter selection methods (table omitted), as was also the case with

the raw data.

4.2.4 Computational speed

Table 7 shows the computational times for the different model selection strategies. Both the
PRESS- and the GCV values are included as computing only one of them takes approximately
the same time as computing both. Because the size of the replicate segments are relatively
small for these data sets (3 replicate measurements for the fish oil data and 6 to 12 replicate
measurements for the milk data), the SVDs required for the internal orthogonalizations of the
segments contribute insignificantly to the total computational load. The amount of compu-
tations required for model selection based on the SvCV is therefore quite comparable to the

computations required for the LooCV version of PRESS (and for the GCV).
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Data set | PRESS-+GCV time | SCV time | SYCV+GCV time | OO “mer ; tiSOVCV time
Fish oil 0.017 0.08 0.023 2
Milk 28 116 32 130

Table 7: Computational time for different model selection strategies for the Fish oil data and
Milk data when considering 500 candidate regulariation parameter values. The time is given
in seconds, rounded to two significant digits, and is the average of 50 repeated runs.

5 Discussion and conclusions

The essence of the TR-framework described in the present work is that from a single SVD—
calculation (of either the original data matrix X or a transformed version of it X) it is possible
to explore the entire regularized regression problem of interest. Our most notable finding is
that the PRESS— and GCV values required for model selection(s) based on the LooCV or the
GCV can be obtained at the computational cost of two matrix—vector multiplications for each
choice of the regularization parameter value A.

The applications in Section 4 confirm that our framework scales well when increasing the
number of candidate regularization parameter values, as well as when considering multiple
responses and in the case of 'small n with large p’ problems. For smaller and medium sized data
as well as for other situations where the required SVD can be calculated (or approximated)
reasonably fast, the acquired computational efficiency allows for the exploration of a large
number of candidate models in a very short amount of time. In many situations we have
observed that such explorations can lead to relatively wide ranges of regularization parameter
values corresponding to models of almost identical predictive performance.

For datasets having segments of similar samples, we have seen that the proposed SvCV
gives a computationally efficient approximation of the traditional SCV. In the applications
(Section 4) we correspondingly observed that the SvCV approximation of the SCV appears
to work particularly well for model selection in the case of highly similar samples within each
segment. Model selection based on the LooCV or GCV in such situations is not recommended
as these tend to favour insufficient regularization resulting in models that predict poorer.

It is important to note that when the data set is pre-processed and/or transformed by a

data dependent method, some bias both in the LooCV— and SvCV based PRESS values must
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be expected. The standardization of variables commonly used in RR is a typical example. The
EMSC pre—-processing that was used in Section 4.2.3 with or without replicate corrections is
another. However, as the main purpose of the LooCV- and SvCV based PRESS values in the
proposed framework is model selection rather than error estimation, the bias introduced by
such pre processing methods is not disruptive as long as the (training) data does not contain
any serious outliers.

Although leverage correction of the model residuals for obtaining fast calculation of the
LooCV in linear least squares regression problems is a well established result, there are some
misleading assertions in the literature regarding both the properties and the accuracy of
PRESS values that requires clarification: i) In (Hansen, 2010, page 96) it is claimed that the
leverage values are not invariant under row permutations of the X—data making the PRESS—
values dependent of the ordering of the data. This is not correct. When the rows of the
data matrix are permuted it is actually simple to verify that the leverage values are invariant,
and undergoes precisely the same permutation. Consequently, the correct leverage values will
match up with the corresponding model residuals in the calculation of the PRESS(X) calcu-
lations assuring its invariance under any permutation of rows in the (X,y) data matrix. ii) In
(Myers, 1990, page 399) it is claimed that the expression for fast calculation of PRESS()) is
only an approximation when performing centering and scaling of the data. This is, however,
only true when the scaling factors are calculated from the data to be used in the model building
process. The data centering, as such, does not corrupt the leverage— and PRESS(\)—values
as long as the 1/n terms are included in the associated leverage corrections of the model resid-
uals. iii) The version of Ridge regression implemented in the MASS package by Venables and
Ripley (2002) for the R programming language includes a fast calculation of the GCV (\)-
values for a desired vector of corresponding A—values. The 1/n term is, however ignored when
correcting the model residuals by the required averaged leverage value. Consequently, the
resulting GCV values are incorrect when centering of the data is included as a part of the
Ridge Regression modelling.

Aren’t there already existing fast algorithms for regularized regression, with CV to chose

the regularization parameter? For sure the glmnet (a widely used R—package, see Friedman
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et al. (2010)) uses a clever numerical optimization and computational tricks to fit the models
and to choose the regularization parameter at the same time via SCV, for either linear or
logistic regression models, including the possibilities of doing both L; and Ls regularization.
This a reasonable objection, and we have therefore done a small comparison between an R,

implementation of our method and the glmnet based on the R version 3.6.1. The comparison
was executed based on 100 A-values with an Tntel® Xeon® E5-2630 v4 CPU at 2.2 GHz with

10 physical processor cores having access to 128 GB RAM, giving the following results:

gasoline fish pork | prostate milk
tglmnet 5.04 | 57.96 | 134.62 60.46 | 713371.32
trr 0.01 0.13 0.16 0.34 66.69
tratio 458.45 | 452.84 | 820.82 179.93 | 10696.51
n (samples) 60 126 105 102 2682
p (predictors) 401 2801 5667 12600 2981

Table 8: Comparison of LooCV for gminet and TR (measured in seconds) for differently sized
datasets using 100 reqularization parameter values.

Table 8 shows that glmnet spent 8 days and 6 hours cross—validating the milk—data in com-
parison to the TR using only 67 seconds. Currently we cannot report any algorithm of similar
performance for L;-regularization problems. However, we think that the huge computational
advantages available for the Lo-case may generate a genuine motivation to search for similar
results with the regularization used in the LASSO, Elastic Net etc., see Friedman et al. (2009).

In conclusion, we believe in the presented work as a useful reference for future statistical
texts and software dealing with parameter selection issues for Ridge Regression (and Tikhonov
Regularization). The fast calculation of the PRESS(A) in (28), heavily relying on the SVD,
represents yet another simple but powerful application of linear algebra to the benefit of

multivariate data analysis.
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A TR Prototype MATLAB code

1

2 function [press, bcoefs, b, lambda, H, U, s, V, GCV, L, idmin, rescv] = TregsLooCV(X, y, lambdas, type)
3 3

4 % INPUTS:

5 %X — Data matrix

6 vy — Response vector

7 % lambdas — Vector of regularization parameter values

8 % type — Regularization type (—1 for standardization, 0 for L2, 1 for lst derivative regularization,
9 3

10 % OUTPUTS:

11 % press — PRESS—statistic input lambdas

12 % bcoefs — Regression coefficients for selected lambda (no constant term)

— Regression coefficients for PRESS—minimal lambda (with

— Value of lambda minimising the PRESS—statistic

constant term)

"type'.

15 % H — Vector of leverage values for all values of

16 % U, s, V— SVD of matrix

17 — GCV—statistic for input lambdas

18 — Regularization matrix (empty for L2 regularizatoin)
19 idmin — Index of lambda value minimising the PRESS—statistic
20 % rescv — LooCV—residuals

21 %

22

23 [n,pl = size(X);

24 mX = mean(X); my = mean(y);

25 X = bsxfun(@minus,X,mX); y = y-my;

26

27 L= [);

28 if type > 0 % Create full rank discrete derivative matrix of order
29 epsilon = le—14;

30 L = diff ([speye (p);sparse (type,p)],type);

31 L (end—type+1:end = sqrt (epsilon) «Plegendre (type—1,p) ;

32 elseif type < 0 % Create variable standardization matrix.

33 L = spdiags(std(X)',0,p,p);

34 end

35 if type ~= 0, X = X/L; end

36

37 (U, s, V] = svd(X,'econ'); s = diag(s);

38 denom = bsxfun(@plus,s,bsxfun(Grdivide, lambdas, s))

39  bcoefs = V«bsxfun (@rdivide, (U'+y),denom);

40 H = (U.”2)+bsxfun(@rdivide, s, denom)+1/n;

41 resid = bsxfun(@minus,y,U«bsxfun(@rdivide,s.* (U'xy),denom));
42  rescv = bsxfun(@rdivide, resid, (1—H));

43 press = sum(rescv.”2)';

44 Gcv = (sum(resid.”2)./mean(l—H)."2)"';

45

46 = ing press—minimal model and corresponding regression coefficients:
a7 [~ idmin] = min(press); lambda = lambdas (idmin); h = H(:,idmin);
48 if type ~= 0, bcoefs = L\bcoefs; end

49 b - [my—mX+bcoefs (:,idmin); bcoefs(:,idmin)]; % Constant term
50

51 end

38

etc




function Q = Plegendre(d,p)
P = ones(p,d+l);
x = (=1:2/(p=1):1)';

for k = 1:d

P(:, ktl) = x.°k;
end
[Q/~] = ar(p,0);
Q=20";
end
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B SvCV Prototype MATLAB code

1 function [press, bcoefs, b, lambda, H, U, s, V, GCV, L, idmin, rescv, Usegments] = TregsSvCV(X, y, lambdas, type,

segments)

2 %

3 % INPUTS:

4 5 X — Data matrix

5 sy — Response vector

6 % lambdas — Vector of regularization parameter values

7 % type — Regularization type (—1 for standardization, 0 for L2, 1 for lst derivative regularization, etc

8 % segments — List of integers identifying cross—validation segments

9 3

10 % OUTPUTS:

11 % press — PRESS—statistic for input lambdas

12 % bcoefs — Regression coe cients for selected lambda (no constant term)

13 % b — Regression coe cients for P minimal lambda (with constant term)
— va of lambda minimising the PRESS—statistic

15 % H — Vector of leverage values for all values of lambda

16 V. — SVD of matrix

17 — GCV—statistic for input lambdas

18 % L — Regularization matrix (empty for L2 regularizatoin)

19 % idmin — Index of lambda value minimising the PRESS—statistic

20 % rescv — LooCV—residuals

21 % Usegments — Sparse matrix representing the orthogonal transformations used in the SvCV

22 &

23

24 % Finding orthogonal transformation and the modification to the leverage correction:
25 Usegments = segmentORTH(X, segments);
26 Dbs = (sum(Usegments,1)."2)"';

27

28 [n,pl = size(X);

29 mX = mean(X); my = mean(y);

30 X = bsxfun(@minus,X,mX); y = y-my;

31

32 3% Transforming data:

33 X = Usegments'sX; y = Usegments'sy;
34

35 L= 1[];

36 if type > 0

37 epsilon = le—14;
38 L = diff ([speye (p);sparse (type,p)],type);
39 P = Plegendre (type—1,p);

40 L(end—type+l:end,:) = sqrt(epsilon)+P;

41  elseif type < 0

42 L = spdiags (std(X)',0,p,p);

43 end

44

45 if type ~= 0, X = X/L; end

16

47 (U, s, V] = svd(X,'econ'); s = diag(s);

48 s_plus_lambdas_over_s = bsxfun(@plus,s,bsxfun(rdivide, lambdas,s));
49

50 H = bsxfun(@plus, (U.”2)xbsxfun(@ldivide,s_plus_lambdas_over_s, s), bs/n);

40




51 Dbcoefs = Vxbsxfun(@ldivide,s_plus_lambdas_over_s, (U'*y));

52 res = bsxfun (€minus,y, X+bcoefs) ;

53 rescv = bsxfun(@rdivide,res, (1-H));

54 press = sum(rescv.”2)';

55 GCV = sum(bsxfun(@rdivide, res, mean(l—H))."2)';
56

57 if type ~= 0, bcoefs = L\bcoefs; end

59 % Finding press—minimal model and corresponding regression coefficients:

60 [~ idmin] = min(press); lambda = lambdas(idmin); h = H(:,idmin);

61 if type ~= 0, bcoefs = L\bcoefs; end

62 b = [my—mX*bcoefs(:,idmin); bcoefs(:,idmin)]; % Constant term
63

64 end

65

66 function U = segmentORTH (X, segments)
67 n = size(X,1);

68 nsegments = max (segments);

69 U = sparse(n,n);

70 for k = l:nsegments

71 ind = find(segments==k);
72 [U(ind, ind),~] = svd(X(ind,:), 'econ');
73 end

74  end

75

76 function Q = Plegendre(d,p)
ad

o

= ones(p,d+1);

78 x = (—1:2/(p—1):1)';
79 for k = l:d

80 P(:,k+l) = x.%k;
81 end

82 [0~ = qr(P,0);

83 0 =

84 end
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C Computational complexity of the fast LooCV

For a more precise description of the computational complexity involved in calculating the fast
LooCV, an approximate count of the floating point operations (flop) is required. According
to Bjorck Bjorck (2016), an approximate flop count for finding the reduced SVD (using a
QR SVD algorithm with Golub Kahan Householder bidiagonalisation) of a (n X p) matrix
is 12pn? + (16/3)n® when assuming p > n. The remaining computations consist of centering,
calculating the PRESS values, and calculating the PRESS minimal regression coefficients for
every response. With ¢ different responses, the approximate flop count for these computations

is given by:

(Bnp + 3ng + nr + 2nrq — q + 2prq + pq) + nx(3r + 2nr + 2nrq + qr + 4ng), (37)

where ny denotes the number of different candidate regularization parameter values. For
p > n, the computations needed to evaluate the PRESS(\)—function for one additional
regularization parameter is of the order O(¢gn?), and in particular the additional computations
are independent of the number (p) of measured features. This makes the fast LooCV highly
useful also for problems where the number of features are even larger than the number of
samples. To calculate the cost of finding the corresponding GCV (A)—-values as well as GCV-
minimal regression coefficients one should add 5nnyq — q¢ + ¢(2pr + p) to the above flop
count. Note that the choice of regularization matrix L matters here, and for L # I there are
additional calculations (see Section 2.2) that must be taken into account. The exact number
of flops associated with these additional calculations will depend on the sparsity structure of

L and to what extent that sparsity can be utilized in the required calculations.
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D Computational savings of the SvCV compared to the SCV

To assess the computational savings of the SvCV over the SCV, flop count approximations for
the associated PRESS-values must be compared. (We only consider the situation involving
Lo regularization, i.e. the identity matrix I acting as the regularization matrix.) Let K denote
the number of segments , and assume for simplicity that the various segments sizes are all
bouded from above by the constant Bgs. The approximate number of flops required for the
SVDs for the different parameter selection methods when using the entire data set for training
are given by the formulas in Table 9 (using the approximate flop count for the SVD given in
Bjorck (2016)). The Table shows that the size of (all but one of) the required SVDs for the
SvCV are much smaller than for the SCV (assuming the size of each segment is much smaller
than the total number of samples, which is obviously the case in most real applications). This
is primarily what makes the SvCV superior to the SCV in terms of computational efficiency.

If the block diagonal structure of the transformation matrix 7 is utilized, the matrix

multiplication part of the orthogonal transformation (33) for the SvCV requires approximately

2Bss(Bss — 1) + K - Bgs * p(2Bgs — 1) + ¢ - Bss(2Bss — 1) (38)

flops. For keeping track of the remaining computations needed for the SvCV we can use
the flop count approximations in Section C, as the flop count for the SvCV and the LooCV
will be identical after applying the orthogonal transformation required for the SvCV. The

approximate flop count of the remaining computations for the SCV is given by

2K - Bss (CH—p) - Q+ Ttrain * q(QBss - 1) + q-nx- K[Srtrain + 2]) *Ttrain +p+ 217' Ntest + 3ntcst] (39)

where 7pqin, = Min(Nergin, ) and ngqipn is the number of samples in the training set.
Although the main computational cost with model validation is with the initial SVD(s)

there will also be an additional computational cost for each candidate regularization parameter

value for which we want to validate the model. Consider the case p > n of most interest for

the present work (the number of features is greater than the number of samples). From the
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above reasoning we observe that when considering additional regularization parameter values,
the SCV flop count depends on the number of features p for each candidate value. The above
flop count for the SvCV and the LooCV flop count in appendix C shows that this is not the
case for the SvCV. When p is very large it might therefore be computationally inefficient (or
even infeasible) to validate models for a large number of regularization parameter values based

on the SCV. Clearly, the SvCV is the method of choice among the two in such cases.

Par. sel. method Approx. flops for SVD(s) Approx. for Raman milk dataset
LooCV/GCV 12pn? 4+ 18 p3 3.602 - 10
SvCV 12pn? + 38 .03 + K- (12p- B + 8. BY)) 3.614 - 101
scv K- (12p- (n— By)? + 3 - (n — B)?) 8.272 10

Table 9: Approzimate flop counts for the required SVD(s) in the different parameter selection
methods when assuming p > n. Figures for the Raman milk data set (with n = 2682, p = 2981,
K =232 and Bgs = 12, see Section 4.2.1) are shown in the last column.
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Abstract

Regularization in Linear Discriminant Analysis (LDA) is required in many practical sit-
uations. When using Regularized LDA (RLDA) it is necessary to determine an appropriate
regularization parameter for obtaining a robust model giving accurate predictions. Many
methods have been developed for choosing a regularization parameter, and cross-validation
in particular is frequently used. For big data sets the computations needed to validate many
different candidate values for the regularization parameter can be significant. In this work we
suggest a computationally efficient regression-based heuristic for selecting a value for the regu-
larization parameter for RLDA. The motivation for the regression-based criterion comes from
the link between Ridge regression (RR) and RLDA. By using fast model selection strategies
for RR we are able to select a good regularization parameter value for RLDA from a large
number of candidate regularization parameter values very efficiently. The heuristic is tested
on several data sets, and empirical results indicate that the predictive power of the models ob-
tained with this criterion appears to be comparable to the predictive power of models obtained

by cross-validation on the percentage of samples correctly classified.



1 Introduction

In the present work we are particularly interested in procedures for fast identification of good
regularization parameter values for Regularized Linear Discriminant Analysis (RLDA). RLDA is a
well-studied generalization of Linear Discriminant Analysis (LDA), and is particularly useful when
LDA cannot be applied directly. This is for example the case when the number of predictor variables
is greater than the number of samples, or when the LDA problem is ill-conditioned|9, 16, 25|.
In such cases the total and within-groups scatter matrices derived from the data set will not
be invertible[16]. Several useful approaches have been proposed to overcome this and similar
problems|3, 4, 1, 8, 25]. Our focus is on the application of regularization in the form of adding a
scaled identity matrix to the within group scatter matrix. To obtain a good model it is necessary
to select an appropriate regularization parameter value[16], and it is therefore necessary to employ
some criteria for choosing a good value for this parameter. Selection of the regularization parameter
is often done by cross-validation on the percentage of samples correctly classified, but for large data

sets this can be computationally expensive and time consuming.

There is a close relationship between RLDA and regularized regression. It is well-known that
solving the LDA problem for a 2-class problem is equivalent to solving the associated linear re-
gression problem using a 0/1 dummy coding of the group memberships as the response vector, in
the sense that the LDA discriminant function coefficients are proportional to the regression coef-
ficients obtained by the dummy regression|3]. Considerable efforts have been put into extending
this relationship to classification problems with more than 2 classes as well as the inclusion of
regularization [11, 9, 24, 25, 18]. By utilizing the link between Ridge regression (RR) and RLDA,
we suggest an efficient heuristic for selecting an appropriate regularization parameter value based
on the PRESS-statistic obtained from a 0/1 dummy coded regression problem. Using a regression
based criterion to determine the regularization in RLDA has been mentioned as a possibility in
the earlier literature|9], but to our knowledge no detailed investigations are available.

The structure of the present work is as follows. We start by reviewing LDA, its regularized
version, and RR. Then we discuss the computational relationship between RLDA and RR, and its
implications regarding the selection of good regularization parameter values for RLDA. Finally the
suggested heuristic will be tested on several data sets and compared to regularization parameter

selection by cross-validation on the percentage of samples correctly classified.



2 Regularized Linear Discriminant Analysis

In the following we use X to denote an n x p data matrix of measurements (n samples and p fea-
tures), and the p-vector p denotes the (global) mean of the X-columns. The sample group mem-
berships are represented by both an n-dimensional vector G containing the labels {1,2,3,...,g}
(where g is the number of different groups) and an associated n x g matrix Y of 0/1 dummy-coded
group memberships. The number of samples in the k-th group is denoted by ny, for 1 < k < g, and
the feature means associated with the individual groups are represented by the p-vectors py for
1<k<g. Weuse1,, and 0,, to denote the m-dimensional vectors of ones and zeros, respectively.
All vectors are assumed to be column vectors unless otherwise stated. We denote the globally
centred data matrix by Xg, and the group-centred data matrix by X. Finally we define the

total-, the within groups, and between groups scatter matrices by

1
Sr=—X;Xs,
n

1
Sw =~ XLXc,
w n GG

K
1
Sp=_- > (k= ) (o — 1),
k=1

respectively. It can be shown|3] that Sp = ST — Sw.

In Fisher’s|2] description of linear discriminant analysis the idea is to identify linear combina-
tions ¢ = X v of the original features that are particularly useful for linear discrimination between
two or more groups. This is made more precise by finding directions maximizing the between group

scatter relative to the within group scatter[3]. That is, we want to maximize the following ratio:

v'Spv
V'S’

(1)

The intuition behind the above optimization problem is that we want to find directions in the
sample space that maximizes the distance between samples of different groups while at the same
time making the distances between samples corresponding to the same group small. Maximization

of the ratio in (1) can be obtained by solving the generalized eigenvalue/-vector problem:

SBU = OéSW’l), (2)

and since Sp = Sy — Sy it follows|25] that a solution v of (2) alternatively can be obtained by



solving the generalized eigenvalue/-vector problem:

Spv = aS7v. (3)

If the matrix St is invertible, this problem corresponds to the ordinary eigenvalue/-vector problem:

S7'Spv = av. (4)

If Sp is not invertible (which is obviously the case when the number of features p > n) or poorly
conditioned, a useful solution to Fisher’s LDA problem cannot be found directly and some sort of
stabilization or regularization is required. One method of regularization (see e.g. [9], [16] or [25])
is to add a scaled version of the identity matrix to Sy or S7. Let A > 0 be the scaling factor of

the added identity matrix. The resulting regularized RLDA eigenvalue/-vector problem is:

Spv = a(Sw + M )v, (5)

alternatively with Sy replaced by Sr if the formulation in terms of the total scatter matrix is
used|25]. As eigenvectors are only unique up to scaling factor this eigenvalue problem has infinitely
many solutions, and it is therefore common to add a constraint to the eigenvectors to obtain a

unique solution. One such constraint[9] is:

v (Sw+A-I)v =1 (6)

Another possible constraint is to similarly require unit norm of the eigenvectors in the metric
induced by the regularized total scatter matrix|25]. The matrix V whose columns consist of all
vectors satisfying (5) and (6) is referred to as a solution to the RLDA problem. In the present work
samples will be classified as belonging to the class of the nearest group centre in the Euclidean

metric in the projected space. That is, the classification of a sample « is given by:

arg min (@ — )V l2. (M)

i=1,...,9
We note that it is also possible to use, for example, a nearest neighbour classifier in projected
space|[16].

An alternative approach to LDA is statistically motivated and based on Bayes rule together
with the assumption of multivariate normally distributed data for each group with a common

covariance structure|3]. This leads to classification based on the Mahalanobis metric defined by



d(xy,xs) = \/(ml — x9)' Syt (1 — @a). If we denote the prior probability of a sample belonging

to class 7 by p;, the classification of a sample x is given hy

arg min (d(z, p;) — 2log(p;)) - (8)

i=1,...,g
If the prior probabilities are identical for all classes, then the classification formula reduces to
classifying a sample to the closest group center in the Mahalanobis metric. The corresponding
regularized version is obtained by replacing Sy, with Sy, + AI for an appropriate choice of the
regularization parameter A > 0 in the formula for the Mahalanobis distance. When used for
classification the two approaches to (R)LDA are equivalent (as long as one projects onto the full

subspace for RLDA and use the same priors if applicable)|9].

3 Ridge Regression

The motivation for introducing Ridge regression (RR)[13] is similar to the motivation for introduc-
ing regularization in LDA. Consider the ordinary least squares problem Xgb = yg, where yg is a
centered vector of responses. If the number of features is greater that the number of samples, the
solution of the corresponding normal equations (X§Xg)b = X4y with respect to b is not unique
as the matrix X§Xg is singular. Attempting to apply ordinary least squares directly in this case
will result in overfitting to the data. If the matrix X{Xg is ill-conditioned the solution vector
may exhibit unwanted behavior such as neighboring regression coefficients being large in absolute
value with different signs|3] which may give solutions that do not make physical sense for practical
problems|13]. A better solution can in this case be obtained by adding a regularization term to the
least squares problem. The RR problem can then be formulated as the following modified least

squares problem:

X
Sy | ¥ | ©)

VAL 0,

The least squares solution of the above set of linear equations minimizes the sum

1Xsb —ysl|* + Allb]*. (10)

The magnitude of X regulates the strength of this requirement, i.e. by increasing A the Lo-norm of
b is forced to decrease. From a Bayesian viewpoint, the solution to (9) is equivalent to the solution

of the standard linear regression problem when using a Gaussian prior with mean zero[19]|. From



the statistical viewpoint the regularization parameter A can be interpreted as being related to the
variance of the regression coefficients.

Denoting the reduced singular value decomposition (SVD) of Xg by Xg = USV”, the solution
to (9) and (10) can be formulated as (see [3] and [10]):

b=V(S'S+ )" SUys. (11)

The above expression is useful because it involves only the inversion of a diagonal matrix and a few
matrix-vector multiplications. Thus, having calculated the reduced SVD of the data matrix once,
the computational costs of calculating the regression coefficients for any choice of the parameter A
are low[8]. The constant term by is given by by =y — Xgb.

Next we outline how the predicted residual error sum of squares (PRESS) statistic can be
calculated efficiently for any value of A when the reduced SVD of the centred data matrix has
been calculated based on Indahl et al.[15]. The idea is to use the Sherman-Morrison-Woodbury
formula|7] to perform rank 1 updates. More precisely, it can be shown|3] that a Leave-one-out

(Loo) residual for a standard linear regression model can be calculated as

* 7.]
S 12
T T Ty, (12)

where 7 is the LOO residual for the j-th sample, r; is the residual for the j-th sample for the
full model, and hy ; is the leverage of the j-th sample (the j-th diagonal element of the projection
matrix projecting onto the solution space of the least squares problem). We have shown that
regression coefficients can be calculated efficiently which means that regression residuals can also

be calculated efficiently. To deal with the leverage values, let S denote the diagonal matrix with

elements \/32‘7“, where s; is the i-th singular value of the matrix Xg. It can be shown[15] that
Si

the upper n rows of the projection matrix for the RR—problem is given by

U,=USS, " (13)

As the leverage values are the diagonal elements of the projection matrix, which is given by U,\Uj},
we can calculate the leverages by squaring the elements of U, and adding the elements row-
wise. This shows that the PRESS-statistic associated with (9) can be calculated at very little
computational cost for a large range of A-values, making model selection based on the PRESS-
statistic highly efficient. See appendix B for a prototype MATLAB implementation of the above

method for calculating the PRESS-statistic.



The extension of the RR problem to a multivariate response is straightforward. For a n x g

response matrix Y, the multi response RR problem is given by

X Y
S lB=| 7|, (14)

VAT 0,4

where By € R(1,g) and B € R(p, g). Here we wish to minimize the Frobenius norm of the residual.
Note that solving (14) is equivalent to solving the univariate problems obtained by considering
each column of Y as a single response vector. In principle we can therefore calculate a PRESS-
minimal regularization parameter for each univariate problem. As we want to use the regularization
parameter obtained from regression in an RLDA model we require a single regularization parameter.
We will therefore select the regularization parameter minimizing the overall PRESS-statistic for
the multivariate problem.

Hastie et al.[9] established a link between regularized regression (in the form of an optimal scor-
ing problem) and regularized linear discriminant analysis. One of their results can be formulated
as saying that for any regularization parameter \ > 0, there exists a matrix Z, € R(g,g — 1) such

that for any = € RP

arg min||(z — w) BZ,|> = a'rg1 min(z — ;) (Sw + M) 7Lz — py), (15)
= i=1l,.g

i=lg =l
where B is the least squares solution of (14). The Z) matrix can be viewed as a post-processor|[9]
that changes basis to a space where nearest centroid classification with the Euclidean metric gives
the same classification as the one obtained using RLDA. The existence of such a matrix provides
a clear relationship between regularized regression and RLDA, and motivates the idea of using the

PRESS-statistic from a regression problem for selecting the regularization parameter for RLDA.

4 Parameter selection in RLDA

4.1 Cross-validation on percentage of samples correctly classified

A common way of selecting the regularization parameter for RLDA is using cross-validation. In
this approach one calculates the percentage of samples correctly classified under cross-validation
for a selection of regularization parameter values, and then select the regularization parameter
value maximizing the percentage of samples correctly classified. In the case of a tie between
different regularization parameter values one can, for example, select the largest parameter value

(i.e. simplest model) from the parameters giving the best prediction. The naive approach to



cross-validation would be a complete refit of the model for each choice of regularization parameter
value. This can be computationally expensive, and there are some tricks that can be used for
significant computational savings. In the examples we will use 5-fold cross-validation based on the
algorithm given in [16] as one method for parameter selection. This algorithm achieves considerable
computational savings compared to the naive approach. The algorithm is based on a similar idea
to the one allowing for efficient calculation of ridge regression coefficients for a large number of
regularization parameters once a single SVD of the data matrix has been calculated. Note that
the regularization in RLDA only affects the non-zero eigenvalues of the within group (or total)
scatter matrix, and that the eigenvectors of the within group (or total) scatter matrix does not
change when adding a scalar multiple of the identity matrix. This implies that a single SVD of the
data matrix (globally or group centred depending on whether Sz or Sy is used) is sufficient to
efficiently invert the scatter matrix used for any choice of regularization parameter The algorithm
still requires the computation of a SVD for each choice of regularization parameter because of the
maximization of the between group scatter, but on a much smaller matrix making the algorithm
quite efficient. See [16] for the details.

For the special case of LooCV there exists formulae for calculating the LooCV distances without
refitting the model. These formulae are based on rank 1 updates and calculates adjustment factors
to convert the training set distances to LOO distances. The formulae are given in Hjort[12| and
Fukunaga|5], and are reproduced in Ripley|22]. Asnoted in an errata|21] to Ripley’s book, there are
some mistakes in the formulae given in [22], and the formulae reproduced below are the corrected
ones from the errata. Let A?k be the squared training set distance between sample j and the
group center of group k in the Mahalanobis metric associated with the regularized within group
covariance matrix. If sample j belongs to group ¢, then the squared LOO Mahalanobis distance

between sample j and group c is given by

30 (5) /(1 ) 9

If sample j does not belong to group ¢, then squared LOO Mahalanobis distance between sample

j and group c is given by

) (@) — o) (Sw + M)~ (; — pe))?
Aje= a5 (” (= o). —D)jme — B2, > "

A prototype MATLAB implementation of using the above formulae for LOOCYV based on prediction
performance is included in appendix C.

One disadvantage of the above approach is that the number of samples correctly classified is not



an ideal metric for model selection as there will generally be a range of regularization parameter
values that apparently produce the same classification rate. We tried an alternative criterion
motivated by Fisher’s idea behind LDA. We used a cross-validation approach, and for each fold
we calculated distances from each sample to all group centers. We then calculate the ratio of
the distance between a sample and the correct group center to the distance between the sample
and the closest incorrect group center. We then sum these ratios over all samples, and select the
regularization parameter value minimizing this sum. The motivation of this criterion is then to find
a choice of regularization parameter value mapping samples as close to the correct group center as
possible and as far away from other group centers as possible. In experiments the criterion appeared
to be a bit too sensitive to outliers and require too much computation, and we therefore abandoned
this approach. The sensitivity to outliers can be adjusted for by setting a maximum number each
ratio of distances are allowed to contribute to the total, but the computational inefficiency makes

other parameter selection methods more favorable.

4.2 Dummy regression

An alternative parameter selection method from RLDA can be obtained from a regression problem.

Consider the multivariate regression problem

X Y
B= , (18)

VAT 0,

where the Y-matrix consists of 0/1 dummy-coded group memberships (so Y;; = 1 if and only
if the sample in row 7 of the X matrix belongs to group j). As shown in Section 3 the PRESS-
statistic for this problem can be calculated very efficiently for a range of regularization parameter
values. We then select the regularization parameter minimizing the total PRESS-statistic for the
multivariate regression problem (since we need a single regularization parameter for RLDA). This
criterion is a heuristic, but in Section 5 we show empirically that this criterion appears to work
quite well. Below we attempt to motivate this criterion by appealing to the link between regularized
regression and RLDA given in [9].

From the link between RR and RLDA we know that there exists a linear transformation map-
ping the regression coefficients and the 0/1 dummy-coded responses to a space where classifying
to the nearest group centre in the Euclidean metric gives the same classification as when using
RLDA. Now, think of the rows of Y as group centers in g-dimensional space, and think of the

regression coefficients as a linear map that maps each sample to the same g-dimensional space.



With this viewpoint solving the regression problem amounts to finding a linear transformation (the
regression coefficients) that maps the samples as close to the correct group center as possible|[18].
In the multivariate regression problem (18) we are minimizing the Frobenius norm of the residual
matrix, so minimizing the square norm of the columns of the residual matrix is equivalent to min-
imizing the square of the norm of the rows. Finding the A-value minimizing the PRESS-statistic
can then be viewed as finding the A\-value that maps the samples as close to the correct group
center as possible. Even though this space is not necessarily good for classification, we know that
there is a linear transformation mapping the samples and group centers to a space where the Eu-
clidean distance can be used for classification. As the same linear transformation is applied to
both the dummy-coded responses and to the regression coefficients, it is not unreasonable that the
regularization parameter value minimizing the distance between samples and their corresponding
group centers will also provide good discriminatory ability after a linear transformation. This is,
of course, a heuristic criterion, but the above justification together with the results in Section 5

provide some justification for why this criterion is sensible.

5 Examples and discussion

5.1 Selection of data sets and the procedure used

In this section we illustrate the parameter selection methods we have discussed with several exam-
ples. We consider the following data sets: tumor14[20], Yale32B|[6], ORL[23], and MNIST|17]. The
tumorl4 data set is a gene expression data set where the responses are different types of tumors.
The yale32B and ORL data sets are face recognition data sets. The MNIST data set is a hand-
written digit recognition data set. For more details about the data sets see the given references.
Summaries of the sizes of the data sets are given in Table 1.

For model performance we consider the percentage of samples correctly classified. With the
MNIST data set the standard training/test set split was used. For the three other data sets 50
random splits into training and test sets were used, where 1/2 of the data set was used for training.
For each split, it was verified that there was at least two samples from each group in the training
set and that each group would be represented in each training set during CV. If this criteria was
not met, new random splits were generated until a split satisfying this criteria was found. When
using CV to estimate the predictive accuracy of a model there will typically be a range of values
of the regularization parameter giving the best cross-validated predictive performance. In this
case we select the largest value of A (simplest model) among the values giving the best cross-

validated predictive performance. For the PRESS-statistic we consider both the value of A giving
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Data set name Droperties " p g | Reference
tumorl4 308 15009 | 26 [20]
yale32B 2414 1024 | 15 [6]
MNIST 6000010000 | 50007 | 10 17
ORL 400 10304 | 40 23

Table 1: Querview of the data sets used as examples in this Section. n is the number of samples,
p is the number of features, and g is the number of groups.

the minimum PRESS-statistic, as well as the value of A obtained by a y*-test[14] with a = 0.1. The
idea behind the y2-test is to select a larger regularization parameter value than the one obtained by
the PRESS-minimal value as long as this can be done without affecting the PRESS-statistic of the
selected model too much. See [14, 15| for details. For all data sets we sampled 500 values of A on
a log scale. In the implementations of the RLDA-functions based on the Mahalanobis metric and
the Fisher formulation of the RLDA problem we omitted the 1/n factor in the covariance matrices.
This was done to make the regularization parameter values comparable with the ones obtained from
the PRESS-statistic for the 0/1 dummy-coded regression problem. In the tables and text below we
refer to the regularization parameter obtained by 5-fold CV based on the pseudocode given in [16]
simply as '5-fold CV’, we refer to the regularization parameter obtained by the fast Loo update
formulae for the Mahalanobis distances as "LooCV’, and we refer to the regularization parameter
values obtained by PRESS and PRESS together with the y2-test as 'PRESS’ and 'PRESS+x?’,
respectively.

Using RLDA on the MNIST data set without any additional pre-processing gives a classification
error on the test set of about 12%. The classification performance can be significantly improved
by using randomly generated features. More precisely, we generate features based on contrast
differences between images of different classes. The idea is to sample two images from different
classes, consider their difference (as vectors), and using the pixels/elements where this difference is
large as a feature. See appendix A for details about the feature generation. By using 784 random
features (this gives us the same number of features as the raw MNIST data set) we obtain an
error rate on the test set of about 4%. The feature generation and matrix multiplication prior to
modeling for this number of features takes less than 5 seconds. The rest of the computational time
is unaffected compared to using RLDA on the original MNIST data set, as the new data set has the
same size as the original data set. In the results presented in the tables we have used 5000 random
features. For 5000 random features the feature generation and matrix multiplication needed to
obtain the new training and test sets took about 30 seconds, and this time is not included when

comparing the time used for the different parameter selection methods.

1t See discussion in the text about feature generation for MNIST.
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5.2 Computational time and overview of prediction results

In Table 2 the time used for parameter selection for the various data sets and parameter selection
methods are shown. For all data sets except MNIST the results reported are the averages over the
50 data splits considered. For the MNIST data set there is a standard training/test set split and so
model selection was done only once for this data set. From Table 2 we see that the slowest method
is the Mahalanobis LOOCYV. This is due to the LOO update formulae depending on the group
membership of the removed sample, but the implementation used could also be a factor. In Table
3 we illustrate how the different parameter selection methods scale with respect to the number
of regularization parameter values considered. It is clear that the fastest method is the PRESS-
statistic. As the main calculation when using the PRESS-statistic is the initial SVD we see that
increasing the number of regularization parameter considered has little effect on the computational

time needed for model selection.

Validation method | - w14 v | LoOCV | PRESS-statistic

Data set
tumorl4 3.87 4.09 0.20
yale32B 12.0 293 1.28
ORL 4.3 11.6 0.23
MNIST 700 22000 160

Table 2: Time needed for model selection with 500 candidate reqularization parameter values for
the different data sets and parameter selection methods. For tumorl), yale32B and the ORL data
set the given time is the average time over the 50 different data splits. For MNIST the time given
is for a single model selection.

Number of A values | | 501 100 | 500 | 1000 | 5000
Data set
LooCV 64 | 31.2 | 601 313 | 575 | 2800
PRESS 043 | 0.50 | 0.57 | 1.23 | 1.70 | 6.66
5-fold CV 21 | 3.0 | 301 | 124 | 1954 | 91.72

Table 3: The Table shows the average time needed for model selection for different number of
reqularization parameter values for the Yale32B data set. This gives an indication of how the
different parameter selection methods scale with an increasing number of candidate reqularization
parameter values.

In Table 4 the percentage correctly classified (PCC) samples for the test sets are shown for the
different parameter selection methods considered. We see that both PCC under cross validation
(PCCCV) and the PRESS-statistic from dummy regression give similar predictive performance.
This is partly due to the values of A selected by the different methods for many of the splits being
similar, but also due to the fact that the test set performance is not always very sensitive to the
choice of A. This is illustrated in Figures 1 and 3. In Figure 1 we see that the PRESS curve

correlates well with PCCCV, and the PRESS-curve gives a very good indication of where the
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selection method | - ¢ 11 v | LOOCV | PRESS | PRESS 412

Data set
tumorl4 64.8 64.5 64.5 60.8
yale32B 94.5 94.7 94.6 94.1
ORL 92.0 92.6 92.3 92.8
MNIST 98.1 98.1 98.0 98.0

Table 4: Average PCC on test set for the different model selection methods X.

optimal value of the regularization parameter is. The value of the regularization parameter chosen
by LOOCV and the PRESS-statistic are very similar. In Figure 3 we see that there is a large
interval of A\-values that give approximately the same classification accuracy, so that the test set
result is in this case not very sensitive to the exact value of the chosen regularization parameter.
From Table 4 we can see that using a x2-test can both improve and worsen predictive perfor-
mance. From Figures 1 and Figure 3 it appears that when the PRESS-curve has a clear minimum
the PRESS-minimal A provides a good regularization parameter value. In this case it seems that
adding more regularization can result in a worse model, as shown in the results in Table 4. For
a flat PRESS-curve the position of the PRESS-minimal A can be slightly arbitrary, and in this
situation the y2-test can be useful. From Figure 2 we see that the PRESS-curve is very flat, and se-
lecting the PRESS-minimal regularization parameter results in a smaller regularization parameter
than the one obtained from the other parameter selection methods. By applying the PRESS+ y?

parameter selection method here we obtain a value of the regularization parameter more similar

to the ones obtained from 5-fold CV and LooCV.

Parameter Selection

65 160
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60 - ’ T v pccCV 5-fold 140
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Figure 1: Parameter selection and corresponding test set results for one particular split of the
Tumor 14 data set. Top: Model selection for CV and PRESS. Bottom: Results on the test set.
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Figure 2: Parameter selection and corresponding test set results for one particular split of the ORL
data set. Top: Model selection for CV and PRESS. Bottom: Results on the test set.
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Figure 3: Parameter selection and corresponding test set results for one particular split of the
Yale32B data set. Top: Model selection for C'V and PRESS. Bottom: Results on the test set.

In Table 5 we show the relative difference between the largest and smallest value of A selected

by the different methods over all 50 iterations with different training and test sets. For the data

sets considered in this work, the PRESS criterion appears to be much less sensitive to the choice

of partition of the training and test set than the other criteria. A large difference in the chosen

regularization parameter value is not necessarily problematic as there is often a large range of

regularization parameter values giving similar predictions, and manual inspection showed that this

was indeed the case here. It is, however, interesting how the PRESS-statistic appears to not be
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Validation method | - ¢4 oy | LoOCV | PRESS | PRESS 2

Data set
tumor14 5103 2-10° 1.43 2-10°
yale32B 24.5 7.7 0.20 0.35
ORL 2.4-107 192 1.5 1.8

Table 5: Relative difference of the largest and smallest values of the reqularization parameter value
selected by the different criteria over all the training and test set splits. Calculated as %

min

very sensitive to the training/test set split.

6 Conclusion

In the present work we have argued that the PRESS-statistic obtained from the dummy regression
problem (18) can be used as an efficient criterion for selecting a value of the regularization parameter
for RLDA. The motivation for this idea comes from viewing the regression residuals as distances
to the group centers. In the examples we showed that the computational savings can in some
cases be significant by using the PRESS-statistic for selecting the regularization parameter. The
PRESS-statistic can also be useful as an explorative tool, as it allows one to quickly investigate the
data set and find an approximation to the optimal value of the regularization parameter, or at the
very least a neighborhood in which to look for a good regularization parameter value. In the case
where the PRESS-curve has a clear minimum it seems that the PRESS-minimal regularization
parameter provides a good regularization parameter value for RLDA, but in the case of a flat
PRESS—curve additional regularization may be needed. From the regression problem alone it is
not clear that the regularization parameter value chosen by the PRESS-statistic should be so close
to the value chosen by CV on predictive performance. We believe the similarity is explained by the
visual interpretation of RR as clustering samples close to the group centres. When choosing among
several values of the regularization parameter, it is intuitive that the value of the regularization
parameter providing the best clustering of the groups will also provide the best (or close to best)
prediction. A more theoretical explanation would be useful as it would help explain exactly when

the PRESS-statistic gives us a good regularization parameter value for RLDA.
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A Improving MNIST classification by using random features

In this appendix we describe the random feature generation used for the MNIST data set in detail.

The features were generated in the following way:

1. Randomly pick two samples @1, 5 from the training set from different groups.

2. Set a threshold value (for each feature we chose a random threshold value in the interval
(30,100]). For the sampled vectors set the pixels with values greater than the threshold value

equal to 1 and the other pixels to 0. Label the vectors obtained by &1, xs.
3. Define a new feature f = abs(Z; — @2).

4. Repeat the above steps until the desired number of features have been generated.

After the features have been generated and collected as columns in the matrix F' € R(p, necatures)s
the new training and test sets are obtained by evaluating the matrix products Xy,.qin F and Xy F'.

The idea of the above feature generation is to generate features such that each individual feature
provides discriminatory information between two classes. Each sampled image is considered to be
prototype for its group, and the difference between the two sampled images (after thresholding)
gives information about pixels that are of high intensity in one of the images, but not in the other.
This feature generation method works for the MNIST data set because the samples are centred
and scaled to have the same size. A consequence of this pre-processing is that we can expect
that samples from the same class should have high pixel intensity in roughly the same pixels. An
exception to this is digits that can be drawn in multiple ways (such as 4), but this is not a problem
in practice as long as enough features are generated. The threshold in step (2) is to exclude pixels
of very low intensity as these are often not useful for classification. The subtraction in step (3)
removes pixels that are of high intensity in both sampled images as these pixels do not provide

discriminatory information between the two classes sampled.
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B Prototype MATLAB code for PRESS calculation

1 function [press,lambda, lambdaIndex,U,s,V] = TregPRESS (X,Y, lambdas,type) %

is an int type > 0 indicate the

aset (ordinary ridge regre

sion) .

PRESS n with minimal

m dummy reg: putations

3 [n,p] = size(X); mX = mean(X); mY = mean(¥); X = bsxfun(@minus,X,mX); Y = bsxfun(@minus,¥,mY); % Size and

1d response vector

4 L=

5 if type > 0

6 L = diff ([speye (p)jsparse (type,p) ], type);

7 X = X/L;j indicated derivative
(type) .

8 elseif type < 0

9 L = spdiags(std(X)',0,p,p); X = X/L;

10 end % For stanc

d ordinary

11 g = size(¥,2);
12 press = zeros(length(lambdas),q);

18 [U, S, V] = svd(X,'econ'); s = diag(s);

of centered (and scaled) X—data & extraction of t

singular val

14  denom = bsxfun(@plus,s,bsxfun(@rdivide, lambdas,s)); % Denominat

factors both bcoefs and PRI

15 H = (U.”2)+bsxfun (Grdivide, s, denom) +1/n; % Th

leverages for all lambdas.

16 for i-l:g

17 resid = bsxfun(@minus,Y(:,1),Uxbsxfun(@rdivide,s.#(U'+¥(:,1)),denom));
18 press (:,i) = sum(bsxfun(@rdivide, resid, (1—H))."2)';

19  end

20

21 [lambda, lambdalndex] = min(sum(press,2));

17
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C Prototype MATLAB code for fast Mahalanobis LOOCV

1 function [pceCV, pee, SpCV, nG, muGO, s0, V, GhatCV, d2CV, Ghat, d2] = RLDA(X, G, lambdas)

2 Declare LDA-parameters & calculate basic stuff

3 nlambdas = length(lambdas); % Number lambda—values to be in

4 n=size(X,1); g =max(G); % # samples, # X—variables and #

5 d2 = zeros(n,g); d2CV = zeros(n,g,nlambdas); % Squared Mahalanobis distances (Fitted values and LooCV)

6 pccCV = zeros(nlambdas,1); % The first function output (LooCV percent co classification for each of the lambdas.)
7 pcc = zeros(nlambdas,1); % Percent correct classification by resubstitution

8 ¥d = dummyvar(G); nG = sum(¥d)'; muGO = (Yd'+Yd)\Yd'+X; % Dummy ing of the groups, % sizes, % Group

9  SpCV = zeros (nlambdas,1); % Summned Cv—probabilities the correct classifications

10  Ghat = zeros(n,nlambdas);

11  GhatCV = zeros(n,nlambdas);

13 [s0, V] = rsvd(X,G); % Ridge—adapted SVD accordi ps in G

14 X = X+V; muG = muGO+V;

15  for i = l:nlambdas

16 isr = 1./sqrt(s0."2+lambdas(i))'; % Inverse of the singular values corresponding to ridge data: [Xs;sqrt (lambda(i))=eye(p)].
17 for j = 1:g lculation of regularized squared Mahalanobis distance:

18 d2(:,3) = sum(bsxfun(times,bsxfun(@minus,X, muG (3, :)),isr).*2,2);

19 end

20 Ghat (:,i)] = min(d2, [],2); pcc(i) = 100«sum(G == Ghat(:,i))/n;

21 %% Fast lation of L to the various group means:

22 for j = 1:n

23 c =G % c he true group—member

24 nc = nG(c); % nc is the size of group c

25 Xc = X(j,:)-muG(c,:); % j—th sample (row) group centered wrt the correct group.

26 for k = 1:g % Compute the adjusted squared Mahalanobis distance from from xj to cen of group k:
27 if k==c, d2CV(j,c,i) = d2(j,c) * (nc/(nc=1)) .72 / (1—(nc/(nc—1))*d2(j,c)); else

28 Xk = X(3

+)—muG (k, : ample (ro ntered

) group c uncorrect group.

29 d2ev(3, k, i) = d2(3, k) * (1 + [(Xc.xisr)«(Xk.*isr)']1"2 / ([(nc—1)/nc — d2(3,c)]*d2(3,k)) );
30 end

31 end

32 end

33

GhatCVv (:, 1)) /n;

GhatCV(:,i)] = min(d2CV(:

:,4),[1,2); peeCV(i) = 100xsum(G
34  end
35

36

LDA ridge—adaption of SVD:
37  function [s, V] = rsvd(X,G)
38 [n, p] = size(X);

39 if nargin

¥d = ones(n,1); else Yd = dummyvar(G); end
40 g = size(Yd,2); muG = (Yd'sYd)\Yd'+X;

41 [~ S, V] = svd((X-muG (G, :)), 'econ’);

42  k = min(p,n—g); m = min(n,p); h = mk;

43 s = [diag(S(1:k,1:k)); zeros(h,1)];

44  if h > 0, [V, ~] = qr([V(:,1:k) muG'],0); end
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